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Abstract: The first neutral 0D and 1D heterometallic assemblies based on orbitally degenerate hepta-
cyanidorhenate(IV) were prepared and structurally characterized. An analysis of the magnetic data
of polycrystalline samples showed that both compounds display slow magnetization relaxation at
temperatures below 5 K. The very low temperature measurements of the magnetization on the single
crystals demonstrate that for the 1D compound {[Mn(SB2+)Re(CN)7]·7H2O}n (1) and the 0D complex
[Mn(SB2+)(H2O)Re(CN)7]·2H2O (2), the hysteresis loops open just below 2.2 and 1.8 K, respectively.
Thus, heterometallic polymer 1 is the first single-chain magnet involving a pentagonal bipyramidal
[ReIV(CN)7]3− synthon, and the binuclear complex 2 represents a single-molecule magnet.

Keywords: cyanide-bridged heterometallic assemblies; heptacyanidorhenate(IV); Mn(III) Schiff
base complexes; single-molecule magnet; single-chain magnet; 1D coordination polymers; slow
magnetic relaxation

1. Introduction

Orbitally degenerate 4d/5d cyanidometallates with unquenched orbital angular mo-
mentum are efficient sources of strong magnetic anisotropy in the design of molecular
nanomagnets, which were first predicted theoretically [1,2] and then confirmed experi-
mentally by synthesis of a number of single-molecule magnets (SMMs) based on these
homoleptic complexes as highly anisotropic building blocks [3–10]. An important feature
of these complexes is the absence of single-ion magnetic anisotropy due to their low-spin
ground state (S = 1/2). In this case, magnetic anisotropy is produced cooperatively, in con-
cert with attached high-spin 3d ions, through anisotropic exchange interactions, underlying
an alternative strategy toward high-performance SMMs [1,2]. In contrast to rather numer-
ous cyanide-bridged 1D magnetic systems involving 3d metal ions [11–16], the single-chain
magnets (SCMs) incorporating homoleptic cyanide complexes of heavier d metal ions are
considerably less common [17–22]. Among these, the unidimensional magnetic polymers
based on low-spin (S = 1/2) orbitally degenerate cyanidometallates are particularly rare,
with only a few SCMs based on hexacyanides of iron(III) [23–26] and osmium(III) [17], and
four 1D coordination polymers involving heptacyanidomolibdate(III) [27,28], only three of
which are SCMs.

The low-spin octahedral nd5 complexes [MIII(CN)6]3−, MIII = Fe, Ru, Os [6,24,29], as
well as the pentagonal bipyramidal complexes [MoIII(CN)7]4− (4d3) [30] and [ReIV(CN)7]3−

(5d3) [3,31], display anisotropic exchange interactions with linked high-spin 3d ions. An
energy barrier U, which has to be surmounted to reverse the magnetization, determines
the slow relaxation of magnetization in the low-dimensional (LD) assemblies comprising
these tectons. The U value for an SMM depends on the uniaxial anisotropy energy of a
molecule. For a 1D polymer, the appearance of slow magnetic relaxation was predicted by
Glauber [32]. Unlike SMMs, the energy barrier in SCMs depends not only on the magnetic
anisotropy strength but also on the magnitude of intrachain magnetic coupling [16]. Hence,
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it should be easier to increase the U value for SCMs than for SMMs. As previously stated, a
neutral 1D polymer based on the low-spin hexacyanoferrate(III) and MnIII Schiff base (SB)
complex can display SCM behavior [23]. This alternating [-MnIII-NC-FeIII-CN-] system
comprises two sources of magnetic anisotropy: zero-field splitting (ZFS) of the [MnIIISB]3+

unit with an easy magnetization axis along the Jahn–Teller distortion direction, and angular
orbital momentum L of the [Fe(CN)6]3− unit. Due to the relatively small spin–orbit coupling
(SOC) of the latter (ζFe = 464 cm−1 [33]) L may be quite quenched depending on the degree
of distortion from the perfect octahedral (Oh) geometry. This was confirmed by our compar-
ative study [24] of two anionic SCMs with a general formula (X)2[MnIII(acacen)FeIII(CN)6]
(X = Et4N+ or Ph4P+; acacen = N,N′-ethylenebis(acetylacetonylideneaminato) and the same
magnetic core fragment (–Fe–CN–Mn–NC). These chains display (since these are inherent
properties of substances, therefore it always exists, and not only when we studied theme)
noticeably different blocking temperatures (Tb) of ~1.1 and 2.5 K, respectively. To prevent
the L quenching and provide stronger exchange interactions (since the heavier metal ions
possess more diffuse 4(5)d-orbitals), we used the complex [Os(CN)6]3− as a metalloligand
with 5d5 electronic configuration and higher SOC [34,35]. As a result, the only SCM (this is
not only the first SCM, but so far the only one) composed of hexacyanidoosmate(III) was
prepared and studied [17].

Inspired by the above achievements, we aimed to obtain a similar anionic chain com-
prising another orbitally degenerate heptacyanidorhenate(IV) magnetic unit (Scheme 1a)
not only possessing sufficiently strong spin–orbit splitting (ζRe = 2400 cm−1) [35], but
also possessing a coordination polyhedron with a pronounced uniaxial symmetry. How-
ever, our attempts to prepare an SCM starting from [Mn(acacen)]+ and [Re(CN)7]3− re-
sulted in highly anisotropic 3D [31] and 2D [19] networks. In addition, the efforts to
prepare the anionic chains based on the triply charged octacyanidometallates of MoV

and WV, were unsuccessful because the cationic complex [Mn(acacen)]+ (Scheme 1b)
formed layered systems with the [MV(CN)8]3− in the presence of Ph4P+ [36] or PPN+

(bis(triphenylphosphine)iminium) [37].
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Scheme 1. Building units: (a) pentagonal bipyramidal [Re(CN)7]3− (D5h symmetry);
(b) [Mn(acacen)]+.

The present study is a continuation of our previous research directed toward the
design of LD bimetallic nanomagnets involving orbitally degenerate cyanidometallates and
MnIII Schiff base complexes. Here, we present the synthesis, crystal structure description,
and preliminary magnetic studies of two neutral assemblies incorporating a salen-type
complex [MnIII(SB2+)]3+ (Scheme 2): the first SCM based on pentagonal bipyramidal ReIV

heptacyanide (Scheme 1a), {[Mn(SB2+)Re(CN)7]·7H2O}n (1), and a binuclear compound,
[Mn(SB2+)(H2O)Re(CN)7]·2H2O (2). The crystals of the latter were obtained as a result of a
prolonged recrystallization process of the chain polymer.
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2. Results and Discussion
2.1. Synthetic Approach

Electroneutrality is a fundamental force in the self-assembly of heterometallic coordi-
nation compounds in solution. The MnIII complexes with Schiff bases of both the salen and
acacen type ordinarily have a charge of +1; therefore, when they interact with triply charged
anions of cyanidometallates, three times as many of them (3:1 ratio) are required to ensure
the electroneutrality of the system. This combination does not guarantee the formation of
LD heterometallic assemblies with the axial symmetry of a heterometallic system. However,
at a ratio of 1:2, for the diamagnetic dianion [Fe(CN)5NO]2− and [MnIII(acacen)]+, the
neutral 0D and 1D polynuclear compounds were obtained along with a layered material
{[(MnIII(acacen))2Fe(CN)5NO]}n [38] depending on the solvent used.

Previously, we successfully obtained the first neutral heterobimetallic cyanide-bridged com-
pounds involving one anisotropic MnIII complex and one octacyanidotungstate(V) per molecular
unit. One of them—[Mn(SB2+)(H2O)WV(CN)8]·5H2O, obtained via slow diffusion of component
solutions—is a discrete molecule, while the other—{[Mn(SB2+)(H2O)WV(CN)8]·8H2O}n, precip-
itated during a rapid mixing of the reagents—is a 1D polymer exhibiting SCM properties [18].
Therefore, in order to obtain the neutral low-dimensional species incorporating [ReIV(CN)7]3−,
we used the same manganese(III) complex [Mn(SB2+)(H2O)2](ClO4)3·H2O. However, in the
case of heptacyanidometallate(IV), the process of self-assembly of bimetallic compounds oc-
curs somewhat differently. When layering an acetonitrile solution of (Bu4N)3[Re(CN)7] on
an aqueous solution of a manganese(III) complex, the large dark crystals of a chain poly-
mer (1) are formed on the walls of the test tube, and then crumble in air due to the partial
loss of solvate water molecules. Compound 1 can also be obtained in the form of a finely
crystalline powder by dropping a solution of an MnIII complex into a solution of cyanidometal-
late: [Mn(SB2+)(H2O)2](ClO4)3 + (Bu4N)3[Re(CN)7] + H2O→ {[Mn(SB2+)Re(CN)7]·7H2O}n↓
+ 3Bu4NClO4 (for more details, see the Section 4). The slow recrystallization of powdered
compound 1 in aqueous media resulted in formation of crystals of 2—the binuclear compound
[Mn(SB2+)(H2O)Re(CN)7]·2H2O—in a small amount: 1powder + H2O→ 2crystals. According
to X-ray powder diffraction data, the initial powder of the chain polymer was only partially
transformed into a dimer species (see below).

2.2. Crystal Structure Description

The crystallographic data and structural refinement summary for 1 and 2 are included
in Table S1 (see Supplementary Materials). Single crystal X-ray structural analysis revealed
that compound 2 has a 0D molecular structure, while 1 is a 1D chain polymer. The molecular
views of the repeating unit in the chain {[Mn(SB2+)Re(CN)7]}n (1) and an asymmetric unit
of [Mn(SB2+)(H2O)Re(CN)7]·2H2O (2) are shown in Figure 1. Both compounds are neutral
bimetallic assemblies consisting of one [Re(CN)7]3− anion and one cation ([Mn(SB2+)]3+ for
1 or [Mn(SB2+)(H2O)]3+ for 2).
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Figure 1. Molecular structure of (a) the repeating unit in the chain {[Mn(SB2+)Re(CN)7]}n (1) (solvent
water molecules are omitted) and (b) the molecular unit [Mn(SB2+)(H2O)Re(CN)7](H2O)2 in 2. ORTEP
diagrams are made with 50% probability thermal ellipsoids.

In both compounds, a slightly distorted pentagonal bipyramidal coordination environ-
ment of the Re center comprises seven cyanide ligands. In fact, [Re(CN)7]3− is much less
distorted than its isoelectronic counterpart, [Mo(CN)7]4− [8,20,28]. The Re−C distances are
in the range 2.061(5)–2.144(5) Å, with an average of 2.106(19) Å, similar to that observed for
(Bu4N)3[Re(CN)7] (2.064(10)–2.123(11) Å) [39]. The coordination environment of the Mn
ion is an elongated tetragonal bipyramid because of the Jahn–Teller distortion. The 2O and
2N donor atoms of the SB2+ ligand in the basal plane of the pyramid form shorter bonds of
1.877–1.989 Å, while the axial bonds are much longer, i.e., 2.242–2.299 Å.

The Mn–(N≡C)axial bond angle departs considerably from 180◦ and is equal to 144.2◦ and
145.1◦ for 1 and 2, respectively, being close to a value of 144.4◦ for {[Mn(SB2+)Fe(CN)6]}n [23]. It
should be noted that such a flexion is typical of the cyanide-bridged MnIII–M(CN)n complexes [9,
34,38,40–42]. However, for the complexes of SB2+, which is a sterically demanding ligand, this an-
gle is especially small. For example, for a much less bulky SB complex [Mn(acacen)]+, the value
of this angle for the ReIV-MnIII system varies in the range 152.9–163.7◦ [31,36,37]. At the same
time, the Mn–(N≡C) angle is 162.6 and 160.1◦ in the discrete species [Mn(MeSB2+)(H2O)Fe(CN)6]
[9] and [Mn(SB2+)(H2O)W(CN)8] (3) [18], respectively.

In contrast to the heterobimetallic {MnIII(SB)M(CN)m} complexes—where SB is a
salen-type ligand, for which a dimerization of the MnIII(SB) fragments is quite widespread
(see, for example, [25,43])—the trications [Mn(SB2+)H2O]3+ in the 0D neutral moieties
based on hexa- and heptacyanidometallates are not dimerized in a crystal due to the trans
location of the [Me3N+CH2] substituents relative to the SB2+ plane (Figure 1 and Figure S1).
Meanwhile, the binuclear molecules of 3 [18] are dimerized due to hydrogen bounding,
π–π stacking of the ligand aromatic rings, and non-valent CN . . . H interactions of the
[Me3N+CH2] groups. As a result, the latter are in cis positions relative to one another.

As in the case of the neutral 1D polymer involving hexacyanidometallates [23], in its
congener 1, the Jahn–Teller axes (JTA) of the [MnIII(SB2+)]3+ moieties are ideally aligned
along the chain direction without a bending angle (Figure 2 and Figure S2), while the
apical axes of the rhenium cyanide (AAR) are close to perpendicular at 104.1◦, the latter
being slightly flatter than the 97.9◦ observed in {[Mn(SB2+)Fe(CN)7]·4H2O}n [23]. A similar
situation is observed for the packing of the 0D binuclear compound 2 (Figure S3), with JTA
and AAR angles of 172.7◦ and of 67.7◦, respectively.

Visually, the small crystals of the binuclear compound 2 are more resistant to the loss
of solvate water molecules compared with the large crystals of the chain compound 1,
whose crystals crumble within a few days, depending on the temperature and humidity
of the surrounding air. The elemental analysis data additionally testify in favor of the
latter. This difference is due to the features of the packing and strength of hydrogen bonds
in the crystals of 1 and 2. In the latter, a system of hydrogen bonds links the discrete
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binuclear molecules in the chains (Figure 3) bounded in the layers (Figure S4), which are
interconnected by the sufficiently short contacts C≡N . . . H-C and C-O . . . HC of ~2.5 Å.
The chain packing in a crystal of compound 1 leads to the formation of channels enclosing
the majority of the solvate H2O molecules (Figure S5).
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2.3. Characterization of the Polycrystalline Samples

Since 1 and 2 have sufficiently similar chemical composition, which varies depending
on partial loss of solvate water, the main methods for their identification are IR spectroscopy
and X-ray phase analysis. Significant differences can be observed in the IR spectra of the
compounds not only in the region of C≡N stretching vibrations, but also in the area
associated with ligand vibrations (Figure 4). More spectroscopic information is presented
in Figures S6–S8 in the SI.
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According to the IR and PXRD data (Figure S9), bimetallic complex 1 prepared by a
precipitation technique (see the Section 4) is identical to the crystals obtained by a slow
diffusion technique. As mentioned above, a small amount (singular) of crystals of 2 was
obtained via prolonged recrystallization of the powdered compound 1 in water. According
to the PXRD study (Figure S10), the original powder present in the reaction vessel was not
completely converted from a chain into a dimer even after six months.

2.4. Investigation of Magnetic Properties
2.4.1. Static Magnetic Behavior

The temperature dependence of the dc molar susceptibility for the powder sample
of 1, measured in an applied field of 1000 Oe, is shown in Figure 5 as a χT versus T plot.
At 300 K, the observed χT value of 3.68 is close to the 3.60 emu K mol−1 expected for one
MnIII (S = 2, g = 2.03) [31] and one ReIV (S = 1/2, g = 2.33) [39] as magnetically uncoupled
spin carriers. Starting from room temperature, χT first decreases slightly and then reaches
a shallow minimum of 3.28 emu K mol−1 at ~75 K. This behavior of χT is characteristic of
antiferromagnetic interactions between the MnIII and ReIV centers within the chains [31,44].
Below 50 K, χT increases and reaches a sharp maximum of 9.30 emu·K·mol−1 at ~5 K,
before dropping to 6.48 emu K mol−1 at 2 K.

The non-compensation of the spins induces a ferrimagnetic arrangement along the
chain, giving rise to a repeating unit with S = 3/2. As the temperature drops below 5 K,
χT decreases sharply, owing to the field saturation of the magnetization and the magnetic
anisotropy of the ReIV centers.

The magnetization vs. field curve of 1 measured at 2 K reveals complete reversibility
of the magnetization (inset of the Figure 5). The M value reached at 50 kOe is equal to
2.86 µB per MnIII–ReIV unit, which is far from 5 µB (the theoretical value corresponding to
the five unpaired electrons). The estimated saturation magnetic field (HA) for 1 using the
experimental data M(H) is about 151 kOe, which is significantly greater than the values of
100, 108, and 120 kOe found for SCMs based on neutral [(SB2+)(Cr/Fe)(CN)6] units [23]
and anionic [MnIII(acacen)FeIII(CN)6]2− [17] fragments, respectively.
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The magnetic behavior of 2 was studied on a sample consisting of the crystals manually
sorted from the possible powder impurities of the 1D precursor. At first glance, the magnetic
behavior of 2 (Figure 6) was very similar to that of 1; the temperature dependence of χT
also had a sharp maximum, and the shape of the plots for M(H) was also similar. However,
the devil is in the details.

The χT value of 3.68 emu·K·mol−1 at 300 K precisely coincides with that registered
for 2. Furthermore, unlike 1, χT increases slowly, pointing to a ferromagnetic interaction
between the spins, with about 3.85 emu·K·mol−1 at 70 K, after which the χT values begin to
rise, reaching a peak of 8.21 emu·K·mol−1 at 5 K before dropping sharply at lower temper-
atures. The presence of the pronounced peak on the χT plot at a temperature of about 5 K
is quite unexpected for a 0D compound, since no such a peak is found in the temperature
dependence of the related dimers [Et4N]2[Mn(saldmen)(H2O)Fe(CN)6]·MeOH·4H2O (3) [45]
and [MnIII(MeSB2+)(H2O)Fe(CN)6]·7H2O·MeCN (4) (MeSB2+ = (R)-N,N′-(1-methylethylene)
bis(5-trimethylammoniomethylsalicylideneiminate. For the latter, the χT value remains practi-
cally constant up to sufficiently low temperatures, and then drops sharply at T < 15 K. On
lowering the temperature, the χT of 3 gradually increases from 3.45 emu·K·mol−1, reaching a
flat maximum of 3.91 emu·K·mol−1 at 26 K, and then decreases to ~3.25 (3.88) emu·K·mol−1.
The authors believe that this decrease is due to the ZFS of the MnIII ion and/or an inter-
molecular antiferromagnetic interaction. However, when dimer 3 is desolvated, its magnetic
behavior changes significantly. Lowering the temperature results in a gradual decrease in
χT, which shows a round minimum at ca. 60 K. It then increases abruptly to reach a value of
18.6 emu·K·mol−1 at 1.9 K (at Hdc = 600 Oe), which is much higher than that of the largest
possible spin state ST = 5/2, where χT = 4.38 emu·K·mol−1. This behavior of 3′ is reminiscent
of that shown by 1, with the difference that, for the latter, at low temperatures, the saturation
of χT occurs at H = 1000 Oe instead of 600 Oe for 3′, the molar susceptibility of 3′ is not
saturated at 1.9 K, and HDC = 1 Oe.
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The variable-field plot of the magnetization for 2 is presented in Figure 6. It should be
noted that the value of M of 3.58 µB at 50 kOe is close to the 3.45 µB shown by 3 and exceeds
the value for 1 by 0.72 µB. For 2, the M value at the maximum available field of 70 kOe is
3.99 µB—the estimated for ferromagnetically coupled MnIII (S = 2) and ReIV (S = 1

2 ) with a
gav = 2.0 magnetic field HA being about 120 kOe. This is less than the estimated lower limit of
the saturation magnetic field, HA, for 2.

Unlike the chain, the 0D compound displays magnetic hysteresis at T = 1.8 K (Figure
S11), with a very small coercive field of 156 Oe.

2.4.2. AC Magnetic Measurements

Although the χT plots of compounds 1 and 2 are similar at temperatures lower than
30 K, the dependences of the two compounds differ. The temperature-variable behavior
of the ac molar susceptibilities of 1 measured in the frequency range of 1–1200 Hz in an
oscillating ac magnetic field of 2.7 Oe and a zero dc field are presented in Figure S12 (SI).
These data clearly indicate that both the real and imaginary parts of the susceptibility have
a pronounced frequency dependence below 4 K.

Unfortunately, the lower temperature limit available for commercial SQUID magne-
tometers (down to ~2 K) is not sufficient to reliably determine the full set of relaxation
parameters for the 1D compound, since the magnetization-blocking temperature Tb for
1 appears to be below 2 K. This conclusion follows from the fact that not a single curve
from the set of plots of the imaginary part of the magnetic susceptibility χ”(T), at various
frequencies, reaches a maximum. Below, we present a few SCM parameters estimated for
1 from the experimental data.

The correlation length, ξ, of a 1D classical polymer is directly proportional to the
χT product in a zero applied field. In the particular cases of the Ising-like or anisotropic
Heisenberg models, ξ and, thus, χT increase exponentially with decreasing temperature as
follows: χT ≈ Ceff × exp(∆ξ/kBT), where Ceff is the effective Curie constant and ∆ξ is the
energy required to create a domain wall along the chain [12,46]. Therefore, to determine the
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SCM behavior of a material, the ln(χ′T) versus 1/T plot (χ′ being the real ac susceptibility
data collected in Hdc = 0 at the lowest available ac frequency) must be thoroughly examined.
Its linear dependence, with a slope corresponding to ∆ξ , proves the 1D magnetic nature of
the material and the presence of significant magnetic anisotropy. Figure S14 (SI) shows the
respective ln(χ′T) versus 1/T plots for 1. A linear region is observed in the temperature
range 10–6 K, giving Ceff = 1.005 emu K mol−1 and ∆ξ/kB = 6.66 K. At 4.5 K, ln(χ′T) reaches
a maximum ((χ′T)max = 10.3 emu K mol−1) and then experiences a linear decrease with
decreasing temperature until χ′ is blocked under an oscillation of 1 Hz. An intersection
of the two linear regions, occurring at ca. 4.5 K, corresponds to the crossover temperature
(T*), where the magnetic correlation becomes physically limited by crystalline defects, and
temperatures below T* comprise the finite-sized regime [47].

The dynamic magnetic behavior of the heterobinuclear compound 2 was studied
for a polycrystalline sample in the frequency range of 1–1500 Hz under an oscillating ac
magnetic field of 3.5 Oe. The dependences of the ac molar susceptibility at the dc fields
of 0 and 200 Oe are practically the same for 2, as shown by the variable-field test carried
out at 2 K (Figure S13). Therefore, a study of the temperature dependences of the ac molar
susceptibility for 2 at different frequencies was performed at Hdc = 100 Oe (see Figure S15).
Both sets of plots indicate the presence of two relaxation processes. This may be due either
to a manifestation of two different relaxation mechanisms, or to the presence of a second
magnetic phase. In our opinion, the latter option is the most plausible explanation, since a
stratum of a desolvated solid could be formed on the surface of the compound 2 crystals.

Despite the fact that the binuclear molecules in compound 2 are connected in layers
by a network of hydrogen bonds, such intermolecular coupling can appear only at very
low temperatures, because they are too low in energy compared to the covalent bonds
of bridging cyanides. Therefore, down to temperatures of ~10 K, the deviations from
the high-temperature value of χT can only be caused by the M(CN)–Mn(SB) exchange
interaction, as is observed for 1. At very low temperatures, the positive or negative “bend”
of the χT plot is usually determined by the intermolecular interaction, whether ferro- (as in
the case of 3′) or antiferromagnetic in nature. Examples of the latter include the complexes
[MIIL2(ROH)2] (MII = Ni, Co; R = H, Me, Et; L is a CF3-decorated enamine ketone derivative
of stable 3-imidazoline nitroxide) [48–51], in which the bis-chelate metal complexes are
woven into a 2D network through hydrogen bonds between the ROH and nitroxyl groups
of adjacent molecules: M-ROH . . . ·O–N–(M). A removal of coordinated ROH molecules
also leads to an essential change in the magnetic behavior due to the formation of covalent
metal–radical bonds, leading to the formation of a 1D compound [52].

As can be seen in Figure 3, the dimer fragments of 2 are connected in a chain due
to a set of hydrogen bonds: (Mn–OH2) . . . (solvate H2O) . . . (N≡C–Re). The removal of
at least one solvate water molecule necessarily leads to the reorganization of the entire
packing of binuclear fragments and, as a result, the modification of the intermolecular
contacts and geometric parameters inside the dimer. With the complete removal of water
from 2, the formation of a 1D polymer is possible, in which [Mn(SB2+)]3+ complexes are
connected to ReIV ions by an apical and equatorial cyanide bridge (see Figure S16). Such
an organization of the chain should promote mutual alignment of both the apical axes of
the heptacyanidorhenate anions and the Jahn–Teller axes of the [Mn(SB2+)]3+ cations in
the crystal, which is important to increase the coercivity of low-dimensional magnets. It
should be noted that the determined by the Mn–(N≡C) angle mutual slope of the (N≡C–Re–
C≡N)apical and N–Mn–N axes is responsible for the nature and magnitude of the intrachain
exchange interaction affecting the spin reversal barrier height and the value of Tb.

2.4.3. Magnetic Measurements at Very Low Temperatures

By means of an in-house-made µ-SQUID system, additional M versus H data down to
30 mK (Figure 7 and Figure S17) were collected from single crystals. As shown in Figure 7
for 1, the M/Ms (Ms is a saturation field) versus H hysteresis loop opens below 1.6 K, and
the temperature lower than 2 K was used to study the polycrystalline sample of 2. The
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coercivity of 1.3 T is observed for a crystal of 1 at 0.4 K. This value is somewhat less than
the 1.68 T obtained for the Fe congener {[Mn(SB2+)Fe(CN)7]·4H2O}n [23]. Considering
the 1D nature of 1, as demonstrated by the analysis of correlation length discussed above
(ln(χ′T) versus 1/T plot; Figure S14), the slow relaxation of magnetization evident from the
M versus H hysteresis loops strongly supports the view that 1, with Tb ≈ 1.6 K, is a new
example of a single-chain magnet.
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Despite the presence of magnetic hysteresis, the pronounced frequency dependence of
the molar magnetic susceptibility, and the 0D structure, the classification of the relaxation
nature (SMM or SCM) of compound 2 is not clear, for several reasons. In contrast to 1,
a magnetic hysteresis loop for 2 is already visible at 1.8 K on a polycrystalline sample
(Figure S11). Moreover, as shown by low-temperature studies (Figure S18a), the shape
of the hysteresis and the coercivity of 2 are preserved for a single crystal up to 0.8 K. At
0.5 K, the coercivity at H = 0 collapses and, starting from ~0.4 K, the shape of the hysteresis
changes. This behavior may also be associated with the presence of the aforementioned
dehydrated layer, which leads to the coexistence of two different magnetic phases with
two different magnetization-blocking temperatures of ~1.8 and ~0.4 K—presumably for 1D
and 0D species, respectively. This hypothesis is also supported by the presence of linear
segments on the ln(X′T) vs. 1/T plot (Figure S14b).

3. Conclusions and Perspectives

The two neutral low-dimensional heterobimetallic compounds based on the binuclear
magnetic unit [MnIII(SB2+)Re(CN)7] were obtained and structurally characterized. Preliminary
studies of their magnetic behavior showed that compound 1, {[Mn(SB2+)Re(CN)7](H2O)7}n,
is the first SCM involving orbitally degenerate pentagonal bipyramidal heptacyanidorhen-
ate, and its blocking temperature is Tb ~1.6 K. The nature of the χT behavior in the high-
temperature range for 1D and 0D differs significantly, confirming the ferrimagnetic and
ferromagnetic character of magnetic exchange interactions (EIs) for the first and the second,
respectively. However, at temperatures below 60 K, ferromagnetic EIs prevail in both com-
pounds up to a temperature of 4.5 K, where a maximum is observed in the χT-T plot, and then
χT rapidly decreases due to saturation in the field effect. For both compounds, even under a
field of 70 kOe, the magnetization does not reach the maximum value of 5 µB expected for
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five unpaired electrons. This is due to the high anisotropy of these systems, as evidenced by
the estimated values of the fields HA of 151 and 120 kOe for 1 and 2, respectively.

The results of static and dynamic magnetic measurements for 2 show that the studied
sample likely contains two phases, since its small crystals were apparently dehydrated
in the near-surface layer at the time of measurement. Analysis of the crystal packing of
compound 2 shows that its structure is formed by hydrogen bonds’ 1D motifs, which, upon
dehydration, could turn into covalently bonded chains that are structurally different from
those of 1.

The unusual magnetic properties of both compounds originate from the interplay
of Re–Mn anisotropic spin coupling and the ZFS effect of MnIII ions with a noncollinear
orientation of the local magnetic axes in crystals of the compounds.

Unfortunately, the magnetization-blocking temperatures were low and were just out-
side the range of commercial SQUID magnetometers, so we were unable to obtain a dataset
sufficient to obtain a complete set of quantitative parameters for magnetic relaxation of
1 and 2 by simulating the experimental data. We need to obtain low-temperature data for
the decays with time of the normalized magnetizations measured from oriented single
crystals to be able to estimate the barriers ∆τ1 and ∆τ2 for the two compounds [23]. In
addition, we are planning studies aimed at obtaining compound 2 in a different way than
the time-consuming recrystallization of 1, in order to ensure reproducible synthesis of the
binuclear compound in quantities sufficient for detailed characterization (including TG,
DSC, and PXRD methods) of the solvated phase of 2, as well as its dehydrated derivative.
This will make it possible to conduct a complete study of the static and relaxation mag-
netic properties of each form separately. The obtained experimental data will be used for
theoretical modeling in order to determine the magnetic characteristics for anisotropic ex-
change, as was done using microscopic theory for 3D [(MnIIIacacen)3ReIV(CN)7]n [31] and
[{MnLN5(H2O)}2Mo(CN)7] [30]. In the longer term, we plan to produce doubly connected
SCMs such as {[M(bida)(H2O)]2[Mo(CN)7]·6H2O}n [20].

4. Materials and Methods

All of the reagents and solvents (EKOS-1, Moscow, Russia) were used without further
purification; [Mn(SB2+)(H2O)2](ClO4)3·H2O [41] and (Bu4N)3[Re(CN)7] [39] were prepared
using published protocols.

The polycrystalline powder material of {[Mn(SB2+)Re(CN)7]·7H2O}n (1) was obtained
via a precipitation method using a 1:3 mixture of water and acetonitrile as the solvent.

A dark-brown solution of [Mn(SB2+)(H2O)2](ClO4)3·2H2O (41 mg, 0.05 mmol) in 2.5 mL
of solvent was added dropwise to a stirred light-yellow solution of (Bu4N)3[Re(CN)7 (55 mg,
0.05 mmol) in 2.5 mL of solvent. The reaction mixture was stirred while heating until boiling.
The precipitated dark product was centrifuged and then washed twice with H2O (2 mL),
twice with MeCN (2 mL), once with Et2O (2 mL), and then air-dried. The yield was 95%.
C31H34MnN11O2Re·4.5(H2O) (914.89); CHN: calcd. C 40.70, H 4.74, N 16.84; found C 40.8, H
4.5, N 16.95. IR (ATR)
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(CN): 2111.8(sh), 2073.1, 2030.6, 1999.8(sh), 1969.0(sh) 1930.4 (sh) cm−1.
The crystals of 1 were obtained via slow diffusion of reagent solutions. First, 2 mL of an

aqueous solution containing 41 mg of manganese complex was placed in a glass test tube
(0.8 cm × 10 cm), on which a buffer layer was placed (1:1 mixture of H2O:MeCN, 1.5 mL).
The top layer was a solution of rhenium cyanide (55 mg in 2 mL of MeCN). The tubes were
closed with parafilm and stored in the dark at a temperature of +4 ◦C. Three weeks later,
rather large dark-brown crystals and a polycrystalline powder were obtained. The crystals
were manually separated from the powder (~9 mg) and used for X-ray diffraction studies and
magnetic measurements.

The crystals of [Mn(SB2+)(H2O)Re(CN)7]·2H2O (2): The powder of 1 was placed in a test
tube covered with several mL of distilled water. The test tube closed with parafilm was kept in
a dark place at room temperature. A few months later, the water was partially evaporated, and
small dark parallelepiped-like crystals formed on the walls of the test tube near the upper frontier
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of the liquid. IR (ATR)

Magnetochemistry 2022, 8, x FOR PEER REVIEW 11 of 15 
 

 

{[Mn(SB2+)Re(CN)7](H2O)7}n, is the first SCM involving orbitally degenerate pentagonal 
bipyramidal heptacyanidorhenate, and its blocking temperature is Tb ~1.6 K. The nature 
of the χT behavior in the high-temperature range for 1D and 0D differs significantly, con-
firming the ferrimagnetic and ferromagnetic character of magnetic exchange interactions 
(EIs) for the first and the second, respectively. However, at temperatures below 60 K, fer-
romagnetic EIs prevail in both compounds up to a temperature of 4.5 K, where a maxi-
mum is observed in the χT-T plot, and then χT rapidly decreases due to saturation in the 
field effect. For both compounds, even under a field of 70 kOe, the magnetization does 
not reach the maximum value of 5 μB expected for five unpaired electrons. This is due to 
the high anisotropy of these systems, as evidenced by the estimated values of the fields 
HA of 151 and 120 kOe for 1 and 2, respectively. 

The results of static and dynamic magnetic measurements for 2 show that the studied 
sample likely contains two phases, since its small crystals were apparently dehydrated in 
the near-surface layer at the time of measurement. Analysis of the crystal packing of com-
pound 2 shows that its structure is formed by hydrogen bonds’ 1D motifs, which, upon 
dehydration, could turn into covalently bonded chains that are structurally different from 
those of 1. 

The unusual magnetic properties of both compounds originate from the interplay of 
Re−Mn anisotropic spin coupling and the ZFS effect of MnIII ions with a noncollinear ori-
entation of the local magnetic axes in crystals of the compounds. 

Unfortunately, the magnetization-blocking temperatures were low and were just out-
side the range of commercial SQUID magnetometers, so we were unable to obtain a da-
taset sufficient to obtain a complete set of quantitative parameters for magnetic relaxation 
of 1 and 2 by simulating the experimental data. We need to obtain low-temperature data 
for the decays with time of the normalized magnetizations measured from oriented single 
crystals to be able to estimate the barriers Δτ1 and Δτ2 for the two compounds [23]. In ad-
dition, we are planning studies aimed at obtaining compound 2 in a different way than 
the time-consuming recrystallization of 1, in order to ensure reproducible synthesis of the 
binuclear compound in quantities sufficient for detailed characterization (including TG, 
DSC, and PXRD methods) of the solvated phase of 2, as well as its dehydrated derivative. 
This will make it possible to conduct a complete study of the static and relaxation mag-
netic properties of each form separately. The obtained experimental data will be used for 
theoretical modeling in order to determine the magnetic characteristics for anisotropic ex-
change, as was done using microscopic theory for 3D [(MnIIIacacen)3ReIV(CN)7]n [31] and 
[{MnLN5(H2O)}2Mo(CN)7] [30]. In the longer term, we plan to produce doubly connected 
SCMs such as {[M(bida)(H2O)]2[Mo(CN)7]·6H2O}n [20]. 

4. Materials and Methods 
All of the reagents and solvents (EKOS-1, Moscow, Russia) were used without fur-

ther purification; [Mn(SB2+)(H2O)2](ClO4)3·H2O [41] and (Bu4N)3[Re(CN)7] [39] were pre-
pared using published protocols. 

The polycrystalline powder material of {[Mn(SB2+)Re(CN)7]·7H2O}n (1) was obtained 
via a precipitation method using a 1:3 mixture of water and acetonitrile as the solvent. 

A dark-brown solution of [Mn(SB2+)(H2O)2](ClO4)3·2H2O (41 mg, 0.05 mmol) in 2.5 
mL of solvent was added dropwise to a stirred light-yellow solution of (Bu4N)3[Re(CN)7 
(55 mg, 0.05 mmol) in 2.5 mL of solvent. The reaction mixture was stirred while heating 
until boiling. The precipitated dark product was centrifuged and then washed twice with 
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(CN): 2121.7(sh), 2081.2, 2019.5, 1932.7(sh), C31H34MnN11O2Re·3H2O
(887.87); CHN: calcd. C 41.94, H 4.54, N 17.35; found C 42.1, H 4.4, N 17.4.

Elemental (C,H,N) analysis were carried out with a Euro-Vector 3000 analyzer (Eu-
rovector, Redavalle, Italy). FTIR spectra were measured with a NICOLET spectrophotome-
ter (Thermo Electron Scientific Instruments LLC, Madison, WI, USA) in the 4000–375 cm−1

range. Powder X-ray measurements were performed using Cu-Kα radiation (λ = 1.5418
Å) with an X’Pro powder diffractometer (PANalytical Inc., Almelo, The Netherlands) at
room temperature. All magnetic measurements of properties were performed using a
Quantum Design MPMS 5XL SQUID magnetometer (Quantum Design, Inc., San Diego,
CA, USA) in the temperature range of 1.8–300 K and under a magnetic field of up to 50
kOe. The magnetic susceptibility χm is the molar magnetic susceptibility per mole of
C31H34MnN11O2Re·7H2O and C31H34MnN11O2Re·3H2O units, and was corrected for the
diamagnetic contribution calculated from Pascal’s constants [53]. Ultralow-temperature
(>1.8 K) magnetization measurements on single crystals were performed using a µ-SQUID
array [54].

Single-crystal XRD experimental details are presented in Table S1 (Supplementary
Materials). Crystallographic data were deposited with the Cambridge Crystallographic
Data Centre (deposit numbers CCDC 1569081-1569082). Copies of the data can be obtained
free of charge via https://www.ccdc.cam.ac.uk/structures/ (accessed on 10 August 2022)
(or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2
1EZ, UK; Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/magnetochemistry8100126/s1, Figure S1: A view of chains’ packing
in a crystal of 1 demonstrating a translocation of the [Me3N+CH2] substituents relative to the SB2+

plane. Hydrogen atoms are omitted for clarity; Table S1: SCXRD experimental details; Figure S2: A
layer formation in a crystal of 1: H2O molecules bind the fragments [MnIII(SB2+)]3+ and [Re(CN)7]3−

belonging to the different chains. The layers are interconnected by means of interstitial water molecules.
The SB2+ ligands are reduced for clarity; Figure S3: A view of dimers’ packing in a crystal of 2. The
SB2+ ligands are reduced, and hydrogen atoms are omitted for clarity; Figure S4: A layer formation
in a crystal of 2: H2O molecules bind the fragments [MnIII(SB2+)]3+ and [Re(CN)7]3− belonging to the
different chains. The layers are interconnected by means of interstitial water molecules. The hydrogen
atoms are partially omitted for clarity; Figure S5: A view (in the c-axis direction) of channels in a crystal
of 1: (a) filled by water molecules, (b) empty; Figure S6: IR spectrum for {[Mn(SB2+)Re(CN)7]·7H2O}n
1; Figure S7: IR spectrum for the precursor [Mn(SB2+)(H2O)2](ClO4)3·H2O; Figure S8: IR spectrum
for the precursor (Bu4N)3[Re(CN)7]·H2O (KBr); Figure S9: PXRD patterns for the chain compound 1:
polycrystalline sample (black), theoretically calculated (red); Figure S10: PXRD patterns for the dimer
compound 2 (room temperature) and theoretical calculations (150 K) for 1 and 2; Figure S11: Magnetic
hysteresis loop of 2 measured at 1.8 K on a polycrystalline sample (sw. rate—0.07 T·s−1); Figure S12:
Variable temperature of the real, χ’ (top), and imaginary, χ” (bottom), parts of the ac molar susceptibility
data for 1 under Hdc = 0 Oe, Hac = 2.7 Oe. Solid lines are guides; Figure S13: Frequency dependence
of the real (χ′) (top), and imaginary (χ”) (bottom), parts of the ac susceptibility for a polycrystalline
sample of 2 in different dc-fields y and with applied a 3 Oe ac field. Solid lines are guides; Figure
S14: Plots of ln(X′T) vs. 1/T (where X′ is the molar component of the ac susceptibility) for 1 (top)
and 2 (bottom) collected in a zero applied dc field and at a frequency of 1 Hz. The dashed red lines
correspond to a linear fit for the high-temperature region, giving ∆ξ/kB = 6.66 (Ceff = 1.005 emu·K/mol)
and 4.21 K (Ceff = 1.526 emu·K/mol) for 1 and 2, respectively. The dashed green lines correspond to a
linear fit for the low-temperature region. An intersection of the two linear regions corresponds to the
crossover temperature T* ≈ 4.5 K, which is equal for both; Figure S15: Variable-temperature real, χ′

(top), and imaginary, χ” (bottom), ac molar susceptibility data for 2 under Hdc = 100 Oe, Hac = 3.5 Oe.
Solid lines are guides; Figure S16: Possible formation of a 1D polymer from 2 by desolvation. The
[Mn(SB2+)]3+ complexes are connected to the ReIV ions by equatorial and apical cyanide bridges; Figure
S17: Field dependences of the normalized magnetization at the field-sweeping rates of 0.002 T·s−1

(a), and 0.140 T·s−1 (b), measured at different temperatures on an oriented single crystal of 2 with the
magnetic field applied along the easy magnetic axis; Figure S18: Field dependences of the normalized
magnetization at 0.03 K (a), and 0.2 K (b) measured at different field sweeping rates on an oriented single

https://www.ccdc.cam.ac.uk/structures/
https://www.mdpi.com/article/10.3390/magnetochemistry8100126/s1
https://www.mdpi.com/article/10.3390/magnetochemistry8100126/s1
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crystal of 2 with the magnetic field applied along the easy magnetic axis. The maximum coercitivity
reaches1043.5 Oe at 30 mK and SwRate of 0.280 T·s−1.
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