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Abstract. The first eigenvalue of a one-dimensional transmission problem is
calculated. The eigenvalue problem originates from the analysis of electromag-
netic fields near an interior edge in a heterogeneous medium.

This note is inspired by [6]. Our goal is a formula for the first eigenvalue of the
system

(ψ(i))′′(ϕ) = −κ2ψ(i)(ϕ) for ϕ ∈ Ii, i ∈ {1, . . . , 4},

ε(1)ψ(1)(0) = ε(4)ψ(4)(2π), (ψ(1))′(0) = (ψ(4))′(2π),

ψ(1)(π2 ) = ψ(2)(π2 ), (ψ(1))′(π2 ) = (ψ(2))′(π2 ),

ψ(2)(π) = ψ(3)(π), (ψ(2))′(π) = (ψ(3))′(π),

ψ(3)( 3
2π) = ψ(4)( 3

2π), ε(1)(ψ(3))′( 3
2π) = ε(4)(ψ(4))′( 3

2π),

(1)

where
I1 := (0, π2 ), I2 := (π2 , π), I3 := (π, 3

2π), I4 := ( 3
2π, 2π),

and
ε(1) 6= ε(4) (2)

are two positive numbers. The notation f (i) further refers to the restriction f |Ii

of a function f ∈ L2(0, 2π). Inspired by [2, 3, 1, 4, 5], we use (1) in [7] during
the study of a two-dimensional Laplacian on the disk with transmission conditions.
Note that the transmission conditions are different from the ones in [1, 2, 3, 6, 5].
The following representation formula for the first eigenvalue of (1) is essential to
decompose the domain of the Laplacian into a regular and a singular space, see
Section 3.3 in [7]. Eventually, this uses to analyze certain components of the electric
field near interior edges of a heterogeneous material, see Lemma 5.10 therein.

The main result of this note is formula (3) for the first eigenvalue of (1). We
establish the relation within the following three lemmas. The statement and the
proofs are to some extend in analogy to Lemmas 1–2 in [6].

Lemma 1. Let ε(4) > ε(1). The first eigenvalue κ2
1 of (1) satisfies the formula

(ε(4) − ε(1))2

ε(4)ε(1) = 4 sin2(κ1π)
cos( 3

2κ1π) cos( 1
2κ1π)

. (3)

The associated eigenspace is one-dimensional, and the next eigenvalue is greater or
equal than 1.
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Proof. 1) Throughout, we make multiple times use of basic trigonometric formulas.
In the first three parts of this proof, we take an eigenfunction ψ 6= 0 of (1) with
eigenvalue λ := κ2

1 ∈ (0, 1) for granted. This uses to derive the asserted estimates.
In the fourth step, we prove the existence of this eigenvalue.

We first conclude the representation
ψ(i)(ϕ) = a(i) cos(

√
λϕ) + b(i) sin(

√
λϕ), i ∈ {1, . . . , 4}, (4)

with real numbers a(i), b(i). The transmission conditions then imply the relations
a(1) = a(2) = a(3) and b(1) = b(2) = b(3). The fact λ 6= 0 and the second line of (1)
lead to the expressions

a(1) = ε(4)

ε(1) (a(4) cos(
√
λ2π) + b(4) sin(

√
λ2π)), (5)

b(1) = −a(4) sin(
√
λ2π) + b(4) cos(

√
λ2π).

Combining the last line of (1) with (5) then results in the identities

a(4) cos(
√
λ 3

2π) + b(4) sin(
√
λ 3

2π) = a(1) cos(
√
λ 3

2π) + b(1) sin(
√
λ 3

2π)

= ε(4)

ε(1) (a(4) cos(
√
λ2π) + b(4) sin(

√
λ2π)) cos(

√
λ 3

2π)

+ (−a(4) sin(
√
λ2π) + b(4) cos(

√
λ2π)) sin(

√
λ 3

2π),
being equivalent to the statement

a(4)
(

cos(
√
λ 3

2π)− ε(4)

ε(1) cos(
√
λ2π) cos(

√
λ 3

2π) + sin(
√
λ2π) sin(

√
λ 3

2π)
)

(6)

= b(4)
(
− sin(

√
λ 3

2π) + ε(4)

ε(1) sin(
√
λ2π) cos(

√
λ 3

2π) + cos(
√
λ2π) sin(

√
λ 3

2π)
)

=: b(4)A1(λ).
Relating the derivative condition in the last line of (1) to (5), we further infer

the equation
ε(4)
√
λ(−a(4) sin(

√
λ 3

2π) + b(4) cos(
√
λ 3

2π))

= ε(1)
√
λ

(
− ε(4)

ε(1) a
(4) cos(

√
λ2π) sin(

√
λ 3

2π)− ε(4)

ε(1) b
(4) sin(

√
λ2π) sin(

√
λ 3

2π)

− a(4) sin(
√
λ2π) cos(

√
λ 3

2π) + b(4) cos(
√
λ2π) cos(

√
λ 3

2π)
)
,

implying with λ > 0 the identity

a(4)
(
− ε(4) sin(

√
λ 3

2π) + ε(4) cos(
√
λ2π) sin(

√
λ 3

2π) + ε(1) sin(
√
λ2π) cos(

√
λ 3

2π)
)

= b(4)
(
− ε(4) cos(

√
λ 3

2π)− ε(4) sin(
√
λ2π) sin(

√
λ 3

2π)

+ ε(1) cos(
√
λ2π) cos(

√
λ 3

2π)
)

=: b(4)A2(λ). (7)

We now distinguish two cases for a(4), the first one leading to a contradiction.
2) Assume in the following that a(4) = 0. In view of (5), b(4) is then different

from zero, and A1(λ) = 0. Introduce next the numbers

δ := ε(4)

ε(1) − 1, ξ := ε(4) − ε(1).

Employing (6) and trigonometric calculus, we arrive at the equations

0 = A1(λ) = − sin(
√
λ 3

2π) + δ sin(
√
λ2π) cos(

√
λ 3

2π) + sin(
√
λ 7

2π)

= δ sin(
√
λ2π) cos(

√
λ 3

2π) + 2 cos(
√
λ 5

2π) sin(
√
λπ). (8)
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Similar reasoning leads from (7), meaning A2(λ) = 0, to the expressions

0 = −ε
(4)

ε(1) cos(
√
λ 3

2π)− δ sin(
√
λ2π) sin(

√
λ 3

2π) + cos(
√
λ 7

2π)

= −δ cos(
√
λ 3

2π)− δ sin(
√
λ2π) sin(

√
λ 3

2π)− 2 sin(
√
λ 5

2π) sin(
√
λπ). (9)

Multiplying the last identity by cos(
√
λ 3

2π) sin(
√
λ2π) and inserting the formula for

δ from (8), we obtain the relations

0 = −δ cos2(
√
λ 3

2π) sin(
√
λ2π)− δ sin2(

√
λ2π) sin(

√
λ 3

2π) cos(
√
λ 3

2π)

− 2 sin(
√
λ 5

2π) sin(
√
λπ) sin(

√
λ2π) cos(

√
λ 3

2π)

= 2 cos(
√
λ 5

2π) sin(
√
λπ) cos(

√
λ 3

2π)

+ 2 cos(
√
λ 5

2π) sin(
√
λπ) sin(

√
λ2π) sin(

√
λ 3

2π)

− 2 sin(
√
λ 5

2π) sin(
√
λπ) sin(

√
λ2π) cos(

√
λ 3

2π). (10)

By assumption sin(
√
λπ) 6= 0, and we conclude the statement

0 = 2
(

cos(
√
λ 5

2π) cos(
√
λ 3

2π)− sin(
√
λ2π) sin(

√
λπ)

)
= 2

(
cos(
√
λ 4+1

2 π) cos(
√
λ 4−1

2 π)− sin(
√
λ 3−1

2 π) sin(
√
λ 3+1

2 π)
)

= cos(
√
λπ) + cos(

√
λ4π)− cos(

√
λπ) + cos(

√
λ3π)

= 2 cos(
√
λ 7

2π) cos(
√
λ 1

2π).

As a result, λ is an element of the set { 1
49 ,

9
49 ,

25
49}. Inserting λ = 1/49 into the

formula for δ from (8), we arrive at a contradiction to the assumption on ε(4)/ε(1).
The two other options for λ lead to δ < −1, meaning ε(4)/ε(1) < 0. This is a
contradiction to the positivity of ε(1) and ε(4). Altogether, a(4) has to be nonzero.

3) Let a(4) 6= 0. After scaling, we assume a(4) = 1. We distinguish two cases.
3.i) Assume A2(λ) 6= 0. Equation (7), the definition ξ = ε(4)− ε(1), and trigono-

metric manipulations then lead to the result

b(4) =
−ε(4) sin(

√
λ 3

2π) + ε(4) cos(
√
λ2π) sin(

√
λ 3

2π) + ε(1) sin(
√
λ2π) cos(

√
λ 3

2π)
−ε(4) cos(

√
λ 3

2π)− ε(4) sin(
√
λ2π) sin(

√
λ 3

2π) + ε(1) cos(
√
λ2π) cos(

√
λ 3

2π)

=
−ε(4) sin(

√
λ 3

2π) + ε(4) sin(
√
λ 7

2π)− ξ sin(
√
λ2π) cos(

√
λ 3

2π)
−ε(4) cos(

√
λ 3

2π) + ε(4) cos(
√
λ 7

2π)− ξ cos(
√
λ2π) cos(

√
λ 3

2π)

= −
2ε(4) cos(

√
λ 5

2π) sin(
√
λπ)− ξ sin(

√
λ2π) cos(

√
λ 3

2π)
2ε(4) sin(

√
λ 5

2π) sin(
√
λπ) + ξ cos(

√
λ2π) cos(

√
λ 3

2π)
. (11)

Inserting this representation for b(4) into (6), we deduce the equations

0 = cos(
√
λ 3

2π)− ε(4)

ε(1) cos(
√
λ2π) cos(

√
λ 3

2π) + sin(
√
λ2π) sin(

√
λ 3

2π)

+
(
− sin(

√
λ 3

2π) + ε(4)

ε(1) sin(
√
λ2π) cos(

√
λ 3

2π) + cos(
√
λ2π) sin(

√
λ 3

2π)
)

·
2ε(4) cos(

√
λ 5

2π) sin(
√
λπ)− ξ sin(

√
λ2π) cos(

√
λ 3

2π)
2ε(4) sin(

√
λ 5

2π) sin(
√
λπ) + ξ cos(

√
λ2π) cos(

√
λ 3

2π)

= 2 sin(
√
λ 5

2π) sin(
√
λπ)− δ cos(

√
λ2π) cos(

√
λ 3

2π)

+
(

2 cos(
√
λ 5

2π) sin(
√
λπ) + δ sin(

√
λ2π) cos(

√
λ 3

2π)
)

·
2ε(4) cos(

√
λ 5

2π) sin(
√
λπ)− ξ sin(

√
λ2π) cos(

√
λ 3

2π)
2ε(4) sin(

√
λ 5

2π) sin(
√
λπ) + ξ cos(

√
λ2π) cos(

√
λ 3

2π)
. (12)
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Algebraic and trigonometric manipulations then lead to the identities

0 = 4ε(4) sin2(
√
λ 5

2π) sin2(
√
λπ) + 4ε(4) cos2(

√
λ 5

2π) sin2(
√
λπ)

+ 2ξ sin(
√
λ 5

2π) sin(
√
λπ) cos(

√
λ2π) cos(

√
λ 3

2π)

− 2ξ cos(
√
λ 5

2π) sin(
√
λπ) sin(

√
λ2π) cos(

√
λ 3

2π)

− 2δε(4) cos(
√
λ2π) cos(

√
λ 3

2π) sin(
√
λ 5

2π) sin(
√
λπ)

+ 2δε(4) sin(
√
λ2π) cos(

√
λ 3

2π) cos(
√
λ 5

2π) sin(
√
λπ)

− δξ cos2(
√
λ2π) cos2(

√
λ 3

2π)− δξ sin2(
√
λ2π) cos2(

√
λ 3

2π)

= 4ε(4) sin2(
√
λπ) + 2ξ sin(

√
λπ) cos(

√
λ 3

2π) sin(
√
λ 1

2π)

− 2δε(4) sin(
√
λπ) cos(

√
λ 3

2π) sin(
√
λ 1

2π)− δξ cos2(
√
λ 3

2π). (13)

Taking additionally the relation ξ − δε(4) = −δξ into account, we conclude the
equation

0 = 4ε(4) sin2(
√
λπ)− 2δξ

(
sin(
√
λπ) cos(

√
λ 3

2π) sin(
√
λ 1

2π) + 1
2 cos2(

√
λ 3

2π)
)
.

Combining the fact sin2(
√
λπ) 6= 0 and

sin(
√
λπ) sin(

√
λ 1

2π) = − 1
2 (cos(

√
λ 3

2π)− cos(
√
λ 1

2π)),

we altogether arrive at the result

(ε(4) − ε(1))2

ε(1)ε(4) = δξ

ε(4) = 2 sin2(
√
λπ)

sin(
√
λπ) cos(

√
λ 3

2π) sin(
√
λ 1

2π) + 1
2 cos2(

√
λ 3

2π)

= 4 sin2(
√
λπ)

cos(
√
λ 3

2π) cos(
√
λ 1

2π)
. (14)

As the last expression on the right hand side is only positive on (0, 1/9) and strictly
monotonically increasing there, λ ∈ (0, 1/9) is characterized by (14).

3.ii) Assume A2(λ) = 0. We want to derive a contradiction for this option. Using
trigonometric identities, we first infer the relations

0 = −ε(4) cos(
√
λ 3

2π)− ε(4) sin(
√
λ2π) sin(

√
λ 3

2π) + ε(1) cos(
√
λ2π) cos(

√
λ 3

2π)

= ε(4)(cos(
√
λ 7

2π)− cos(
√
λ 3

2π))− ξ cos(
√
λ2π) cos(

√
λ 3

2π)

= −2ε(4) sin(
√
λ 5

2π) sin(
√
λπ)− ξ cos(

√
λ2π) cos(

√
λ 3

2π). (15)

As a result of a(4) = 1 and (7), the identities

0 = −ε(4) sin(
√
λ 3

2π) + ε(4) cos(
√
λ2π) sin(

√
λ 3

2π) + ε(1) sin(
√
λ2π) cos(

√
λ 3

2π)

= ε(4)(sin(
√
λ 7

2π)− sin(
√
λ 3

2π))− ξ sin(
√
λ2π) cos(

√
λ 3

2π)

= 2ε(4) cos(
√
λ 5

2π) sin(
√
λπ)− 2ξ sin(

√
λπ) cos(

√
λπ) cos(

√
λ 3

2π)

also follow. The last equation is equivalent to the formula

0 = ε(4) cos(
√
λ 5

2π)− ξ cos(
√
λπ) cos(

√
λ 3

2π)

= (ε(4) − 1
2ξ) cos(

√
λ 5

2π)− 1
2ξ cos(

√
λ 1

2π). (16)

This implies cos(
√
λ 5

2π) > 0, meaning λ ∈ (0, 1
25 ) ∪ ( 9

25 , 1).
We next return to (15). Using ξ = ε(4) − ε(1), it is equivalent to the relation

1− ε(1)

ε(4) = −2
sin(
√
λ 5

2π) sin(
√
λπ)

cos(
√
λ2π) cos(

√
λ 3

2π)
. (17)
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Considering the sign of the right hand side and the precondition ε(4) > ε(1), we
infer that λ ∈ (9/25, 1). Combining (17) with the inequalities

−2
sin(
√
x 5

2π) sin(
√
xπ)

cos(
√
x2π) cos(

√
x 3

2π)
> −2 sin(

√
x 5

2π) sin(
√
xπ)

> −2 sin( 7
4π) sin( 7

10π) > 1, x ∈ ( 9
25 ,

49
100 ],

we further conclude that λ ∈ ( 49
100 , 1). In view of (16) and the relations

(ε(4) − ξ
2 ) cos(√y 5

2π)− ξ
2 cos(√y 1

2π) > (ε(4) − ξ
2 ) 1√

2 −
ξ
2 cos( 7

20π)

> ε(4)
√

2 −
ε(4)

2 ( 1√
2 + cos( 7

20π)) > 0, y ∈ ( 49
100 ,

81
100 ),

we obtain that λ ∈ [ 81
100 , 1). Monotonicity and (17) then lead to the contradiction

1− ε(1)

ε(4) = −2 sin(
√
λπ)

cos(
√
λ 3

2π)
sin(
√
λ 5

2π)
cos(
√
λ2π)

>
4
3

sin( 9
4π)

cos( 9
5π)

> 1.

Altogether, A2(λ) has to be zero, and λ satisfies (14).
4) Let λ ∈ (0, 1) satisfy (14). In consideration of parts 1)–3), it now suffices to

show that λ is indeed an eigenvalue. Let ψ be given by (4) with numbers a(i), b(i)

that are to be determined.
4.i) We first consider the case A2(λ) = 0. By definition of λ, identity (13) is then

still true. Reversing the reasoning in part 3.i), we infer the formula

0 = (2 cos(
√
λ 5

2π) sin(
√
λπ) + δ sin(

√
λ2π) cos(

√
λ 3

2π))

· (2ε(4) cos(
√
λ 5

2π) sin(
√
λπ)− ξ sin(

√
λ2π) cos(

√
λ 3

2π))

= A1(λ)(2ε(4) cos(
√
λ 5

2π) sin(
√
λπ)− ξ sin(

√
λ2π) cos(

√
λ 3

2π)), (18)

involving the term A1(λ) from (6). If A1(λ) was also zero, the arguments in part
2) would apply again, and would lead to a contradiction. As a result, the second
factor in (18) is zero. Employing again the trigonometric manipulations in (11), we
infer the identity

0 = −ε(4) sin(
√
λ 3

2π) + ε(4) cos(
√
λ2π) sin(

√
λ 3

2π) + ε(1) sin(
√
λ2π) cos(

√
λ 3

2π).

In presence of A2(λ) = 0, formula (7) is consequently valid. We then choose
a(4) = 1, and define

b(4) :=
cos(
√
λ 3

2π)− ε(4)

ε(1) cos(
√
λ2π) cos(

√
λ 3

2π) + sin(
√
λ2π) sin(

√
λ 3

2π)
A1(λ) .

(Note that A1(λ) 6= 0). This means that also (6) is valid. Choosing now a(1) and
b(1) according to (5) as well as a(1) = a(2) = a(3), b(1) = b(2) = b(3), the function ψ
is an eigenfunction of (1) to the eigenvalue λ.

4.ii) Consider finally the option A2(λ) 6= 0. We then define b(4) by (11), set
a(4) = 1, define a(1) = a(2) = a(3) and b(1) = b(2) = b(3) by (5), and choose ψ as in
(4). It then remains to check that the transmission conditions in (1) are fulfilled.
By definition of a(1) and b(1), the transmission conditions in lines 2–4 of (1) are
true. Taking also the choice of b(4) into account, we infer that (7) and equivalently
the derivative transmission condition in the last line of (1) are valid. The definition
of λ finally yields that (13) is satisfied. This is equivalent to the validity of (12).
As the latter formula holds if and only if (6) is true, we have shown that ψ fulfills
all transmission conditions in (1). �
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Lemma 2. Let ε(1) > ε(4) > 0 with
ε(4)

ε(1) 6= 1− 2
cos( 5

14π) sin( 1
7π)

sin( 2
7π) cos( 3

14π)
.

Then the statements of Lemma 1 are valid.

Proof. 1) We proceed as in the proof of Lemma 1, and assume first that there is
an eigenvalue λ := κ2

1 ∈ (0, 1) of (1) with associated eigenfunction ψ 6= 0. The
representation formula ψ(i)(ϕ) = a(i) cos(

√
λφ) + b(i) sin(

√
λφ) is again assumed

with a(i), b(i) ∈ R. Then all statements and formulas in part 1) of the proof of
Lemma 1 are still valid.

2) The reasoning in part 2) of the proof for Lemma 1 shows also here that
a(4) 6= 0.

3.i) We can assume that a(4) = 1. In case the expression A2(λ) from (7) is
nonzero, the arguments in part 3.i) of the proof for Lemma 1 imply also here that
λ satisfies the desired formula (3).

3.ii) Next we want to show by contradiction that A2(λ) 6= 0. So assume that
A2(λ) = 0. Note then that the formulas up to (16) are still true in the current setting
ε(1) > ε(4). Then (16) implies that cos(

√
λ 5

2π) < 0 and cos(
√
λ 1

2π) + cos(
√
λ 5

2π) >
0. Hence λ ∈ ( 1

25 ,
1
9 ) ∪ ( 1

4 ,
9

25 ). Reformulating (15), we infer

1− ε(1)

ε(4) = −2
sin(
√
λ 5

2π) sin(
√
λπ)

cos(
√
λ2π) cos(

√
λ 3

2π)
. (19)

The sign of the expression on the right hand side further yields λ ∈ ( 1
25 ,

1
16 ). Com-

bining ξ = ε(4) − ε(1) with (16), we additionally conclude

1− ε(1)

ε(4) =
cos(
√
λ 5

2π)
cos(
√
λ 3

2π) cos(
√
λπ)

.

In view of the relations

ε(1)

ε(4) − 1 =−
cos(
√
λ 5

2π)
cos(
√
λ 3

2π) cos(
√
λπ)

< −
√

2
cos( 5

8π)
cos( 3

8π)
=
√

2,

2
sin(
√
λ 5

2π) sin(
√
λπ)

cos(
√
λ2π) cos(

√
λ 3

2π)
> 2

sin( 5
8π) sin( 1

8π)
cos( 2

5π)
> 2,

for λ ∈ ( 1
25 ,

1
16 ), we arrive at a contradiction to (19). This shows that A2(λ) 6= 0,

and hence λ satisfies (3).
4) The arguments in parts 4.i)–4.ii) apply also here and show that λ ∈ (0, 1)

satisfying (3) is indeed an eigenvalue of (1) with one-dimensional eigenspace. �

For the proof of the following result, we use the strategy of the proof for Lemma 2
in [6].

Lemma 3. Let ε satisfy (2). Then the results of Lemma 1 remain true.

Proof. 1) In presence of Lemmas 1 and 2, we only treat the case

ε(4)

ε(1) = 1− 2
cos( 5

14π) sin( 1
7π)

sin( 2
7π) cos( 3

14π)
. (20)

As in the proof of Lemma 1, we first assume that λ ∈ (0, 1) is an eigenvalue of (1)
with eigenfunction ψ 6= 0. As the arguments in part 1) of the proof for Lemma 1
are also valid in the current setting, we use the definitions and formulas from there.
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2) The goal is to show that a(4) = 0. To that end, we prove by contradiction
that the second factor on the left hand side of (7) is nonzero. So assume, it was
zero. Then,

ε(4)

ε(1) = −
sin(
√
λ2π) cos(

√
λ 3

2π)
sin(
√
λ 3

2π)(cos(
√
λ2π)− 1)

. (21)

Formula (7) additionally implies that b(4) or A2(λ) has to be zero.
2.i) Let first b(4) = 0. Then a(4) 6= 0. Here (6) implies

ε(4)

ε(1) =
sin(
√
λ2π) sin(

√
λ 3

2π) + cos(
√
λ 3

2π)
cos(
√
λ2π) cos(

√
λ 3

2π)
. (22)

Studying the sign of the terms on the right hand side of (21)–(22), we obtain λ ∈
(0, 1

16 ). Then, the right hand side of (22) is, however, greater than 1, contradicting
(20). As a result, b(4) 6= 0.

2.ii) Let A2(λ) = 0. Then, (9) is again valid and yields

ε(4)

ε(1) − 1 = −2
sin(
√
λ 5

2π) sin(
√
λπ)

cos(
√
λ 3

2π) + sin(
√
λ2π) sin(

√
λ 3

2π)
. (23)

As ε(4)/ε(1) > 0, we infer from (21) that λ ∈ (0, 1
9 ) ∪ ( 1

4 ,
4
9 ). We next employ that

− cos(√y 7
2π) > cos(√y π2 ) for y ∈ ( 1

16 ,
1
9 ), and that cos(√y 7

2π) > 0 for y ∈ ( 1
4 ,

4
9 ).

Then we infer the relations
sin(√y2π) cos(√y 3

2π)
sin(√y 3

2π)(1− cos(√y2π))
=

2 sin(√yπ) cos(√yπ) cos(√y 3
2π)

2 sin2(√yπ) sin(√y 3
2π)

= 1
tan(√yπ) tan(√y 3

2π)
≥ 1

tan( 1
4π) tan( 3

8π)
= 1

tan( 3
8π)

, y ∈ (0, 1
16 ],

2 sin(√y 5
2π) sin(√yπ)

cos(√y 3
2π) + sin(√y2π) sin(√y 3

2π)
=

2 sin(√y 5
2π) sin(√yπ)

cos(√y 3
2π) + 1

2 (cos(√y 1
2π)− cos(√y 7

2π))

=
sin(√y 5

2π) sin(√yπ) + 1
2 (cos(√y 3

2π)− cos(√y 7
2π))

1
2 (cos(√y 3

2π) + cos(√y 1
2π)) + sin(√y 5

2π) sin(√yπ)
≥ 1, y ∈ ( 1

16 ,
1
9 ) ∪ ( 1

4 ,
4
9 ).

These contradict (20). Altogether, the second factor on the left hand side of (7) is
nonzero.

3) We next show by contradiction that A2(λ) = 0, see (7). Assume hence that
A2(λ) 6= 0. Combining the result of part 2) with (7), we conclude a(4), b(4) 6= 0.
We hence choose a(4) = 1. The reasoning and formulas in part 3.i) of the proof for
Lemma 1 are then again true and we conclude (14) in this way. Assumption (20)
yields λ = 1/49 as well as (8). Repeating the arguments in part 2) of the proof for
Lemma 1 in reverse order, we furthermore conclude that A2(λ) = 0. This leads to
a contradiction. Altogether, A2(λ) = 0, and part 2) with (7) imply that a(4) = 0.

4) Repeating the arguments in part 2) of the proof for Lemma 1, we now conclude
that λ = 1/49. In view of (20), κ1 =

√
λ satisfies formula (3).

5) It now suffices to show that λ = 1/49 is an eigenvalue of (1). The above reason-
ing then shows that the associated eigenspace is only one-dimensional. Introduce
a potential eigenfunction ψ via (4) with a(4) = 0, b(4) = 1 and a(1) = a(2) = a(3),
b(1) = b(2) = b(3) satisfying (5). By construction, ψ satisfies the transmission
conditions in lines 2-4 of (1).

We next show that ψ also satisfies the remaining transmission relations in line 5
of (1). This is equivalent to establishing (6) and (7). Assumption (20) implies
that (8) is valid, meaning that A1(λ) = 0. In presence of the choice a(4) = 0, we
conclude that (6) is true. Using the reasoning part 2) of the proof for Lemma 1 in
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reverse order, we finally conclude that (9) is valid, implying A2(λ) = 0. As a result,
also (7) is proven. �
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