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Abstract
We introduce a variant of the Shortest Path Problem (SPP), in which we impose 
additional constraints on the acceleration over the arcs, and call it Bounded Accel-
eration SPP (BASP). This variant is inspired by an industrial application: a vehicle 
needs to travel from its current position to a target one in minimum-time, following 
pre-defined geometric paths connecting positions within a facility, while satisfying 
some speed and acceleration constraints depending on the vehicle position along the 
currently traveled path. We characterize the complexity of BASP, proving its NP-
hardness. We also show that, under additional hypotheses on problem data, the prob-
lem admits a pseudo-polynomial time-complexity algorithm. Moreover, we present 
an approximation algorithm with polynomial time-complexity with respect to the 
data of the original problem and the inverse of the approximation factor � . Finally, 
we present some computational experiments to evaluate the performance of the pro-
posed approximation algorithm.

Keywords  Shortest path · Speed planning · Complexity · Approximation algorithms

1  Introduction

The Shortest Path Problem (SPP in what follows) is one of the best known within 
the field of combinatorial optimization. Let G = (V ,A) be a directed graph and cij be 
the cost of an arc (i, j) ∈ A . Let n = |V| and m = |A| . Let o, d ∈ V  , o ≠ d , be an ori-
gin and a destination node, respectively, and let Pod be the set of all directed paths in 
G from o to d. Each P ∈ Pod is a subset of A made up of adjacent arcs, the first one 
starting at o and the last one ending at d. In the SPP the minimum cost path between 
o and d is searched for, that is, formally:
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It is well known that SPP is solvable in polynomial time for nonnegative costs, in 
particular with O(m + n log(n)) operations by the Fibonacci heap implementation of 
Dijkstra’s algorithm, and also if no negative cycle exists, for instance by the Bell-
man-Ford algorithm. In both these cases, one can restrict the search of optimal solu-
tions to elementary paths (paths with no node repetitions). If negative cycles are 
present, then the problem has been proved to be NP-hard.

After the introduction of SPP, many variants have been proposed, together with 
the related complexity results and solution approaches. In what follows, we discuss 
some of these variants, warning the reader that the literature about such variants is 
so vast that the list is certainly incomplete.

Some variants do not add further input data with respect to those of SPP, but 
change the objective function. Many of these variants are reviewed in [21]. These 
include bottleneck SPP, where the objective function is the largest cost of an arc 
along the path, that is, max(i,j)∈P cij , balanced SPP, where the objective function is 
the difference between the largest and smallest costs of arcs along the path, that is, 
max(i,j)∈P cij −min(i,j)∈P cij , minimum deviation SPP, where the objective function is 
the sum of the difference between the largest cost among all arcs of the path and 
the cost of each arc along the path, that is, 

∑
(h,k)∈P[max(i,j)∈P cij − chk] , k-sum SPP, 

where the objective function is the sum of the k largest costs along the path. While 
some of these problems are solvable in polynomial time, such as bottleneck SP 
(see [11, 20]), some others are NP-hard, such as some variants of k-sum SPP (see 
[13]). In [7], the SPP with forbidden paths is addressed, where the shortest path is 
searched for with the additional constraint that some sub-paths cannot be part of 
feasible solutions. In k-SPP not only the shortest path is searched for, but also all 
paths from the second shortest up to the k-th shortest one (see, for instance, [2] and 
references therein).

Other variants add additional input values to the description of the problem. For 
instance, in resource constrained SPPs, given resources k ∈ {1,… ,K} , each with a 
limited availability �k and a consumption value rk

ij
 along each arc, we search for a 

minimum cost path P which satisfies all the resource constraints

Resource constrained SPPs have been proved to be NP-hard (see, for instance, [14, 
15]). A detailed discussion of these problems and the related solution approaches 
can be found in [12].

Another interesting variant of SPP, is time-dependent SPP. Here, the cost asso-
ciated to an arc is the time needed to traverse the arc, and such time depends on 
the departure time along the arc. Such variant is particularly important for road 
networks, where the time needed to traverse an arc varies according to traffic con-
ditions. In this case, given a time horizon T, the cost associated to an arc is not 
a fixed value but is a function cij ∶ [0, T] → ℝ

+ , where cij(t) is the time needed to 

min
P∈Pod

∑
(i,j)∈P

cij .

(∀k ∈ {1,… ,K})
∑
(i,j)∈P

rk
ij
≤ �k.
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traverse arc (i, j) when departing from i at time t. In these problems the first-in first-
out (FIFO) property is usually assumed. This states that along any arc (i, j) an ear-
lier arrival at node j can never be attained by a later departure at node i (that is, for 
t′ > t it always holds that t� + cij(t

�) > t + cij(t) ). Many variants of this problem are 
presented, for instance, in [6]. In [18], it is shown that a variant where there is a con-
straint on the waiting time at each node is NP-hard. Further variants are discussed in 
[16]. In these variants a penalty or a limit is imposed on the total waiting time spent 
at a given subset of the nodes. It is proved that some variants are polynomially solv-
able, while some others are NP-hard depending on the subset of nodes, on the fact 
that a penalization or a limit is imposed, and on the magnitude of the penalty param-
eter or of the waiting limit parameter.

Another interesting variant is SPP with time windows. In this case we associate 
to each node i ∈ V  an interval [ai, bi] , and to each arc (i,  j) a time tij to traverse it. 
Only paths in Pod where each node of the path is visited within the allowed time 
window are feasible. The case where only elementary paths are feasible has been 
proven to be strongly NP-hard in [10]. The problem is still NP-hard if we remove 
such restriction and, thus, if we allow multiple visits to the same node. However, in 
such case pseudo-polynomial time algorithms have been proposed (see, for instance, 
[8]). A variant with additional costs associated to the departure times at the differ-
ent nodes of the path is studied in [17]. In fact, a polynomial time algorithm exists 
if the FIFO property holds (see [9]). Moreover, if waiting is allowed at a node, then 
each instance for which the FIFO property does not hold can be transformed into an 
equivalent one for which the property holds, thus making the problem solvable in 
polynomial time (see [19]).

In previous work [1], we introduced a further variant of SPP called BASP 
(Bounded Acceleration SP) and proposed a solution algorithm. The interest for 
BASP arises from an industrial application, namely the optimization of automated 
guided vehicles (AGVs) motions in automated warehouses (see also the descrip-
tion in Sect. 2). Typically, AGVs follow pre-assigned routes associated to a graph, 
in which nodes represent operating positions and arcs represent connecting paths. 
AGVs motions must satisfy constraints on maximum speed, and tangential and 
transversal accelerations. BASP consists in finding the path in Pod and the speed 
profile that allows travelling in minimum-time. The speed profile must satisfy maxi-
mum speed, acceleration and deceleration constraints, associated to each arc. In [1], 
we presented a solution algorithm (adaptive A ∗ ) for k-BASP, a subclass of BASP. 
Roughly speaking, a BASP instance is a k-BASP, with k ∈ ℕ , if the maximum num-
ber of nodes of a path that can be traveled with a speed profile of maximum accel-
eration, followed by one of maximum deceleration, starting and ending with null 
speed, without violating the maximum speed constraint, is smaller than k (see [1] 
for details). In [1], we proved that k-BASP has polynomial time-complexity with 
respect to the graph size. The algorithm introduced in [1] computes the optimal tra-
jectory between a pair of nodes and adaptively determines the value of k.

In some applications, AGVs can freely move within the facility, without having 
to follow any predetermined circuit. In such cases, the motion planning problem is 
usually addressed employing environmental representations such as cell decomposi-
tion methods. Among these, [5] presents an algorithm based on a modification of 
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Dijkstra’s algorithm, in which arcs weights depend on previously visited edges. Note 
that k-BASP in [1] has some similarities with the problem discussed in [5]. Indeed, 
in both problems, the incremental for adding an edge to a path does not depend 
on the complete path, but only on the k last visited nodes. However, the problem 
addressed by Cowlagi and Tsiotras [5] is different from BASP. Indeed, the goal of 
the problem in [5] is to obtain a feasible path taking into account the vehicle maxi-
mum curvature radius. On the other hand, in our work, we focus on selecting the 
optimal path among a set of possible paths which are already known to be feasible, 
while, at the same time, obtaining the optimal speed profile. Moreover, we do not 
assume that the incremental cost depends only on the last k visited nodes, but pre-
sent conditions on problem data under which this property holds.

In this paper we discuss BASP in further detail, presenting two novel complexity 
results. Namely, we show that BASP is NP-hard and that, under additional assump-
tions, BASP admits a pseudo-polynomial time algorithm. We also introduce an �
-approximation algorithm based on the discretization of the admissible speeds at the 
nodes of the graph and show computational experiments comparing the �-approxi-
mation algorithm with the solution algorithm presented in [1].

The paper is structured as follows. In Sect. 2 we describe and motivate BASP. In 
Sect. 3 we discuss how to compute optimal speed profiles along a single arc (with 
given initial and final speeds), and along a fixed path belonging to Pod . In Sect. 4 
we present the aforementioned complexity results. More precisely, in Sect. 4.1 we 
prove that BASP is NP-hard, while in Sect. 4.2 we prove that, under the assumption 
of integer data, BASP admits a pseudo-polynomial time algorithm. In Sect.  5 we 
present the �-approximation algorithm. Finally, in Sect. 6 we present some computa-
tional experiments.

2 � Problem description and motivation

In this section, we describe a new variant of SPP. The following values are associ-
ated to each arc (i, j) ∈ A:

•	 the length �ij;
•	 the maximum speed vmax

ij
 which can be reached along the arc;

•	 the minimum acceleration (or maximum deceleration) amin
ij

< 0 and maximum 
acceleration amax

ij
> 0 along the arc.

Moreover, a zero initial speed is assigned to node o and a zero final speed is assigned 
to node d. We would like to select a path P ∈ Pod minimizing the time needed to run 
along the path by fulfilling the maximum speed, the maximum and minimum accel-
eration constraints along the arcs, and the boundary zero conditions on o and d. Note 
that SPP is a special case of this problem. Indeed, SPP turns out to be equivalent to 
the case amax

ij
= +∞ and amin

ij
= −∞ for all arcs (i, j) ∈ A . In this case, the speed can 

be changed instantaneously, so that the running time along an arc is minimized by 
traversing it at the maximum allowed speed along the arc. Therefore, the minimum 



1 3

Shortest path with acceleration constraints: complexity…

time to traverse arc (i, j) is cij =
�ij

vmax
ij

 and the problem becomes a standard SPP with 

such costs cij associated to the arcs. Since SPP corresponds to the case of unbounded 
acceleration limits, the proposed variant of SPP is also called Bounded Acceleration 
SP (BASP in what follows). In the search for an optimal solution of BASP, we 
should not only search for an optimal path in Pod , but we should also define the 
speed profile along such path. As we will see later on in Sect. 3, the minimum-time 
speed profile along an arc (i, j) is fully determined by the initial speed vi at node i 
and by the final speed vj at node j. Thus, the speed vi at each node i traversed by a 
path Pod is also part of the decision process. Such speeds must fulfill a continuity 
constraint, that is, if arc (i, j) is followed by arc (j, k) along the path, the final speed 
along arc (i, j) must be equal to the initial speed along arc (j, k). Note that the speeds 
at the origin node o and at the destination node d are fixed in advance.

Before proceeding, we further motivate the interest for the BASP variant of SPP. 
As previously mentioned, the interest comes from an industrial application. In auto-
mated warehouses, an AGV is required to pick some good up at some point of the 
warehouse and deliver it at some other point. The AGV moves along predefined 
paths and is allowed to choose among different routes at some exchange points. 
Formally, the exchange points as well as the points where goods are picked up and 
delivered represent the nodes of the graph, while the predefined routes correspond 
to the arcs of the graph (see, for instance, Figs. 8, 13). Speed and acceleration limits 
differ across the different routes. For instance, if a route is a straight line, its maxi-
mum speed is higher than the maximum speed allowed along a curved route. Moreo-
ver, different speed limits may also be imposed at different points of the warehouse. 
For instance, if a route lies in a part of the warehouse where also human operators 
are working, then, for safety reasons, a lower speed limit along this route is imposed 
with respect to another route lying in a part of the warehouse where human opera-
tors are not allowed to work. Due to various reasons, also acceleration bounds may 
differ from arc to arc. For instance, in the same warehouse, flooring materials can 
vary from location to location. To avoid wheel slipping, we need to set maximum 
acceleration bounds depending on the floor frictional force, that varies according 
to the flooring material. Moreover, the presence of ramps along some arcs implies 
different acceleration and deceleration bounds. Finally, to reduce lateral oscillations, 
we should impose lower acceleration bounds along high-curvature connecting paths.

Remark 2.1  In the problem description we imposed a constant speed limit vmax
ij

 along 
each arc (i, j). In a more realistic setting the speed limit should be a function of the 
position along a given route:

For each s ∈ [0,�ij] , vmax
ij

(s) is the maximum allowed speed at position s along the 
route represented by arc (i, j). In particular, along a curve the speed limit varies with 
the curvature ray at each position along the curve. For ease of exposition, we only 
discuss the case of a constant speed limit along an arc (although different from arc to 
arc). However, at the cost of some additional technicalities, the following discussion 

vmax
ij

∶ [0,�ij] → ℝ
+.
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can be extended also to the more realistic case of variable speed limits along each 
arc.

Remark 2.2  In a real industrial scenario, the AGV may encounter moving obstacles, 
such as human operators and/or other AGVs. For safety, an AGV typically halts or 
slows down if it perceives the presence of a human operator. When the obstacle is 
no longer sensed, the AGV can compute a new motion by solving a new instance of 
BASP, starting from its current location.

The presence of various AGVs leads to a variant of the Multi-Agent Path Finding 
(MAPF) problem (see, for instance, [22]), with speed and acceleration constraints. 
Due to the simultaneous planning of multiple AGVs, this problem is quite different 
from BASP (and in general much more complex), and is outside the scope of the 
present work. However, note that some solution approaches for standard MAPF (that 
does not consider velocity or acceleration bounds), such as conflict-based search, 
make use of sub-procedures that involve the solution of a number of standard SPP 
problems. Similarly, one could guess that BASP solutions could be used as basic 
building block to solve MAPF with speed and acceleration bounds.

In order to better appreciate the difference between SPP and BASP 
we can also consider the example illustrated in Fig.  1. While path 
o → i1 → i2 → i3 → i4 → i5 → d is shorter than path o → j1 → j2 → d , the latter is 
faster in view of the lower number of curves along the path.

Fig. 1   Two distinct paths from 
node o to node d: the shorter 
path is not the faster one
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3 � Minimum traveling time along arcs and paths

As previously pointed out, for a given arc (i, j), we are able to compute the maximum 
speed at which we can traverse the arc and, consequently, the minimum time needed to 
traverse it, as soon as we know the initial and final speeds vi and vj . Indeed, the maxi-
mum squared speed at each position s ∈ [0,�ij] along the arc is given by the following 
piecewise-linear function:

where here and in what follows, w denotes the squared speed (so wi = v2
i
 , wj = v2

j
 , 

and so on). The result is illustrated in Fig. 2a. Starting at node i with squared speed 
wi , the speed is increased with the maximum possible acceleration amax

ij
 , until the 

maximum allowed squared speed wmax
ij

 along the arc is reached. Such maximum 
speed is maintained as long as possible (null acceleration) and, finally, the speed is 
decreased with the maximum deceleration amin

ij
 in order to reach squared speed wj at 

node j. Note that it might be possible that the maximum speed along the arc is not 
reachable. In such case, first the speed is increased with maximum acceleration amax

ij
 

and then decreased with maximum deceleration amin
ij

 to reach the final squared speed 
wj (no constant speed portion is present in the maximum speed profile). Conse-
quently, the minimum time to traverse arc (i, j) is the following function of the two 
(squared) speeds wi and wj

(1)wij(s;wi,wj) = min
{
wmax
ij

,wi + 2amax
ij

s,wj + 2amin
ij

(s − �ij)
}
,

(2)cij(wi,wj) = ∫
�ij

s=0

ds√
wij(s;wi,wj)

,

(a) (b)

Fig. 2   Squared speed profiles along an arc
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whose solution can be derived in closed form. It is worthwhile to remark that wi and 
wj cannot be arbitrary values. Indeed, besides the obvious constraints wi,wj ≤ wmax

ij
 , 

it must also hold that

If, for instance, the first inequality is not fulfilled, then it is not possible to reach the 
squared speed wj at node j by starting with squared speed wi at node i even by accel-
erating as much as possible (acceleration amax

ij
 ). This is illustrated in Fig. 2b. In this 

case we set cij(wi,wj) = +∞.
While we reported above the formula for the minimum time needed to traverse an 

arc (i, j), given the initial and final squared speeds wi and wj , we further point out that 
a slightly more complicated formula can be derived to compute the minimum time to 
traverse a full path in Pod . In particular, let i0 = o → i1 → … → ip−1 → ip = d be a 
path of length p in Pod . Let s0 = 0 and sh =

∑h

r=1
�ir−1ir

 be the overall length of the first 
h arcs of the path, h ∈ {1,… , p} . Next, let us define recursively a function F as follows

and a further function B as follows

Then, it can be proved (see, for instance, [4] for a proof under more general assump-
tions) that the optimal (squared) speed profile is

so that the minimum time to travel along the given path is

The result is illustrated in Fig. 3a–c. In Fig. 3a we notice that F0 (function F over the 
interval [s0, s1] ) is obtained by starting at node o with zero speed and increasing the 
speed with maximum acceleration amax

ij
 until the maximum squared speed wmax

ij
 is 

reached, and then keeping this speed until the end of the arc (as it is the case in the 
figure) or, alternatively, until the end of the arc is reached (in which case the maxi-
mum squared speed wmax

ij
 is not reached). Next, F1 (function F over the interval 

[s1, s2] ) is obtained similarly but with initial speed F(s1) , while F2 (function F over 
the interval [s2, s3] ) is constant and equal to the maximum squared speed wmax

kh
 since 

F(s2) > wmax
kh

 . In Fig. 3b we notice that B3 (function B over the interval [s2, s3] ) is 

(3)wi + 2amax
ij

�ij ≥ wj, wj − 2amin
ij

�ij ≥ wi.

(∀s ∈ [s0, s1]) F(s) = min
{
wmax
i0i1

, 2amax
i0i1

s
}
,

(∀h ∈ {1,… , p − 1}) (∀s ∈ [sh, sh+1]) F(s) = min
{
wmax
ihih+1

,F(sh) + 2amax
ihih+1

(s − sh)
}
,

(∀s ∈ [sp−1, sp]) B(s) = min
{
wmax
ip−1ip

, 2amin
ip−1ip

(s − sp)
}
,

(∀h ∈ {1,… , p − 1}) (∀s ∈ [sh−1, sh]) B(s) = min
{
wmax
ih−1ih

,B(sh) + 2amin
ih−1ih

(s − sh)
}
.

(∀s ∈ [s0, sp]) W(s) = min{F(s),B(s)},

∫
sp

s=0

ds√
W(s)

.
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(a)

(b)

(c)

Fig. 3   Construction of a maximum (squared) speed profile along a path
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obtained in a way completely similar to F0 . Moving backward, we start from the 
final node d ≡ h with squared speed wh = 0 , and we increase the speed with the 
maximum deceleration value amin

kh
 until either we reach the maximum allowed 

squared speed wmax
kh

 along the arc, in which case we keep such speed until the begin-
ning of the arc at node k, or we reach the beginning of the arc without reaching the 
maximum speed along the arc (in the figure we are in the first situation). Function B2 
(function B over the interval [s1, s2] ) is obtained similarly but with initial speed at 
node k equal to B(s2) . Finally, B1 (function B over the interval [s0, s1] ) is constant and 
equal to the maximum squared speed wmax

ij
 since B(s1) > wmax

ij
 . The optimal 

(squared) speed profile is illustrated in Fig. 3c and is obtained as the point-wise min-
imum of the functions F and B. While Figs. 2a, b and 3a, c give an intuitive illustra-
tion of the optimal speed profiles both for the case of a single arc (i, j) and for the 
case of a full path from o to d, we point out that these results can be derived as spe-
cial cases of a more general result presented in [4] for problems with upper speed 
limits depending on the position along the arcs, as discussed in Remark 2.1.

We also make the following remark which states two properties of the optimal 
speed profile and will be useful later on.

Remark 3.1  Let W(s) be the optimal squared speed profile along a given path 
i0 = o → i1 → … → ip−1 → ip = d in Pod , and let wih

 be the optimal squared speed 
at some node ih of the path, ih ≠ o, d . Moreover, let

Then, 

1.	 for each s ∈ [sh, sh+1] , W(s) ≥ min{wih
,wih+1

};
2.	 wih

≥ w̄ih
.

According to the previous discussion, the optimal speed profile along a path P 
from o to d with |P| + 1 nodes (here and in what follows |P| denotes the length of 
path P) is identified once the speeds at nodes of the path are known. Indeed, along 
any edge (i,  j) with given initial and final squared speeds wi and wj , the optimal 
speed profile function is equal to (1) and the traveling time is equal to (2). Then, if 
we denote by P(i) ∈ V  the node at position i along P, the fastest time T(P) for tra-
versing P is the solution of the following problem:

(4)w̄ih
= min

{
min
(ih,j)∈A

{wmax
ihj

,−amin
ihj

�ihj
}, min

(k,ih)∈A
{wmax

kih
, amax

kih
�kih

}

}
.

(5)

T(P) = min
�∈ℝ|P|+1

|P|∑
i=1

cP(i)P(i+1)(wi,wi+1)

0 ≤ wi ≤ min{wmax
P(i−1),P(i)

,wmax
P(i),P(i+1)

}, i ∈ {2,… , |P|},
w1 = 0, w|P|+1 = 0.
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We denote by �∗(P) the optimal solution of this problem and in Appendix B we will 
describe a recursive procedure to find it, similar to the one employed to define the 
optimal speed profile function W. According to the discussion above, the problem 
of finding the speed law which guarantees to traverse a fixed path from o to d at a 
minimum time, under speed and acceleration constraints, is easily solvable even in 
closed form. But our aim is to compute the minimum time to move from o to d by 
searching within all paths in Pod . This is the BASP problem:

As we will see in Section 4, this problem turns out to be NP-hard.

4 � Complexity results

In this section we provide two complexity results for BASP. The first result proves 
NP-hardness of BASP, while the second proves that BASP admits a pseudo-polyno-
mial time algorithm.

4.1 � NP‑hardness

In this section we prove that, differently from SPP, the BASP variant is NP-hard. 
We show this by a polynomial reduction of the NP-complete Partition problem to 
BASP. In the Partition problem, given a set N = {1,… , n} of positive integer values 
�1,… , �n , we would like to establish whether N can be partitioned into two sub-
sets N1 and N2 such that 

∑
i∈N1

�i =
∑

i∈N2
�i =

W

2
 . Given an instance of the Parti-

tion problem, we polynomially reduce it to an instance of BASP as follows. Let 
G = (V ,A) be such that:

We set the following lengths for the arcs:

while �n+1,n+2 = W2 . For what concerns the maximum speed values, we set 
(∀(i, j) ∈ A) vmax

ij
=
√
W , while we set the maximum acceleration amax

ij
= 1 and the 

minimum acceleration amin
ij

= −1 for all arcs except (n + 1, n + 2) , while we set 
amax
n+1,n+2

= 0 and amin
n+1,n+2

= −
1

2W
 . Note that, according to the imposed restrictions, 

amax
n+1,n+2

 should be strictly larger than 0. However, the result proved with null maxi-
mum acceleration can be extended, by continuity, to any sufficiently small and posi-
tive maximum acceleration. The origin node o is node 0, with zero speed, while the 

(6)P∗ = arg min
P∈Pod

T(P).

V = N ∪ {0, n + 1, n + 2}, A = {(i, j) ∣ i, j ∈ V ⧵ {n + 2} ∧ i < j} ∪ {(n + 1, n + 2)}.

�ij =

{
0 i = 0

�i i ∈ {1,… , n},
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destination node d is n + 2 , with zero speed. An example of BASP instance derived 
from the Partition problem with n = 3 is illustrated in Fig. 4.

We prove the following.

Proposition 4.1  The optimal value of the BASP instance introduced above is equal 
to 
√
W + 2W

3

2 if and only if the partition problem admits a solution and is otherwise 
larger than such value.

The proof of Proposition 4.1 is presented in Appendix A.

Remark 4.1  The complexity result given above shows that BASP is NP-hard even 
in case all arcs except one share the same acceleration and deceleration bounds. It 
is still an open question whether NP-hardness still holds if all arcs have the same 
bound. However, in Sect. 5.1 we will show that optimal solutions for this case are 
elementary paths (paths with no node repetition). This allows to derive sharper 
approximation results.

4.2 � Pseudo‑polynomial algorithm

Although BASP is NP-complete, the following proposition shows it admits a 
pseudo-polynomial algorithm under the assumption of integer data.

Proposition 4.2  Let us assume that all problem data, �ij , vmax
ij

 , amax
ij

 , and amin
ij

 for all 
(i, j) ∈ A are integer values. Then, BASP admits a pseudo-polynomial algorithm.

Fig. 4   An instance of BASP derived from the Partition problem for n = 3 . Along each arc the maximum 
allowed speed is 

√
W ( W = �1 + �2 + �3 ), amax is equal to 1 and amin is equal to -1 along all arcs except 

(4, 5) where amax

45
= 0 and amin

45
= −

1

2W
 . Finally, v0 = v5 = 0
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Proof  First, we observe that at optimal solutions there is a finite number of speeds 
which can be reached at each node and the squares of such speeds are integer values. 
Indeed, the squared speed at some node i is:

•	 either equal to wmax
ij

 , for some j such that (i, j) ∈ A , which is an integer value by 
assumption;

•	 or equal to wmax
ki

 , for some k such that (k, i) ∈ A , which is again an integer value 
by assumption;

•	 or i is the end point of a sub-path j0 → j1 → ⋯ jk−1 → jk = i , with squared speed 
at node j1 equal to wmax

j0,j1
 and squared speed at node i

 which is an integer value due to integrality of all the data (see Fig. 5). Note that 
j1 may be the starting node o, in which case wj1

= 0 ( j0 is not included in this 
case);

•	 or i is the starting point of a path j0 = i → j1 → ⋯ jk−1 → jk , with squared speed 
at node jk−1 equal to wmax

jk−1,jk
 and squared speed at node i

 which is, again, an integer value due to integrality of all the data (see Fig. 6). 
Note that node jk−1 may be the destination node d, in which case wjk−1

= 0 ( jk is 
not included in this case).
 

wi = wmax
j0,j1

+ 2

k−1∑
h=1

amax
jh,jh+1

�jh,jh+1
,

wi = wmax
jk−1,jk

− 2

k−2∑
h=0

amin
jh,jh+1

�jh,jh+1
,

Fig. 5   Optimal (squared) speed profile from node j0 up to node i (continuous line) when node i is 
reached by accelerating as much as possible along all arcs between j1 and i. The dashed lines represent 
the maximum squared speeds along the arcs
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Thus, the set W of different possible squared speeds can be taken equal to the set 
of all integers between 0 and W̄ = max(i,j)∈A w

max
ij

 . Now we create a new graph with 
node set V ×W , that is, each node is a pair made up by a node in V and one of the 
possible squared speeds in W . Thus, the number of nodes is W̄|V| . For what con-
cerns the arc set, in this graph an arc between node (i,wi) and node (j,wj) exists if 
there exists an arc (i, j) ∈ A and, moreover, cij(wi,wj) < +∞ , that is, there exists a 
feasible speed profile along arc (i, j) with initial squared speed wi and final squared 
speed wj . Then, the number of arcs is limited from above by W̄2|A| . The distance 
associated to this arc is the minimum time for a path from i to j with the boundary 
conditions wi and wj , which can be easily computed through  (2), as discussed in 
Sect. 3 (recall that, in case wi and wj are not feasible, as illustrated in Fig. 2b, then 
the arc is removed). Then, we can solve our problem by applying, for instance, Dijk-
stra algorithm to this graph. Dijkstra’s complexity is O(m + n log(n)) and is, thus, 
polynomial with respect to the size and the data of the original problem, which 
proves pseudo-polynomiality. 	�  ◻

Remark 4.2  While Proposition  4.2 has been proved under the assumption of inte-
ger data, it can also be extended to rational data. In such case the squared speeds 
which can be reached by optimal solutions are not integer values but are multiple of 
a rational number 1

t
 , where t depends on the problem data. Of course, the size of the 

extended graph increases with t. The approximation algorithm discussed in the fol-
lowing Sect. 5 is motivated by the need to consider a discretization step larger than 1

t
 

in order to have a graph of manageable size.

Fig. 6   Optimal (squared) speed profile from node i up to node j4 (continuous line) when node j4 is 
reached by decelerating as much as possible along all arcs between i and j4 . The dashed lines represent 
the maximum squared speeds along the arcs
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5 � Approximation algorithm

In this section we present an approximation algorithm for BASP with a complex-
ity that is polynomial with respect to the size and the data of the original problem 
and the inverse of the approximation factor. The idea is to discretize the squared 
speeds in order to obtain a finite set of possible squared speeds at each node of 
the graph. In this way, imposing that the initial and final squared speeds along 
each arc belong to the discretized set of squared speeds, the set of possible speed 
profiles over each arc becomes finite. Hence, we can define an extended graph 
that enables us to solve this discretized version of the problem by means of Dijk-
stra’s algorithm. Differently from Proposition 4.2, here arc lengths, accelerations 
and speed bounds need not be integer values (actually, the approach could also 
be extended to the case of non-constant speed bounds along arcs as discussed in 
Remark 2.1). In this case, we just discretize the squared speeds and impose the 
additional constraint that the squared speeds at the beginning and at the end of 
each arc belong to the set of discretized squared speeds. Let

with W̄ = max(i,j)∈A w
max
ij

 , be the set of discretized squared speeds with discretization 

step h. Then, |Ωh| =
⌈
W̄∕h

⌉
 . The discretized problem is defined over a graph that 

extends graph G of the original problem. Namely, the extended graph G� = (V �,A�) 
is defined as follows:

where we notice that we bound from above the possible squared speeds at node i by 
the maximum squared speeds along the incoming and outgoing arcs of node i, while

where we recall that cij(�i,�j) = +∞ means that no feasible profile is able to travel 
from i to j with initial and final squared speeds equal to �i and �j , respectively, while 
cij(𝜔i,𝜔j) < +∞ , as defined in (2), is the optimal travel time along arc (i, j) with the 
given initial and final squared speeds.

Remark 5.1  The cost for constructing the extended graph G′ is O(|A| ⋅ |Ωh|2) . Indeed, 
the number of arcs of the extended graph |A′| is bounded from above by |A| ⋅ |Ωh|2 
and the cost for checking whether an arc exists or not in the extended graph, that is 
the cost for checking conditions (3), is constant.

Once the extended graph has been defined, the proposed approximation algo-
rithm is nothing but the application of Dijkstra’s algorithm to solve the discre-
tized problem. More precisely, we search for the shortest path connecting nodes 
(o, 0), (d, 0) ∈ V � over graph G′ , where the cost of arc ((i,�i), (j,�j)) ∈ A� is equal 

Ωh = {𝜔 ∈ [0, W̄] ∣ (∃k ∈ ℕ) 𝜔 = kh},

V � =

{
(i,�) ∣ i ∈ V ∧ � ∈ Ωh ∧ � ≤ max

{
max

j ∣ (i,j)∈A
wmax
ij

, max
k ∣ (k,i)∈A

wmax
ki

}}
,

A� = {((i,𝜔i), (j,𝜔j)) ∈ V � × V � ∣ (i, j) ∈ A ∧ 𝜔i,𝜔j ≤ wmax
ij

∧ cij(𝜔i,𝜔j) < +∞},
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to the value cij(𝜔i,𝜔j) < +∞ defined in (2). Then, we have the following complex-
ity result for the approximation algorithm.

Proposition 5.1  The complexity of the approximation algorithm is

Proof  The approximation algorithm is Dijkstra’s algorithm applied on the 
extended graph G′ , so that its complexity is O(|A�| + |V �| log |V �|) . Then, the 
result immediately follows by observing that |V �| ≤ |V||Ωh| = n

⌈
W̄∕h

⌉
 and 

|A�| ≤ |A||Ωh|2 ≤ m
(⌈
W̄∕h

⌉)2 . 	�  ◻

As a next step, we want to obtain an estimate of the absolute error in terms of 
travel time of the discretized solution returned by the approximation algorithm with 
respect to the continuous solution of the original BASP problem. To this end, let us 
consider the optimal path P∗ ∈ Pod

of the original BASP problem, with the corresponding squared speeds at each node 
{wo = 0,wi1

,wi2
,… ,wd = 0} . Our aim is to build a feasible solution of the discre-

tized problem traversing the same arcs as path P∗ and whose speed profile is not 
above the optimal speed profile of the original BASP problem but is as close as 
possible to it. Building such solution requires some care. It is tempting to proceed as 
follows: for each node i in the optimal path P∗ , with squared speed wi in the optimal 
speed profile of BASP, replace wi with

that is, with the largest discretized speed bounding from below wi . Unfortunately, 
this does not work. Indeed, let us consider some arc (i, j) ∈ P∗ with the related opti-
mal squared speeds wi and wj , and let �i and �j be chosen as in (7). Unfortunately, in 
the extended graph, arc ((i,�i), (j,�j)) may not exist, since a situation like the one 
displayed in Fig. 2b may occur. Formally, according to (3), it may happen that either 
𝜔i + 2amax

ij
�ij < 𝜔j or 𝜔j − 2amin

ij
�ij < 𝜔i . Therefore, we need to proceed differently 

to build a solution of the discretized problem starting from the optimal solution of 
BASP. For x, h ∈ ℝ , h > 0 , we denote by ⟨x⟩ = max{i ∈ ℤ ∣ ih ≤ x} the maximum 
multiple of h lower than or equal to x. First, we reformulate the discretized problem 
as follows. Let P be an assigned path from o to d. The minimum time Th(P) to trav-
erse P in the discretized problem is:

O

(
m

(
W̄

h

)2

+
nW̄

h
log

(
nW̄

h

))
.

o → i1 → i2 → ⋯ → d,

(7)�i = max{kh ∣ kh ≤ wi, k ∈ ℕ},



1 3

Shortest path with acceleration constraints: complexity…

Problem (8) is obtained by adding to Problem (5) the last constraint, imposing that 
the coordinates of � have to be multiples of h. We call �h(P) ∈ ℝ

|P|+1 a vector that 
corresponds to the solution of (8). Note that Problem (8) always admits at least one 
feasible solution with finite objective function value, for instance the solution wi = 0 
for all i ∈ {1,… , |P| + 1} . The solution of discretized BASP corresponds to path

Recall that this problem can be solved by the application of Dijkstra’s algorithm to 
the extended graph described above. The following lemma compares the optimal 
values and solutions of Problems (5) and (8).

Lemma 5.1  For any path P and any h > 0 , 

	 (i)	 Th(P) ≥ T(P),
	 (ii)	 �

h(P) ≤ �
∗(P) (vector inequalities are intended component-wise).

Proof  Statement (i) is a consequence of the fact that Problem (8) is obtained by add-
ing a constraint to Problem (5). For Statement (ii), first note that, if �1,�2 ∈ ℝ

|P|+1 
are feasible values for � in Problem  (5), then also their component-wise maxi-
mum � = max{�1,�2} is feasible (see, for instance, [4]). By contradiction, if 
�

h(P) ≰ �
∗(P) then � = max{�h(P),�∗(P)} is feasible for Problem (5). Note that 

the objective function f (�) =
∑�P�

i=1
cP(i)P(i+1)(wi,wi+1) of Problem  (5) is strictly 

decreasing, that is, if �1 ≥ �2 and �1 ≠ �2 , then f (�1) < f (�2) . Since � ≥ �
∗(P) 

and � ≠ �
∗(P) , it follows that f (�) < f (�∗(P)) , contradicting the optimality of 

�
∗(P) . 	�  ◻

Next, the following lemma, whose proof is given in Appendix B, gives an upper 
bound on the components of the difference vector �∗(P) − �

h(P) . Note that such 
components are nonnegative in view of part ii) of Lemma 5.1.

Lemma 5.2  The following holds for all i ∈ {1,… , |P| + 1}:

In order to use Lemma 5.2, we need to find an upper bound on |P∗| , the number of 
arcs of the optimal path. This can be done as follows.

(8)

Th(P) = min
�∈ℝ�P�+1

�P��
i=1

cP(i)P(i+1)(wi,wi+1)

0 ≤ wi ≤ min{wmax
P(i−1),P(i)

,wmax
P(i),P(i+1)

}, i ∈ {2,… , �P�},
w1 = 0, w�P�+1 = 0 ,

⟨wi⟩ = wi , i ∈ {1,… , �P� + 1}.

(9)Ph = arg min
P∈Pod

Th(P).

w∗(P)i − wh(P)i ≤ h|P|.
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Lemma 5.3  An upper bound for the number of arcs |P∗| of the optimal path P∗ is 
given by

where

•	 PSPP is the shortest path connecting o to d over the original graph, when the cost 
of each arc (i, j) ∈ A is equal to �ij;

•	 amin = min(i,j)∈A min{amax
ij

,−amin
ij

} > 0;
•	 w̄ = mini∈V⧵{o,d} w̄i , where w̄i > 0 is defined in (4);
•	 W̄ = max(i,j)∈A w

max
ij

;
•	 �min = min(i,j)∈A �ij.

Proof  A feasible solution for BASP is obtained by the arcs of path PSPP , along 
which, starting from null speed at node o, we first accelerate with acceleration amin 
until we reach speed w̄ , then we keep the speed constant and, finally, we decelerate 
with deceleration amin until we reach the final null speed at node d. The time tSPP to 
travel along path PSPP with the given speed profile, is an upper bound for the travel 
time of the optimal path P∗ . We have that

Next we need a lower bound for the time needed to travel along any arc (i, j) ∈ A . We 
denote this time with tmin and a lower bound for it is �min∕

√
W̄ . Then, the ratio of tSPP 

to tmin is an upper bound for the number of arcs |P∗| in the optimal path, that is,

	�  ◻

In the following, we estimate the difference Th(Ph) − T(P∗) ≥ 0 between 
the optimal values of the discretized BASP  (9) and BASP  (6) (nonnegativ-
ity follows form part i) of Lemma  5.1). Path Ph , corresponding to the solution 
of the discretized BASP, can be different from P∗ and Th(Ph) ≤ Th(P∗) . Hence, 
Th(Ph) − T(P∗) ≤ Th(P∗) − T(P∗) . Quantities T(P∗) and Th(P∗) correspond to the 
optimal values of Problems (5) and (8) on the same path P∗ . In order to bound the 
difference Th(P∗) − T(P∗) , we need a further lemma, giving, for some arc (i,  j), 
an upper bound for the difference cij(w, z) − cij(ŵ, ẑ) (that is, the time difference 

(10)�P∗� ≤
�
�(PSPP)√

w̄
+ 2

√
w̄

amin

�√
W̄

�min

,

tSPP ≤
√
w̄

amin

+
�(PSPP)√

w̄
+

√
w̄

amin

.

�P∗� ≤ tSPP

tmin

≤
�
�(PSPP)√

w̄
+ 2

√
w̄

amin

�√
W̄

�min

.
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between the times needed to travel arc (i, j) with boundary speeds w, z and ŵ, ẑ , 
respectively, with w ≤ ŵ and z ≤ ẑ ). The lemma will be proved in Appendix C.

Lemma 5.4  For any arc (i,  j) and any w, z, ŵ, ẑ ∈ ℝ , with 0 ≤ w, z, ŵ, ẑ ≤ wmax
ij

 , 
w ≤ ŵ , z ≤ ẑ , and cij(w, z), cij(ŵ, ẑ) < +∞ , the following bound holds:

where amin and w̄ are defined in the statement of Lemma 5.3.

Then, we can provide an estimate on Th(P∗) − T(P∗) (which also bounds 
Th(Ph) − T(P∗) ) by summing up the contributions of all arcs of P∗.

Proposition 5.2  The following bound holds:

where PSPP is the shortest path connecting node o to node d.

Proof  First observe that, for any arc e = (P∗(i),P∗(i + 1)) , it holds that

as a consequence of Lemma 5.4 (first inequality) and of Lemma 5.2 (second ine-
quality). Then, it follows that

where the first inequality derives from  (11), whilst the second one follows from 
Lemma 5.3. 	�  ◻

We can also provide an estimate of the relative error.

Proposition 5.3  Given � ∈ (0, 1) , the relative error of the approximated problem 
with h = C� , where C is a constant that depends on the problem data, is 1 + � , that 
is, T

h(Ph)

T(P∗)
≤ 1 + �.

���cij(w, z) − cij(ŵ, ẑ)
��� ≤

4max{�w − ŵ�, �z − ẑ�}
amin

√
w̄

,

Th(Ph) − T(P∗) ≤
�
�(PSPP)√

w̄
+ 2

√
w̄

amin

�2

4W̄

�
2
min

amin

√
w̄
h,

(11)

���ce(w
h
i
(P∗),wh

i+1
(P∗)) − ce(w

∗
i
(P∗),w∗

i+1
(P∗))

���
≤ 4max{�wh

i
(P∗) − w∗

i
(P∗)�, �wh

i+1
(P∗) − w∗

i+1
(P∗)�}

amin

√
w̄

≤ 4�P∗�h
amin

√
w̄
,

Th(Ph) − T∗(P∗) ≤Th(P∗) − T∗(P∗) ≤
�P∗��
k=1

4�P∗�h
amin

√
w̄

=
4�P∗�2h
amin

√
w̄

≤
�
�(PSPP)√

w̄
+ 2

√
w̄

amin

�2

4W̄

�
2

min
amin

√
w̄
h,



	 S. Ardizzoni et al.

1 3

Proof  Let tmin be the travel time of the arc of shortest length �min assuming that the 
squared speed along it is constantly equal to W̄ (this is a lower bound for the travel 
time along any arc). Then, by Proposition 5.2, we have the following estimate over 
the relative error:

with

	�  ◻

The following theorem states a time-complexity and an error estimate result 
for the approximated problem.

Theorem  5.1  Given � ∈ (0, 1) , let h = C� with C defined as in  (12). Then, 
Th(Ph)

T(P∗)
≤ 1 + � , that is the solution returned by the approximation algorithm has rela-

tive error at most � , and the approximation algorithm has time-complexity

Proof  The thesis directly follows from Propositions 5.1 and 5.3. 	�  ◻

5.1 � The case of uniform acceleration bounds

As previously mentioned in Remark 4.1, it is still unclear whether the case where 
all arcs share the same acceleration and deceleration bounds, denoted with amax 

Th(Ph)

T(P∗)
≤ 1 +

T(P∗) − Th(Ph)

T(P∗)
≤ 1 +

T(P∗) − Th(Ph)

tmin

= 1 + (T(P∗) − Th(Ph))

√
W̄

�min

≤ 1 +

�
�(PSPP)√

w̄
+ 2

√
w̄

amin

�2

3W̄
3

2

�
3
min

amin

√
w̄
h = 1 + 𝜖,

(12)h = C𝜖, C =

⎡⎢⎢⎣

�
�(PSPP)√

w̄
+ 2

√
w̄

amin

�2

3W̄
3

2

�
3
min

amin

√
w̄

⎤⎥⎥⎦

−1

.

O

((
W̄

C𝜖

)2

m +
W̄n

C𝜖
log

(
W̄n

C𝜖

))
.

Fig. 7   Two distinct paths from node o to node d: � and �� = C ∪ �



1 3

Shortest path with acceleration constraints: complexity…

and amin , respectively, is NP-hard or not. However, we can prove the following 
result.

Proposition 5.4  If

that is, all arcs have the same acceleration and deceleration bounds, then the opti-
mal solution of BASP is an elementary path (a path that does not contain loops).

Proof  Let us consider two distinct paths � and �′ from node o to node d such that � 
is elementary and 𝜋 ⊂ 𝜋

′ . Since �′ contains the entire path � , it must contain a cycle 
C, as shown in Fig. 7.

We will show that the time needed to traverse � is lower than the time needed 
to traverse �′ , so that we can restrict the attention to elementary paths. Let j be the 
first node of cycle C in �′ as indicated in Fig. 7. Let vj be the initial speed at node 
j along path � . Along cycle C we can speed up. If, after traveling cycle C, the new 
speed at node j is vC > vj , then there is a time gain t̃ in traveling the final sub-path 
j → d , since the new initial speed at j is higher. However, there is also a loss of time 
t̄ to travel along cycle C, We prove that the latter is always greater than the former. 
Indeed, a lower bound t̄min for the time needed to travel along cycle C is obtained by 
assuming that the maximum acceleration amax can be kept along the cycle without 
hitting maximum speed bounds:

Now, let � be the length of the sub-path j → d . An upper bound Δtmax on the time 
difference between the time to travel along the sub-path j → d with starting speed vj 
and the time to travel along the same sub-path with starting speed vC is obtained by 
assuming that we can keep the maximum acceleration along the sub-path:

It follows that

which holds true in view of vC > vj.
The same reasoning applies to maximum deceleration amin . Indeed, suppose that 

along path � the agent has to decelerate before j to reach the speed vj . In this case, 
along cycle C we could speed down, allowing to maintain a higher speed along the 
sub-path o → j . However, it is possible to prove that the lost time t̄ to travel along 
cycle C is always larger than the time gain t̃ in traveling the initial sub-path o → j 
with a higher final speed, and so � is faster than �′ in any case. 	�  ◻

(∀(i, j) ∈ A) amax
ij

= amax ∧ amin
ij

= amin,

t̄min =
vC − vj

amax
.

Δtmax =

√
v2
j
+ �amax − vj

amax
−

√
v2
C
+ �amax − vC

amax
.

t̄min > Δtmax ⟺

√
v2
C
+ �amax

>

√
v2
j
+ �amax,
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This result is important because it allows us to state that in this sub-case the upper 
bound for the number of arcs of the optimal path P∗ depends only on the number of 
nodes n. In particular

Therefore, we can use this bound rather than the one derived in Lemma 5.3 in all 
subsequent results. So, for instance, the upper bound in Proposition 5.2 can be set 
equal to 4n2h

amin

√
w̄
.

6 � Computational experiments

In this section we test the approximation algorithm introduced in Sect. 5. We con-
sider two real-life industrial scenarios of warehouses. The problem data have been 
provided by packaging company Ocme S.r.l., based in Parma, Italy. The simulations 
have been performed on a 2.7 GHz Intel Core i5 dual-core with 8GB of RAM. The 
acceleration and deceleration bounds on both scenarios are given by �+ = 0.28 m 
s −2 and �− = −0.18 m s −2 , for arcs with mean curvature smaller than or equal to 
0.25. Whilst on arcs whose mean curvature is larger than this value, the bounds are 
given by �+ = 0.14 m s −2 and �− = −0.09 m s −2 . The first scenario is modeled as a 
graph G = (V ,A) with 368 nodes and 679 edges and is depicted in Fig. 8.

The speed bounds on both scenarios are constant for each arc but vary from arc to 
arc, according to the associated paths curvatures. For the first scenario they take val-
ues in interval [0.136, 1.7] m s −1 , whilst the arc-lengths take values between 0.628 
and 10.87 m and have an average value of 2.863 m.

|P∗| ≤ n − 1.

Fig. 8   First real-life industrial scenario
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In what follows, we compare the approximation algorithm of Sect.  5 with the 
adaptive A ∗ algorithm for k-BASP presented in [1]. Note that the adaptive algorithm 
solves a k-BASP instance in polynomial time complexity with respect to the number 
of edges and vertices of the associated graph, but its complexity is exponential with 
respect to k. In the following, the adaptive A ∗ algorithm for k-BASP is initialized 
with k = 3 . Again, we refer the reader to Ardizzoni et  al. [1] for a more in depth 
discussion.

Given the graphs associated to the considered automated warehouses, we gener-
ated the extended graphs associated to them for different values of the discretiza-
tion step h of the squared speeds. For the first scenario, step h takes values in a 
set H of thirty logarithmically spaced values between 0.005 and 0.5 m 2 s −2 , hence, 
we considered thirty different sets of discretized squared speeds Ωh and extended 
graphs G�

h
= (V �

h
,A�

h
) . We generated 1000 random pairs of source-target nodes 

{(si, ti)}i∈{1,…,1000} in V × V  . Then, for each of the previous pairs of source-target 
nodes, we considered the corresponding pair (sh

i
, th
i
) = ((si, 0), (ti, 0)) ∈ V �

h
× V �

h
 on 

extended graph G′
h
 and ran Dijkstra’s algorithm on G′

h
 in order to obtain a trajectory 

starting at node si with null speed and ending at node ti with null speed, for h ∈ H . 
Figure 9 shows the box-and-whisker plot of the computational times of Dijkstra’s 
algorithm for different values of the discretization step h for solving the 1000 ran-
domly generated instances and compares them with those of the adaptive A ∗ algo-
rithm for k-BASP on the same set of instances.

Note that, as the discretization step h increases, the number of discretized squared 
speeds decreases, hence, the number of nodes and edges in graph G′

h
 decreases as 

well, making Dijkstra’s algorithm explore a smaller graph and run faster. Also, 
observe that, for values of h greater than 0.015159 m 2 s −2 , the mean computational 
times of Dijkstra’s algorithm on extended graphs G′

h
 (represented by a green line with 

circles) are better than that of the adaptive A ∗ algorithm for k-BASP (represented by 

Fig. 9   Approximation algorithm computational times for different values of h on the first scenario

Fig. 10   Approximation algorithm relative error for different values of h on the first scenario
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a dashed line). On the other hand, as the discretization step h increases, so does the 
relative error on the travel time, which, for values of h ≥ 0.19283 m 2 s −2 , is larger 
than 10−1 . Figure 10 represents the box-and-whisker plot of the relative error. Note 
that we set a tolerance on the relative error of the trajectories obtained with the 
approximation algorithm, relative errors smaller than 10−4 are not considered. This 
roughly corresponds to an absolute error of the order of 10−2 s.

A good compromise for this scenario could be h = 0.063448 m 2 s −2 which is 
associated to a mean computational time that is 5.76 times faster than that of the 
adaptive A ∗ algorithm for k-BASP, while at the same time maintaining a mean rela-
tive error of the order of 2 ⋅ 10−2 . We could also exploit the approximation algorithm 
just for obtaining a path and then compute the optimal speed profile along such a 
path by the procedure described in Sect. 3. In this way we could employ a bigger 
discretization step h for achieving small computational times while maintaining high 
precision. The speed planning algorithm described in Sect. 3 has linear-time compu-
tational complexity with respect to the number of nodes of the path. Figure 11 shows 
the box-and-whisker plot of the computational times of the approximation algo-
rithm, as in Fig. 9, summed with those of the speed planning algorithm applied on 
the obtained paths for the 1000 randomly generated instances on the first scenario.

Figure 12 shows the box-and-whisker plot of the relative error on the travel time 
of the trajectories obtained coupling the approximation algorithm of Sect. 5 with the 
speed planning one. Again, we set a tolerance on relative errors of 10−4 . In this case 
the mean relative errors are on average two orders of magnitude smaller than those 
presented in Fig.  10 and the percentage of solutions with a relative error smaller 
than 10−4 ranges from 93.1% with h = 0.5 m 2 s −2 to 100% for h = 0.005 m 2 s −2.

Fig. 11   Approximation algorithm and speed planning algorithm computational times for different values 
of h on the first scenario

Fig. 12   Approximation algorithm and speed planning algorithm relative error for different values of h on 
the first scenario
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For this scenario, if we fix h = 0.5 m 2 s −2 , we get a mean computational time that 
is 46.35 times faster than that of the adaptive A ∗ algorithm for k-BASP, while obtain-
ing a solution with a mean relative error of 4 × 10−3 , which is one order of magni-
tude smaller than that of the approximation algorithm alone with h = 0.063448 m 2 
s −2.

It is worthwhile to remark that there always exists a sufficiently small value h 
such that the optimal path of the discretized problem coincides with the optimal path 
of the continuous problem. Indeed, if h is chosen in such a way that the absolute 
error of the approximation algorithm, bounded from above as discussed in Propo-
sition 5.2, is lower than the difference between the traveling times of the best and 
second-best path, then the approximation algorithm returns the best path (that is, 
according to the notation introduced in Sect. 5, Ph is equal to P∗ ). However, the dif-
ference is not known in advance and even in case it were known, the choice of h 
based on the upper bound stated in Proposition 5.2 may lead to an excessively small 
value.

The second scenario is modeled as a graph with 2419 nodes and 4255 edges and 
is depicted in Fig. 13.

For this scenario the speed bounds take values in interval [0.1,  1.7] m s −1 , 
whilst the arc-lengths take values between 0.2 and 18.15  m and have an aver-
age value of 4.24  m. For the first scenario, step h takes values in a set H of ten 

Fig. 13   Second real-life industrial scenario
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logarithmically spaced values between 0.03 and 1 m 2 s −2 , hence, we considered ten 
different sets of discretized squared speeds Ωh and extended graphs G�

h
= (V �

h
,A�

h
) . 

As for the previous scenario, we generated 1000 random pairs of source-target nodes 
{(si, ti)}i∈{1,…,1000} in V × V  and tested the approximation algorithm on such pairs. 
Figure 14 shows the box-and-whisker plot of the computational times of Dijkstra’s 
algorithm for different values of the discretization step h for solving the 1000 ran-
domly generated instances and compares them with those of the adaptive A ∗ algo-
rithm for k-BASP on the same set of instances.

Observe that, for all values of h, the mean computational times of Dijkstra’s algo-
rithm on extended graphs G′

h
 (represented by a green line with circles) are better than 

that of the adaptive A ∗ algorithm for k-BASP (represented by a dashed line). However, 
note that the median computational time of the latter is almost the same as that of the 
approximation algorithm with h = 0.03 m 2 s−2 (both represented as horizontal red lines 
within their corresponding blue boxes). This is due to the fact that the adaptive A ∗ algo-
rithm for k-BASP presents a small group of outliers with very high computational times 
compared to its median. On the other hand, as the discretization step h increases, so 
does the relative error on the travel time, which, for values of h ≥ 0.45876 m 2 s −2 , is 
larger than 10−1 . Figure 15 represents the box-and-whisker plot of the relative error for 
which we set a tolerance of 10−4.

A good compromise for this scenario could be h = 0.21046 m 2 s −2 which is associ-
ated to a mean computational time that is 107.3 times faster than that of the adaptive A ∗ 
algorithm for k-BASP, while at the same time maintaining a mean relative error of the 
order of 3 ⋅ 10−2 . Figure 16 shows the box-and-whisker plot of the computational times 
of the approximation algorithm, as in Fig. 14, summed with those of the speed planning 
algorithm described in Sect.  3 applied on the obtained paths for the 1000 randomly 
generated instances on the first scenario.

Fig. 14   Approximation algorithm computational times for different values of h on the second scenario

Fig. 15   Approximation algorithm relative error for different values of h on the second scenario
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Figure 17 shows the box-and-whisker plot of the relative error on the travel time 
of the trajectories obtained coupling the approximation algorithm of Sect. 5 with the 
speed planning one. Again, we set a tolerance on relative errors of 10−4 . In this case 
the mean relative errors are on average two orders of magnitude smaller than those pre-
sented in Fig. 15.

For this scenario, if we fix h = 0.21046 m 2 s −2 , we get a mean computational time that 
is 99.24 times faster than that of the adaptive A ∗ algorithm for k-BASP, while obtaining 
the exact solution up to a tolerance of 10−4 on the relative error in 97.6% of the cases.

Observe that the construction of the extended graphs can be a time-consuming opera-
tion. One could alternatively run a dynamic programming approach by generating arcs 
only when (and if) needed. However, the construction has to be performed only once 
and the extended graphs can be stored for future use. The memory occupancy of the 
extended graphs of the scenarios we considered varies from 36 KB for G′

h
 with h = 0.5 

m 2 s −2 to 258 MB for G′
h
 with h = 0.005 m 2 s −2 for the first scenario, and from 78 KB 

for G′
h
 with h = 1 m 2 s −2 to 56.1 MB for G′

h
 with h = 0.03 m 2 s −2 for the second scenario.

7 � Conclusions

Motivated by an industrial application, in this paper we addressed a variant of the 
Shortest Path Problem (SPP). The variant is called BASP (Bounded Acceleration SP) 
since speed and acceleration constraints are imposed over the arcs. Differently from 
SPP, where the traveling time of an arc is constant, in BASP the traveling time depends 
on the initial and final speed along the arc and, thus, due to the speed and acceleration 
constraints, it also depends on the arcs preceding and following it along a path. We 

Fig. 16   Approximation algorithm and speed planning algorithm computational times for different values 
of h on the second scenario

Fig. 17   Approximation algorithm and speed planning algorithm absolute error for different values of h 
on the second scenario
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proved that BASP is NP-hard but also that, under the assumption of integer data, it 
admits a pseudo-polynomial time algorithm. We also proposed an approximation algo-
rithm based on the solution of an SPP problem over an extended graph. The extended 
graph is defined by discretizing the admissible speeds at the nodes of the graph. Finally, 
we performed different computational experiments on two real-life industrial scenarios 
in order to evaluate the performance of the approximation algorithm.

Appendix

A Proof of Proposition 4.1

Each path P from node 0 to node n + 2 has the following structure

with i1 < i2 < ⋯ < ir . Let us denote by NP = {i1, i2,… , ir} the set of intermediate 
nodes in P. The length of path P is W2 + �(P) , where �(P) =

∑
i∈NP

�i is the length 
of the path up to node n + 1.

Before proceeding with the proof we give the intuition behind it. We will show that 
for each path with length �(P) > W

2
 up to node n + 1 , the traveling time from node 0 

to node n + 2 is larger than the traveling time of a path with length �(P) = W

2
 up to 

node n + 1 (if any). This will simply follow from the fact that the former path is longer 
and the speed along the final arc (n + 1, n + 2) is the same in both cases. Moreover, 
we will show that also for a path with length �(P) < W

2
 up to node n + 1 , the traveling 

time from node 0 to node n + 2 is larger than the traveling time of a path with length 
�(P) =

W

2
 up to node n + 1 (again, if any). In this case this will be proved by observ-

ing that the speed reached along this path at node n + 1 will be lower than 
√
W (the 

speed reached by any path with length �(P) ≥ W

2
 ). Since it is not possible to accelerate 

along arc (n + 1, n + 2) , the traveling time along this arc will be higher with respect 
to paths with length �(P) ≥ W

2
 up to node n + 1 . In particular, we will show that the 

increase of the time needed to travel along arc (n + 1, n + 2) will be larger than the time 
saved along the sub-path from node 0 to node n + 1 with respect to a path for which 
�(P) =

W

2
 . In conclusion, we will show that the Partition problem has a yes answer if 

and only if the optimal value of the BASP instance is the traveling time of a path with 
length �(P) = W

2
 up to node n + 1 . In what follows we prove the result in a formal way.

Let us first assume that �(P) < W

2
 . In this case, according to the discussion in Sect. 3, 

the maximum speed which can be reached at node n + 1 is vu = amaxtP , where amax = 1 
and tP fulfills �(P) = 1

2
amaxt

2 , that is, tP =
√
2�(P) . Thus, vu =

√
2�(P) <

√
W . 

Along the final arc of the path (n + 1, n + 2) the maximum acceleration is null, while 
the maximum deceleration is − 1

2W
 . Then, the optimal speed profile along this arc is 

obtained by keeping the speed vu =
√
2�(P) for a portion of the arc with length 

0 → i1 → i2 → ⋯ → ir → n + 1 → n + 2,
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W2 − 2�(P)W , while in the last portion, with length 2�(P)W , the speed is decreased 
with the maximum possible deceleration − 1

2W
 . Now we denote by t1

L1
(�(P)) the time to 

run along the first portion of the arc, while we denote by tL2(�(P)) the time to run along 
the second part of the arc. We have that

while tL2(�(P)) fulfills the following condition

that is,

Thus, the overall time to traverse such paths is

Now, let us consider paths P such that �(P) ≥ W

2
 . A lower bound for the time needed 

to run along the path up to node n + 1 is given again by the solution of the fol-
lowing simple equation �(P) = 1

2
amaxt

2 , which is tP =
√
2�(P) . Note that this 

is a lower bound since with the maximum acceleration we would reach the speed 
vu = amaxtP =

√
2�(P) ≥ √

W , so that we stop accelerating as soon as we reach the 
maximum speed 

√
W . Since �(P) ≥ W

2
 , we have that the lower bound can be fur-

ther bounded from below by 
√
W . Finally, we observe that such lower bound can be 

attained if and only if �(P) = W

2
 , that is, if and only if the Partition problem admits a 

solution. Now, over the last arc (n + 1, n + 2) we can decrease the speed to 0 at node 
n + 2 by keeping the maximum deceleration − 1

2W
 over the whole arc. Then, the time 

needed to traverse this arc, denoted by tL3 , fulfills

so that tL3 = 2W3∕2 . Then, a lower bound for the time needed to traverse such paths 

is T2 =
√
W + 2W3∕2 and, as already pointed out, such lower bound is attained if and 

only if �(P) = W

2
 . Figure 19 illustrates the optimal speed profiles for three distinct 

paths P1 , P2 and P3 , fulfilling �(P1) <
W

2
 , �(P2) =

W

2
 , and �(P3) >

W

2
 , respectively. 

The three profiles are depicted, respectively with a dashed, a continuous and a dot-
ted line (up to distance �(P1) they are overlapping). We notice that for the short-
est path P1 we are unable to reach the maximum squared speed W, so that along 
arc (n + 1, n + 2) we first increase the speed as much as possible with acceleration 

tL1(�(P)) =
W2 − 2�(P)W√

2�(P)
,

√
2�(P)W =

√
2�(P)tL2(�(P)) −

1

4W
tL2(�(P))

2,

tL2(�(P)) = 2W
√
2�(P).

T1(�(P)) =
√
2�(P) +

W2 − 2�(P)W√
2�(P)

+ tL2(�(P)) =
√
2�(P) +

W2

√
2�(P)

+W
√
2�(P).

W2 =
√
WtL3 −

1

4W
(tL3)

2,
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amax
n+1,n+2

 (in fact, we keep the speed constant since amax
n+1,n+2

= 0 ), and then we decrease 

the speed as fast as possible with deceleration amin
n+1,n+2

 . For the intermediate path P2 
we reach the maximum squared speed exactly at the end of the path and then, along 
arc (n + 1, n + 2) we decrease the speed as fast as possible with deceleration amin

n+1,n+2
 . 

Finally, for the longest path P3 we reach the maximum squared speed before the end 
of the path, and we keep the speed constant in the last part of the path, while along 
arc (n + 1, n + 2) we decrease the speed as fast as possible with deceleration amin

n+1,n+2
.

Now, if we are able to prove that T2 < T1(�(P)) when �(P) ≤ W

2
− 1 , then we 

are done. We have that

By the change of variable x =
√
2�(P) , this can be rewritten as

which can be easily seen to be negative for all x ≤ W3∕2

W+1
 . Now, recalling the definition 

of x, this means that T2 − T1(�(P)) is negative if

Then, the result follows by observing that

B Proof of Lemma 5.2

For i ∈ {1,… , |P|} , set a+
i
= 2amax

P(i),P(i+1)
�P(i),P(i+1) , a−i = 2amin

P(i),P(i+1)
�P(i),P(i+1) . For 

i ∈ {2,… , |P|} , set w+
i
= min{wmax

P(i−1),P(i)
,wmax

P(i),P(i+1)
} . It is convenient to rewrite 

Problem (5) as:

Problem  (13) belongs to the class of Problem  5 in [3] (nondecreasing right-hand 
side of the constraints and strictly monotonically decreasing objective function) . As 

T2 − T1(�(P)) =
√
W + 2W3∕2 −W

√
2�(P) −

√
2�(P) −

W2

√
2�(P)

.

−(W + 1)x2 + (
√
W + 2W3∕2)x −W2

x
,

�(P) <
W3

2(W + 1)2
.

W3

2(W + 1)2
>

W

2
− 1.

(13)

T(P) = min
�∈ℝ|P|+1

|P|∑
i=1

cP(i)P(i+1)(wi,wi+1)

0 ≤ wi ≤ w+
i
, i ∈ {2,… , |P|},

wi+1 ≤ wi + a+
i
, i ∈ {1,… , |P|},

wi ≤ wi+1 − a−
i
, i ∈ {1,… , |P|},

w1 = 0, w|P|+1 = 0 .
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reported there, the solution of Problem (5) can be found as follows. Define vectors 
�,�,� ∈ ℝ

|P|+1 such that:

Note that the components of vector � are equivalent to the values of function W(s) 
defined in Sect. 3 evaluated at nodes of the path, while along each arc of the path 
function W(s) is defined according to  (1). As a consequence of Theorem 2 of [3] 
the solution of Problem (13) is �∗(P) = � . On the other hand, Problem (8) can be 
rewritten in the following form:

Note that, strictly speaking, this is a relaxation of Problem (8), since we have not 
included the last constraint, namely ⟨wi⟩ = wi, i ∈ {1,… , �P� + 1} . In fact, as shown 
in [3], at least one constraint is active at each component wh

i
(P) , i ∈ {1,… , |P| + 1} , 

of the optimal solution of (14). Since 0 = ⟨0⟩ and, for all x ∈ ℝ , ⟨⟨x⟩⟩ = ⟨x⟩ , neces-
sarily ⟨wh

i
(P)⟩ = wh

i
(P) , i ∈ {1,… , |P| + 1} (which means that the optimal solution 

of (14) fulfills the last constraint in (8)). Also Problem (14) belongs to the class of 
Problem 5 in [3]. Hence, its solution can be computed with the same procedure used 
for Problem (13). Namely, define vectors �h,�h,�h ∈ ℝ

|P|+1 such that:

Again, by Theorem 2 in [3], �h(P) = �
h . Note that, by their definitions, �h ≤ � and 

�
h ≤ �.

Now we are ready to prove Lemma 5.2. We first prove that for all i ∈ {1,… , |P| + 1}:

F1 = 0

Fi = min{Fi−1 + a+
i−1

,w+
i
}, i ∈ {2,… , |P| + 1},

[6pt]B|P|+1 = 0

[6pt]Bi = min{Bi+1 − a−
i
,w+

i
}, i ∈ {1,… , |P|},

[6pt]� = min{�,�}.

(14)

Th(P) = min
�∈ℝ�P�+1

�P��
i=1

cP(i)P(i+1)(wi,wi+1)

0 ≤ wi ≤ ⟨w+
i
⟩, i ∈ {2,… , �P�},

wi+1 ≤ ⟨wi + a+
i
⟩, i ∈ {1,… , �P�},

wi ≤ ⟨wi+1 − a−
i
⟩, i ∈ {1,… , �P�},

w1 = 0, w�P�+1 = 0 .

Fh
1
= 0

Fh
i
= ⟨min{Fh

i−1
+ a+

i−1
,w+

i
}⟩, i ∈ {2,… , �P� + 1},

Bh
�P�+1 = 0

Bh
i
= ⟨min{Bh

i+1
− a−

i+1
,w+

i
}⟩, i ∈ {1,… , �P�},

�
h = min{�h,�h}.

Fi − Fh
i
≤ h(i − 1).
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Set �i = Fi − Fh
i
 . By the definition of Fh

i
 we may have that Fh

i
= ⟨Fh

i−1
+ a+

i−1
⟩ or 

Fh
i
= ⟨w+

i
⟩ . In the first case, �i ≤ Fi−1 − Fh

i−1
+ a+

i−1
− ⟨a+

i−1
⟩ ≤ �i−1 + h . In the sec-

ond case, �i ≤ w+
i
− ⟨w+

i
⟩ ≤ h . Hence, � satisfies

and it follows that �i ≤ h(i − 1) . Proceeding in the same way as above, setting 
�i = Bi − Bh

i
 , � satisfies

and, consequently:

Finally, we observe that

as we wanted to prove.

C Proof of Lemma 5.4

Given an arc (i,  j) and squared speeds w, z, ŵ, ẑ ∈ ℝ , with 0 ≤ w, z, ŵ, ẑ ≤ wmax
ij

 , 
w ≤ ŵ and z ≤ ẑ , for an interval [a, b] ⊆ [0,�ij] , define

where wij is defined in  (1). Our goal is to find an upper bound for 
|||cij(w, z) − cij(ŵ, ẑ)

||| = e[0,�ij]
 . We consider only the case ŵ ≤ ẑ (the converse case in 

which ŵ ≥ ẑ is analogous).
We find a bound on |||cij(w, z) − cij(ŵ, ẑ)

||| by splitting the integration interval [0,�ij] 
into three parts: the initial part [0, s̄] , with s̄ ∈ [0,�ij] , in which both the speed pro-
files starting at ŵ and w are growing, the second part [s̄, s̃] , with s̃ ∈ [s̄,�ij] in which 
the speed profile starting at ŵ keeps growing whilst the one starting at w starts 
decreasing, and the final part [s̃,�ij] , in which both speed profiles are decreasing (see 
Fig. 18). In case the first profile never decreases, we set s̃ = �ij , and in case the sec-
ond profile never decreases, we set s̃ = s̄ = �ij . In this way, |||cij(w, z) − cij(ŵ, ẑ)

||| = e[0,s̄] + e[s̄,s̃] + e[s̃,�ij]
 . We will need the following technical 

remark.

�1 = 0

�i+1 ≤ �i + h, i ∈ {1,… , |P|},

�|P|+1 = 0

�i ≤ �i+1 + h, i ∈ {1,… , |P|},

Bi − Bh
i
≤ h(|P| + 1 − i).

w∗(P)i − wh(P)i = min{Fi,Bi} −min{Fh
i
,Bh

i
} ≤ max{Fi − Fh

i
,Bi − Bh

i
} ≤ h|P|,

e[a,b] =

��������
∫

b

a

⎛⎜⎜⎜⎝
1�

wij(s;w, z)

−
1�

wij(s;ŵ, ẑ)

⎞⎟⎟⎟⎠
ds

��������
,
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Remark C.1  Given c > 0 and x ∈ [0, c] , it holds that

Next lemma establishes a bound from above for the error along the first part of 
the arc.

−
x√
c
+
√
c ≤ √

c − x ≤ −
x

2
√
c
+
√
c.

Fig. 18   Comparison on a generic arc between the optimal speed profile starting from ŵ and ending at ẑ 
and the one starting from w and ending at z 

Fig. 19   Maximum (squared) speed profiles along three paths P1,P2,P3 fulfilling �(P1) <
W

2
 , �(P2) =

W

2
 , 

and �(P3) >
W

2
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Lemma C.1  Given arc (i,  j) and 0 ≤ w, ŵ, z, ẑ , with w ≤ ŵ and z ≤ ẑ the following 
bound holds:

Proof  If ŵ = 0 , then also w = 0 , hence

Otherwise, if ŵ > 0 , we can bound the error over [0, s̄] as follows

where, in the first inequality, we used the fact that, for |w − ŵ| ≤ ŵ + 2amax
ij

s̄ , in view 
of Remark C.1 it holds that:

and that, for |w − ŵ| ≤ ŵ,

	�  ◻

The error over the second part [s̄, s̃] of arc (i, j) can be bounded from above as 
follows.

Lemma C.2  Given arc (i,  j) and 0 ≤ w, ŵ, z, ẑ , with w ≤ ŵ , z ≤ ẑ , the following 
bound holds:

�
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ŵ

⎞⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1√
ŵ
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ŵ + 2amax
ij

s̄

+
√
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where z̃ = wij(s̃;ŵ, ẑ) is the squared speed at s̃ for the profile with boundary speeds 
ŵ, ẑ.

Proof  We can bound from above the error over [s̄, s̃] as follows

where, in the second inequality, we used the fact that, for |z − ẑ| ≤ z̃ + 2amin
ij

(s̄ − s̃) , 
in view of Remark C.1, it holds that
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z̃ − �z − ẑ� + 2amin

ij
(s − s̃)

−
1�
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and that, for |z − ẑ| ≤ z̃,

whilst, in the fourth inequality, we used the fact that 
2amin

ij
(s̄ − s̃) ≤ max{|w − ŵ|, |z − ẑ|} . Indeed, the following equations hold (see also 

Fig. 18)

Taking the difference between the second and the first equation, we end up with

where the first inequality comes from amax
ij

> 0 and s̄ ≤ s̃ . 	�  ◻

Finally, we establish a bound for the error along the third part of the arc.

Lemma C.3  Given arc (i,  j) and 0 ≤ w, ŵ, z, ẑ , with w ≤ ŵ , z ≤ ẑ , the following 
bound holds:

Proof  The proof of Lemma C.3 is analogous to that of Lemma C.1. 	�  ◻

Now, we can prove Lemma  5.4, that is, we can provide an estimate on the 
absolute error over the entire arc (i, j).

Proof  By Lemmas C.1–C.3, we have the following cases. If ŵ = ẑ = 0 , then

(note that in this case s̄ = s̃ , so that e[s̄,s̃] = 0 ). If ŵ = 0 , then:

where the last inequality follows from z̃ ≥ ẑ . Similarly, for ẑ = 0:
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otherwise.
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�amin

ij
�√z̃

≤ �w − ŵ� 3
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where the last inequality follows from z̃ ≥ ŵ . Finally, if ŵ, ẑ > 0:

Now the results immediately follows from the fact that, by the definitions of amin and 
w̄ , it holds that amax

ij
, |amin

ij
| ≥ amin , ŵ ≥ w̄ if ŵ > 0 , and ẑ ≥ w̄ if ẑ > 0 . 	�  ◻
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�amin

ij
�√ẑ
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