
Vol.:(0123456789)

Computational Optimization and Applications
https://doi.org/10.1007/s10589-022-00403-w

1 3

Shortest path with acceleration constraints: complexity
and approximation algorithms

S. Ardizzoni1 · L. Consolini1 · M. Laurini1 · M. Locatelli1 

Received: 4 February 2022 / Accepted: 22 July 2022
© The Author(s) 2022

Abstract
We introduce a variant of the Shortest Path Problem (SPP), in which we impose
additional constraints on the acceleration over the arcs, and call it Bounded Accel-
eration SPP (BASP). This variant is inspired by an industrial application: a vehicle
needs to travel from its current position to a target one in minimum-time, following
pre-defined geometric paths connecting positions within a facility, while satisfying
some speed and acceleration constraints depending on the vehicle position along the
currently traveled path. We characterize the complexity of BASP, proving its NP-
hardness. We also show that, under additional hypotheses on problem data, the prob-
lem admits a pseudo-polynomial time-complexity algorithm. Moreover, we present
an approximation algorithm with polynomial time-complexity with respect to the
data of the original problem and the inverse of the approximation factor � . Finally,
we present some computational experiments to evaluate the performance of the pro-
posed approximation algorithm.

Keywords  Shortest path · Speed planning · Complexity · Approximation algorithms

1  Introduction

The Shortest Path Problem (SPP in what follows) is one of the best known within
the field of combinatorial optimization. Let G = (V ,A) be a directed graph and cij be
the cost of an arc (i, j) ∈ A . Let n = |V| and m = |A| . Let o, d ∈ V  , o ≠ d , be an ori-
gin and a destination node, respectively, and let Pod be the set of all directed paths in
G from o to d. Each P ∈ Pod is a subset of A made up of adjacent arcs, the first one
starting at o and the last one ending at d. In the SPP the minimum cost path between
o and d is searched for, that is, formally:

 *	 M. Locatelli
	 locatell@ce.unipr.it

1	 Dipartimento di Ingegneria e Architettura, Università degli Studi di Parma, Parco Area delle
Scienze, 181/A, Parma, Italy

http://orcid.org/0000-0001-7138-8653
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-022-00403-w&domain=pdf

	 S. Ardizzoni et al.

1 3

It is well known that SPP is solvable in polynomial time for nonnegative costs, in
particular with O(m + n log(n)) operations by the Fibonacci heap implementation of
Dijkstra’s algorithm, and also if no negative cycle exists, for instance by the Bell-
man-Ford algorithm. In both these cases, one can restrict the search of optimal solu-
tions to elementary paths (paths with no node repetitions). If negative cycles are
present, then the problem has been proved to be NP-hard.

After the introduction of SPP, many variants have been proposed, together with
the related complexity results and solution approaches. In what follows, we discuss
some of these variants, warning the reader that the literature about such variants is
so vast that the list is certainly incomplete.

Some variants do not add further input data with respect to those of SPP, but
change the objective function. Many of these variants are reviewed in [21]. These
include bottleneck SPP, where the objective function is the largest cost of an arc
along the path, that is, max(i,j)∈P cij , balanced SPP, where the objective function is
the difference between the largest and smallest costs of arcs along the path, that is,
max(i,j)∈P cij −min(i,j)∈P cij , minimum deviation SPP, where the objective function is
the sum of the difference between the largest cost among all arcs of the path and
the cost of each arc along the path, that is,

∑
(h,k)∈P[max(i,j)∈P cij − chk] , k-sum SPP,

where the objective function is the sum of the k largest costs along the path. While
some of these problems are solvable in polynomial time, such as bottleneck SP
(see [11, 20]), some others are NP-hard, such as some variants of k-sum SPP (see
[13]). In [7], the SPP with forbidden paths is addressed, where the shortest path is
searched for with the additional constraint that some sub-paths cannot be part of
feasible solutions. In k-SPP not only the shortest path is searched for, but also all
paths from the second shortest up to the k-th shortest one (see, for instance, [2] and
references therein).

Other variants add additional input values to the description of the problem. For
instance, in resource constrained SPPs, given resources k ∈ {1,… ,K} , each with a
limited availability �k and a consumption value rk

ij
 along each arc, we search for a

minimum cost path P which satisfies all the resource constraints

Resource constrained SPPs have been proved to be NP-hard (see, for instance, [14,
15]). A detailed discussion of these problems and the related solution approaches
can be found in [12].

Another interesting variant of SPP, is time-dependent SPP. Here, the cost asso-
ciated to an arc is the time needed to traverse the arc, and such time depends on
the departure time along the arc. Such variant is particularly important for road
networks, where the time needed to traverse an arc varies according to traffic con-
ditions. In this case, given a time horizon T, the cost associated to an arc is not
a fixed value but is a function cij ∶ [0, T] → ℝ

+ , where cij(t) is the time needed to

min
P∈Pod

∑
(i,j)∈P

cij .

(∀k ∈ {1,… ,K})
∑
(i,j)∈P

rk
ij
≤ �k.

1 3

Shortest path with acceleration constraints: complexity…

traverse arc (i, j) when departing from i at time t. In these problems the first-in first-
out (FIFO) property is usually assumed. This states that along any arc (i, j) an ear-
lier arrival at node j can never be attained by a later departure at node i (that is, for
t′ > t it always holds that t� + cij(t

�) > t + cij(t) ). Many variants of this problem are
presented, for instance, in [6]. In [18], it is shown that a variant where there is a con-
straint on the waiting time at each node is NP-hard. Further variants are discussed in
[16]. In these variants a penalty or a limit is imposed on the total waiting time spent
at a given subset of the nodes. It is proved that some variants are polynomially solv-
able, while some others are NP-hard depending on the subset of nodes, on the fact
that a penalization or a limit is imposed, and on the magnitude of the penalty param-
eter or of the waiting limit parameter.

Another interesting variant is SPP with time windows. In this case we associate
to each node i ∈ V an interval [ai, bi] , and to each arc (i, j) a time tij to traverse it.
Only paths in Pod where each node of the path is visited within the allowed time
window are feasible. The case where only elementary paths are feasible has been
proven to be strongly NP-hard in [10]. The problem is still NP-hard if we remove
such restriction and, thus, if we allow multiple visits to the same node. However, in
such case pseudo-polynomial time algorithms have been proposed (see, for instance,
[8]). A variant with additional costs associated to the departure times at the differ-
ent nodes of the path is studied in [17]. In fact, a polynomial time algorithm exists
if the FIFO property holds (see [9]). Moreover, if waiting is allowed at a node, then
each instance for which the FIFO property does not hold can be transformed into an
equivalent one for which the property holds, thus making the problem solvable in
polynomial time (see [19]).

In previous work [1], we introduced a further variant of SPP called BASP
(Bounded Acceleration SP) and proposed a solution algorithm. The interest for
BASP arises from an industrial application, namely the optimization of automated
guided vehicles (AGVs) motions in automated warehouses (see also the descrip-
tion in Sect. 2). Typically, AGVs follow pre-assigned routes associated to a graph,
in which nodes represent operating positions and arcs represent connecting paths.
AGVs motions must satisfy constraints on maximum speed, and tangential and
transversal accelerations. BASP consists in finding the path in Pod and the speed
profile that allows travelling in minimum-time. The speed profile must satisfy maxi-
mum speed, acceleration and deceleration constraints, associated to each arc. In [1],
we presented a solution algorithm (adaptive A ∗ ) for k-BASP, a subclass of BASP.
Roughly speaking, a BASP instance is a k-BASP, with k ∈ ℕ , if the maximum num-
ber of nodes of a path that can be traveled with a speed profile of maximum accel-
eration, followed by one of maximum deceleration, starting and ending with null
speed, without violating the maximum speed constraint, is smaller than k (see [1]
for details). In [1], we proved that k-BASP has polynomial time-complexity with
respect to the graph size. The algorithm introduced in [1] computes the optimal tra-
jectory between a pair of nodes and adaptively determines the value of k.

In some applications, AGVs can freely move within the facility, without having
to follow any predetermined circuit. In such cases, the motion planning problem is
usually addressed employing environmental representations such as cell decomposi-
tion methods. Among these, [5] presents an algorithm based on a modification of

	 S. Ardizzoni et al.

1 3

Dijkstra’s algorithm, in which arcs weights depend on previously visited edges. Note
that k-BASP in [1] has some similarities with the problem discussed in [5]. Indeed,
in both problems, the incremental for adding an edge to a path does not depend
on the complete path, but only on the k last visited nodes. However, the problem
addressed by Cowlagi and Tsiotras [5] is different from BASP. Indeed, the goal of
the problem in [5] is to obtain a feasible path taking into account the vehicle maxi-
mum curvature radius. On the other hand, in our work, we focus on selecting the
optimal path among a set of possible paths which are already known to be feasible,
while, at the same time, obtaining the optimal speed profile. Moreover, we do not
assume that the incremental cost depends only on the last k visited nodes, but pre-
sent conditions on problem data under which this property holds.

In this paper we discuss BASP in further detail, presenting two novel complexity
results. Namely, we show that BASP is NP-hard and that, under additional assump-
tions, BASP admits a pseudo-polynomial time algorithm. We also introduce an �
-approximation algorithm based on the discretization of the admissible speeds at the
nodes of the graph and show computational experiments comparing the �-approxi-
mation algorithm with the solution algorithm presented in [1].

The paper is structured as follows. In Sect. 2 we describe and motivate BASP. In
Sect. 3 we discuss how to compute optimal speed profiles along a single arc (with
given initial and final speeds), and along a fixed path belonging to Pod . In Sect. 4
we present the aforementioned complexity results. More precisely, in Sect. 4.1 we
prove that BASP is NP-hard, while in Sect. 4.2 we prove that, under the assumption
of integer data, BASP admits a pseudo-polynomial time algorithm. In Sect. 5 we
present the �-approximation algorithm. Finally, in Sect. 6 we present some computa-
tional experiments.

2 � Problem description and motivation

In this section, we describe a new variant of SPP. The following values are associ-
ated to each arc (i, j) ∈ A:

•	 the length �ij;
•	 the maximum speed vmax

ij
 which can be reached along the arc;

•	 the minimum acceleration (or maximum deceleration) amin
ij

< 0 and maximum
acceleration amax

ij
> 0 along the arc.

Moreover, a zero initial speed is assigned to node o and a zero final speed is assigned
to node d. We would like to select a path P ∈ Pod minimizing the time needed to run
along the path by fulfilling the maximum speed, the maximum and minimum accel-
eration constraints along the arcs, and the boundary zero conditions on o and d. Note
that SPP is a special case of this problem. Indeed, SPP turns out to be equivalent to
the case amax

ij
= +∞ and amin

ij
= −∞ for all arcs (i, j) ∈ A . In this case, the speed can

be changed instantaneously, so that the running time along an arc is minimized by
traversing it at the maximum allowed speed along the arc. Therefore, the minimum

1 3

Shortest path with acceleration constraints: complexity…

time to traverse arc (i, j) is cij =
�ij

vmax
ij

 and the problem becomes a standard SPP with

such costs cij associated to the arcs. Since SPP corresponds to the case of unbounded
acceleration limits, the proposed variant of SPP is also called Bounded Acceleration
SP (BASP in what follows). In the search for an optimal solution of BASP, we
should not only search for an optimal path in Pod , but we should also define the
speed profile along such path. As we will see later on in Sect. 3, the minimum-time
speed profile along an arc (i, j) is fully determined by the initial speed vi at node i
and by the final speed vj at node j. Thus, the speed vi at each node i traversed by a
path Pod is also part of the decision process. Such speeds must fulfill a continuity
constraint, that is, if arc (i, j) is followed by arc (j, k) along the path, the final speed
along arc (i, j) must be equal to the initial speed along arc (j, k). Note that the speeds
at the origin node o and at the destination node d are fixed in advance.

Before proceeding, we further motivate the interest for the BASP variant of SPP.
As previously mentioned, the interest comes from an industrial application. In auto-
mated warehouses, an AGV is required to pick some good up at some point of the
warehouse and deliver it at some other point. The AGV moves along predefined
paths and is allowed to choose among different routes at some exchange points.
Formally, the exchange points as well as the points where goods are picked up and
delivered represent the nodes of the graph, while the predefined routes correspond
to the arcs of the graph (see, for instance, Figs. 8, 13). Speed and acceleration limits
differ across the different routes. For instance, if a route is a straight line, its maxi-
mum speed is higher than the maximum speed allowed along a curved route. Moreo-
ver, different speed limits may also be imposed at different points of the warehouse.
For instance, if a route lies in a part of the warehouse where also human operators
are working, then, for safety reasons, a lower speed limit along this route is imposed
with respect to another route lying in a part of the warehouse where human opera-
tors are not allowed to work. Due to various reasons, also acceleration bounds may
differ from arc to arc. For instance, in the same warehouse, flooring materials can
vary from location to location. To avoid wheel slipping, we need to set maximum
acceleration bounds depending on the floor frictional force, that varies according
to the flooring material. Moreover, the presence of ramps along some arcs implies
different acceleration and deceleration bounds. Finally, to reduce lateral oscillations,
we should impose lower acceleration bounds along high-curvature connecting paths.

Remark 2.1  In the problem description we imposed a constant speed limit vmax
ij

 along
each arc (i, j). In a more realistic setting the speed limit should be a function of the
position along a given route:

For each s ∈ [0,�ij] , vmax
ij

(s) is the maximum allowed speed at position s along the
route represented by arc (i, j). In particular, along a curve the speed limit varies with
the curvature ray at each position along the curve. For ease of exposition, we only
discuss the case of a constant speed limit along an arc (although different from arc to
arc). However, at the cost of some additional technicalities, the following discussion

vmax
ij

∶ [0,�ij] → ℝ
+.

	 S. Ardizzoni et al.

1 3

can be extended also to the more realistic case of variable speed limits along each
arc.

Remark 2.2  In a real industrial scenario, the AGV may encounter moving obstacles,
such as human operators and/or other AGVs. For safety, an AGV typically halts or
slows down if it perceives the presence of a human operator. When the obstacle is
no longer sensed, the AGV can compute a new motion by solving a new instance of
BASP, starting from its current location.

The presence of various AGVs leads to a variant of the Multi-Agent Path Finding
(MAPF) problem (see, for instance, [22]), with speed and acceleration constraints.
Due to the simultaneous planning of multiple AGVs, this problem is quite different
from BASP (and in general much more complex), and is outside the scope of the
present work. However, note that some solution approaches for standard MAPF (that
does not consider velocity or acceleration bounds), such as conflict-based search,
make use of sub-procedures that involve the solution of a number of standard SPP
problems. Similarly, one could guess that BASP solutions could be used as basic
building block to solve MAPF with speed and acceleration bounds.

In order to better appreciate the difference between SPP and BASP
we can also consider the example illustrated in Fig. 1. While path
o → i1 → i2 → i3 → i4 → i5 → d is shorter than path o → j1 → j2 → d , the latter is
faster in view of the lower number of curves along the path.

Fig. 1   Two distinct paths from
node o to node d: the shorter
path is not the faster one

1 3

Shortest path with acceleration constraints: complexity…

3 � Minimum traveling time along arcs and paths

As previously pointed out, for a given arc (i, j), we are able to compute the maximum
speed at which we can traverse the arc and, consequently, the minimum time needed to
traverse it, as soon as we know the initial and final speeds vi and vj . Indeed, the maxi-
mum squared speed at each position s ∈ [0,�ij] along the arc is given by the following
piecewise-linear function:

where here and in what follows, w denotes the squared speed (so wi = v2
i
 , wj = v2

j
 ,

and so on). The result is illustrated in Fig. 2a. Starting at node i with squared speed
wi , the speed is increased with the maximum possible acceleration amax

ij
 , until the

maximum allowed squared speed wmax
ij

 along the arc is reached. Such maximum
speed is maintained as long as possible (null acceleration) and, finally, the speed is
decreased with the maximum deceleration amin

ij
 in order to reach squared speed wj at

node j. Note that it might be possible that the maximum speed along the arc is not
reachable. In such case, first the speed is increased with maximum acceleration amax

ij

and then decreased with maximum deceleration amin
ij

 to reach the final squared speed
wj (no constant speed portion is present in the maximum speed profile). Conse-
quently, the minimum time to traverse arc (i, j) is the following function of the two
(squared) speeds wi and wj

(1)wij(s;wi,wj) = min
{
wmax
ij

,wi + 2amax
ij

s,wj + 2amin
ij

(s − �ij)
}
,

(2)cij(wi,wj) = ∫
�ij

s=0

ds√
wij(s;wi,wj)

,

(a) (b)

Fig. 2   Squared speed profiles along an arc

	 S. Ardizzoni et al.

1 3

whose solution can be derived in closed form. It is worthwhile to remark that wi and
wj cannot be arbitrary values. Indeed, besides the obvious constraints wi,wj ≤ wmax

ij
 ,

it must also hold that

If, for instance, the first inequality is not fulfilled, then it is not possible to reach the
squared speed wj at node j by starting with squared speed wi at node i even by accel-
erating as much as possible (acceleration amax

ij
 ). This is illustrated in Fig. 2b. In this

case we set cij(wi,wj) = +∞.
While we reported above the formula for the minimum time needed to traverse an

arc (i, j), given the initial and final squared speeds wi and wj , we further point out that
a slightly more complicated formula can be derived to compute the minimum time to
traverse a full path in Pod . In particular, let i0 = o → i1 → … → ip−1 → ip = d be a
path of length p in Pod . Let s0 = 0 and sh =

∑h

r=1
�ir−1ir

 be the overall length of the first
h arcs of the path, h ∈ {1,… , p} . Next, let us define recursively a function F as follows

and a further function B as follows

Then, it can be proved (see, for instance, [4] for a proof under more general assump-
tions) that the optimal (squared) speed profile is

so that the minimum time to travel along the given path is

The result is illustrated in Fig. 3a–c. In Fig. 3a we notice that F0 (function F over the
interval [s0, s1] ) is obtained by starting at node o with zero speed and increasing the
speed with maximum acceleration amax

ij
 until the maximum squared speed wmax

ij
 is

reached, and then keeping this speed until the end of the arc (as it is the case in the
figure) or, alternatively, until the end of the arc is reached (in which case the maxi-
mum squared speed wmax

ij
 is not reached). Next, F1 (function F over the interval

[s1, s2] ) is obtained similarly but with initial speed F(s1) , while F2 (function F over
the interval [s2, s3] ) is constant and equal to the maximum squared speed wmax

kh
 since

F(s2) > wmax
kh

 . In Fig. 3b we notice that B3 (function B over the interval [s2, s3] ) is

(3)wi + 2amax
ij

�ij ≥ wj, wj − 2amin
ij

�ij ≥ wi.

(∀s ∈ [s0, s1]) F(s) = min
{
wmax
i0i1

, 2amax
i0i1

s
}
,

(∀h ∈ {1,… , p − 1}) (∀s ∈ [sh, sh+1]) F(s) = min
{
wmax
ihih+1

,F(sh) + 2amax
ihih+1

(s − sh)
}
,

(∀s ∈ [sp−1, sp]) B(s) = min
{
wmax
ip−1ip

, 2amin
ip−1ip

(s − sp)
}
,

(∀h ∈ {1,… , p − 1}) (∀s ∈ [sh−1, sh]) B(s) = min
{
wmax
ih−1ih

,B(sh) + 2amin
ih−1ih

(s − sh)
}
.

(∀s ∈ [s0, sp]) W(s) = min{F(s),B(s)},

∫
sp

s=0

ds√
W(s)

.

1 3

Shortest path with acceleration constraints: complexity…

(a)

(b)

(c)

Fig. 3   Construction of a maximum (squared) speed profile along a path

	 S. Ardizzoni et al.

1 3

obtained in a way completely similar to F0 . Moving backward, we start from the
final node d ≡ h with squared speed wh = 0 , and we increase the speed with the
maximum deceleration value amin

kh
 until either we reach the maximum allowed

squared speed wmax
kh

 along the arc, in which case we keep such speed until the begin-
ning of the arc at node k, or we reach the beginning of the arc without reaching the
maximum speed along the arc (in the figure we are in the first situation). Function B2
(function B over the interval [s1, s2] ) is obtained similarly but with initial speed at
node k equal to B(s2) . Finally, B1 (function B over the interval [s0, s1] ) is constant and
equal to the maximum squared speed wmax

ij
 since B(s1) > wmax

ij
 . The optimal

(squared) speed profile is illustrated in Fig. 3c and is obtained as the point-wise min-
imum of the functions F and B. While Figs. 2a, b and 3a, c give an intuitive illustra-
tion of the optimal speed profiles both for the case of a single arc (i, j) and for the
case of a full path from o to d, we point out that these results can be derived as spe-
cial cases of a more general result presented in [4] for problems with upper speed
limits depending on the position along the arcs, as discussed in Remark 2.1.

We also make the following remark which states two properties of the optimal
speed profile and will be useful later on.

Remark 3.1  Let W(s) be the optimal squared speed profile along a given path
i0 = o → i1 → … → ip−1 → ip = d in Pod , and let wih

 be the optimal squared speed
at some node ih of the path, ih ≠ o, d . Moreover, let

Then,

1.	 for each s ∈ [sh, sh+1] , W(s) ≥ min{wih
,wih+1

};
2.	 wih

≥ w̄ih
.

According to the previous discussion, the optimal speed profile along a path P
from o to d with |P| + 1 nodes (here and in what follows |P| denotes the length of
path P) is identified once the speeds at nodes of the path are known. Indeed, along
any edge (i, j) with given initial and final squared speeds wi and wj , the optimal
speed profile function is equal to (1) and the traveling time is equal to (2). Then, if
we denote by P(i) ∈ V the node at position i along P, the fastest time T(P) for tra-
versing P is the solution of the following problem:

(4)w̄ih
= min

{
min
(ih,j)∈A

{wmax
ihj

,−amin
ihj

�ihj
}, min

(k,ih)∈A
{wmax

kih
, amax

kih
�kih

}

}
.

(5)

T(P) = min
�∈ℝ|P|+1

|P|∑
i=1

cP(i)P(i+1)(wi,wi+1)

0 ≤ wi ≤ min{wmax
P(i−1),P(i)

,wmax
P(i),P(i+1)

}, i ∈ {2,… , |P|},
w1 = 0, w|P|+1 = 0.

1 3

Shortest path with acceleration constraints: complexity…

We denote by �∗(P) the optimal solution of this problem and in Appendix B we will
describe a recursive procedure to find it, similar to the one employed to define the
optimal speed profile function W. According to the discussion above, the problem
of finding the speed law which guarantees to traverse a fixed path from o to d at a
minimum time, under speed and acceleration constraints, is easily solvable even in
closed form. But our aim is to compute the minimum time to move from o to d by
searching within all paths in Pod . This is the BASP problem:

As we will see in Section 4, this problem turns out to be NP-hard.

4 � Complexity results

In this section we provide two complexity results for BASP. The first result proves
NP-hardness of BASP, while the second proves that BASP admits a pseudo-polyno-
mial time algorithm.

4.1 � NP‑hardness

In this section we prove that, differently from SPP, the BASP variant is NP-hard.
We show this by a polynomial reduction of the NP-complete Partition problem to
BASP. In the Partition problem, given a set N = {1,… , n} of positive integer values
�1,… , �n , we would like to establish whether N can be partitioned into two sub-
sets N1 and N2 such that

∑
i∈N1

�i =
∑

i∈N2
�i =

W

2
 . Given an instance of the Parti-

tion problem, we polynomially reduce it to an instance of BASP as follows. Let
G = (V ,A) be such that:

We set the following lengths for the arcs:

while �n+1,n+2 = W2 . For what concerns the maximum speed values, we set
(∀(i, j) ∈ A) vmax

ij
=
√
W , while we set the maximum acceleration amax

ij
= 1 and the

minimum acceleration amin
ij

= −1 for all arcs except (n + 1, n + 2) , while we set
amax
n+1,n+2

= 0 and amin
n+1,n+2

= −
1

2W
 . Note that, according to the imposed restrictions,

amax
n+1,n+2

 should be strictly larger than 0. However, the result proved with null maxi-
mum acceleration can be extended, by continuity, to any sufficiently small and posi-
tive maximum acceleration. The origin node o is node 0, with zero speed, while the

(6)P∗ = arg min
P∈Pod

T(P).

V = N ∪ {0, n + 1, n + 2}, A = {(i, j) ∣ i, j ∈ V ⧵ {n + 2} ∧ i < j} ∪ {(n + 1, n + 2)}.

�ij =

{
0 i = 0

�i i ∈ {1,… , n},

	 S. Ardizzoni et al.

1 3

destination node d is n + 2 , with zero speed. An example of BASP instance derived
from the Partition problem with n = 3 is illustrated in Fig. 4.

We prove the following.

Proposition 4.1  The optimal value of the BASP instance introduced above is equal
to
√
W + 2W

3

2 if and only if the partition problem admits a solution and is otherwise
larger than such value.

The proof of Proposition 4.1 is presented in Appendix A.

Remark 4.1  The complexity result given above shows that BASP is NP-hard even
in case all arcs except one share the same acceleration and deceleration bounds. It
is still an open question whether NP-hardness still holds if all arcs have the same
bound. However, in Sect. 5.1 we will show that optimal solutions for this case are
elementary paths (paths with no node repetition). This allows to derive sharper
approximation results.

4.2 � Pseudo‑polynomial algorithm

Although BASP is NP-complete, the following proposition shows it admits a
pseudo-polynomial algorithm under the assumption of integer data.

Proposition 4.2  Let us assume that all problem data, �ij , vmax
ij

 , amax
ij

 , and amin
ij

 for all
(i, j) ∈ A are integer values. Then, BASP admits a pseudo-polynomial algorithm.

Fig. 4   An instance of BASP derived from the Partition problem for n = 3 . Along each arc the maximum
allowed speed is

√
W ( W = �1 + �2 + �3 ), amax is equal to 1 and amin is equal to -1 along all arcs except

(4, 5) where amax

45
= 0 and amin

45
= −

1

2W
 . Finally, v0 = v5 = 0

1 3

Shortest path with acceleration constraints: complexity…

Proof  First, we observe that at optimal solutions there is a finite number of speeds
which can be reached at each node and the squares of such speeds are integer values.
Indeed, the squared speed at some node i is:

•	 either equal to wmax
ij

 , for some j such that (i, j) ∈ A , which is an integer value by
assumption;

•	 or equal to wmax
ki

 , for some k such that (k, i) ∈ A , which is again an integer value
by assumption;

•	 or i is the end point of a sub-path j0 → j1 → ⋯ jk−1 → jk = i , with squared speed
at node j1 equal to wmax

j0,j1
 and squared speed at node i

 which is an integer value due to integrality of all the data (see Fig. 5). Note that
j1 may be the starting node o, in which case wj1

= 0 ( j0 is not included in this
case);

•	 or i is the starting point of a path j0 = i → j1 → ⋯ jk−1 → jk , with squared speed
at node jk−1 equal to wmax

jk−1,jk
 and squared speed at node i

 which is, again, an integer value due to integrality of all the data (see Fig. 6).
Note that node jk−1 may be the destination node d, in which case wjk−1

= 0 ( jk is
not included in this case).

wi = wmax
j0,j1

+ 2

k−1∑
h=1

amax
jh,jh+1

�jh,jh+1
,

wi = wmax
jk−1,jk

− 2

k−2∑
h=0

amin
jh,jh+1

�jh,jh+1
,

Fig. 5   Optimal (squared) speed profile from node j0 up to node i (continuous line) when node i is
reached by accelerating as much as possible along all arcs between j1 and i. The dashed lines represent
the maximum squared speeds along the arcs

	 S. Ardizzoni et al.

1 3

Thus, the set W of different possible squared speeds can be taken equal to the set
of all integers between 0 and W̄ = max(i,j)∈A w

max
ij

 . Now we create a new graph with
node set V ×W , that is, each node is a pair made up by a node in V and one of the
possible squared speeds in W . Thus, the number of nodes is W̄|V| . For what con-
cerns the arc set, in this graph an arc between node (i,wi) and node (j,wj) exists if
there exists an arc (i, j) ∈ A and, moreover, cij(wi,wj) < +∞ , that is, there exists a
feasible speed profile along arc (i, j) with initial squared speed wi and final squared
speed wj . Then, the number of arcs is limited from above by W̄2|A| . The distance
associated to this arc is the minimum time for a path from i to j with the boundary
conditions wi and wj , which can be easily computed through (2), as discussed in
Sect. 3 (recall that, in case wi and wj are not feasible, as illustrated in Fig. 2b, then
the arc is removed). Then, we can solve our problem by applying, for instance, Dijk-
stra algorithm to this graph. Dijkstra’s complexity is O(m + n log(n)) and is, thus,
polynomial with respect to the size and the data of the original problem, which
proves pseudo-polynomiality. 	� ◻

Remark 4.2  While Proposition 4.2 has been proved under the assumption of inte-
ger data, it can also be extended to rational data. In such case the squared speeds
which can be reached by optimal solutions are not integer values but are multiple of
a rational number 1

t
 , where t depends on the problem data. Of course, the size of the

extended graph increases with t. The approximation algorithm discussed in the fol-
lowing Sect. 5 is motivated by the need to consider a discretization step larger than 1

t

in order to have a graph of manageable size.

Fig. 6   Optimal (squared) speed profile from node i up to node j4 (continuous line) when node j4 is
reached by decelerating as much as possible along all arcs between i and j4 . The dashed lines represent
the maximum squared speeds along the arcs

1 3

Shortest path with acceleration constraints: complexity…

5 � Approximation algorithm

In this section we present an approximation algorithm for BASP with a complex-
ity that is polynomial with respect to the size and the data of the original problem
and the inverse of the approximation factor. The idea is to discretize the squared
speeds in order to obtain a finite set of possible squared speeds at each node of
the graph. In this way, imposing that the initial and final squared speeds along
each arc belong to the discretized set of squared speeds, the set of possible speed
profiles over each arc becomes finite. Hence, we can define an extended graph
that enables us to solve this discretized version of the problem by means of Dijk-
stra’s algorithm. Differently from Proposition 4.2, here arc lengths, accelerations
and speed bounds need not be integer values (actually, the approach could also
be extended to the case of non-constant speed bounds along arcs as discussed in
Remark 2.1). In this case, we just discretize the squared speeds and impose the
additional constraint that the squared speeds at the beginning and at the end of
each arc belong to the set of discretized squared speeds. Let

with W̄ = max(i,j)∈A w
max
ij

 , be the set of discretized squared speeds with discretization

step h. Then, |Ωh| =
⌈
W̄∕h

⌉
 . The discretized problem is defined over a graph that

extends graph G of the original problem. Namely, the extended graph G� = (V �,A�)
is defined as follows:

where we notice that we bound from above the possible squared speeds at node i by
the maximum squared speeds along the incoming and outgoing arcs of node i, while

where we recall that cij(�i,�j) = +∞ means that no feasible profile is able to travel
from i to j with initial and final squared speeds equal to �i and �j , respectively, while
cij(𝜔i,𝜔j) < +∞ , as defined in (2), is the optimal travel time along arc (i, j) with the
given initial and final squared speeds.

Remark 5.1  The cost for constructing the extended graph G′ is O(|A| ⋅ |Ωh|2) . Indeed,
the number of arcs of the extended graph |A′| is bounded from above by |A| ⋅ |Ωh|2
and the cost for checking whether an arc exists or not in the extended graph, that is
the cost for checking conditions (3), is constant.

Once the extended graph has been defined, the proposed approximation algo-
rithm is nothing but the application of Dijkstra’s algorithm to solve the discre-
tized problem. More precisely, we search for the shortest path connecting nodes
(o, 0), (d, 0) ∈ V � over graph G′ , where the cost of arc ((i,�i), (j,�j)) ∈ A� is equal

Ωh = {𝜔 ∈ [0, W̄] ∣ (∃k ∈ ℕ) 𝜔 = kh},

V � =

{
(i,�) ∣ i ∈ V ∧ � ∈ Ωh ∧ � ≤ max

{
max

j ∣ (i,j)∈A
wmax
ij

, max
k ∣ (k,i)∈A

wmax
ki

}}
,

A� = {((i,𝜔i), (j,𝜔j)) ∈ V � × V � ∣ (i, j) ∈ A ∧ 𝜔i,𝜔j ≤ wmax
ij

∧ cij(𝜔i,𝜔j) < +∞},

	 S. Ardizzoni et al.

1 3

to the value cij(𝜔i,𝜔j) < +∞ defined in (2). Then, we have the following complex-
ity result for the approximation algorithm.

Proposition 5.1  The complexity of the approximation algorithm is

Proof  The approximation algorithm is Dijkstra’s algorithm applied on the
extended graph G′ , so that its complexity is O(|A�| + |V �| log |V �|) . Then, the
result immediately follows by observing that |V �| ≤ |V||Ωh| = n

⌈
W̄∕h

⌉
 and

|A�| ≤ |A||Ωh|2 ≤ m
(⌈
W̄∕h

⌉)2 . 	� ◻

As a next step, we want to obtain an estimate of the absolute error in terms of
travel time of the discretized solution returned by the approximation algorithm with
respect to the continuous solution of the original BASP problem. To this end, let us
consider the optimal path P∗ ∈ Pod

of the original BASP problem, with the corresponding squared speeds at each node
{wo = 0,wi1

,wi2
,… ,wd = 0} . Our aim is to build a feasible solution of the discre-

tized problem traversing the same arcs as path P∗ and whose speed profile is not
above the optimal speed profile of the original BASP problem but is as close as
possible to it. Building such solution requires some care. It is tempting to proceed as
follows: for each node i in the optimal path P∗ , with squared speed wi in the optimal
speed profile of BASP, replace wi with

that is, with the largest discretized speed bounding from below wi . Unfortunately,
this does not work. Indeed, let us consider some arc (i, j) ∈ P∗ with the related opti-
mal squared speeds wi and wj , and let �i and �j be chosen as in (7). Unfortunately, in
the extended graph, arc ((i,�i), (j,�j)) may not exist, since a situation like the one
displayed in Fig. 2b may occur. Formally, according to (3), it may happen that either
𝜔i + 2amax

ij
�ij < 𝜔j or 𝜔j − 2amin

ij
�ij < 𝜔i . Therefore, we need to proceed differently

to build a solution of the discretized problem starting from the optimal solution of
BASP. For x, h ∈ ℝ , h > 0 , we denote by ⟨x⟩ = max{i ∈ ℤ ∣ ih ≤ x} the maximum
multiple of h lower than or equal to x. First, we reformulate the discretized problem
as follows. Let P be an assigned path from o to d. The minimum time Th(P) to trav-
erse P in the discretized problem is:

O

(
m

(
W̄

h

)2

+
nW̄

h
log

(
nW̄

h

))
.

o → i1 → i2 → ⋯ → d,

(7)�i = max{kh ∣ kh ≤ wi, k ∈ ℕ},

1 3

Shortest path with acceleration constraints: complexity…

Problem (8) is obtained by adding to Problem (5) the last constraint, imposing that
the coordinates of � have to be multiples of h. We call �h(P) ∈ ℝ

|P|+1 a vector that
corresponds to the solution of (8). Note that Problem (8) always admits at least one
feasible solution with finite objective function value, for instance the solution wi = 0
for all i ∈ {1,… , |P| + 1} . The solution of discretized BASP corresponds to path

Recall that this problem can be solved by the application of Dijkstra’s algorithm to
the extended graph described above. The following lemma compares the optimal
values and solutions of Problems (5) and (8).

Lemma 5.1  For any path P and any h > 0 ,

	 (i)	 Th(P) ≥ T(P),
	 (ii)	 �

h(P) ≤ �
∗(P) (vector inequalities are intended component-wise).

Proof  Statement (i) is a consequence of the fact that Problem (8) is obtained by add-
ing a constraint to Problem (5). For Statement (ii), first note that, if �1,�2 ∈ ℝ

|P|+1
are feasible values for � in Problem (5), then also their component-wise maxi-
mum � = max{�1,�2} is feasible (see, for instance, [4]). By contradiction, if
�

h(P) ≰ �
∗(P) then � = max{�h(P),�∗(P)} is feasible for Problem (5). Note that

the objective function f (�) =
∑�P�

i=1
cP(i)P(i+1)(wi,wi+1) of Problem (5) is strictly

decreasing, that is, if �1 ≥ �2 and �1 ≠ �2 , then f (�1) < f (�2) . Since � ≥ �
∗(P)

and � ≠ �
∗(P) , it follows that f (�) < f (�∗(P)) , contradicting the optimality of

�
∗(P) . 	� ◻

Next, the following lemma, whose proof is given in Appendix B, gives an upper
bound on the components of the difference vector �∗(P) − �

h(P) . Note that such
components are nonnegative in view of part ii) of Lemma 5.1.

Lemma 5.2  The following holds for all i ∈ {1,… , |P| + 1}:

In order to use Lemma 5.2, we need to find an upper bound on |P∗| , the number of
arcs of the optimal path. This can be done as follows.

(8)

Th(P) = min
�∈ℝ�P�+1

�P��
i=1

cP(i)P(i+1)(wi,wi+1)

0 ≤ wi ≤ min{wmax
P(i−1),P(i)

,wmax
P(i),P(i+1)

}, i ∈ {2,… , �P�},
w1 = 0, w�P�+1 = 0 ,

⟨wi⟩ = wi , i ∈ {1,… , �P� + 1}.

(9)Ph = arg min
P∈Pod

Th(P).

w∗(P)i − wh(P)i ≤ h|P|.

	 S. Ardizzoni et al.

1 3

Lemma 5.3  An upper bound for the number of arcs |P∗| of the optimal path P∗ is
given by

where

•	 PSPP is the shortest path connecting o to d over the original graph, when the cost
of each arc (i, j) ∈ A is equal to �ij;

•	 amin = min(i,j)∈A min{amax
ij

,−amin
ij

} > 0;
•	 w̄ = mini∈V⧵{o,d} w̄i , where w̄i > 0 is defined in (4);
•	 W̄ = max(i,j)∈A w

max
ij

;
•	 �min = min(i,j)∈A �ij.

Proof  A feasible solution for BASP is obtained by the arcs of path PSPP , along
which, starting from null speed at node o, we first accelerate with acceleration amin
until we reach speed w̄ , then we keep the speed constant and, finally, we decelerate
with deceleration amin until we reach the final null speed at node d. The time tSPP to
travel along path PSPP with the given speed profile, is an upper bound for the travel
time of the optimal path P∗ . We have that

Next we need a lower bound for the time needed to travel along any arc (i, j) ∈ A . We
denote this time with tmin and a lower bound for it is �min∕

√
W̄ . Then, the ratio of tSPP

to tmin is an upper bound for the number of arcs |P∗| in the optimal path, that is,

	� ◻

In the following, we estimate the difference Th(Ph) − T(P∗) ≥ 0 between
the optimal values of the discretized BASP (9) and BASP (6) (nonnegativ-
ity follows form part i) of Lemma 5.1). Path Ph , corresponding to the solution
of the discretized BASP, can be different from P∗ and Th(Ph) ≤ Th(P∗) . Hence,
Th(Ph) − T(P∗) ≤ Th(P∗) − T(P∗) . Quantities T(P∗) and Th(P∗) correspond to the
optimal values of Problems (5) and (8) on the same path P∗ . In order to bound the
difference Th(P∗) − T(P∗) , we need a further lemma, giving, for some arc (i, j),
an upper bound for the difference cij(w, z) − cij(ŵ, ẑ) (that is, the time difference

(10)�P∗� ≤
�
�(PSPP)√

w̄
+ 2

√
w̄

amin

�√
W̄

�min

,

tSPP ≤
√
w̄

amin

+
�(PSPP)√

w̄
+

√
w̄

amin

.

�P∗� ≤ tSPP

tmin

≤
�
�(PSPP)√

w̄
+ 2

√
w̄

amin

�√
W̄

�min

.

1 3

Shortest path with acceleration constraints: complexity…

between the times needed to travel arc (i, j) with boundary speeds w, z and ŵ, ẑ ,
respectively, with w ≤ ŵ and z ≤ ẑ ). The lemma will be proved in Appendix C.

Lemma 5.4  For any arc (i, j) and any w, z, ŵ, ẑ ∈ ℝ , with 0 ≤ w, z, ŵ, ẑ ≤ wmax
ij

 ,
w ≤ ŵ , z ≤ ẑ , and cij(w, z), cij(ŵ, ẑ) < +∞ , the following bound holds:

where amin and w̄ are defined in the statement of Lemma 5.3.

Then, we can provide an estimate on Th(P∗) − T(P∗) (which also bounds
Th(Ph) − T(P∗) ) by summing up the contributions of all arcs of P∗.

Proposition 5.2  The following bound holds:

where PSPP is the shortest path connecting node o to node d.

Proof  First observe that, for any arc e = (P∗(i),P∗(i + 1)) , it holds that

as a consequence of Lemma 5.4 (first inequality) and of Lemma 5.2 (second ine-
quality). Then, it follows that

where the first inequality derives from (11), whilst the second one follows from
Lemma 5.3. 	� ◻

We can also provide an estimate of the relative error.

Proposition 5.3  Given � ∈ (0, 1) , the relative error of the approximated problem
with h = C� , where C is a constant that depends on the problem data, is 1 + � , that
is, T

h(Ph)

T(P∗)
≤ 1 + �.

���cij(w, z) − cij(ŵ, ẑ)
��� ≤

4max{�w − ŵ�, �z − ẑ�}
amin

√
w̄

,

Th(Ph) − T(P∗) ≤
�
�(PSPP)√

w̄
+ 2

√
w̄

amin

�2

4W̄

�
2
min

amin

√
w̄
h,

(11)

���ce(w
h
i
(P∗),wh

i+1
(P∗)) − ce(w

∗
i
(P∗),w∗

i+1
(P∗))

���
≤ 4max{�wh

i
(P∗) − w∗

i
(P∗)�, �wh

i+1
(P∗) − w∗

i+1
(P∗)�}

amin

√
w̄

≤ 4�P∗�h
amin

√
w̄
,

Th(Ph) − T∗(P∗) ≤Th(P∗) − T∗(P∗) ≤
�P∗��
k=1

4�P∗�h
amin

√
w̄

=
4�P∗�2h
amin

√
w̄

≤
�
�(PSPP)√

w̄
+ 2

√
w̄

amin

�2

4W̄

�
2

min
amin

√
w̄
h,

	 S. Ardizzoni et al.

1 3

Proof  Let tmin be the travel time of the arc of shortest length �min assuming that the
squared speed along it is constantly equal to W̄ (this is a lower bound for the travel
time along any arc). Then, by Proposition 5.2, we have the following estimate over
the relative error:

with

	� ◻

The following theorem states a time-complexity and an error estimate result
for the approximated problem.

Theorem 5.1  Given � ∈ (0, 1) , let h = C� with C defined as in (12). Then,
Th(Ph)

T(P∗)
≤ 1 + � , that is the solution returned by the approximation algorithm has rela-

tive error at most � , and the approximation algorithm has time-complexity

Proof  The thesis directly follows from Propositions 5.1 and 5.3. 	� ◻

5.1 � The case of uniform acceleration bounds

As previously mentioned in Remark 4.1, it is still unclear whether the case where
all arcs share the same acceleration and deceleration bounds, denoted with amax

Th(Ph)

T(P∗)
≤ 1 +

T(P∗) − Th(Ph)

T(P∗)
≤ 1 +

T(P∗) − Th(Ph)

tmin

= 1 + (T(P∗) − Th(Ph))

√
W̄

�min

≤ 1 +

�
�(PSPP)√

w̄
+ 2

√
w̄

amin

�2

3W̄
3

2

�
3
min

amin

√
w̄
h = 1 + 𝜖,

(12)h = C𝜖, C =

⎡⎢⎢⎣

�
�(PSPP)√

w̄
+ 2

√
w̄

amin

�2

3W̄
3

2

�
3
min

amin

√
w̄

⎤⎥⎥⎦

−1

.

O

((
W̄

C𝜖

)2

m +
W̄n

C𝜖
log

(
W̄n

C𝜖

))
.

Fig. 7   Two distinct paths from node o to node d: � and �� = C ∪ �

1 3

Shortest path with acceleration constraints: complexity…

and amin , respectively, is NP-hard or not. However, we can prove the following
result.

Proposition 5.4  If

that is, all arcs have the same acceleration and deceleration bounds, then the opti-
mal solution of BASP is an elementary path (a path that does not contain loops).

Proof  Let us consider two distinct paths � and �′ from node o to node d such that �
is elementary and 𝜋 ⊂ 𝜋

′ . Since �′ contains the entire path � , it must contain a cycle
C, as shown in Fig. 7.

We will show that the time needed to traverse � is lower than the time needed
to traverse �′ , so that we can restrict the attention to elementary paths. Let j be the
first node of cycle C in �′ as indicated in Fig. 7. Let vj be the initial speed at node
j along path � . Along cycle C we can speed up. If, after traveling cycle C, the new
speed at node j is vC > vj , then there is a time gain t̃ in traveling the final sub-path
j → d , since the new initial speed at j is higher. However, there is also a loss of time
t̄ to travel along cycle C, We prove that the latter is always greater than the former.
Indeed, a lower bound t̄min for the time needed to travel along cycle C is obtained by
assuming that the maximum acceleration amax can be kept along the cycle without
hitting maximum speed bounds:

Now, let � be the length of the sub-path j → d . An upper bound Δtmax on the time
difference between the time to travel along the sub-path j → d with starting speed vj
and the time to travel along the same sub-path with starting speed vC is obtained by
assuming that we can keep the maximum acceleration along the sub-path:

It follows that

which holds true in view of vC > vj.
The same reasoning applies to maximum deceleration amin . Indeed, suppose that

along path � the agent has to decelerate before j to reach the speed vj . In this case,
along cycle C we could speed down, allowing to maintain a higher speed along the
sub-path o → j . However, it is possible to prove that the lost time t̄ to travel along
cycle C is always larger than the time gain t̃ in traveling the initial sub-path o → j
with a higher final speed, and so � is faster than �′ in any case. 	� ◻

(∀(i, j) ∈ A) amax
ij

= amax ∧ amin
ij

= amin,

t̄min =
vC − vj

amax
.

Δtmax =

√
v2
j
+ �amax − vj

amax
−

√
v2
C
+ �amax − vC

amax
.

t̄min > Δtmax ⟺

√
v2
C
+ �amax

>

√
v2
j
+ �amax,

	 S. Ardizzoni et al.

1 3

This result is important because it allows us to state that in this sub-case the upper
bound for the number of arcs of the optimal path P∗ depends only on the number of
nodes n. In particular

Therefore, we can use this bound rather than the one derived in Lemma 5.3 in all
subsequent results. So, for instance, the upper bound in Proposition 5.2 can be set
equal to 4n2h

amin

√
w̄
.

6 � Computational experiments

In this section we test the approximation algorithm introduced in Sect. 5. We con-
sider two real-life industrial scenarios of warehouses. The problem data have been
provided by packaging company Ocme S.r.l., based in Parma, Italy. The simulations
have been performed on a 2.7 GHz Intel Core i5 dual-core with 8GB of RAM. The
acceleration and deceleration bounds on both scenarios are given by �+ = 0.28 m
s −2 and �− = −0.18 m s −2 , for arcs with mean curvature smaller than or equal to
0.25. Whilst on arcs whose mean curvature is larger than this value, the bounds are
given by �+ = 0.14 m s −2 and �− = −0.09 m s −2 . The first scenario is modeled as a
graph G = (V ,A) with 368 nodes and 679 edges and is depicted in Fig. 8.

The speed bounds on both scenarios are constant for each arc but vary from arc to
arc, according to the associated paths curvatures. For the first scenario they take val-
ues in interval [0.136, 1.7] m s −1 , whilst the arc-lengths take values between 0.628
and 10.87 m and have an average value of 2.863 m.

|P∗| ≤ n − 1.

Fig. 8   First real-life industrial scenario

1 3

Shortest path with acceleration constraints: complexity…

In what follows, we compare the approximation algorithm of Sect. 5 with the
adaptive A ∗ algorithm for k-BASP presented in [1]. Note that the adaptive algorithm
solves a k-BASP instance in polynomial time complexity with respect to the number
of edges and vertices of the associated graph, but its complexity is exponential with
respect to k. In the following, the adaptive A ∗ algorithm for k-BASP is initialized
with k = 3 . Again, we refer the reader to Ardizzoni et al. [1] for a more in depth
discussion.

Given the graphs associated to the considered automated warehouses, we gener-
ated the extended graphs associated to them for different values of the discretiza-
tion step h of the squared speeds. For the first scenario, step h takes values in a
set H of thirty logarithmically spaced values between 0.005 and 0.5 m 2 s −2 , hence,
we considered thirty different sets of discretized squared speeds Ωh and extended
graphs G�

h
= (V �

h
,A�

h
) . We generated 1000 random pairs of source-target nodes

{(si, ti)}i∈{1,…,1000} in V × V  . Then, for each of the previous pairs of source-target
nodes, we considered the corresponding pair (sh

i
, th
i
) = ((si, 0), (ti, 0)) ∈ V �

h
× V �

h
 on

extended graph G′
h
 and ran Dijkstra’s algorithm on G′

h
 in order to obtain a trajectory

starting at node si with null speed and ending at node ti with null speed, for h ∈ H .
Figure 9 shows the box-and-whisker plot of the computational times of Dijkstra’s
algorithm for different values of the discretization step h for solving the 1000 ran-
domly generated instances and compares them with those of the adaptive A ∗ algo-
rithm for k-BASP on the same set of instances.

Note that, as the discretization step h increases, the number of discretized squared
speeds decreases, hence, the number of nodes and edges in graph G′

h
 decreases as

well, making Dijkstra’s algorithm explore a smaller graph and run faster. Also,
observe that, for values of h greater than 0.015159 m 2 s −2 , the mean computational
times of Dijkstra’s algorithm on extended graphs G′

h
 (represented by a green line with

circles) are better than that of the adaptive A ∗ algorithm for k-BASP (represented by

Fig. 9   Approximation algorithm computational times for different values of h on the first scenario

Fig. 10   Approximation algorithm relative error for different values of h on the first scenario

	 S. Ardizzoni et al.

1 3

a dashed line). On the other hand, as the discretization step h increases, so does the
relative error on the travel time, which, for values of h ≥ 0.19283 m 2 s −2 , is larger
than 10−1 . Figure 10 represents the box-and-whisker plot of the relative error. Note
that we set a tolerance on the relative error of the trajectories obtained with the
approximation algorithm, relative errors smaller than 10−4 are not considered. This
roughly corresponds to an absolute error of the order of 10−2 s.

A good compromise for this scenario could be h = 0.063448 m 2 s −2 which is
associated to a mean computational time that is 5.76 times faster than that of the
adaptive A ∗ algorithm for k-BASP, while at the same time maintaining a mean rela-
tive error of the order of 2 ⋅ 10−2 . We could also exploit the approximation algorithm
just for obtaining a path and then compute the optimal speed profile along such a
path by the procedure described in Sect. 3. In this way we could employ a bigger
discretization step h for achieving small computational times while maintaining high
precision. The speed planning algorithm described in Sect. 3 has linear-time compu-
tational complexity with respect to the number of nodes of the path. Figure 11 shows
the box-and-whisker plot of the computational times of the approximation algo-
rithm, as in Fig. 9, summed with those of the speed planning algorithm applied on
the obtained paths for the 1000 randomly generated instances on the first scenario.

Figure 12 shows the box-and-whisker plot of the relative error on the travel time
of the trajectories obtained coupling the approximation algorithm of Sect. 5 with the
speed planning one. Again, we set a tolerance on relative errors of 10−4 . In this case
the mean relative errors are on average two orders of magnitude smaller than those
presented in Fig. 10 and the percentage of solutions with a relative error smaller
than 10−4 ranges from 93.1% with h = 0.5 m 2 s −2 to 100% for h = 0.005 m 2 s −2.

Fig. 11   Approximation algorithm and speed planning algorithm computational times for different values
of h on the first scenario

Fig. 12   Approximation algorithm and speed planning algorithm relative error for different values of h on
the first scenario

1 3

Shortest path with acceleration constraints: complexity…

For this scenario, if we fix h = 0.5 m 2 s −2 , we get a mean computational time that
is 46.35 times faster than that of the adaptive A ∗ algorithm for k-BASP, while obtain-
ing a solution with a mean relative error of 4 × 10−3 , which is one order of magni-
tude smaller than that of the approximation algorithm alone with h = 0.063448 m 2
s −2.

It is worthwhile to remark that there always exists a sufficiently small value h
such that the optimal path of the discretized problem coincides with the optimal path
of the continuous problem. Indeed, if h is chosen in such a way that the absolute
error of the approximation algorithm, bounded from above as discussed in Propo-
sition 5.2, is lower than the difference between the traveling times of the best and
second-best path, then the approximation algorithm returns the best path (that is,
according to the notation introduced in Sect. 5, Ph is equal to P∗ ). However, the dif-
ference is not known in advance and even in case it were known, the choice of h
based on the upper bound stated in Proposition 5.2 may lead to an excessively small
value.

The second scenario is modeled as a graph with 2419 nodes and 4255 edges and
is depicted in Fig. 13.

For this scenario the speed bounds take values in interval [0.1, 1.7] m s −1 ,
whilst the arc-lengths take values between 0.2 and 18.15 m and have an aver-
age value of 4.24 m. For the first scenario, step h takes values in a set H of ten

Fig. 13   Second real-life industrial scenario

	 S. Ardizzoni et al.

1 3

logarithmically spaced values between 0.03 and 1 m 2 s −2 , hence, we considered ten
different sets of discretized squared speeds Ωh and extended graphs G�

h
= (V �

h
,A�

h
) .

As for the previous scenario, we generated 1000 random pairs of source-target nodes
{(si, ti)}i∈{1,…,1000} in V × V and tested the approximation algorithm on such pairs.
Figure 14 shows the box-and-whisker plot of the computational times of Dijkstra’s
algorithm for different values of the discretization step h for solving the 1000 ran-
domly generated instances and compares them with those of the adaptive A ∗ algo-
rithm for k-BASP on the same set of instances.

Observe that, for all values of h, the mean computational times of Dijkstra’s algo-
rithm on extended graphs G′

h
 (represented by a green line with circles) are better than

that of the adaptive A ∗ algorithm for k-BASP (represented by a dashed line). However,
note that the median computational time of the latter is almost the same as that of the
approximation algorithm with h = 0.03 m 2 s−2 (both represented as horizontal red lines
within their corresponding blue boxes). This is due to the fact that the adaptive A ∗ algo-
rithm for k-BASP presents a small group of outliers with very high computational times
compared to its median. On the other hand, as the discretization step h increases, so
does the relative error on the travel time, which, for values of h ≥ 0.45876 m 2 s −2 , is
larger than 10−1 . Figure 15 represents the box-and-whisker plot of the relative error for
which we set a tolerance of 10−4.

A good compromise for this scenario could be h = 0.21046 m 2 s −2 which is associ-
ated to a mean computational time that is 107.3 times faster than that of the adaptive A ∗
algorithm for k-BASP, while at the same time maintaining a mean relative error of the
order of 3 ⋅ 10−2 . Figure 16 shows the box-and-whisker plot of the computational times
of the approximation algorithm, as in Fig. 14, summed with those of the speed planning
algorithm described in Sect. 3 applied on the obtained paths for the 1000 randomly
generated instances on the first scenario.

Fig. 14   Approximation algorithm computational times for different values of h on the second scenario

Fig. 15   Approximation algorithm relative error for different values of h on the second scenario

1 3

Shortest path with acceleration constraints: complexity…

Figure 17 shows the box-and-whisker plot of the relative error on the travel time
of the trajectories obtained coupling the approximation algorithm of Sect. 5 with the
speed planning one. Again, we set a tolerance on relative errors of 10−4 . In this case
the mean relative errors are on average two orders of magnitude smaller than those pre-
sented in Fig. 15.

For this scenario, if we fix h = 0.21046 m 2 s −2 , we get a mean computational time that
is 99.24 times faster than that of the adaptive A ∗ algorithm for k-BASP, while obtaining
the exact solution up to a tolerance of 10−4 on the relative error in 97.6% of the cases.

Observe that the construction of the extended graphs can be a time-consuming opera-
tion. One could alternatively run a dynamic programming approach by generating arcs
only when (and if) needed. However, the construction has to be performed only once
and the extended graphs can be stored for future use. The memory occupancy of the
extended graphs of the scenarios we considered varies from 36 KB for G′

h
 with h = 0.5

m 2 s −2 to 258 MB for G′
h
 with h = 0.005 m 2 s −2 for the first scenario, and from 78 KB

for G′
h
 with h = 1 m 2 s −2 to 56.1 MB for G′

h
 with h = 0.03 m 2 s −2 for the second scenario.

7 � Conclusions

Motivated by an industrial application, in this paper we addressed a variant of the
Shortest Path Problem (SPP). The variant is called BASP (Bounded Acceleration SP)
since speed and acceleration constraints are imposed over the arcs. Differently from
SPP, where the traveling time of an arc is constant, in BASP the traveling time depends
on the initial and final speed along the arc and, thus, due to the speed and acceleration
constraints, it also depends on the arcs preceding and following it along a path. We

Fig. 16   Approximation algorithm and speed planning algorithm computational times for different values
of h on the second scenario

Fig. 17   Approximation algorithm and speed planning algorithm absolute error for different values of h
on the second scenario

	 S. Ardizzoni et al.

1 3

proved that BASP is NP-hard but also that, under the assumption of integer data, it
admits a pseudo-polynomial time algorithm. We also proposed an approximation algo-
rithm based on the solution of an SPP problem over an extended graph. The extended
graph is defined by discretizing the admissible speeds at the nodes of the graph. Finally,
we performed different computational experiments on two real-life industrial scenarios
in order to evaluate the performance of the approximation algorithm.

Appendix

A Proof of Proposition 4.1

Each path P from node 0 to node n + 2 has the following structure

with i1 < i2 < ⋯ < ir . Let us denote by NP = {i1, i2,… , ir} the set of intermediate
nodes in P. The length of path P is W2 + �(P) , where �(P) =

∑
i∈NP

�i is the length
of the path up to node n + 1.

Before proceeding with the proof we give the intuition behind it. We will show that
for each path with length �(P) > W

2
 up to node n + 1 , the traveling time from node 0

to node n + 2 is larger than the traveling time of a path with length �(P) = W

2
 up to

node n + 1 (if any). This will simply follow from the fact that the former path is longer
and the speed along the final arc (n + 1, n + 2) is the same in both cases. Moreover,
we will show that also for a path with length �(P) < W

2
 up to node n + 1 , the traveling

time from node 0 to node n + 2 is larger than the traveling time of a path with length
�(P) =

W

2
 up to node n + 1 (again, if any). In this case this will be proved by observ-

ing that the speed reached along this path at node n + 1 will be lower than
√
W (the

speed reached by any path with length �(P) ≥ W

2
 ). Since it is not possible to accelerate

along arc (n + 1, n + 2) , the traveling time along this arc will be higher with respect
to paths with length �(P) ≥ W

2
 up to node n + 1 . In particular, we will show that the

increase of the time needed to travel along arc (n + 1, n + 2) will be larger than the time
saved along the sub-path from node 0 to node n + 1 with respect to a path for which
�(P) =

W

2
 . In conclusion, we will show that the Partition problem has a yes answer if

and only if the optimal value of the BASP instance is the traveling time of a path with
length �(P) = W

2
 up to node n + 1 . In what follows we prove the result in a formal way.

Let us first assume that �(P) < W

2
 . In this case, according to the discussion in Sect. 3,

the maximum speed which can be reached at node n + 1 is vu = amaxtP , where amax = 1
and tP fulfills �(P) = 1

2
amaxt

2 , that is, tP =
√
2�(P) . Thus, vu =

√
2�(P) <

√
W .

Along the final arc of the path (n + 1, n + 2) the maximum acceleration is null, while
the maximum deceleration is − 1

2W
 . Then, the optimal speed profile along this arc is

obtained by keeping the speed vu =
√
2�(P) for a portion of the arc with length

0 → i1 → i2 → ⋯ → ir → n + 1 → n + 2,

1 3

Shortest path with acceleration constraints: complexity…

W2 − 2�(P)W , while in the last portion, with length 2�(P)W , the speed is decreased
with the maximum possible deceleration − 1

2W
 . Now we denote by t1

L1
(�(P)) the time to

run along the first portion of the arc, while we denote by tL2(�(P)) the time to run along
the second part of the arc. We have that

while tL2(�(P)) fulfills the following condition

that is,

Thus, the overall time to traverse such paths is

Now, let us consider paths P such that �(P) ≥ W

2
 . A lower bound for the time needed

to run along the path up to node n + 1 is given again by the solution of the fol-
lowing simple equation �(P) = 1

2
amaxt

2 , which is tP =
√
2�(P) . Note that this

is a lower bound since with the maximum acceleration we would reach the speed
vu = amaxtP =

√
2�(P) ≥ √

W , so that we stop accelerating as soon as we reach the
maximum speed

√
W . Since �(P) ≥ W

2
 , we have that the lower bound can be fur-

ther bounded from below by
√
W . Finally, we observe that such lower bound can be

attained if and only if �(P) = W

2
 , that is, if and only if the Partition problem admits a

solution. Now, over the last arc (n + 1, n + 2) we can decrease the speed to 0 at node
n + 2 by keeping the maximum deceleration − 1

2W
 over the whole arc. Then, the time

needed to traverse this arc, denoted by tL3 , fulfills

so that tL3 = 2W3∕2 . Then, a lower bound for the time needed to traverse such paths

is T2 =
√
W + 2W3∕2 and, as already pointed out, such lower bound is attained if and

only if �(P) = W

2
 . Figure 19 illustrates the optimal speed profiles for three distinct

paths P1 , P2 and P3 , fulfilling �(P1) <
W

2
 , �(P2) =

W

2
 , and �(P3) >

W

2
 , respectively.

The three profiles are depicted, respectively with a dashed, a continuous and a dot-
ted line (up to distance �(P1) they are overlapping). We notice that for the short-
est path P1 we are unable to reach the maximum squared speed W, so that along
arc (n + 1, n + 2) we first increase the speed as much as possible with acceleration

tL1(�(P)) =
W2 − 2�(P)W√

2�(P)
,

√
2�(P)W =

√
2�(P)tL2(�(P)) −

1

4W
tL2(�(P))

2,

tL2(�(P)) = 2W
√
2�(P).

T1(�(P)) =
√
2�(P) +

W2 − 2�(P)W√
2�(P)

+ tL2(�(P)) =
√
2�(P) +

W2

√
2�(P)

+W
√
2�(P).

W2 =
√
WtL3 −

1

4W
(tL3)

2,

	 S. Ardizzoni et al.

1 3

amax
n+1,n+2

 (in fact, we keep the speed constant since amax
n+1,n+2

= 0 ), and then we decrease

the speed as fast as possible with deceleration amin
n+1,n+2

 . For the intermediate path P2
we reach the maximum squared speed exactly at the end of the path and then, along
arc (n + 1, n + 2) we decrease the speed as fast as possible with deceleration amin

n+1,n+2
 .

Finally, for the longest path P3 we reach the maximum squared speed before the end
of the path, and we keep the speed constant in the last part of the path, while along
arc (n + 1, n + 2) we decrease the speed as fast as possible with deceleration amin

n+1,n+2
.

Now, if we are able to prove that T2 < T1(�(P)) when �(P) ≤ W

2
− 1 , then we

are done. We have that

By the change of variable x =
√
2�(P) , this can be rewritten as

which can be easily seen to be negative for all x ≤ W3∕2

W+1
 . Now, recalling the definition

of x, this means that T2 − T1(�(P)) is negative if

Then, the result follows by observing that

B Proof of Lemma 5.2

For i ∈ {1,… , |P|} , set a+
i
= 2amax

P(i),P(i+1)
�P(i),P(i+1) , a−i = 2amin

P(i),P(i+1)
�P(i),P(i+1) . For

i ∈ {2,… , |P|} , set w+
i
= min{wmax

P(i−1),P(i)
,wmax

P(i),P(i+1)
} . It is convenient to rewrite

Problem (5) as:

Problem (13) belongs to the class of Problem 5 in [3] (nondecreasing right-hand
side of the constraints and strictly monotonically decreasing objective function) . As

T2 − T1(�(P)) =
√
W + 2W3∕2 −W

√
2�(P) −

√
2�(P) −

W2

√
2�(P)

.

−(W + 1)x2 + (
√
W + 2W3∕2)x −W2

x
,

�(P) <
W3

2(W + 1)2
.

W3

2(W + 1)2
>

W

2
− 1.

(13)

T(P) = min
�∈ℝ|P|+1

|P|∑
i=1

cP(i)P(i+1)(wi,wi+1)

0 ≤ wi ≤ w+
i
, i ∈ {2,… , |P|},

wi+1 ≤ wi + a+
i
, i ∈ {1,… , |P|},

wi ≤ wi+1 − a−
i
, i ∈ {1,… , |P|},

w1 = 0, w|P|+1 = 0 .

1 3

Shortest path with acceleration constraints: complexity…

reported there, the solution of Problem (5) can be found as follows. Define vectors
�,�,� ∈ ℝ

|P|+1 such that:

Note that the components of vector � are equivalent to the values of function W(s)
defined in Sect. 3 evaluated at nodes of the path, while along each arc of the path
function W(s) is defined according to (1). As a consequence of Theorem 2 of [3]
the solution of Problem (13) is �∗(P) = � . On the other hand, Problem (8) can be
rewritten in the following form:

Note that, strictly speaking, this is a relaxation of Problem (8), since we have not
included the last constraint, namely ⟨wi⟩ = wi, i ∈ {1,… , �P� + 1} . In fact, as shown
in [3], at least one constraint is active at each component wh

i
(P) , i ∈ {1,… , |P| + 1} ,

of the optimal solution of (14). Since 0 = ⟨0⟩ and, for all x ∈ ℝ , ⟨⟨x⟩⟩ = ⟨x⟩ , neces-
sarily ⟨wh

i
(P)⟩ = wh

i
(P) , i ∈ {1,… , |P| + 1} (which means that the optimal solution

of (14) fulfills the last constraint in (8)). Also Problem (14) belongs to the class of
Problem 5 in [3]. Hence, its solution can be computed with the same procedure used
for Problem (13). Namely, define vectors �h,�h,�h ∈ ℝ

|P|+1 such that:

Again, by Theorem 2 in [3], �h(P) = �
h . Note that, by their definitions, �h ≤ � and

�
h ≤ �.

Now we are ready to prove Lemma 5.2. We first prove that for all i ∈ {1,… , |P| + 1}:

F1 = 0

Fi = min{Fi−1 + a+
i−1

,w+
i
}, i ∈ {2,… , |P| + 1},

[6pt]B|P|+1 = 0

[6pt]Bi = min{Bi+1 − a−
i
,w+

i
}, i ∈ {1,… , |P|},

[6pt]� = min{�,�}.

(14)

Th(P) = min
�∈ℝ�P�+1

�P��
i=1

cP(i)P(i+1)(wi,wi+1)

0 ≤ wi ≤ ⟨w+
i
⟩, i ∈ {2,… , �P�},

wi+1 ≤ ⟨wi + a+
i
⟩, i ∈ {1,… , �P�},

wi ≤ ⟨wi+1 − a−
i
⟩, i ∈ {1,… , �P�},

w1 = 0, w�P�+1 = 0 .

Fh
1
= 0

Fh
i
= ⟨min{Fh

i−1
+ a+

i−1
,w+

i
}⟩, i ∈ {2,… , �P� + 1},

Bh
�P�+1 = 0

Bh
i
= ⟨min{Bh

i+1
− a−

i+1
,w+

i
}⟩, i ∈ {1,… , �P�},

�
h = min{�h,�h}.

Fi − Fh
i
≤ h(i − 1).

	 S. Ardizzoni et al.

1 3

Set �i = Fi − Fh
i
 . By the definition of Fh

i
 we may have that Fh

i
= ⟨Fh

i−1
+ a+

i−1
⟩ or

Fh
i
= ⟨w+

i
⟩ . In the first case, �i ≤ Fi−1 − Fh

i−1
+ a+

i−1
− ⟨a+

i−1
⟩ ≤ �i−1 + h . In the sec-

ond case, �i ≤ w+
i
− ⟨w+

i
⟩ ≤ h . Hence, � satisfies

and it follows that �i ≤ h(i − 1) . Proceeding in the same way as above, setting
�i = Bi − Bh

i
 , � satisfies

and, consequently:

Finally, we observe that

as we wanted to prove.

C Proof of Lemma 5.4

Given an arc (i, j) and squared speeds w, z, ŵ, ẑ ∈ ℝ , with 0 ≤ w, z, ŵ, ẑ ≤ wmax
ij

 ,
w ≤ ŵ and z ≤ ẑ , for an interval [a, b] ⊆ [0,�ij] , define

where wij is defined in (1). Our goal is to find an upper bound for
|||cij(w, z) − cij(ŵ, ẑ)

||| = e[0,�ij]
 . We consider only the case ŵ ≤ ẑ (the converse case in

which ŵ ≥ ẑ is analogous).
We find a bound on |||cij(w, z) − cij(ŵ, ẑ)

||| by splitting the integration interval [0,�ij]
into three parts: the initial part [0, s̄] , with s̄ ∈ [0,�ij] , in which both the speed pro-
files starting at ŵ and w are growing, the second part [s̄, s̃] , with s̃ ∈ [s̄,�ij] in which
the speed profile starting at ŵ keeps growing whilst the one starting at w starts
decreasing, and the final part [s̃,�ij] , in which both speed profiles are decreasing (see
Fig. 18). In case the first profile never decreases, we set s̃ = �ij , and in case the sec-
ond profile never decreases, we set s̃ = s̄ = �ij . In this way, |||cij(w, z) − cij(ŵ, ẑ)

||| = e[0,s̄] + e[s̄,s̃] + e[s̃,�ij]
 . We will need the following technical

remark.

�1 = 0

�i+1 ≤ �i + h, i ∈ {1,… , |P|},

�|P|+1 = 0

�i ≤ �i+1 + h, i ∈ {1,… , |P|},

Bi − Bh
i
≤ h(|P| + 1 − i).

w∗(P)i − wh(P)i = min{Fi,Bi} −min{Fh
i
,Bh

i
} ≤ max{Fi − Fh

i
,Bi − Bh

i
} ≤ h|P|,

e[a,b] =

��������
∫

b

a

⎛⎜⎜⎜⎝
1�

wij(s;w, z)

−
1�

wij(s;ŵ, ẑ)

⎞⎟⎟⎟⎠
ds

��������
,

1 3

Shortest path with acceleration constraints: complexity…

Remark C.1  Given c > 0 and x ∈ [0, c] , it holds that

Next lemma establishes a bound from above for the error along the first part of
the arc.

−
x√
c
+
√
c ≤ √

c − x ≤ −
x

2
√
c
+
√
c.

Fig. 18   Comparison on a generic arc between the optimal speed profile starting from ŵ and ending at ẑ
and the one starting from w and ending at z 

Fig. 19   Maximum (squared) speed profiles along three paths P1,P2,P3 fulfilling �(P1) <
W

2
 , �(P2) =

W

2
 ,

and �(P3) >
W

2

	 S. Ardizzoni et al.

1 3

Lemma C.1  Given arc (i, j) and 0 ≤ w, ŵ, z, ẑ , with w ≤ ŵ and z ≤ ẑ the following
bound holds:

Proof  If ŵ = 0 , then also w = 0 , hence

Otherwise, if ŵ > 0 , we can bound the error over [0, s̄] as follows

where, in the first inequality, we used the fact that, for |w − ŵ| ≤ ŵ + 2amax
ij

s̄ , in view
of Remark C.1 it holds that:

and that, for |w − ŵ| ≤ ŵ,

	� ◻

The error over the second part [s̄, s̃] of arc (i, j) can be bounded from above as
follows.

Lemma C.2  Given arc (i, j) and 0 ≤ w, ŵ, z, ẑ , with w ≤ ŵ , z ≤ ẑ , the following
bound holds:

�
e[0,s̄] = 0 if ŵ = 0,

e[0,s̄] ≤ �w−ŵ�
amax
ij

√
ŵ

otherwise .

e[0,s̄] =

s̄

∫
0

⎛⎜⎜⎜⎝
1�

w + 2amax
ij

s

−
1�

ŵ + 2amax
ij

s

⎞⎟⎟⎟⎠
ds =

s̄

∫
0

⎛⎜⎜⎜⎝
1�

2amax
ij

s

−
1�

2amax
ij

s

⎞⎟⎟⎟⎠
ds = 0.

e[0,s̄] =

s̄

�
0

⎛
⎜⎜⎜⎝

1�
w + 2amax

ij
s

−
1�

ŵ + 2amax
ij

s

⎞
⎟⎟⎟⎠
ds =

⎡
⎢⎢⎢⎣

�
w + 2amax

ij
s

amax
ij

−

�
ŵ + 2amax

ij
s

amax
ij

⎤
⎥⎥⎥⎦

s̄

0

=
1

amax
ij

��
w + 2amax

ij
s̄ −

√
w −

�
ŵ + 2amax

ij
s̄ −

√
ŵ
�

≤ 1

amax
ij

⎛⎜⎜⎜⎝
−

�w − ŵ�
2
�

ŵ + 2amax
ij

s̄

+
�

ŵ + 2amax
ij

s̄ +
�w − ŵ�√

ŵ
−
√
ŵ −

�
ŵ + 2amax

ij
s̄ +

√
ŵ

⎞⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1√
ŵ

−
1

2
�

ŵ + 2amax
ij

s̄

⎞⎟⎟⎟⎠

�w − ŵ�
amax
ij

≤ �w − ŵ�
amax
ij

√
ŵ
,

√
w + 2amax

ij
s̄ =

√
ŵ − |w − ŵ| + 2amax

ij
s̄ ≤ −

|w − ŵ|
2
√

ŵ + 2amax
ij

s̄

+
√

ŵ + 2amax
ij

s̄,

√
w =

√
ŵ − �w − ŵ� ≥ −

�w − ŵ�√
ŵ

+
√
ŵ.

1 3

Shortest path with acceleration constraints: complexity…

where z̃ = wij(s̃;ŵ, ẑ) is the squared speed at s̃ for the profile with boundary speeds
ŵ, ẑ.

Proof  We can bound from above the error over [s̄, s̃] as follows

where, in the second inequality, we used the fact that, for |z − ẑ| ≤ z̃ + 2amin
ij

(s̄ − s̃) ,
in view of Remark C.1, it holds that

e[s̄,s̃] ≤ max{�w − ŵ�, �z − ẑ�} 2

�amin
ij

�√z̃
,

e[s̄,s̃] =

s̃

�̄
s

⎛
⎜⎜⎜⎝

1�
z̃ − �z − ẑ� + 2amin

ij
(s − s̃)

−
1�

ŵ + 2amax
ij

s

⎞
⎟⎟⎟⎠
ds

≤
s̃

�̄
s

ds�
z̃ − �z − ẑ� + 2amin

ij
(s − s̃)

=

⎡⎢⎢⎢⎣

�
z̃ − �z − ẑ� + 2amin

ij
(s − s̃)

amin
ij

⎤⎥⎥⎥⎦

s̃

s̄

=
1

�amin
ij

�
��

z̃ − �z − ẑ� + 2amin
ij

(s̄ − s̃) −
√
z̃ − �z − ẑ�

�

≤ 1

�amin
ij

�

⎛⎜⎜⎜⎝
−

�z − ẑ�
2
�

z̃ + 2amin
ij

(s̄ − s̃)

+
�

z̃ + 2amin
ij

(s̄ − s̃) +
�z − ẑ�√

z̃
−
√
z̃

⎞⎟⎟⎟⎠

≤ 1

�amin
ij

�

��
z̃ + 2amin

ij
(s̄ − s̃) +

�z − ẑ�√
z̃

−
√
z̃

�

≤ 1

�amin
ij

�

�√
z̃ +max{�w − ŵ�, �z − ẑ�} + �z − ẑ�√

z̃
−
√
z̃

�

≤ 1

�amin
ij

�

�
max{�w − ŵ�, �z − ẑ�}

2
√
z̃

+
√
z̃ +

�z − ẑ�√
z̃

−
√
z̃

�

≤ max{�w − ŵ�, �z − ẑ�} 2

�amin
ij

�√z̃
,

√
z̃ − |z − ẑ| + 2amin

ij
(s̄ − s̃) ≤ −

|z − ẑ|
2
√

z̃ + 2amin
ij

(s̄ − s̃)

+
√

z̃ + 2amin
ij

(s̄ − s̃),

	 S. Ardizzoni et al.

1 3

and that, for |z − ẑ| ≤ z̃,

whilst, in the fourth inequality, we used the fact that
2amin

ij
(s̄ − s̃) ≤ max{|w − ŵ|, |z − ẑ|} . Indeed, the following equations hold (see also

Fig. 18)

Taking the difference between the second and the first equation, we end up with

where the first inequality comes from amax
ij

> 0 and s̄ ≤ s̃ . 	� ◻

Finally, we establish a bound for the error along the third part of the arc.

Lemma C.3  Given arc (i, j) and 0 ≤ w, ŵ, z, ẑ , with w ≤ ŵ , z ≤ ẑ , the following
bound holds:

Proof  The proof of Lemma C.3 is analogous to that of Lemma C.1. 	� ◻

Now, we can prove Lemma 5.4, that is, we can provide an estimate on the
absolute error over the entire arc (i, j).

Proof  By Lemmas C.1–C.3, we have the following cases. If ŵ = ẑ = 0 , then

(note that in this case s̄ = s̃ , so that e[s̄,s̃] = 0 ). If ŵ = 0 , then:

where the last inequality follows from z̃ ≥ ẑ . Similarly, for ẑ = 0:

√
z̃ − �z − ẑ� ≥ −

�z − ẑ�√
z̃

+
√
z̃,

ẑ + 2amin
ij

(s̃ − �ij) = ŵ + 2amax
ij

s̃

[6pt]z + 2amin
ij

(s̄ − �ij) = w + 2amax
ij

s̄.

2amin
ij

(s̄ − s̃) = |z − ẑ| − |w − ŵ| + 2amax
ij

(s̄ − s̃)

≤ |z − ẑ| − |w − ŵ| ≤ max{|w − ŵ|, |z − ẑ|},

�
e[s̃,�ij]

= 0 if ẑ = 0,

e[s̃,�ij]
≤ �z−ẑ�

�amin
ij

�√ẑ
otherwise.

cij(w, z) − cij(ŵ, ẑ) = 0

cij(w, z) − cij(ŵ, ẑ) = e[s̄,s̃] + e[s̃,�ij]
≤ �z − ẑ� 2

�amin
ij

�√z̃
+

�z − ẑ�
�amin

ij
�√ẑ

≤ �z − ẑ� 3

�amin
ij

�√ẑ
,

cij(w, z) − cij(ŵ, ẑ) =e[0,s̄] + e[s̄,s̃]

≤ �w − ŵ�
amax

ij

√
ŵ

+ �w − ŵ� 2

�amin

ij
�√z̃

≤ �w − ŵ� 3

min{amax

ij
,−amin

ij
}
√
ŵ
,

1 3

Shortest path with acceleration constraints: complexity…

where the last inequality follows from z̃ ≥ ŵ . Finally, if ŵ, ẑ > 0:

Now the results immediately follows from the fact that, by the definitions of amin and
w̄ , it holds that amax

ij
, |amin

ij
| ≥ amin , ŵ ≥ w̄ if ŵ > 0 , and ẑ ≥ w̄ if ẑ > 0 . 	� ◻

Funding  Open access funding provided by Università degli Studi di Parma within the CRUI-CARE
Agreement.

Data availability  The data and code that support the findings of this study are available at: OSF. May
23. osf.io/6jupx S. Ardizzoni, L. Consolini, M. Laurini, and M. Locatelli. 2022. “Bounded Acceleration
Shortest Path Problem”.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Ardizzoni, S., Consolini, L., Laurini, M., Locatelli, M.: Solution algorithms for the bounded accel-
eration shortest path problem. IEEE Trans. Autom. Control (2022) (to appear). https://​doi.​org/​10.​
1109/​TAC.​2022.​31721​69

	 2.	 Chen, B.Y., Chen, X.-W., Chen, H.-P., Lam, W.H.K.: Efficient algorithm for finding k shortest paths
based on re-optimization technique. Transpt. Res. Part E: Log. Transpt. Rev. 133, 101819 (2020)

	 3.	 Consolini, L., Locatelli, M., Minari, A., Piazzi, A.: An optimal complexity algorithm for minimum-
time velocity planning. Syst. Control Lett. 103, 50–57 (2017)

	 4.	 Consolini, L., Laurini, M., Locatelli, M., Minari, A.: A solution of the minimum-time speed plan-
ning problem based on lattice theory. J. Frankl. Inst. 357(12), 7617–7637 (2020)

	 5.	 Cowlagi, R.V., Tsiotras, P.: Shortest distance problems in graphs using history-dependent transition
costs with application to kinodynamic path planning. In: 2009 American Control Conference, pp.
414–419 (2009)

	 6.	 Dean, B.C.: Shortest paths in FIFO time-dependent networks: theory and algorithms. In: Technical
Report Massachusetts Institute of Technology (2004)

cij(w, z) − cij(ŵ, ẑ) =e[0,s̄] + e[s̄,s̃] + e[s̃,�ij]

≤ �w − ŵ�
amax

ij

√
ŵ

+max{�w − ŵ�, �z − ẑ�} 2

�amin

ij
�√z̃

+
�z − ẑ�

�amin

ij
�√ẑ

≤ �w − ŵ� + 2max{�w − ŵ�, �z − ẑ�} + �z − ẑ�
min{amax

ij
,−amin

ij
}
√
min{ŵ, ẑ}

=
4max{�w − ŵ�, �z − ẑ�}

min{amax

ij
,−amin

ij
}
√
min{ŵ, ẑ}

.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TAC.2022.3172169
https://doi.org/10.1109/TAC.2022.3172169

	 S. Ardizzoni et al.

1 3

	 7.	 Desaulniers, G., Villeneuve, D.: The shortest path problem with forbidden paths. Eur. J. Oper. Res.
165, 97–107 (2005)

	 8.	 Desrochers, M., Soumis, F.: A reoptimization algorithm for the shortest path problem with time
windows. Eur. J. Oper. Res. 35, 242–254 (1988)

	 9.	 Dreyfus, S.: An Appraisal of Some Shortest-Path Algorithms. Oper. Res. 17, 395–412 (1969)
	10.	 Dror, M.: Note on the complexity of the shortest path models for column generation in VRPTW.

Oper. Res. 42, 977–978 (1994)
	11.	 Edmonds, J., Fulkerson, D.R.: Bottleneck extrema. J. Comb. Theory 8(3), 299–306 (1970)
	12.	 Festa, P.: Constrained shortest path problems: state-of-the-art and recent advances. In: 17th Interna-

tional Conference on Transparent Optical Networks (ICTON), pp. 1–17 (2015)
	13.	 Garfinkel, R., Fernandez, E., Lowe, T.J.: The k-centrum shortest path problem. TOP 14(2), 279–292

(2006)
	14.	 Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Complete-

ness. W.H. Freeman and Company, New York (1979)
	15.	 Handler, G.Y., Zang, I.: A dual algorithm for the constrained shortest path problem. Networks 10(4),

293–309 (1980)
	16.	 He, E., Boland, N., Nehmauser, G., Savelsbergh, M.: Time-dependent shortest path problems with

penalties and limits on waiting. INFORMS J. Comput. 33(3), 997–1014 (2021)
	17.	 Ioachim, I., Gélinas, S., Soumis, F., Desrosiers, J.: A dynamic programming algorithm for the short-

est path problem with time windows and linear node costs. Networks 31, 193–204 (1998)
	18.	 Omer, J., Poss, M.: Time-dependent shortest paths with discounted waits. Networks 4(3), 287–301

(2019)
	19.	 Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with time-dependent

edge-length. J. ACM 37, 607–625 (1990)
	20.	 Pollack, M.: The maximum capacity through a network. Oper. Res. 8(5), 733–736 (1960)
	21.	 Turner, L.: Variants of shortest path problems. Algorithm. Oper. Res. 6(2), 91–104 (2012)
	22.	 Stern, R., Sturtevant, N.R., Felner, A., Keonig, S., Ma, H., Walker, T.T., Li, J., Atzmon, D., Cohen,

L., Kumar, T.S., Boyarski, E., Bartak, R.: Multi-agent pathfinding: definitions, variants, and bench-
marks. In: Symposium on Combinatorial Search (SoCS) (2019)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Shortest path with acceleration constraints: complexity and approximation algorithms
	Abstract
	1 Introduction
	2 Problem description and motivation
	3 Minimum traveling time along arcs and paths
	4 Complexity results
	4.1 NP-hardness
	4.2 Pseudo-polynomial algorithm

	5 Approximation algorithm
	5.1 The case of uniform acceleration bounds

	6 Computational experiments
	7 Conclusions
	References

