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Equation and the Discrete Element Method
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1. Introduction

One of the biggest challenges in the transition from fossil fuels to
renewable energies is the development of suitable energy storage
systems. Over the past decade, Li-ion batteries have proven to be
a reliable solution for many applications. Since their introduction
in the 1990s, their sales have increased thanks to the expansion
of the electronics market. In the past decade, the use of Li-ion
batteries in electric vehicles has led to a rapid increase in demand
for high-capacity batteries.[1] These developments put the Li-ion

battery in the focus of the international
research community. Since then, the goal
has been to improve battery performance,
capacity, and lifetime. Previous work
showed that, in addition to the materials
chosen, the microstructure of the electro-
des is critical to cell performance.[2–4]

Further research revealed the complex rela-
tionship between the cell manufacturing
process, which determines the electrode
particle structure, and the functionality of
the finished batteries.[5–7] These findings
required deeper insight into the compo-
nent interactions, particularly in the early
stages of production, that determine struc-
ture formation.

An important element of the composite,
especially in the cathodes, are the conduc-
tive additives such as carbon black (CB).
They compensate for the overall poor con-

ductivity of the active material and have a significant impact on
the structural properties.[8,9] In addition, a proper distribution of
CB in the electrode layer is critical to battery performance.[10]

However, the microstructure of the CB changes due to the shear
stresses that occur during the fabrication process, and therefore
also affects the overall capacity and performance of the battery.[11]

Therefore, much of the current research is focused on studying
the relationship between the manufacturing process and the final
electrode structure.[12,13] For these reasons, the present work will
focusmainly on the cathode. It is worth noting that the term cath-
odes here refer to the discharge process. The authors retain this
terminology throughout the article.

Since extensive experimental parameter studies are time and
material consuming, simulative studies of the dispersion process
are a promising alternative. These do not require the use of
expensive materials or sophisticated analytical methods, but pro-
vide a detailed insight into what happens during the manufactur-
ing process. For this reason, the objective of this article is to
simulatively investigate the fracture of CB aggregates during
the dry dispersion process of the cathode material in intensive
mixers. However, the reliability of the simulation results is
highly dependent on the models used. Finding a suitable
approach with sufficient accuracy while keeping the
computational cost reasonable is a major challenge for simulative
studies.

Modeling the change in the particle size distribution of CB is
the main focus of this work. The aim is to represent the particle
size change during the comminution process of CB during dry
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A complex interaction between the process design and the properties of carbon
black (CB) during dry mixing of cathode material influences the microstructure
and thus the performance of the Li-ion battery. The description of these inter-
actions by means of a coupling of the mixing process simulation and the
fragmentation of CB is the focus of this work. The discrete element method
provides information about the frequency and intensity of the stress. The change
of the CB size distribution is done by the population balance equation. The
material strength as well as the fracture behavior are represented with simple
models. The calibration of the model parameters is performed using the Nelder–
Mead algorithm. The calibrated models provide good agreement with the
measurements of the size distributions from experimental investigations.
Transfer of the calibrated parameters to other process settings is possible and
provides good agreement in some cases. Recalibration of the fracture behavior
improves the accuracy of the model so that it can be used as a predictive tool.

RESEARCH ARTICLE
www.entechnol.de

Energy Technol. 2022, 2200867 2200867 (1 of 14) © 2022 The Authors. Energy Technology published by Wiley-VCH GmbH

 21944296, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ente.202200867 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [07/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

mailto:ermek.asylbekov@kit.edu
https://doi.org/10.1002/ente.202200867
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.entechnol.de
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fente.202200867&domain=pdf&date_stamp=2022-10-21


processing as accurately as possible. At the same time, it is
intended to better understand the mechanisms during commi-
nution by finding suitable models. Similar challenges were tack-
led in the past by numerous publications. Most describe the
change of particle size by means of the population balance
approach. This method offers a very intuitive description of
the change of arbitrary particle properties, which are quantified
by a set of suitable variables. The entire particle population can
then be described by means of the density (usually number, vol-
ume, or mass density) of these properties. With respect to con-
servation laws, transport equations describe the behavior of the
particles within the property space.[14] This flexibility allowed
numerous applications in crystallization, granulation, mixing,
and grinding.[15–21] Such formulations require a description of
dominant mechanisms, which are often referred to as kernels.
The influences of the environment are captured in these terms.
In the field of comminution, the modeling of grinding processes
in ball mills is particularly common. Here, the influence is
described as the energy which is introduced into the grinding.
Early publications reduce this quantity to the applied specific
energy of the mill[22,23] or the mean impact energy, which balls
apply to the material.[24–27] Others emphasize that such single
parameters are not sufficient and that a distribution of impact
energies is necessary for better accuracy.[28] Simulations of the
particle collisions within the mills using discrete element meth-
ods (DEMs) provide information on the spatial and temporal
distribution of the impact energies.[24–26,29,30] This literature
provides a well-elaborated and reliable approach to the study
of the problem at hand. However, on closer inspection, the pre-
sented methods are not suitable for precise modeling of CB
fragmentation. Since in the used device the occurring fracture
is dominated less by impact energies and more by compression
and shear, previous methods don’t capture this process.
Furthermore, in contrast to the existing literature, the assump-
tion that every impact leads to fracture does not apply here.
Also, in the present case, the fragmentation of a bulk with a
broad size distribution must be considered completely resolved.
This requires a particle size-dependent breakage rate. In contrast,
the presented literature mostly considers a homogeneous
breakage rate or only regards mass reduction of the initial size
class.

The material-specific properties of the CB as well as the pro-
cess properties have to be defined and modeled. On the one
hand, a well set up model can provide a predictive tool for the
design and control of the manufacturing process. On the other
hand, it can provide insight into the complex interactions of dry
dispersion of CB. Furthermore, it supports the development of
energy-efficient manufacturing of cells with low-cost process
optimization and predictive control.

2. Methodology

Figure 1 shows the schematic structure of the presented study.
The population balance equation is the heart of the presented
work. Its key terms are the breakage rate and the breakage func-
tion. The individual aspects of modeling will now be discussed in
more detail.

2.1. Linear Breakage Equation

The linear breakage equation is a version of the population bal-
ance approach. Here, the entire mixer is regarded as one domain
and the spatial distribution of the particles is neglected. Thus, we
obtain the classic linear breakage equation as already described
by Ramkrishna.[14] It describes the time variation of the number
density distribution f ðx, tÞ for particles with volume x at time t.
By inserting an initial condition f ðx, 0Þ it can be integrated up to
time t to retrieve f ðx, tÞ.

∂f ðx,tÞ
∂t

¼
Z∞
x

pðx, yÞbðyÞf ðy, tÞdy � bðxÞf ðx, tÞ (1)

The right-hand side of the integrodifferential equation con-
sists of two terms, which are usually referred to as birth and
death functions. The birth function describes the increase in
the number of smaller particles due to the breakage of larger par-
ticles. The function bðyÞ describes the breakage rate of particles
with volume y and pðx, yÞ describes the breakage function. The
death function describes the loss of particles with volume x due
to breakage with a breakage rate of bðxÞ.

2.2. Numerical Integration

As shown earlier, the population balance approach results in a
partial differential equation, the right-hand side of which is pre-
sented later. The left-hand side of the balance is the partial time
derivative of the number-based density distribution of particles
f ðx, tÞ. For simple formulations of the birth and death terms,
analytical solutions for f ðx, tÞ exist in the literature.[31] For com-
plex formulations, different approaches exist. These often exploit
the linearity and self-similarity of the equation and are summa-
rized in numerous publications.[14,32] In this work, the goal is to
represent the entire resolved particle size distribution. For this
reason, methods of moments such as the quadrature method
of moments (QMOM) are less suitable. The method of classes
(MOCs) offers the possibility of a fully resolved view of distribu-
tions. In this method, the particle size distribution is divided into
size classes similar to a sieve analysis. This method is very intui-
tive and the numerical implementation is very simple. First, the
particle size range has to be set to ð0, xmax� and divided into N
cells. Here, cell i contains particles in the size range
ðxi�1=2, xiþ1=2� with i ¼ 1 : : :N. The edges of the considered
domain are at x1=2 ¼ 0 and xNþ1=2 ¼ xmax . The value f i repre-
sents the mean value of the distribution f ðx, tÞ within the size
class i at the point xi ¼ ðxiþ1=2 þ xi�1=2Þ=2. For particle distribu-
tions with a wide range, a logarithmic scale for xi is recom-
mended which is why it is used in this work.

f i �
1
Δx

Zxiþ1=2

xi�1=2

f ðx, tÞdt (2)

with Δx ¼ xiþ1=2 � xi�1=2 (2a)

However, the quality of the results depends significantly on
the number of individual classes. This results in higher
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computation times compared to methods of moments. A greater
challenge is the implementation of the mandatory conservation
of mass. Due to the discretization in size classes, very fine
grids are necessary. Kumar et al. presented a correction term
that ensures mass conservation independent of the lattice
resolution[33]

df̂ i
dt

¼ 1
Δxi

XN
k¼i

ωb
kbkPikf̂ kΔxk � ωd

i bif̂ i, i ¼ 1, : : : ,N (3)

where

Pik ¼
Zx̂ik
xi�1=2

pðx, xkÞdx (4a)

ωb
k ¼

xkðνðxkÞ � 1ÞPk�1
i¼1 ðxk � xiÞPik

and ωd
k ¼

ωb
k

xk

Xk
i¼1

xiPik,

k ¼ 2, : : : ,N

(4b)

x̂ik ¼
nxi when k ¼ i
xiþ1=2 otherwise: (4c)

Equation (3)a–c shows the population balance discretized
using the MOC with the corrections of Kumar et al. Here ωb

and ωd are the weights for the birth and death terms.
The time integration of the differential equation is performed

using a classical Runge–Kutta method. The four-step method,
often denoted RK4, approximates the derivative by averaging
the slope at four points. Thus, time steps with Δt ≤ 0.1 s result
in almost time-step independent results.

2.3. Birth and Death Terms

2.3.1. Breakage Function

The right-hand side of the population balance equation contains
information on material and process characteristics. The break-
age function pðx, yÞ is the distribution of fragments with volume
x resulting from the breakage of a particle with volume y. To

Figure 1. A schematic structure of the presented workflow.

www.advancedsciencenews.com www.entechnol.de

Energy Technol. 2022, 2200867 2200867 (3 of 14) © 2022 The Authors. Energy Technology published by Wiley-VCH GmbH

 21944296, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ente.202200867 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [07/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.entechnol.de


satisfy the boundary condition of mass conservation, the follow-
ing conditions must be fulfilled

Zy
0

pðx, yÞdx ¼ νðyÞ (5a)

pðx, yÞ ¼ 0 ∀x ≥ y (5b)

Furthermore, the number of fragments νðyÞ for a breakage
event of the particle with volume y is given by

Zy
0

xpðx, yÞdx ¼ y (6)

Another condition is that at least two fragments must be pro-
duced in a breakage event. The breakage function can also be
simplified by a homogeneous approach to

pðx, yÞ ¼ 1
y
θðzÞ with z ¼ x

y
(7)

Here the function θðzÞ represents a homogeneous breakage
function with relative fragment volume z.[32] There are countless
formulations for the breakage function in the literature.[15,34–38]

The publications by Diemer and Olson[39] and Kostoglou[32] pro-
vide a good overview. These can be applied to different cases
depending on the considered fracture behavior and the number
of fragments. Hill and Ng developed generalized approaches,
which they divided into product and summation functions.[36]

Diemer and Olson further simplified this approach. They
reduced the parameters to the number of fragments ν and a
parameter q which describes the breakage type. Theoretically,
it is possible to represent every breakage function as a linear com-
bination of the product and summation functions. The product
function has a simpler and more general form

θðxÞ ¼ v
zq�1ð1� zÞqðv�1Þ�1

Bðq, qðv� 1ÞÞ with z ¼ x
y
. (8)

For this reason, it is preferred in the present work. For q ! 0,
the function reproduces erosion, with q ¼ 1 the function repre-
sents a random fragment volume distribution. As the parameter
q increases, the distribution becomes narrower until at q ! ∞ it
corresponds to fracture into fragments of equal size. Bðx, yÞ is
the Euler beta function.

2.3.2. Breakage Rate

While the literature offers numerous models for shaping the
breakage function, the shape of the fracture rate is primarily
dependent on the type of loading and the fracture strength of
the particles. Thus, the fracture rate can be considered as a prod-
uct of the contact frequency n

:
and the fracture probability ps

bðxÞ ¼ n
:
ps (9)

This approach is by no means new and has been used for
modeling applications.[40] While the contact frequency can be

obtained from DEM simulations, modeling the fracture probabil-
ity requires knowledge of the distribution of stress intensity as
well as information on the fracture strength of the particles.

Numerous methods exist for determining it, most of which
distinguish between different types of loading (compression,
impact, shear, elongation). For each type of stress, there are fur-
ther subcategories, which, for example, in the case of pressure
distinguish between single impact, double impact, and slow com-
pression, to name a few. In addition to the type of stress, particle
size, shape (convex or concave, round or angular, symmetrical or
asymmetrical) and composition (crystalline or amorphous) are
also decisive factors that not only have an enormous influence
on the amount of required fracture energy, but also on the scatter
of determined values. The required fracture energy is often nor-
malized by the mass of the particle, or the applied fracture force
is normalized by the particle size to a specific fracture stress.[41]

The experimental measurement of the fracture strength is a very
laborious process, in which individual particles are first isolated
and stressed under conditions that are to be as constant as pos-
sible. Finally, the size distribution of the fragments is analyzed.

Fortunately, the experimental measurements of fracture
strength described earlier result in simple models that describe
the relationship between specific energy input or fracture stress
and particle size for individual bulk materials. Mostly classical
power-law approaches are used, which represent a linear rela-
tionship in a double logarithmic representation.[42] This is
related, on the one hand, to the established measurement meth-
ods for characterizing particle strength on one hand and, on the
other hand, to the modeling of comminution as applied mainly to
ball mills. In the presented work, due to the device used, the frac-
ture is dominated less by impact energies and more by compres-
sion and shear. Therefore, the consideration of induced stresses
is more appropriate at this point. We apply a simple power-law
approach of the form

σcritðxÞ ¼ σ0
1
x

� � 1
m

(10)

Here σcritðxÞ represents the critical breakage stress for a par-
ticle of size x, x0 is a characteristic length and m is an exponent
which sets the slope of the linear function in a double logarithmic
plot.

For particularly small particles, plastic deformation becomes
predominant as stated by Tavares.[41] A particle size xp can be
defined at which the applied energy is completely transferred
into plastic and elastic deformation and breakage no longer
occurs. Furthermore, the specific breakage energy converges
to a quasi-constant value with increasing particle size. This
can be transferred from specific breakage energy to breakage
stress, whereby the model takes the following form

σ50 ¼ σ∞ 1þ x0
x � xp

 !
ϕ

(11)

Since particle breakage is partly influenced by stochastic
effects σ50 is the specific fracture stress that leads to fracture with
a 50% probability. σ∞ is the fracture stress for coarse particle
sizes and xp is the particle size at which plastic deformation
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dominates the process. The characteristic length x0 describes the
microstructure of the material and the exponent ϕ governs the
curvature of the function. In this work, both models are applied
and compared. The parameters result from the calibration of the
resulting population balance equation. The applicability of both
models is discussed in later sections.

2.4. DEM

DEM was introduced by Cundall in 1971 and has been continu-
ously improved and applied to various particle-based problems
since then.[43] The DEM first treats a particle as a perfectly spher-
ical element with a massm, a radius r, and a moment of inertia I.
Its translational and rotational accelerations d~u=dt and d~ω=dt are
given by Newton’s equations as the sum of all forces ~Fj and

moments ~Tj acting on the particle’s center of gravity. The trans-
lational and angular velocities are obtained by integration over a
short time step Δt.

md~u
dt

¼
X
j

~Fj (12a)

Id~ω
dt

¼
X
j

~Tj (12b)

The dominant forces in DEM include contact forces ~Fc and
adhesion forces ~Fh. The contact forces arise from the physical
interaction of two particles and are based on the elastic contact
model introduced by Hertz and later extended by Mindlin and
Deresiewitcz.[44,45] This approach describes the contact force
as a combination of normal and tangential forces ~Fn

c and ~Ft
c,

respectively. The basic model consists of a parallel interaction
of an elastic spring with an elastic constant k and a damping ele-
ment with a viscoelastic damping constant γ, both in normal and
tangential directions. The normal and tangential overlaps δn and
δt as well as the normal and tangential relative velocities~unrel and
~utrel are also included in the calculation.

In this work, adhesion was modeled using the Johnson–
Kendall–Roberts (JKR) model.[46] It adds another normal force
to the contact forces. This model implements the surface energy
Γ into the force calculation.

A particular challenge of DEM is the high computational costs
for large numbers of particles and small computational time
steps as particle size decreases. In particular, for large applica-
tions with especially small particles in the nano- and micrometer
ranges, simulations require not only powerful computers, but
also skillful use of simplifications and assumptions. A major
advantage is provided by the computation on powerful graphics
cards, which have been implemented for several years. These
offer the possibility to distribute the many calculations of indi-
vidual particle contacts to many graphics processing units
(GPUs) and thus parallelizing the very numerous calculations.
The results presented in this paper were performed with the soft-
ware ROCKY DEM from the developer ESSS. In combination
with the powerful graphics cards of the Nvidia Tesla V100 model
of the bwUniCluster of the Karlsruhe Institute of Technology
(KIT), the stable simulation of large particle numbers is possible

even for very small particles. Nonetheless, simplifying assump-
tions are necessary to keep the computation times within a com-
fortable range.

In this work, DEM is used to describe the stress on the con-
ductive additive during the dry mixing process. The influence of
the process settings, in this case tip speed vtip is of particular
interest. The main goal is to derive relevant parameters for
the calculation of the population balance equation. These
include, on the one hand, the stress frequency, which indicates
how often particles are stressed at certain stress. On the other
hand, the stress intensity determines the probability of breakage.

The bulk is a mixture of active material and conductive addi-
tive. The active material, in this case, is NCM 622 with an average
particle size of x50 ¼ 9.5 μm. These particles are relatively round,
and very hard with a Young’s modulus of �230GPa and have a
very high material density of ρ ¼ 4500 kgm�2, which is not atyp-
ical for metal alloys. The conductive additive in this case is CB
Super C65. The nature of CB is very complex and similar to that
of silica. The basic elements of CB are primary particles with a
size of � 50–100 nm, which are formed and grow by nucleation
during synthesis. These interconnect by sintered bridges to form
fractal structures. Following the nomenclature introduced by
Nichols et al., we refer to these as brittle agglomerates.[47] The
size and shape of brittle agglomerates vary widely, so their sizes
can reach between 300 nm and more than 1 μm depending on
the history and handling of the powder.[48] The fractal dimension
varies between 2.0 and 2.5 whereby the values vary greatly
depending on the examined CB type. Furthermore, brittle
agglomerates agglomerate into larger flakes (soft agglomerates)
reaching up to 30 μm and forming even larger clumps of several
millimeters during handling, storage, and transport. Due to their
fractal nature, brittle agglomerates not only agglomerate by
means of interparticle interactions such as Van der Waals inter-
actions, but can also bind sterically by hooking with small side
branches. This fractal structure of CB and the associated complex
dispersion behavior of such nanoscale particle clusters are dis-
cussed in various publications[7,49–52]

Due to the small size of the CB, it is not possible to completely
resolve the particles in the DEM, even with low mass fractions.
Even the much larger active material particles pose a challenge
for a simulation of an entire mixer with only 300 g of material.
Since in this case, a statistical approach to stress is of interest, an
exact resolution of all particles can be omitted. For the present
case, we assume the comminution of CB in this dry mixing pro-
cess to be dominated by compression and shear. The much
larger and tougher active material particles are compressed at
the blades and the inner wall of the mixer and serve as a grinding
media for the CB agglomerates which are caught in between. The
CB is thereby crushed by the compression and shear in the
mixer. Therefore, only the active material particles are repre-
sented in the simulation. Furthermore, it is necessary to apply
the coarse-graining method. In this process, the particles are rep-
resented as larger spheres. Thus a particle in DEM represents a
cluster of particles moving in the same direction with a similar
velocity. This method reduces the number of particles enor-
mously, thereby reducing the computational effort, and has since
become a commonmethod for simplifying similar tasks. For this
reason, coarse-graining is also used here. The scaling laws are
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derived in the literature by means of dimensional analysis.[53,54]

Furthermore, due to self-similarity the frictional force models
within ROCKY do not need to be modified to satisfy the
constraints from[53,54] when Hertzian Spring Dashpot and
Mindlin–Deresiewicz models are used to calculate the normal
and tangential contact forces. Finally, the coeffitients of friction
μstatic, μdynamic, the coeffitient of restitution e and the surface
energy ΓSJKR were calibrated directly on scaled-up particles, so
that they are already adapted to the corse grain factor to represent
the flow behavior accordingly. To further reduce the resulting
deviations in the flow behavior of the bulk material the relative
particle size distribution of the active material remains the same.
The coarse grain factor is set to 100. According to Feng et al.,[55]

such large values are around the upper limit of this method.
To further reduce computation times, a popular method of

periodic boundary conditions can be applied. For this purpose,
it is necessary to take a closer look at the geometry of the mixer as
it is shown in Figure 2. The mixing element consists of six simi-
lar sections. The blades of the mixing element are alternately mir-
rored and the individual disks are each mounted on the shaft
with an offset of 90°. Thus, a representative element can be
extracted from the mixer domain and assumed to be periodic.
This assumption implies that boundary effects have a negligible
influence on the statistical consideration of stress. As a result, the
considered domain is reduced to 1/3 which greatly reduces
computational costs.

The calibration of the material parameters for the DEM was
carried out by measurements of the static and dynamic angle of
repose. Since the relationships between the DEM parameters and
the flow behavior of fine powders are very complex, especially
when cohesive forces occur, a convolutional neural network
was used for this purpose. The video recordings of the flow
behavior were converted to binary images using image process-
ing algorithms and fed to the previously trained network. A
detailed description of this calibration method will be presented
in a future publication. All calibrated DEM parameters are shown
in Table 1.

The results of the DEM simulations provide boundary condi-
tions for shaping the breakage rate of individual particle size clas-
ses. Two quantities are of particular interest. The contact

frequency n
:
and the stress intensity σ. The latter can be repre-

sented as both energy and stress, as described in
Section 2.3.2. Since both are not homogeneous along the geom-
etry of the mixer, the domain is resolved using a grid that is
divided in radial, tangential, and axial directions into 10, 72,
and 8 cells, respectively (Figure 2). In each of the 5760 cells, a
mass averaged stress tensor is calculated and assigned to the cell.
The stress tensor is composed of the normal stresses σx, σy and
σz, and the shear stresses τxy, τxz and τyz. One way to make the
stress state independent of the coordinate system is to calculate
the principal stresses. These form eigenvalues of the stress ten-
sor. The great advantage of this evaluation is that information
about the shear stresses is also preserved while at the same time
the data size is reduced from six scalars to three. For reasons of
simplification, we reduce it further and consider only the mean
stress σ which is the mean of the three principal stresses. As
mentioned before, compression and shear dominate in this appa-
ratus. Therefore, it is also possible to use the maximum shear
stress τmax instead of σ to describe the stress with

τmax ¼
σI � σIII

2
(13)

However, the performed DEM simulations show that in this
case both values are distributed very similarly both quantitatively
and spatially.

Figure 2. a) A segment of the mixer geometry as a representative element with periodic boundary conditions (red). b) Grid created for Eulerian statistics
of the particle interaction data within the periodic element.

Table 1. Calibrated DEM parameters of the scaled-up particles.

Parameter Symbol Unit Material –

Steel Particle

Density ρ kgm�3 7800 1670

Poisson’s ratio ν – 0.3 0.25

Coefficient of restitution e – 0.28 0.21

Coefficient of static friction μstatic – 0.75 0.83

Coefficient of dynamic friction μdynamic – 0.65 0.68

Surface energy ΓSJKR J=m2 0.78 0.27
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2.5. Study Setup

The fracture behavior of the CB agglomerates is described by
their fracture strength and the breakage function as described
in Section 2.3.2 and depends on the size and nature of the
agglomerates. Both power-law and σ50 model already include a
dependence of the fracture strength on agglomerate size.

The homogeneous breakage function described in
Section 2.3.1 can be assumed to be the same for soft and brittle
agglomerates. Assigning a separate homogeneous breakage
function for soft and brittle agglomerates allows the modeling
of different fracture mechanisms due to the nature of the
agglomerates. However, an assignment of agglomerates
according to existing bond forces is neither experimentally
nor simulatively possible. Therefore, the separation between
brittle and soft agglomerates is done according to their size.
Brittle aggregates form agglomerates with x < 0.766 μm and
soft agglomerates with x ≥ 0.766 μm. This limit is justified
only by the shape of the particle size distribution, which as
a mass-based distribution shows a characteristic valley at
x � 0.766 μm. As will be seen later, this value is by no means
constant, so this remains only a rough estimate. However, this
assumption allows a description of the heterogeneous fracture
behavior. For this purpose, soft and brittle agglomerates each
receive their own homogeneous breakage function. After suc-
cessful calibration, the best-fit parameters are transferred to
tip speeds of 6.25 and 13ms�1. At this point, the assumption
of the process-independent breakage function is to be verified.
As already experimentally demonstrated by Wu et al.,[56] the
breakage function often depends on the stress intensity. For
this reason, another calibration step is performed for tip
speeds 6.25 and 13ms�1. Based on the previously calibrated
parameter set, the breakage functions undergo another cali-
bration process. The fracture strength remains unchanged.

The four studied cases can be summarized as follows.
Case I: Breakage function is homogeneous for the entire par-

ticle set, all parameters are optimized.
Case II: Breakage function is split according to the distinction

between brittle and soft agglomerates with a homogeneous breakage
function for each of the two groups, all parameters are optimized.

Case III: The best-fit parameters for fracture strength and
breakage function from Case II are transferred to tip speeds
of 6.25 and 13ms�1, no further parameter optimization.

Case IV: The best-fit parameters for the fracture strength from
Case II are transferred to tip speeds of 6.25 and 13ms�1. The
parameters of the breakage functions are again subjected to opti-
mization. Best-fit parameters from Case II are the initial condi-
tions point of the iteration.

2.6. Parameter Calibration

The choice of the parameters for the population balance requires
first of all an exact consideration of the physical fracture pro-
cesses. All parameters can be combined as one vector ξ. The devi-
ation between the measured particle size distribution f ðx, tÞ and
the function f̂ ξðx, tÞ obtained from the integration of the popu-
lation balance is the error function εðξÞ which is equivalent to a
total squared error

εðξÞ ¼ kf expðx, tÞ � f̂ ξðx, tÞk22 (14)

The search for the minimum of a function occupies a large
and, especially for engineering, an important part of mathe-
matics. Classical methods such as Newton, Gauss–Newton,
or Levenberg–Marquardt algorithm, which is a further devel-
opment of the Gauss–Newton method, require the calculation
of the Jacobian matrix, which contains the partial derivatives of
the function to be minimized. For functions whose prescrip-
tion is not known, an elaborate numerical approximation of the
partial derivatives is necessary. Furthermore, such methods
have a crucial weakness for functions that partly contain shal-
low valleys. At this point, the convergence speed decreases
strongly and a minimum is reached very slowly or not at
all. A common example of such behavior is the Rosenbrock
function,[57] which is often used as a benchmark for optimiza-
tion algorithms. The problem at hand also contains the chal-
lenge of the missing expression εðξÞ for exact computation of
the Jacobian matrix. Furthermore, the optimization of the
parameters of the breakage function is not successful with gra-
dient methods due to the many shallow valleys in εðξÞ. For this
reason, a heuristic method is resorted to at this point. In general
heuristic methods revolve around obtaining a near-optimal solu-
tion within reasonable computational effort while reducing the
likelihood of obtaining a bad solution.[58,59] The method used in
this work is the Nelder–Mead algorithm, which is also known
as the downhill simplex method.[60] This method uses a simplex,
the simplest volume spanned in a space with n parameters of nþ 1
points ξ0, ξ1 : : : ξnþ1. Since each of the points ξi in the simplex can
be assigned a function value εðξiÞ, the points can be sorted accord-
ing to the function value. By successively reflecting the point with
the worst function value, the simplex moves to the local minimum,
accumulates around it, and contracts around it by shrinking. While
this method is clearly inferior to gradient methods in terms of
speed of convergence, it convinces with remarkable robustness.
However, the problem of local optima still remains a non-negligi-
ble aspect of numerical optimization. A simple way to improve the
quality of the results is to perform the optimization with a set of
initial conditions ξ0,i with i ¼ 1..n. In the presented study, Cases I
and II are studied with a randomized set of at least 15 vectors ξ0,i.
In Case IV ξ0,i is chosen from the best results of Case II.

At least as important as the choice of the optimization algorithm
is the preconditioning of the parameter vector ξ. This is imple-
mented in two steps in this work. First, the preconditioning
changes the scale of the parameters. This is especially important
for parameters whose influence is nonlinear or suspected to be non-
linear. The calculation of the individual parameters is shown in
Equation (15a–e). The logarithmic consideration of the parameters
improves the resolution for q � 1 and smaller values of v. The val-
ues for σ50 and σend are also logarithmically scaled, since the values
of fracture strength cover large ranges of values. The second step of
preconditioning normalizes the parameter vector ξ̂. This is the sim-
plest type of preconditioning that improves numerical accuracy.

q̂ ¼ log10 q (15a)

v̂ ¼ log2v (15b)

σ̂0 ¼ log10σ0 (15c)
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σ̂end ¼ log10σend (15d)

εðξÞ ¼ ξ̂

ξ̂0
(15e)

2.7. Measurement of Particle Size Distribution

Measuring the particle size distribution of CB is a huge challenge.
To measure the particle size distribution, several samples, each
with 0.5 g, are taken from the dry mixture. Then, these are mixed
manually with 0.5 g stabilizer for 2min. As the next step, the sam-
ples are suspended each in 12 g N-methyl-2-pyrrolidone (NMP), a
common organic solvent used in Li-ion battery manufacturing, by
hand for 2min. Since NCM is also added during the mixing pro-
cess, it must be removed from the sample after the mixing process.
For this purpose, the prepared suspension is treated in a centrifuge
at 500 rpm for 5min. During this process, a separation betweenCB
and NCM takes place due to the difference in size and density. The
particle size distribution of the CB in the suspension is then mea-
sured by light scattering. A detailed description of this method and
its evaluation can be found in the publication by Dreger et al.[61]

At this point, the influence of the measurement procedure on
the resulting size distributions is to be noted. Manual mixing with
the stabilizer, suspension in NMP, and centrifugation can lead to
further comminution and/or reagglomeration of the CB agglom-
erates. Furthermore, measurement methods using light scattering
usually provide equivalent diameters based on spherical particles.
Especially in the case of fractal structures of the CB, these can devi-
ate significantly from the actual size. This error influences the
results of the simulations due to the conversion of the agglomerate
sizes to volumes x to calculate the population balance (Section 2.1).
Nevertheless, these influences can hardly be prevented, since alter-
native measurement methods either involve a significantly higher
effort or comparable assumptions and effects.

The investigated blends are part of an experimental study. The
measurements of NCM and CB (3 wt%) premixed under low
energy input are taken as the initial value. The target

distributions are obtained from the samples mixed at a tip speed
of 6.25, 9.5, and 13ms�1 for 2min. In each test, 300 g of powder
is added to the mixer. Each particle size distribution is obtained
from the average of at least six samples.

3. Results and Discussion

3.1. Collision Data from DEM Simulations

The density distributions of the mean stress are shown in
Figure 3 (left). Both the maximum stresses and the x50 value shift
to larger stresses as the tip speed of the mixing tool increases.
Figure 3 (right) shows a spatial distribution of the mean principal
stress in the mixer at 9.5m s�1. As expected, the stress is concen-
trated in the areas in front of the mixing blades, where the par-
ticles accumulate. Here, the bulk is compressed and the stress
reaches its peak at the contact points with the geometry.

The particle contact frequency is also averaged within each
cell. Since the total number of stress events NP,i in cell i also
depends on the number of particles in the system, the average
is normalized by the number of particles in the system. This par-
tially compensates for the error generated by the coarse-grain
approach. A similar approach was already applied in the study
of wet grinding.[62] Figure 4 (left) shows the specific contact fre-
quencies for the DEM simulation at different mixing speeds.
Here, the values are assigned to the corresponding mean stress
in the cells of the applied grid. Figure 4 (right) shows the spatial
distribution of the specific contact frequencies.

The total number of stress events for a stress intensity is
assumed to be proportional to the integral of the specific fre-
quency over all stresses in the mixer exceeding the critical break-
ing stress σcrit and is corrected by a constant scalar λ

n
: ðσcritÞ ¼ λ

Zσmax

σcrit

n
: ðσÞdσ (16)

Figure 3. Left: Quantitative distributions of the mean stress at different tip speeds. Right: Spatial distribution of the mean stress at vtip ¼ 9.5m s�1.
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3.2. Case I

Figure 5 shows the mass-based population distribution after
successful optimization of the parameters for the exponential
model of the critical fracture stress and a homogeneous breakage
function in comparison with the experimentally determined
values.

The disadvantage of the homogeneous approach is clearly evi-
dent. The bimodal nature of the particle size distribution is
almost completely lost. On closer inspection, however, it is
noticeable that the resulting distribution can be described as a
sum of three broad monomodal distributions. This effect may
be a consequence of the modeling.

3.3. Case II

The results of the simulations with a heterogeneous kernel show
a very similar course for both applied models of fracture strength
(Figure 6). The division of the entire distribution into three
monomodal distributions, already observed in the homogeneous
approach, is more pronounced here. This means that the distri-
butions are now narrower and the curve better captures the valley
between soft and brittle agglomerates.

Furthermore, there is little difference between the two breakage
models. The breakage rates for the best-fit parameters of both frac-
ture models are shown in Figure 7. With particularly high fracture
strengths, both models prevent the comminution of small

Figure 4. Left: Time average specific frequency for different values of the mean stress at different tip speeds. Right: Spatial distribution of the average
specific frequency at vtip ¼ 9.5m s�1.

Figure 5. Simulation results for homogeneous breakage are compared to experimental measurements and initial state. Left: Mass-based carbon black
(CB) particle size population distribution. Right: Cumulative mass-based CB particle size distribution.
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agglomerates. The increase in the breakage rate is influenced by
the slope of the fracture strength. As a result, the course of the
breakage rate of the power-law model is slightly steeper.
However, both functions end in a constant value for large agglom-
erates. Another characteristic of the breakage rate is the limit value
of xlim � 0.2 μm. With bðx < xlimÞ ¼ 0, the breakage rate repro-
duces a limited breakage. While the σ50 model imposes this limit
with xp ¼ 0.199 μm, the power-law model implements this by a
very steep gradient. This behavior is consistent with the observa-
tions of Mayer et al.[63]. Here, wet dispersion of CB in a planetary
mixer also showed a limit at 0.2 μm. The samewas confirmed with
micro-scale DEM simulation.[64]

The values of the optimized parameters of the breakage
function are shown in Table 2. The breakage functions for both
fracture strength models are shown in Figure 8. The breakage
function for brittle agglomerates (Figure 8 left) is a narrow dis-
tribution with few fragments for both fracture models. The

values for the fracture type q and fragment number v are also
very close. Only a higher fragment number in the power-law
model shifts the z50 value to the left. The similarity is most
likely due to the fact that the fracture strength in the range x <

0.766 μm has a very similar course for both models.
The breakage functions of the soft agglomerates (Figure 8

right), on the other hand, look different for the two models.

Figure 6. Simulation results for heterogeneous breakage with power-law and σ50 fracture strength models are compared to experimental measurements
and initial state. Left: Mass-based CB particle size population distribution. Right: Cumulative mass-based CB particle size distribution.

Figure 7. Breakage parameters after successful calibration at vtip ¼ 9.5m s�1 for power-law and σ50 models. Left: Breakage rate. Right: Fracture strength.

Table 2. Optimized breakage function parameters for soft and brittle
agglomerates at vtip ¼ 9.5m s�1.

Power-law σ50

q v z50 q v z50

Brittle agglomerates 3.8 27.6 3.08� 10�2 3.7 18.5 4.59� 10�2

Soft agglomerates 2.1 46.8 1.68� 10�2 0.2 158.2 9.86� 10�4
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While the breakage function of the power-law model converges to
a narrow distribution with q > 1 and z50 ¼ 1.68 � 10�2, the
breakage function of the σ50 model forms an asymmetric function
corresponding to erosion with q < 1. Since σ50 model assumes
much higher values for fracture strength of soft agglomerates
compared to the power-law model. Thus, the breakage rate in this
region is lower than in the power-law model. Since experimental
data dictates a certain extent of breakage within the specified time,
the parameters of the breakage function compensate for this influ-
ence with a higher amount of smaller fragments.

3.4. Case III

Assuming that both the breakage function and the fracture
strength are process independent, the best-fit parameters are
applied to other tip speeds. The values for the error εðξbestÞ are
shown in Figure 9. The error values for 6.25 and 13ms�1 are

an order of magnitude larger than for the simulation with the orig-
inal tip speed of 9.5m s�1.

The agreement of the simulation results with the experimentally
determined values is good for a tip speed of 13m s�1. The charac-
teristic valley for soft agglomerates is smoothed similar to case I.
However, the dominant peak of the brittle agglomerates is repro-
duced with very good accuracy. Nevertheless, the dominant peak
of brittle agglomerates is simulated with a very good accuracy. In
contrast, the simulation results for vtip ¼ 6.25m s�1 deviate signifi-
cantly from themeasured values with increasing agglomerate size x.

3.5. Case IV

The limitation of the process-independent breakage function is
lifted. The best-fit parameters for the fracture strength are
retained, while the parameters are optimized with ξbest as the
starting point. The errors can be seen in Figure 9 (right). The

Figure 8. Breakage functions after successful calibration at vtip ¼ 9.5m s�1 for power-law and σ50 models. Left: Brittle agglomerates. Right: Soft agglomerates.

Figure 9. Left: Total squared errors for Cases III and IV at different tip speeds. Right: population size distributions at different tip speeds of Cases II and IV
compared to experimental results.
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parameters for all breakage functions are shown in Table 3. For
the sigma model, the z50 remains constant at � 5� 10�2 while
the width of the distribution decreases with increasing tip speed.
For 13m s�1, the break function takes the form of a random frag-
ment size distribution with q � 1. Similar to Case II, this has less
of a physical background, but is due to simplified modeling.

The width of the breakage function for brittle agglomerates
increases for the power law model with increasing tip speed.
For the sigma model, the z50 remains constant at � 5� 10�2

while the width of the distribution decreases with increasing
tip speed. For 13m s�1, the breakage function takes the form
of a random fragment size distribution with q � 1.

For 6.25m s�1, the soft agglomerates breakage functions for
power-law and sigma-model are almost identical and represent
a random fragment size distribution with very few fragments.
For 13m s�1, the breakage function for the sigma model
approaches fragmentation into equal-sized fragments.

Due to the simplifiedmodeling, the interpretation of the results
is very difficult. As previously described the parameter values are
due to the specification of the extent of breakage. Furthermore, the
parameters had to be limited to physical values. As described in
Section 2.3.1, at least two fragmentsmust be created in each break-
age event. For this reason, parameters with v < 2 are sorted out,
even if the simulation results showed very small errors.

Neither the σ50 nor the power-law model did show a signifi-
cant advantage in the presented setup. However, the main focus
of the calibration appears to be the smaller particle sizes. This is
evident in a better accuracy in the prediction of the size distribu-
tion in Figure 9 (right) and the prioritized enforcement of the
breakage limit. Also, the calibrated parameters for the breakage
function of soft agglomerates show a distinctive pattern both for
σ50 and the power-law models. Here the number of fragments at
tip speed of 9.5m s�1 is significantly higher than that of other
regarded tip speeds. Even more interesting is the fact that with
q ¼ 0.2 the breakage function suggests erosion breakage. One
possible explanation is the absence of agglomeration in themodel.
With this restriction, it is the only way to produce fine particle
classes while simultaneously slowing down the mass reduction
of large particle classes. On lower tip speeds this is not necessary
since the overall breakage rate is lower due to lower stress inten-
sity and frequency (see Figure 3 and 4). At higher tip speeds, the
effect of reagglomeration is less dominant due to high-stress
intensity and frequency and the low particle strength of soft
agglomerates. Another crucial aspect is the validity of the linearity

of the breakage. Bilgili and Scarlet provide a very
sobering insight into the reality of particle breakage.[65] They
describe three different types of non-linearity which result in a
time-variant breakage rate. Especially the last two types can
explain the residual errors in particle size prediction. Both types
are caused by the increase in volume of fine particle classes. These
create damping layers within the bulk and reduce the applied
stress.[22,66] Similar effects were also observed during the calibra-
tion of the DEM parameters. Here the flow behavior of the bulk
showed a dependence on the extent of breakage of CB (Figure A1).

4. Conclusion and Outlook

Modeling CB comminution during dry mixing is a task with
many challenges. Basic modeling using population balances pro-
vides a good and proven method. Both material and process
properties need to be defined, measured, or modeled to describe
the birth and death terms. The process properties can be deter-
mined by means of DEM simulations. By considering the contact
frequency and the resulting stress within the bulk, the influence
of the process properties can be implemented in the population
balance. The material properties like breakage function and frac-
ture strength can be modeled with simple models with a physical
background. None of the used models show an advantage in
this respect. The DEM simulations require many simplifying
approaches, but provide a good qualitative representation of the
impact frequencies and intensities. The breakage frequency, which
is a combination of the specific contact frequency and the required
fracture stress, suggests a limited breakage. The values of the
breakage limit are comparable to those found in the literature.

The interpretation of the breakage functions, in contrast, is dif-
ficult. The optimized parameters are strongly influenced by the
calibration of experimental data. The assumption of homogeneous
breakage behavior shows very good agreement with the measured
values with respect to x50, but reduces the results to a quasi-mono-
modal distribution.With the division of the agglomerates into brit-
tle and soft agglomerates based on a size limit, the MOC unfolds
its advantage and reproduces the measured values much better.
The transfer of the parameters to other process settings results
in a good representation of the agglomerate size distribution with-
out recalibration of the breakage function only at high tip speeds.
However, for lower speeds, recalibration of the breakage function
provides a significant improvement in the simulation.

The focus of further investigations is on the improvement of
the previously made assumptions and simplifications. Thus, the
modeling of the reagglomeration is mandatory if a binding agent
is added to the mixtures. However, reagglomeration can also be a
non-negligible aspect when processing without binders.
Furthermore, a resolved view of the mixer domain can improve
the simulation results. However, the locally resolved population
balance equation using the MOC introduces significantly higher
computational costs. Recently, Peterson et al.[67] presented a new
framework for numerically solving the population balance equa-
tions, which they applied to locally resolved computation within
flow simulations. This approach together with the work of
Vikhansky et al.[68] provides promising alternatives to MOC with-
out completely sacrificing the advantages of resolved representa-
tion of the size distributions.

Table 3. Optimized breakage function parameters for soft and brittle
agglomerates at all tip speeds.

– power-law σ50

vtip=ms�1 q v z50 q v z50

Brittle agglomerates 6.25 13.0 15.0 6.0� 10�2 45.6 17.2 5.4� 10�2

9.5 3.8 27.6 3.1� 10�2 3.7 18.5 4.6� 10�2

13 1.3 17.2 5.8� 10�2 0.9 13.1 5.0� 10�2

Soft agglomerates 6.25 1.6 4.0 2.1� 10�1 1.6 4.0 2.1� 10�1

9.5 2.1 46.8 1.7� 10�2 0.2 158.2 9.8� 10�4

13 6.8 4.0 1.1� 10�2 145.8 60.0 1.5� 10�2
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