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Abstract Due to their high-energy density, shape memory

alloys (SMAs) are investigated as material for bending

microactuators in applications of self-folding structures,

realizing the concept of programmable matter. Here, for

the numerical prediction of the electro-thermo-mechanical

performance, the quantification of the time-dependent

coupling effects in SMA materials during phase transfor-

mation is of crucial interest. Isothermal SMA material

models cannot treat the time-dependent interaction

between deformation, temperature and electric potential in

thermally controlled actuation. In this paper, we extend an

isothermal SMA model using standard thermodynamics

(Coleman–Noll procedure) to treat the time-dependent

behavior of polycrystalline SMAs. The model is imple-

mented as a user material subroutine (UMAT) in a standard

finite element (FE) code (Abaqus standard). The time-de-

pendent loading of a tensile sample and a bending

microactuator made from 20 lm thick SMA foil are sim-

ulated. A comparative study between experimental and

simulation results on the thermoelastic and caloric effects

during stress-induced phase transformation is presented.

Joule heating simulations for shape recovery during both

tensile and bending loading are conducted. Time-resolved

temperature variations accompanying the loading and Joule

heating processes are reported. The coupled SMA material

model is found to be capable of approximating the time-

dependent field quantities of a polycrystalline SMA

microactuator subjected to electro-thermo-mechanical

loading.

Keywords SMA modeling � Coupled FEM simulation �
SMA microactuator � Bending actuation � Abaqus

Introduction

For microsystem actuation, shape memory alloys (SMAs)

offer desirable properties compared to other actuation

materials. Nickel titanium (NiTi), since its discovery in

1962 [1, 2], has remained the most popular SMA to this

day. NiTi shows attractive properties for actuation,

amongst which are large stress and strain output, good

damping, fatigue, corrosion properties and good biocom-

patibility [3–8]. Due to considerable progress in

microtechnologies, NiTi thin film mechanical and medical

microactuators gained large interest for various applica-

tions [9–11]. Examples of this research are the develop-

ment of micropumps [12], microwrapper [13], microvalves

[9, 14–16], heart valves [17]. For actuation, the conversion

of thermal energy into mechanical energy can be achieved
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through resistive heating related to the shape memory

effect (SME). Promising application of thin film NiTi

actuation can be anticipated for shape changing systems

that are inspired from the Japanese art of paper folding,

Origami [18]. Such an application requires bending actu-

ation able to fold and unfold two dimensional (2D) planar

structures into different three dimensional (3D) structures.

Through the use of NiTi thin foils, 2D planar structures

were programmed to self-fold to different 3D structures,

for which the term programmable matter was coined [18].

The reduction in actuator size would allow for more

complex 3D structures to be programmed [19]. However,

as part of such developments, numerical simulations of the

coupled electro-thermo-mechanical (CETM) behavior of

the actuator need to be conducted. Design and performance

analysis of NiTi microactuators can be achieved through

finite element (FE) simulations. This provides information

about optimal actuator geometries and limits for force-

displacement or torque-angle output. As a prerequisite for

such FE simulations, a material model describing the

CETM behavior of SMA material need to be developed. Of

all the material models describing the constitutive behavior

of SMAs, fully thermomechanically coupled phenomeno-

logical SMA material models and other SMA constitutive

models [20–30] have provided a close approximation of the

physical behavior of SMA components. Developing phe-

nomenological models, a thorough understanding the

experimental behavior of SMA materials is crucial. Below,

a short review on SMA behavior is presented. Shape

memory alloys subscribe to a class of materials that show

memory of the original shape after a thermomechanical

deformation process. This process induces a crystallo-

graphic reversible solid–solid phase transformation

between a high-temperature stable parent phase of

austenite (A) and a low temperature stable martensite phase

(M). Two main properties are related to this transforma-

tion, one-way shape memory effect (SME) and superelas-

ticity (SE). SME is the thermomechanical process where a

SMA sample at a certain initial temperature is cooled from

the parent austenite phase to a twinned martensite phase

without inducing shape change. Then the twinned

martensite is subjected to a shape changing stress which

reorient the twinned martensite phase to a de-twinned

martensite. This process causes visible shape change in the

sample. Heating the deformed sample to a temperature

above the austenite finish temperature (Af ) recovers the

original shape of the austenite phase. SE on the other hand

is a mechanical process, where a sample in austenite con-

figuration (temperature is above Af ) is loaded beyond the

transformation stresses (rMS;rMF). This process induces a

shape changing transformation from austenite to de-twin-

ned martenite. Upon unloading, the sample recovers its

original shape in austenite configuration. Figure 1 shows

the stress–strain behavior of the one-way shape memory

effect (SME) and superelasticity (SE).

Figure 2 shows the SMA phase diagram with the two

aforementioned thermomechanical processes. The SMA

material is a cold-rolled NiTi which exhibits a two-stage

transformation between austenite and martensite via an

intermediate phase, the so-called R-phase as detailed in our

previous work [19]. Therefore, actuation at room temper-

ature by Joule heating due to the shape memory effect

involves R-phase transformation and stress-induced

martensitic transformation depending on the stress level.

These effects are approximated by the process depicted in

Fig. 2.

The 3D isothermal thermomechanical material model

presented in [28] describes both shape memory effect

(SME) and superelasticity (SE) of SMA solid materials. It

captures both thermally and stress-induced martensite

variants and was applied recently for micro-bending actu-

ators [19]. Compared to most phenomenological SMA

material modeling approaches that use stress and temper-

ature as control variable, the SMA material model pre-

sented here [28] assumes strain and temperature as control

variables. From this assumption, a modified phase diagram

(see Fig. 2) is generated and consequently the phase

transformation is strain-controlled. The drawback of this

work [28] is its isothermal setup, so time and spatially

dependent electro-thermo-mechanical coupling effects

occurring in SMA actuator devices are not tractable.

However, these effects are crucial during device actuation.

In the present paper, an extension of this model is pre-

sented to consider the coupling between mechanics, elec-

tric current flow and heat generation. This allows for a

spatially and temporally resolved analysis of SMA

microactuators.

The paper is structured as follows: The material model

is briefly sketched, and a thermodynamical derivation of

the heat dissipation terms is carried out, which are used in

the heat balance equation. The kinetic equations for the

temperature-coupled phase transformations are formulated.

After a description of the implementation of the model in a

finite element framework, we present comparisons of

simulation results with experimental data on tensile and

bending loading, and a simulation of the Joule-heated

actuator performance.

Materials and Methods

Thermomechanical Modeling

As an elastic material with a nonlinear stress–strain rela-

tion, SMAs are often modeled as hypoelastic materials.
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Rate additive hypoelastic formulation is assumed. Since the

elastic strain is small compared to the transformation

strain, the total strain rate tensor is additively decomposed

into its elastic and transformation parts,

_e ¼ _eel þ _etr ð1Þ

As typical thermal expansion coefficients in NiTi are of the

order of 10�5 K�1 (e.g. Table 2.5 in [31]) the thermal strain

for the temperature changes during actuation of about 50 K

is roughly two orders of magntitude smaller than the

transformation strain. In this work, it will hence be

neglected. The transformation strain is related to the pro-

gress in crystallographic phase transformation represented

by the martensite volume fraction n, its direction being

determined by the transformation tensor K. For the rate

form of the transformation strain we choose

_etr ¼ K _n; ð2Þ

where the transformation tensor is defined as

K ¼
emax

tr

r0

kr0k for _n[ 0 (forward transformation)

emax
tr

etr

ketrk
for _n\0 (reverse transformation)

8
>><

>>:

ð3Þ

Here, emax
tr is the maximum transformation strain

obtained from tensile testing experiments, and r0 is the

deviatoric part of the stress tensor. Details about the

isothermal SMA material model formulation can be found

in [28].

In the following, we extend the model from [28] towards

a thermomechanically coupled SMA model. Intensive

studies have been conducted on the formulation of coupled

problems in thermo-plasticity [32–34], on the material

modelling and characterisation of shape memory alloys

[14, 26, 27, 31, 35–38]. This vast knowledge base will

serve as a reference to the formulation here. Following the

Coleman–Noll procedure [39], constitutive equations will

be derived. Assuming the validity of the framework of

irreversible thermodynamics, we consider the thermal

dissipation occurring during phase transformation descri-

bed by the internal state variables n and etr as a source of

heat. The problem of a current-controlled actuator involves

electric, thermal and mechanical processes, which for a

continuum body are formulated by the conservation of

electric charge, of linear momentum and of energy,

respectively,

r � J ¼ 0

r � r ¼ 0

q _u� _wþr � q ¼ 0;

ð4Þ

where J denotes the electrical current density, q the

material density, u the specific internal energy, _w ¼ r _e the

rate of specific mechanical work and q the heat flux. The

Clausius–Duhem inequality as a version of the second law

Fig. 1 Schematic stress–strain

diagrams of SMAs: a one-way

shape memory effect (SME);

b superelasticity (SE)

Fig. 2 Modified SMA phase diagram adapted from [28]
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of thermodynamics [40] states that in an irreversible pro-

cess the entropy production is positive,

qT _sþr � q� q � rT

T
� 0; ð5Þ

where s is the specific entropy, and T is the absolute tem-

perature. Inserting Eqs. (4) into (5), a dissipation inequality

is obtained, consisting of a mechanical dissipation, dmec,

and a thermal dissipation, dth,

d ¼ qT _sþ r _e� q _u½ � þ �q � rT

T

� �

� 0 ð6Þ

Due to the choice of the strain tensor e and temperature T

as control variables, the thermodynamic state of the system

is described by the specific Helmholtz free energy

w ¼ w e; T ; etr; nð Þ ¼ u� sT ; ð7Þ

with

_w ¼ _u� _sT � s _T ¼ ow
oe

_eþ ow
oT

_T þ ow
oetr

_etr þ ow
on

_n: ð8Þ

With Eq. (8), the dissipation inequality in terms of the

Helmholtz free energy density is obtained from Eq. (6),

r _e� qs _T � q
ow
oe

_e� q
ow
oT

_T � q
ow
oetr

_etr � q
ow
on

_n� 1

T
ðq � rTÞ� 0

ð9Þ

Fixing all state variables except one, fulfilling the

inequality Eq. (9) requires

r ¼ q
ow
oe

;

s ¼ � ow
oT

;

ð10Þ

which gives the constitutive equations for stress and

entropy. Using Eqs. (10), (9) reduces to

/ _etr þ p _n� q � rT

T
� 0; ð11Þ

where p ¼ �q ow
on, / ¼ �q ow

oetr are the thermodynamic

driving forces conjugate to the internal state variables, n
and etr, respectively. To satisfy Eq. (11), all terms should

be positive. The term with the heat flux satisfies this con-

dition using Fourier’s law of heat conduction,

q ¼ �k � rT , where k is an isotropic thermal conductivity

tensor. The terms with the rate of internal state variables _etr

, _n satisfy the inequality by considering a dissipation

potential aðp;/; n; etrÞ, with _n ¼ oa
op and _etr ¼ oa

o/. The ther-

modynamic potential of the two component phenomeno-

logical model presented in [22, 23, 41–43] is selected.

Converting the Gibbs free energy from the above

mentioned work, the specific Helmholtz-free energy is

obtained,

wðe; T ; etr; nÞ ¼ 1

2q
e : E : e� 1

q
e : E : etr

þ c ðT � T0Þ � T ln
T

T0

� �� �

� s0T þ u0;

ð12Þ

where E, c, s0, and u0 are the effective stiffness tensor, the

effective specific heat, the effective specific entropy at the

reference state, and the effective specific internal energy at

the reference state, respectively. These material parameters

are functions of the martensite volume fraction, n, and they

are defined below using a mixture rule,

EðnÞ ¼ EA þ n EM � EA
� �

¼ EA þ nDE

cðnÞ ¼ cA þ n cM � cA
� �

¼ cA þ nDc

s0ðnÞ ¼ sA0 þ n sM0 � sA0
� �

¼ sA0 þ nDs0

u0ðnÞ ¼ uA0 þ n uM0 � uA0
� �

¼ uA0 þ nDu0

ð13Þ

The superscript ðÞA and ðÞM refer to the austenite and

martensite phases, respectively. Using Eqs. (10), (12) and

(13), the Coleman–Noll procedure gives the following

constitutive equations,

r ¼ q
ow
oe

¼ E : ðe� etrÞ;

s ¼ � ow
oT

¼ c ln
T

T0

� �

þ s0;

/ ¼ �q
ow
oetr

¼ E : e;

p ¼ �q
ow
on

¼ � 1

2
e : DE : eþ e : DE : etr

� qDc ðT � T0Þ � T ln
T

T0

� �� �

þ qDs0T � qDu0

ð14Þ

Volumetric Heat Dissipation Due to Phase

Transformation

There is a release of heat during the solid–solid phase

transformation of an SMA component subjected to a

thermomechanical deformation process. In order to quan-

tify this energy, the entropy production during this process

is considered. Using the evolution of internal energy from

Eq. (4) and that of the free energy from Eq. (8), an

expression of the entropy production is obtained,

qT _s ¼ qr �r � q� q
ow
oetr

_etr � q
ow
on

_n ð15Þ
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Depending on the strain rate, local heat dissipation in SMA

becomes considerable. Given the dependence of mechani-

cal properties on temperature, this phenomenon is impor-

tant for SMA time-dependent actuators. This enforces the

need for a coupled thermo-mechanical material model.

Using Eq. (14), the entropy production takes the form,

qT _s ¼ �T
d

dt
q
ow
oT

� �

¼ �T q
o2w
oToe

_eþ q
o2w
oT2

_T þ q
o2w
oToetr

_etr þ q
o2w
oTon

_n

� �

ð16Þ

Equating Eqs. (15) to (16),

� T
or
oT

_eþ Tq
os

oT
_T þ T

o/
oT

_etr þ T
op
oT

_n

¼ qr �r � q� q
ow
oetr

_etr � q
ow
on

_n
ð17Þ

here T os
oT ¼ c, where c is the specific heat capacity. From

Eqs. (6) and (8), using definitions in Eq. (14), the

mechanical or transformation dissipation becomes

dmec ¼ �q ow
oetr _e

tr � q ow
on

_n. With this definition, Eq. (17)

becomes,

�T
or
oT

_eþ qc _T þ T
o/
oT

_etr þ T
op
oT

_n ¼ qr �r � qþ dmec

ð18Þ

Using Fourier’s law, a heat equation can be obtained from

Eq. (18),

qc _T �r � ðkrTÞ ¼ qr þ T
or
oT

_e

� T
o/
oT

_etr � T
op
oT

_nþ dmec

ð19Þ

In the heat Eq. (19), �T op
oT

_nþ dmec is the term coupling

the mechanical field and thermal field, responsible for the

volumetric heat dissipation during phase transformation,

acting as an extra heat source in the heat equation. It can

also be concluded from Eq. (14) that,

qT
or
oT

_e ¼ 0

T
o/
oT

_etr ¼ 0

T
op
oT

_n ¼ �qDcT ln
T

T0

� �

þ qDs0T

� �
_n

dmec ¼ fe : DEg : _etr þ � 1

2
ðe : DE : eÞ þ e : DE : etr

�

�qDc ðT � T0Þ � T ln
T

T0

� �� �

þ qDs0T � qDu0

	

� _n

ð20Þ

Joule Heating

For actuation by Joule heating a current density J passing

through the SMA acts as an additional heat source, driven

by an electric field E, which is the negative gradient of the

electric potential. This creates a coupling between the

thermal field and electric field through the resistive heating

or Joule’s effect. The local electrical power released as heat

is then

Helec ¼ E � J; with

J ¼ relðTÞE

E ¼ � ov

ox
;

ð21Þ

where rel is a temperature-dependent electrical conduc-

tivity and v is the electrical potential. It is evident that the

constitutive behavior of the flow of electric current density

expressed in Eq. (21) is inserted in the conservation of

electric charge in order to find a numerical solution for the

electric potential. The final form of the heat equation is

found by replacing qr by Helec in Eq. (19),

qc _T �r � ðkrTÞ ¼ Helec � T
op
oT

_nþ dmec ð22Þ

Equations (14) and (22) are required equations governing

the deformation, heat conduction , and resistive heating of

SMA materials. A convection boundary condition is con-

sidered for the solid’s surface,

Hconvec ¼ �h Tsurf � Tambð Þ ð23Þ

where h is the convective heat transfer coefficient or film

coefficient, Tsurf is the solid surface temperature and Tamb is

the ambient temperature.

Evolution of Internal State Variables

The detailed description of the relationship between the

transformation strain tensor and the martensite volume

fraction is found in [28]. Only the important points related

to the kinetic law are mentioned in this section. First, a

definition of the parameters of the modified phase diagram

and state functions is important. The parameters of the

phase diagram define the limits of the internal phase

transformations. For the forward transformation, from the

parent phase, P, to the martensite phase, M, we have,

ePM
s ¼ rPMs

Emix

þ n � etr
max

ePM
f ¼

rPM
f

Em
þ etr

max

ð24Þ

and for the reverse transformation, the martensite phase to

back to the parent phase,
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eMP
s ¼ rMP

s

Emix

þ n � etr
max

eMP
f ¼

rMP
f

Ep
þ etr

max

ð25Þ

where the subscript s and f denote start and finish. In

ABAQUS standard, within the framework of finite strain

theory, the strain tensor is defined as an integral of the

deformation rate D, which is equivalent to the logarithmic

strain (see Sect. 1.2.2 of ABAQUS Analysis User’s Manual

[44]) when the deformation rate is in a corotational carte-

sian space [45]. The integral is evaluated using the algo-

rithm proposed in [46] and an incremental integration

scheme based on the objective Jaumann rate of the cauchy

stress is carried out (see Sects. 1.5.3 and 3.2.2 of ABAQUS

Theory Manual [44]).

For the strain tensor this means,

enþ1 ¼ DR � en :DRT þ De

De ¼
Z nþ1

n

DDt
ð26Þ

where enþ1 and en refer to the strain tensor a time step

t þ Dt and t, respectively, De refer to the strain increment,

and DR is the incremental rotation which brings the strain

tensor in the current frame of reference to ensure material

objectivity.

Considering this aspect, the state function for the for-

ward transformation, ePM, and the reverse transformation,

eMP, are defined in incremental form as,

ePM
n ¼ eeq þ CPM T � Tref

Emix

ePM
nþ1 ¼ eeq þ Deeq

eMP
n ¼ eeq þ CPM T � Tref

Emix

eMP
nþ1 ¼ eeq þ Deeq

ð27Þ

All the conditions above are considered for temperature

above the martensite start temperature, T [Ms, relevant to

the application for SMA actuation. The martensite volume

fraction and the transformation strain tensor are computed

for both forward and reverse transformations following

Algorithm 1,

Following an incremental analysis, these internal state

variables are computed and saved in the UMAT variable

STATEVs.

Implementation and Algorithms

The governing partial differential equations describing the

mechanical, thermal, and electrical problems presented in

Eqs. (4) and (22) are in their strong forms, and not suit-

able to be solved numerically.They are mostly solved using

the finite element method (FEM). It is important to note

that to include large displacement and large rotation in the

kinematics of the finite elements, the mechanical equation

is approximated using an updated Lagrangian formulation.

Details about this formulation and its effectiveness are

reported in [47, 48]. The cumbersome notation to signify

that the integral form considers an updated Lagrangian

formulation have not been included. However, the stress

measure in this formulation is that of the Jaumann–Cauchy

stress, r. Only discretized equations are reported here, the

general formulation can be found in Appendix 1. The

discretized finite element equations, considering no body

force, and no internal current source, are
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Z

V

rNaðxÞ � rðeÞ dV �
Z

S

NaðxÞ r � n dS ¼ 0

Z

V

rNaðxÞ � ðqÞ dV þ
Z

S

NaðxÞ q:n dS

�
Z

V

NaðxÞ qc TtþDt � Tt

Dt

� �

dV þ
Z

V

NaðxÞHelec dV

�
Z

V

NaðxÞNaðxÞTa op
oT

ntþDt � nt

Dt

 !

dV

þ
Z

V

NaðxÞ dmec dV ¼ 0

Z

V

rNaðxÞ � J dV þ
Z

S

NaðxÞ J � n dS ¼ 0

ð28Þ

Using the commercial finite element solver Abaqus Stan-

dard, a combination of user subroutines UMAT and

UMATH [44] are used to implement the constitutive

material model. The subroutine UVARM is also used to

access the electrical energy density, which is used in the

UMAT subroutine with the help of common blocks, a

useful feature in the FORTRAN 77 programming lan-

guage. The source term to the heat equation are passed in

the variable RPL to define the coupling between the dis-

placement and the temperature and between the tempera-

ture and the electric potential, as detailed in [44].

Tangent Stiffness Tensor, UMAT Variable

DDSDDE

As reported in Sect. 1.1.31 of the ABAQUS User

Subroutines Reference Manual [44], the tangent stiffness

matrix, DDSDDEðI; JÞ ¼ oDr
oD�, where Dr, and D� are the

stress and strain increments, defines the change in the Ith

stress component at the end of the time increment caused

by an infinitesimal perturbation of the Jth component of the

strain increment array. Deriving the tangent stiffness

matrix stipulate finding a relationship between the variation

in the stress increment and that of the strain increment. The

SMA constitutive model can be written in incremental

form as follows,

dr ¼ ET : de ð29Þ

where ET is the required tangent stiffness tensor. Writing

the constitutive relation from Eq. (14) in differential form

gives,

dr ¼ E : ðde� detrÞ þ dnDE ðe� etrÞ ð30Þ

Using Eqs. (29) and (30) an expression for the tangent

stiffness tensor ET can be obtained and saved in the UMAT

variable DDSDDE for the solution of 3D continuum FEM

problem.

Return Mapping Algorithm

The return mapping algorithm or the implicit Euler method

is a numerical integration scheme used to solve rate-de-

pendent governing equations [45, 49]. This method consists

of two steps, the elastic-predictor and transformation-cor-

rector. This algorithm is implemented in [28]. We re-write

it with respect the new coupled model to include the

incremental computation of the coupling terms during

transformation and the new stress–strain relation as seen in

Algorithm 2.

The algorithm is applied until the total external load has

been incrementally applied.

Results and Discussion

Examples are presented to show the efficiency of the

material model. First, tensile test simulation results of 20

lm thin NiTi tensile samples are presented for model

validation. Then, bending simulation of 20 lm thin NiTi

microactuators are presented. An unidirectional actuation

simulation is finally presented at the end of this sec-

tion. CAD geometries with sample dimensions used for the

simulation can be found in Appendix 2. Input parameters to

the model are summarized in Appendix 3. Mechanical

properties were collected from our previous work [19].

Thermal properties were taken from a study on the inves-

tigation of sputter-deposited TiNiCuCo thin films [50] and
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for the convection coefficient, the value is approximated

from a study presented for a SMA wire [51]. Temperature-

dependent electrical conductivity was measured with our

in-house devices as seen in Fig. 21 in Appendix 2.

Tensile Simulations

First, uniaxial tensile loading simulations were carried out

to evaluate the thermoelastic and caloric effects during

phase transformation of a 20 lm thin tensile sample as seen

in Fig. 17 in Appendix 2. The simulation is displacement

controlled. One end of the sample is fixed while the other is

stretched to induce a total strain of 6%. To represent the

experimental tensile test closely, both ends of the sample

are kept at room temperature. A heat convection condition

is applied on the sample’s outer film surfaces. The same

strain rate was used during loading and unloading process.

Experimentally, to observe such caloric effects for thin

structures, a high strain rate test is required. Two strain

rates used for experimental tensile tests were simulated.

The stress-strain behavior and temperature effects are

reported in Figs. 3 and 4.

As the transformation initiates during the loading pro-

cess, there is a rise in temperature due to the latent heat of

stress-induced transformation. As a result, the transforma-

tion stress increases. The opposite effect occurs during the

unloading process. The strain rate has a considerable effect

on the transformation temperature as the transformation

progresses. Experimentally, average temperature changes

of approximately 10 K and 6 K (see Fig. 4) were recorded

for strain rates of 5 � 10�2 s�1 and 1 � 10�2 s�1 respec-

tively. Simulations show the same trend, the strain rate

5 � 10�2 s�1 shows an over-estimation in the approxima-

tion of the experimental results. The discrepancy between

experimental and simulated temperature profiles depends

on the strain rate. For a strain rate of 1 � 10�2 s�1, we

obtain an acceptable approximation of the experimental

result with maximum simulated value of 306.5 K compared

to maximum experimental value of 304.8 K. However, the

detailed time-depended courses of local average tempera-

ture differ from each other. This difference is attributed to

the complex dynamics of stress-induced phase transfor-

mation including local overheating due to formation of

strain bands [52], which is not considered in the presented

model. Furthermore, heat transfer strongly depends on the

Fig. 3 Comparison of the strain rate effects on the experimental and simulated stress–strain behavior of a 20 lm thin NiTi tensile sample

(Tref ¼ 299K), a strain rate 5 � 10�2 s�1, b strain rate 1 � 10�2 s�1

Fig. 4 Time-resolved local average temperature variation during stress-induced phase transformation of a 20 lm thin NiTi tensile sample

(Tref ¼ 299K): a experiment; b FEM simulation
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Fig. 5 Comparison of

simulation and measurements

during stress-induced phase

transformation of a 20 lm thin

NiTi tensile sample (strain rate:

5 � 10�2 s�1, Tref ¼ 297 K):

a experimental temperature map

with Tmax ¼ 314:3 K when fully

loaded; b simulated temperature

map with Tmax ¼ 324:0 K when

fully loaded, c simulated

martensite fraction
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phase-fraction-dependent thermal conductivity as well as

heat convection, which is approximated here using thermal

characterization data from literature [51]. For a strain rate

of 5 � 10�2 s�1, these differences become even more

pronounced.

Figure 5a shows an infrared (IR) temperature profile

during the tensile loading. A corresponding profile from the

simulation of the tensile loading can be seen in Fig. 5b.

The maximum temperature reached during loading is 314

K and 324 K for the experimental and simulation result,

respectively. The distribution of martensite volume fraction

responsible for the rise in temperature can be seen in

Fig. 5c, when fully loaded. The region in the grips at both

ends of the sample do not show transformation. The tem-

perature in this region rises due to heat conduction from the

transformed region of the tensile sample.

Next, the full loading–unloading-Joule heating simula-

tion is carried out for different reference temperatures. This

consists of a loading step, whereby the sample is loaded

until the total strain is induced. Then, an unloading step

follows, whereby the sample is elastically unloaded,

eel ¼ 0. Finally, the sample is Joule heated above the

austenite finish temperature to recover the induced trans-

formation strain, etr ¼ 0. The tensile simulations are

conducted at strain rates of 5 � 10�2 s�1, 1 � 10�4 s�1,

and 1 � 10�4 s�1 for 299 K, 315 K, and 328 K reference

temperatures, respectively. The simulation time periods, to

induce an approximate total strain of 0.06, 0.0377, 0.04, for

such strain rates is 1.2, 377, and 410 s, respectively. Joule

heating for all three reference temperatures is carried out

by passing an electric current through the sample within 10

s. Figure 6 shows the comparison of the experimental and

simulation stress strain results.

As seen in Fig. 6, the transformation strain induced is

approximately 3:7%; 2:35%, and 1:78% for the 299 K, 315

K, and 328 K reference temperatures, respectively. With

Joule heating, the accumulated martensite fraction and

transformation strain decrease as the local temperature

incrementally increases. Figures 7 and 8 show time-re-

solved FEM simulations of Joule heating and its effects on

the temperature, martensite fraction, and transformation

strain for different reference temperatures. The Joule

heating simulation lasts for 10 s. An electric current of 0.84

A is passed through the sample causing an increase in the

sample local temperature because of the Joule effect.

Fig. 6 Comparison of the experimental and simulation stress-strain results for full loading–unloading-Joule heating for reference temperatures:

a 299 K, b 315 K, c 328 K

Shap. Mem. Superelasticity

123



Fig. 7 Time-resolved FEM simulation of Joule heating and its effects on the temperature and martensite fraction for reference temperatures:

a 299 K, b 315 K, c 328 K

Fig. 8 Time-resolved FEM simulation of Joule heating and its effects on the temperature and transformation strain for reference temperatures:

a 299 K, b 315 K, c 328 K
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Bending Simulations

Here, FEM simulations consist of approximating the

bending behavior of NiTi microactuators in no-load con-

dition. The CAD geometry with dimensions of the bending

microactuator can be found in Fig. 18 in Appendix 2. The

actuator is in a shape-set configuration, that is, the memory

shape determined by heat treatment above the austenite

finish temperature, Af . The experimental shape-setting

procedure is explained in our previous work [19]. The vital

region for actuation is the bent region. The heat-induced

phase transformation of this region causes the actuation

force or moment. Figure 9 shows the distribution of the

stress-induced fraction of martensite. The actuator is bent

from its shape-set configuration (Fig. 9a) to about �123�

as seen in Fig. 9b and during elastic unloading as seen in

Fig. 9c, the actuator deflects back to 3� because of the

accumulated martensite phase. The actuator returns to it

original shape-set configuration as seen in Fig. 9d, through

Joule heating, whereby the temperature has increased to

above austenite finish temperature, 335 K.

The phase transformation along the thickness of a

bending actuator depends on the stress distribution. As the

actuator unfolds from the original configuration (Fig. 9a

and b), material layers above and below the neutral plane

are subjected to tensile stresses and compressive stresses,

respectively. In the neutral plane, the stress state is zero.

This means, the material layers in the neutral plane do not

transform. From the neutral plane, above and below, the

Fig. 9 Distribution of martensite volume fraction on the actuator surface during loading–unloading-Joule heating cycle, shown a for actuator in

shape-set position; b after deflection to - 123�; c after elastically unloading to ? 3�; d after recovery due to heating to the parent phase at ? 180�

Fig. 10 Comparison of bending moment vs angle for experiment [19]

and simulation

Fig. 11 Time-resolved evolution of the average martensite volume

fraction
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Fig. 12 Joule heating of the bending actuators at an electrical current of 0.3 A switched on after 20 s with 299 K and 315 K as reference

temperature: a temperature–time diagram; b temperature–angle diagram; c electric current–time diagram; d electric current–angle diagram

Fig. 13 Distribution of surface temperature for an actuator with

initial temperature of 299 K and ambient temperature 298 K during

loading–unloading-Joule heating cycle, shown for a shape-set

position at ? 180�; b after full bent to - 130�; c after full unloading

to ? 3�; d after recovery of the memory shape of ? 180�
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martensite transformation varies from n ¼ 0 in the neutral

plane to n ¼ 1 at the top or bottom plane of the actuator. To

observe such effects, the model is meshed with more than 2

finite elements across the thickness. Figure 10 shows a

comparison between the experimental and simulation

moment-angle diagrams at Tref ¼ 299K and the simulated

moment-angle diagram at Tref ¼ 315K. The discrepancy

between experimental and simulated bending moment-

angle values can be attributed to the tension-compression

asymmetry of mechanical properties [53]. Compression

leads to higher transformation stresses as compared to

tension. This aspect is not included in the present model.

The material properties are determined from tensile

experiments.

Figure 11 shows the time-resolved evolution of the

average fraction of martensite for both reference

temperatures.

For shape recovery, a Joule heating simulation is con-

ducted as part of the whole coupled simulation cycle. As

seen in Fig. 12, after mechanical bending from ? 180� to

- 123�, a current is passed through the actuator (Fig. 12c

and d). Due to the resistance of the actuator material, heat

is dissipated. Consequently, the actuator’s local tempera-

ture increases (Fig. 12a and b) and the actuator deflects

back to the original shape-set configuration at 180�
(Fig. 12d).

Figure 13 shows the corresponding temperature distri-

bution across the actuator during loading (Fig. 13b),

unloading (Fig. 13c) and Joule heating (Fig. 13d) from a

reference temperature 299.1 K.

Fig. 14 Temperature and martensite fraction distribution during

unidirectional bending actuation: a temperature distribution in initial

actuation position at ? 14�; b temperature distribution after complete

phase transformation to ? 180�; c martensite fraction distribution in

initial actuation position at ? 14�; d martensite fraction distribution

after complete phase transformation to ? 180�

Fig. 15 Moment-angle diagram for unidirectional bending actuation
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Unidirectional Bending Actuation

To show the capability of this model in actuation application, a

unidirectional actuation simulation is carried out. The bending

actuator is used to fold a triangular kapton tile through dif-

ferent angles based on the original shape-set configuration as

seen in Fig. 20 in Appendix 2. The actuation is caused by

Joule heating, which causes the actuator to deflect back to the

original configuration. The purpose of such simulation is the

determination of the actuation time and the heating power

required for actuation. Unidirectional actuation means that

during Joule heating the actuator will deflect the tile in one

direction. The initial configuration for actuation is the position

where the actuator has been elastically unloaded. Figure 14

shows the distribution of temperature (Fig. 14a and b) and

martensite fraction (Fig. 14c and d) during unidirectional

bending actuation. Because of the thermal conductivity of the

kapton tile material, some energy is transferred to it, which

increases the actuation time for the actuator.

Figure 15 shows the bending moment-angle diagram

after a full loading-unloading-Joule heating simulation.

After elastically unloading, a transformation angle of

approximately 166� is induced. This is the starting point for

unidirectional actuation.

In Fig. 16, a current of 0:4A is passed through the

actuator. This corresponds to an energy density of

0:9 J=mm3, 90% of which is converted into heat due to

environmental heat losses. Within approximately 10 sec-

onds, the local temperature is raised above the austenite

finish transformation temperature of 335 K. This is the

actuation time as seen in Fig. 16a and b. The triangular tile

is deflected back to the original configuration at ? 180�.

Conclusions

In this paper, a 3D electro-thermo-mechanical SMA

material model is presented. The model captures the cou-

pling effects between deformation and temperature during

stress-induced phase transformation. In addition, the cou-

pling effects between temperature and electrical potential

are considered. This allows to simulate Joule heating,

which is important in actuation of bending microactuators.

For model validation tensile test experiments of a 20 lm

thin NiTi sample were simulated. A comparative study of

the simulation and experimental results was conducted.

Stress levels were approximated within acceptable range.

Two strain rates were simulated to study their effects on the

temperature variation during stress-induced phase trans-

formation. These effects were quantified in form of tem-

perature–time diagrams. Slight deviation were observed

regarding the temperature between the simulation and

experimental results. We observed higher temperature

levels in simulation results as compared to experimental

results due to additional heat transfer to the supporting

substrate. We also observed the sensitivity of these results

to the thermal parameters. Finally, the full loading–un-

loading-Joule heating simulation was conducted for three

different temperature levels. Here, the effect of temperature

changes, due to Joule heating, on the internal state vari-

ables was reported.

To show the capability of the presented material model

in bending-dominated problems, bending simulations of

microactuators were conducted and compared with exper-

imental results. Simulation results on the martensite frac-

tion and temperature variable was reported for the full

loading–unloading-heating cycle. A comparison between

bending moment versus rotation angle of the simulation

and experimental results for a reference temperature of 299

K was conducted.

An initial demonstration of microactuation application

was presented. Unidirectional actuation of a triangular tile

was conducted. Data relevant for the prediction of the

physical actuation set-up were presented. Actuation time,

actuation current, optimal model geometry can therefore be

obtained with the presented material model.

Considering the aforementioned simulation results, we

conclude that the presented material model can be used to

Fig. 16 Unidirectional bending actuation: a local temperature variation as a function of bending angle; b local temperature variation as a

function of time
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simulate the electro-thermo-mechanical behavior of 3D

SMA materials during tensile or bending loading.

Appendix 1: Finite Element Formulation

Rewriting the governing partial differential equations

decribing the mechanical, thermal, and electrical problems

as presented in Eqs. (4) and (22) respectively, gives

r � rþ b ¼ 0

qc _T �r � ðqÞ ¼ Helec � T
op
oT

_nþ dmec

r � J � rc ¼ 0

ð31Þ

Obtaining the weak form of the governing equations by

multiplying the above equations by suitable variational test

fields, du for the displacement, dT for the temperature, and

dv for the electric potential and integrating over the vol-

ume, results in
Z

V

dur � rðeÞ dV þ
Z

V

dub dV ¼ 0

Z

V

dTqc _T dV �
Z

V

dT r � ðqÞ dV ¼
Z

V

dTHelec dV

�
Z

V

dTT
op
oT

_n dV þ
Z

V

dTdmec dV

Z

V

dvr � J dV �
Z

V

dvrc dV ¼ 0

ð32Þ

Note here that for an hypoeleastic material, the stress

tensor is a non-linear function of strain, rðeÞ, applying the

chain rule and then the divergence theorem on the term

with the gradient operator,
Z

V

rdu � rðeÞ dV �
Z

S

du r � n dSþ
Z

V

dub dV ¼ 0

Z

V

rdT � ðqÞ dV þ
Z

S

dT q � n dS�
Z

V

dT qc _T dV

þ
Z

V

dT Helec dV �
Z

V

dT T
op
oT

_n dV

þ
Z

V

dT dmec dV ¼ 0

Z

V

rdv � J dV þ
Z

S

dv J � n dS�
Z

V

dv rc dV

ð33Þ

To obtain the spatial discretization of the volume of the solid,

the displacement, the temperature, and the electric potential

are calculated at a set of nodes whose coordinates is xa where

a ranges from 1 to n. These discrete points are ua, Ta, and va

for the displacement, temperature, and electric potential,

respectively. By interpolating between these nodal values,

the approximated field values at the finite element level are

obtained, the interpolation functions are defined below,

uðxÞ ¼ NaðxÞua duðxÞ ¼ NaðxÞdua

TðxÞ ¼ NaðxÞTa dTðxÞ ¼ NaðxÞdTa

vðxÞ ¼ NaðxÞva dvðxÞ ¼ NaðxÞdva
ð34Þ

where Na, ðduÞa, ðdTÞa, ðdvÞa are the interpolatioin func-

tion, the virtual displacement, the virtual temperature, and

the virtual electric potential at node a. Adopting Einstein

summation convention over the superscript a for n number

of nodes on the element. Substituting the interpolation

functions in Eq. (33) gives
Z

V

rNaðxÞdua � rðeÞ dV �
Z

S

NaðxÞdua r � n dS

þ
Z

V

NaðxÞduab dV ¼ 0

Z

V

rNaðxÞdTa � ðqÞ dV þ
Z

S

NaðxÞdTa q � n dS

�
Z

V

NaðxÞdTa qc _T dV þ
Z

V

NaðxÞdTa Helec dV

�
Z

V

NaðxÞdTa NaðxÞTa op
oT

_n dV

þ
Z

V

NaðxÞdTa dmec dV ¼ 0

Z

V

rNaðxÞdva � J dV þ
Z

S

NaðxÞdva J � n dS

�
Z

V

NaðxÞdva rc dV ¼ 0

ð35Þ

Eliminating the corresponding virtual quantities in all three

equation gives
Z

V

rNaðxÞ � rðeÞ dV �
Z

S

NaðxÞ r � n dS

þ
Z

V

NaðxÞb dV ¼ 0

Z

V

rNaðxÞ � ðqÞ dV þ
Z

S

NaðxÞ q � n dS

�
Z

V

NaðxÞ qc _T dV þ
Z

V

NaðxÞHelec dV

�
Z

V

NaðxÞNaðxÞTa op
oT

_n dV þ
Z

V

NaðxÞ dmec dV ¼ 0

Z

V

rNaðxÞ � J dV þ
Z

S

NaðxÞ J � n dS

�
Z

V

NaðxÞ rc dV ¼ 0

ð36Þ

The time derivatives are approximated using the backward

Euler method such that
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_n ¼ ntþDt � nt

Dt
ð37Þ

for the martensite volume fraction and

_T ¼ TtþDt � Tt

Dt
ð38Þ

for the temperature are obtained. Substituting this expres-

sion in Eq. (36) gives
Z

V

rNaðxÞ � rðeÞ dV �
Z

S

NaðxÞ r � n dS

þ
Z

V

NaðxÞb dV ¼ 0

Z

V

rNaðxÞ � ðqÞ dV þ
Z

S

NaðxÞ q � n dS

�
Z

V

NaðxÞ qc TtþDt � Tt

Dt

� �

dV þ
Z

V

NaðxÞHelec dV

�
Z

V

NaðxÞNaðxÞTa op
oT

ntþDt � nt

Dt

 !

dV

þ
Z

V

NaðxÞ dmec dV ¼ 0

Z

V

rNaðxÞ � J dV þ
Z

S

NaðxÞ J � n dS

�
Z

V

NaðxÞ rc dV ¼ 0

ð39Þ

The next step in the formulation is the evaluation of the

integral. Gauss quadrature is the most efficient numerical

method to evaluate these continuous integrals by replacing

them with finite sums. After mapping the global coordi-

nates {x, y, z} to the local element coordinates {g, h, r},

each of which spans {-1,?1} in an element. For 3D

problems, the coordinate mapping and Gauss quadrature

are

xðg; h; rÞ ¼ Naðg; h; rÞxa

yðg; h; rÞ ¼ Naðg; h; rÞya

zðg; h; rÞ ¼ Naðg; h; rÞza

dx dy dz ¼ J dg dh dr

J ¼

ox

og

oy

og

oz

og

ox

oh

oy

oh

oz

oh
ox

or

oy

or

oz

or

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

Z þ1

�1

Z þ1

�1

Z þ1

�1

f ðg; h; rÞdet½Jðg; h; rÞ� dg dh dr

¼
Xngp

i¼1

Xngp

j¼1

Xngp

k¼1

wiwjwkf ðgi; hj; rkÞdet½Jðgi; hj; rkÞ�

ð40Þ

where ngp is the number of Gauss integration points, wi are

the integration weights, and J is the Jacobian of coordinates

transformation.

Appendix 2: CAD Geometric Models

See Figs. 17, 18, 19, 20, and 21.

Fig. 17 Tensile sample

Fig. 18 SMA bending microactuator in shape-set configuration (no-

load condition: no tile attached)
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Appendix 3: Material Model Parameters

Please note that unless experimentally measured, the ini-

tial internal energy Du0 and initial entropy Ds0 are set to

zero. Experimentally, for room temperature, it was

observed that the martensite stiffness, EM , was higher than

that of the parent phase stiffness, EP, the R-phase. This

relation changes for higher temperatures. To compute the

critical stresses, the following equations are used:

rscr ¼ rs � CPM � ðTref �MsÞ
rfcr ¼ rf � CMP � ðTref �MsÞ

ð41Þ

The stress values marking the start and the end of the

transformation bands, rs and rf , respectively, are obtained

from the characterization data. The critical stress can be

computed individually for each testing temperature using

the above-mentioned equations. This is necessary for

uncertain values of the Clausius–Clayperon coefficients.

Due to caloric effects, Tref varies. This changes the value of

rfcr, which is used for approximation of the plateau region.

Attention should be paid here by calculating the tempera-

ture gradient during transformation and correspondingly

compute rfcr. A temperature-dependent electrical conduc-

tivity is used as seen in the Fig. 21. Simulation parameters

are summarized in Tables 1, 2 and 3.

Fig. 19 Actuated tile

Fig. 20 Actuator-tile assembly (load-condition)

Fig. 21 Temperature dependent conductivity [19]
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Table 1 Parameters for tensile

and bending simulation at

Tref ¼ 299 K

Property Value References

Mechanical parameters

Critical start and finish stress, rscr; rfcr 56, 225, MPa [19]

Clausius Clapeyron coefficient CAM ;CMA 6.6, 6.6 MPa K-1 [19]

Maximum transformation strain, �trmax 0.037 [19]

Young Modulus EA;EM 12500, 20500, MPa [19]

Poisson ratio, lA, lM 0.33,0.33 –

Martensite finish and start temperature, Mf ,Ms 282, 292 K [19]

Austenite start and finish, As, Af 325, 335 K [19]

Heat capacity , cA, cM 3612.3, 3612.3 J kg�1 K�1 [50]

Ds0 0 J Kg�1 K-1

Du0 0 J kg-1

Material density, q 6.45E�6 kg mm�3

Thermal parameters

Thermal conductivity 0.0055 W mm-1 K-1 [50]

Heat capacity , c 3612.3 J kg-1 K-1 [50]

Process parameters

Ambient temperature Tamb 299, 299 K [19]

Reference temperature Tref 299.14, 299.44 K [19]

Convection coefficient 6.6405E-05 W mm�2 K�1 [51]

Strain rate 5 � 10�1s�1; 10�2s�1 –

Table 2 Parameters for tensile

and bending simulation at

Tref ¼ 315 K

Property Value References

Mechanical parameters

Critical start and finish stress, rscr; rfcr 56, 181.6, MPa [19]

Clausius Clapeyron coefficient CAM ;CMA 3.4, 3.4 MPa K-1 [19]

Maximum transformation strain, �trmax 0.0245 [19]

Young Modulus EA;EM 21428, 18000, MPa [19]

Poisson ratio, lA, lM 0.33,0.33 –

Martensite finish and start temperature, Mf ,Ms 282, 292 K [19]

Austenite start and finish, As, Af 325, 335 K [19]

Heat capacity , cA, cM 3612.3, 3612.3 J kg-1 K-1 [50]

Ds0 0 J kg-1 K-1

Du0 0 J kg-1

Material density, q 6.45E�6 Kg mm�3 –

Thermal parameters
-1Thermal conductivity 0.0055 W mm-1 K-1 [50]

Heat capacity, c 3612.3 J kg-1 K-1 [50]

Process parameters

Ambient temperature Tamb 315 K [19]

Reference initial temperature Tref 315 K [19]

Convection coefficient 6.6405E-05 W mm�2 K-1 [51]

Strain rate 10�4 s-1 –
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