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Abstract
Over the past years, the growing number of natural hazards all over the world has led 
to an increasing focus on activities aimed at studying and controlling the occurrence of 
these phenomena. In this context, monitoring systems have become a fundamental compo-
nent for Landslide Early Warning Systems, allowing to understand the evolution of these 
processes and assess the need for dedicated mitigation measures. This result is achieved 
thanks to several technological advancements that led to the introduction of more accurate 
and reliable sensors, as well as automatic procedures for data acquisition and elaboration. 
However, despite these improvements, the data interpretation process is still a challenging 
task, in particular when it comes to the identification of critical events and failure forecast-
ing operations. This paper presents a methodology developed to assess if a potentially criti-
cal event is displaying a significant deviation from previously sampled data, or if it could 
be classified as a false alarm. The process relies on the definition of a threshold value based 
on the landslide behavior preceding the event of interest. In particular, the reference value 
derives from the evaluation of equivalent displacements, defined as the displacements pre-
viously observed in a time interval equal to the one showed by the potentially critical event. 
This paper reports a series of examples referring to different case studies, involving both 
false alarms and real collapses, underlining the effectiveness of the proposed model as a 
useful tool to evaluate the landslide behavior with a near-real-time approach.
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1 Introduction

In the landslide risk management framework, Early Warning Systems (EWS) represent an 
effective and feasible option, especially in those cases where structural measures are not 
viable due to economical or practical reasons (Londoño 2011). The popularity of these 
approaches can be attributed to several factors, including their lower economic costs and 
environmental impact, the advantages deriving from the introduction of new technologies 
for landslide monitoring, and the increased availability of reliable databases to calibrate the 
warning models (Barla and Antolini 2016; Pecoraro et al. 2019).

According to the definition provided by the United Nations International Strategy for 
Disaster Reduction (UNISDR), early warning systems are defined as “the set of capacities 
needed to generate and disseminate timely and meaningful warning information to enable 
individuals, communities and organizations threatened by a hazard to prepare and to act 
appropriately and in sufficient time to reduce the possibility of harm or loss” (UNISDR 
2009). In a more recent report focused on the terminology related to disaster risk deduc-
tion, the following definition for EWS was included: “An integrated system of hazard mon-
itoring, forecasting and prediction, disaster risk assessment, communication and prepared-
ness activities systems and processes that enables individuals, communities, governments, 
businesses and others to take timely action to reduce disaster risks in advance of hazardous 
events” (United Nations 2016).

Several authors over the years have proposed a description of the general structure of an 
EWS, aiming to summarize the key elements that should always be included in the design 
process of a landslide-oriented Early Warning System. According to UNISDR, complete 
and effective EWS should include four components: risk knowledge, monitoring and warn-
ing service, dissemination and communication, and response capability (UNISDR 2006). 
Each one of these elements plays an essential role, and a weakness in a single one of these 
could result in the failure of the entire system. Di Biagio and Kjekstad (2007) proposed 
an alternative approach, using a flow diagram to highlight four main activities: monitor-
ing, analysis and forecasting, warning, and response. According to the authors, the EWS 
effectiveness depends especially on the identification, monitoring, and measurement of 
the events preceding a landslide occurrence. In particular, the precursors identification is 
essential for the correct choice of the most appropriate monitoring sensors. Starting from 
these two approaches, Intrieri et al. (2013) described the EWS structure as a balanced com-
bination of four components: design, monitoring, forecasting, and education. The third 
phase, involving the forecasting and alert threshold assessment operations, is regarded by 
the authors as the most critical element of a Landslide Early Warning System (LEWS). In 
particular, they underline the problem represented by false alarms, which can be reduced 
but never completely eliminated from the early warning process. Calvello et  al. (2015) 
combined several contributions on this topic, proposing a new schematization in the form 
of a wheel-like diagram. This approach underlines the necessity of a synergic connection 
between technical and social skills, with the objective of defining efficient processes and 
making the EWS an effective risk reduction tool. Moreover, it introduces the temporal con-
tinuity of the activities to be undertaken for updating the system during its operational life. 
Another recent LEWS scheme was presented by Fathani et al. (2016), with the main pur-
pose to introduce an integrated methodology to be used as a standard for the definition of 
community-based EWS. To achieve this objective, the proposed approach starts from the 
UNSIDR definition and expands it by introducing seven sub-systems to better describe the 
EWS creation process.
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As previously noted, the processes for the definition of alert levels and thresholds are 
among the most difficult to entail. Because of their own nature, these should be determined 
with the intent to represent a critical event in the context of the studied phenomenon, i.e., a 
condition that may trigger a landslide when exceeded (Guzzetti et al. 2007). For what con-
cerns the landslide monitoring framework, these occurrences are usually associated with 
slope collapses generated by a situation of irreversible instability of the studied element. 
In many cases, the threshold assessment process is completely empirical, relying on expert 
judgment and available monitoring data, and provides values suitable only for the specific 
landslide for which they are originally defined (Intrieri et al. 2019). Numerical modeling is 
another possible approach to assess warning levels for a specific landslide. These methods 
aim to compare displacements measured by monitoring tools installed on-site with values 
obtained from a reference model. If properly designed and calibrated, the model should be 
able to represent the behavior of the real slope, thus allowing the definition of one or more 
thresholds corresponding to different stages of the monitored slope evolution over time 
(Huggel et al. 2010; Thiebes et al. 2014; Festl and Thuro 2016; Du and Wang 2016; New-
comen and Dick 2016; Zhao et al. 2020; López-Vinielles et al. 2021). This approach can be 
indeed highly effective, although the large number of components to take into account in 
the modeling process makes it a quite challenging and time-consuming task. In more recent 
time, technological improvements regarding the computational ability of modern comput-
ers, together with the increased availability of powerful software able to process advanced 
algorithms, have boosted significantly the research activity in this specific field. As a result, 
several authors have presented new studies and methodologies based on a wide range of 
different approaches, such as algorithms relying on Artificial Intelligence (Di Napoli et al. 
2020; Guardiani et al. 2021; Liu et al. 2021; Ma et al. 2021) and Neural Networks (Chen 
et al. 2015; Prakash et al. 2021; Zhang et al. 2022).

On the other hand, other methodologies have been developed over the years focusing 
on the possibility of creating a more general procedure, not strictly dependent from a spe-
cific case study. In these cases, the design process is based on failure forecasting methods 
(Crosta and Agliardi 2002; Manconi and Giordan 2016; Carlà et al. 2018; Valletta et al. 
2020), or derives from a solid observational basis (Brox and Newcomen 2003; Xu et al. 
2011). Due to their notable degree of exportability, these methodologies can be integrated 
in different slope-scale EWS. Nonetheless, they tend to share the same issues affecting the 
methods from which they derive and should not be used in isolation with a “closed box” 
approach. In fact, at present, the most reliable approach appears to be the integration of 
more than one method in order to have a more complete description of the phenomenon 
(Intrieri and Gigli 2016).

2  Materials and methods

The methodology here presented relates to this concept, aiming to exploit the availability 
of a large amount of information regarding the past movements of the monitored land-
slide as a comparison with determine the impact of newly recorded displacements on the 
slope stability conditions. In particular, the approach was designed with the main purpose 
to identify the occurrence of a specific category of false alarms. These consist of events 
displaying a data trend geometrically compatible with an accelerating pattern, while featur-
ing a displacement magnitude which does not correspond to a critical occurrence if com-
pared to previously observed occurrences. As previously noted, the introduction of new 
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technologies in the geotechnical field has notably increased the monitoring systems relia-
bility and sampling rate, thus making them able to provide a considerable amount of infor-
mation over time. On this basis, the proposed approach seeks to exploit the availability of 
available monitoring data to assess one or more alert levels not only for any particular case 
study, but also specifically for each single event identified by the monitoring instrumen-
tation. Moreover, the methodology was developed trying to balance computational com-
plexity and results reliability, designing a procedure conceptually easy to understand and 
implement, while being able to provide meaningful information for early warning purposes 
at the same time.

The process to define the alert threshold value can be divided into a series of consecu-
tive steps, starting from the acquisition of landslide displacement data. When the elabora-
tion software detects a potentially critical event, it extracts the corresponding dataset and 
evaluates the displacement generated d∗

0
 and its duration t∗ . The event identification can 

be performed starting from available monitoring data, and the corresponding dataset is 
expected to follow an increasing trend in the displacement–time plot. The authors devel-
oped a multi-criteria algorithm specifically designed for the identification of the onset-
on-acceleration (OOA) and the subsequent acceleration phase, relying on a drop-down 
procedure composed of four steps that are applied to each single data sample to detect 
specific variations in the landslide behavior (Valletta et al. 2021). The method is based on 
the hypothesis that the monitored landslide would display a transition from a linear to a 
nonlinear behavior, corresponding, respectively, to a constant and increasing displacement 
rate. Therefore, if the elaboration process identifies a trend that fulfils all criteria, it is pos-
sible to define a displacement dataset representing an increasing velocity over time.

Taking as a reference the date t
x
 of the first point d

x
 (i.e., the OOA) included in the 

dataset, the software retrieves all monitored data sampled by the same sensor during the 
30 days preceding the event. These values are going to serve as a term of comparison for 
the event identified at the previous step, using t∗ as the time interval reference for the cal-
culation of equivalent displacements. This term defines the slope displacements measured 
before the event occurrence and developed over a time interval equal to the one showed by 
the potentially critical event. By doing this, the algorithm produces a series of displace-
ments d∗

n
 generated over the same time interval t∗ . Table 1 reports an example of this pro-

cedure for a dataset composed of six displacement values, under the hypothesis of constant 
sampling frequency during the monitoring activity (i.e., the time interval is equal for data-
sets featuring the same number of values).

Therefore, it is possible to assess an alert threshold d∗
th

 based on the values of mean �S 
and standard deviation �S referred to the dataset of the equivalent displacement previously 
calculated:

Table 1  Evaluation of 
equivalent displacement values 
for a potentially critical event 
composed of six data

Dimension of the dataset referred to the event of interest = 6

Event identified d
∗

0
= d

x
− d

x−5

Equivalent displacement 1 d
∗

1
= d

x−1 − d
x−6

Equivalent displacement 2 d
∗

2
= d

x−2 − d
x−7

Equivalent displacement 3 d
∗

3
= d

x−3 − d
x−8

… …
Equivalent displacement n d

∗

n
= d

x−n − d
x−5−n
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Finally, it is possible to compare this outcome with the displacement d∗
0
 , in order to 

verify if the event generated a displacement with a magnitude similar to values previously 
observed during the considered time period, or if the resulting values overcome the alert 
threshold, thus indicating an unusually intense phenomenon. The flow diagram reported in 
Fig. 1 summarizes the procedure outlined above.

The reference time interval for the evaluation of equivalent displacements, and the 
related threshold value, was assessed on the basis of a series of considerations regarding 
the monitoring activity of a landslide, and after calibrating the model on several datasets 
sampled with automatic instrumentation installed in different sites of interest. The main 
observation concerns the number of monitoring data to be included in the dataset, which 
should be large enough to allow an appropriate definition of a typical trend of the landslide 
before the event occurrence. In fact, by choosing a too short time interval, the threshold 
fluctuations induced by single equivalent displacement would be too prominent, resulting 
in an unreliable threshold definition process. At the same time, taking into account a very 
long time interval for this operation would force to wait a prolonged time period after the 
installation of the monitoring tools, severely limiting the effectiveness of the warning sys-
tem. The introduction of automatic instrumentation able to achieve sampling frequencies 
of hours, and even minutes, could potentially play an important role when addressing this 
issue. However, it should be also taken into account that a very high number of data col-
lected in a short time period could not provide a comprehensive representation of the gen-
eral behavior of the monitored landslide. The time period here proposed was chosen by 
taking into consideration these remarks together with empirical observations coming from 
the application of the methodology to different datasets. Nonetheless, while the 30-day 
interval provided positive results during the calibration and testing phases, the possibility 
to select a more appropriate time window according to on-site observations in specific case 
studies should not be entirely discarded.

Figure 2 reports four examples obtained during the calibration process. Each plot shows 
the equivalent displacement evaluated according to the previously discussed procedure and 
displays the alert threshold value evaluated by considering a varying number of monitoring 
data. The first three datasets relate to case studies where the sampling frequency was set 

(1)d
∗

th
= �S + 3�S

Fig. 1  Flow diagram summarizing the main steps for the assessment of an alert threshold based on equiva-
lent displacements
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to six readings per day, resulting in a total number of monitoring values equal to 180 for 
each month. The 4th dataset refers to a monitoring system configured with an hourly sam-
pling frequency, thus producing a 720-point dataset. These examples show how the thresh-
old experiences very prominent variations when its assessment relies on smaller datasets 
and reaches a more stable value when more data are added to the calculation process. It is 
worth noting that the presence of some peaks in the equivalent displacement dataset is still 
able to influence the threshold value even if large datasets are taken into account, as can be 
observed for example in dataset #3 and #4. However, this should not be seen as an issue, 
since higher equivalent displacement values are an indication of the occurrence of past 
events generating more noticeable slope movements, which should not be neglected when 
assessing the standard behavior of the monitored landslide.

3  Results and discussion

The threshold assessment process has been applied to a wide range of dataset recorded 
in real-time, working in synergy with the previously mentioned methodology designed 
to identify accelerating trends in landslide displacements. In the following sections, 
three different case studies involving a total of four events are described, in order to 
present some examples of the methodology application and outcomes in a real scenario. 
The examples provided in this paper include also a back-analysis performed on a case 

Fig. 2  Four examples evidencing the alert threshold value variation according to the number of monitoring 
data taken into consideration in the calculation process
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study where the detected event led to an actual collapse of the monitored slope (thus 
representing a “true” positive in terms of early warning).

3.1  Case study #1

The first case study involves the monitoring activity of a slope located in Southern Italy, 
where a series of instability phenomena were identified after the construction of a via-
duct connected to a State Road crossing the area. As a consequence, a multi-parameter 
monitoring system was installed in order to study the phenomenon evolution, focusing 
on its interaction with the infrastructure. The instrumentation included seven Vertical 
Array automatic inclinometers, based on MUMS (Modular Underground Monitoring 
System) technology developed and produced by ASE S.r.l. (IT). The instrumentation is 
an array composed of different nodes (named Links) connected by a quadrupole electri-
cal and an aramid fiber cables in order to form an arbitrary long chain of sensors (Sega-
lini et al. 2014; Carri et al. 2015). It can be equipped with 3D MEMS, electrolytic cell, 
piezometer, thermometer, and other typologies of sensors, while a dedicated data logger 
connected to the Array automatically queries each different Link. The on-site location 
and composition of each array should be carefully considered in the project phase with 
the aim of providing a comprehensive description of the landslide, focusing on differ-
ent sectors of the monitored slope. This aspect is essential for any monitoring activity 
intended for early warning purposes. For this case study, the length and composition of 
each Array varied according to the on-site position of the equipment. The monitoring 
system included also three Piezo Arrays, each one integrating a series of analog piezom-
eters to record the pore pressure and water level variation over time; seven tilt meters, 
installed on the viaduct piles to control the stability conditions of the structure; three 
barometers to monitor the atmospheric pressure; and a rain gauge for the measurement 
of rainfalls in the area. Table 2 summarizes the main features of the monitoring system.

On 24 September 2020, the elaboration software reported the presence of an accel-
erating pattern detected by Vertical Array DT0074 in correspondence of Tilt Link 15, 
located at a depth of 16 m (Fig. 3). The automatic routine for the determination of the 
onset-of-acceleration identified the beginning of the event at 06:13. After the definition 
of the dataset of interest, the first step for the alert level assessment process involves the 
determination of the displacement generated by the event itself and the corresponding 
time interval. In this case, since this device was set to sample new data every 6 h, the 
monitoring data showed a displacement 1.5  mm over a time period of approximately 
30 h.

The subsequent operation consists of retrieving monitoring data from the 30  days 
preceding the event of interest, in order to assess the equivalent displacements and the 
correlated threshold. Taking the OOA as a reference, displacements recorded since 24 
August 2020 06:13 were retrieved in this phase. Each equivalent displacement value 
is computed by considering a time interval equal to the one obtained from the event, 
resulting in 118 equivalent displacements. By exploiting the mean and standard devia-
tion values calculated on this dataset, respectively, equal to 0.74 and 0.56 mm, the alert 
threshold based on equivalent displacements is equal to 2.5 mm (Table 3). As a result, 
it is possible to state that the identified event does not display a concerning behavior if 
compared to previously sampled monitoring data, since the corresponding displacement 
does not overcome the computed threshold (Fig. 4).
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3.2  Case study #2

The second case study deals with the monitoring of a slope located in Southern Italy, 
crossed by a high-speed railway tunnel currently under construction. After the identifi-
cation of a quiescent landslide in the area, it was decided to install an automatic mon-
itoring system with the objective of verifying the design hypotheses and control the 

Table 2  Features of the automatic multi-parameter monitoring system installed near a viaduct located in 
Southern Italy to control the evolution of an instability phenomenon and its interaction with the structure

Array ID (−) Installation 
date (dd/mm/
yyyy)

Array typology (−) Sensors number and typology (−) Array length (m)

DT0070 21/07/2017 Vertical Array 15 × Tilt Link HR 3D V 35.00
DT0071 27/07/2017 Piezo Array 7 × Piezo Link

1 × Baro Link
35.00

DT0072 29/07/2017 Vertical Array 30 × Tilt Link HR 3D V
13 × Piezo Link

70.00

DT0073 23/08/2017 Vertical Array 15 × Tilt Link HR 3D V
7 × Piezo Link

35.00

DT0074 29/07/2017 Vertical Array 15 × Tilt Link HR 3D V 35.00
DT0075 28/07/2017 Piezo Array 6 × Piezo Link

1 × Baro Link
35.00

DT0076 26/07/2017 Vertical Array 15 × Tilt Link HR 3D V 35.00
DT0077 23/08/2017 Piezo Array 6 × Piezo Link

1 × Baro Link
35.00

DT0078 21/07/2017 Klino Array 7 × Klino Link HR –
DT0090 30/03/2018 Vertical Array 20 × Tilt Link HR 3D V 60.00
DT0091 30/03/2018 Vertical Array 30 × Tilt Link HR 3D V 70.00
LOC0035 28/07/2017 Rain Array 1 × Rain Gauge –

Fig. 3  Displacement values measured by Vertical Array DT0074—Tilt Link 15, referred to the event with 
OOA on 24/09/2020 06:13, and to the 30 days preceding the event itself
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deformations induced by the excavation works. The monitoring system included a total 
of four Vertical Array automatic inclinometers, featuring different lengths and number 
of sensors. Interspace between Links also varied depending on their vertical position, 
with a distance of 2  m between each node in the supposedly stable area, reducing to 
0.5 m in proximity of the sliding surface for an increased degree of detail in the phe-
nomenon description. Additionally, the system comprises four Piezo Arrays, each one 
composed of two analog piezometers, to record the water level variations over time. The 
characteristics of each Array are summarized in Table 4.

During the entire monitoring period, all Vertical Arrays evidenced a relevant degree 
of activity of the monitored site, even without displaying any significant evidence of 
critical instabilities taking place in the area of interest. For this case study, two events 
are going to be analyzed, involving two different Arrays in May 2020 and August 
2020. Datasets recorded by each Tilt Link that identified an unexpected displacement 
trend were processed with the algorithm previously detailed, assessing an equivalent 

Fig. 4  Graphical representation of equivalent displacements referred to the event of interest, the time period 
of 30 days preceding the event itself, and the threshold evaluated from these values for DT0074—Tilt Link 
15

Table 4  Features of the automatic monitoring system installed to control slope displacements and water 
level variations of a landslide located in Southern Italy

Array ID (−) Installation date 
(dd/mm/yyyy)

Array typology (−) Sensors number and 
typology (−)

Array length (m)

DT0004 18/02/2020 Piezo Array 2 × Piezo Link 45.00
DT0111 23/01/2020 Vertical Array 73 × Tilt Link V 69.00
DT0005 18/02/2020 Piezo Array 2 × Piezo Link 31.70
DT0112 24/01/2020 Vertical Array 81 × Tilt Link V 80.00
DT0006 18/02/2020 Piezo Array 2 × Piezo Link 52.00
DT0113 14/01/2020 Vertical Array 66 × Tilt Link V 80.00
DT0007 22/01/2020 Piezo Array 2 × Piezo Link 30.00
DT0114 24/01/2020 Vertical Array 31 × Tilt Link V 30.00
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displacement threshold to verify how the event magnitude compared to the landslide’s 
past behavior.

The first event here analyzed was detected on 13 August 2020, when the elaboration 
software indicated the presence of an upward trend in a six-point dataset sampled by Ver-
tical Array DT0112—Tilt Link 48, located 17.50  m below the ground level. The algo-
rithm defined the onset-of-acceleration for the event at 21:51 of the previous day (Fig. 5). 
According to this information, displacements recorded since 12 July 2020 21:51 were 
retrieved for the alert threshold assessment procedure. As a result, a total of 184 equivalent 
displacements were computed by taking as a reference the time interval obtained from the 
event, i.e., 24 h. Finally, the algorithm evaluated the mean and standard deviation values 
for the dataset, obtaining an alert threshold equal to 2.9 mm.

The outcomes of this operation are summarized in Table  5, while Fig.  6 presents a 
graphical comparison between the equivalent displacements and the threshold computed at 
the previous step. It is possible to observe how the resulting value referred to the event of 
interest is comparable to previously recorded displacements, not overcoming the threshold 
value. It is also worth noting that equivalent displacements evaluated for this event do not 
show any significant peak in the reference time period.

The second event here analyzed was recorded by Vertical Array DT0113 on 24 May 
2020, approximately four months after its installation. In this case, the movement detected 
by the instrumentation was recorded by two Links, namely Tilt Links 43 and 55, placed, 
respectively, at a depth of 12.50 and 6.50 m. The datasets identified by the software were 
composed of five monitoring values each, and the beginning of the accelerating phase was 
set at 04:37. Analyzing the available monitoring data, it is possible to notice a strong simi-
larity between the trends displayed in Figs. 7 and 8, representing the slope displacements 
for Tilt Link 43 and Tilt Link 55, respectively. Since these values refer to cumulative dis-
placements, it could be assumed that a single movement located at a lower depth influ-
enced the behavior of both Links.

Following the retrieval of displacement data starting from 24 April 2020 04:37, two 
datasets of 185 equivalent displacements were obtained for the analysis. The operations 
relating to the evaluation of the displacement generated by the event, the extraction of 

Fig. 5  Displacement values measured by Vertical Array DT0112—Tilt Link 48, referred to the event with 
OOA on 12/08/2020 21:51, and to the 30 days preceding the event itself
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equivalent displacements from previous monitoring data, and the threshold assessment, 
are summarized in Table 6. All Vertical Arrays on this specific site were set on a sam-
pling rate of 4 h, recording six monitoring values each day. Therefore, since each dataset 
includes five velocity values, the time interval to evaluate the equivalent displacements 
for this example is equal to 20 h.

Figures 9 and 10, referring, respectively, to Tilt Link 43 and 55, present a graphical 
visualization of the analysis outcomes, evidencing how the detected event did not cause 
a displacement significant enough to overcome the threshold values assessed for the 
two Links. As seen in the previous case, it is quite easy to notice how the event entity 
does not appear to be significantly higher than other equivalent displacements, therefore 

Fig. 6  Graphical representation of equivalent displacements referred to the event of interest, the time period 
of 30 days preceding the event itself, and the threshold evaluated from these values for DT0112—Tilt Link 
48

Fig. 7  Displacement values measured by Vertical Array DT0113—Tilt Link 43, referred to the event with 
OOA on 24/05/2020 04:37 AM, and to the 30 days preceding the event itself
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Fig. 8  Displacement values measured by Vertical Array DT0113—Tilt Link 55, referred to the event with 
OOA on 24/05/2020 04:37 AM, and to the 30 days preceding the event itself

Table 6  Characteristics of the DT0113 Tilt Links and the datasets involved in the analysis, together with 
the displacement generated by the event and the equivalent displacement threshold

Tilt link ID Depth (m) Dataset 
dimen-
sion k

Displacement 
generated d∗

0
 

(mm)

Mean �s (mm) Standard 
deviation �s 
(mm)

Equivalent 
displacement 
threshold d∗

th
 

(mm)

43 12.50 5 2.3 1.14 0.93 3.9
55 6.50 5 2.4 1.20 1.00 4.2

Fig. 9  Graphical representation of equivalent displacements referred to the event of interest, the time period 
of 30 days preceding the event itself, and the threshold evaluated from these values for DT0113—Tilt Link 
43
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representing an occurrence where the early warning elaboration was triggered only by 
the geometric pattern of monitoring data. Moreover, a strong similarity in displacement 
trends for the Tilt Links considered for this analysis can be observed from available 
graphs. Since these values are obtained from cumulative displacements, it is possible 
to assume that both Links were influenced by a common movement located at a lower 
depth.

3.3  Case study #3

The third case study here discussed refers to the monitoring of a landslide, located in Cen-
tral Italy, that persists on the construction site of a state road connecting the Adriatic and 
Tyrrhenian Seas, through Abruzzo and Molise regions. The site is affected by the presence 
of several landslides in the western sector of the area of interest, showing fast kinematics 
and sliding surfaces at a depth between 8 and 10 m, with other instabilities appearing in the 
first meters of material in the Eastern areas. Following a series of preliminary surveys evi-
dencing further problems related to settlements and damages to pre-existing instrumenta-
tion, a MUMS-based monitoring system was designed, with a total of nine Vertical Arrays 
installed on site over approximately 4 years starting from the end of 2016. Each Array fea-
tured a different number of Tilt Link HR 3D V, equipped with 3D MEMS and electrolytic 
tilt sensors, and customized interspace between nodes, as in Table 7.

The event here analyzed, extensively discussed in Segalini et  al. (2019), occurred in 
March 2017, some months after the installation of the Vertical Array DT0014. At that time, 
DT0014 was the only automatic monitoring device present on site, and the acquisition 
process was set on a sampling frequency of 1 h. Starting from the end January 2017, the 
inclinometer recorded a series of displacements involving the first six meters of soil, with 
some datasets activating the early warning criteria implemented in the software. The phe-
nomenon evolved over the following weeks, leading to a major displacement recorded on 
March  8th that damaged the Array, partially compromising its functionality. The event was 

Fig. 10  Graphical representation of equivalent displacements referred to the event of interest, the time 
period of 30 days preceding the event itself, and the threshold evaluated from these values for DT0113—
Tilt Link 55
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identified by the elaboration software, which issued a series of alert messages to authorities 
responsible of the monitoring activity.

Ultimately, MUMS inclinometer DT0014 became completely inactive on March 13th 
due to excessive deformations. In the following days, an on-site inspection confirmed the 
landslide occurrence, highlighting the presence of a complex dynamic featuring several 
failures and scarps, settlements, and displacements (Fig.  11). Additionally, an in-depth 
check of the conditions of previously installed instrumentation reported severe damage 
caused by the event (e.g., inaccessible inclinometer casings).

It should be noted that only an early version of acceleration criterion was active dur-
ing the monitoring activity; therefore, no alert threshold based on equivalent displacements 
was available at the time of the event occurrence. Therefore, a back-analysis was performed 
on the datasets referring to the displacement observed on 08 March 2017, in order to apply 
the newly developed methodology to a real case critical scenario. In particular, the sud-
den increase in displacement rates was identified by Tilt Links 93 and 95, respectively, 
located 2.5 and 1.8 m below ground surface. For both Links, the analysis returned a seven-
point velocity dataset with the onset-of-acceleration at 02:28 of March 8th. By looking at 
both Figs. 12 and 13, it is possible to notice that a portion of the increasing displacement 
trend was not included in the dataset of the event. This could potentially be attributed to 
the criteria integrated in the algorithm for the identification of the onset-of-acceleration. 

Table 7  Features of the monitoring system installed to control the slope displacements of a landslide 
located near a State Road in Central Italy

ID (−) Installation date 
(dd/mm/yyyy)

Array typology (−) Sensors number and typology (−) Array length (m)

DT0014 18/11/2016 Vertical Array 50 × Tilt Link HR 3D V 35.00
DT0065 07/09/2017 Vertical Array 48 × Tilt Link HR 3D V 35.00
DT0094 19/09/2018 Vertical Array 34 × Tilt Link HR 3D V 69.00
DT0095 18/09/2018 Vertical Array 47 × Tilt Link HR 3D V 95.00
DT0096 20/09/2018 Vertical Array 55 × Tilt Link HR 3D V 111.00
DT0097 19/09/2018 Vertical Array 33 × Tilt Link HR 3D V 66.00
DT0119 11/11/2020 Vertical Array 50 × Tilt Link HR 3D V 100.00
DT0120 14/11/2020 Vertical Array 50 × Tilt Link HR 3D V 100.00
DT0121 13/11/2020 Vertical Array 50 × Tilt Link HR 3D V 100.00

Fig. 11  Area surrounding Vertical Array DT0014, as observed during the on-site inspection following the 
recorded critical event
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Nonetheless, both datasets still showed a significant slope movement, with Tilt Link 93 
recording 7.3 mm of displacement over a time period of 7 h, while displacements measured 
by Tilt Link 95 reached a value of 11.2 mm over the same time window.

As in previous cases, the available monitoring data were processed in order to evaluate 
the displacement measured by each Link during the event, and to assess the corresponding 
alert threshold. Given the one-hour sampling frequency of the Vertical Array, and since the 
detected event involved seven monitoring values, the 30-day time window provided 661 
displacement values for each Tilt Link. The outcomes of this procedure are summarized 
in Table 8, and the graphical representation of the obtained value is displayed in Figs. 14 
and 15. It is possible to notice how the event caused a displacement that clearly overcomes 
the threshold value for both datasets, thus confirming that the monitored phenomenon is 
showing a critical behavior. It is worth noting that this is the only confirmed slope collapse 

Fig. 12  Displacement values measured by Vertical Array DT0014—Tilt Link 93, referred to the event with 
OOA on 08/03/2017 02:28 AM, and to the 30 days preceding the event itself

Fig. 13  Displacement values measured by Vertical Array DT0014—Tilt Link 95, referred to the event with 
OOA on 08/03/2017 02:28 AM, and to the 30 days preceding the event itself
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Table 8  Features of the DT0014 Tilt Links and the datasets involved in the analysis, together with the dis-
placement generated by the event and the equivalent displacement threshold

Tilt Link ID Depth (m) Dataset 
dimen-
sion k

Displacement 
generated d∗

0
 

(mm)

Mean �s (mm) Standard 
deviation �s 
(mm)

Equivalent 
displacement 
threshold d∗

th
 

(mm)

93 2.50 7 7.3 0.31 0.51 1.9
95 1.80 7 11.2 0.34 0.67 2.4

Fig. 14  Graphical representation of equivalent displacements referred to the event of interest, the time 
period of 30 days preceding the event itself, and the threshold evaluated from these values for DT0014—
Tilt Link 93

Fig. 15  Graphical representation of equivalent displacements referred to the event of interest, the time 
period of 30 days preceding the event itself, and the threshold evaluated from these values for DT0014—
Tilt Link 95
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recorded by MUMS inclinometers to date. An additional observation concerning this case 
study involves the results deriving from the application of a failure forecasting model, spe-
cifically the linear Inverse Velocity Method (Fukuzono 1985). The time of failure evaluated 
with this methodology was compared to the date of collapse observed from monitoring 
data (i.e., the date and time where instrumental data evidenced the damage caused to the 
Array by soil deformations). As reported by Segalini et al. (2019), both datasets provided a 
positive prediction of the slope collapse, with a time difference of 3 h for Tilt Link 93, and 
1 h for Tilt Link 95.

4  Conclusions

The importance and effectiveness of Landslide Early Warning Systems has increased con-
siderably over the years, thanks to the introduction of technological developments that 
allowed to improve their functionality and efficiency. One of the most important elements 
in a LEWS is represented by failure forecasting and alert thresholds assessment proce-
dures, which represents an essential reference to identify slope instabilities and behaviors 
potentially leading to collapses and failures. In particular, the correct definition of alert lev-
els should aim to minimize the occurrence of both false positive and missed alerts.

This paper deals with this issue by proposing a procedure to assess alert thresholds 
based on the concept of equivalent displacements, defined as the displacements generated 
in a time interval equal to the one showed by a specific event identified by the elabora-
tion software. When referred to data sampled prior to the event of interest, they can give 
an indication of the past behavior of the monitored element. Therefore, they are able to 
establish a term of comparison in order to understand if the recorded event generated a 
displacement which does not correspond to a critical occurrence if compared to the entity 
of previously observed events, despite being geometrically compatible with an accelerat-
ing pattern. In order to achieve this objective, the approach here described involves the 
retrieval of monitoring values sampled in a time window of 30 days preceding the event 
of interest. These data are exploited to evaluate the equivalent displacements values, tak-
ing as a reference the duration of the detected event. Finally, the software is able to assess 
a threshold value on the basis of the mean and standard deviation values of the reference 
dataset.

Several examples are included in this paper, underlining the ability of the proposed 
model to define an effective threshold value to compare the potentially critical event with 
previously observed trends. In particular, the case studies here presented featured the 
on-site implementation of automatic monitoring instrumentation that provided an ade-
quate amount of data to apply the methodology. The events here analyzed involve three 
events that did not lead to any significant effect on the stability conditions, and an occur-
rence where a collapse was observed following the development of significant slope 
deformations.

The results obtained can be summarized as follows:

– The exploitation of automatic instrumentation played an essential role in providing an 
appropriate amount of monitoring data for the application of the proposed methodol-
ogy, giving also the possibility to implement the algorithm in the elaboration process 
with a near-real-time approach
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– The model parameters selected during the model calibration process (i.e., dataset 
dimension, number of standard deviations) proved to be effective for the methodology 
implementation in a real case application

– The outcome of the threshold definition process applied to potentially critical events 
allowed to assess if the detected occurrence displayed a significant deviation from the 
standard behavior of the monitored slope, identifying also any false alarm generated by 
displacement trends geometrically compatible with an accelerating pattern

The methodology here presented successfully achieved the purpose of this paper, pro-
viding an effective and easily applicable procedure for the analysis of potentially critical 
events and the identification of false alarms. Nonetheless, since the monitoring of slope 
displacements is only one aspect of a very complex phenomenon, this model should not 
be applied in isolation. In fact, the most reliable approach should involve the integration of 
multiple methodologies in order to have a more complete description of the slope evolution 
over time.

Following the observations previously presented, it is worth mentioning some final con-
siderations on the future developments involving the method here described. In particular, 
it would be interesting to apply the algorithm to other monitoring devices integrating auto-
matic sampling operations in order to verify its adaptability to different landslide survey 
approaches. Moreover, another aspect that could be further investigated involves the pos-
sibility to exploit the proposed procedure to assess more than a single threshold. This could 
be achieved by varying the number of standard deviations considered in the equation used 
to evaluate the d∗

th
 value, in order to obtain different alert levels based on the landslide 

behavior and integrate appropriate safety measures according to the level reached.
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