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LEARNING OBJECTIVES
At the end of this chapter, you will be able to:

(1) Apply ARIMA/SARIMA to forecast water demand in time-series data.
(2) Discuss the practical aspects and implications of using Machine Learning to water demand in 

time-series data.
(3) Build and run time series data using machinear learning techniques (MATLAB and Python).
(4) Interpret modeling results.

4.1 INTRODUCTION
Water demand forecasting is crucial in many aspects of Water Distribution Systems (WDS) because 
it helps minimize cost, optimize operations, and provide strategies for water conservation (Kofinas 
et al., 2014). It plays a vital role in the planning, operations, and management of physical assets for 
water utilities such as pumping stations, treatment plants, tanks, and distribution networks, which 
rely on future consumption forecasts (Arandia et  al., 2015; Billings & Jones, 2008). For instance, 
water utilities need short-term water demand forecasting in order to provide a more stable urban 
freshwater supply that will be used in a timely manner ‘by adjusting water supply to actual demand 
and consumption’ (Kofinas et al., 2014).

Traditional time series forecasting methods such as Auto-Regressive Moving Average (ARMA), 
Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated 
Moving Average (SARIMA) have been used for decades to forecast water demand using time series 
historical data. Redondo et al. (2018) used ARIMA models to make operational analysis in a drinking 
water treatment plant by analyzing how the water quality is affected by rainfall. The results showed 
that the ARIMA models were more accurate for analyzing the water treatment operations using a 
weekly timescale compared to a daily timescale ‘due to significant daily variations in the control 
parameters of water quality in the plant’ (Redondo et  al., 2018). Lee and Chae (2016) developed 
seasonal ARIMA models to make hourly water demand forecasting for micro water grids (Lee & Chae, 
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76 Embracing Analytics in the Drinking Water Industry

2016). Arandia et al. (2015) forecasted short-term water demand using SARIMA models to make both 
offline and online forecasts. The offline forecasts were made using the most recent historical data to 
‘re-estimate the models’ while the online forecasts were made by combining the SARIMA models 
(state-space form) with data assimilation by applying a Kalman Filter (KF) to update the models 
efficiently (Arandia et al., 2015).

In the past decade, artificial intelligence (AI) had a rapidly growing presence in many applications, 
including the water sector. Machine learning (ML) techniques are an artificial intelligence approach 
that has drawn serious attention in water-demand forecasting. Machine learning techniques have 
the advantage of being able to forecast nonlinear relationships between response variables and their 
predictors in time series models with the presence of noisy data. The increasing use of smart water 
metering in the water sector has made available a great amount of data which cannot be processed 
with traditional methods (Cominola et al., 2015). Therefore, the need has emerged to identify new 
data analysis techniques able to extract valuable information from available data and support water 
utilities in their decision systems. Analytics in the Drinking Water Industry support improvements in 
demand side management and water distribution network efficiencies, lead significant water savings, 
promote customers’ sustainable behaviours, identify peak hours of use, and facilitate water forecast 
demand modelling (Monks et al., 2019).

In this context, machine learning techniques (MLT) represent the key to many challenges. In the 
literature, especially in the last five years, various MLT for water demand analysis and forecasting 
have been proposed showing how they can also be applied in the water sector (Pesantez et al., 2020; 
Rahim et al., 2020; Villarin & Rodriguez-Galiano, 2019; Xenochristou et al., 2018).

4.2 TIME SERIES DATA ANALYSIS
A time series, consisting of a sequence of numerical observations recorded successively in time, has 
an intrinsic feature of dependence between adjacent observations, which is analyzed using time series 
analysis (Box et al., 2016). ARIMA and SARIMA models utilize historical time series data and consist 
of a three-step iterative process: identification, estimation, and diagnostics checking (Box et al., 2016).

4.2.1 ARIMA model
An ARIMA model is denoted as ARIMA(p,d,q) and is expressed using the mathematical formulations 
given in Equations (4.1)–(4.4) (Lee & Chae, 2016):
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where ∅ = autoregressive or damping parameter; θ = moving average parameter; µ = mean value of 
the process; εt = forecast error at time t, in which εt is assumed to follow a normal (0, σ) distribution, 
σ = standard deviation of the process (Lee & Chae, 2016). Equation (4.1) defines an autoregressive 
process of order p, AR(p), ‘which predicts values from previous values’; Equation (4.2) defines a 
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77Water demand forecasting | time series data

moving average process of order q, MA(q), ‘which accounts for previous random trends’; Equation 
(4.3) defines an autoregressive moving average process of order (p,q), ARMA(p,q); and Equation (4.4) 
defines an autoregressive integrated moving average process of order (p,q) differenced by order d, 
ARIMA(p,d,q) (Lee & Chae, 2016).

4.2.2 SARIMA model
A SARIMA or seasonal ARIMA model is obtained when an ARIMA model has a seasonal component 
(periodic pattern). It is denoted as ARIMA(p,d,q)x(P,D,Q)s and is expressed using Equation (4.5) 
(Arandia et al., 2015):

Φ ΘP
s s D d

t Q
s

tB B B B Y B B( ) ( ) ( )( )( ) ( )∅ − − = +1 1 δ θ ε  (4.5)

Φ Φ Φ ΦP
s s s

P
PsB B B B( )= − − −…−1 1 2

2
 (4.6)

Θ Θ Θ ΘQ
s s s

Q
QsB B B B( )= + + +…+1 1 2

2
 (4.7)

∅ = −∅ −∅ −…−∅( )B B B Bp
p1 1 2

2
 (4.8)

θ θ θ θ( )B B B Bq
q= + + +…+1 1 2

2
 (4.9)

δ µ= −∅ −…−∅ − −…−( )( )1 11 1p PΦ Φ  (4.10)

B Y Yk
t t k= −  (4.11)

where Equations (4.6)–(4.11) give the seasonal autoregressive polynomial, seasonal moving average 
polynomial, ordinary (non-seasonal) autoregressive (AR) polynomial, and the ordinary (non-seasonal) 
moving average (MA) polynomial respectively; B is the backshift operator as defined in Equation (4.11); 
P is the seasonal AR polynomial order, Q is the seasonal MA polynomial order, p is the non-seasonal 
AR polynomial order, q is the non-seasonal MA polynomial order, D is the seasonal differencing order, 
d is the non-seasonal differencing order, s is the seasonal period, Yt is the water demand time series, 
µ = mean value of the process; εt = forecast error at time t, in which εt is assumed to follow a normal 
(0, σ) distribution, and σ = standard deviation of the process.

4.2.3 Creating ARIMA/SARIMA models using econometric toolbox
This example shows how to use MATLAB’s Econometric Modeler App to create ARIMA and SARIMA 
models for time series analysis using the following 36-months hypothetical water demand data, with 
each time step corresponding to one month:

[266.0, 145.9, 183.1, 119.3, 180.3, 168.5, 231.8, 224.5, 192.8, 122.9, 336.5, 185.9, 194.3, 149.5, 
210.1, 273.3, 191.4, 287.0, 226.0, 303.6, 289.9, 421.6, 264.5, 342.3, 339.7, 440.4, 315.9, 439.3, 
401.3, 437.4, 575.5, 407.6, 682.0, 475.3, 581.3, 646.9]

You can download the Econometrics toolbox in MATLAB by clicking on Apps → Get More Apps 
→ and then search for ‘Econometrics Toolbox’ in the Add-On Explorer Search bar. You can run the 
example by using the following procedures:

Step 1. Save the water demand data as an excel file with each data value in a row so that you have 
one column of data (you can write the ‘water demand’ header in column A and row 1 and the 
data values in column A from rows 2 to 37. Import it to MATLAB’s workspace by clicking on 
Home → Import Data.

Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/1062807/9781789062380_0075.pdf
by guest
on 07 November 2022



78 Embracing Analytics in the Drinking Water Industry

Step 2. Open the Econometric Modeler app and click on Import → Import from Workspace to 
import and load the water demand time series data.

Step 3. The time series is plotted automatically and is shown in Figure 4.1. From the time series plot, 
the presence of a linear trend and seasonality (cyclic pattern) is evident, which means that the 
time series is non-stationary. Box–Jenkins models can only be applied to stationary time series, 
therefore, the nonstationary time series needs to be differenced to make it stationary.

Step 4. Click on the time series tab in the data browser (see Figure 4.2) and click on the time series 
variable that was just loaded. You can right-click to rename the variable ‘Water Demand.’

Step 5. Click on ‘ACF’ and ‘PACF’ in the plots tab (see Figure 4.3) to plot the autocorrelation function 
(ACF) and partial autocorrelation function (PACF) of the time series as shown in Figures 4.4 
and 4.5 respectively. ACF, which ‘gives the correlation of time-series data with its previous time-
series data,’ and PACF, which ‘correlates the time-series with its own lagged values separated 
by certain time units,’ are analytical tools that are used to assess the ‘reliability of time-series 
analysis’ (ArunKumar et al., 2021).

 The presence of a trend can also be noticed by looking at the ACF plot, which is indicated by 
continuing large autocorrelations even after several lags (NCSS). The first five lags in the ACF 
plot shown in Figure 4.4 are significant, which indicates the presence of a trend.

Step 6. Click on ‘difference’ in the econometric modeler tab to perform a first order non-seasonal 
difference operation (d = 1) to remove the trend. A new differenced time series shown in 
Figure 4.6 was created with ‘Diff’ automatically added next to the variable name, for example 
WaterDemandDiff. It is clear that there is no trend present anymore, however, if trend was still 
present, a second order difference operation (d = 2) would have been applied by clicking on 
‘WaterDemandDiff’ and clicking on ‘difference’ to get a new time series with the variable name 
‘WaterDemandDiffDiff’ – the two ‘Diff’ words after the name of the variable means that the time 
series was differenced twice (d = 2).

Figure 4.1 Time series plot of water demand.
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Step 7. Click on ‘WaterDemandDiff’ in the time series tab, and then click on ‘ACF’ and ‘PACF’ to 
plot the autocorrelation function and partial autocorrelation function respectively of the first 
order differenced time series, which are shown in Figures 4.7 and 4.8. From the ACF plot, the 
autocorrelations attenuate quickly, which means that there is no more trend, and a suitable 
value of d has been attained (d = 1) (Kofinas et al., 2014). We will refer back to the ACF and 
PACF plots of ‘WaterDemandDiff’ in Step 9.

Step 8. The value of p and q are found from the PACF and ACF respectively of the appropriately 
differenced time series (Kofinas et al., 2014). We have an AR model if the partial autocorrelations 
of the appropriately differenced time series cut off after a small number of lags, where the value 
of p is the last lag with a large value, and we have an MA model if the autocorrelations of the 
appropriately differenced time series cut off after a small number of lags, where the value of q is 
the last lag with a large value (NCSS). However, if the partial autocorrelation or autocorrelation 
plots of the appropriately differenced time series do not cut off, that means that we either have a 
mixed ARIMA model with p and q values greater than zero, or that we have an AR model with 
p = 0 when only the partial autocorrelation plot does not cut off, or that we have a MA model 
with q = 0 when only the autocorrelation plot does not cut off. If both partial autocorrelation and 
autocorrelation plots of the appropriately differenced time series do not cut off, we have a mixed 
ARIMA model with positive p and q values that can be estimated by using trial and error until 
the autocorrelations are minimal (NCSS).

Figure 4.2 Data browser.

Figure 4.3 Plots tab.
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Figure 4.4 Sample autocorrelation function of WaterDemand.

Figure 4.5 Sample partial autocorrelation function of WaterDemand.
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Figure 4.6 Time series plot of WaterDemandDiff.

Figure 4.7 Sample autocorrelation function of WaterDemandDiff.
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Step 9. By looking at the ACF plot of ‘WaterDemandDiff’ in Figure 4.7, the autocorrelation cuts 
off shortly after lag 2, therefore q can be chosen as 2. Similarly, by looking at the PACF plot of 
‘WaterDemandDiff’ in Figure 4.8, the partial autocorrelation cuts off shortly after lag 1, therefore 
p can be chosen as 1. Therefore, we could fit the water demand time series data to an ARIMA 
(11,2) model where p = 1, d = 1, and q = 2 and then check if the model is a good fit.

Step 10. Click on ‘WaterDemandDiff’ in the time series tab and then click on the econometric modeler tab. 
Click on ARIMA and enter the degree of integration or d as 1, autoregressive order or p as 1, moving 
average order or q as 2, and then click on ‘Estimate’ to create the ARIMA model as shown in Figure 4.9.

 The created model is put under the models tab and has the variable name ‘ARIMA_WaterDemandDiff.’ 
A model summary as shown in Figure 4.10 is automatically created and it features the model fit 
plot to compare the differenced time series and the ARIMA model, the estimated ARIMA model 
parameters and their associated standard errors and p-values, the residual plot, and the goodness 
of fit using Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to assess 
the model reliability. The p-values for the constant, AR and MA parameters are used to determine 
whether the terms in the model are statistically significant by comparing them to the level of 
significance, α, which is usually taken as 0.05 – a parameter is considered statistically significant 
if its p-value is less than or equal to α = 0.05. AIC and BIC are analytical tools that are used to 
assess the quality or reliability of time-series models by determining ‘how well a model explains the 
relationships between the variables’ – the lower AIC and BIC values are, the more a model is ‘likely 
to be considered as a true model’ (ArunKumar et al., 2021).

Step 11. As mentioned earlier, the water demand time series had both trend and seasonality, and 
the trend was removed after it was differenced with d = 1 to get ‘WaterDemandDiff.’ Now, the 
seasonality will be removed, and the time series will be fitted to a SARIMA model. Click on 
‘WaterDemandDiff’ in the time series tab and enter ‘12’ next to ‘Seasonal’ since the water 
demand data is monthly, and then click on ‘Seasonal’ to perform a seasonal difference (D = 1) to 
remove the seasonality (see Figure 4.11).

 A new seasonal differenced time series with the name ‘WaterDemandDiffSeasonalDiff’ shown in 
Figure 4.12 was created with ‘SeasonalDiff’ automatically added to the name ‘WaterDemandDiff.’

Figure 4.8 Sample partial autocorrelation function of WaterDemandDiff.
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Figure 4.9 ARIMA model parameters.

Figure 4.10 Summary results for ARIMA_WaterDemandDiff.
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Step 12. We now have most of the terms for the seasonal ARIMA model or ARIMA(p,d,q) × (P,D,Q)
s. The non-seasonal (p,d,q) terms of the model were found previously (p = 1, d = 1, and q = 2), 
s = 12, D = 1, and we can try P = 0 and Q = 1. Therefore, we could fit the water demand time series 
data to an ARIMA (11,2) × (01,1)12 model and then check if the model is a good fit.

Figure 4.11 Performing seasonal difference.

Figure 4.12 Time series plot of WaterDemandDiffSeasonalDiff.
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Step 13. Click on ‘WaterDemandDiffSeasonalDiff’ in the time series tab and then click on the 
econometric modeler tab. Click on the arrow next to ARIMA to show all of the available models 
and then click on SARIMA and enter the non-seasonal degree of integration or d as 1, non-
seasonal degree autoregressive order or p as 1, non-seasonal degree moving average order or 
q as 2, seasonal period or s as 12, seasonal degree autoregressive order or P as 0, seasonal 
degree moving average order or Q as 1, and then click on ‘Estimate’ to create the SARIMA 
model as shown in Figure 4.13. Normally, you should click on the checkbox next to ‘Include 
Seasonal Difference’ to include the seasonal difference term, however, checking that box for this 
example causes an error since the water demand data size is small – we will include the seasonal 
difference term manually when we do the forecast in the next section.

Step 14. The created model is put under the models tab and has the variable name ‘SARIMA_
WaterDemandDiffSeasonalDiff.’ The automatically created model summary is shown in Figure 
4.14. The AIC and BIC of the ARIMA (11,2) × (01,1)12 model are 286.9 and 293.1 respectively, 
which are about half of the values for the ARIMA (11,2) model, which has an AIC of 408.7 and 
BIC of 416.2. Therefore, the SARIMA model has a better fit than the ARIMA model for this 
monthly water demand data, which makes it more reliable.

Step 15. Click on the econometrics modeler tab and then click on ‘ARIMA_WaterDemandDiff’ in the 
model tab followed by ‘Export’ → ‘General Function’ to generate a MATLAB code for creating 
the selected ARIMA model. A new MATLAB file with the model code will be automatically 
opened. Go back to the Econometric Modeler app and do same for the SARIMA model: click 
on ‘SARIMA_WaterDemandDiffSeasonalDiff’ in the model tab followed by ‘Export’ → ‘General 

Figure 4.13 SARIMA model parameters.
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Function’ to generate a MATLAB code for creating the selected SARIMA model. Save the two 
MATLAB files since we will use them in the forecasting section.

Step 16. Click on ‘Export’ → ‘Generate Report’ to generate a report summarizing the results of 
what we did using the econometrics modeler app. The report can be either in pdf, docx, or html 
format, and you can click on the check box next to the name of the time series or models that 
that you would like to include in the report (see Figure 4.15).

Figure 4.14 Summary results for SARIMA_WaterDemandDiffSeasonalDiff.

Figure 4.15 Generating a report.
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4.2.4 Forecasting
MATLAB’s forecast function uses an observed time series as a presample data (to initialize the 
forecasts) and a fitted regression model such as an ARIMA or SARIMA model to generate minimum 
mean square error (MMSE) forecasts denoted in Equation (4.12):

ˆ ( , )y E y H Xt t t t+ + +=1 1 1|  (4.12)

where Ht is the history of the process up to time t and Xt+1 is the exogenous covariate series up to time 
t + 1 (Mathworks, 2021a).

Equation (4.13) shows an s-step ahead forecast mean square error (MSE) corresponding to the 
MMSE forecasts (Mathworks, 2021b):

MSE E y y H Xt s t s t s t s= −+ + + − +( )ˆ | ,1
2
 (4.13)

The performance of ARIMA and SARIMA models can be evaluated using either the MSE or the 
root mean squared errors (RMSE) given in Equation (4.14):
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where Yt is the forecasted observation, Yo is the actual observation, and n is the number of observations. 
The ARIMA and SARIMA models obtained in the example were used respectively to make a 12-months 
future forecast using the following procedures given in the two MATLAB codes:

ARIMA FORECAST MATLAB CODE:

% Forecast ARIMA Model
% This example shows how to forecast an ARIMA (11,2) model for a
% hypothetical water demand data using MATLAB’s forecast function.

% Step 1: Load the water demand data and prepare it for analysis.

[∼, ∼, data] = xlsread(‘C:\Users\User\Documents\ waterdemand.xlsx’); % change this to your file location
data = data(:,1); % corresponds to the 1st column in the excel file (column A)
data = data(2:37); % corresponds to the data range from row 2 to 37 in the excel file
data = [data{:}];
data = data’;
y = data;
T = length(y);

% Step 2: Estimate an ARIMA (11,2) model for the water demand time series
% data.

Mdl = arima(‘Constant’,NaN,‘ARLags’,1,‘D’,1,‘MALags’,1:2,‘Distribution’,‘Gaussian’); % the ARIMA model 
function on the right hand side of the equal to sign was copied directly from the model estimate equation 
given in the saved MATLAB function that was generated from the Econometric Modeler.

EstMdl = estimate(Mdl,y,‘Display‘,‘off’);

% Step 3: Forecast future water demand for the next 12 months using
% the fitted ARIMA model and the observed water demand time series as
% presample data to generate MMSE forecasts and their corresponding MSE and RMSE
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[yF,yMSE] = forecast(EstMdl,12,‘Y0’,y);
upper = yF + 1.96*sqrt(yMSE);
lower = yF − 1.96*sqrt(yMSE);

mse = mean((lower-yF).∧2) % calculate the MSE
rmse = sqrt(mse) % calculate the RMSE

figure
plot(y,‘Color’,[.75,.75,.75])
hold on
h1 = plot(T + 1:T + 12,yF,‘r’,‘LineWidth’,2);
h2 = plot(T + 1:T + 12,upper,‘k—’,‘LineWidth’,1.5);
plot(T + 1:T + 12,lower,‘k—’,‘LineWidth’,1.5)
xlim([0,T + 12])
title({‘Forecast and 95% Forecast Interval using ARIMA (11,2)’, ‘RMSE = ’ + rmse})

legend([h1,h2],‘Forecast’,‘95% Interval’,‘Location’,‘NorthWest’)
xlabel(‘Month’)
ylabel(‘Water Demand’)
hold off

The results of the ARIMA forecast are shown in Figure 4.16.

SARIMA FORECAST MATLAB CODE:

% Forecast SARIMA Model
% This example shows how to forecast a seasonal ARIMA (11,2) × (01,1)12 model
% for a hypothetical water demand data using MATLAB’s forecast function.

Figure 4.16 Forecast and 95% forecast interval using ARIMA (1,1,2).
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% Step 1: Load the water demand data and prepare it for analysis.

[∼, ∼, data] = xlsread(‘C:\Users\User\Documents\NYC 311 Water Complaints\waterdemand.xlsx’); % 
change this to your file location

data = data(:,1); % corresponds to the 1st column in the excel file (column A)
data = data(2:37); % corresponds to the data range from row 2 to 37 in the excel file
data = [data{:}];
data = data’;
y = data;
T = length(y);
% Step 2: Estimate an ARIMA (11,2) × (01,1)12 model for the water demand time series data.

Mdl = arima(‘Constant’,NaN,‘ARLags’,1,‘D’,1,‘MALags’,1:2,‘SARLags’,[],‘Seasonality’,12,‘SMALags’,12, 
‘Distribution’,‘Gaussian’); % the seasonal ARIMA model function on the right hand side of the equal to 
sign was copied directly from the model estimate equation given in the saved MATLAB function that was 
generated from the Econometric Modeler. However, the seasonality term was changed from ‘0’ to ‘12’ 
to include the seasonal difference, which was not included in the estimation as discussed Step 15 in the 
previous section.
EstMdl = estimate(Mdl,y,‘Display’,‘off’);
% Step 3: Forecast future water demand for the next 12 months using
% the fitted ARIMA model and the observed water demand time series as
% presample data to generate MMSE forecasts and their corresponding MSE and RMSE.

[yF,yMSE] = forecast(EstMdl,12,‘Y0’,y);
upper = yF + 1.96*sqrt(yMSE);
lower = yF − 1.96*sqrt(yMSE);

mse = mean((lower-yF).∧2) % calculate the MSE
rmse = sqrt(mse) % calculate the RMSE

figure
plot(y,‘Color’,[.75,.75,.75])
hold on
h1 = plot(T + 1:T + 12,yF,‘r’,‘LineWidth’,2);
h2 = plot(T + 1:T + 12,upper,’k--’,’LineWidth’,1.5);
plot(T + 1:T + 12,lower,‘k--’,’LineWidth’,1.5)
xlim([0,T + 12])
title({‘Forecast and 95% Forecast Interval using ARIMA (11,2) × (01,1)12’, ‘RMSE = ’ + rmse})

legend([h1,h2],‘Forecast’,‘95% Interval’,‘Location’,‘NorthWest’)
xlabel(‘Month’)
ylabel(‘Water Demand’)
hold off

The results of the SARIMA forecast are shown in Figure 4.17.

4.2.5 Limitations
Although ARIMA and SARIMA can be used to model a wide range of time series problems, one of 
the major limitations of these models is their inability to capture nonlinear patterns due to their linear 
structure (Kofinas et al., 2014). Machine learning-based time series models such as artificial neural 
networks (ANNs) can capture both linear and non-linear patterns, therefore hybrid ARIMA and ANN 
models have been proposed to tackle the nonlinearity deficiencies (Kofinas et al., 2014). Faruk (2010) 
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used a hybrid neural network and ARIMA model for water quality time series prediction by using water 
quality data such as water temperature, and boron and dissolved oxygen concentrations collected at 
the Buyuk Menderes river in Turley from 1996 to 2004. The hybrid model provided accurate results by 
tackling both the linear and nonlinear patterns of the complex water quality time series (Faruk, 2010).

4.3 MACHINE LEARNING TIME SERIES
4.3.1 Machine learning
4.3.1.1 Artificial neural network
Artificial neural networks (ANNs) mimic the biological neural structure of the brain and form 
interconnected groups of artificial neurons which are organized in layers. It is a supervised machine 
learning technique that can be used to forecast water demand patterns over time. ANNs consist of 
three layers: input layer, hidden layer, and output layer. The inputs or predictors are inserted into the 
input layer as the bottom layer. The hidden layer is an intermediate layer with hidden neurons. The 
output layer forms the top layer as forecasts. Among the various architecture of ANN, the feedforward, 
back propagation (BP) neural network is the most popular, effective model to recognize patterns. A 
multilayer feedforward network is shown in Figure 4.18. There are four inputs, one hidden layer with 
three hidden neurons. Each layer of nodes receives inputs from previous layers.

Suppose the input of an ANN is x = [x1, x2, …, xn]′ and its output is y(x) = [y1, y2, …, yn]′. There exists 
a mapping M from the input space X:{x ∈ X| x is the input to the system} to output space Y:{yεY |y is the 
output of the system for given input x}. So, the mapping M is as follows:

M X Y: →  (4.15)

The training process can be considered a process of gradually adjusting the network internal 
parameters, for example, the weight w in the weight space ω, that is w ∈ ω, so that the error between 
the expected outputs ˆ( , )y x w  and the real outputs y(x)of the network are minimal:

error y x w y x= −min ( , ) ( )
2�
 (4.16)

Figure 4.17 Forecast and 95% Forecast Interval using ARIMA (1,1,2)x(0,1,1)12.
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The activation of the artificial neuron is conducted through the following equations:

φ φ( )z i i= +










∑
i

w x b

 
(4.17)

where i stands for the independent variables that we are considering. The activation function is a non-
linear function. Three activation functions that we will consider are the sigmoid function (sigmoid), 
the hyperbolic tangent function (tanh) and the rectified linear function (ReLU) shown below:

sigmoid z
e z( )=

+ −

1
1  

(4.18)

tanh( )z
e
e

z

z=
−
+

2

2

1
1  

(4.19)

ReLU(z)=max( , )0 z  (4.20)

The training process of feedforward backpropagation ANN is summarized as follows: (1) 
Initialize: construct the feedforward neural network by choosing the input units and output units; (2) 
Feedforward: the input value is propagated from the input layer via the hidden layer to the output layer 
using the weight and offset value of the network. Compute the output and the error until a stopping 
criterion is met; (3) Backpropagation: the weight is continuously updated and modified so that the 
error is minimized.

4.3.1.2 Support vector machine
SVM is a supervised machine learning algorithm (Candelieri, 2017; Msiza et al., 2007; Sengupta et al., 
2018). The goal of SVM is to separate a given set of binary labeled training data with a hyperplane 
that is maximally distant from them, that is with maximized margin. However, a hyperplane cannot 
separate the training data if they are non-linearly separable. Hence, kernel function is introduced 
to map the training data from its original input space to a high dimensional space where a linear 
separation can be achieved. In this case, the hyper-plane found by the SVM in the feature space 
corresponding to a non-linear decision boundary in the original input space. Several common kernel 
functions are linear kernel, Gaussian radial basis kernel and Sigmoid kernel, and so on.

Figure 4.18 Artificial neural networks (ANNs).
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As shown in Figure 4.19, the decision boundary of SVMs is a hyperplane H: (w, b), where w is 
a normal vector, or a weight vector, perpendicular to the hyperplane with initial value w0 = 0. It is 
adjusted iteratively each time when training examples are misclassified by current w. b is intercept or 
bias. The hyperplane equation is defined as:

w x bT
i + = 0 (4.21)

To assign class labels to each class for test data, another two hyperplane H1 and H2 are used to 
determine their classification labels:

H w x b if y
H w x b if y

T
i i

T
i i

1 1 1

2 1 1

: ,

: ,

+ ≥ =+
+ ≤− =−





  
(4.22)

Therefore, the final goal is to find the hyperplane with the largest margin. The points on H1 and 
H2 are called support vectors. Margin of the hyperplanes are the distance from support vectors to the 
hyperplane γT, namely the distance between H1 and H2. To solve the minimization problem, Lagrange 
multiplier method and Karush-Kuhn-Tucker (KTT) conditions are used to transform this problem to 
its dual problem. An equivalent dual problem of minimizing ||w||2 is a maximization problem solving 
by QP (Quadratic Programming) below:

maximize

subject to
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(4.23)

where α1, …, αm is the Lagrangian multiplier associated with each training example (xi, yi). The 
Lagrangian multipliers are bounded by C, called a box constraint. αi is the Lagrangian multipliers for 
support vectors.

The training process of SVM is summarized as follows: (1) Initialize: construct the SVM by entering 
input and output pairs of the training data sets. Compute the support vectors. (2) Sequential minimal 
optimization (SMO) is used to solve the QP problem. The goal of this problem to find the hyperplane 
with the largest margin.

Figure 4.19 Support vector machines (SVMs).
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4.3.1.3 Forecasting
The water demand forecasting problems can be formalized as supervised machine learning tasks. 
Supervised learning builds a predictive model that relies on the availability of a finite set of 
observations. These observations are the mapping or relation between a set of input variables and one 
or more output variables of the forecast problem.

The flow of a supervised machine learning forecasting task is presented in Figure 4.20. A raw 
dataset is divided into two subsets: a training set and test set. Data points in the training set are 
excluded from the test set. The training set is a collection of the input and output pairs. The training 
set is fed to a supervised learning algorithm to build a predictive regression model. Then, the test set 
validates the model using its output, that is predictions. In this case, the test set can also be referred 
to as the validation set. In some literatures, validation set is different from test set. Validation set is a 
third part of raw data which is used to tune the model’s parameters to minimize the overfitting.

Water demand forecast can be solved using machine learning regression models. The input of the 
model is non-linear water demand time series. The output is real values depicting the water demand 
on a specific date. The regression problem will find a function f(x) that can map the training inputs to 
the training outputs.

4.3.2 Practice problems
In this section, we present a simple forecasting problem using SVM regression. The data set we used 
is from hourly inflow/outflow data of production and storage facilities of the south-central water 
distribution network in Hillsborough County, FL, Apr 2012–Dec 2012 (Chen, 2018). The first 500 data 
points were selected for our example below for illustration purposes.

Step 1: Import the data. Separate the data as training and test set. Plot the training set as shown 
in Figure 4.21.

Figure 4.20 Machine learning for water demand forecasting.

%Import the data from the data file ‘Water demand data set 2_Unit_MLD.mat’. This file includes 500 data 
points, where 450 data points (90% of the data) is chosen as training data set. The 50 data points are chosen 
as the test data set. Plot the training datasets.

rawdata = importdata(’Water demand data set 2_Unit_MLD.mat’);
rawdata = rawdata’;

data1 = rawdata(1:450,:);
data1 = data1’
figure
plot(data1)
xlabel(‘Hour’)
ylabel(‘Million gallons’)
title(‘System-wide water demands aggregated in 1-hour intervals in million gallons per day’)
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Step 2: Construct training and testing data sets. Ninety per cent of the data (450 data points) is 
chosen as training data set. The remaining 10% of the data (50 data points) is chosen as the test data set.

Figure 4.21 SVM Training data set.

data = rawdata(1:500,:);

numTimeStepsTrain = 450;

dataTrain = data(1:numTimeStepsTrain + 1);
dataTest = data(numTimeStepsTrain + 1:end);

numTimeStepsTest = numel(dataTest(1:end−1));

%XTrain is training data set
%YTrain is the response values of the training data set

XTrain = dataTrain(1:end−1);
YTrain = dataTrain(2:end);

YTest = dataTest(2:end);
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Step 3: Configure and train the SVM.

Step 4: Validate the trained SVM model. The forecasting results are showed in Figure 4.22 and 
compared with the observed results shown in Figure 4.23. The RMSE (root mean square error) values 
for SVM forecast model are shown in Figure 4.24.

%Use ‘fitrsvm’ function to train the SVM. List the kernel function as ‘gaussian’ kernel, and set the 
‘standardize’ as true. The function will standardize the training data set.

svm_Mdl = fitrsvm(XTrain,YTrain, ‘KernelFunction’,‘gaussian’,‘Standardize’,true);

%Use ‘predict’ function to validate the SVM predictive model svm_Mdl, with input test data set YTest. 
YPred stores the forecast results.

YPred = predict(svm_Mdl,YTest);

%Plot the forecast results
figure
plot(dataTrain(1:end−1))
hold on
idx = numTimeStepsTrain:(numTimeStepsTrain + numTimeStepsTest);
plot(idx,[data(numTimeStepsTrain) YPred’],‘.-’)
hold off
xlabel(‘Hourly water demands’)
ylabel(‘Million gallons’)
title(‘Forecast 50 red data points in the future’)
legend([‘Observed’ ‘Forecast’])

%Plot the forecast results versus observed results

figure

plot(YTest)
hold on
plot(YPred,‘.-’)
hold off
legend([‘Observed’ ‘Forecast’])
ylabel(‘Million gallons’)
title(‘Forecast vs Observed’)

% Quantitative evaluation of forecast results using RMSE

rmse = sqrt(mean((YPred-YTest).∧2));
figure(),

stem(YPred – YTest);
xlabel(‘Hourly water demands’)
ylabel(‘Error’)
title(‘RMSE = ’ + rmse)
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Figure 4.23 SVM forecast (testing) results compared with observed results.

Figure 4.22 SVM forecast results.
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4.4 DEEP LEARNING TIME SERIES
Deep learning is a promising type of machine learning technique that has attracted much attention 
over the past few years. Deep learning has the advantages of processing big data, feature learning and 
strong generalization capability compared to shallow machine learning models. The deep learning 
time series model exhibits attractive performance in terms of accuracy, stability, and effectiveness 
(Bedi & Toshniwal, 2019; Du et al., 2021; Guo et al., 2018). We introduce two deep learning time 
series forecasting models in this section: Convolutional neural networks (CNN) and recurrent neural 
networks (RNN).

4.4.1 Deep learning models
4.4.1.1 Convolutional neural network
Convolutional neural network (CNN) is a neural network that has been successfully applied in image 
classification and feature mining. The main advantage of CNN is that it enables the most important 
features from the input to be extracted (Goldberg, 2016). CNN consists of three types of layers as 
building blocks: convolution layer, subsampling or pooling layer, as well as a fully connected layer as 
shown in Figure 4.25.

The convolution layer is a two-layer feed-forward neural network that includes a convolution 
operation that is designed to extract features from the input. CNN is designed to accept two-
dimensional (2D) image data for feature extraction. Time series is one dimensional (1D) data in time 
domain, so a conversion from 1D to 2D data needs to be carried out before feeding into CNN for 

Figure 4.24 RMSE for SVM forecast model.
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forecasting. Specifically, the input features xi are convolved with shared weight w and bias term b and 
get the output yj in the next layer as follows:

y f x w bj i i j j= ∑ ⊗ +( ),  (4.24)

where ⊗ is a convolutional operation and f is a sigmoid function.
The pooling layers are connected to convolutional layers to build up the high-level invariant 

structures in data. The pooling layer aims to reduce the dimensions of the data and create a down-
sampled version of the input. The pooling operations include the max pooling and average pooling.

4.4.1.2 Recurrent neural network
Recurrent neural networks (RNNs) are designed to use the previous information in the sequence to 
produce the current input and gained popularity in time series forecasting with the recent advances of 
AI. Unlike ANN, it has forwarding connections in between the neuros and feedback loops. The main 
advantage of RNN is its acquisition of the internal sequential nature that remembers information 
through many timesteps, making it a powerful tool in forecasting long term trends from time series 
data. RNN is comprised of single rolled RNN units as shown in Figure 4.26.

Three kinds of RNN units are most popular for sequence modelling. They are the Elman RNN 
(ERNN) cell (Elman, 1990), the gated recurrent unit (GRU) cell (Cho et al., 2014) and the long short-
term memory (LSTM) cell (Hochreiter & Schmidhuber, 1997). The LSTM RNN network has been 
applied in time series prediction as a special kind of deep learning model.

The structure of RNN includes hidden state h, input X and an optional output Y. Given a time series 
input sequence X = {x1, x2, …, xt}, at time step t, RNN learns a mapping from xt to ht depending on the 
hidden state at ht−1:

h f h xt t t= −( , ),1  (4.25)

Figure 4.25 Convolutional neural networks (CNNs).
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where f is a non-linear activation function. This function can be ERNN, GRN or LSTM, or as simple 
as a logic sigmoid function.

The training process of RNN suffers from problems of vanishing or exploding gradients which 
occur when backpropagating errors across many time steps. LSTM was introduced to overcome the 
above problem by replacing the hidden layer in the standard RNN by a memory cell. Each memory 
cell contains several gates and four interactive layers: forget gate layer, input gate layer, Tanh layer, 
and output gate layer.

4.4.2 Practice problems
In this section, we present a simple forecasting problem using LSTM regression. The data set we used 
is from hourly sewer flows monitored at Station S2 in Columbus, OH, Jun 1998–Dec 2013 (Chen, 
2018). The first 500 data points was selected for our example below for illustration purpose. The task 
is to forecast the sewer flow in the 1-hour intervals.

Step 1: Import the data. Separate the data as training and test set. Plot the training set as shown 
in Figure 4.27.

Step 2: Construct training and testing data sets. 90% of the data (450 data points) is chosen as 
training data set. The remaining 10% of the data (50 data points) is chosen as the test data set.

Figure 4.26 Recurrent neural networks (RNNs).

%Import the data from the data file ‘sewer_hourly.mat’. This file includes 500 data points, where 450 data 
points (90% of the data) is chosen as training data set. The 50 data points are chosen as the test data set. 
Plot the training datasets.

rawdata = importdata(‘sewer_hourly.mat’);
data1 = rawdata(1:450,:);
data1 = data1’
figure
plot(data1)
xlabel(‘Hour’)
ylabel(‘Million gallons’)
title(‘Hourly Sewer flow aggregated in million gallons per day’)
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Figure 4.27 LSTM training data set.

data = rawdata(1:500,:);
data = data’;

numTimeStepsTrain = 450;

% The data with index 1 to numTimeStepsTrain + 1 will be training set
% The data with index numTimeStepsTrain + 1 to end will be test set
dataTrain = data(1:numTimeStepsTrain + 1);
dataTest = data(numTimeStepsTrain + 1:end);

% Standardize the data by putting different data on the same scale. We calculate the mean and standard 
deviation for each variable. Then, for each observed data, we subtract the mean and divide by the standard 
deviation.

mu = mean(dataTrain);
sig = std(dataTrain);

dataTrainStandardized = (dataTrain – mu)/sig;

%XTrain is training data set
%YTrain is the response values of the training data set

XTrain = dataTrainStandardized(1:end−1);
YTrain = dataTrainStandardized(2:end);
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Step 3: Configure the LSTM neural network.

Step 4: Train the LSTM neural network.

Step 5: Validate the trained LSTM model. The forecasting results are showed in Figure 4.28 and 
compared with the observed results shown in Figure 4.29. The RMSE values for LSTM forecast 
model are shown in Figure 4.30.

% Set the LSTM regression network training option as follows: 250 hidden units.
numFeatures = 1;
numResponses = 1;
numHiddenUnits = 250;

layers = [ …
 sequenceInputLayer(numFeatures)
 lstmLayer(numHiddenUnits)
 fullyConnectedLayer(numResponses)
   regressionLayer];

% Set the maximum epochs to 250. Gradient threshold to 1. Learn rate determines the step size at each 
iteration while moving toward a minimum of a loss function. Initial learn rate 0.005. After 125 epochs, the 
learn rate will be multiplied by a factor of 0.2.
options = trainingOptions(‘adam’, …
 ‘MaxEpochs’,250, …
 ‘GradientThreshold’,1, …
 ‘InitialLearnRate’,0.005, …
 ‘LearnRateSchedule’,‘piecewise’, …
 ‘LearnRateDropPeriod’,125, …
 ‘LearnRateDropFactor’,0.2, …
 ‘Verbose’,0, …
 ‘Plots’,‘training-progress’); 

% Generate a trained recurrent neural network model in variable ‘net’
net = trainNetwork(XTrain,YTrain,layers,options);

dataTestStandardized = (dataTest – mu)/sig;
XTest = dataTestStandardized(1:end−1);

% predictAndUpdateState function: Predict responses using a trained recurrent neural network ‘net’ and 
update the network state

net = predictAndUpdateState(net,XTrain);

% YPred variable stores the forecast results of 50 data points

[net,YPred] = predictAndUpdateState(net,YTrain(end));

numTimeStepsTest = numel(XTest);
for i = 2:numTimeStepsTest
 [net,YPred(:,i)] = predictAndUpdateState(net,YPred(:,i−1),‘ExecutionEnvironment’,‘cpu’);
end
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4.5 OTHER POPULAR ML TECHNIQUES
4.5.1 Ensemble learning
In this section, we demonstrate how ensemble methods may be used to combine multiple MLT to improve 
the solution of regression and classification problems, with practical applications to a real case study, using 
high-resolution water-flow measures. All the applications reported in this paragraph are made available 
in the Github repository (https://github.com/Water-End-Use-Dataset-Tools/EL-WaterDemandTS). An 
ensemble includes a number of learners called base learners, usually generated from training data by 
a base learning algorithm which can be a decision tree, neural network or other kinds of learning 
algorithms. They try to build a set of learners from training data and combine them (Dong et al., 2020). 
The use of ensemble methods is related to the possibility of achieving higher predictive performance 
than using an individual algorithm by itself (Zhou, 2012). In this section, the example code is given in 
Python for the variety of coding capacities (and it is also free!)

YPred = sig*YPred + mu;

% YTest variable stores the observed results of 50 data points

YTest = dataTest(2:end);

% Plot the forecast results

rmse = sqrt(mean((YPred-YTest).∧2));

figure
plot(dataTrain(1:end−1))
hold on
idx = numTimeStepsTrain:(numTimeStepsTrain + numTimeStepsTest);
plot(idx,[data(numTimeStepsTrain) YPred],‘.-’)
hold off
xlabel(‘Hourly sewer flows’)
ylabel(‘Million gallons’)
title(‘Forecast 50 red data points in the future’)
legend([‘Observed’ ‘Forecast’])

% Compare the forecast results with the observed results.

figure
plot(YTest)
hold on
plot(YPred,‘.-’)
hold off
legend([‘Observed’ ‘Forecast’])
ylabel(‘Million gallons’)
title(‘Forecast vs Observed’)

%% Quantitative evaluation of forecast results using RMSE.

figure(),
stem(YPred – YTest)
xlabel(‘Hourly sewer flows’)
ylabel(‘Error’)
title(‘RMSE = ’ + rmse)
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Figure 4.29 LSTM forecast (testing) results compared with observed results.

Figure 4.28 LSTM forecast results.
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4.5.1.1 Water end use dataset
For the applications reported in this paragraph, a dataset of water end use consumption is used. The 
dataset has been generated processing the water consumption measured at different fixtures of a 
domestic pilot and collected as water flow time-series. Each time-series contains the water-flow data 
in ml/sec with a sample period of 1 sec (Di Mauro et al., 2019).

The water_usages dataset is a list of records provided as a CSV (comma separated values). Each 
record characterizes the occurrence of a water usage and is described by the following parameters:

• start_date_time: long [sec] it is the starting date-time of the usage as Unix epoch
• duration: int [ms], how long lasts the usage
• liters: int [mL], how many liters of water have been consumed
• month:int, month of occurrence
• hour:int, hour of the day
• day: int, day of the week {0,…,6}
• max_flow: int [mL/sec], maximum flow rate measured during the usage
• av_flow_rate: float [mL/sec], the average flow rate calculates for the usage
• sec_from_midnight: int, the number of seconds after the midnight
• fixture: string, the lable that identifies the fixture (e.g., shower, washbasin, etc.)
• num_fixture: int, an integer that identifies the fixture (e.g., 0: shower, 1: washbasin, …)

The original time-series have been split to identify every single usage, and then the usages have 
been clustered to identify similar water consumption profiles (e.g. hand washing, teeth brushing). The 
individual time-series excerpts will be also used later in this chapter. The complete dataset is available 
in a different GitHub repository (https://github.com/Water-End-Use-Dataset-Tools/WEUSEDTO)

Figure 4.30 RMSE for LSTM forecast model.
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4.5.1.2 Bootstrapping
Bootstrapping is a statistical method that resamples a single dataset to create many simulated 
samples. Applying the bootstrap method works like collecting many datasets. Increasing the 
dataset and computing the mean of the means estimates will eventually lead to a zero bias. In other 
words, it aims at computing an unbiased estimator of the population mean. The bootstrapping 
process allows us to evaluate statistics on a population which is obtained by sampling a dataset 
with replacement in order to make the selection procedure completely random. Bootstrapping is 
commonly useful to evaluate statistics such as the mean, standard deviation, construct confidence 
intervals and perform hypothesis testing for different types of statistics samples. It is used in applied 
machine learning to value the ability of machine learning models when making predictions on 
data not included in the training dataset. The importance of bootstrap sampling is related to their 
use as a basic step for several modern MLT, as for example the bagging technique used in various 
ensemble machine learning algorithms like random forests, gradient boost, and so on. Moreover, 
bootstrapping can be used to estimate the parameters of a population when the data sample 
available is not large enough to assume that the sampling distribution is normally distributed. 
Bootstrapping uses the distribution of the sample statistics among the simulated samples as the 
sampling distribution. The application reported below shows an example of mean evaluation on 
resampled datasets.

Bootstrap method formulation: Let there be a sample X of size N. We can make a new sample from 
the original sample by drawing N elements from the latter randomly and uniformly, with replacement. 
In other words, we select a random element from the original sample of size N and do this N times. All 
elements are equally likely to be selected, thus each element is drawn with the equal probability 1/N. 
More details on the bootstrap method can be found in (Efron & Tibshirani, 1993).

Bootstrapping example application and code: The water_usages data-set has been used here to 
demonstrate how bootstrapping works. The amount of water consumed on each usage is the feature 
that is used in the model. Let us visualize in Figure 4.31 the data and look at the distribution of this 
feature for two fixtures, which are the washbasin and the kitchen faucet.

It is straightforward to observe that the washbasin is used more often than the kitchen faucet. 
Moreover, a higher percentage of usages consume less water in the case of the washbasin with respect 
to the kitchen faucet. Now, it may be a good idea to estimate the average amount of water consumed 
for each fixture for designing predictive strategies of water management. Since our dataset is small, 

import numpy as np
import pandas as pd
import seaborn as sns

sns.set()
from matplotlib import pyplot as plt

#Graphics in retina format are more sharp and legible %config InlineBackend.figure_format = ‘retina’
water_data = pd.read_csv(‘.data/dataset.csv’, delimiter = ‘ ’)

water_data.loc[water_data[‘fixture’] = =‘washbasin’, ‘liters’].hist(label = ‘Washbasin’)

water_data.loc[water_data[‘fixture’] = =‘kitchen faucet’, ‘liters’].hist(label = ‘kitchen faucet’)

plt.xlabel(‘mL’)
plt.ylabel(‘Density’)
plt.legend();
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and the number of samples is different for the two fixtures (washbasin: 1354, kitchen faucet: 895), we 
would not get a good estimate by simply calculating the mean of the original sample. With a small 
dataset the estimation of the mean value could be different from the mean value of the population. 
Such a difference is called bias. We will be better off applying the bootstrap method. Let us generate 
5000 new bootstrap samples from our original population and produce an interval estimate of the 
mean.

Figure 4.31 Data distribution of washbasin and kitchen faucet fixtures.

def get_bootstrap_samples(data, n_samples):
  ‘‘‘Generate bootstrap samples using the bootstrap method.’’’ indices =  
  np.random.randint(0, len(data), (n_samples, len(data))) samples = 
  data[indices]
  return samples

def stat_intervals(stat, alpha):
  ‘‘‘Produce an interval estimate.’’’
  boundaries = np.percentile(stat, [100 * alpha / 2.0, 100 * (1 – alpha / 2.0)])
  return boundaries

#Save the data about the washbasin and kitchen faucet to split the dataset
wb_liters = water_data.loc[water_data[‘fixture’] = = ‘washbasin’, ‘liters’ ].values
kit_liters = water_data.loc[ water_data[‘fixture’] = = ‘kitchenfaucet’, ‘liters’].values

#Set the seed for reproducibility of the results
np.random.seed(0)

#Generate the samples using bootstrapping and calculate the mean for each of them 
wb_liters_mean_scores = [

 np.mean(sample) for sample in get_bootstrap_samples(wb_liters, 5000)]
kit_liters_mean_scores = [
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As a result, the mean interval for the milliliters consumed by washbasin and kitchen faucet are 
respectively: [1344, 1547] and [1645, 1953].

In Figure 4.32, the same procedure is applied to compare different fixtures as kitchen faucet and 
shower. It is straightforward to observe that the shower is used less often than the kitchen faucet. 
Moreover, shower usages usually consume more water respect to the kitchen faucet, with a reduced 
variance.

As a result, the mean interval for the milliliters consumed by washbasin and shower are respectively: 
[20056, 24218] and [1344, 1547])

4.5.1.3 Bagging
The bagging is a machine learning ensemble algorithm realized to improve the stability and accuracy of 
algorithms used for statistical classification and regression. Bagging, also called bootstrap aggregating, 
trains multiple models of the same learning algorithm on bootstrapped samples of the original dataset, 
and then aggregates their individual predictions to produce a final prediction as shown in Figure 4.33. 
Bagging is typically used with decision trees and this kind of MLT prevents overfitting, reducing the 
variance of a classifier by decreasing the difference in error when the model is trained on different 
datasets. Besides the use of the bagging technique to reduce model overfitting, it is used in the case 
of high-dimensional data due to its good performance. Furthermore, possible missing values in the 
dataset do not alter the execution of the algorithm. More details on the bagging method can be found 
in Bühlmann and Yu (2002).

 np.mean(sample) for sample in get_bootstrap_samples(kit_liters, 5000)]

#Print the resulting interval estimates
print(‘mliters consumed by washbasin: mean interval’,
stat_intervals(wb_liters_mean_scores, 0.05))
print(‘mliters consumed by kitchenfaucet: mean interval’,

stat_intervals(kit_liters_mean_scores, 0.05)) 

Figure 4.32 Data distribution of kitchen faucet and shower fixtures.
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Bagging method formulation: Bagging method formulation was presented by Breiman as reported 
in Breiman (1996). Consider a training set X then X1, …, XM are generated using bootstrapping. Now, 
a classifier ai(x) is trained for each bootstrap sample. The final classifier will average the outputs from 
all these individual classifiers:

a x
M

a x
i

M

i( ) ( )=
=
∑1

1  
(4.26)

Figure 4.33 illustrates the bagging algorithm.
Let us consider a regression problem with base algorithms b1(x), …, bn(x). Assume that there exists 

an ideal target function of true answers y(x) defined for all inputs and that the distribution p(x) is 
defined. Then the error can be expressed for each regression function as follows:

εi ix b x y x i n( ) ( ) ( ), , .,= − = …1  (4.27)

and the expected value of the mean squared error:
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Then, the mean error over all regression functions will look as follows:
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(4.29)

Assuming that the errors are unbiased and uncorrelated, that is:

E xx iε ( ) ,[ ]= 0  (4.30)

E x x i jx i jε ε( ) ( ) ,  = ≠0  (4.31)

Figure 4.33 Diagram of bagging technique.
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Now, let us construct a new regression function that will average the values from the individual 
functions:

a x
n

b x
i

n

i( ) ( )=
=
∑1

1  
(4.32)

Let us find its mean squared error:
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Thus, by averaging the individual answers, the mean squared error can be reduced by a factor of n.
Let us recall the components that make up the total out-of-sample error:

Err x E y f x( ) ( )( )
� �
= −




2�
 

(4.37)

= + + + −σ2 2 2 2f Var f E f fE f( ) [ ] [ ]� � �
 (4.38)

= − + +( [ ]) ( )f E f Var f2 2σ� �
 (4.39)

= + +Bias f Var f( ) ( )2 2σ� �
 (4.40)

Bagging example application and code: In this example, similarly to what is presented in section 7.3 
of Hastie et al. (2009), we show and compare the variance of the expected mean squared error of a 
single estimator against a bagging ensemble in a regression problem applied to time-series of real data. A 
cluster of washbasin usages has been used as they were noisy measures of the same water consumption 
profile (e.g., hand washing), and the spline that approximates all measures of the cluster as the true 
profile. Figure 4.34 shows the results of the application: the upper left figure illustrates the predictions 
(in dark dashed line) of a single decision tree that has been trained over a down-sampled time-series of 
one usage profile. It also illustrates the predictions (in light dashed line) of other single decision trees 
trained over the down-sampled consumption profiles of the cluster. The variance term in this application 
corresponds to the width of the bundle of predictions (in light dashed line) of the individual estimators. 
The predictions for x are more sensitive. The lower left figure plots the pointwise decomposition of the 
expected mean squared error of a single decision tree. It shows the variance in the rectangular marker 
line and also illustrates the noise part of the error which, as expected, appears to be comparable to the 
variance as we considered real profiles as a noisy version of the cluster centroid. The figures on the right 
reported to the same plots using a bagging ensemble of decision trees. In terms of variance, the bundle 
of predictions is narrower, which indicates that the variance is lower. Moreover, as shown by the lower 
right figure, the variance term (rectangular marker line) is lower than for single decision trees.

Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/1062807/9781789062380_0075.pdf
by guest
on 07 November 2022



110 Embracing Analytics in the Drinking Water Industry

Comparing the circle marker line in the lower graphics, it is worth noticing that for bagging the 
overall mean squared error is lower. It depends on the fact that for bagging, averaging several decision 
trees fit on bootstrap copies of the dataset allows for a reduction of the variance.

The total error of the bagging ensemble is a wee bit lower than the total error of a single decision 
tree, this difference hinges on the reduced variance.

In Figure 4.34, f(x) is the true function y(x) are the estimators, El y xs ( )  is the average of the estimators, 
error(x) is the mean square error between the true value and one estimator, noise(x) is the variance of 
the measured timeseries (it is evaluated on the test set that represent noisy measures).

4.5.1.4 Random forest
Random forest (RF) is one of the most popular machine learning algorithms. It was introduced by 
Breiman as an ensemble tree learner (Breiman 2001). The algorithm consists of many decision trees, 
each with the same nodes, built using a different bootstrap sample of the data from the original 
training dataset. RF merges the prediction result from every decision tree in order to find an answer, 
which represents the average of all the decision trees. It selects the best solution by means of voting, 
the most voted is chosen as the final prediction, as shown in Figure 4.35. One of the advantages of 
random forest is its flexibility, in fact, it is used to solve both regression and classification problems. 
It is used mostly because it is not influenced by noise, and due to the presence of several trees in the 

Figure 4.34 Bagging application to washbasin time series.
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from scipy.interpolate import interp1d
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import BaggingRegressor
from sklearn.tree import DecisionTreeRegressor
import glob

# Settings          
n_repeat = 50         # Number of iterations for computing expectations
n_train = 50         # Size of the training set
n_test = 1000         # Size of the test set
np.random.seed(0)

estimators = [(‘Tree’, DecisionTreeRegressor()),
           (‘Bagging(Tree)’, BaggingRegressor(DecisionTreeRegressor()))]

n_estimators = len(estimators)
ts_files = glob.glob(‘data/csv_Washbasin/cluster_0/*.csv’)
f_true = ‘data/csv_Washbasin/1_spline.csv’

def f(x, iteration):
 if iteration = =−1:
 ts = np.genfromtxt(ts_files[4], delimiter = ‘ ’)
 else:
 ts = np.genfromtxt(ts_files[iteration], delimiter = ‘ ’)
 start_time = ts[0,0]
 ts[:,0] - = start_time
 ts[0,1] = 0
 if ts[−1,0] < 650:
         ts = np.vstack((ts,[ts[−1,0] + 1, 0]))
         ts = np.vstack((ts,[650, 0]))
     for i in range(1,len(ts)−1):
         if ts[i,1] = =0 and ts[i + 1,1]! = 0:
           ts[i,1] = (ts[i−1,1] + ts[i + 1,1])*0.5
 linfunc = interp1d(ts[:,0], ts[:,1])
 return linfunc(x)

def generate(n_samples, n_repeat = 1):
 max_duration = 650
 X = np.linspace(0, 650, n_samples)
 if n_repeat = = 1:
 y = f(X, np.random.randint(1,len(ts_files)))
 else:
 y = np.zeros((n_samples, n_repeat))
 for i in range(n_repeat):
 y[:, i] = f(X, np.random.randint(1,len(ts_files)))
 X = X.reshape((n_samples, 1))
 return X, y

X_train []
y_train = []
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for i in range(n_repeat):
  X, y = generate(n_samples = n_train)
  X_train.append(X)
  y_train.append(y)
X_test, y_test = generate(n_samples = n_test,n_repeat = n_repeat)
plt.figure(figsize=(10, 8))
# Loop over estimators to compare
for n, (name, estimator) in enumerate(estimators):
  # Compute predictions
  y_predict = np.zeros((n_test, n_repeat))
  for i in range(n_repeat):
    estimator.fit(X_train[i], y_train[i])
    y_predict[:, i] = estimator.predict(X_test)

  y_error = np.zeros(n_test)
  for i in range(n_repeat):
    for j in range(n_repeat):
      y_error +  = (y_test[:, j] – y_predict[:, i]) ** 2

  y_error / = (n_repeat * n_repeat)
  y_noise = np.var(y_test, axis = 1)
  y_var = np.var(y_predict, axis = 1)

# Plot figures
plt.subplot(2, n_estimators, n + 1)
plt.plot(X_test, f(X_test,−1), ‘b’, label = ‘$f(x)$’)

for i in range(n_repeat):
 if i = = 0:
 plt.plot(X_test, y_predict[:, i], ‘r’, label = r’$\∧y(x)$’)
 else:
 plt.plot(X_test, y_predict[:, i], ‘r’, alpha = 0.05)

plt.plot(X_test, np.mean(y_predict, axis = 1), ‘c’, label = r’$\mathbb{E}_{LS} \∧y(x)$’)
plt.xlim([0, 350])
plt.title(name)

if n = = n_estimators – 1:
 plt.legend(loc = (1.1, 0.5))

plt.subplot(2, n_estimators, n_estimators + n + 1) plt.plot(X_test, 
y_error, ‘r’, label = ‘$error(x)$’)   plt.plot(X_test, y_var, ‘g’,
label = ‘$variance(x)$’), plt.plot(X_test,    y_noise,  ‘c’,
label = ‘$noise(x)$’)
pltxlim([0, 350])
plt.ylim([0, 2000])
if n = = n_estimators – 1:
 plt.legend(loc = (1.1, 0.5))

plt.subplots_adjust(right = .75)
plt.show()
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forest, it will not overfit the model. RF also has some limitations in terms of computation, which 
becomes slower as the number of trees in the model is larger. More details on random forest method 
can be found in Hastie et al. (2009).

Random forest method formulation: The random forest method formulation was presented by 
Breiman as reported in Breiman (2001) and Hastie et al. (2009).

The algorithm for building a random forest of N trees goes as follows:
For each b = 1, …., N;

• Draw a bootstrap sample Xb;
• Build a decision tree Tb on the bootstrap sample Xbrepeating the following steps:

	{ Pick the best feature according to the given criteria. Split the sample by this feature to create 
a new tree level. Repeat this procedure until the sample is exhausted;

	{ Building the tree until any of its leaves contains no more than nmin instances;
	{ For each split, first randomly pick m features from the original ones and then search for the 

next best split only among the subset.

Output the ensemble of trees { }Tb
N
1

The final prediction at a new point x is defined:

For Regression by: f x
N

T x
b

N

b( ) ( )=
=
∑1

1

For Classification by: Let Cb(X) be the class prediction of the bth random forest tree.
Then c x majorityvote Cb

N( ) { }= 1

When the RF algorithm is used for regression problems, the mean squared error (MSE) is used to 
evaluate the distance of each node from the predicted value in order to select which branch represents 
the best decision for the forest:

MSE
N

f y
i

N

i i= −
=
∑1

1

2( )
 

(4.41)

Figure 4.35 Diagram of random forest technique.
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where N is the number of data points, fi is the value returned by the decision tree and yi is the value of 
the data point you are testing at a certain node.

When the RF algorithm is used for classification problems, the Gini index is used to determine how 
nodes are on a decision tree branch. The class and probability are used to determine the Gini of each 
branch on a node, establishing which of the branches is more likely to occur:

Gini p
i

C

i= −
=
∑1

1

2( )
 

4.42

where pi is the relative frequency of the class observed in the dataset and c is the number of classes.
Random forest regression example application and code: In the following example machine learning 

techniques have been used to predict the water consumption profiles of a daily usage from a down-
sampled time-series of water-flow measures. In particular, the examples start from the high-resolution 
time-series of the daily water consumption of a kitchen faucet. The training set is composed of 100 
samples, which are randomly selected from the original time-series.

In the first example, a decision tree is used to predict all 779 samples of the original one, as shown 
in Figure 4.36.

import numpy as np
from scipy.interpolate import interp1d
from matplotlib import pyplot as plt

import seaborn as sns
from sklearn.datasets import make_circles
from sklearn.ensemble import (BaggingClassifier,
  BaggingRegressor, RandomForestClassifier, RandomForestRegressor)
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
import glob
import random

n_train = 100
n_test = 779

#Generate data
def generate(n_samples):
    ts = np.genfromtxt(‘data/oneday_kitchen.csv’, delimiter = ‘ ’)
    start_time = ts[0,0]
    ts[:,0] - = start_time
    X = random.sample(range(0, len(ts)), n_samples)
    X.sort()y = ts[X,1]
    X = np.reshape(X, (n_samples, 1))
    return X, y

X_train, y_train = generate(n_samples = n_train)
X_test, y_test = generate(n_samples = n_test)
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In the second example, the bagging regressor uses ten trees to generate the solution, presenting a 
lower MSE, as shown in Figure 4.37.

# One decision tree regressor
dtree = DecisionTreeRegressor().fit(X_train, y_train)
d_predict = dtree.predict(X_test)
plt.figure(figsize = (10, 6))
plt.plot(X_test, y_test, color = ‘0.5’,linestyle = ‘dashed’)
plt.scatter(X_train, y_train, c = ‘b’, s = 20)
plt.plot(X_test, d_predict, ‘g’, lw = 2)
plt.title(‘Decision tree, MSE = %.2f’ % np.divide(np.sum((y_test – d_predict) ** 2),n_test))

Figure 4.36 Decision tree to daily water consumption of a kitchen faucet.

# Bagging with a decision tree regressor
bdt = BaggingRegressor(DecisionTreeRegressor()).fit(X_train, y_train)
bdt_predict = bdt.predict(X_test)

plt.figure(figsize = (10, 6))
plt.plot(X_test, y_test, color = ‘0.5’,linestyle = ‘dashed’)
plt.scatter(X_train, y_train, c = ‘b’, s = 20)
plt.plot(X_test, bdt_predict, ‘y’, lw = 2)
plt.title(‘Bagging for decision trees, MSE = %.2f’
% np.divide(np.sum((y_test – bdt_predict) ** 2),n_test));
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Finally, the random forest regressor is used to solve the same problem with the same number 
of decision trees. The example shows a comparison between random forests and bagging. It can 
be observed that, in a random forest, the best feature for a split is selected from a random subset 
of the available features, while in bagging all features are considered for the next best split. This 
represents the main difference between the two methods. The effect is, at least in this example, a slight 
improvement of the MSE as shown in Figure 4.38.

Random forest classification example application and code: The following example looks at 
the advantages of random forests and bagging in classification problems. The goal is to classify 
the corresponding fixture of each water usage using two features. In this example, random forest 
classification has been applied to three fixtures: washbasin, shower and kitchen faucet. In particular, 
the following code reads from the dataset of water usages, the time of the day (seconds), the volume in 
liters and the related fixture for washbasin, shower and kitchen faucet.

Figure 4.37 Bagging to daily water consumption of a kitchen faucet.

# Random Forest
rf = RandomForestRegressor(n_estimators = 10).fit(X_train, y_train)
rf_predict = rf.predict(X_test)

plt.figure(figsize = (10, 6))
plt.plot(X_test, y_test, color = ‘0.5’,linestyle = ‘dashed’)
plt.scatter(X_train, y_train, c = ‘b’, s = 20)
plt.plot(X_test, rf_predict, ‘r’, lw = 2)
plt.title(‘Random forest, MSE = %.2f’ % np.divide(np.sum((y_test – rf_predict) ** 2),n_test));
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The fixtures are represented as an integer from 0 to 2. Twenty per cent of usages are used as the 
training set.

Figure 4.38 Random forest to daily water consumption of a kitchen faucet.

from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.datasets import make_circles
from sklearn.ensemble import (BaggingClassifier, BaggingRegressor,
     RandomForestClassifier, RandomForestRegressor)
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
import pandas as pd
import sklearn

# Load data
df = pd.read_csv(‘./data/dataset.csv’, delimiter = ‘ ’)
fixtures = [‘washbasin’, ‘shower’, ‘kitchenfaucet’]
# Choose the numeric features
df = df[[‘sec_from_midnight’,‘liters’,‘fixture’, ‘num_fixture’]]
df = df[(df[‘fixture’] = =fixtures[0]) | (df[‘fixture’] = =fixtures[1]) | (df[‘fixture’] = =fixtures[2])] plt
df.head()
df = sklearn.utils.shuffle(df)
X = np.asarray(df[[‘sec_from_midnight’,‘liters’]],dtype = float)
max_dur = max(X[:,0])
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The next code applies three decision trees, a bagging and a random forest with 300 estimators to 
address such classification problem. The learned model is used to classify the points of a 2D grid.

Figure 4.39 shows the results of the classification problems performed with the three methods 
described before. The models are used to classify a mesh-grid of 100 × 100 points in a 2D space whose 
dimensions range from the minimum to the maximum values of the two features of the training set. 

max_lit = max(X[:,1])
X[:,0] = X[:,0] /3600
X[:,1] = X[:,1]/1000
Y = df[‘num_fixture’]−2

X_train_circles, X_test_circles, y_train_circles, y_test_circles = \
train_test_split(X, Y, test_size = 0.2)

def plot_class (X,Y, xx1,xx2,y_hat, title):
 fig, ax = plt.subplots()
 plt.contourf(xx1, xx2, y_hat, alpha = 0.2)
 plt.scatter(X[:,0], X[:,1], c = Y, cmap = ‘viridis’, alpha = .7)
 handles, labels = scatter.legend_elements(prop = ‘colors’, alpha = 0.6)
 legend2 = ax.legend(handles, fixtures, loc = ‘upper right’)
 ax.add_artist(legend2)
 plt.title(title)
 ax.set_xlabel(‘hours’)
 ax.set_ylabel(‘liters’)
 ax.legend()
 plt.show()

x_range = np.linspace(X[:,0].min(), X[:,0].max(), 100)
y_range = np.linspace(X[:,1].min(), X[:,1].max(), 100)
xx1, xx2 = np.meshgrid(x_range, y_range)

dtree = DecisionTreeClassifier()
dtree.fit(X_train_circles, y_train_circles)

y_hat = dtree.predict(np.c_[xx1.ravel(), xx2.ravel()])
y_hat = y_hat.reshape(xx1.shape)
plot_class(X,Y,xx1,xx2,yhat, ‘Decision tree’)

dtree = BaggingClassifier(DecisionTreeClassifier(),
    n_estimators = 300, random_state = 42)
b_dtree.fit(X_train_circles, y_train_circles)
y_hat = b_dtree.predict(np.c_[xx1.ravel(), xx2.ravel()])
y_hat = y_hat.reshape(xx1.shape)
plot_class(X,Y,xx1,xx2,yhat, ‘Bagging (Decisione tree)’)

rf = RandomForestClassifier(n_estimators = 300, random_state = 42)
rf.fit(X_train_circles, y_train_circles)
y_hat = rf.predict(np.c_[xx1.ravel(), xx2.ravel()])
y_hat = y_hat.reshape(xx1.shape)

plot_class(X,Y,xx1,xx2,yhat, ‘Random Forest’)
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Figure 4.39 Random forest classification of washbasin, shower and kitchen faucet fixtures.

Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/1062807/9781789062380_0075.pdf
by guest
on 07 November 2022



120 Embracing Analytics in the Drinking Water Industry

Each chart shows how the points of the mesh-grid have been clustered, coloring the associated region 
with a gradient of the corresponding fixture. For example, a point in a strip represented by darker 
gray shade then it will be classified as belonging to the dark gray fixture. Figure 4.39 shows that the 
decision boundary of the decision tree is serrated, suggesting the presence of overfitting and a not 
clear definition of the class. This means that it is difficult to make reliable predictions for new test 
data. The bagging and random forest algorithms, on the other hand, show more regular bounds and 
no evident signs of overfitting.
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