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Abstract: Infections due to Klebsiella pneumoniae have been increasing in intensive care units (ICUs)
in the last decade. Such infections pose a serious problem, especially when antimicrobial resistance
is present. We created a task force of experts, including specialists in intensive care medicine,
anaesthesia, microbiology and infectious diseases, selected on the basis of their varied experience in
the field of nosocomial infections, who conducted a comprehensive review of the recently published
literature on the management of carbapenemase-producing Enterobacterales (CPE) infections in
the intensive care setting from 2012 to 2022 to summarize the best available treatment. The group
established priorities regarding management, based on both the risk of developing infections caused
by K. pneumoniae and the risk of poor outcome. Moreover, we reviewed and updated the most
important clinical entities and the new antibiotic treatments recently developed. After analysis of
the priorities outlined, this group of experts established a series of recommendations and designed a
management algorithm.
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1. Introduction

Infections caused by Klebsiella pneumoniae have increased in hospitalization wards,
especially critical care settings, in the last decade, and they pose a severe problem when
antimicrobial resistance is present. This point-of-view article summarizes the recently
published literature on the management of carbapenemase-producing Enterobacterales
(CPE) infections in critically ill patients to determine the best available treatments for
patients while trying to avoid inappropriate antimicrobial therapy.

2. Current Epidemiology, Pathogeny and Antimicrobial Resistance of Klebsiella
pneumoniae Infections in the ICU

K. pneumoniae is one of the microorganisms most commonly implicated in healthcare-
associated infections (HAIs), accounting for 2% to 5% of hospital infections between 2011
and 2014 in Spain and nearer to 8% in more recent years, and is especially frequent among
infections that affect the urinary and respiratory tracts [1]. A recent one-day prevalence
study conducted worldwide found that Klebsiella pneumonia was the most frequently iso-
lated pathogen in ICUs. Compared with other pathogens, Klebsiella causes 5% to 10% of
infections in the ICU, and some high resistance percentages have been observed, some-
times close to 50%, against third-generation cephalosporins, penicillins associated with
β-lactamase inhibitors and quinolones, as well as growing resistance to carbapenems [2].

At least four components are involved in the pathogenicity shown by Klebsiella isolates:
the existence of fimbriae or the production of adhesins, the expression of siderophores, the
existence of a lipopolysaccharide that protects this microorganism from patient immune
responses and the presence of a polysaccharide capsule [3–5].

Resistance to carbapenems (imipenem, meropenem and ertapenem) in K. pneumoniae
is mediated by two major mechanisms. First, through the production of b-lactamases
with the ability to hydrolyze cephalosporins, such as ESBL (e.g., CTX-M-type) and AmpC
cephalosporinase (e.g., DHA-1 or CMY-2), in combination with decreased membrane
permeability in the cell wall [6]. The second mechanism is mediated by the production of
b-lactamases capable of hydrolyzing carbapenems, namely, carbapenemases. According
to the Ambler classification, carbapenemases can be classified as serine b-lactamases,
including class A (K. pneumoniae carbapenemase (KPC), as well as BKC and SME, among
others) and class D (OXA-48-like) enzymes, as well as class B or metallo-b-lactamases
(MBLs), including Verone-imipenemase (VIM), imipenemase (IMP) and New Delhi metallo-
b-lactamases (NDMs) [7–9]. These types of enzymes have structural and biochemical
differences, as well as different mechanisms of action. In this regard, MBLs require zinc for
the hydrolysis of b-lactam antibiotics, and their activity can be inhibited by ethylenediamine
tetra-acetic acid (EDTA) or dipicolinic acid as chelating agents [10], whereas most serine
b-lactamases are inhibited by recently released b-lactamase inhibitors, such as avibactam,
vaborbactam and relebactam [9,10].

KPC-producing K. pneumoniae isolates were first detected in the United States in 1996.
The presence of these bacteria has subsequently been revealed in many other countries,
including China, Italy and several South American countries [11]. The genes encoding
KPC carbapenemases in this pathogen and other Enterobacterales can be located on mobile
genetic elements, such as conjugative plasmids (e.g., IncFII, IncL/M and IncA/C), and in
proximity to Tn4401 transposons and non-Tn4401 elements. However, transposon Tn4401
has been revealed to be the main genetic structure facilitating the dissemination of bla
KPC-like genes to different plasmid scaffolds [7,10].
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In regard to class D β-lactamases, only OXA-48 and variants such as OXA-163, -181,
-232 and -244 have been reported in K. pneumoniae. The blaOXA-48 gene is located in the
Tn1999 composite transposon [12]. The most common plasmids that harbour Tn1999
variants associated with blaOXA-48 belong to the IncL (IncL/M) replicon types [10]. pOXA-
48 is highly transmissible, exhibiting a transfer frequency 50 times higher than those of the
similar IncL plasmids with blaNDM-1. This is likely due to the insertion and disruption of
Tn1999 variants into the tir regions of pOXA-48 (the tir gene encodes a protein that inhibits
transfer) [13].

VIM-type and NDM-type MBLs are among the most prevalent MBLs found in this
pathogen [11,14]. The NDM carbapenemase was reported from K. pneumoniae and Es-
cherichia coli in 2009, similar to another kind of MBL [15]. The MBL genes (e.g., blaIMP
,blaVIM and blaNDM) are found on different broad-host-range plasmid types (e.g., IncA/C
and IncN) with various genetic features [16]. The blaIMP and blaVIM genes are usually
found in class-1 integron structures located within transposon structures that enhance
their dissemination. However, blaNDM genes are associated with mosaic genetic structures,
including insertion sequences (e.g., ISAba1), but the exact mechanism leading to their
acquisition on plasmid scaffolds remains unknown [17]. blaNDM has been found in a variety
of genetic contexts, suggesting that multiple mechanisms are involved in the mobilization
of blaNDM [10].

Carbapenemases have variable and different hydrolytic activities, with MBLs and
KPC enzymes being more efficient than OXA-48-like enzymes [10]. However, high-level
carbapenem resistance among K. pneumoniae isolates with carbapenemases requires addi-
tional permeability deficiencies, regardless of the type of carbapenemase produced [18].
To hallmark this, isolates of K. pneumoniae with all kinds of carbapenemases showing low
carbapenem MICs have been identified. This might account for the initial successful spread
of K. pneumoniae with blaKPC in the US during the 1990s and the initial spread of K. pneu-
moniae with blaVIM in Greece, where some isolates with VIM-type enzymes had imipenem
MICs lower than 0.5 mg/L so they were susceptible according to clinical breakpoints and
undetectable for diagnostic systems of that time [8].

However, multidrug-resistant (MDR) K. pneumoniae isolates recovered in ICUs are
associated with high-risk clones (HiRiCs). These are defined as highly specialized genetic
populations or subpopulations with enhanced abilities to colonize, spread and persist in
particular niches after having acquired diverse adaptive traits that increase their epidemicity
and/or pathogenic potential, including antibiotic resistance [19]. The relevance of HiRiCs in
this species was first highlighted after their association with the spread of ESBL and, more
recently, with carbapenemases. In most cases, the same clones that initially acquired ESBL-
producing plasmids were those that subsequently incorporated carbapenemase genes,
demonstrating the importance of the “local clonal pool” in the maintenance of resistant
populations and the acquisition of new resistance mechanisms. As a consequence, it is very
common for carbapenamase-producing K. pneumoniae isolates to also produce ESBL [20].
Different HiRiCs of K. pneumoniae have revealed this situation (Table 1).

The spread of other HiRiCs has also been reported, including ST11 and ST147, both
associated with other b-lactamases transmitted by horizontal genetic processes, such as
plasmid ampC enzymes (e.g., DHA-1) and carbapenemases (KPC, VIM, NDM and OXA-
48), in numerous countries [21–23]. However, the importance of these clones became
more apparent with the detection of KPC-type carbapenemases in K. pneumoniae isolates
belonging to ST258. Phylogenetic studies revealed the emergence of these strains during
the early 2000s, with rapid global spread, cross-country transmission and widespread
endemicity, with multiple outbreaks [24]. ST258 consists of two distinct lineages (clades I
and II). The most widely accepted hypothesis is that they arose as a result of a recombination
process between ST11 and ST442 clones. In addition, it was possible to acquire promiscuous
plasmids from the incompatibility F group harbouring the blaKPC-2 or blaKPC-3 genes 21 [10].
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Table 1. High-risk clones in Klebsiella pneumoniae.

High Risk Clone Mechanism of Antimicrobial Resistance Co-Resistance

ST11
ST15
ST101
ST147

ESBL (CTX-M-15, . . . )
Carbapenemases (KPC, VIM, NDM, OXA-48)

Fluoroquinolones (topoisomerases mutations, qnr,
aac(6′)-Ib-cr . . . ), plasmidic AmpC beta-lactamases

(DHA-1), aminoglycosides (ArmA, RmtB methylases)

ST258 Carbapenemases (KPC) Colistin (mutations in pmrB), ceftazidime-avibactam

ST307 ESBL
Carbapenemases (KPC-like, NDM)

Colistin (mutations in mgrB and pmrB),
ceftazidime-avibactam resistance

ST383 Carbapenemases (KPC, VIM, OXA-48) ESBL (CTX-M-15)
ST392 Carbapenemases (KPC) Multidrug resistance
ST405 Carbapenemases (OXA-48) Cephalosporins (ESBLs: CTX-M-14, CTX-M-15)
ST512 Carbapenemases (KPC-like) Ceftazidime-avibactam

Other very close HiRiCs of ST11 and ST258 are ST340, ST437 and ST512, all of which
are single locus variants of ST258, comprising the so-called CC258 [25]. In some institutions,
isolates associated with this CC acquired resistance to colistin, caused outbreaks in ICUs
and were maintained over the years in the same institution, revealing the tenacity of the
HiRiCs in these settings [26–28].

More recently, a HiRiC that has attracted and required significant attention due to
the limitation of therapeutic options was the ST307 clone [22]. Its importance has been
confirmed in epidemiological monitoring studies by its global dissemination and data
obtained in population structure studies using next-generation sequencing techniques.
As with other HiRiCs, phylogenetic studies suggested the emergence of this clone in
the early to mid-1990s and associated it with gyrA and parC mutations in the quinolone-
resistance-determining (QRDR) region devoted to fluoroquinolone resistance. Later, in
the 2000s, this clone acquired resistance to third-generation cephalosporins due to FIB-
like plasmids harbouring the blaCTX-M-15 gene and other genes conferring aminoglycoside
(strA, strB, aac(3)-IIa, aac(6’)-Ib-cr) and quinolone (qnrB1, oqxAB) resistance and to other
antimicrobials (sul2, dfrA14, catB, fosA). Finally, resistance to carbapenems emerged with
several carbapenemases, including OXA-48, OXA-181, KPC-2, KPC-3, VIM-1 and NDM-
1, and colistin resistance was associated with the transferable mcr-1 gene. Nevertheless,
the most urgent concern arose when the ST307 HiRiC was associated with resistance to
ceftazidime-avibactam (CAZ-AVI) due to the emergence of KPC variants (KPC-2 and
KPC-3, with additional mutations in the omega loop of the b-lactamase) in K. pneumoniae
isolates. Unfortunately, there were multiple emergences in different hospitals in different
geographic areas, involving outbreaks in ICUs and among patients treated with CAZ-
AVI [22,29,30]. Currently, outbreaks have been reported in several countries, including Italy,
Colombia, Argentina, the United States, Spain and China, and they have become endemic
in some countries. This clone has a high ability to colonize hospital surfaces and also has
enhanced pathogenicity [22]. In some studies, hypervirulent traits have been detected in
this clone [31,32].

Other relevant recognized HiRiCs are ST383, ST392 and ST405, mostly reported as
being associated with carbapenemases [33–35] (Table 1).

3. Klebsiella pneumoniae in ICUs: Risk Factors and Outcome
3.1. Updated Risk Factors

Different observational studies have attempted to determine the different risk factors
associated with developing carbapenem-resistant Klebsiella pneumoniae (CR-Kp) infections.
The population included in the main studies consisted of both adult and pediatric hospital-
ized patients, social-health resident patients, ICU patients, hematological patients, patients
with solid-organ transplants and patients known to be CR-Kp-colonized [36–39]. The most
important risk factors for CR-Kp infection reported in the published studies are prior expo-
sure to antibiotics, ICU length of stay, use of invasive procedures and rectal colonization.
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Rectal colonization is worthy of separate reflection as a risk factor for CR-Kp infection.
In centres or units where culture monitoring is performed systematically, CR-Kp infec-
tion was documented almost exclusively in colonized patients [40–43]. It is interesting
to ascertain the attack rate that may condition an infection. A recent study has identi-
fied that a threshold of 22% abundance for KPC-producing Klebsiella pneumoniae in the
gastrointestinal tract is associated with the risk of developing bacteremia in hospitalized
patients [32]. The sole risk factor associated with this critical threshold was prior exposure
to carbapenems [43].

In addition, an Italian multicentre study analyzed the specific risk factors for develop-
ing CR-Kp bacteremia in rectal carriers [27]. Multivariate analysis revealed that admission
to the ICU (OR 1.65, 95% CI 1.05–2.59, p = 0.03), invasive abdominal procedures (OR 1.88,
95% CI 1.16–3.04, p = 0.01), previous chemotherapy or radiotherapy treatments (OR 3.07,
95% CI 1.78–5.29, p < 0.001) and colonization of other-than-rectal colonization sites (OR
3.37 for every additional site, 95% CI 2.56–4.43, p < 0.001) were independent risk factors for
the onset of CR-Kp bacteremia among rectal carriers. This study led to the development of
the so-called “Giannella risk score” (GRS), which was significantly higher among colonized
patients who developed bacteremia at 90 days compared with patients who did not develop
bacteremia (8.4 vs. 2.7, p < 0.001). In rectal carriers with signs and symptoms of infection
but not presenting the aforementioned risk factors, it would probably not be necessary to
empirically use antibiotics with activity against CR-Kp [44]. The GRS has been validated
in an external cohort of 94 CR-Kp-colonized patients, showing that the GRS was the best
predictor of CR-Kp infection, with a cut-off of >7. It was also proposed that commencing
treatment with an antibiotic with activity against CR-Kp should be considered for those
rectal carriers with clinical suspicion of infection and GRS scores >7 [45].

3.2. Prognostic Factors

The mortality reported in the literature ranges from 10.9% and 69.3%; this broad
variation is in accordance with significant differences in the populations across the different
studies included in terms of severity, need for ICU admission and percentage of strains
with resistance mechanisms [46–48].

There are some clinical circumstances associated with a worse outcome (Table 2).
Predicted admission to the ICU was analyzed in 309 cases of bacteremia for K pneumo-
niae: 58 (18.8%) required ICU admission and only the pulmonary site revealed a clear
association [49]. Several clinical issues have revealed a prognostic capacity for the fol-
lowing factors: female sex, age above 65, severity scales, use of corticosteroids, active
neoplasia, severity of infection (sepsis/septic shock), respiratory site, gastrointestinal
site other than the hepatobiliary system, need for mechanical ventilation and parenteral
nutrition [47,49–51]. History of immunosuppression, high scores on prognostic scales and
severity of infection are the most common factors with more overwhelming associations.

A study published in Japan found that, while bacteremia caused by K. pneumoniae
was present in just 8.7% of strains, those strains were ESBL producers (no other resistance
mechanism was detected); consequently, empirical antibiotic treatment was suitable in
more than 95% of cases [47]. Interestingly, the reported mortality (in a series with 62% of
patients with cancer) was just 10.9%. Conversely, regarding mortality results published
in other monocentric studies with smaller numbers of patients [48], deaths of up to 52%
during the first 48 h were reported. Larger studies of patients, including patients with
K. pneumoniae bacteremia (853 cases, 178 of whom required ICU admission), showed that
adequate treatment correlated with a higher survival rate in multivariate analysis [50]. In
this work, the production of ESBLs was the only resistance mechanism detected (12%), and
in 91.1% of cases the treatment received was inappropriate (compared to 22.1% of cases
with no resistance mechanisms). Although the authors did not offer data on the distribution
of suitable treatments between groups according to the existence of resistance mechanisms,
Zhang et al. [52] revealed a clear association between MDR (including carbapenem resis-
tance) and mortality, which was increased 2.942 times (95% CI 1.585–5.461; p < 0.001). All
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of the above considerations lead us to affirm the need to identify those patients with a
higher probability of being carriers of MDR K. pneumoniae strains in order to improve the
empirical treatment selection (Table 3).

Table 2. Risk factors associated with mortality in K. pneumoniae infections.

Reference and Patients Prediction Prognostic Factor OR (95% CI)
p-Value

Namikawa et al. [47]
129 patients with bacteremia

30-day mortality Sepsis 7.46 (1.85–30.1) <0.01
iutA gen 4.47 (1.03–19.5) <0.05

Tseng et al. [49]
309 patients with community-onset

bacteremia admitted to ICU

Infection-related mortality in ICU APACHE II score 1.43 (1.12–2.01) 0.04
Cancer 35.48 (2.54–495.57) <0.01

1-year mortality Cancer 3.14 (1.36–7.26) <0.01

Man et al. [50]
853 patients with bacteremia (20.9%

admitted to ICU)
30-day mortality

Respiratory tract
infection 2.99 (2.06–4.34) <0.01

Intra-abdominal
infection, excluding

hepatobiliary
2.76 (1.76–4.34) <0.01

Mechanical ventilation 2.20 (1.50–3.22) <0.01
Medical ward 1.83 (1.25–2.67) <0.01

No diabetes mellitus 1.76 (1.24–2.50) <0.01
Inappropriate empirical

antibiotic treatment 1.71 (1.27–2.32) <0.01

Female sex 1.70 (1.25–2.31) <0.01
Age > 65 years 1.69 (1.16–2.47) <0.01
Solid tumour 1.46 (1.05–2.01) 0.02

Papadimitriou-Olivgeris et al. [51]
139 patients with ICU-acquired

bacteremia (CP-Kp)
30-day mortality

Septic shock 6.5 (2.2–19.5) <0.01
SAPS II 1.1 (1.0–1.2) <0.01

Corticosteroids during
bacteremia treatment 3.1 (1.1–8.6) 0.02

Parenteral nutrition 2.8 (1.0–7.7) 0.04
Combination antibiotic

treatment 0.24 (0.07–0.75) 0.01

APACHE II: Acute Physiology and Chronic Health Evaluation II, CP-Kp: carbapenemase-producing K. pneumoniae,
ICU: intensive care unit, SAPS II: Simplified Acute Physiology Score II.

Table 3. Risk factors associated with the existence of resistance mechanisms in K. pneumoniae infections.

References OR (95% CI) p-Value

Extended-spectrum beta-lactamases
Man et al. [50] No hepatobiliary site 2.231 (1.341–3.712) 0.002

Corticosteroids in the previous 30 days 1.957 (1.061–3.610) 0.032
Solid cancer 1.851 (1.214–2.823) 0.004

CVC carrier in the current admission 1.686 (1.051–2.705) 0.030
Resistance to carbapenems

Prior admission to ICU 2.32 (1.22–4.4) 0.01
Zhang et al. [52] Surgery 2.33 (1.26–4.32) 0.007

Prior antibiotics 2.02 (1.1–3.74) 0.024
Mechanical ventilation 3.3 (1.56–6.97) 0.002
APACHE II > 10 points 1.9 (1.06–3.42) 0.031
Hospital stay > 14 days 4.34 (2.21–8.55) <0.001

CVC: central venous catheter.

Another risk factor is the existence of virulence factors. A study analyzed the impact
of the presence of virulence genes by means of a multiple PCR in 129 strains retrieved
from bacteremia. The presence of the iutA gene, which codes the formation of the aer-
obactin siderophore receptor and is therefore implicated in the virulence of the bacteria
and interference with host immune systems, was significantly associated with greater
mortality [47].
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4. Clinical Entities

Although episodes of infection due to K. pneumoniae can also occur in the community,
the bacterium is more common as an aetiological agent in nosocomial infections. Among
nosocomial cases, pulmonary infections and bacteremia are especially frequent. Further-
more, K. pneumoniae also causes a significant number of nosocomial urinary infections.
Among community-acquired entities, pneumonia, urinary infections and liver abscesses are
frequent. In addition, splenic abscesses, spontaneous bacterial peritonitis, endophthalmitis
and meningitis, and brain abscesses are also prevalent. The presence of some virulence fac-
tors in community-acquired infections can account for the emergence of invasive diseases
due to Klebsiella pneumoniae [53].

4.1. Pneumonia
4.1.1. Community-Acquired Pneumonia (CAP)

In a large study of adult patients in the US hospitalized with CAP, viruses were the
main aetiological agents, whereas Enterobacteriaceae ranked 11th [54], with 1% prevalence.
However, patients with known risk factors for Gram-negative bacteria were excluded. In
a more recent article by Ceccato et al., K. pneumoniae was the aetiological agent in about
1% to 2% of patients with CAP [55]. Overall, K. pneumoniae is the aetiological agent in
1% to 7% of episodes, with 5% to 36% of these bacteria being MDR strains [56]. In Asian
and African countries, the prevalence of Gram-negative microorganisms appears to be
higher [57]. Unfortunately, the real incidence of K. pneumoniae in critical care settings
is poorly described and reports are scarce. Only one study in a French ICU described
59 infections caused by K. pneumoniae over five years; 26 (44%) of them were community-
onset infections [58].

The reported risk factors for Klebsiella pneumoniae CAP are female sex, diabetes mellitus
and alcoholism [56]. Risk factors for MDR strains of K. pneumoniae are often reported to-
gether in the Enterobacteriaceae group. Therefore, Villafuerte et al. performed a multinational
study that showed that risk factors for CAP caused by MDR strains of Enterobacteriaceae
were prior ESBL infection, being underweight, cardiovascular diseases and hospitalization
in the last 12 months [59].

Hypervirulent strains of K. pneumoniae can cause a syndrome of pneumonia with
invasive and metastatic infections, such as bacteremia, liver abscess and necrotizing fasciitis,
whereas the traditional syndrome is associated with pneumonia, urinary tract infection or
infection at abdominal or surgical sites, with ulterior bacteremia [60].

4.1.2. Nosocomial Pneumonia

At the beginning of the 20th century, K. pneumoniae represented the aetiological
causative pathogen in less than 10% of nosocomial pneumonia episodes [61]. More re-
cently, in two international and multicentre studies carried out among patients affected
by nosocomial pneumonia, including ventilator-associated pneumonia (VAP) [62,63], K.
pneumoniae was found to be the leading pathogen (37% and 33%), followed by P. aeruginosa
(30% and 17%). The second study was focused on Gram-negative bacteria, but the first
study also included Gram-positive pathogens. In the ICU setting, K. pneumoniae ranked
second, accounting for 8.5% of isolates, as the Gram-negative aetiological agent of VAP in
Spanish ICUs [2].

The clinical presentation of patients with K. pneumoniae nosocomial pneumonia is
similar to other aetiologies. Patients can show new or persistent pulmonary opacities and
fever or hypothermia, leukocytosis or leukopenia, cough, and new onset of endotracheal
purulent secretions. However, bacteremia appears to be more common in nosocomial
episodes than in those of community origin [53]. In the study by Juan et al., the lung was
the source of bacteremia in around 6% of community-acquired episodes, compared with
approximately 20% in nosocomial episodes [53].

In a meta-analysis, Agyeman et al. reported the outcomes following therapy against
CR-Kp [64]. In this study, the ICU population was 12% to 100%, with most studies reporting
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more than 50% of ICU patients. Agyeman et al. reported that in more than 36% of the
studies pneumonia represented more than 20% of CR-Kp infections [64].

4.1.3. Outcome

In the study by Torres et al., focused on nosocomial pneumonia, the clinical cure rate
was 76.9% in the overall population, 81.3% for patients with Gram-negative nosocomial
pneumonia and 81.4% for patients with pneumonia caused by K. pneumoniae. All-cause
mortality in the whole population was 8.4% [62]. However, in the study by Wunderink
et al., comparing cefiderocol against meropenem, the mortality rate for patients with
nosocomial pneumonia (including VAP) was 12% in the overall population and 10.8%
when K. pneumoniae was the causative microorganism [63].

Patients with pneumonia caused by K. pneumoniae, either community-acquired or
nosocomial, can have worse outcomes given certain risk factors. Hwang et al. reported
that patients with bacteremia, altered mental status or respiratory rates over 22 breaths per
minute presented higher mortality [60]. Mortality rates appear to be similar for traditional
or hypervirulent clinical syndromes [60].

For patients with CR-Kp, the initial empirical antibiotic therapy is of major relevance
to the avoidance of poor outcomes [64].

4.2. Bacteremia

K. pneumoniae is the second most common Gram-negative microorganism causing
bloodstream infections in both community and nosocomial settings [2,65]. In a large study
performed in Canada, with 640 episodes of Klebsiella pneumoniae bacteremia, an overall
annual population incidence of 7.1 per 100,000 was reported [65]. According to origin,
30% of episodes were community-acquired, 43% were healthcare-associated and 27% were
nosocomial. The median length of stay was 30 days in nosocomial episodes, in contrast
to 7.8 and 8.1 for community or healthcare acquisition. In nosocomial bacteremia, the
time from admission to diagnosis of bacteremia was 11.4 days. A source of infection was
identified in 70% (n = 408) of episodes, the most common sources being the genitourinary
tract (25%), the biliary tract (19%), intra-abdominal (10%) and pneumonia (8%).

Risk factors for Klebsiella pneumoniae bacteremia were solid-organ transplantation,
chronic liver disease, renal dialysis and cancer. Gastrointestinal malignancies affected
13.7% of patients. Overall mortality was 20%. Mortality rates in patients with bacteremia
were high but differed according to origin of acquisition: 8%, 18% and 33% in community-
acquired, healthcare-associated and nosocomial episodes, respectively [65].

4.3. Urinary Tract Infection (UTI)

K. pneumoniae can cause several forms of UTI, such as cystitis, pyelonephritis, renal
abscess, prostatitis and prostatic abscess. There are important differences between European
countries, which have low prevalence, as compared to Asian countries. In a four-year study
conducted in Croatia, Skerk et al. reported K. pneumoniae as the eighth most common
pathogen causing chronic prostatitis [66]. However, in a shorter series in Taiwan, Klebsiella
pneumoniae was the leading causative pathogen of prostatic abscess, causing more than
50% of cases [67]. Infections caused by ESBL-producing strains have been associated
with the presence of some risk factors, such as previous urological surgery, previous
hospitalization, urinary catheterization, history of renal stones and antibiotic therapy in the
last three months [68,69]. Clinical manifestations of these infections are not very different
from other aetiologies. In the ICU setting, UTI ranked as the seventh most common
aetiology (third among Gram-negative bacteria-related aetiologies), according to recent
data [2].

4.4. Intra-Abdominal Infections

Liver abscess due to K. pneumoniae is a disease that has increased in prevalence in the
last few decades, especially in Asia but also in the USA [70]. The clinical picture is a set
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of fever, chills and right upper quadrant pain, with laboratory abnormalities, including
elevated white blood cell count and alkaline phosphatase [71]. A combination of drainage
and antibiotics is the standard treatment, especially in patients with larger abscesses [70].

In a large Chinese study, Klebsiella pneumoniae was the second most common aetiologi-
cal agent in patients with spontaneous bacterial peritonitis. Initial presenting symptoms
are fever, abdominal pain, vomiting and diarrhea, in variable combinations, with only fever
being detected in more than half of patients with spontaneous bacterial peritonitis [72].

4.5. Central Nervous System (CNS) Infections

Although uncommon, K. pneumoniae is a frequent aetiology in CNS infections. In a
Chinese retrospective study, 5.8% of the episodes mainly presented as cerebral abscess [73].
K. pneumoniae genotype K1 has been reported as capable of causing catastrophic septic
ocular and central nervous system complications as a result of pyogenic liver abscess
independent of underlying host diseases [74]. Early adequate antibiotic treatment and
drainage are the key treatments for these patients.

4.6. The Role of Hypervirulent Klebsiella pneumoniae

Hypervirulent K. pneumoniae (hvKp) is an evolving pathotype that is more virulent
than classical K. pneumoniae (cKp). hvKp usually infects individuals from the community
who are otherwise healthy. Infections are more common in the Asian Pacific Rim but they
occur globally. The principal risk factors associated with hvKp are ethnic background,
as describe above, diabetes mellitus, male sex, immunoglobulin deficiencies, previous
treatment with ampicillin or amoxicillin, and treatment of esophageal varices. Similar to
cKp, hvKp strains are becoming increasingly resistant to antimicrobials via the acquisi-
tion of mobile elements carrying resistance determinants, and new hvKp strains emerge
when extensively drug-resistant cKp strains acquire hvKp-specific virulence determinants,
resulting in nosocomial infection [75].

hvKp infection frequently presents at multiple sites or subsequently metastatically
spreads, often requiring source control. The principal sites of infection involved are
pyogenic liver and splenic abscesses, community-acquired and nosocomial pneumonia
(including VAP), endophthalmitis, CNS infections, necrotizing fasciitis, and genitourinary
tract and endovascular infections [75].

Management challenges include rapid initiation of therapy to prevent subsequent
spread, detection of occult abscesses to enable source control and appropriate site-specific
therapy [75]. Although hvKp cases have higher rates of organ failure compared with
non-hypervirulent cases, mortality rates are similar in the two groups [58].

5. Clinical Management of Infections Caused by CR-Kp
5.1. General Issues: Monotherapy or Combination Therapy?

The mechanism of resistance carbapenems may condition sensitivity to antibiotics
and treatment decisions. There are phenotypical and genotypical tests by means of which
to ascertain whether a CR-Kp produces carbapenemase and to characterize it. It is rec-
ommended that laboratories that isolate these strains have the capacity to do so or that
they send them to a reference laboratory. When a strain is not sensitive to meropenem and
carbapenemase cannot be studied, it is recommended to treat the infection as if it were
severe [76].

There are no randomized studies to show whether combination treatment is superior
to monotherapy. Evidence is based on cohort studies, mainly analyzing bacteremias [77–80].
There have been no specific studies on critically ill patients. When next-generation b-lactam
antibiotics (CAZ-AVI, meropenem-vaborbactam (MER-VAB), imipenem-relebactam (IMI-
REL)) are not used, combined treatment is indicated for patients at high risk of mortality
(INCREMENT-CPE score > 7) (Table 4) [77–82]. When next-generation b-lactam antibiotics
are used, it is not required to systematically use combined treatment. Colistin and quinolone
use increases toxicity [76].
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Table 4. INCREMENT-CPE score.

Population Variables Score

General a Severe sepsis or septic shock 5
Pitt score ≥ 6 4
Charlson comorbidity index 3
Source other than urinary or biliary tract 3
Inappropriate early targeted therapy 2
Maximum score 17

Solid-organ transplant b INCREMENT-CPE score ≥ 8 8
Cytomegalovirus disease (previous 3 days) 7
Lymphocytes ≤ 600 mm3 4
No source control 3
Inappropriate empirical therapy 2
Interaction INCREMENT-CPE score ≥ 8 *
Cytomegalovirus disease (previous 3 days) –7

Maximum score c 17
a See reference [81]. b See reference [82]. c The maximum score in a patient with all risk factors would be 17
(INCREMENT-CPE score ≥ 8 (+8), cytomegalovirus disease (+7), lymphopoenia (+4), no source control (+3),
inappropriate empirical therapy (+2) and interaction INCREMENT-CPE score ≥ 8 with CMV (−7)).

In colonized patients with infection, active empirical treatment should be used. The
criteria for combined therapy use are the same. We recommend using the management
algorithm derived from the ANGEL cohort [45] (Figure 1). Table 5 shows treatment options
for CR-Kp infections in critically ill patients.
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Table 5. Treatment recommendations for CR-Kp infections in critically ill patients.

Carbapenem-Resistant
Klebsiella pneumoniae Recommended Treatment Alternative Therapy

No carbapenemase production or not available
Resistant to ertapenem

and susceptible to
meropenem

Meropenem (extended infusion)
Ceftazidime-avibactam

Quinolones, trimethropim-sulfamethoxazole, nitrofurantoin,
aminoglycosides can be used in cystitis if susceptible

Resistant to Ertapenem
and meropenem

Ceftazidime-avibactam,
Meropenem-vaborbactam,

Imipenem-relebactam, Cefiderocol

Aztreonam-avibactam b

Tigecycline (in combination therapy), Eravacycline (only
with abdominal source)

Quinolones, trimethropim-sulfamethoxazole, nitrofurantoin,
aminoglycoside can be used in cystitis if susceptible

Carbapenemase production

Oxacillinase
carbapenemases (OXAs)

Ceftazidime-avibactam
Cefiderocol

Aztreonam-avibactam b

Tigecycline (in combination therapy), Eravacycline (only
with abdominal source),

Aminoglycoside (urinary tract infections, catheter-related
infections, combined therapy (including Plazomycin),

Fosfomycin (urinary tract infections)

Klebsiella pneumoniae
carbapenemases (KPCs)

Ceftazidime-avibactam,
Imipenem-relebactam,

Meropenem-vaborbactam,
Cefiderocol

Aztreonam-avibactam b

Tigecycline (in combination therapy), Eravacycline (only
with abdominal source)

Amynoglicoside (urinary tract infections, catheter-related
infections), combined therapy (including Plazomycin),

Fosfomycin (urinary tract infections)

Metallo-b-lactamases a

(MBLs)
Aztreonam (when susceptible)

Aztreonam-avibactam b

Tigecycline (in combination therapy), Eravacycline (only
with abdominal source)

Amynoglicoside (urinary tract infections, catheter-related
infections, combined therapy (including Plazomycin),

Fosfomycin (urinary tract infections)
a Verona integron-encoded metallo-β-lactamases (VIMs), New Delhi metallo-β-lactamases (NDMs) or imipenem-
hydrolyzing metallo-β-lactamases (IMPs). b Ceftazidime-avibactam plus aztreonam can be used until available.

5.2. How Should CR-Kp Sensitive to Meropenem Be Treated?

Many CR-Kps that do not produce carbapenemases are resistant to ertapenem and
sensitive to meropenem. This can also be the case for some strains producing carbapen-
emases (e.g., OXA-48). Except in the case of cystitis, most experts recommend not using
meropenem as first-line treatment, especially if any carbapenemase is detected or if the
agent cannot be characterized [76]. When there are no other active treatment options or
none is available and when the MIC is ≤8 mg/L, high-dose meropenem could be used
(2 g/8 h) in extended perfusion and combined with one or more active drugs [45,78,82–85].

KPC carbapenemases have a high affinity for ertapenem. Using ertapenem can saturate
the enzyme and restore meropenem activity [86]. There is some evidence in critically ill
patients for the efficacy of the ertapenem–meropenem combination in rescue treatments [87].
Whilst there are no further data, caution in using this option is recommended. Probably, it
should be reserved for use as an alternative when other options are not feasible [76].

5.3. How Should a CR-Kp Resistant to Meropenem Be Treated?

In this situation, it is very important to identify the carbapenemase. CAZ-AVI is not
active against MBL-producing strains [88]. IMI-REL and MER-VAB are not active against
OXA- and MBL-producing strains [89]. Figure 2 reports the activity of each one of these
drugs against the different mechanisms of resistance, and Table 5 outlines the treatment
recommendations for Klebsiella pneumoniae infections resistant to carbapenems in critically
ill patients.
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Figure 2. Activity of new antibiotics against Klebsiella pneumoniae resistant to carbapenems, according
to resistance mechanisms. Green, susceptible; red, resistant. * Despite the fact that vaborbactam and
relebactam are not able to inhibit OXA-48, both imipenem and meropenem have activity against
some strains.

In patients previously treated with CAZ-AVI, strains may appear to be resistant to this
antibiotic that also appear to be sensitive to meropenem in the antibiogram; phenotypic
tests may not detect carbapenemases, and if there is no sensitivity to CAZ-AVI the situation
may go unnoticed [90–93].

When the strain is an OXA producer, the treatment of choice is CAZ-AVI [76,94].
Aztreonam-avibactam also has in vitro activity [95].

KPC-producing strains can be treated with CAZ-AVI [96–99], MER-VAB [100], IMI-
REL [101] or cefiderocol [102]. None of these antibiotics is free of the risk of resistance [103–105].

CAZ-AVI has been revealed to be effective in monotherapy [98]. Nonetheless, to
avoid the onset of resistant mutants, use in combined therapy in pneumonia cases is
recommended when an extracorporeal blood-filtering technique is used and when there
is an uncontrolled focus or a high inoculum (e.g., abdominal) [106]. Strains resistant to
CAZ-AVI due to the development of mutant KPC can be treated with MER-VAB or IMI-
REL [89,107]. β-lactam/β-lactamase inhibitor combinations, namely, CAZ-AVI, MER-VAB
and IMI-REL are last-resort agents that represent a valuable option in the treatment of
these severe infections. On the other hand, the recent emergence of resistance to these
last-line antimicrobials can limit their use in clinical practice. In case of resistance to CAZ-
AVI and/or MER-VAB, IMI-REL has shown adequate in vitro activity [108]. The addition
of relebactam significantly improves the activity of imipenem against most species of
Enterobacteriaceae (lowering the minimum inhibitory concentration (MIC) by 2- to 128-fold),
depending on the presence or absence of β-lactamase enzymes. Against P. aeruginosa, the
addition of relebactam also improves the activity of imipenem (MIC reduced eight-fold).
Therefore, IMI-REL may be useful in patients with concomitant documented P. aeruginosa
infections [89]. The great activity of relebactam against KPC-2 and KPC-3 β-lactamase may
confer a certain advantage on the use of IMI-REL in treating these strains [109].

Colistin use is only recommended when there are no other alternatives, due to its lack
of efficacy in controlled studies and high renal toxicity [76,110].

MBL-producing strains resistant to aztreonam should be treated with aztreonam-
avibactam [111] or cefiderocol [112]. If aztreonam-avibactam is not available, good results
have been reported using CAZ-AVI combined with aztreonam [113].

Figure 3 proposes a decision algorithm for use of the new drugs reported against
CR-Kps. To sum up, CAZ-AVI may be considered for first-line treatment, and in the event
of CAZ-AVI resistance and other categories mentioned in the figure, IMI-REL, MER-VAB
and cefiderocol could play important roles.
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in anaesthesia, intensive care medicine, microbiology and infectious diseases, all of whom
have varied experience in the field of nosocomial infections. The group carried out an
extensive literature search (randomized controlled clinical trials (RCTs), systematic reviews,
meta-analyses and expert consensus articles) of publications from 2012 to 2022 in the
MEDLINE/PubMed and Cochrane library databases to identify relevant studies on the
diagnosis and treatment of patients with K. pneumoniae infections and explore the main
topic of the manuscript: antimicrobial therapy based on the risk of antibiotic resistance and
the risk of poor outcome. Moreover, the group summarized the most important clinical
entities and the antibiotic treatments that have recently been developed. After analysis of
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