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Résumé

Le microbiote du lait cru est un déterminant majeur de sa qualité et de celle des produits dérivés. Dans
les fermes laitieres, I'hygiéne et la santé du pis, les féces, la litiere et les fourrages conservés sont les principales
sources de microorganismes qui contaminent I'environnement de I'étable et qui peuvent se retrouver dans le
lait. Les ensilages de légumineuses et de graminées produits par fermentation lactique, outre les bactéries
lactiques, sont riches en espéces microbiennes dont la prévalence, la diversité et 'abondance dépendent de
facteurs incontrélables tels que les parameétres environnementaux, et de facteurs contrélables tels que les
pratiques de gestion adoptées par les fermiers. Le choix du type de fourrages parmi lesquels le foin, les
ensilages d’herbe/légume ou de mais, I'utilisation ou non d’inoculants, le type d'inoculant commercial utilisé et
les types de structures d’entreposage sont autant d’éléments qui influencent la composition microbienne des
ensilages et dont la gestion a un impact peu documenté sur la qualité microbiologique du lait cru. Les travaux
de cette thése portent sur I'écologie microbienne des fourrages préservés et I'évaluation de leur contribution a
la contamination du lait cru de vache. Pour ce faire, des méthodes de préservation d'échantillons de lait cru a
base d'azidiol ou de bronopol ont été évaluées pour leur capacité a maintenir intactes la viabilité et 'abondance
des communautés bactériennes présentes. Des échantillons de foin, d’ensilages inoculés et non inoculés, et de
lait cru ont été prélevés deux fois, a 'automne 2015 et au printemps 2016 dans 24 fermes laitiéres au Québec.
Les analyses métataxonomiques et des charges microbiennes déterminées par PCR quantitative aprés le
traitement ou non des cellules microbiennes au propidium monoazide ont montré que I'azidiol combiné au
diméthyle sulfoxide et une température de -20 °C permet de stabiliser le microbiote du lait cru pendant au moins
30 jours, et que I'azidiol seul maintient I'intégrité des communautés bactériennes pendant 10 jours a 4 °C. Ces
études ont également démontré que le séquengage a haut-débit des régions V3-V4 et V6-V8 du géne codant
pour 'ARN ribosomique 16S génére des données dont I'exploitation peut conduire & des conclusions plus ou
moins divergentes selon les hypothéses de départ. L'importance d’'un choix judicieux de la région hypervariable
a séquencer est soulignée. Nos résultats ont révélé des différences entre le microbiote du foin et celui des
ensilages, ainsi qu’entre les types d’ensilage inoculés et non inoculés. De plus, les rations alimentaires a base
de foin, d’ensilage d’herbe/légume non inoculé, d'un mélange densilage d’herbe/légume non inoculé et
d’ensilage de mais inoculé, ou d'un mélange d'ensilage d’herbe/légume et de mais inoculés et non inoculés
partagent jusqu’a 31 % de leur microbiote identifié au niveau de variants de séquences avec le lait cru produit
dans les fermes correspondantes. Les taxons plausiblement transférés des fourrages au lait appartiennent
surtout aux Proteobacteria, Firmicutes et Actinobacteria. Les résultats obtenus suggérent que la contamination
bactérienne du lait cru par les fourrages se fait de maniére aléatoire. Il ressort de nos études que ces taxons
supposément transférés des ensilages sont en grande partie responsables des différences observées entre les

communautés bactériennes du lait des cing types de rations. Bien que les structures phylogénétiques des



échantillons de lait produits par les vaches alimentées avec les rations d’ensilages non inoculés ou inoculés se
soient montrées significativement différentes, il est difficile de conclure sur 'impact réel des inoculants sur la
qualité microbiologique du lait cru. L’analyse des réseaux de co-occurrence et de co-exclusion au sein du
microbiote a révélé d'une part, dans les ensilages les interactions entre les bactéries lactiques et non-lactiques
qui pourraient considérablement influencer le processus de fermentation et ultimement la qualité du produit final,
et d’autre part, dans le lait des niches microbiennes associées aux sites de contamination du lait dans
I'environnement a la ferme. Par I'implémentation des méthodes d’analyses multivariées et multi-table intégrant
le microbiote et les paramétres physico-chimiques des matrices alimentaires échantillonnées, cette thése
propose une approche d'exploitation des données de métataxonomique permettant d’approfondir nos

connaissances de la microbiologie du lait cru et des produits laitiers.



Abstract

The microbiota of raw bovine milk is tightly associated with its quality and that of derivatives. On dairy
farms, udder health, faeces, beddings, and fermented forage are among the main sources of milk microbial
contaminants. Grass/legume and corn silage obtained by lactic fermentation harbour complex microbial
community of which the diversity, the prevalence, and abundance are driven by uncontrollable factors such as
environmental conditions, or controllable factors inherent to farm management practices. Forage types including
hay, grass/legume or corn silage, the use of microbial additives and their commercial types, and the types of
storage structures may influence community assembly of mature silage. However, the impact of forage
management practices on the raw milk microbiota is not fully understood. This thesis aimed at investigating the
microbial ecology of preserved forage and assessing their contribution to the raw milk contamination. To do so,
the ability of milk sample preservation methods based on azidiol or bronopol to maintain viable and stable
microbiota over time was assessed. Forage and raw milk samples were collected twice from 24 dairy farms in
Quebec, in the fall 2015 and the spring 2016. Analyses of metataxonomic and qPCR-based bacterial load data
derived from cells treated or not with propidium monoazide to account for viability showed that azidiol combined
with dimethyl sulfoxide prevented the microbiota instability of raw milk stored at -20 °C for at least 30 days.
Azidiol used alone was additionally found to keep the microbiota in milk samples intact for up to 10 days when
stored at 4 °C. It was demonstrated that for hypothesis-driven microbiota studies, divergent conclusions can be
drawn from hight-throughput sequencing of the V3-V4 and V6-V8 hypervariable regions of the 16S rRNA gene
pool. The importance of the hypervariable region to target is therefore highlighted. Our study revealed
differences between hay microbiota and that of silage, whether inoculated or not. Moreover, forage ration
combinations shared up to 31 % of their bacterial phylotypes with raw milk samples produced in the
corresponding farms. Taxa that were probably transferred from forage ration combinations to raw milk
encompassed the phyla Proteobacteria, Firmicutes, and Actinobacteria. Our results suggested that raw milk
contamination on the farm occurs erratically, and that transferred taxa were mainly involved in differential
abundance outcomes. Although the microbiota of milk samples associated with the five forage ration
combinations exhibited differences in phylogenetic composition, concluding on the effects of microbial additives
used for ensiling is a challenge. In this thesis, the analysis of bacteria interaction networks showed that co-
occurrence or co-exclusion of lactic and non-lactic bacteria might considerably affect the microbiological quality
of mature silage at feed-out. On the other hand, the same analysis performed with milk samples revealed
microbial niches associated with milk contamination points on the farm environment. Through the
implementation of multivariate multi-table analysis methods that integrated data from the microbiota and from
the physicochemical characteristics of the sampled matrices, this thesis suggests methodological approaches

that exploit metataxonomic data to deepen our knowledge of the raw milk microbiota and dairy products.
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RdB Round bale

RDP Ribosomal database project

Rnd_Bal Round bale

SCC Somatic cell count

SLRS Synthetic long-read sequences

sp. Single unidentified species of a given genus
SP_NH3 Ammonia expressed as percent soluble protein
sPLS Sparse partial least squares regression
spp. Multiple species of the same genus

SqB Square bale

Sqr_Bal Square bale

Stack_Sil Stack silo

StS Stack silo

TDN Total digestible nutrient

viv Volume/volume ratio
x;;\\;é{\\;;;\\;?{\y93-V4/V4/v4- Hypervariable regions of the 16S rRNA gene
VBNC Viable but not culturable cells

VFA Volatile fatty acids

wiv Weight/volume ratio
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Z Within-module connectivity

zOTU Zero-radius operational taxonomic unit
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Avant-propos

Cette thése est constituée de quatre chapitres dont un a été publié et les trois autres en voie de
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L'introduction et la conclusion de la thése sont rédigées en frangais. Une section regroupant toutes les
références bibliographiques des documents et sites web consultés et cités est présentée apres la conclusion de
la thése. Les travaux constituant cette thése correspondent a environ 50 % de tout le travail qui a été réalisé
dans le cadre de ce doctorat. En effet, I'analyse du mycobiote des ensilages et du lait cru par metataxonomique
ciblant les régions ITS1 et ITS2 du géne de 'ARNr des levures et moisissures, I'analyse du microbiote de
I'ensilage et du lait cru par métagénomique shotgun, et I'évaluation par métataxonomique ciblant la région V3-
V4 du géne de I'ARNr 16S de l'impact des litiéres sur le microbiote du lait cru font partie des travaux dont les

résultats ne figurent pas dans cette thése.

Aprés la mise en contexte de la problématique et du but de cette thése, le chapitre 1, présenté sous
forme d'article, fait office de la revue de littérature. Intitulée « Farm management practices: potential microbial
sources that determine the microbiota of raw bovine milk », cette section résume I'état de I'art des nouvelles
connaissances sur les pratiques de gestion de la ferme laitiere, notamment la gestion des fourrages et de la
litiére, et leur impact sur la qualité microbiologique du lait cru. Elle s'appuie particulierement sur les avancées
technologiques récentes en faveur des sciences dites « omics » et de l'identification des bactéries pour proposer
de nouvelles approches intégratives d’analyses qui permettront d’approfondir nos connaissances sur 'écologie
microbienne des systemes laitiers. Ce chapitre fait suite a une invitation de I'éditeur du « World Journal of
Microbiology and Biotechnology ». L'article sera publié en tant que « invited review » dans la revue ci-dessus
mentionnée avec comme coauteurs Mérilie Gagnon, Ph.D., Prof. Giséle LaPointe, Prof. Yvan Chouinard et Prof.

Denis Roy. Ce chapitre se termine par I'énoncé des hypothéses et des objectifs de la thése.

Le chapitre 2 rapporte I'essentiel de la mise au point des méthodes de conservation d’échantillons de
lait cru, d'extraction d’ADN et de séquencage du géne codant pour 'ARNr 16S effectuée préalablement a
I'échantillonnage des fermes laitiéres. Il a fait I'objet d'une publication dans la revue « Microorganisms »
(manuscrit soumis le 7 février 2020, accepté le 3 mars 2020, et publié le 5 mars 2020), sous le titre
« Optimization of preservation methods allows deeper insights into changes of raw milk microbiota ». La version
intégrée dans cette thése est identique a celle publiée. Pour ce manuscrit dont je suis I'auteur principal, le Dr
Thibault Varin a été d’'une grande assistance a la prise en main des outils de bioinformatique. Les Profs. Giséle

LaPointe, Simon Dufour, et Denis Roy sont les coauteurs de cet article.
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Au chapitre 3, une analyse exhaustive des communautés microbiennes et des interactions entre elles
et avec les caractéristiques physicochimiques de cing types de fourrages est proposée. Ce chapitre intitulé
« Metataxonomic insights into the microbial ecology of grass or legume and corn silage produced with and
without inoculants in commercial dairy farms » est présenté sous forme d’article et sera soumis pour publication

dans la revue « Applied and Environmental Microbiology ».

L’étude comparative du microbiote d’ensilages et de lait cru fait 'objet du chapitre 4 dont le titre est :
« Association between forage combination, use of inoculant and raw milk microbiota on dairy farms in Quebec
». Ce chapitre est rédigé sous forme d’article et sera soumis pour publication dans la revue « Applied and

Environmental Microbiology ».

Pour les chapitres 3 et 4, la collecte d’échantillons a été réalisée par Dre Mérilie Gagnon et moi-méme.
Les analyses bioinformatiques et statistiques, la rédaction du manuscrit et son édition ont été effectuées par
moi-méme. Les coauteurs sont Mérilie Gagnon, Ph.D., Thibault Varin, Ph.D., Prof. Yvan Chouinard, Prof. Giséle
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Introduction

Le lait est un composant alimentaire essentiel pour environ 6 milliards de personnes a travers le monde
[1]. Au Canada, la production laitiére estimée a 76,7 millions d’hectolitres en 2010 est passée a 93,2 millions
d’hectolitres en 2020, la majeure partie étant produite au Québec [2,3]. Pour l'industrie laitiére, 'aptitude du lait
a la transformation est primordiale. Compte tenu de sa richesse en nutriments et de son contenu élevé en eau,
le lait est un milieu de culture par excellence pour divers microorganismes qui peuvent étre utiles ou indésirables
a la fabrication fromagére, ou encore constituer un risque pour la santé du consommateur. Par exemple, les
pathogénes tels que Listeria monocytogenes [4,5], ou encore les agents d’altération tels que les bactéries
appartenant au genre Pseudomonas [6,7] peuvent contaminer le lait pendant la traite ou lors du transport vers
le lieu de transformation. De plus, les lactobacilles [8] et les bactéries sporulantes telles que les clostridies et
les bacilles [9] sont capables de résister au traitement thermique appliqué au cours de la transformation, et ainsi
causer des dommages pendant I'affinage des fromages [10], ou réduire la durée de conservation des produits

laitiers [11].

A la ferme, les facteurs qui déterminent la qualité microbiologique du lait cru comprennent le microbiote
du pis [12-14], la localisation géographique de la ferme [14,15], les saisons [6,16], la période de lactation des
vaches [17,18], le sol [12], les feces [12,13], la qualité de I'air [14], la litiere [12,19] et I'alimentation par les
paturages [12,20], les concentrés [21] et les fourrages conservés [12,22]. Le foin et les ensilages constituent les
principales formes de conservation des fourrages destinés a I'alimentation des vaches laitieres [23-25].
Contrairement au foin qui est obtenu par séchage, les ensilages sont obtenus a la suite d'une fermentation en
anaérobie des fourrages frais ou préfanés. Le processus d’ensilage exploite les capacités fermentatives des
bactéries lactiques (LAB) épiphytes ou ajoutées comme inoculants pour induire une diminution rapide du pH,
limiter la croissance des microorganismes d'altération et ainsi permettre la conservation des fourrages a base
de graminées ou de légumineuses. Les LAB utilisées comme inoculants incluent des espéces homofermentaires
et des especes hétérofermentaires facultatives telles que Lactiplantibacillus plantarum, ou les
hétérofermentaires obligatoires telles que Lentilactobacillus buchneri, les formulations commerciales pouvant
contenir une combinaison des deux catégories [26]. Les progrés récents en technologie de séquengage a haut-
débit ont permis de mieux comprendre la dynamique microbienne lors du processus d’ensilage et le microbiote
final des ensilages. Cependant, trés peu d'études ont analysé les communautés bactériennes viables des

ensilages matures préparés et conservés dans des silos a la ferme.

Les ensilages constituent des sources importantes de bacilles sporulés qui peuvent étre transférées
au lait. Vissers et al. [27,28] ont associé la concentration élevée des sporulés dans les ensilages a une

augmentation de la concentration des spores dans le lait cru. En effet, ces auteurs suggérent que les spores



bactériennes provenant du sol contaminent les fourrages au champ et lors de la récolte, survivent au processus
d’ensilage au cours duquel elles peuvent proliférer, puis parviennent au lait cru via les feces ou le contact de
ces derniers avec le pis. Si le mode de contamination du lait par les spores bactériennes provenant des
ensilages est bien connu, il y a plus d’hypotheses que d'évidences sur le transfert des bactéries non sporulantes,
notamment les lactobacilles et les entérobactéries, des ensilages vers le lait cru. Les informations concernant
limpact des pratiques de gestion des ensilages telles que I'usage ou non des inoculants sur le microbiote du
|ait et son aptitude a la transformation sont fragmentaires. L'étude plus approfondie de I'écologie microbienne
des ensilages et du lait par I'analyse métataxonomique permettrait de mieux comprendre la structure
phylogénétique des communautés bactériennes des ensilages et du lait cru, et ainsi d'identifier les bactéries du
lait qui proviendraient des ensilages. C'est dans cette optique que se situe I'objectif principal de cette thése qui
est de déterminer I'impact de I'alimentation des vaches avec les ensilages inoculés ou non inoculés sur la
structure des communautés microbiennes du lait destiné a la fabrication fromageére a travers I'étude détaillée de
la prévalence et de la diversité des especes microbiennes présentes dans les deux écosystémes. Ces
informations utiles permettront aux producteurs et transformateurs laitiers d’'améliorer des pratiques de contréle
a la ferme en vue de réduire la prévalence des microorganismes qui affectent la qualité du lait et celle des
produits laitiers.



Chapitre 1 - Revue de la littérature

Pratiques de gestion a la ferme : influence des sources de
contamination sur le microbiote du lait cru de vache

Farm management practices: potential microbial sources that
determine the microbiota of raw bovine milk

Alexandre J. K. Ouamba '2, Mérilie Gagnon '2, Giséle LaPointe 23, P. Yvan Chouinard 24, Denis Roy "2

Département des sciences des aliments, Laboratoire de génomique microbienne, Université Laval, 2440
boulevard Hochelaga, Québec G1V 0A6 Canada

2Regroupement de recherche pour un lait de qualité optimale (Op*Lait), 3200 rue Sicotte, Saint-
Hyacinthe J2S 2M2 Canada

3Department of Food Science, University of Guelph, 50 Stone Road E, Guelph N1G 2W1 Canada

“Département des sciences animales, Université Laval, 2425 rue de I'Agriculture, Québec G1V 0A6 Canada

1.1 Résumé

Outre les routines de traite, les études récentes ont montré que les systémes de traite et les conditions
d’entreposage influencent grandement le microbiote du lait cru. L'application de la culturomique, une technique
d’'analyse microbienne a haut-débit basée sur la culture bactérienne a révolutionné notre compréhension des
bactéries associées a 'lhomme. Son extension en microbiologie laitiere, ainsi que sa combinaison avec la
métataxomique et la métabolomique ouvriront de nouvelles avenues pour contrbler la santé des bovins, pour
améliorer les pratiques de gestion et ultimement la qualité du lait. Cette revue résume les résultats récents
concernant 'impact des pratiques de gestion sur la diversité des microorganismes qui déterminent la qualité du
lait cru de vache. Les derniers développements dans l'intégration des méthodes dites « omics » pour étudier le
microbiote de lait cru depuis l'introduction au début des années 90 des méthodes a base de PCR en

microbiologie laitiére sont soulignés.

1.2 Abstract

Environmental and herd associated factors such as geographical location, climatic conditions, forage
types, bedding types, soil, animal genetics, herd size, housing, lactation stage, and udder health are exploited
by farmers to dictate specific management strategies that ensure dairy farm profitability and enhance the
sustainability of milk production. Along with milking routines, milking systems, and storage conditions, these

farming practices greatly influence the microbiota of raw milk as evidenced by several recent studies. During the



past few years, the increased interest in high-throughput sequencing technologies to investigate dairy microbial
ecology has improved our understanding of raw milk community dynamics throughout storage and processing.
However, knowledge of niche specific community assembly in the farm environment, and on the factors that
determine bacteria transfer to the raw milk is still lacking. In addition, species or strain level identification of
bacteria using high-throughput sequencing of 16S rRNA gene targeted regions is challenging. Recently, the
development and application of culturomics, a high-throughput culture-dependent microbial analysis technique,
has revolutionized the understanding of human associated bacteria and extending this technique to dairy
microbiology, along with its combination with metataxonomics and metabolomics will open new avenues for
controlling cattle health (mastitis), and improving farming practices and ultimately milk quality. This review
summarizes the recent findings regarding the impact of farm management practices on the diversity of bacterial
species that determine the microbiological quality of raw cow milk. Latest developments in the complementarity
of omics methods for investigating the raw milk microbiota since the introduction in the early 1990s of PCR-

based methods in dairy microbiology are emphasized.

1.3 Introduction

Bovine milk, a nutritious food commonly consumed worldwide, serves as the raw material for
manufacturing a wide range of food products. However, the high nutrient and water content of milk makes it a
prime habitat for beneficial, pathogenic, and spoilage bacteria [29-31] that can significantly impact its quality
and safety, as well as deteriorate the shelf life of dairy products. The main microorganisms involved in the
premature spoilage of dairy products have been extensively reviewed [11]. Psychrotrophic bacteria such as
Pseudomonas spp. and spore-forming thermoduric bacteria such as Bacillus spp. and Paenibacillus spp., have
been pointed out as the main microbial causes of food loss and waste in the dairy chain [11]. Moreover, it is well
known that the abundance of psychrotrophic bacteria increases in raw milk during cold storage [7,18], and that
the occurrence of spore-forming bacteria in milk can cause cheese defects [10]. The microbiological quality of
raw milk is therefore a key determinant of the quality of processed dairy products such as pasteurized milk,

cheese, yogurt, or powdered milk [11,18,32,33].

From the dairy farm to silos at processing facilities, the factors that drive the microbiological quality of
raw milk include animal health, farm environment and management practices, and storage and transportation
conditions. During the past two decades, several studies provided new insights into our understanding of the
occurrence and impact of the raw milk microbiota on dairy products. It was clearly demonstrated that the
microbial diversity of raw milk after milking varies in time and between farms [6,18]. Since the pioneering studies
on the link between cow teat skin bacteria and the microbiota of raw milk [34-36], contrasting microbial
community compositions of the cow teat skin have been reported in the literature [37]. Beyond the biases induced

by the variety of microbial analysis techniques used to investigate the microbiota, variation in farming practices



are an important cause of the observed differences in the raw milk community assembly [38]. In this regard,
studies by Vissers and colleagues on the contamination of bulk tank milk by Bacillus cereus spores [28] and
butyric acid bacteria [27] were the first to advise the development of farming practices to improve the quality of
raw milk. This review aims to highlight the latest findings on the interplay of farming practices and the safety and
quality of raw bovine milk and explore the opportunities of knowledge advancement offered by integrated
analytical approaches that combine culture-dependent and culture-independent techniques to enhance our

understanding of the dairy microbiology.

1.4 Recent advancements in microbiota analysis methods

The total bacterial count expressed as colony-forming unit or copy numbers per millilitre is generally
recognised as an indicator of the quality of raw milk and has been found to correlate with problems in
management practices before, during, and after milking [39]. However, it was demonstrated that although viable
counts could be similar for milk samples from the same farm or from different farms, bacterial community
composition and phylogeny might vary considerably [15,19,40]. Since variation in species composition implies
potential variation in the metabolic pathways, proper identification of microorganisms that contaminate raw milk
on the farm, either by culture-dependent or -independent approaches, or by both, is crucial to understand the

relevance of farming practices to the patterns of microbial occurrence.

1.4.1 Culturomics: a high-throughput like culture-dependent method

Culture-based microbial analysis consists of growing bacteria on culture media under controlled
temperature conditions, and isolating single colonies formed for identification and characterisation purposes.
Culture-dependent methods have long been applied to investigate the microbiota of raw cow milk (Table 1-1).
These techniques that do not generally require highly qualified knowledge allow easy comparison of results from
different laboratories. However, bacteria in a viable but not culturable (VBNC) state, the choice of culture media,
and growth conditions are among the main factors likely to induce biases in this microbiological analysis
approach [41]. For example, Gagnon et al. [22] have demonstrated that the RMS culture medium was not strictly
specific to lactic acid bacteria (LAB), as 22 % of isolates identified by partial 16S rRNA gene sequencing were
not assigned to the order Lactobacillales. Likewise, Mallet et al. [42] found that the total mesophilic bacterial
count using the standard plate count agar corresponded to that of Gram-negative bacteria in raw milk. Although
chemical compounds can be added to improve the specificity of the culture medium (e.g. vancomycin for LAB
count), bacteria may exhibit differential sensitivity at the species or strain level. Moreover, anaerobic bacteria
from raw milk are likely to enter a VBNC state in an oxygen-stressed environment. Sample storage at low

temperature can affect the viability of raw milk bacteria [43]. Isolation of bacteria from plates by random selection



of single colonies as generally performed does not lead to a representative population of the microbiota, except

if a tool such as the Harrison disk is used [19,22].

As mentioned above, each bacterial isolate is associated with a gene pool that determines the
relevance of the metabolic activities of the identified species in the dairy chain. Culture-dependent techniques
allow targeting specific bacterial groups that can be overlooked by culture-independent approaches despite their
potential biological importance for milk and dairy products [21,40]. Microbial culturomics denotes the combination
of extensive bacterial culture on a variety of culture media in different conditions with matrix-assisted laser
desorption ionization time-of-flight (MALDI-TOF) mass spectrometry for high-throughput isolate identification
[44]. The purpose of applying this approach is to culture and identify unknown bacteria from their natural habitat
[45]. Although it was introduced just a decade ago, this technique has been improved with newly developed
culture media [45,46] such that recently, Diakite et al. [47] were able to cover 67 % of the reads obtained by
metagenomic analysis and to reduce by 22 % the associated unidentified taxa. Most of the studies in which
microbial culturomics was implemented as described in the original reports are associated with the human
microbiota. The significant contributions of this methodological approach to the improved knowledge of the
human microbiome have been extensively reviewed, and it is reported that the repertoire of cultured species
isolated from human body sites has been increased by 28 % [48,49]. In contrast, only few studies applying
microbial culturomics have been carried out on samples associated with the dairy farm environment [50,51], and
nowadays, to our knowledge, none dealing with the udder [52] nor with the raw milk microbiota are available.
Combining culturomics with high-throughput sequencing of the 16S rRNA gene pool, Zehavi et al. [50] found
that the culturable bacterial species represented only 23 % of the total operational taxonomic units (OTUs)
detected from the rumen. Considering the multiple sources of milk contamination on farm, the optimization of
microbial culturomics for the dairy environment is encouraged to uncover the uncultured portion of the dairy
microbial contaminants. On the other hand, MALDI-TOF is a reliable tool for isolate identification that can be
routinely applied in the laboratory. Indeed, extensive culturing of microorganisms as performed in a culturomics
approach generates thousands of isolates. Unlike genotypic methods such as restriction fragment length
polymorphism, random amplified polymorphic DNA, or multilocus sequence typing that are applied on single
isolates for identification and characterisation, rapid identification of these isolates in a high-throughput like
manner can be achieved using MALDI-TOF. Dobrani¢ et al. [53] successfully identified enterococci isolates from
raw milk using this method. Implementing a culturomics-like approach on raw milk, Frétin et al. [21] assigned
isolates to the phylum Deinococcus-Thermus that was not detected by the metataxonomic analysis. In addition,
out of the 34 genera identified by culture-dependent method, these authors found that 12 were not detected by
high-throughput sequencing. Using a similar approach with a Fourier-transform infrared method instead of
MALDI-TOF mass spectroscopy for isolate identification from bulk tank milk, Breitenweiser et al. [40] isolated

bacterial colonies corresponding to 24 genera and 6 families (Jonesiaceae, Mycobacteriacea,



Propionibacteriacea, Tsukamurellaceae, Paenibacillaceae, Morganellaceae) that were not detected by a

concurrent metataxonomic analysis.

Table 1-1. Abundance of bacterial groups in bulk tank raw milk according to culture-dependent or
independent method used in each study reviewed

Number of herds x ~ Geographical Method  Targeted bacterial group Log Reference
sampling period’ site cfu/mL

974 raw tanker milk California, USA qPCR Aerobic mesophilic bacteria 315  [54]

71 raw silo milk California, USA gPCR Aerobic mesophilic bacteria 42 [55]
24 herds x 3 Eastern Canada Viable Lactic acid bacteria 256  [22]
counts
84 herds Eastern Canada Viable Anaerobic spore-forming bacteria 0.35  [19]
counts “Aerobic mesophilic spore-forming 0.38
bacteria
Aerobic thermophilic spore- 0.35
forming bacteria
70 herds x 3 Eastern Canada Bactoscan Total bacteria 426  [56]
33 herds New York state, Viable Aerobic mesophillic spores 1.7 [57]
USA counts  Aerobic mesophilic bacteria 3.8
9 herds (472 samples) New York state, Viable Aerobic mesophilic bacteria 347  [58]
USA counts
5 herds New York state, Viable Aerobic mesophillic spores 0.3 [59]
USA counts Aerobic thermophilic spores 0.3
108 herds x 2 Basse- Viable Aerobic mesophilic bacteria 3.69 [42]
Normandie, counts Lactoccocci 3.85
France Lactobacill 4.21
Leuconostoc 3.1
Pseudomonas 2.72
Gram-negative bacteria 2.88
Yeasts 1.92
Moulds 0.41
729 herds Denmark, Viable Aerobic mesophilic bacteria 3.9 [60]
Germany, and  counts
Netherlands
13 herds Galicia, Spain ~ Flow Total bacteria 4.15-  [61]2
cytometry 4.70
105 herds x 52 Netherlands Bactoscan Total bacteria 3.9 [62]
24 herds Netherlands MPN Butyric acid bacteria spores 0.3 [27,28]
Viable Bacillus cereus spores -1.74
counts




45 farms x3 Norway Viable Aerobic mesophilic bacteria 427  [19]
counts
1 herd x 6 Nothern Italy ~ MPN Anaerobic spore-forming bacteria 1.48  [63]
Petrifilm  Aerobic mesophilic bacteria 3.7
Petrifilm  Coliforms 1.24
Viable Lactic acid bacteria 3.52
counts
Viable Propionic bacteria 1.02
counts
23 herds Nothern Italy MPN Anaerobic spore-forming bacteria 2.76  [64]
Viable Lactic acid bacteria 3.8
counts
Viable Propionic bacteria 2
counts
Petrifilm  Aerobic mesophilic bacteria 4.09
Petrifilm  Coliforms 2.15
2 herds x 2 Southern Viable Aerobic mesophilic bacteria 4.5 [40]
Germany counts
3 raw milk vending Southern ltaly ~ Viable Aerobic mesophilic bacteria 5 [65]
machines x 10 counts  Lactic acid bacteria 4
Enterococci 2
Enterobacteriaceae 1.8
Total coliforms 2
Fecal coliforms 0.5
Pseudomonas 5
Coagulase-negative cocci 2
Yeasts 5
1 herd Croatia Viable Enterococci <1-5  [53]2
counts Enterobacteria <1-4.69
Escherichia coli <1-3.3
Staphylococci <1-4
Aerobic mesophilic bacteria 3-5.39
Psychrophilic bacteria <2-517
Lactic acid bacteria <2-4.77
20 herds Czech Republic Viable Aerobic mesophilic bacteria 418  [66]
(150 samples) counts  Psychrophilic lipolytic bacteria 2.8
1 herd Slovakia Viable Aerobic mesophilic bacteria 6.71 [67]
counts
Psychrophilic bacteria 6.62
Thermophilic bacteria 3.1
3 herds x 5 Vologda district, Viable Aerobic mesophilic bacteria 403  [68]
Russia counts
21 herds Tunisia Viable Aerobic mesophilic bacteria 6 [69]
counts
Viable Aerobic mesophilic spores <1
counts




3 herds x 12 South-east Viable Aerobic mesophilic bacteria 4-5 [70]2

Victoria, counts  Psychrophilic bacteria 2.75-38
Australia Thermoduric psychrophilic 1.5-2
bacteria

1: When the samples were not bulk tank raw milk, the nature of the sample is given.
2 /iable count range

1.4.2 Culture-independent methods

The application of culture-independent techniques in dairy microbiology brought new perspectives on
the diversity of raw milk microbiota [71]. High-throughput sequencing has attracted much interest in dairy
microbiology to the point that during the last decade, nearly 200 published studies have used this technique to
analyse the microbiota of raw milk [37]. Metataxonomics, metagenomics, metatranscriptomics, metaproteomics,
and metabolomics are the main high-throughput methods used for microbial community analysis and
characterization, and their application in food microbiology has been extensively and critically reviewed
[37,72,73]. Here we will mainly focus on new developments in the metataxonomic approaches and combinations
with other omics techniques that show high potential for investigating microbial niches associated with raw milk

production.

Marchesi and Ravel [74] defined metataxonomics as the high-throughput characterisation of microbial
communities based on the amplification and sequencing of taxonomic marker genes, from which all the
sequences generated are used to build a metataxonomic tree that illustrates amplicon phylogeny. The most
used marker genes for metataxonomic studies include the 16S rRNA gene [75] for bacteria and the internal
transcribed spacers (ITS1 and ITS2) for fungi (Hoggard et al 2018). This technique has been widely used in
dairy microbiology research (Table 1-2). Regardless of the marker gene of interest, the experimental design of
metataxonomic studies including sampling, sample handling and storage, separating dead from living cells, DNA
extraction, DNA amplification, sequencing, raw sequence analysis, and subsequent downstream analysis are
all subject to biases [37,41,43,76]. Good practices associated with each stage of the metataxonomic analysis
process mentioned above have been comprehensively reviewed [76-78]. However, the development of a
consensus approach for the 16S rRNA gene high-throughput sequencing is challenging [77]. Using a culture-
dependent technique, O’Connell et al. [79] noted an increase in total and psychrotrophic bacteria counts in bulk
tank raw milk stored at 4 and 6 °C for 5 days, whereas this was not observed in a concomitant study using a
culture-independent approach [17]. Changes in the diversity of milk microbiota after cold storage were not
noticed plausibly due to the extraction of total DNA regardless of cell viability. Regarding storage conditions, milk
samples that cannot be processed (freezing cell pellets at -80 °C) within the 24h following sampling should
preferably be treated with a preservative solution such as azidiol [43]. Depending on the goal of the study, it may

be relevant to distinguish dead from live bacterial cells by treatment with a viability dye such as propidium



monoazide (PMA). PMA is a DNA intercalating dye that enters microbial cells with lowered cell membrane
integrity, binding to DNA following the exposure to bright visible light at up to 460 nM, and preventing nucleic
acid replication during PCR [76,80]. Although PMA has been widely used in combination with quantitative PCR
[81-83], its application in high-throughput sequencing studies is limited [37,55].

DNA extraction is a critical stage of the culture-independent microbial community analysis process,
particularly for complex food matrices such as bovine milk. In the raw milk matrix, fat globules and casein
micelles are dispersed in an aqueous solution of minerals, lactose, and whey proteins. Raw milk genomic DNA
is classically isolated from the casein pellet after the whey and fat fractions have been discarded [17,18,40,43].
Although milk fat is known to interfere with the nucleic acid extraction process [84,85], a few studies reported an
improvement of qPCR sensitivity when the cream fraction is included in DNA isolation [86-88]. In addition,
bacteria such as Staphylococcus aureus, Limosilactobacillus reuteri, and Escherichia coli were previously found
to bind to milk fat globules [88-90]. Recently, Lima et al. [87] performed a metataxonomics analysis of the
microbiota of raw whole milk from healthy and clinical mastitis cows, along with three milk fractions including fat,
casein pellet and casein pellet combined with fat, and reported no significant difference in the mean relative
abundance of mastitis pathogens across milk sample-template. These authors also found that 27 % of the
families identified in healthy milk samples composed the core microbiota (group of taxa shared by all or most of
samples) of milk fractions and accounted for 80 % relative abundance of the total bacterial community. Another
recent study on the human milk microbiota recommended the use of whole milk for microbiome investigations,
although the authors reported a 39 % reduction in the efficiency of DNA extraction in the presence of the fat
fraction [91]. These findings suggest that the bacterial community profile obtained from casein pellets as
commonly done in dairy microbiology may not be representative of the real microbiota in milk. However, none
of these studies have contrasted their protocols with that involving the use of Ethylenediaminetetraacetic acid
(EDTA) to clarify raw milk before pelleting and fat removal as previously described [7,43,92]. Indeed, the addition
of EDTA to human breast milk was found to induce a disruption of fat globule membrane with subsequent release

of membrane-bound protein and free fatty acids, and a pH reduction [93].

Besides the bacterial cell recovery strategy from raw milk, the success of DNA isolation for community
profiling also relies on the method of cell lysis. It is recognised that cell lysis approaches integrating enzymatic,
chaotropic, and mechanical lysis will improve DNA extraction from bacteria [17,18,40,43]. Compared with a
culture-dependent approach, Breitenwieser et al. [40] could not detect by metataxonomics several taxa from the
phylum Actinobacteria. Owing to a thick layer of peptidoglycans, cell lysis of Actinobacteria may be difficult. As
for spore-forming bacteria that may occur in raw milk, DNA extraction should be optimised [94]. Efforts to develop

standards of DNA isolation from raw bovine milk should be encouraged.
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The most recent developments of high-throughput sequencing of the 16S rRNA gene have offered
three strategies that include sequencing one to three adjacent hypervariable regions (short-length amplicon
sequencing) using the lllumina platform [95], or the full-length gene either by generating circular consensus
sequences (CCS) using the PacBio system [96] or by the construction of synthetic long-read sequences (SLRS)
using the LoopSeq technology [97]. An improved version of the Divisive Amplicon Denoising Algorithm
implemented in a software package (DADA2) for amplicon error correction and high resolution sample inference
[98] was recently adapted to PacBio CCS [96] and LoopSeq SLRS [97] data to provide exact amplicon sequence
variants (ASVs) with single-nucleotide resolution from the full-length 16S rRNA gene with a near-zero error rate.
A recent comparison of the PacBio CCS and LoopSeq SLRS methods through a DADA2 processing pipeline
showed that while both technologies exhibited concordant results, higher accuracy and lower per-base error rate
were obtained with the LoopSeq system [97]. Although these technologies may allow accurate species and
strain level identification of bacteria from complex community assemblies, they are currently less cost-effective
than the lllumina amplicon sequencing strategy for investigating the microbiota diversity in a large-scale study,
and this would likely limit their wide application for some time. lllumina partial 16S rRNA gene sequencing is the
most common approach of microbial community profiling. It is well known that the choice of the target region
(out of the nine available) on the 16S rRNA gene as well as the clustering method (OTUs or ASVs) of the
resulting sequences prior to taxonomy inference will have considerable impact on the microbiota diversity and
subsequent data interpretation [99,100], particularly for large datasets of complex microbial communities [101-
103]. While OTU picking is based either on amplicon similarity level (arbitrarily fixed at >97 % sequence identity)
with reference genomes, or on de novo clustering (highly similar sequences in a given dataset are clustered
together), ASV inference relies on error modelling and reads similarity and abundance to distinguish sequence
biological variants with single-nucleotide differences [98,103,104]. Recently, Abellan-Schneyder et al. [105]
comprehensively analysed the effect of primers targeting the hypervariable regions V1-V2, V1-V3, V3-V4, V4,
V4-V5, V6-V8, and V7-V9, taxonomic classification methods such as OTUs, zero-radius OTUs (zOTUs) [106],
and ASV [98], databases for taxonomy inference such as GreenGenes [107], the Ribosomal Database Project
(RDP) [108], the Silva database (Quast et al 2013), the genomic-based 16S rRNA Database, ‘The All-Species
Living Tree’ [109], and bioinformatic processing parameters (amplicon truncation length) on the taxonomic
composition of three mock communities and 33 human samples [110]. The authors recommended (for human
faeces) the V3-V4 region of the 16S rRNA, Silva or RDP databases, ASVs and zOTU clustering methods, and
the creation of a specific and complex mock community reflecting the microbial ecosystem of interest for
reliability and comparability of results [110]. Although several studies have employed short-read amplicon
sequencing to raw milk and dairy product microbial analyses [37,72], studies that have assessed hypervariable
regions for dairy microbial profiling are scarce, and no specific variable regions have been recommended. It was

reported that the V3-V4 region is the most used [37]. A recent study comparing the V3-V4 and V6-V8 regions
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for analysing raw bovine milk microbiota composition showed the superiority of the former for discrimination
between samples, while the latter exhibited higher coverage [43]. The ASV clustering method has already been
used in dairy microbiology [15,43,111]. Efforts to improve the technical aspects of short-length amplicon

sequencing and data analysis process of microbial habitats on dairy farms are highly encouraged [43,99].

The microbial environment on dairy farms is composed of several habitats where interconnections map
out the routes of raw milk contamination. From the forage field to the bulk tank, these habitats include soil, crops,
silage and other feeds, cow faeces, bedding, cow udder and teat, water, milking clusters, pipeline, bulk tank,
and raw milk [52,112,113]. Although several studies have investigated the microbiota inherent to single habitats,
few have compared them to determine relative contributions to raw milk contamination [12,14,113]. Using
SourceTracker [114] on metataxonomic data from various microbial habitats on dairy farms, Doyle et al. [12]
found that the most important sources of raw milk contamination were the teat surface, faeces, grass for outdoor
herds, bedding for indoor herds, silage, and soil, respectively. Interestingly, a recent study implemented the
same analysis scheme to compare the impact of rumen fluid, airborne dust, water, bedding, and faeces on raw
milk microbiota from two dairy farms and found that airborne dust was the main contributor to the milk community
on both farms, followed by faeces, bedding, and water in farm 1, and bedding, faeces, and rumen fluid in farm
2 [113]. Moreover, Du et al. [14] using a similar approach found that teat, teat liner, teat dip cup, and dairy hall
air differentially impact the milk microbiota from two dairy farms, demonstrating that the contribution of on-farm
microbial sources to raw milk contamination may considerably vary depending on the farm configuration.
Noteworthy, from the three studies mentioned above, high levels of contribution to milk contamination from
unknown sources were noticed, emphasizing the multiplicity of microbial niches on the farm environment, and
the relevance of implementing good management practices to limit raw milk contamination on farm. However,
the reliability of such studies depends on the efficiency of sequence clustering methods and the accuracy of
taxonomy inference, the latter highly relying on the database chosen as mentioned earlier. Currently, there is a
growing interest in developing ecosystem-specific databases for improved resolution and accuracy of taxonomic
assignment [115-117]. DAIRYdb, a manually curated reference database containing more than 10,000 full-
length 16S rRNA gene sequences from dairy products, was recently developed and found to improve the
accuracy of taxonomic classification of sequences associated with the dairy environment [118]. The construction
of DAIRYdb included sequences from cheese, milk, teat, starter, and whey. However, the performance of this
promising database might be reduced when assessing the microbiota of other on-farm microbial habitats such
as cow faeces, silage, or bedding, and this could somehow limit its application in comprehensive studies of farm-

scale microbial ecology.

Species or strain level identification of dairy microorganisms is essential for understanding their

relevance for milk quality, safety, and processing. Although valuable efforts are being made to achieve this goal
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with short-length amplicon sequencing, advanced technologies for high-throughput sequencing of the full-length
16S rRNA or other informative genes constitute a promising avenue for metataxonomic studies [97]. However,
a decrease in the associated costs is needed for better accessibility. Beyond amplicon sequence clustering and
accurate taxonomic classification, subsequent function pathways or metabolic profile prediction can add
meaningful interpretation of the potential microbial activities. This can be achieved with bicinformatic tools such
as PICRUSI2 [119], Tax4Fun2 [120], Piphillin [121], and more recently IPCO [122], that are all based on the
KEGG database [123]. No independent benchmark tests involving all the cited tools are currently available, so
readers are referred to the original papers for more information. We recommend testing one or more of these
tools with each dataset to make a choice. Unlike metataxonomics that is limited to marker genes, metagenomics
characterizes the metagenome from which the taxonomic information at the species and strain levels and all the
functional potential of the microbiota are directly available [74]. Excellent reviews on the lessons, methodological
advances, challenges, applications, and prospects of microbial metagenomics have been recently published
[124-127]. The density and complexity of the information generated by metagenomic studies have enabled the
evolution of specific research areas, including metatranscriptomics for characterizing community genes that are
expressed at a given time, metaproteomics for generating timepoint protein content, and metabolomics for
analysing the metabolite profiles of microbial systems [74]. Applications of these omics methods in dairy
microbiology have been comprehensively reviewed [72,73]. Despite its limitations, metataxonomics can be
combined with other omics disciplines to deepen our understanding of ecological niches. A study by De Filippis
et al. [128] integrated metataxonomics and metatranscriptomics to investigate bacterial community dynamics
and associated gene expression from raw bovine milk to a ripened traditional Italian pasta-filata cheese. The
authors first identified highly expressed genes during cheese production and ripening, and secondly used three
temperature and relative humidity conditions to modulate cheese ripening. They revealed the essential role of
non-starter lactic acid bacteria in cheese ripening and demonstrated that variations of ripening conditions can
considerably reduce the ripening time without affecting cheese quality. Recently, Bellassi et al. [129] analysed
the effects of feeding systems including hay and a mixed forage ration composed of hay and fresh grass on the
milk microbial community and chemical composition using metataxonomics and metabolomics. They reported a
higher discriminative power of the metabolomic approach compared to amplicon sequencing on milk samples
from both feeding systems, indicating that milk samples may exhibit similar taxonomic profiles but different
metabolic activities, combining the microbial and bovine metabolic differences. Interestingly, they were able to
correlate specific taxa to key metabolic markers of the feeding types tested. Several other multi-omics studies

have been employed to advance our knowledge on dairy ecosystems [18,73,130].

In specific hypothesis driven microbiome studies, multi-omics approaches for holistic analysis generate
what is now commonly referred to as “big data” from which new knowledge can only be extracted by using

appropriate analytical methods that integrate large amounts of multi-table data. Recent advances in multi-table
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data integration encompassing important aspects such as methods, tools, application, interpretation, and future
approaches have been extensively reviewed elsewhere [131-134]. Tools such as MetaboAnalyst for examining
metabolome and other omics data [135], MixOmics that is focused on data exploration, dimension reduction and
visualisation, biomarker discovery, and model prediction [136,137], and MaAslin2 that is based on general linear
models [138] are promising for dairy research. For instance, a recent study by Afshari et al. [137] used DIABLO
(Data Integration Analysis for Biomarker discovery using Latent cOmponents), a multi-omics integrative method,
to discriminate between cheddar samples of different sensory quality [139]. The authors reported that higher
relative abundance of Streptococcus salivarius/thermophilus, enriched amounts of proline, histidine, isoleucine
and aspartic acid, and lower quantity of octadecanol and stearic acid distinguished high-quality mature cheddar
from low-quality counterparts that exhibited higher relative abundance of Lactococcus lactis as determined by
DIABLO. The authors concluded that integrated multi-omics analyses could complement the current sensory
evaluation of cheese quality [139]. Systematic integration of multi-omics analyses to investigate microbial niches
in the dairy farm environment will shed light on relationships among microorganisms and on their interplays with
host (cow teat) or abiotic (metabolites, pH, temperature, anaerobia, organic matter, etc.) factors that characterise
the living milieu (teat, udder, skin, rumen, faeces, silage, litter, milk, etc.). The outcomes of such studies may
include identifying patterns of milk microbial contamination from various microbial niches, patterns of microbial
relationships (co-occurrence, co-exclusion) and inter-omics interactions in specific microbial sources, biomarker
discovery, prediction of the milk processability and the quality of dairy products, as well as the generation of new
research hypotheses. This information would be useful for recommending new farming practices that enhance

the quality and safety of raw milk and dairy products.

Table 1-2 Relative abundance of dominant taxa found in raw milk using high-throughput sequencing
technology

Number of Location  Sequencing Dominant taxa Abundance Reference
herds x platform (%)
sampling (hypervariable
period' region)
1 herd x 2 British lllumina HiSeq  Bacteroides 36 [13]
Columbia,  16S RNA Roseburia 7
Canada sequencing Bifidobacterium 4
(V3) Parabacteroides 3
Lachnospiraceae 2.5
45 herds x 3 Norway lllumina HiSeq  Pseudomonas 26.58 [15]
16S RNA Lactococcus 12.03
sequencing Bacillus 1.3
(V3-V4) Streptococcus 6.42
Clostridium XI * 5.54
Acinetobacter 3.44
Staphylococcus 2.77
Facklamia 2.68

14



Corynebacterium 2.38
Paenibacillus 2.23
974 raw tanker  California,  lllumina HiSeq  Streptococcus 6.51 [54]
milk samples ~ USA 16S RNA Clostridiales 6.33
sequencing Staphylococcus 545
(V4) Ruminococcaceae 4.35
Corynebacterium 3.7
Turicibacter 245
Peptostreptococcaceae  2.22
Lachnospiraceae 2.03
2 herds Southern lllumina MiSeq ~ Corynebacterium 10 [40]
Germany ~ 16S RNA Caryophanon 7.65
sequencing Staphylococcus 5.75
(V3-V4) Streptococcus 5
Chryseobacterium 35
Aerococcus 3
Jeotgalicoccus 2.5
Pseudomonas 2.5
Brachybacterium 2
Clostridium 2
Facklamia 2
Janibacter 2
1 herd Ireland [llumina MiSeq  Ruminococcaceae 24 [12]
16S RNA Rikenellaceae 5.6
sequencing (V3-  Lachnospiraceae 5.3
V4) Bacteroidaceae 4.8
Prevotellaceae 4.4
Preptostreptococcaceae 4.4
1 herd France lllumina MiSeq ~ Sphingomonas 20.59 [21]
16S RNA Lactococcus lactis 11.6
sequencing (V3-  Bifidobacterium 10.7
V4) crudilactis /
psychraerophilum
Rhodococcus spp. 8.56
Bacillus 6.61
Lacticaseibacillus casei  6.61
Corynebacterium 5.56
10 herdsx12  Shanghai,  lllumina MiSeq  Pseudomonas 19.6 [6]
China 16S RNA Bacillus 13.8
sequencing (V3-  Lactococcus 11.7
V4) Acinetobacter 10.2
67 herds Ireland lllumina MiSeq ~ Pseudomonas 6.6 [18]
16S RNA Acinetobacter 5.2
sequencing (V3-  Lactococcus 4.7
V4) Corynebacterium 4.2
Streptococcus 2.5
1 dairy facility x Oregon, lllumina MiSeq ~ Ruminococcaceae 9.54 [111]
3 USA 16S RNA Peptostreptococcaceae  9.33
sequencing (V4)  Lactococcus 4.39
Methanobrevibacter 417
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Facklamia 2.51

Clostridiales 2.33
Corynebacterium 2.18
Streptococcus 2.14
Escherichia 2.06
Solibacillus 2.05
Turicibacter 2.03
Arthrobacter 2.02
Staphylococcus 2.01
2 dairy facilities Hungary [llumina NextSeq Bacilli 51 [140]
(metagenomics)  Gammaproteobacteria 25
Actinobacteria 16
Flavobacteria 3.5
Alphaproteobacteria 2.5
Chlorobia 1
Clostridiales 0.5
1 dairy facility ~ Mexico PGM-lon Torrent  Streptococcus 23.12 [16]
(26 raw milk (V2,V3,V4,V6, Lactococcus 17.53
samples) V7,V8and V9)  Enterobacteriaceae 17.27
Aeromonadaceae 14.82
Lactobacillus 0.72
1 herd and 6 Ireland Roche 454 16S  Lactococcus 55 [141]
dairy facilities RNA sequencing  Pseudomonas 26
(V4) Leuconostoc 6.25
Prevotella 5
Ruminococcus 2
Flavobacterium 2

1: When not bulk tank raw milk, the nature of the sample is given.
*: Peptostreptococcaceae

1.5 Bacteria of interest from raw milk

Investigations of the raw milk microbiota have shown high complexity (Table 1-1 and 1-2) but somehow
low variability, though different compositions of the core microbial community have been described. Upon
comparing five studies that analysed the microbiota of bulk tank milk by high-throughput sequencing, Parente et
al. [37] reported that up to 2,000 taxa were identified at the genus level, of which Enterococcus, Facklamia,
Lactobacillus, Lactococcus, Paeniclostridium, Pseudomonas, Psychrobacter, Rikenellaceae, Rombustia,
Ruminococcaceae, Staphylococcus, Strenotrophomonas, Streptococcus, and Turicibacter were among the 25
most abundant and prevalent. From almost 1000 tanker truck raw milk samples, Kable et al. [54] reported a core
microbiota composed of 29 taxa of which the most abundant included Streptococcus, Staphylococcus, and
unidentified Clostridiales. In a study involving 472 bulk tank milk samples collected from 19 herds,
Ruminococcaceae,  Acinetobacter,  Clostridiales,  Bacteroidales,  Pseudomonas,  Staphylococcus,
Lachnospiraceae, Corynebacterium, Planococcaceae, Bacillus, Thermoanaerobacterium, and 5-7N15

composed the core microbiota [58]. It was recently stated that Microbacterium, Pediococcus, Fusobacterium,
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Propionibacterium,  Acinetobacter,  Bifidobacterium, Pseudomonas, Staphylococcus,  Streptococcus,
Lachnospiraceae,  Corynebacterium, Bacteroides, Enterococcus, =~ Ruminococcaceae,  Aerococcus,
Jeotgalicoccus, Psychrobacter and Enterobacter were frequently associated with bovine milk [41]. These taxa
commonly found in raw milk encompass cow associated (gut and skin), disease causing, spoilage, beneficial,
and psychrotrophic bacteria. In this section only some of the bacteria taxa or phenotypic groups that have been
recently mentioned as relevant for milk quality are emphasized. Readers are referred to the review by Quigley

et al. [5] for broader information on the microbiota of raw milk.

1.5.1 Psychrotrophs

Psychrotrophic bacteria are among the most studied species of the raw milk microbiota, probably due
to their spoilage potential and their enrichment under cold storage conditions as shown for Pseudomonas and
Acinetobacter [15,54]. An increase of 5 to 8 log cfu/mL of Pseudomonas upon storing raw milk at 4 °C for 72 h
has been reported [65]. Likewise, Vithanage et al. [70] attributed a significant shift of the microbial structure of
raw milk stored at 4 °C for 4 days to the proliferation of psychrotrophs. The outgrowth of Pseudomonas
fluorescens group and Bacillus spp. along with the emergence of Aeromonas, Listeria, and Stenotrophomonas
occurred at the expense of LAB such as Streptococcus, Enterococcus, and Staphylococcus, as well as
Enterobacteriaceae such as Hafnia, Rahnella, Klebsiella, Enterobacter, and Serratia. Psychrotrophic bacteria
such as Pseudomonas can produce pigments and heat-stable enzymes. For instance, 50 to 75 % of
Pseudomonas and Bacillus isolates showed persistent proteolytic and lipolytic activity following heat treatment
of raw milk at 142 °C for 4 sec [70]. A recent study by Reichler et al. [142] showed that species of the genus

Pseudomonas still pose major threats to fluid milk processing.

1.5.2 Thermoduric spore-forming bacteria

Thermophilic, mesophilic and psychrotrophic bacteria that can survive pasteurisation and grow in
pasteurised milk are called thermoduric, regardless of their capacity to produce spores [143]. Reducing their
occurrence in raw milk is therefore crucial. Spore contamination is a major and recurrent problem for the
production of powdered milk [144]. The control of butyric acid producing bacteria such as Clostridium
tyrobutyricum is of great importance to minimize late blowing defects during cheese manufacture [10]. The genus
Bacillus is dominant among thermoduric spore-forming bacteria, and Bacillus licheniformis is one of the most
ubiquitous [19,69,144,145]. Paenibacillus is also recognised as thermoduric [11,15,146]. Less common bacteria
such as Methylonatrum, Cloacibacillus, and Planobacterium were reported to show significant positive
correlation with heat-resistant spore counts in raw milk [6]. Thermoduric bacterial spores may grow and reach
20,000 cfu/mL in approximatively 14 to 21 days following milk pasteurisation [11]. Moreover, thermoduric
bacteria of the genera Bacillus, Paenibacillus, Psychrobacillus, and Viridibacillus have shown lipolytic and

proteolytic activity [11,70], especially in extended shelf life products.
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1.5.3 Lactic acid bacteria

Within the order Lactobacillales, Lactococcus, Pediococcus, Enterococcus, Streptococcus, and
lactobacilli are the most commonly reported genera in raw milk microbiota [147]. Recently, Zheng et al. [148]
proposed an important reclassification of the Lactobacillus genus into 25 genera of which 23 are novel, along
with the amendment of the family Lactobacillaceae to contain all previous members of the families
Lactobacillaceae and Leuconostocaceae. LAB are the most studied bacterial groups of the milk microbiota due
to their technological relevance and health-promoting properties [32]. Indeed, among multiple applications, LAB
can be used as inoculants for ensiling [26] or starter for cheese manufacture [149]. However, heterofermentative
LAB species can be associated with dairy product defects [19,150]. Although LAB are generally considered as
mesophilic, they can proliferate in raw milk during cold storage. It was previously found that 87 % of LAB isolates
from raw milk were able to grow at 6 °C [70]. Moreover, Kable et al. [54] have demonstrated the enrichment of

Lactobacillales in milk silos at dairy plants.

The genus Enterococcus may be somewhat controversial. While certain strains of the same species
can be used as microbial additives in silage or as adjunct starter for cheese-making, others were identified as
cow or human pathogens [151]. Moreover, members of this group have exhibited resistance to numerous
antibiotics including vancomycin [152], as well as to heat-treatments and salt, which can constitute potential
threats to the safety of humans consuming raw milk [19]. The most abundant enterococci in milk include
Enterococcus faecalis, Enterococcus faecium, and Enterococcus durans [19,53]. It has been reported that their

amount could reach 10° cfu/mL in raw milk [53].

1.5.4 Kocuria

The genus Kocuria (family Micrococcaceae) often occurs in raw milk and several cheese varieties such
as Parmesan and raw milk cheese [43,140,153]. While few studies have focused on Kocuria as a bacterial group
of interest, Gagnon et al. [19] reported that several isolates of the genus collected from bulk tank raw milk were
heat-resistant. Similar to Enterococcus, Kocuria may be opportunistic pathogens [154] and therefore may pose
a food safety risk for the consumption of milk and derived products. Strains of Kocuria varians have shown
resistance to more than five antibiotics [155]. The use of the strain K. varians S157 as adjunct for experimental
cheese-manufacture induced significant increase in the content of dimethyl disulfide and dimethyl trisulfide
compared to other manufacturing conditions, contributing to the typicity of the cheese flavour [156]. However, it
has been reported that the presence of such sulfuric compounds in excess may induce cheese defects [157]. A
Kocuria rhizophila strain isolated from raw milk showed a strong proteolytic activity owing to a heat-stable

protease capable of withstanding a 77 °C pasteurisation for 40 min [67].
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Besides the pathogens mentioned above, raw milk may harbour several other pathogens such as
Bacillus cereus that can cause emetic disease, or Clostridium perfringens that produces toxins [143]. For a
comprehensive overview of raw milk pathogens and subsequent implications on the safety of dairy products, the

readers are referred to the reviews by Oliveira et al. [158] and Boor et al. [159].

1.6 On-farm management practices and milk microbiota

Over the past few years, numerous studies have improved our knowledge on a variety of dairy farm
management practices by concentrating on the factors (Table 1-3) that determine the microbiological quality of
raw milk. In this section, recent advancements on feeding, bedding, milking methods, seasonality, and

geographical location will be emphasized.

Table 1-3 Farming associated parameters with potential effects on the milk microbiota

Parameter Reference

Air quality [14]

Bedding [4,12,13,19,56,57,160]
Faeces [12,13]

Feeding (Concentrates in diet) [21]

Feeding (Grazing) [12,27,143]

Feeding (Silage) [22,27,28,64,146,161]
Geographical site [14,15,69]

Health status [63,58]

Lactation stage [17,18]

Milking system [15,60-62,162]

Season [6,16,28,54,55,61,69,70]
Soil [12]

Teat microbiota [12-14,21]

Teat preparation [42,57,59,63,64,163,164]
1.6.1 Feeding

Besides hay and concentrates, silage is a key element for dairy cow feeding [165]. Researchers have
extensively studied the microbial ecology of silage [26,166—169], but few studies have investigated the link
between silage and the microbiota of raw milk. Evidence from the literature suggest that spores from soil
contaminate forage plants and remain alive in silage [158]. Spores that survive the cow gastrointestinal tract are
found in faeces, from where they may reach the teat skin and finally enter the milk during milking [146]. In a
study by Doyle et al. [12], faeces and teat skin samples from cows housed indoors (fed with silage) or outdoors

(fed by grazing) clustered separately from each other following principal coordinate analysis, thus indicating
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different community structures. The authors also identified faecal material as a major source of contamination
of raw milk. Ensiled forages, particularly corn silage, may harbour high amounts of bacterial spores [63]. Several
studies have demonstrated that on dairy farms where cows were fed high-quality silage having low content in
bacterial spores, low amounts of spores were found in raw milk [27,28,64]. However, for non-spore forming
bacteria, little is known on the identity of those that can be transferred into raw milk during milking. Producing
high-quality silage is thus critical to minimize the occurrence of spoilage bacteria in raw milk [170]. Chemical
(acids, salts) and microbial (mostly LAB) additives have long been used for this purpose. Currently, silage
microbiology research is concentrated on the generation of new additives or their combinations that ensure the
production of high-quality silage with improved aerobic stability and enhanced animal performance and
productivity [26,171,172]. Finding new microbial inoculants with high efficiency is achieved through a series of
selection criteria encompassing strain isolation and characterization, safety evaluation, metabolic efficiency,
antagonistic properties, fermentation performance, evaluation of aerobic stability, and assessment of animal
performance [172]. Recently, the intensive assessment of the properties of a new combination inoculant
containing strains of Lentilactobacillus buchneri NCIMB 40788 and Lentilactobacillus hilgardii CNCM-I-4785
showed promising results for ensiling whole crop corn [171,173,174]. However, although LAB are also used as
inoculants or adjuncts for cheese-making, the screening process of silage microbial additives does not involve
the assessment of their ability to interfere with the milk fermentation process or alter the quality of dairy products.
L. hilgardii has been found among the most abundant non-starter LAB of white brined cheese [175]. Moreover,
strains of L. buchneri and L. plantarum identified in different dairy products have been reported as histamine
producers [176]. On the other hand, a recent study by Gagnon et al. [22] focused on variations in the LAB profile
from raw milk according to forage types including either hay or grass/legume and corn silage prepared with and
without inoculants for herd feeding. The authors found that although LAB composition significantly differed
between forage types, similar LAB profiles were observed in the associated milk samples. Interestingly, using
random amplified polymorphic DNA typing of LAB isolates, the authors found that only ~6 % of LAB occurring in
raw milk might originate from forage types or commercial inoculants. However, heat-resistant LAB from silage
may pose threats to milk processing. To prevent such issues, LAB strains not commonly found in raw milk and
that are not heat-resistant could be selected as inoculants for ensiling, although silage was identified as a minor

contributor to the milk microbiota on dairy farm [12,14].

Grazing is widely practiced around the world [177]. Besides providing cows with fresh forage, access
to pastures changes several parameters in farm management, including among others bedding, air quality, and
temperature. As reported by Doyle et al. [12], microbial communities in ryegrass and soil were more similar to
that of bulk tank milk when cows were grazed, while the microbiota of silage showed a higher similarity level with
that of the bulk tank milk when cows were fed indoors. Higher relative abundance of cow associated bacteria

such as Eremococcus, Alloiococcus, Trichococcus, Prevotella and Psychrobacter were observed in the milk
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produced by cows housed indoors. On the other hand, for grazing cows, higher relative abundance of
environmental bacteria such as Corynebacteriales, Pseudomonas, Acinetobacter and Lactococcus were noted
in raw milk. In the study by Vissers et al. [27], a reduction in the amount of butyric spores in milk was attributed
to the removal of silage from the feeding ration. For high moisture soils with elevated content in spores, access
to grazing can increase the number of spores in milk, due to direct contacts of cow teat with soil [143]. Recently,
Frétin et al. [21] reported that extensive grazing (grassland only) and semi-extensive grazing (grassland and
concentrates) had similar effects on the milk bacterial community assembly across two sampling periods.
However, they observed significant differences in the teat microbial composition. Feeding cows with
concentrates altered the microbiota of the rumen and gastrointestinal tract, therefore modifying that of faeces.
As mentioned above, the faecal bacteria may contaminate the teat, inducing a community shift, but not
sufficiently to affect the milk microbiota. Likewise, in another study in which cows had open access to a clover
pasture that was separate from the barn which itself was separate from the milking room, Falardeau et al. [13]
found that the microbiota of teat milk samples was compositionally similar to those from the pasture. Raw milk
after 24 h exposure was similar to air, bulk and truck tanks, cheese plant, and Gruyére cheese. Finally, bulk tank

milk samples showed similarity to cow associated microbiota.

1.6.2 Bedding

Although cows may spend much of their time lying down, enabling direct contact of the udder or the
teat skin with bedding materials, bedding was identified as a minor source of raw milk contamination [12,13].
Cow bedding likely harbours high amounts of anaerobic spores (estimated using the most probable number
method, ~4 log MPN/g), mainly from C. tyrobutyricum, Clostridium butyricum, Clostridium beijerinckii, and
Clostridium sporogenes [63]. Recycled manure solid (RMS) is an ecological alternative to conventional bedding
materials that has been attracting increasing interest from farmers. However, few studies have focused on
microbial communities populating RMS, and conflicting results have been reported regarding the impact of this
bedding type on the raw milk microbiota. In a cross-sectional study involving 125 farms on which lactating cows
bedded either on sawdust (35 %), sand (33 %), or RMS (32 %), Bradley et al. [4] found that while higher bacterial
counts were observed in RMS, there was no subsequent higher bacterial load in the associated milk compared
to that of sawdust and sand. Conversely, in a more in-depth study on a lower number of farms, Robles et al. [56]
investigated the influence of different bedding types including sand used on 12 farms, straw and other dry forage
on 33 farms, wood products comprising shavings and sawdust on 17 farms, and RMS on 8 farms. The authors
reported that the use of RMS as bedding resulted in significantly higher bacterial counts in the bulk tank milk.
Gagnon et al. [19] reported, as have others before [4,57], that milk concentration in bacterial spores was not
affected by the bedding material, including RMS. This contrasts with findings from other studies who provided

evidence of a direct impact of bedding type including RMS on the raw milk content in spores [38,178]. However,
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RMS associated milk samples harboured higher amounts of heat-resistant Streptococcus and E. faecalis,
whereas straw associated milk samples showed higher abundance of heat-resistant Kocuria [19]. In a recent
study, the use of a bedding composed of 100 kg ground limestone, 25 kg straw, and 15 kg RMS for three months
showed a reduction in the incidence of subclinical mastitis measured through the microbiological examination of
quarter milk samples, probably due to reduced prevalence of faecal coliforms and streptococci in the formulated
bedding compared to conventional straw [160]. The scarce literature currently available on the link between
bedding types including RMS and the microbiota of raw milk reports several procedures for making RMS,
differences in sampling protocols and study experimental design, as well as differences in other factors related
to farming practices [4,19,38,56,57]. Drawing objective conclusions based on the outcomes of these studies
regarding the influence of RMS on raw milk and dairy product quality and safety is difficult. Additional research
is therefore needed to provide new knowledge and sufficient proof-of-concept demonstrations of possible risks
associated with the use of RMS on dairy farms. However, the links between the bedding material and cow
cleanliness were evidenced [56,179], and larger stalls have been associated with lower bacterial loads in raw
milk [56].

1.6.3 Milking

The milking environment provides ideal conditions for bacterial growth, as it is composed of several
microbial niches that can directly or indirectly share their contents. The maintenance of proper hygiene in this
area is therefore essential for controlling environmental pathogens and reducing milk contamination rates. As
mentioned earlier, the amount of dirt on the udder or teat has been positively correlated with the level of raw
milk contamination [57,64,163]. The degree of cleanliness of the milker's hands also impacts the microbiological
quality of raw milk, and recommendations have been made for proper hand hygiene or wearing gloves [164].
Implementing a combination of interventions including training milking staff to efficient teat-end cleaning and a
laundering approach using specific recipe of detergent and chlorine bleach for cleaning towels resulted in a 37
and 40 % decrease in the mesophilic and thermophilic contents, respectively, in bulk tank raw milk compared to
that before the interventions [59]. However, a previous study by Doyle et al. [12] demonstrated that teat
preparation before milking (including water wash, forestripping, disinfection and drying with paper towel) did not
show a major impact on milk microbiota compared to untreated teats. According to the authors, this contrasting
result might be explained by high standards of hygiene measures implemented in the experimental farm in which
their study was carried out. Zucali et al. [64] showed that the implementation of milking practices including use
of gloves, dry udder clean, forestripping, pre-dipping, and post-dipping on farms resulted in reduced milk
contamination by anaerobic-spore forming bacteria. Pre-dipping has been associated with low abundance of
aerobic mesophilic bacteria, Lactococcus, yeasts, and moulds, whereas post-dipping has been correlated with

low levels of presumed cheese ripening bacteria and Leuconostoc [42]. Similarly, comparing methods of teat
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preparation, Bava et al. [63] have demonstrated that the application of pre-dipping, wiping, forestripping, and
post-dipping as a milking routine considerably reduced the amount of aerobic spore-forming bacteria, total
aerobic bacteria, and propionibacteria in milk compared to the application of forestripping only, or the
combination of forestripping with post-dipping. However, these treatments did not affect the occurrence of LAB
and coliforms in raw milk. Based on the authors’ observations, it seemed that implementing the complete milking
routine of teat hygiene prevented the occurrence of C. tyrobutyricum in milk. Although several protocols of teat
preparation are being implemented on dairy farms, particular attention should be paid to this critical phase of

milk production to limit the bacterial load of milk.

The types of milking system and housing are important factors that shape the milking environment.
Automatic milking systems (AMS) have gained in frequency of installation and it has been estimated that about
38,000 milking robots are currently operational around the world [180]. While high milking frequency achieved
with AMS may possibly reduce the time bacteria stay in the teat, it may concomitantly favour bacterial access to
the teat canal that stays open after milking [180]. Moreover, stagnant fluids such as residual milk in the milking
robot may result in a higher amount of spoilage bacteria in raw milk [180]. In a recent study, Skeie et al. [15]
collected the bulk tank raw milk from 45 dairy farms implementing three types of housing and milking systems
including free roaming with parlor, free roaming with automatic milking, and stall with pipeline milking. They
showed that milk samples from automated milking had higher total mesophilic bacteria count than the two other
milking systems and attributed the observed difference to poor teat cleaning and the absence of teat drying with
AMS. However, the wider range of viable counts reported from farms implementing a stall housing with pipeline
milking system might reflect a higher variation in milking routines in conventional systems. Skeie et al. [15] also
reported significant effects of the types of housing and milking systems on milk microbiota at the genus level,
along with significant variations in the occurrence of Pseudomonas, Lactococcus, Acinetobacter, Facklamia, and
Psychrobacter sequence variants. Comparing bulk tank raw milk samples from farms using AMS or conventional
milking systems, Johansson et al. [162] found higher proteolytic activity that was not associated with enzymes
(plasmin and plasminogen) naturally present in milk on AMS farms. Recently, a systematic review by Cogato et
al. [181] examined the tendencies and gaps associated with AMS in industrial and scientific research. Although
the authors might have not considered mining words associated with microbial ecology of raw milk in the text
examined, they revealed that interests were more focused on animal welfare and productivity than on milk
quality. They therefore highlighted the need for more research on cleaning operations and animal health to
improve milk quality. This supports concerns about the microbiological quality of raw milk produced using AMS

as discussed above.

Regardless of the milking system, biofilm formation on milking equipment is of major concern for animal

and human health, as well as for milk quality. However, few studies have been devoted to biofims formed on
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the inner surfaces of the milking tools, and consequently their real impact on milk and dairy product quality is
not well known. Using a combination of culture-dependent and -independent techniques, Weber et al. [182]
recently investigated the living biomass associated with biofilms on the milking machines within two farms. They
found that Actinobacteria could be among the primary colonizers of stainless-steel surfaces inside the milking
equipment, and that the genera Bacillus, Kocuria, Microbacterium, Staphylococcus, Acinetobacter,
Chryseobacterium, and Pseudomonas were frequently detected. Most of these bacteria were also found on

ultrafiltration membranes of a laboratory-scale model system used for dairy fluid filtration [183].

1.6.4 Geographical location and seasonality

Variations in dairy microbiology research outcomes from the literature according to countries, regions
and other types of geographical localisations seems apparent (Table 1-2). Geographical location has been
commonly used as a categorical variable for farms to investigate and explain the differences in microbial
occurrence and community diversity. For instance, Skeie et al. [15] have demonstrated a significant effect of
geographical location on the bacterial composition of raw milk samples collected from 45 dairy farms that
implemented different housing and milking system types and that were distributed in two geographical areas in
Norway. The authors further reported the genera Pseudomonas, Bacillus, Staphylococcus, Paenibacillus,
Psychrobacter, Chrysobacterium, Aerococcus and Rhizobium as differentially abundant across the two regions.
They also found that the number of sequence variants of the genera Pseudomonas, Lactococcus, Bacillus, and
Paenibacillus were significantly increased or lowered among the two areas. However, because both regions
shared similar altitude and climatic conditions, the authors explained the observed regional variations using farm
associated factors that were not evaluated in their study, such as farming practices and sources of
contamination. Similarly, Kmiha et al. [69] analysed the occurrence of spore-forming bacteria in raw milk
collected from six regions located in the north and northwest Tunisia, and found a regional effect on the incidence
of heat-resistant spores capable of surviving a 100 °C treatment for 40 min. However, although the impact of
farm location on milk quality was part of their research questions, the authors did not provide any information
either on the characteristics of the different geographical locations, or on the on-farm management practices. In
contrast, using a polyphasic approach, Fricker et al. [184] analysed 48 raw milk samples from farm and dairy
tanks located in Germany, Austria, and Norway, and found that although both milk types exhibited distinct
microbial communities, a significant variation according to the geographical region was not observed. Again,
farm characteristics and management practices were not described. As recently confirmed by Nikoloudaki et al.
[185], it is well known that raw milk microbial assembly results from numerous farming conditions, management
practices, and sources of contamination. Geographical location describes a specific position on the earth and is
generally associated with climatic and geographic parameters that can impact or define farming conditions.

Technically, each farm is associated with unique geographic coordinates. As discussed above, the term
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geographical location has referred to a number of types of places such as country or regions. From a
microbiology viewpoint, particularly in dairy microbiology, using this term or its equivalents as a categorical
variable rather than farming associated factors or conditions to describe microbial diversity of the farm
environment may be misleading and less meaningful for data interpretation or knowledge discovery. A better
usage of geographical location can be exemplified by the study by Du et al. [14], in which nine sources of milk
contamination from the milking environment were analysed in two Chinese dairy farms using a polyphasic
approach (culture-dependent and 16S rRNA gene sequencing) to determine the contribution of each microbial
niche sampled to the raw milk microbiota. Interestingly, the authors contrasted the results obtained from the farm
located in Shijing village (Henan province) with those from the other farms located in Fuyu village (Heilongjiang
province), the first geographical location being about 2,000 km away from the second on a direct line. Using the
SourceTracker tool on high-throughput data, they found that on the farm from Shijing, the teat liner was by far
the main contributor (at ~60 %) to milk microbiota, followed by dairy hall air (~15 %) and teat (~10 %); while on
the Fuyu farm, teat dip cup (~35 %), teat (~20 %), and cowshed air (~13 %) were the main sources of

contamination.

Seasonality in the diversity of raw milk microbiota has been widely demonstrated [6,16,54,186]. In a
longitudinal study involving 10 dairy farms, Li et al. [6] showed that milk microbial communities sampled
throughout 12 months clustered into two groups, one comprising fall and spring, and the other summer and
winter samples. Kable et al. [54] have estimated that seasonal variation could account for 5 % of the variation in
raw tanker milk (sampled consecutively during fall, spring, and summer across two years) microbial composition
and structure. Higher viable counts of raw milk mesophilic and thermoduric bacteria were obtained in summer
compared to winter and spring [69,70], while for psychrotrophs, higher viable counts were obtained in winter
[70]. Bacteria that correlated with warmer temperatures included Bacillus thuringiensis, B. licheniformis, Bacillus
pumilus, Bacillus subtilis, and Paenibacillus, whereas Pseudomonas, Acinetobacter, Psychrobacter, B. cereus,
Bacillus weitenstephensis, Bacillus circulans, Actinobacteria, and Propionibacterium were found associated with
cooler temperatures [6,28,69,70]. Besides temperature, humidity was revealed as a key factor that determines
the seasonal variation in microbial diversity. Accordingly, while the abundance of Chitinophaga and Niastella
were associated with low humidity, higher temperature and humidity levels generally favoured the proliferation
of most bacteria [6]. Ruvalcaba-Gomez et al. [16] analysed the microbial composition of raw milk samples across
dry (from November to May) and rainy (from June to October) seasons and found higher abundance of
Streptococcaceae and Lactococcus in the dry season, whereas Aeromonadaceae and Acinetobacter were more
abundant in the rainy season. Although weather conditions including temperature and humidity seem to
consistently modulate bacterial groups such as mesophilic or psychrotrophic bacteria, a core microbiota may
exist for raw milk. Li et al. [6] reported that the genera Acinetobacter and Pseudomonas occurred in 112 raw

bulk tank milk sampled over 12 months. In the study by Kable et al. [54], a wider core microbiota of 29 taxa
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among which the more abundant included unidentified Clostridiales, Peptostreptococcaceae, and
Ruminococcaceae, Staphylococcus, Streptococcus, Turicibacter, unidentified Lachnospiraceae, and
Corynebacterium was identified in 899 raw milk tanker trucks sampled over fall, spring, and summer. However,

there are still gaps in the knowledge of the core microbiota at the species or strain level.

1.7 Conclusion

Research outcomes reviewed above clearly show that the complexity of raw milk microbiota reflects
the farm environment from which it originates. Current knowledge on the routes of raw milk contamination
provides evidence of interplay of farming conditions and management practices and the quality of raw milk.
Therefore, improving the quality and safety of raw milk and dairy products requires a better understanding of the
multitude of ecological niches that make up the farm microbial environment. The latter can be achieved by
employing integrated high-throughput approaches that target both the microbiota and the metabolome of the
matrix. As for the RMS reviewed above, more in-depth investigation of microbial dynamics during processing
and of the final microbiota is needed to fully assess the associated risks for herd health and milk safety from a

human perspective.

Our current understanding of the pattern of raw milk contamination on farm is challenged by the
limitations of species or strain level identification of bacteria using the affordable amplicon sequencing
technology (as have done most studies in dairy microbiology). Pending the cost reduction of metagenomic (or
metataxonomic based on full-length sequencing of the 16S rRNA gene pool) studies that allow finer resolution,
the culturomics approach can be used to uncover and characterize the hidden microbiota (uncultured,
undetected, or ambiguously classified microorganisms) associated with milk and sources of contamination.
Silage exemplifies important sources of microorganisms with high fermentative potential. Promising inoculants
for ensiling should be screened for their possible interference with milk processing. More research is needed to
fill the gaps of bacteria interactions in silage as well as in other microbial sources on the farm. Future research
should exploit network-based analysis techniques to decipher interconnections among these niches in relation
to raw milk microbiota. This would likely generate relevant knowledge to recommend new intervention strategies

or farming decisions to ensure the production of high-quality milk and dairy products.

1.8 Hypothesis and objectives

1.8.1 General hypothesis

The comparative analysis of the prevalence and diversity of microbial communities in preserved forages

and raw milk provides information on the impact of forage management practices on cow's milk microbiota.
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1.8.2 Principal objective

The main objective is to evaluate the impact of forage management practices on the raw cow’s milk

microbiota and to identify taxa from forage that can enter the raw milk.

1.8.3 Specific objectives

o To develop a method of preserving the microbiota of raw cow milk samples.

o To assess the diversity of viable microbial communities occurring in hay, grass/legume and corn silage
from commercial dairy farms, and to evaluate changes in the silage microbiota driven by the use of

inoculants.

e To investigate the impact of feeding dairy cows with dry or ensiled forage, whether inoculated or

uninoculated, on raw milk microbiota.
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2.1 Résumé

L'instabilité temporelle du microbiote du lait cru affecte la fiabilité¢ des études de sa composition. La
capacité de I'azidiol et du bronopol @ maintenir intact le microbiote du lait cru conservé a 4 °C, ou du mélange
azidiol et diméthyle sulfoxyde a -20 °C a été évaluée. Les aliquotes de 5, 10 et 30 jours post conservation ont
été traités avec le propidium monazide, puis analysés par séquencage a haut-débit des régions V3-V4 et V6-
V8 du géne codant pour 'ARNr 16S. Ces deux régions ne conduisent pas nécessairement au méme résultat.
Aprés 5 jours de stockage, le microbiote d’échantillons non préservés a présenté une diminution considérable
de la diversité et de la structure microbiennes. Le mélange azidiol et DMSO a permis de mieux stabiliser le
microbiote du lait cru, de méme que I'azidiol utilisé seul pendant 10 jours. L'ajout d’un antifongique permettrait

de prolonger la durée de conservation des échantillons.

2.2 Abstract

The temporal instability of raw milk microbiota drastically affects the reliability of microbiome studies.
However, little is known about the microbial integrity in preserved samples. Raw cow milk samples were
preserved with azidiol or bronopol and stored at 4 °C, or with dimethyl sulfoxide (DMSO) or a mixture of azidiol
and DMSO and stored at -20 °C for up to 30 days. Aliquots of five, ten- and thirty-day post-storage were treated
with propidium monoazide (PMA), then analysed by sequencing the 16S rRNA gene V3-V4 and V6-V8 regions.
The V6-V8 gave a higher richness and lower diversity than the V3-V4 region. After five-day storage at 4 °C, the
microbiota of unpreserved samples was characterized by a drastic decrease in diversity, and a significant shift

in community structure. The treatment with azidiol and DMSO conferred the best community stabilization in
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preserved raw milk. Interestingly, the azidiol treatment performed as well for up to ten days, thus appearing as
a suitable alternative. However, neither azidiol nor bronopol could minimize fungal proliferation as revealed by
PMA-gPCR assays. This study demonstrates the preservative ability of a mixture of azidiol and DMSO and

provides deeper insights into the microbial changes occurring during the cold storage of preserved raw milk.

2.3 Introduction

The interest in culture-independent approaches to study the microbiological quality of dairy milk has
continued to rise, especially with the advent of high-throughput -omics technologies in the field of dairy science
and technology, including metatranscriptomics, metaproteomics, and metagenomics [73]. Closely related to the
logistics of implementing farming practices across the dairy production chain, microorganisms found in bulk tank
milk have been shown to accurately typify dairy farms and the various inherent sources of contamination
[12,187]. Raw milk samples thus generally harbour diverse microbial communities of which most can easily
develop due to high nutrient and water contents of the matrix. Whether they are spoilage microorganisms [31],
disease causing [30], health promoting or of technological interest [29,188], microbial dynamics is still occurring
in raw milk once refrigerated immediately after milking [7,189] and during transportation to dairy processing
facilities [54]. This temporal instability of milk microbiota can considerably affect sample microbial integrity,
especially in prolonged sampling or when the sample delivery time to the laboratory is delayed, as it frequently
happens in large-scale studies. Keeping intact the microbial communities in collected samples till processing
highly contributes to guarantee the quality, validity, and reliability of derived information. In this context, freezing
biological samples at -20 °C or -80 °C immediately after collection has been generally accepted as the gold
standard approach for preserving microbiome profile over time [190-193]. However, the implementation and
efficient management of such low temperature conditions when sampling in remote locations are hard to
achieve, particularly if relatively large volumes of liquids are collected. Alternatively, several preservative
chemicals have been developed to prevent milk spoilage or preserve milk constituents, among which bronopol

and azidiol are commonly used for milk chemical analysis [194].

The biocidal or bacteriostatic activity of bronopol (2-bromo-2-nitropropane-1,3-diol) has been shown to
depend on the initial bacterial load in raw milk, unlike azidiol (a mixture of chloramphenicol and sodium azide)
which exerts bacteriostatic activity [195]. Although these preservatives have a broad spectrum of activity against
Gram-positive and Gram-negative bacteria, their impact on the abundance and diversity of raw milk microbiota
is not well known. Previous investigation outcomes on their ability to preserve microbial populations based on
culture-independent techniques, once only limited to a few species for DNA isolation and PCR assays [196], are
now expanding to high-throughput sequencing of whole communities [189,197-199]. However, few of these
studies dealt with dairy milk, and none of them, to our knowledge, analysed the temporal variations of viable

microbial communities in refrigerated milk preserved with azidiol or bronopol, using high-throughput sequencing
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technologies. Furthermore, if samples were immediately frozen after collection, there would be no assurance of
temperature stability over the course of sampling and sample conveyance due to prevailing environmental
conditions and transportation time to the laboratory. Additionally, freezing milk samples may affect the viability
of some coliforms, psychrotrophic microorganisms or bacteria belonging to the genus Mycoplasma [200,201]. In
a previous study on the cryopreservation of anaerobic ammonium-oxidizing bacteria, Heylen et al. [202]
recommended the use of dimethyl sulfoxide (DMSO) over glycerol as cryopreservative agent to improve bacterial
recovery. For viable microbiota profiling, the effectiveness of propidium monoazide (PMA) has been largely
demonstrated, particularly in combination with quantitative PCR. The concept of viability-PCR was first
introduced by Nogva et al. in 2003 [203] as they used ethidium monoazide in conjunction with PCR to specifically
amplify DNA from viable bacterial cells (i.e., with non-compromised membrane integrity), and later by Nocker et
al. in 2006 [80] for the same purpose, but with PMA instead, showing improved specificity [see reviews by
Fittipaldi et al. [76] and Elizaquivel et al. [204] for more information on practical aspects and challenges
associated with viability dye]. If azidiol- or bronopol-treated samples are suitable for culture-independent
analytical methods, no information has been reported on the suitability of PMA for use concurrently. Hence, we
hypothesized that a mixture of DMSO as cryopreservative and azidiol as preservative will permit a better stability

of the milk microbial composition, diversity, and viability when samples are stored at -20 °C.

In order to get more insight into the ability of preservation methods to stabilize the microbiota in raw
dairy milk, we analysed the temporal stability/instability of viable microbial communities in preserved milk
samples collected from six dairy farms (Fig. 2-1). We first compared community compositions in fresh and
unpreserved milk samples. We then evaluated four preservative substances including azidiol (AZ4), bronopol
(BR4), and a mixture of azidiol and dimethyl sulfoxide (AZDm). Community profiles obtained after five, ten and
thirty days of storage at 4 °C or -20 °C were compared to those at day zero and to fresh unpreserved samples.
Prior to DNA extraction, samples were treated with PMA to account for cell viability. Viability-gPCR assays were
performed on different bacterial groups as well as total fungi to complement community profiling derived from
high-throughput sequencing of the 16S rRNA gene. Doing this, we also sought to evaluate whether 16S rRNA

sequencing of the V3-V4 and V6-V8 regions provides consistent resullts.

2.4 Materials and Methods

2.4.1 Milk sampling

Cow milk samples were collected from six dairy farms in Quebec, Canada. At each farm, about 1500
mL of raw milk were collected in sterilized two-litre glass bottles directly from the bulk tank, immediately after

milking, and milk agitation. Prior to milk collection, the bulk tank valve was abundantly washed with tap water
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and approximately 100 mL of milk were discarded prior to sampling. Samples were then placed in a 4 °C electric

cooler and transferred to the laboratory where they were processed the same day.

DAIRY FARMS (n=6) Bulk tank milk sample

PRESERVATION METHODS [ NoPre ] [ AZ4 ] BR4 [ AZDm J[ DMSO }

STORAGE TEMPERATURE 4°C -20°C

» e
STORAGE TIME (day) 0 5 0 5 10 30
VIABILITY SELECTION Treatment with propidium monoazide (PMA)

DNA extraction

QUANTIFICATION AND HIGH Quantitative PCR Viability high-throughput sequencing
THROUGHPUT PROFILING (PMA-gPCR) of the 165 V3-V4 and V6-V8 regions

DATA ANALYSIS Statistics / Bioinformatics

Figure 2-1: Experimental design of the study. Raw milk samples collected from six dairy farms were aliquoted
and treated with four preservation methods, and then stored in a refrigerator or in a freezer according to the
preservative used. Preservation include NoPre: No treatment, AZ4: Azidiol, BR4: Bronopol, AZDm: Combination
of azidiol and dimethyl sulfoxide, and DMSO: dimethyl sulfoxide. Preservative-free samples were stored for five
days, and preserved samples for up to 30 days. In addition to freshly treated aliquots, sub-samples were taken
from the storage after five, 10 and 30 days, then treated with propidium monoazide and subjected to microbial
analyses through quantitative PCR and 16S rRNA sequencing of the V3-V4 and V6-V8 regions. Data were
analysed to evaluate the microbiota stabilizing effects of the preservation methods as depicted by the two
hypervariable regions.

2.4.2 Preservation treatments and experimental design

Each milk sample was mixed by inversion and immediately divided into 52 aliquots of 30 mL to apply
the different preservative methods. Treatments included preservative-free milk (NoPre), azidiol with storage at
4 °C (AZ4), bronopol with storage at 4 °C (BR4), dimethyl sulfoxide with storage at -20 °C (DMSO), and a
mixture of azidiol and DMSO with storage at -20 °C (AZDm). Azidiol was prepared as described previously [196]
by dissolving 4.5 g of trisodium citrate 5,5-hydrate (VWR International, Radnor, Pennsylvanie, USA), 1.8 g of
sodium azide (VWR International), 0.075 g of chloramphenicol (MilliporeSigma, Burlington, Massachusetts,
USA), 0.035 g of bromophenoal blue (MilliporeSigma) and 10 mL of ethanol (Greenfield Global, Toronto, Canada)
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in 100 mL of sterile distilled water. To obtain bronopol, a 5 % (weight/vol) solution of 2-bromo-2-nitro-1,3-
propanediol (VWR International) was prepared with sterile distilled water. Treatment AZ4 was achieved by
adding 3.33 pL of azidiol per mL of milk aliquot (for a final concentration of 0.06 mg/100 mL). For BR4 treatment,
4 uL of bronopol solution per mL of milk aliquot were added (for a final concentration of 20 mg/100 mL). Milk
treated with DMSO contained dimethyl sulfoxide (VWR International) at 5 % [v/v] (22). Milk samples treated with
AZDm were obtained by adding azidiol and DMSO to reach final concentrations of 0.06 mg/100 mL and 5 %
respectively. Treated and preservative-free milk aliquots were vigorously shaken to homogenize the preparation.

All the experiments were carried out aseptically on ice.

Treatments NoPre were processed at time zero and day 5 only, while all other treated aliquots were
processed at time zero and kept at corresponding temperatures for 5, 10 and 30 days. All time zero treated
aliquots were processed within an hour. Three replicate aliquots of each timepoint per treatment were prepared
and randomly distributed in a 4 °C refrigerated incubator or a -20 °C freezer accordingly. Upon five days post-
treatment and following timepoints, the three replicates per timepoint and per treatment were removed from the
incubator or freezer, and, when available, the remaining aliquots were randomly displaced to account for
temperature variations. Frozen aliquots were thawed for two hours in a refrigerator. Aliquots of the same

treatment for a given timepoint were then pooled for microbial cell recovery and genomic DNA extraction.

2.4.3 DNA extraction and sequencing of the 16S rRNA gene

Treated and untreated pooled aliquots were fully homogenized, and 10 mL of each mixture were
clarified with 2 mL of 500 mM ethylenediamine tetra-acetic acid [7] at pH 8.0 (Millipore Sigma) and centrifuged
at 12 000 x g at 4 °C for 15 minutes. Cell pellets were then washed twice with 1 mL sucrose buffer (sucrose 12
% [wiv], 256 mM Tris-HCI pH 8.0). Cell pellets were treated with PMA using a lamp instrument (halogen 500 W,
Ingenia Biosystems, Barcelona, Spain) as previously described [82]. PMA treated cells were kept at -80 °C until
use. The protocol used for DNA extraction was adapted from that described by Quigley et al. [205] using a
combination of chemical and mechanical lyses provided in the DNeasy PowerFood Microbial Kit (Qiagen, Hilden,
Germany), and enzymatic lysis with lysozyme (MilliporeSigma), mutanolysin from Streptomyces
(MilliporeSigma) and proteinase K (MilliporeSigma) with some modifications. Briefly, chemical and enzymatic
lyses were achieved once by suspending cell pellets in 450 L of warmed (heated at 37 °C instead of 55 °C as
recommended for 10 min to prevent enzyme denaturation) solution MBL (provided in the extraction kit)
containing 9 mg lysozyme and 50 U mutanolysin. The suspension was then incubated at 37 °C for 1 hour,
followed by the addition of 25 L of proteinase K (20 mg/mL) and another 1-hour incubation at 55 °C. Afterwards,
mechanical lysis was performed using microbeads and a vortex adapter. This step and the remaining were all

performed as described in the Qiagen instruction manual. DNA was quality checked with a NanoDrop

32



spectrophotometer ND 1000 (Thermo Fisher Scientific, Burlington, ON, Canada) and quantified with a Qubit

fluorometer 2.0 (Invitrogen., Burlington, ON, Canada), then stored at -20 °C until use.

DNA samples were submitted to the Plateforme d’Analyses Génomiques of University Laval (Quebec,
Canada) for library preparation and 16S rRNA gene sequencing on the lllumina MiSeq platform, targeting two
non-overlapping hypervariable regions namely V3-V4 and V6-V8. Primer pairs 341F (5-
CCTACGGGNGGCWGCAG-3) / 805R  (5-GACTACHVGGGTATCTAATCC-3') and B969F (5-
ACGCGHNRAACCTTACC-3) / BA1406R (5'-ACGGGCRGTGWGTRCAA -3') were used to amplify the V3-V4

and V6-V8 regions respectively.

2.4 .4 Quantitative PCR

Gene copy number representing biomass variation across time of total lactic acid bacteria, total acetic
acid bacteria, Enterobacteriaceae, Pseudomonas spp., total bacteria and total fungi in samples from all
preservation methods were assessed by quantitative PCR (qPCR) on a ViiA7 system (Thermo Fisher Scientific).
Species or group specific primer sets used for amplification are listed in Table 2-1. All gPCR amplifications were
performed in triplicate with mixtures (10 pL) comprised of 3.6 pL UltraPure DNAse and RNAse free distilled
water (Invitrogen), 5 uL PowerUp SYBR Green master mix (Thermo Fisher Scientific), 0.2 pL of each forward
and reverse primer at 10 nM, and 1 uL DNA template. For each primer set, running parameters were set up as
described in the corresponding reference provided in Table 2-1. Standard curves were constructed by using ten-
fold serial dilutions of known genomic DNA concentrations extracted from single cultures of microorganisms

(Table 2-1). For a standard curve, the gene copy number was determined with the following formula:

[DNAJ° X AN
660 X NT

where [DNA]° is the DNA concentration (g/L), “AN” the Avogadro number (6.02 x 102 mol-'), “660” the average
molar weight of a base pair (g/mol/base pair), and “NT” the amplicon length (base pair). Sample microbial
biomass expressed in gene copy number per millilitre milk was calculated based on each standard curve’s

equation.
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Table 2-1: PCR primers used for species or group quantification.

Microorganisms  Primer Primer sequence (5’-3’) Gene Amplicon Reference
name size

Lactobacillus LBF2 GAAACAGGTGCTAATACCGTATAACAACCA 16S 129 [206]

buchneri LBR1 CGCCTTGGTAGGCCGTTACCTTACCAACA rRNA

Lactobacillus LacPlan1F AGGCGCGGCTGATGTCA recA 68 [207]

plantarum LacPlaniR CGCGATTGTCTTGGTTTTGTT

Lactic acid bacteria WLAB1 TCCGGATTTATTGGGCGTAAAGCGA 16S 407
WLAB2  TCGAATTAAACCACATGCTCCA rRNA 208

Acetic acid bacteria AQ1F TCAAGTCCTCATGGCCCTTATG 16S 55 [208]
AQ2R CGCCATTGTAGCACGTGTGTA rRNA

Enterobacteriaceae rplP 1F ATGTTACAACCAAAGCGTACA rplP 185 [209]
rplP 185R  TTACCYTGACGCTTAACTGC

Pseudomonas spp Pse435F  ACTTTAAGTTGGGAGGAAGGG 16S 251 [210]
Pse686R  ACACAGGAAATTCCACCACCC rRNA

Total bacteria Uni334F  ACTCCTACGGGAGGCAGCAGT 16S 180 1]
Uni514R  ATTACCGCGGCTGCTGGC rRNA

Total fungi ITS1f TCCGTAGGTGAACCTGCGG rRNA 300 212]
5.8s CGCTGCGTTCTTCATCG

2.4.5 16S rRNA gene bioinformatics and data analysis

Adapter and primer removal from demultiplexed sequences were performed using the Cutadapt
(version 2.3) tool [213]. Reads corresponding to the V3-V4 and V6-V8 hypervariable regions were separately
analysed following the DADA2 (version 1.12) pipeline [98] in R environment. For both datasets, taxonomy was
assigned to the resulting amplicon sequence variants (ASVs) using the Silva version 132 DADA2-formatted
reference databases. Sequence alignment was performed using the DECIPHER (version 2.12.0) package [214]
and the phangorn (version 2.5.3) package [215] was used to construct the phylogenetic tree as previously
described [216]. Processed sequences were then imported into the phyloseq (version 1.28.0) package [217] for
downstream analyses of bacterial communities for which ASVs were identified at least at the phylum level and
occurred in at least two of the six fresh milk samples (i.e., NoPre treatment at day zero) with greater than 0.001

% relative abundance.

We compared the V3-V4 and V6-V8 bacterial profiles by calculating corresponding Chao1, Shannon
and Inverse Simpson indices on fresh milk samples using the phyloseq package. To visualize community
composition and diversity variation between both hypervariable regions, heat trees (i.e. cladogram allowing the
visualization of differential abundance and diversity of taxonomic data) were constructed using the Metacoder

(version 0.3.2) R package [218]. A custom function was implemented in R in order to combine the two datasets.
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Significant differences between taxa median proportions were calculated using a Wilcoxon rank sum test on a
sub-dataset composed of the core microbiota identified for both regions. Only significant features obtained after
FDR correction of p-values were considered. Heat trees were also constructed for taxa specific to each region.
A Venn diagram comparing the number of taxa identified by both regions at the genus level was constructed

using an online tool (http://bicinformatics.psb.ugent.be/webtools/Venn/).

To characterize microbial alteration over time in milk without preservatives, we compared community
composition and structure of five-day stored milk with fresh samples. Besides the above-mentioned alpha-
diversity measures, beta-diversity was assessed by plotting principal coordinate analysis (PCoA) with weighted
and unweighted UniFrac distance metrics [219]. For alpha- and beta-diversities, a Wilcoxon rank sum test with
FDR correction was performed using the ggpubr (version 0.2) R package [220]. Biomarkers distinguishing fresh
from five-day stored raw milk samples were identified by applying the linear discriminant analysis effect size
(LEfSe) algorithm [221] available in the Galaxy platform [222] with default parameters. Differential abundance of
taxa between both conditions and data visualization were performed using a combination of R packages
phyloseq, ggplot2 version 3.1.1 [223] and DESeq2 version 1.24.0 [224].

The effect of preservation chemicals on the microbiota upon contact with milk samples was evaluated
by analysing variation in alpha- and beta-diversities before and immediately after preservatives were added to
milk aliquots. Alpha-diversity measures including Chao1 and Shannon indices were computed. Differential
abundance of taxa between fresh and preserved samples was calculated, and community composition, taxa
prevalence and distribution among treatments were visualized using a heat map constructed with the R package
ComplexHeatmap 2.1.0 [225].

The ability of preservation methods to maintain stable milk microbiota over time was assessed by linear
mixed-effects (LME) modelling using the R package nime 3.1-140 [226]. Computing variation of diversity metrics
across time was adapted from a previously described approach [227]. Briefly, models were fitted based on log-
or arcsine-transformed data for variance stabilization or normality prerequisite. The random effect for the
intercept and the slope was defined by dairy farm. Computed alpha-diversity measures included Chaof,
Shannon and Inverse Simpson indices. Beta-diversity trends and instability (i.e., distance variation within
communities for consecutive timepoints) were evaluated using Jensen-Shannon divergence as well as weighted
and unweighted UniFrac distances. We used the function emmeans() with FDR correction of p-values
implemented in the R package emmeans 1.3.5 [228] for multiple comparison tests among storage timepoints.
For beta-diversity trends, significance of the linear model was evaluated with a permutation test. PCoA was also

performed on weighted UniFrac distance to estimate and visualize differences in microbial community structure
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over time for each preservation method. Significance of differences between communities at the four timepoints

was evaluated using a Kruskal Wallis test implemented in the R package ggpubr.

Intraclass correlation coefficients (ICC) with a one-way model was also used to assess microbial
temporal stability at different taxonomic levels in preserved and non-preserved milk aliquots. We used the
function icc() of the R package irr 0.84.1 [229] as previously described [230] to compute single score ICCs as
an index of interrater reliability of preserved and non-preserved milk microbial community abundances over time.
For each timepoint and preservation method, the calculated index quantifies abundance variability for a given
taxonomic level among samples from different farms, taken as biological replicates. Intraclass correlation
calculations were performed using default parameters. Their values range between 0 and 1. For ICC values less
than 0.5, or between 0.5 and 0.75, or between 0.75 and 0.9, or above 0.9, they describe poor, moderate, good

or excellent reliability, respectively [231].

Taxa differential abundances between consecutive and non-consecutive timepoints were computed
using the DESeq2 algorithm and feature dynamics (i.e., for each preservation method, variations in abundance
and prevalence across time of taxa that undergone at least once a log2-fold change) were visualized with a

heatmap.

2.5 Results

2.5.1 High-throughput sequencing of the 16S rRNA hypervariable regions V3-V4
and V6-V8 reveals different taxonomic profiles

Sequence processing with the DADA2 pipeline resulted in 1,882,615 reads with an average of 17,432
per sample for the V3-V4 region, whereas for the V6-V8 region, 3,555,435 reads with an average of 32,921 per
sample were obtained. From these reads, 712 and 977 ASVs were inferred for V3-V4 and V6-V8 regions,

respectively.

We compared the taxonomic profiles resulting from 16S rRNA sequencing of V3-V4 and V6-V8 regions
in unpreserved milk samples at day zero. Consistently with the number of ASVs, the estimated richness (Chao1
index) was lower for the data from the V3-V4 region compared to the profiles obtained from the V6-V8 region
(Fig. 2-2A). However, microbial communities appeared more diverse and evenly distributed (higher Shannon

and Inverse Simpson indices) with the V3-V4 than the V6-V8 region.
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Figure 2-2: Changes in the microbial diversity of unpreserved raw milk samples. (A) Alpha-diversity measures
of fresh (D0) and five-day stored (D05) raw milk based on V3-V4 (left) or V6-V8 (right) datasets. P-values indicate
the significance of differences between timepoints obtained from the Wilcoxon rank sum test. (B) Principal
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coordinate analysis on weighted UniFrac distances showing shifts in each unpreserved raw milk sample between
fresh (red) and five-day stored (blue) based on V3-V4 (top) and V6-V8 (bottom) datasets. P-values indicate the
significance of differences between timepoints obtained from the Kruskal Wallis test. (C) Visualization of species
level log2-fold changes in relative taxa abundance between day 0 and day 5 based on V3-V4 (left) and V6-V8
(right) datasets. Species are coloured by corresponding Phylum.

Overall, 53 genera were identified for the VV3-V4 region, compared to 82 for V6-V8, both regions sharing
40 genera (Fig. 2-3A). Among the 13 taxa identified only in the V3-V4 region, Actinobacteria (Micrococcales,
Corynebacteriales, Frankiales) and Proteobacteria (Betaproteobacteriales) were the most abundant, most of
ASVs being distributed among Actinobacteria and Proteobacteria (Fig. 2-3B). As shown in Fig. 2-3C, the core
microbiota down to the species level (i.e., species identified in both regions) was dominated by the phyla
Proteobacteria and Firmicutes, while Actinobacteria and Bacteroidetes contained fewer ASVs. At the genus
level, the ten most abundant taxa for the V3-V4 region included Serratia, Pseudomonas, Lelliottia, Lactococcus,
an unidentified Enterobacteriaceae, Cedecea, Aeromonas, Yersinia, Janthinobacterium and Kocuria. Except for
the genus Lactococcus that was not identified in one sample, these genera together with Methylobacterium were
also the most prevalent. However, the list of the top ten genera for the V6-V8 region was not the same, as it
consisted of Serratia, Pseudomonas, Rahnella, Sediminibacterium, Lelliottia, Cedecea, Aeromonas,
Lactococcus, Raoultella and Janthinobacterium. These genera together with Yersinia and Delftia were among
the most prevalent. Within the core microbiota, differentially abundant taxa were identified. They include
Methylobacterium sp., Stenotrophomonas maltophilia, Janthinobacterium sp., Pseudomonas sp., Cedecea
davisae, Lelliottia sp., Yersinia sp., and an unidentified Enterobacteriaceae that were significantly more abundant
(p<0.05) in V3-V4 sequence profiles, and Janthinobacterium lividum, Aeromonas sp., Lelliottia amnigena,
Rhanella sp., Rhanella aquatilis and Chryseobacterium sp. that were significantly more abundant (p<0.05) in the
V6-V8 dataset. Of the 42 uniquely identified taxa from the V6-V8 profiles, Proteobacteria (Enterobacteriales,
Betaproteobacteriales) and Bacteroidetes (Chitinophagales) were the most abundant (Fig. 2-3D). Most of ASVs

were assigned to Proteobacteria, Actinobacteria and Bacteroidetes phyla.

2.5.2 Short-term storage of unpreserved milk resulted in significant alteration of the
microbial community structure

Regardless of the sequenced hypervariable region, the estimated richness (Chao1) and diversity
metrics (Shannon and InvSimpson) significantly decreased (p<0.05) after five days of storage at 4 °C when no
preservatives were used (Fig. 2-2A). This indicates a drastic loss of diversity and thus the emergence of a few
dominant species. Consequently, a significant shift (p<0.008 for V3-V4, p<0.02 for V6-V8) in community
structure occurred during storage (Fig. 2-2B). In order to identify taxa that underwent significant increase or
decrease in abundance and thus could explain the observed changes in community structure, we performed

differential abundance analyses between fresh and stored milk samples without preservatives. As shown in Fig.
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2-2C which illustrates fold changes for the V3-V4 region, Streptococcus dysgalactiae was reduced more than
20-fold in abundance at five days post-storage, while the 17 other bacterial groups changed by more than five-
log2. Chryseobacterium bovis, Pantoea sp., Raoultella sp. and Sanguibacter sp. had the highest (> 25) log,-fold
change. Most of these bacteria, particularly species of Lactococcus, Acinetobacter, Rahnella, Pantoea,
Enterococcus, and Lelliottia became predominant after five days of storage (Fig. A1). For the V6-V8 region on
the other hand (Fig. 2-2C), Raoultella sp. had a less than five-fold increase in abundance, whereas the majority
of the 25 other taxa exhibited between five- and twenty-fold increases in abundance. Chryseobacterium
ginsengiterrae, Enterococcus sp., Macrococcus caseolyticus, and Pantoea sp. exhibited the highest (> 25) fold
changes. As for V3-V4 sequencing, most of these taxa, specifically species of Lactococcus, Sphingobacterium,
Acinetobacter, Yersinia, Erwinia and Rahnella aquatilis were predominant in stored milk (Fig. A2). These
observations are consistent with LEfSe on V3-V4 sequences that reveals Lactococcus, Yersinia, Enterococcus,
Macrococcus, and Leuconostoc as biomarkers of five-day stored milk without preservative at 4 °C (Fig. A3-A).
For the V6-V8 region, only Acinetobacter, Macrococcus, and Rhodococcus were identified as discriminatory
(Fig. A3-B).
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Figure 2-3: Core and differential microbial profiles obtained by partial sequencing of the 16S rRNA gene. (A)
Venn diagram of taxa detected by sequencing the hypervariable regions V3-V4 and V6-V8. Values indicate the
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number of shared (purple) and uniquely identified (blue or salmon) taxa at the genus level. (B) Heat tree
illustrating the microbial profile from taxa uniquely detected by V3-V4 sequencing. The colour indicates the mean
proportion of reads and the node size the number of ASV detected. (C) Differential abundance in the core
microbiota of the V3-V4 and V6-V8 datasets. Taxa coloured green are significantly abundant (p<0.05) in the V3-
V4 dataset, while those coloured brown are significantly abundant (p<0.05) in the V6-V8 dataset. The node size
indicates the number of ASV. (D) Taxonomic distribution of taxa detected only in the V6-V8 dataset. The colour
and node size have respectively the same meaning as for (B).

2.5.3 Impact of preservative chemicals on the microbiota once mixed with milk

In order to assess the stabilizing properties of preservation methods, we first analysed their effect on
microbial communities once mixed with fresh milk. Regardless of the sequenced region, neither the alpha-
diversity metrics, including Chao1 estimates and Shannon index, nor the beta-diversity measures, including
unweighted- (Fig. A4 A) and weighted-UniFrac distances, were significantly different before and immediately
after addition of preservatives (Fig 4A-B). However, log2-fold increases in taxa abundance were observed in the
V3-V4 dataset for treatments AZ4 (Rothia, Leuconostoc and Clostridium_sensu_stricto_1), BR4
(Clostridium_sensu_stricto_1), and AZDm (Clostridium_sensu_stricto_1), while for the V6-V8 sequenced region,
only the genus Cloacibacterium exhibited log2-fold reduction in abundance for treatment AZ4 (Fig. A4 B-C). To
further investigate the extent to which microbial communities were sensitive to preservative chemicals, we also
performed qPCR assays to quantify and compare community gene copy numbers between treated and
untreated samples immediately after treatment application. Preservative chemicals tended to increase viable
bacterial load (total bacteria group), with significant differences found for treatments AZ4 (p<0.01) and AZDm
(p<0.05) compared to NoPre (Fig. 2-4C). No significant differences were found for any treatment for acetic acid
bacteria (AAB), Enterobacteriaceae and Pseudomonas sub-groups. Unlike other bacterial sub-groups, lactic
acid bacteria (LABs) appeared more sensitive to the chemicals, with a significant decrease (p<0.05), close to a
log of their viable load under the effect of treatment BR4. Fungal sensitivity to preservative chemicals was also
tested, for which biomass quantities in treated samples were comparable to those without treatment (NoPre),

although within-sample variability was higher for BR4 and AZ4 treatments (Fig. 2-4C).
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Figure 2-4: Changes occurring in the microbial composition and structure of raw milk once subjected to
preservatives. Treatments include NoPre (untreated raw milk), AZ4 (raw milk treated with azidiol), BR4
(Bronopol-treated raw milk), AZDm (Raw milk treated with a mixture of azidiol and dimethyl sulfoxide), and
DMSO (raw milk treated with dimethyl sulfoxide). (A) Visualization of alpha-diversity measures following
treatments as described in the V3-V4 (left) and V6-V8 (right) datasets. (B) Principal coordinate analysis on
weighted UniFrac distances based on the V3-V4 (top) and the V6-V8 (bottom) datasets. (C) Boxplot showing
the bacterial and fungal quantification by PMA-gPCR. Asterisks above boxes indicate a significant difference
compared to NoPre, obtained by performing a Wilcoxon rank test. P-values are flagged with asterisks as follows:
*, p<0.05; **, p<0.01.

2.5.4 Impact of preservation methods on microbial community stability over time

Following the assessment of the preservatives’ effects on the microbiota upon addition to milk, microbial
community stability was evaluated at four timepoints over 30 days by comparing community diversity and
structure between fresh and stored samples. Because higher discriminative power was obtained with the V3-V4

based dataset, only V3-V4 figures are presented in this section; all V6-V8 homologues are available as
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supplemental materials. As shown in Fig. 2-5A, no significant change in alpha-diversity measure was observed
during the storage of treated samples, except the Chao1 estimate (p=0.04) for DMSO treatment. However, we
found no significant difference after performing a post-hoc test accounting for the multiple comparisons made
(Fig. A5-A). Consistent results were also obtained with the V6-V8 based dataset, with no significant difference

found for any of the alpha-diversity metrics, nor preservation methods (Fig. A6-A).

The ability of preservation methods to stabilize milk microbial communities was also evaluated by
measuring Jensen-Shannon divergence, weighted- and unweighted-UniFrac distance discrepancies between
serial timepoints for each single sample. Accordingly, data were recorded at three timepoints (Fig. 2-5B). Only
Jensen-Shannon divergence in treatment AZ4 showed a significant difference in distance measure between
consecutive timepoints (p=0.01). Most aliquots in other conditions remained relatively stable with little changes
over time, although regression across timepoints may show more or less pronounced trends. Concerning
Jensen-Shannon divergence measures on treatment AZ4, a post-hoc test revealed that overall milk community
structure at five days post-storage was comparable to those at 10 and 30 days, while the 10- and 30-day samples
were significantly different from one another (Fig. A5-B). Similar results were obtained with the V6-V8 sequence
dataset regarding Jensen-Shannon divergence (Fig. A6-B), except that post-hoc analysis following significance

found in treatment AZ4 did not reveal significantly different community structures across timepoints (Fig. A7-A).

Using the same distance measures as for evaluating single sample microbial stability over time, we
investigated the stabilizing effects of preservation methods on community structures by comparing between-
sample diversity across timepoints. Significant shifts in community structure were observed in treatments BR4
(p=0.002) and AZDm (p=0.02) when Weighted-UniFrac distance was used (Fig. 2-5C). For treatment BR4,
pairwise phylogenetic distances tended to increase over storage time, while for treatment AZDm, the opposite
was observed, indicating for the latter a better control on microbial dynamics. This is consistent with the post-
hoc test that showed no significant difference across timepoints for AZDm treated samples, while for BR4 treated
samples, community structure at day 30 was significantly different from all preceding timepoints (Fig. A5-C).
Considering unweighted-UniFrac measure, there was no significant difference in any of the four treatments,
implying relatively stable phylogenetic diversity over time. Jensen-Shannon divergence showed that significant
differences in community structure arose during storage in AZ4 (p=0.009) and BR4 (p<0.001) treated milk (Fig.
2-5C). As illustrated in Fig. A5-C, these results were mostly explained by a significant difference between
community structure at day 30 compare to day zero for AZ4, and between days zero, five, and ten for BR4.
Unlike alpha-diversity and within sample stability over time, beta-diversity analyses on the V6-V8 related dataset
showed different results (Fig. A6-C).
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Figure 2-5: Temporal stability of microbial communities in preserved raw milk across 30 days of storage.
Treatments include NoPre (untreated raw milk), AZ4 (raw milk treated with azidiol), BR4 (Bronopol-treated raw
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milk), AZDm (Raw milk treated with a mixture of azidiol and dimethyl sulfoxide), and DMSO (raw milk treated
with dimethyl sulfoxide). (A) Variations in alpha-diversity measures. For Chao1 estimates, Shannon and
InvSimpson indices, salmon lines represent linear mixed-effects fit against the storage time and the 95 %
confidence interval is shaded. (B) Diversity trends between samples of the same farm at consecutive timepoints.
Blue lines represent linear mixed-effects fit against the storage time and the 95 % confidence interval is shaded.
(C) Diversity trends between sample aliquots from different farms at consecutive timepoints. Purple lines
represent linear mixed-effects fit against the storage time and the 95 % confidence interval is shaded.

Using weighted-UniFrac distance, significant shifts in microbial communities were found for AZDm (p<0.004)
and DMSO (p=0.02) treated samples over time, while with unweighted-UniFrac, significant changes (p=0.03) in
community composition were found in AZDm treated samples only. For Jensen-Shannon divergence, significant
changes (p=0.01) were found for AZDm treated samples. Despite these results, based on regression lines
across timepoints, there was no obvious trend in community dynamics for any treatment and distance method.
However, post-hoc analyses performed on weighted-UniFrac distance distinguished community structures at
different timepoints in AZDm and DMSO treatments, but not in AZDm considering unweighted-UniFrac and

Jensen-Shannon measures (Fig. A7-B).

Temporal changes in microbial composition at selected taxonomic levels were evaluated by quantifying
consistency in taxa relative abundance through the calculation of ICC values at each timepoint for preserved
and unpreserved samples. The rationale for treatment NoPre was to demonstrate variation in bacterial
abundance that occur in the absence of any preservation measure other than storage at 4 °C. Intra class
correlation results showed that for treatment NoPre, abundance consistencies at phylum down to genus levels
varied from near excellent (= 0.9) to poor (<0.5) after only five days of storage, while at the ASV level,
consistency decreased from moderate (= 0.6) to poor (<0.3), indicating drastic alteration of milk microbiota
integrity during storage without preservatives (Fig. 2-6A). No such extent of microbiome community denaturation
was noticed in treated samples, except for treatment BR4 where consistency at the ASV level dropped from
good (= 0.71) at day five to poor (= 0.42) at day 30, while remaining good despite temporal instability (ICC
values ranging from = 0.9 at day five to = 0.8 at day 30) at higher taxonomic levels. Treatment AZDm exhibited
the most stable consistency in taxa abundance overall, followed by treatments AZ4 and DMSO. Contrasting
results were obtained for the V6-V8 sequences dataset, where ICC values across time for all treated samples
remained above 0.8 (good consistency) from phylum to species level, and above 0.6 (moderate consistency) at
the ASV level, with no ICC drop of more than 0.2 (Fig. A8-A).
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Figure 2-6: Community instability and taxa dynamics in unpreserved and preserved milk samples over storage
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with dimethyl sulfoxide). (A) Intraclass correlation coefficients computed for all the taxonomic levels between
samples of different farms and plotted against the storage time. (B) Prevalence and abundance of taxa that
underwent = log2-fold changes. Each taxon at the genus level is coloured by its corresponding phylum.

To identify taxa specifically at the genus level whose changes in abundance across all consecutive
timepoints may explain observed community shifts, we performed DESeq2-based differential abundance
analysis. Among the fifteen most abundant taxa, Proteobacteria including Lelliottia, Methylobacterium,
Acinetobacter, Rahnella and Pantoea, Firmicutes including Lactococcus, Enterococcus, Staphylococcus,
Weissella, Leuconostoc and Macrococcus, and to a lesser extent Actinobacteria including Rhodococcus, Rothia,
and Corynebacterium_1 were the main drivers of community structure instability in preserved and unpreserved
milk samples (Fig. 2-6B). Genera exhibiting the highest log2-fold changes include Lactococcus, Enterococcus,
and Staphylococcus for treatment AZ4, and Methylobacterium for treatment DMSO. Considering the V6-V8
based dataset on the other hand, the top fifteen most abundant taxa explaining structural changes in microbial
community over time were largely dominated by Proteobacteria (Fig. A8-B). However, genera showing the

highest log2-fold change include Lactococcus, Staphylococcus, and Enterococcus for treatment AZ4.

As a complementary approach to high throughput sequencing based analysis of microbial temporal
stability, we performed PMA-gPCR to quantify variation in abundance of selected taxonomic groups over time.
Viable microbial loads for taxonomic groups including AAB, Enterobacteriaceae, LABs, Pseudomonas, total
bacteria, and total fungi, were expressed in gene copy number per mL of milk sample. AAB average loads were
relatively stable over time for all treatments, although significant differences (p<0.05) were found at days 30 for
treatment BR4 and 5 for treatment AZDm compared to day zero, respectively (Fig. 2-7). Unlike AAB
communities, Enterobacteriaceae were slightly less sensitive to preservatives, particularly at days 5 for treatment
BR4 and 10 for treatment AZDm where significant increases in bacterial loads (p<0.001, p<0.05, respectively)
were observed. LAB were less sensitive to treatment AZ4, for which significant increases in community loads
were observed at day 30 compare to day zero. For the Pseudomonas group, significant increases in community
loads were noted at day 5 for treatments AZ4 and BR4 and AZDm (p<0.05, p<0.001, p<0.01, respectively).
Overall, viability-PCR for total bacteria showed that communities were relatively stable for all treatments, except
treatment BR4 for which a significant increase in bacterial load was observed at day 5, even though variation
amplitudes were only a few tenths of a log. On the other hand, fungal communities were stable under
preservation methods involving freezing (AZDm and DMSO) but grew dynamically under treatments AZ4 and
BR4, which both involved refrigeration at 4 °C. Compared to day zero, fungal loads significantly increased at
days 10 and 30 (p<0.05, p<0.001, respectively) for treatment AZ4, and days 5, 10, and 30 (p<0.05, p<0.0001,
p<0.0001, respectively) for treatment BR4.
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Figure 2-7: Quantification of viable microbial groups/sub-groups over time. Log copy numbers/mL are plotted
against the preservation time. Copy numbers calculated at timepoints D05, D10 and D30 are compared to that
at DO using a Wilcoxon rank test. Asterisks above boxes indicate significant difference compared to DO, and flag
p-values as follows: *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001.
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2.6 Discussion

In the current study, the “viability high-throughput sequencing” approach was used to assess the
efficiency of raw milk preservation methods. By analogy to viability-PCR, “viability high-throughput sequencing”
refers to high-throughput sequencing of DNA from live microbial cells as depicted by PMA. Regarding technical
limitations associated with the use of PMA [76], a previous study conducted in our laboratory [82] has optimized
the application of PMA-gPCR on milk and cheese samples, and since then it has become routine practice on
various matrices [81,83,232,233]. We showed that V3-V4 and V6-V8 hypervariable regions of the 16S rRNA
gene do not draw identical pictures of the community profiles of fresh raw milk samples. Indeed, we found
different, but overlapping lists of the top ten predominant taxa in fresh raw milk for both regions. Moreover,
compared to the V3-V4 region, the microbial profile using the V6-V8 region exhibited a higher richness, but lower
alpha-diversity, indicating large dominance by few taxa. These results are consistent with previous studies which

compared single or combined 16S rRNA hypervariable regions [100,234].

On the other hand, in unpreserved raw milk conserved at 4 °C for five days, we observed significant
drops in richness and alpha-diversity measures for both hypervariable regions. This was accompanied by a
highly significant shiftin community structure again revealed by both variable regions. These results clearly show
that storing raw milk samples at 4 °C is insufficient to stabilize the microbial community for up to five days,
consistent with previous studies [7,189]. More importantly, our results confirm those from previous studies which
reported the predominance of a diversified portion of the microbiota in refrigerated milk, including psychrotrophic
and mesophilic bacteria [7,189]. Accordingly, we identified the genera Lactococcus, Yersinia, Enterococcus,
Macrococcus, and Leuconostoc in V3-V4 sequences, and in V6-V8 sequences the genera Acinetobacter,
Macrococcus, and Rhodococcus as biomarkers of five-day stored raw milk, thus presumably spoiled raw milk.
Once more, the identification of microbial taxa that characterize potentially spoiled raw milk during or after
storage and transportation under refrigeration to dairy plants may provide different results depending on the
sequenced region. Comparison of published results from partial 16S rRNA high-throughput sequencing is
problematic due to the use of a wide variety of analytical techniques and bioinformatic pipelines. A consensus
on the most appropriate hypervariable regions that best describe microbial communities, particularly for dairy
associated bacteria, is yet to be established [99,235]. Identifying the best hypervariable region between V3-V4
and V6-V8 was, however, not the scope of the current study. Nevertheless, due to its greater coverage, the V6-
V8 region seems more adapted for exploring the microbial composition of milk. For hypothesis driven microbiome
studies aiming at characterizing or comparing different biological or environmental conditions associated with
milk, the V3-V4 region would be preferred, as it appeared statistically more discriminative. However, the
phylogenetic resolution provided by amplicon sequencing is a limiting factor in the microbial profiling and the

evaluation of its dynamics in various ecosystems. With the recently developed approach that combines circular
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consensus sequencing from the Pacbio platform and the DADA2 algorithm to better classify long-read
sequences up to sub-species level [96], targeting the 16S rRNA gene along its full length will lead to better

resolution in species identification.

We assessed the immediate effects of preservative substances on milk microbiota before investigating
their stabilizing ability. Our results showed that none of the preservatives adversely affected milk microbiota
composition and structure once added to samples. This corroborates previous studies that showed that bacterial
viability and recovery were not hampered within 24 to 48 h after azidiol was mixed with milk samples [189,201].
Our results indicate no negative interactions between the preservatives tested and the ability of PMA to target
viable cells. Nevertheless, some biases were noted for a few taxa where abundance was significantly increased
when AZ4, BR4, or AZDm treatments were applied, but not sufficiently to induce significant differences at the
community level. The same trend was also noted for viable total bacterial loads determined by PMA-qPCR on
AZ4 and AZDm treated milk aliquots. Even though the immediate bactericidal effect of treatment BR4 was
significantly higher on LAB compared to other sub-groups quantified, the microbiota composition and evenness
(alpha-diversity) in BR4-treated milk remained stable over the course of storage, as for that of other treated milk
samples, regardless of the sequenced region. In contrast, the community structure (beta-diversity) varied
significantly across time in BR4-treated milk, showing the highest variability in consistency measured through
ICC analyses for all taxonomic levels. Our results showed that BR4 treatment is inappropriate to preserve milk
samples intended for microbiome analyses. They confirmed those from Sierra et al. who used automated flow
cytometry to evaluate the effect of bronopol on total bacterial counts in preserved goat milk [236]. The authors
did not recommend bronopol as a preservation method preceding total bacterial counts because of its biocidal

effect.

We also demonstrated, as have previous studies on other matrices [190-193], that freezing, particularly
with a cryoprotectant such as DMSO [201], is the gold standard for preserving dairy milk samples. Indeed, we
found that milk microbial community composition and structure were stable when frozen, supplemented or not
with azidiol. However, our analyses on a- and B-diversity measures showed that although not always significant,
there was a higher trend of differentiation between microbial communities across timepoints for DMSO-treated
samples, compared to AZDm treatment. The tendency was more accentuated between the 10 and 30 days of
storage. This indicates, as expected, that sample treatment with azidiol before freezing provides a better
preservation of the microbial community in milk samples. To our knowledge, this is the first report on the
preservative properties of azidiol combined with DMSO before freezing. We also found a better stability of the
milk microbiota in AZ4-treated samples compared to DMSO-treated ones, specifically for up to 10 days post-
storage. Our findings corroborate those of Martins et al. [195] who showed that the total bacterial counts in

azidiol treated milk remained stable under refrigeration between 1 ° and 4 °C for up to 1 week. For large-scale
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studies in remote areas, sample refrigeration would be more easily and reliably achieved than freezing.
Therefore, in this instance, treatment AZ4 would be preferred to AZDm, particularly to minimize the bacterial
proliferation for short-term preservation before sample analysis. Besides bacteria, variation of fungal loads
across time in treated and untreated samples were assessed by PMA-gPCR. We found that only treatments
AZDm and DMSO were able to stabilize the total fungal community, while treatments AZ4 and BR4 were not
able to stabilize them for at least up to 5 days. These latter treatments lacked freezing, which is well known for
inhibiting fungal growth. In addition, the lack of any fungistatic or fungicidal substance certainly explains yeast
and mould proliferation during milk storage. Several studies, as reviewed by Frey-Klett et al. [237], have
demonstrated that fungi and bacteria occurring in the same environment can interact to favour their growth
through diverse physical and chemical mechanisms. Because fungal communities constitute an important part
of raw milk microbiota [5], fungistatic substances (not fungicidal) should be used to limit their proliferation during
sample storage. Indeed, preventing fungal growth in stored milk sample would logically improve azidiol

efficiency, and ultimately allow long-term storage of AZ4-treated raw milk for microbial analyses.

Besides high throughput marker gene or shotgun sequencing, other omics approaches, as reviewed
by Tilocca et al. [73], have been used to characterize the microbiota of dairy milk and products. Whether they
involve gene expression analyses of microbial communities (metatranscriptomics), their metabolites
identification and quantification (meta-metabolomics) or the proteome analysis (metaproteomics), they all
depend on the microbiome stability for consistent and reliable study results. Sodium azide, one of the main
constituents of azidiol, has been successfully used to minimize bacterial growth during proteomic studies on
distinct matrices such as milk [238] or urine [239]. Also, chloramphenicol, another constituent of azidiol, has
been extensively used in studies characterizing proteome dynamics of microbe’s antibiotic resistance. To our
knowledge, no incompatibility has been reported between sodium azide and chloramphenicol. Therefore, like
the recently developed metaproteomic approach to decipher enzyme modulation by lysozyme treatment of
Grana Padano cheese samples [130], future related large scales studies might obviously benefit from azidiol
preservative abilities to fix microbial communities in collected samples. However, depending on the analysed
matrix and the research objectives, optimizations would be needed to ensure efficiency and practicality of the

preservation method.

2.7 Conclusions

Using a “viability high-throughput sequencing” approach combined with viability-PCR, we demonstrated
that a combination of azidiol and DMSO to preserve the microbiota of raw milk at freezing temperature was more
efficient than simple freezing without a preservative agent. Interestingly, we showed that the microbiota in azidiol-
treated milk was equally stable for up to 10 days at refrigeration temperature of 4 °C. Our findings suggest that

in the latter condition, combining azidiol with a fungistatic substance would improvably extend sample
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preservation time. Being among the most targeted hypervariable regions in high-throughput amplicon
sequencing of the 16S rRNA gene, we proved that V3-V4 and V6-V8 regions do not always provide the same
picture from the same microbial populations, highlighting caution in choosing the right region to sequence
according to research objectives if short-read sequencing is to be performed. Based on the above findings, we
encourage the use of azidiol for optimal conservation of raw milk microbiota intended for culture-dependent and

-independent analyses in large-scale epidemiological or longitudinal studies.
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Chapitre 3 — Ecologie microbienne de fourrages
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3.1 Résumé

Le microbiote des fourrages conservés détermine leur qualité, et peut affecter la composition
microbienne et I'aptitude du lait a la transformation. La diversité et la viabilité des communautés bactériennes
de cing types de fourrages incluant le foin et les ensilages inoculés ou non ont été analysées par
métataxonomique dans 24 fermes laitiéres échantillonnées a deux reprises. Il en ressort que les bactéries
lactiques dominent le microbiote d’ensilages, alors que dans le foin, les genres Pantoea et Sphingomonas sont
dominants. Une abondance élevée des genres Pediococcus, Weissella et Bacillus caractérise les ensilages
d’herbe/légume comparé a ceux du mais ou sont observées des proportions élevées du genre Acetobacter. Les
inoculants commerciaux n’affectent pas systématiquement le microbiote d’ensilages, et seraient par ailleurs
ubiquitaires. Cependant, I'analyse des réseaux d'interactions bactériennes a révélé des différences de co-

occurrence et de role topologique bactériens entre les ensilages inoculés et non inoculés.

3.2 Abstract

The microbiota of preserved forage is a key determinant of its quality, and it can critically affect raw milk
microbial composition and processibility. Here, we comprehensively assessed the diversity of viable bacterial
communities of hay and grass or legume and corn silage to deepen our knowledge of how conservation
processes and inoculant addition drive microbial occurrence patterns on dairy farms. Samples of eight different
forage types were collected at the feed-out phase from 24 dairy farms over two sampling periods and analysed

by high-throughput sequencing and quantitative PCR after being treated with propidium monoazide to account
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for viable cells. We found consistent significant differences between hay and silage community structures across
sampling periods. Silage was generally dominated by lactic acid bacteria (LAB), while Pantoea, Sphingomonas,
Curtobacterium, and Methylobacterium were the main co-dominant genera in hay. Grass or legume and corn
silage exhibited phylogenetically dissimilar microbial profiles, the former being characterized by high relative
abundance of Pediococcus, Weissella, and Bacillus, and the latter by high proportions of Acetobacter. The use
of commercial microbial additives including either Lentilactobacillus buchneri alone or in combination with
Lactiplantibacillus plantarum, Lacticaseibacillus casei, Pediococcus pentosaceus, and Enterococcus faecium in
different formulations did not systematically improve silage microbial profile, especially when corn-based forages
were produced. However, inoculating grass or legume silage tended to reduce the occurrence and abundance
of Weissella, but inconsistently prevented that of Bacillus. Moreover, the core Lactobacillales phylotypes were
the dominant LAB in uninoculated and inoculated grass or legume and corn silage with up to 96 % and 95 %
relative abundance, respectively, indicating either the ubiquity of inoculants or the high competitiveness of
epiphytes. Forage physicochemical parameters as well as sampling periods, storage forms, and inoculants
associated with specific taxa. Variations in taxa co-occurrence patterns and topological roles between
uninoculated and inoculated silage types demonstrated the usefulness of the network analysis for deciphering
silage microbial ecology in large-scale facilities. The integration of management practices and forage
physicochemical parameters with microbial dynamics and interactions during forage processing stages is

needed to fully decipher taxa roles in silage fermentation.

3.3 Introduction

Forage conservation is critical to ensure a proper yearlong availability of feed for dairy cattle. This is
particularly important in cold-weather areas characterised by rough winter conditions and limited growing
seasons such as those prevailing in North America [240]. If the origin and patterns of phyllosphere community
assembly are unclear [241], the fate of microorganisms dwelling on fresh plants throughout the preservation
processes contributes to the quality of conserved forages and determines associated potential risks to animal
and human health [242]. Due to the development and the application of molecular techniques to gain insight into
the microbiome associated with preserved forages [167], management systems have gained substantial
upgrades intended to improve safety and production yields, as well as beneficial effects to animals [26,170,243—
245]. Management practices and environmental factors [240] unavoidably alter the microbial content of
preserved forages. These feeds therefore constitute important vehicles for various microorganisms including

bacteria and fungi from the growing fields to dairy barns, and ultimately to milk and dairy products [9,112,170].

Hay and silage are the main forms of forage conservation in dairy production systems [23]. Although
haymaking consists of drying forage crops in order to suppress enzymatic and microbial activities, hay still

harbours a viable microbiota which composition and structure are not well known [246,247]. On the other hand,
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ensiling is based on the fermentative properties of epiphytic microorganisms, particularly lactic acid bacteria
(LAB), that metabolize water soluble carbohydrates (WSC) into organic acids under anaerobic conditions
wherein the rapid decline in pH is a key determinant of silage quality. The genera Lactiplantibacillus,
Lacticaseibacillus, Lentilactobacillus (formerly Lactobacillus), other lactobacilli, Pediococcus, Weissella,

Leuconostoc, Enterococcus, Streptococcus, and Lactococcus are generally associated with silage [170,245].

However, not all LAB strains can induce fast pH decrease during the early stages of fermentation, and
in naturally fermenting forage crops, they may be outcompeted by undesirable acid-tolerant bacteria including
Enterobacteriaceae, acetic acid bacteria (AAB), and spore-forming bacteria associated with poor quality silage
[243,245]. Microbial additives encompassing homofermentative or facultative heterofermentative LAB
(Lactiplantibacillus plantarum, Lacticaseibacillus casei, Pediococcus spp.), obligate heterofermentative LAB
(Lentilactobacillus buchneri, Lentilactobacillus hilgardii), combination inoculants, and non-LAB inoculants
(Bacillus subtilis) have been proposed to enhance forage crops fermentation and improve the aerobic stability
of silage, as well as its safety and nutritional value [26,245]. From a microbiological viewpoint, the efficiency of
these commercial inoculants whether as single or as multi-species formula have been generally assessed in
controlled laboratory conditions that do not mimic the various management practices and changing
environmental factors observed in large-scale ensiling [23,248,249]. Consequently, few studies have evaluated
the microbial communities populating silage prepared in various farm-scale silo types [248,250], and none of
this kind have focussed on associations between physicochemical characteristics and the viable microbiota at

feed-out, while contrasting uninoculated versus inoculated silage.

Gagnon et al. [22] recently used a culture-based approach to analyse LAB communities occurring in
hay and grass/legume and corn silage produced with and without inoculation at different dairy farms. They
revealed that while L. casei/paracasei and L. plantarum were common among all forage types, Enterococcus
mundtii, L. pentosus, Companilactobacillus  tucceti, Lactococcus lactis, and Leuconostoc
mesenteroides/pseudomesenteroides were only identified in hay, whereas L. buchneri group was specific to
silage regardless of their type and inoculation status. A better knowledge of the viable microbial communities of
preserved forages including hay and grass/legume or corn silage at feed-out from farm-scale facilities will provide
new insights into their microbial loads and help evaluate the effectiveness of forage management practices
implemented on dairy farms. This information is useful for fine-tuning the search for new additives and may help
forage makers adjust processing routines to improve the hygienic quality, nutritive value, and aerobic stability of
conserved forages. The current study complements that from Gagnon et al. [22] by implementing a viability high-
throughput sequencing approach combined with viability-PCR [43,251] on the same samples to provide a
comprehensive and comparative analysis of the microbial ecology of hay and grass/legume or corn silage

produced with or without inoculants. Therefore, this study aimed to assess the diversity of microbial communities
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occurring in various types of preserved forages and gain insight into how inoculants shape the microbiota of

mature silage in commercial settings.

3.4 Materials and methods

3.4.1 Dairy farm selection and sample collection

Farm recruitment and sampling were carried out as previously described [22]. Briefly, the 24 tie-stall
herds from the province of Quebec (Canada) were selected based on the forage harvested as hay or silage.
Accordingly, farms were grouped into five feeding typologies comprising herds fed with either hay as the unique
type of forage (H), or silage as the main forage source, the latter including grass/legume silage (GL),
grass/legume silage with corn silage (C) as supplement, grass/legume silage with corn silage inoculated at

harvest (Cl) as supplement, and grass/legume silage inoculated at harvest (GLI) with Cl as supplement.

Sampling was carried out in the fall 2015 and the spring 2016. On each farm, forage samples were
collected during the same visit as previously described [22]. Within the farms enrolled in the study, eight storage
forms or silo types included loose and baled hay as well as wrapped square/round bales, concrete-stave silo,
oxygen-limiting silo, pressed bag silo, bunker silo, and stack silo for silage (Table 3-1). For inoculated silage, the
commercial inoculants used to control the ensiling process included 11C33, 11CFT and 11G22 (Pioneer,
Johnston, |A), as well as Biotal Buchneri 500 and Biotal Supersile (Lallemand Animal Nutrition, Milwaukee, WI).
From the 500 g of each forage sample collected, a subsample was sent to Lactanet laboratories (Sainte-Anne-
de-Bellevue, Qc, Canada) for infrared quantification of organic compounds, moisture, pH, and minerals, as well
as the estimation of fermentation acids when applicable. All the above-mentioned sample and farm information
composed the sample metadata that were further integrated in the dataset and used where applicable as

categorical or quantitative variables for data analysis.

Table 3-1: Distribution of forage storage forms and silo types

Storage form / Silo type

Loose  Small  Wrapped Concrete- Oxygen- Pressed Bunker Stack

Feed bale square/round stave silo limiting silo silo silo
_group? bale silo

H 2 10

GL 1" 10 2 4 2

GLI 14 2

C 4 2 2

Cl 14 2

aH, hay; GL, non-inoculated grass, or legume silage; GLI, inoculated grass/legume silage; C, non-inoculated
corn silage; Cl, inoculated corn silage.
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3.4.2 DNA extraction and high-throughput sequencing of the 16S rRNA gene pool.

For forage samples, 30 g of each were homogenized in 270 mL of peptone buffer solution as previously
described [22]. Aliquots of 2 mL immediately taken from the suspension were centrifuged at 12,000 x g for 15
min at 4 °C. The pellets were washed twice with 1 mL sucrose buffer (sucrose 12 % [w/v], 25 mM Tris-HCI pH
8.0). Half of the cell suspension were treated with propidium monoazide (PMA) as previously described [43]. All
non-PMA and PMA treated cells were stored at —80 °C. Genomic DNA was then extracted using the DNeasy
PowerFood Microbial Kit (Qiagen, Hilden, Germany) combined with enzymatic lysis with mutanolysin from
Streptomyces (MilliporeSigma), lysozyme (MilliporeSigma), and proteinase K (MilliporeSigma) following the

steps previously described [43].

Sequencing was performed in a single run on lllumina MiSeq at the Plateforme d’Analyses
Génomiques, Laval University (Quebec, Canada). Primer pairs 347F (5'-GGAGGCAGCAGTRRGGAAT)/803R
(5'-CTACCRGGGTATCTAATCC) were used to amplify the V3-V4 region of the 16S rRNA gene.

3.4.3 Bioinformatic and statistical analyses

The Cutadapt (version 2.3) software [213] was used to remove adapters and primers from
demultiplexed sequences. Sequencing reads were modelled and denoised with the DADA2 (version 1.14)
pipeline [98] developed for R. After constructing the merged sequence table and removing chimeras, the Silva
version 132 DADA2-formatted reference databases (down to genus and species levels) were used for taxonomy
assignment. Sequence alignment and phylogenetic tree construction were performed using the DECIPHER
(version 2.14.0) package [214] and phangorn (version 2.5.5) package [215], respectively, as previously
described [216]. The resulting amplicon sequence variants (ASVs) and phylogenetic tree were further processed

with the phyloseq (version 1.30.0) package [217] for alpha- and beta-diversity analyses of the forage microbiota.

As a preprocessing step in the data analysis, community differences between non-PMA and PMA
treated samples were compared, as well as between sampling periods, by computing alpha- and beta-diversity
measures using the Phyloseq package. Centered Log-Ratio (CLR) and Phylogenetic Isomeric Log-Ratio
Transform (PhILR) were applied to the ASV table prior to beta-diversity analyses for which Aitchison and

Euclidean distances were used, respectively, to account for the compositional nature of microbial data [252,253].

Microbial communities in forage types were characterized by assessing and comparing alpha-diversity
measures including Chao1, Shannon and Inverse Simpson indices, and beta-diversity measures including the
sample local contribution to beta-diversity (LCBD), principal coordinate analysis (PCoA), and principal
component analysis (PCA). LCBD is another way of assessing the beta diversity that provides comparative

indicators of the uniqueness of a community profile in a single sample among groups [254]. LCBD indices were
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computed on Hellinger-transformed data with the microbiomeSeq R package [255]. PCA was performed on CLR
and PCoA on PhILR normalized data as described above to assess the dissimilarities of community structures
among forage types. Significant differences were determined at 0.05 threshold from false discovery rate (FDR)
corrected p-values after a Kruskal-Wallis test computed with the R package ggpubr [220]. Microbial differential
abundance testing was performed for paired combinations between uninoculated and inoculated forage types
using the R package ALDEx2 4.0 [256]. The functional metagenomic content of forage samples was predicted
using the Piphillin software [121] through the Piphillin online server (http://piphillin.secondgenome.com/). The
differential abundance of microbial functional features was computed with ALDEx2 as described above. The
abundance and effect size of differentially abundant taxa or functional features between uninoculated and
inoculated forage types were visualized using a heatmap constructed with the Bioconductor package
ComplexHeatmap 2.4.2 [225].

Categorical and quantitative metadata related to farms and forage samples were selectively integrated
in multivariate multi-table analyses based on sparse partial least squares regression (sPLS) and canonical
correspondence analysis (CCpnA) to determine their association with microbial features. The analysis scheme
was partially inspired from a previously described study [257]. Relevant metadata variables were selected for
multivariate multi-table analyses by permutational multivariate analysis of variance (adonis) on CLR normalized
data. The function adonis2() from vegan (version 2.5-6) R package [258] was used on Aitchison distance matrix
computed in the phyloseq package. Significant variables (p<0.05) identified using adonis test were retained for
SPLS based analyses performed with MixOmics (version 6.1.1) R package [136]. To complement the sPLS
approach, general linear models implemented in MaAsLin2 R package (https://github.com/biobakery/MaAsLin2)
were also used to determine multivariate associations between forage metadata and ASVs based on CLR
normalized data. For MaAslin2 analyses, ASVs significantly associated with adonis selected variables were
limited to those which BH corrected p-values were lower than 0.25. CCpnA analysis of each forage type was
performed as previously described [257] on corresponding dataset reduced to all ASVs resulting from both sPLS
and MaAsLin2, as well as all variables selected based on adonis test. Besides the CCnpA triplot result that
illustrates how microbiome patterns are related to farm and forage metadata, prevalence, abundance, and
distribution of all selected ASVs among each forage type were visualised in a heatmap constructed with the

ComplexHeatmap package.

Microbial communities in uninoculated and inoculated forages (grass/legume and corn silage) were
further characterized by investigating co-occurrence patterns using network analyses. The network inference
was performed by constructing the phylogenetic molecular ecological networks (PMENS) using the online
molecular ecological network analysis pipeline (MENAP, http://ieg4.rccc.ou.edu/mena) as previously described

[259,260]. For pMENSs construction, only ASV with at least 40 % prevalence within a silage group were
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considered. The similarity matrix that measures the degree of concordance between the abundance profiles of
ASV across samples was obtained based on Pearson correlation coefficients calculated from CLR-transformed
data. Depending on the structure of the dataset corresponding to each silage group, the random matrix theory-
based approach [261,262] was used to automatically determine the appropriate threshold value for network
structure. The fast greedy modularity optimization procedure [263] was used to detect network modules defined
as a group of highly interconnected nodes that share few or no connections with other nodes outside the group.
In the built network, each node corresponds to a single ASV. The Maslov-Sneppen approach [264] was used to
generate 100 randomly rewired networks for each pMEN obtained. Global network and individual node
properties were calculated based on similarity matrices. Node topological roles for a given network were
determined based on within-module connectivity (Z;) and among-module connectivity (P;) indices and visualized
with a scatterplot constructed using the ggplot2 (version 3.3.0) R package [223]. Accordingly, nodes were
assigned four different topological roles including module hubs, network hubs, peripherals, and connectors as
previously defined [265]. Peripheral ASVs also considered as specialists, have both low Z; and low P; indices (Z
< 2.5, P £ 0.62) and characterized by few links almost always with other ASVs within their module. ASVs
assigned the connector role have low Z; and high P; indices (Z < 2.5, P; > 0.62) and are highly connected to
several modules. Module hubs have high Z; and low P; indices (Z > 2.5, P; < 0.62) and are highly connected to
several ASVs within their module. Connectors and module hubs are both considered as generalist species.
Network hubs also defined as super-generalists have high Z; and high P indices (Z > 2.5, P;> 0.62), thus playing
both connector and module hub roles. Habitat generalists refers to species, in this study ASVs, that are largely
distributed across samples within a group, thus having high prevalence, while habitat specialists are restricted
to few samples in the group they belong to, thus having low prevalence, but occur at high relative abundance
[266]. Module hubs, network hubs, and connectors that have high values of either Zi or Pi, or both high

connectivity indices, are generally considered as keystones species.

Besides functional analyses, phenotypic traits of forage microbiome were predicted and compared
using the BugBase tool [267]. BugBase’s algorithm relies on software such as PICRUSt [268], IMG [269], KEGG
[123], and PATRIC [270] to predict phenotypes and corresponding microbial contributors at the phylum level.
Phenotypic traits including biofilm formation, Gram staining, oxygen tolerance, pathogenic potential, mobile
element content, and oxidative stress tolerance were then predicted from CLR transformed data. Prior to
BugBase analyses, chimera free sequences derived from the DADA2 pipeline were mapped to the Greengenes

97 % reference database for format compatibility requirements.

3.4.3 Quantitative PCR

Quantitative polymerase chain reaction (QPCR) was performed to determine copy numbers of

specifically targeted genes of L. buchneri, L. plantarum, lactic acid bacteria (LAB), acetic acid bacteria (AAB),
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Enterobacteriaceae, Pseudomonas, total bacteria, and total fungi in all PMA free and PMA treated forage, using
specific primer pairs as previously described [43]. Amplification reactions were carried out in duplicate using a
ViiA7 system (Thermo Fisher Scientific, Burlington, ON, Canada). Each reaction mixture of 10 uL total volume
was composed of 3.6 pL UltraPure DNAse and RNAse free distilled water (Thermo Fisher Scientific), SuL
PowerUp SYBR Green master mix (Thermo Fisher Scientific), 0.2uL of each primer at 10 nM, and 1 uL DNA

template. Bacterial loads were reported as gene copy number per milligram of forage.

3.5 Results

3.5.1 Bacterial diversity in forage types

A total of 81 forage samples were collected from 24 dairy farms over two sampling periods. During both
periods, H samples exhibited significantly higher Chao1, Shannon, and inverse Simpson indices (p<0.01)
compared with other forage types which did not significantly differ from each other (Fig. 3-1A-B). However,
inconsistent diversity trends were observed between uninoculated and inoculated silage across sampling

periods.

Forage types collected in the fall season (Fig. 3-1C-D) exhibited highly dissimilar community structures
(p<1e-04). While there was a clear separation between H and silage, taxonomic compositions in GL and C were
not significantly different from those of their inoculated counterparts. Principal coordinate analysis (PCoA) based
on PhILR-transformed data revealed significant differences between uninoculated silage and inoculated
counterparts (Fig. 3-1D), indicating that taxa occurring in the compared habitats were not phylogenetically
related. In contrast, silage microbial communities from the spring season were compositionally similar (Fig. 3-

1E) and phylogenetically related (Fig. 3-1F), while being almost all significantly different from H.

Taxonomic profiles were assessed at the genus level, concomitantly with sample LCBD indices. The H
samples collected across both periods (Fig. 3-2A-B) showed high LCBD indices. The genera Pantoea,
Sphingomonas, Curtobacterium, Methylobacterium, and Pseudomonas were variably dominant across both
sampling periods. Among GL samples collected in the fall, four showed highly distinctive microbial profiles, with
communities variably co-dominated by Bacillus and Saccharopolyspora, or Weissella and Pediococcus, or by
Pediococcus, Methylobacterium, and Enterococcus. Most of the other GL samples were dominated by
Lactobacillus, Weissella, Pediococcus, or Lactococcus. In the spring, GL samples with high LCBD indices
showed dominance of Serratia, Pseudomonas and an unclassified Enterobacteriaceae, or Pediococcus and
Weissella (Fig 2B). Other samples were generally dominated by Lactobacillus, Weissella, and Enterococcus.
For GLI samples collected in the fall, the most distinctive ones showed dominance of either Bacillus,
Pediococcus, or co-dominance of Lactobacillus, Corynebacterium, and Staphylococcus, compared with few

other samples showing Lactobacillus as the sole dominant genus (Fig. 3-2A).
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Figure 3-1: Microbial diversity according to forage type. Alpha-diversity measures of forage types in the fall (A)
and the spring (B). Principal component analysis (left) on CLR (C) or PhILR (D) transformed data with
corresponding post-hoc tests (right) for the fall. Principal component analysis (left) on CLR (E) or PhILR (F)
transformed data with corresponding post-hoc tests (right) for the spring. p-values indicate the significance of
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Figure 3-2: Forage microbial profiles across sampling periods. Relative abundance of the top 21 most abundant
genera within forage samples collected in the fall (A) and the spring (B). LCBD indices represent the sample
local contribution to the beta-diversity between groups. The higher the index, the more unique is the sample
microbial profile and the higher its contribution to the beta-diversity between groups.
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In the spring samples, Lactobacillus was the most abundant genus, followed by Pediococcus. Samples
with high LCBD indices were dominated by either Pediococcus alone or in codominance with Serratia and
Weissella (Fig. 3-2B). C samples collected in the fall were the most homogenous with Lactobacillus as the main
dominant genus, although Serratia often occurred with considerable relative abundance (Fig. 3-2A). Among C
samples collected in the spring, one exhibited high abundance of Acetobacter, other samples showing large
proportions of Lactobacillus or Pseudomonas as dominant or subdominant genera, respectively (Fig. 3-2B).
Finally, Cl samples collected during fall were broadly dominated by Lactobacillus, although some with higher
LCBD indices exhibited large proportions of Acetobacter as either dominant or codominant (Fig. 3-2A). For Cl
samples collected in the spring, Lactobacillus was almost the sole dominant genus, except in one sample

showing Acetobacter as codominant (Fig. 3-2B).

A differential abundance analysis performed to identify taxa significantly enriched between uninoculated
and inoculated silage revealed that in the fall, phylotypes (ASV) of Pediococcus pentosaceus and Weissella
were significantly more abundant in GL compared with GLI samples, except for two GLI samples inoculated with
Biotal Buchneri 500 (Fig. 3-3A). In the spring, Lactobacillus and some Proteobacteria were significantly more
abundant in GLI samples (Fig. 3-3B). For corn silage, Loigolactobacillus coryniformis and Lactobacillus
phylotypes exhibiting high prevalence (83-90 %) were significantly more abundant in C compared with Cl
samples in the fall (Fig. 3-3C). Surprisingly in the spring, while some highly prevalent (83-100 %) phylotypes of
Proteobacteria were significantly more abundant in Cl samples, phylotypes of Lactobacillus and Proteobacteria

were significantly more abundant in C samples (Fig. 3-3D).

LAB including L. buchneri and L. plantarum were significantly enriched (p<0.001) in ensiled forages
compared with H samples (Fig. 3-4A-B). However, inconsistent enrichment of LAB was noted among silage
across sampling periods. Ensiling significantly reduced AAB loads compared with H (p<0.05), but differences
between inoculated silage and uninoculated counterparts were inconsistent across both periods. Ensiling
significantly reduced Pseudomonas levels compared with H (p<0.05) and loads of this group tended to increase
with inoculation, as were Enterobacteriaceae levels. While total bacteria load tended to increase with inoculation
between silage across both sampling periods, contrasting patterns of significant variations (p<0.05) of fungi
loads were noted (Fig. 3-4A-B). We found similar patterns of bacterial load variations between forage types
within PMA-treated (Fig. 3-4A-B) and PMA-free (data not shown) samples, although the latter group broadly

exhibited higher load levels.
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Figure 3-3: Distribution of differentially abundant ASV between uninoculated and inoculated silage. Relative
abundance of ASV significantly enriched between uninoculated and inoculated grass/legume silage in the fall
(A) and the spring (B). Relative abundance of ASV significantly enriched between uninoculated and inoculated
corn silage in the fall (D) and the spring (E).
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Figure 3-4: Quantification of viable microbial groups across sampling periods. Copy numbers are compared
between H and each silage type, and between uninoculated and inoculated silage in the fall (A) and the spring
(B) using the Kruskal Wallis test. Asterisks above boxes indicate significant differences and flag p-values from
a Wilcoxon rank tests as follows: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

3.5.2 Abundance profile of the core phylotypes from the order Lactobacillales in
uninoculated and inoculated silage

In addition to differential abundance testing, specific and shared LAB phylotypes were identified within
ensiled forages to understand how they differentially occur between uninoculated and inoculated silage. The
analysis was limited to the order Lactobacillales as it is the lowest taxonomic classification level gathering the
genera Lactobacillus, Pediococcus, and Enterococcus. Broadly, of the 2980 unique ASVs composing the whole
PMA-treated forage dataset, about 30.67 % (914) were assigned to the order Lactobacillales. From the 913
Lactobacillales occurring in silage, 836 were found in grass/legume silage, of which 356 were specific to GL,
223 to GLI, and 257 shared between both, while from the 241 unique ASVs that occurred in corn silage, 33 were
specific to C, 123 to Cl, and 85 shared between both (data not shown).
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Figure 3-5: Core LAB community profiling. Relative abundance of the dominating core ASV between
uninoculated and inoculated grass/legume (A) or corn (B) silage. Numeric values following taxonomic names
represent corresponding ASV numbers.

The dominating core LAB among grass/legume silage (i.e., LAB occurring both in GL and GLI) totalled
up to 96 % of the LAB communities and included Lactobacillus spp. represented by 138 phylotypes, P.
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pentosaceus represented by 2 phylotypes, Weissella parasenteroides counting two phylotypes, and other
Weissella and Pediococcus spp. represented by 16 and 46 phylotypes, respectively (Fig. 3-5A). For corn silage,
the core LAB phylotypes in both silage types dominated the LAB communities with up to 95 % relative abundance
(Fig. 3-5B), except for samples where LAB were not the dominant taxa (Fig. 3-2A-B). Within corn silage, the
dominant LAB populations were composed of Lactobacillus spp. represented by 67 phylotypes, L. coryniformis
represented by three phylotypes, and to a certain extent Latilactobacillus sakei and Paucilactobacillus

hokkaidonensis each counting 1 phylotype (Fig. 3-5B).
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Figure 3-6: Microbial phenotypic composition predicted by BugBase. Proportions of microbial phenotypic traits
compared between H and each silage type, and between uninoculated and inoculated silage in the fall (A) and
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the spring (B) using the Kruskal Wallis test. Asterisks above boxes indicate significant differences and flag p-
values from a Wilcoxon rank tests as follows: *, p < 0.05; **, p < 0.01.

3.5.3 Prediction of phenotypic traits and function pathways

The analysis of microbial phenotypic traits using BugBase showed that anaerobic, containing mobile
elements, biofilm forming capacity, Gram-negative, Gram positive, potentially pathogenic, and stress tolerant
phenotypes were differentially distributed among forage types (Fig. 3-6A-B). Across both sampling periods,
biofilm forming capacity, and Gram-negative phenotypes were significantly enriched in H compared with silage
(GL, GLI, C, and CI). This could be attributable to higher relative abundances of Actinobacteria and
Proteobacteria in H samples for biofilm forming capacity and Gram-negative phenotypes, respectively (Fig. B1
A-B). A significant enrichment of Gram-positive phenotypes was observed in silage compared with H across
both sampling periods, a difference attributable to the higher abundance of Firmicutes in silage (Fig. B1 A-B).
Analysing the predicted function pathways, we found that biofilm forming associated features were significantly
enriched in uninoculated grass/legume silage (Fig. B2-B3), while other features associated with the metabolism
of macromolecules (See “Annexe B’ for details) were significantly enriched in the inoculated counterparts (Fig.
B4 A-B).

3.5.4 Forage physicochemical characteristics associated with microbial
communities.

Forage analyses using near infrared showed that the physicochemical traits of H samples were broadly
consistent across the sampling periods (Table B1). Comparing uninoculated silage with inoculated counterparts,
ammonia content was significantly (p<0.05) higher in GLI and CI compared with GL and C silage in the spring,
respectively, as were acetic acid in GLI in the spring and butyric acid in Cl in the fall compared with GL and C
silage, respectively (Table B2-3). The dry matter content of grass/legume silage ranged between 29 and 65 %
for GL samples, and between 32 and 57 % for GLI. pH values ranged between 3.7 and 5.3 for GL samples, and
between 3.8 and 4.7 for GLI. Butyric acid was detected in less than 38 % of GL samples with amounts ranging
between 0.42 and 1.1 %, and in more than 62 % of GLI samples with amounts ranging from 0.42 to 0.99 % dry
matter. In contrast, butyric corn silage was detected in only 25 % of C samples with amounts of butyric acid
ranging between 1.09 and 1.96 % dry matter, and none among Cl samples. However, corn silage exhibited

lower dry matter content, ranging between 20 and 41 %, as well as lower pH values ranging from 3.5 to 3.9.

To gain insight into how forage end products and characteristics associate with microbial communities,
categorical and quantitative metadata related to farms and forage samples were selectively integrated in
multivariate multi-table analyses based on sPLS and CCpnA. General linear models implemented in MaAsLin2
were also used to determine multivariate associations between forage metadata and ASVs based on CLR

normalized data. This analysis scheme was implemented for all forage types separately. H microbial
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communities were grouped into two clusters (Fig. 3-7A, BS A). Moisture content and positively correlated
phylotypes of Serratia, Enterobacteriaceae, Nocardioides and Yersinia, as well as those negatively correlated
including Spirosoma, Intrasporangiaceae, and Methylobacterium were the main contributors to the formation of
cluster 1 (Fig. B5 B-C, B6). Magnesium content and positively (Frigoribacterium, Curtobacterium, Pantoea,
Rhizobiaceae, Microbacteriaceae, Allorhizobium group and Pantoea agglomerans) or negatively
(Pseudomonas) correlated phylotypes contributed the most to the formation of cluster 2 (Fig. B5 B-C, B6).
Among all the taxa found to associate with the selected H variables, phylotypes of Methylobacterium (cluster 1)
or Curtobacterium, Pantoea, Serratia (cluster 2) where the most prevalent and abundant (See “Annexe B” for

details).

Selected taxa of the GL microbiota formed three clusters (Fig. 3-7B, B7 A). Cluster 1 was mainly driven
by the variables lactic acid (LA), moisture, fatty acid (FA), crude fat (CF), and volatile fatty acid (VFA), and the
positively associated taxa including phylotypes of Lactobacillus, Weissella, and Carnobacterium (Fig. 3-7B, B7
B-C, B8). For cluster 2, the pH and positively correlated taxa including phylotypes of Methylobacterium,
Sphingomonas, Curtobacterium, Allorhizobium group, Methylobacterium adhaesivum, Lactobacillus and
Pediococcus were the main contributors. The two variables ammonia expressed as percentage of crude proteins
(CP_NHs) and soluble crude proteins (CP_Sol), and positively associated taxa including phylotypes of Weissella,
Aeriscardovia, Lactobacillus, Corynebacterium, Pediococcus, Lactobacillus kefiranofaciens, Serratia,
Brevibacterium and Brachybacterium were the main contributors to cluster 3 (Fig. 3-7B, B7 B-C, B8). Phylotypes
of Lactobacillus, Pediococcus and Weissella paramesenteroides were the most abundant and prevalent of all

the GL selected taxa (See “Annexe B” for details).

For GLI, ASVs differentially associated with silage parameters also formed three clusters as for GL
(Fig. 3-7C, B9 A). The phylotypes of Lactobacillus, L. parafarraginis, Weissella, Ligilactobacillus acidipiscis, and
Pediococcus that positively associated with the variables CP_NHs, ammonia (NH3), ammonia expressed as
percentage of soluble protein (SP_NHs), and acetic acid (AA) all constituted the main contributors to cluster 1
(Fig. 3-7C, B9 B-C, B10). The variables ethanol soluble carbohydrates as percentage of dry matter (ESC_DM)
and ESC as percentage of non fiber carbohydrate (ESC_NFC) positively correlated with phylotypes of
Methylobacterium, Pediococcus, Lactobacillus, Luteimonas aestuarii, Sphingomonas phyllosphaerae,
Neorhizobium, and Rhodococcus all contributed the most to Cluster 2. Cluster 3 was mainly driven by the
variables LA, LA expressed as percentage of VFA (LA_VFA), and CP_Sol, together with the positively
associated phylotypes of Lactobacillus, Clostridiaceae, Enterobacteriaceae, Lactobacillales, Frigoribacterium
faeni, Microbacteriaceae, and L. plantarum (Fig. 3-7C, B9 B-C, B10). The most prevalent of the selected ASVs

included phylotypes of Lelliotia, Serratia, L. acidipiscis, and Weissella (See “Annexe B” for details).
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Figure 3-7: Canonical correspondence analysis. Triplots illustrating canonical relationships between bacterial
ASV (round and star shaped points) and physicochemical parameters (arrows), inoculants (+), forage storage
form (+), or sampling periods (+) for H (A), GL (B), GLI (C), C (D), and CI (E). Sampling periods include fall 2015
and spring 2016. Storage forms include loose, square bales (Sqr_Bal), conventional silo (Conv_Sil), bag silo
(Bag_Sil), stack silo (Stack_Sil), round bale (Rnd_Bal), oxygen limiting silo (OL_Sil), and bunker silo (Bunk-silo).
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Inoculants include Biotal Buchneri 500 (B_Buch500), Biotal Supersile (B_supersile), 11G22, 11C33, 11CFT.
Forage physicochemical parameters include amino acids (AA), acid detergent fiber (ADF), ADF as % neutral
detergent fiber (ADFNDF), amylase derived NDF (aNDF), ash-corrected NDF (aNDFom), crude fat (CF), ethanol
soluble carbohydrate as % dry matter (CHO_DM), carbohydrate as % non-fibrous carbohydrate (CHO_NFC),
crude protein (CP), acid detergent fiber-CP (CP_ADF), CP as % dry matter (CP_DM), ammonia as % CP
(CP_NH3), soluble CP (CP_Sol), fatty acids (FA), lactic acid (LA), LA as % volatile fatty acids (LA_VFA),
magnesium (Mg), moisture (Mstr), NDF digestibility at 30 hours (NDF_D_30), NDF_D_30 as % dry matter
(NDF_D_30DM), ammonia (NH3), degradable protein (DP), pH (pH), ammonia as % soluble protein (SP_NH3),
volatile fatty acids (VFA). Round points depict taxa selected by sPLS and star shaped points those selected by
MaAsLin approaches. Round points with red centre are taxa selected by both methods. Triangles represent
samples.

In the case of C, we obtained two clusters (Fig. 3-7D, B11 A) driven by both LA and acid detergent
fiber-crude protein (CP_ADF). Phylotypes of Lactobacillus, Acetobacter, and Serratia positively correlated with
LA, and those negatively correlated including Pediococcus and Pc. hokkaidonensis mostly contributed to the
formation of cluster 1. Taxa mostly contributing to the formation of cluster 2 included phylotypes of Lactobacillus
among which Lt. sakei, all positively associated with CP_ADF (Fig. 3-7D, B11 B-C, B12). Phylotypes of

Lactobacillus and Serratia were among the more prevalent and abundant (See “Annexe B” for details).

Finally for Cl, the selected ASVs formed three clusters (Fig. 3-7E, B13 A). The parameters AA and FA
mainly contributed to clusters 1 and 2. While a few phylotypes of Lactobacillus positively correlated with AA and
FA mainly drove cluster 1, those of Comamonas jiangduensis, Ameyamaea, and Acinetobacter gerneri were the
main contributors to cluster 2 (Fig. 3-7E, B13 B-C, B14). For cluster 3, the parameters carbohydrates (CHO_DM
and CHO_NFC), CP_DM, and LA_VFA and positively associated phylotypes of Lelliottia, Enterobacter,
Raoultella terrigena, Enterobacteriaceae, and Vagococcus fluvialis were the main drivers (Fig. 3-7E, B13 B-C,
B14). Among selected taxa, phylotypes of Lactobacillus, Acetobacter, and Serratia were the most abundant and

prevalent.

3.5.5 Molecular ecological network analyses

To investigate how silage bacteria co-occur in the presence or absence of inoculants, a network was
constructed for each silage type. The analysis of topological properties revealed that the GLI network had a
higher average degree (avgK) and a lower average geodesic path (distance between nodes) than that of GL,
thus appearing more complex and denser (Table 3-2). The 80 nodes composing the GL network totalled 8
modules (group of ASVs sharing more links among themselves than with others outside the group) and 405
links, of which only 18.8 % were positive (Fig. B15 A). It appeared that some Lactobacillales including phylotypes
of Pediococcus, Enterococcus, Weissella, L. sakei, L. coryniformis, and unidentified Lactobacillaceae co-
occurred with those of Proteobacteria including Methylobacterium, Pantoea, Sphingomonas,

Stenetrophomonas, and Allorhizobium, or Actinobacteria comprising Rhodococcus and Curtobacterium
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(modules 1, 3 and 6). Module 5 exclusively composed of Lactobacillaceae exhibited co-occurrence between
phylotypes of L. buchneri and those of lactobacilli (Fig. B15 A). On the other hand, the GLI network was
composed of 47 nodes grouped into two modules, and 848 links from which only 7.2 % were positive (Table 3-
2). In contrast to that of GL, the GLI network involved higher amounts of positive relationships among Firmicutes
(Fig. B15 B). Curiously, phylotypes corresponding to L. buchneri and L. plantarum were found in distinct
modules, sharing no relationships; though both co-occurred with the same phylotype of Lactobacillus. In addition,
fewer phylotypes of Proteobacteria sharing positive interactions with Firmicutes were observed. Another
particularity of the GLI network is the co-occurrence between some phylotypes of Weissella and those of Bacillus
(see “Annexe B” for details). Analysing taxa topological roles, we identified 47 keystone phylotypes distributed
as network hubs and connectors in the GL pMEN, of which 64 % were Firmicutes, 34 % Proteobacteria and the
remaining Actinobacteria (Table B4). Among network hubs were phylotypes of Weissella and Sphingomonas,
while connectors mostly included Firmicutes such as L. plantarum, L. buchneri, Bacillus, Weissella, Lactococcus
and other lactobacilli phylotypes (see “Annexe B” for details). Conversely, no keystone species were observed
in the GLI network. However, compared with the GL network, there was a shift of topological roles in GLI, so
that nodes formed a cluster around the value 0.5 along the Pi axis (Fig. 3-8). Consequently, all keystone

phylotypes of the GL network also found in GLI changed their topological roles to peripherals (Fig. 3-8).

Table 3-2: Topological properties of the empirical pMENS in grass/legume and corn silage microbial communities
and their associated random pMENs

Empirical networks Random networks
Average Average  Modularity Average
Silage Similarity Network degree Average clustering (No. of Average clustering
type  threshold size (avgK) path  coefficient modules)  path coefficient Modularity
GL 0.81 80 101 24 0.5 0.2 (8) 2.1+0.030.5+0.02 0.2 +£0.006
GLI 0.31 47 s 1.2 0.8 0.02 (2) 1210 Lo 0.01+0.01
0.002
174 08z
C 0.31 25 1.3 0.8 0.0(1) 130 0.004 0.01£0.02
031 55 3 43 o8 003(2) 1330 oo 003001

For corn silage, microbial communities formed a larger and more complex network in Cl thanin C (Table
3-2). The 25 nodes composing the C network formed a single module, involving 217 links of which 22 % were
positive (Fig. B15 C). All Proteobacteria phylotypes (Serratia, Pseudomonas, and unclassified
Enterobacteriaceae) involved in this network positively interacted with each other and co-occurred with

Firmicutes including L. coryniformis, and two Lactobacillus phylotypes. Neither L. buchnerinor L. plantarum were
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involved in this network. The Cl network totalled 55 nodes composing two modules, and 1026 links of which 9.8
% were positive (Fig. B15 D). Unlike in the GLI network, L. buchneri and L. plantarum found in different modules
(modules 1 and 2, respectively) co-occurred and were both involved in positive relationships with P. parvulus
and some lactobacilli. However, most phylotypes of Proteobacteria including Serratia, Pseudomonas,
Acetobacter, and Yersinia variably co-occurred among themselves and with some lactobacilli (See “Annexe B”

for details). No keystone phylotypes were found in the C and CI networks.
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Figure 3-8: Distribution of network topological roles of grass/legume silage. Labelled ASV (red points) depict
those that exhibited different topological roles in GL compared to GLI.

3.6 Discussion

In this study, we implemented a viability high-throughput sequencing approach combined with viability-
PCR [43,251] to provide a comprehensive and comparative analysis of the viable microbial ecology of hay and

grass/legume or corn silage produced with or without inoculants at commercial farm-scale facilities.

Recently, Daniels et al. [247] analysed the viable microbiota of commercial Meadow and ltalian ryegrass
hay and revealed Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria as the predominant phyla.

In our study, Cyanobacteria were detected as the rarest taxa and were discarded from the dataset upon
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abundance filtering, while the phyla Proteobacteria, Actinobacteria, and Bacteroidetes were respectively the
more prevalent and abundant in hay. However, the differences found among hay community profiles could be
attributable to fluctuations in abundance of predominant genera, including Sphingomonas, Methylobacterium,
Pantoea, Curtobacterium, and Pseudomonas. Behrendt et al. [271] analysed the microbial community of grass
phyllosphere using a culture-dependent method and identified Pseudomonas, Stenotrophomonas, Pantoea,
Clavibacter, and Curtobacterium as the predominant genera. Although not among the most abundant,
Stenotrophomonas and Clavibacter were also detected in our study, thus indicating that the microbiota of hay
might consistently reflect the epiphytic communities of plants at harvest. Moreover, except Stenotrophomonas,
we found that specific phylotypes of the above-mentioned genera correlated with hay moisture content,
suggesting bacterial growth in less dried hay. The observed differences between H samples could therefore be
also explained by various environmental and farmers’ management factors including, but not limited to, plant
species, management practices, geographical location, climatic conditions, moisture concentration at harvest,
and storage form [240], that drive the incidence and abundance of epiphytic microorganisms on plants before
harvest or during processing. Although LAB were not among the dominant taxa, their prevalence and abundance
were found to vary between H samples and across sampling periods as revealed by a concomitant study on the
same forage samples, where Gagnon et al. [22] identified LAB communities through culture-based techniques.
w. paramesenteroides/thailandensis, P. pentosaceus, L. casei/paracasei, Le.
mesenteroides/pseudomesenteroides, Lpb. pentosus, and E. casseliflavus/gallinarum/faecium were found as
the predominant cultivable LAB in hay. In this study, the detection of Weissella, Lactococcus, Enterococcus, and
unidentified Lactobacillales as the sole representatives of LAB in hay might be due to the occurrence of other
LAB under the detection threshold. For survey studies, this emphasizes the relevance of combining both culture-
dependent and high-throughput sequencing approaches to deepen our understanding of microbial community
compositions and functions. However, none of the LAB were associated with hay moisture content. Despite the
observed differences among hay samples, their microbial composition and structure clearly discriminated them
from those of silage across both sampling periods, revealing haymaking and ensiling as strikingly distinct

processes that differentially alter the epiphytic microbiota of fresh forage plants.

Grass/legume forage has higher buffering capacity and lower WSC content than corn forage, offering
different habitats for microorganisms [170]. These factors impact the rate of pH decrease during the first stages
of fermentation [170,272], thus differentially modulating the growth of microorganisms depending on their initial
abundance on the pre-ensiled forages. This could explain the differences in phylogenetic composition and
community structure between grass/legumes and corn silage observed in our study. We also found that most
GL silage was generally dominated by Lactobacillus alone or in co-dominance with either Weissella,
Pediococcus or both, while few samples inconsistently exhibited co-dominance of Bacillus, Saccharopolyspora,

Lactococcus, Serratia, Methylobacterium, or Enterococcus across both sampling periods. Previous studies have
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shown that LAB, preferably lactobacilli are the main microorganisms expected to dominate the microbiota of
good-quality silage [245]. High prevalence and relative abundance of Weissella, Pediococcus, Enterococcus,
and Lactococcus were also found by Gagnon et al. [22] using a culture-dependent approach. Besides the high
buffering capacity, this observation presumably illustrates grass/legume silage for which the fresh forage
phyllosphere contained insufficient amounts of Lactobacillus to lead the first stages of the fermentation process
[207,273]. Such conditions might also favour the growth of undesirable bacteria such as Bacillus and Serratia
[245], as revealed in our study. Although several studies have reported the occurrence of Methylobacterium in
silage [274,275], none have described its role in the fermentation process. The genus Saccharopolyspora
represented by three phylotypes of Saccharopolyspora rectivirgula (formerly Micropolyspora faeni) and that has
been associated with moist hay, compost, or straw [276,277] is a thermophilic Actinobacteria identified as a
major cause of extrinsic allergic alveolitis (farmer’s lung disease) in dairy barns [278,279]. The occurrence of
this pathogen as co-dominant bacteria in GL silage and in lower abundance in GLI samples suggests its
fermentative capability. Although this pathogen has already been identified in corn silage [280], no studies had
reported its occurrence in grass/legume silage. In the case of C silage, the microbiota was dominated by either
Lactobacillus, or Acetobacter, or both, while Pseudomonas and Serratia sporadically occurred with considerably
high relative abundances. Our results corroborate those of Guan et al. [281] who found Lactobacillus and
Acetobacter as predominant bacteria in naturally fermented corn silage. These authors also highlighted the
inconsistent incidence of Acetobacter between laboratory- and large-scale bunker silos. In the current study, two
phylotypes of this genus were detected in C silage processed in stack silos. Interestingly, 15 phylotypes of
Acetobacter, among which some with higher abundance levels, were identified in Cl silage that were inoculated
with either Biotal Buchneri 500, 11CFT, or 11C33, and were stored in stack, bunker, or conventional silos
(concrete-stave silos). These results indicate that species of Acetobacter might outcompete LAB even with the
addition of inoculants, or that oxygen infiltration into the forage might have favoured their proliferation. Moreover,
viable-PCR analyses confirmed inconsistent enrichment of microbial load including that of LAB, AAB,
Pseudomonas, Enterobacteriaceae, total bacteria, and total fungi across sampling periods in inoculated silage.
We found similar patterns of bacterial load variation between forage types for PMA-free samples (data not
shown) that broadly exhibited higher loads compared with PMA-treated samples. These observations suggest
that prevailing weather conditions (temperature fluctuation) might impair the efficiency of the inoculant during
ensiling and consequently favour undesirable AAB and acid tolerant Proteobacteria in mature silage. Except for
LAB, the effects of these microorganisms during ensiling is not clear [282-284], and further researches are
needed to better understand their function and interplays with LAB during silage fermentation. Although other
studies had reported a high prevalence of Pseudomonas and Serratia throughout the ensiling process of com
silage [282,285], like other Proteobacteria, their effects on the silage fermentation process are not well
understood.
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We found that phylotypes dominating the Lactobacillales community in uninoculated and inoculated
silage were members of the core LAB, clearly indicating the ubiquity of inoculant species in the phyllosphere.
This suggests that inoculant related species, if occurring in sufficient amounts relative to the epiphytic
communities, microbial additives would not be necessary to obtain quality silage. The recently reported
successful ensiling using a transplanted epiphytic microbiota as the sole source of microorganisms supports this
idea [286,287]. Moreover, uninoculated GL and C silage with good fermentation profiles were observed in this
study. Conditions for successful natural fermentation are not always met and ensiling without additives may be
therefore most often associated with increased risk of economic losses [243,244]. Consequently, microbial
additives employed to dominate the communities, minimize the occurrence of undesirable microorganisms, and
drive the fermentation process [288] are generally recommended [243]. However, if this is particularly true for
grass or legume silage, microbial additives might not necessarily improve the quality of corn silage, as recently
revealed by a meta-analysis [168,289]. The current study showing dominant or codominant Acetobacter in Cl
silage particularly in the fall corroborates this finding, though some C silage exhibited undesirable microbial

profiles, mostly in the spring.

Our study showed that in GL and GLI silage, specific phylotypes of Lactobacillus, Weissella, Lelliottia,
Serratia, and an unidentified Enterobacteriaceae were positively associated with LA and moisture contents, and
negatively associated with pH. Although some Proteobacteria can produce lactic acid [245], acetic acid is their
primary product during ensiling [290]. Therefore, the correlation of corresponding phylotypes with LA could result
from their growth and subsequent acid production in the early stages of fermentation. The relatively low
abundance of these phylotypes in mature silage could be due to the inhibitory effect of accumulating lactic acid
and lower pH level during ensiling [291]. We also found that phylotypes of P. pentosaceus, W.
paramesenteroides, Lactobacillus, Pediococcus, Methylobacterium, and Lactococcus positively correlated with
pH, and were negatively associated with LA, indicating their sensitivity to lower pH levels or higher amounts of
LA. Similar results were obtained by Ogunade et al. [249,274]. On the other hand, while phylotypes of
Pediococcus were codominant in some GL samples, this genus largely dominated three GLI samples inoculated
with Biotal Buchneri 500 or Biotal Supersile that include P. pentosaceus and P. acidilactici in their formulation,
respectively. If the genus Pediococcus is known to dominate the microbiota in the early stages of fermentation
although inconsistently [173,207,274], the factors that favour its dominance in mature silage are not well
understood [292]. In addition to Methylobacterium, other Proteobacteria including Pantoea, Sphingomonas, and
Stenotrophomonas, and Actinobacteria including Rhodococcus and Curtobacterium co-occurred with most of
LAB phylotypes within the GL, as have phylotypes of Pseudomonas and Acetobacter within the C communities.
Higher abundance of these Proteobacteria were observed in samples wherein lactobacilli were not predominant.
This suggests that co-occurring LAB probably do not induce rapid decrease in pH during ensiling, as some

lactobacilli strains more adapted for ensilage would have done. The decreased rates of co-occurrence between
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Firmicutes and Proteobacteria observed in GLI and Cl communities supports this hypothesis. The observed
phenomenon could be explained by dominating lactobacilli from inoculation; as more lactic acid is subsequently
produced during ensiling, most Proteobacteria are inhibited and consequently, increased patterns of co-

exclusion appear to the detriment of co-occurrence.

However, the enhancement of positive interactions between LAB due to inoculants certainly prompt, in
addition to related species, other acid-tolerant bacteria such as Bacillus in GLI, Acetobacter in Cl, or Serratia in
both. This might explain the observed co-occurrence between phylotypes of Weissella and Bacillus in GLI, or
Lactobacillus and Acetobacter in Cl communities. Although Acetobacter has been frequently identified in corn
silage [281,283,293], there is still no consensus on the role played by this genus in silage. While Acetobacter
was reported as aerobic, du Toit et al. [294] demonstrated the effective survival of Acetobacter pasteurianus
under anaerobic conditions. In their attempts to validate the finding that AAB including A. pasteurianus might
increase silage aerobic stability through acetic acid production, a theory refuted by a previous contradictory
finding on the capabilities of these bacteria to initiate aerobic spoilage [295], Queiroz et al. [296] found no effect
on the aerobic stability following silage inoculation with the bacteria. In our study, the genus Acetobacter
occurred in all the 16 Cl samples, in which it dominated or co-dominated the microbial community of more than
37 % without considerable effects on fermentation characteristics. Hence, the conditions under which AAB,
specifically Acetobacter species, could drive the silage fermentation process, or improve aerobic stability, or
even initiate spoilage are not clear. Likewise, bacilli are known to produce butyric, acetic, or lactic acids, as well

as antibacterial substances. However, beneficial effects of Bacillus have been reported [245].

We found that the addition of inoculants in grass/legume and corn silage drastically changed bacterial
interconnection patterns compared with uninoculated counterparts, resulting in increased network density and
complexity levels, as well as in a modified modularity and taxa topological roles. As suggested by Ma et al. [297],
in addition to beta diversity, microbial co-occurrence networks could be used to characterize community
assemblage depending on the environment. The observed network modules that have been interpreted as
microbial niches [298,299] generally contained desirable and undesirable bacteria interconnected with positive
or negative links. While positive interactions among bacterial phylotypes might indicate cooperation, nutritional
cross-feeding, co-colonization, or co-survival in similar environments, negative associations might result from
bacteriocin or other substance production, competition, changing environment, or overpopulation of a niche
[300]. These modules could reflect heterogeneities of fermentation processes undergone during ensiling or
reveal the main players of that fermentation as pictured at feed-out of mature silage community composition. If
keystone species identified in the GL network can be essential to its stability [298], the interpretation of their
ecological relevance is not evident [299,301]. In the context of silage, thanks to the plethora of studies conducted

on the fermentation process and subsequent effects on animal performance [25,26,240], there is no doubt of
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the type of microbial community expected in a successful mature silage, although this is not always obtained
despite inoculation. For instance, our study revealed phylotypes of L. buchneri and L. plantarum as keystone
species of the GL network that do not show any type of cooperation with undesirable bacteria. This finding
confirms the ecological importance of the two taxa from which specific strains are currently used as inoculants.
Other keystone species from the same network among which are phylotypes of L. coryniformis, Weissella sp,
Lactobacillus spp. were found to cooperate with at least one undesirable bacterial phylotype. Isolates of such
keystone species although belonging to the LAB community could not be theoretically selected as candidate
inoculants. Obviously, keystone species such as Serratia spp. Pantoea spp. or Pseudomonas spp. are
undesirable in silage and therefore illustrate key taxa to inhibit or suppress during fermentation. On the other
hand, phylotypes of the genus Methylobacterium of which some were identified as keystone species shared
positive and negative interactions with other bacteria regardless of the phylum they belong to. Species of the
genus Methylobacterium are methanotrophic bacteria commonly associated with pre-ensiled forage plants
[249,302]. In this study, the positive correlation of this genus with pH is in accordance with its neutrophilic
characteristics. Since Methylobacterium species are aerobic [302], their occurrence in GL samples as dominant
or co-dominant taxa might be explained by the presence of oxygen during ensiling. Rigorous experiments should
therefore be carried out to link keystone species derived from co-occurrence network topological roles to a
particular role in the ecosystem dynamics and stability of preserved forages. In this study, the observed
disparities of taxa occurrence, abundance, or dominance, as well as differential associations with forage
metadata within and across the identified forms of forage storage depict the relevance of epiphytic microbial
communities, microbial additives, and management conditions on the end products and microbiome structures
of mature silage, and ultimately on their aerobic stability after feed-out. We also demonstrated how bacterial
occurrence is highly variable, particularly LAB communities in farm-scale mature silage. Integrating silage
associated parameters mentioned above in a time-varying network analysis approach [301,303] to decipher the
temporal variations of microbial interactions would help fill the gaps in the current knowledge of microbial

interplays and complex succession throughout ensiling.

3.7 Conclusion

In summary, hay microbiota characterized with high abundance of Sphingomonas, Methylobacterium,
Curtobacterium, and Pantoea is significantly different from that of ensiled forages. The use of inoculants at
commercial farm-scale facilities may unpredictably affect the microbiota composition of mature silage. While
LAB were underrepresented in hay, they were inconsistently enriched in inoculated compared with uninoculated
silage and were ubiquitous, thus probably mostly epiphytic instead of from commercially-made additives. The
microbiota of grass/legume silage was variably dominated or co-dominated by Lactobacillus or Pediococcus,

specifically exhibiting higher abundance of Weissella or Bacillus in uninoculated and inoculated silage,
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respectively. On the other hand, Lactobacillus and Acetobacter inconsistently dominated the microbial
communities of corn silage regardless of inoculation. Besides microbiome composition and structure, the
analysis of co-occurrence and co-exclusion patterns among community assemblages clearly distinguished
uninoculated from inoculated silage. Our study provides a better knowledge of how inoculants used for ensiling
modulate bacterial communities populating preserved mature forages at feed-out in commercial dairy farms.
Further investigations integrating management practices and silage physicochemical parameters with microbial
dynamics and interactions throughout silage fermentation and post-feedout periods are needed to fully

understand biological processes involved for high quality silage.
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4.1 Résumé

La gestion des fourrages dans les fermes influence la qualité du lait cru. Cependant, les taux de
transfert microbiens du fourrage au lait sont méconnus. Cette étude examine la relation entre la composition
microbienne des fourrages et celle du lait cru afin d’améliorer nos connaissances sur les bactéries viables
transférées au lait. Les rations alimentaires a base de fourrages étaient constituées de foin (H), d’ensilage
d’herbe/légume non inoculé (GL), d'un mélange de GL et d’ensilage de mais non inoculé (GLC) ou inoculé
(GLCI), ou d'un mélange d’ensilage d’herbe/légume et de mais inoculés (GLICI). Deux séries d’échantillonnage
ont été effectuées dans 24 fermes laitieres. Des différences significatives, principalement dues aux
protéobactéries, ont été observées entre les échantillons de lait des fermes GLC et GLICI. Bien que la
contamination du lait par les bactéries des ensilages semble aléatoire, ces deux matrices peuvent partager

jusqu'a 31 % des phylotypes identifiés.

4.2 Abstract

Forage management on dairy farms can impact on the quality of raw milk. However, little is known on
the microbial transfer rates from forage to milk. This study examined the community composition and structure
of both cow forage and milk obtained from the same farm to improve our knowledge of the viable bacteria from
forage that contaminate raw milk. Forage rations were composed of either hay (H) or grass/legume silage (GL)
as the only forage type, or a combination of grass/legume and corn silage uninoculated (GLC) or inoculated
(GLCI or GLICI). Samples of the forage types composing the ration and the associated raw milk from 24 dairy

farms were collected twice (in the fall and the spring) and analysed using 16S rRNA gene-targeted amplicon
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sequencing coupled with treatment with propidium monoazide to account for living cells. Three community types
separating H, GL, and GLICI forages were identified. While the H community type was co-dominated by
Enterobacteriaceae, Microbacteriaceae, Beijerinckiaceae, and Sphingomonadaceae, GLC and GLICI
associated communities showed high relative abundances of Leuconostocaceae and Acetobacteraceae,
respectively. Raw milk samples were not grouped in the same way, but GLC milk was significantly different from
that of GLICI across both sampling periods. The differences observed between these raw milk microbiota groups
were driven by Enterobacteriaceae and Proteobacteria, instead of lactic acid bacteria as it would have been
projected specifically for the GLICI group for which the associated forage contained silage prepared with
commercial inoculants. Indeed, a clearly defined pattern of raw milk contamination by bacteria from silage was
not observed. Of the 113 phylotypes that were shared between H, GLCI, GL, GLICI, and GLC forage rations
and corresponding milk, bacterial transfer rates at the level of amplicon variants were estimated at 18, 19, 21,
30, and 31 %, respectively. These results show the relevance of forage in the total mixed ration as one of the

sources of bacteria that contaminate milk on farm.

4.3 Introduction

The microbiological quality of raw milk is essential for its safety and processability. On dairy farms, the
complex community of raw milk [5] gradually builds up as the milk is collected from the mammary gland of the
cow [304,305] through the teat canal and the milking equipment [35,306] to a cooled bulk tank. Factors inherent
to the cow such as the health status of the udder [52,307] or the lactation stage [17,18], or from environmental
origin including air, pasture, faeces, bedding, teat surface, water, and feed [5,19,143,308] as well as
management practices [309], have been found to influence the occurrence of microorganisms in raw milk. The
impact of seasons and weather conditions on changes in the milk microbiota throughout the year has been
demonstrated [6,12,54]. Milk refrigeration upon milking as it is recommended favours the proliferation of
psychrotrophic bacteria [7,43,70,310], but also mesophiles including Lactococcus, Enterococcus,
Streptococcus, or Lactobacillus that can withstand temperatures as low as 4°C [7,43,70,189]. Manifestly,
microbial dynamics persists throughout the transport chain to such an extent that the raw milk collected from
farms by conveying trucks shows a distinct community structure from that in the storage silos at processing
plants [13,18,54]. Despite the observed differences, most of the taxa that dominated the microbiota of milk from
silos at processing facilities, among which were Pseudomonas, Lactococcus, and Acinetobacter, had been found
predominant in bulk or tanker milk as well. Moreover, McHugh et al. [18] reported that none of the genera
uniquely occurring in milk from silos at more than 5 % relative abundance had been previously identified in the
supplying tanker or bulk tank. These findings identify the on-farm environment as a key place to carry out

effective measures to ensure raw milk quality.
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Management practices implemented to maintain dairy farm profitability and improve the quality of
products encompass a variety of measures among which housing, use of antibiotics, milking routine, bedding,
cow hygiene, and herd nutrition are the most important of those associated with changes in the raw milk
microbiota [17,38,52]. Dry and ensiled grass or legume, which can be supplemented with corn silage, constitute
the most common feed components for dairy cows [311]. In a previous study (Chapter 2), we used high-
throughput sequencing of the 16S rRNA gene pool to compare the composition and structure of the viable
bacterial communities populating farm-scale produced hay and grass/legume or corn silage, among which the
last two were ensiled with or without microbial additives. We found, as have others [245,247,249] that these
distinct forage types also harboured phylogenetically different community assemblies which included, besides
technologically relevant bacteria [29], pathogenic and spoilage microorganisms that can contaminate raw milk
and cause serious defects during milk processing [112,242]. Doyle et al. [12] previously investigated various
sources of raw milk contamination at the farm, and found that grass silage was a minor contributor, after teat
surface and faeces, to the microbiota of bulk tank milk produced by cows housed indoors. However, our
knowledge on the prevalence and diversity of raw milk microbial species that originate from forage types
including hay and grass/legume or corn silage is limited. Moreover, despite the increasing interest for silage
inoculants with improved fermentative capabilities and high potential for silage aerobic stability and animal
productivity [171,174,284,312], little is known about the impact of these commercial inoculants on the raw milk
microbiota and processability. Recently, Gagnon [22] et al. applied a culture-dependent approach targeting lactic
acid bacteria (LAB) to identify common phylotypes between the five forage types that were given to the cows
and the milk they produced, respectively. Corroborating the results from Doyle et al. [12] specifically for the LAB
fraction of the microbiota, these authors found that isolates probably originating from forage represented about
6 % of the observed LAB community in milk. Importantly, they did not find any significant impact of the increased
proportion of lactobacilli in inoculated silage on the LAB community of corresponding milk samples. This
emphasizes the lack of knowledge of the patterns of raw milk contamination on farm that are driven by silage

management practices.

The main objective of this study was to investigate the impact of feeding dairy cows with dry or ensiled
forage, whether inoculated or uninoculated, on raw milk microbiota. Using high-throughput sequencing and
qPCR both based on viable cells [43,251], we examined the same samples as those used by Gagnon et al. [22],
that were collected in fall 2015 and spring 2016. Forage samples and derived microbial sequences analysed in
the current study were also identical to those of the previous chapter (Chapter 2). However, to expand on the
previous chapter, forage samples are now grouped according to forage ration types (see materials and methods
below) by merging sequence data where applicable to build a new dataset that matched milk samples at the
farm level. This study therefore provides a comparative viewpoint of the living fraction of the microbial community

populating five forage types fed to cows and associated raw milk from commercial dairy farms by: (1) analysing
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the bacterial profiles and community assembly of forage types containing either hay or grass/legume silage as
the sole forage types, or a mixture of grass/legume and corn silage each supplemented or not with inoculants
when ensiling, (2) assessing the compositional and structural changes of the microbiota from raw milk associated
with the five forage types, and (3) identifying the bacterial phylotypes shared among forage rations and

corresponding milk samples, and finally determining their transfer rates for each forage combination.

4.4 Materials and methods

4.4 .1 Forage and milk sampling

The forage types and raw milk samples analysed in this study are identical, as mentioned above, to
those examined by Gagnon et al. [22] and which were collected from 24 dairy farms in the fall 2015 and the
spring 2016. The same forage samples were also analysed in a previous study [Chapter 2]. Sampling and
sample treatments were therefore processed in the same way as previously described for forage [Chapter 2],
but differently for milk [22], since the distinct processing steps required for DNA extraction were performed as
previously described [43]. Briefly, the 24 dairy farms implemented five cow feeding practices defined by using
either hay (H) or grass/legume silage uninoculated (GL) as the sole forage types, or by adding to GL or
grass/legume silage inoculated (GLI) corn silage uninoculated (C) or inoculated (Cl) at proportions ranging from
38 to 74 % relative to the total mixture obtained. The forage rations therefore included H, GL, GLC, GLCI, and
GLICI feeding combinations counting 5, 7, 4, 1, and 7 herds, respectively, for each of the two sampling periods.
Farmers used eight forage storage forms, including concrete-stave silo, oxygen limiting silo, pressed silo, bunker
silo, wrapped square/round bale, stack silo, loose, and small bale as previously described [Chapter 2].
Commercial inoculants used for ensiling included Biotal Buchneri 500 and Biotal Supersile from Lallemand
Animal Nutrition (Milwaukee, W), and 11C33, 11CFT, and 11G22 from Pioneer (Johnston, IA).

Milk samples collected from bulk tanks (100 mL) were conveyed refrigerated to the laboratory as
described previously [22,43]. A subsample was sent to Lactanet laboratories (Sainte-Anne-de-Bellevue, QC,
Canada) for the quantification of fat, protein, somatic cells (SCC), urea, and lactose. Moreover, for each milk
sample, four cell pellets, individually prepared from 10 mL aliquots were treated with propidium monoazide
(PMA) as previously described [43] to account for viable cells. Four other pellets were processed without PMA

treatment. PMA-treated and PMA-free pellets were stored at -80°C until DNA extraction.

4.4.2 DNA extraction, sequencing, and PCR quantification

Genomic DNA extraction from forage and milk samples was performed using the DNeasy PowerFood
Microbial Kit (Qiagen, Hilden, Germany) following enzymatic lysis with mutanolysin from Streptomyces

(MilliporeSigma), lysozyme (MilliporeSigma), and proteinase K (MilliporeSigma) as previously described
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[Chapter 2, 43]. Genomic DNA of PMA-free and PMA-treated samples for forage and milk were sent for
sequencing at the Plateforme d’Analyses Génomiques of Laval University (Quebec, Canada). The V3-V4 region
of the 16S rRNA gene was amplified using the 347F (5'-GGAGGCAGCAGTRRGGAAT) and 803R (5'-
CTACCRGGGTATCTAATCC) primers.

Using specific primer sets as described previously [Chapter 2], milk loads in Lactiplantibacillus
plantarum, Lentilactobacillus buchneri, lactic acid bacteria (LAB), acetic acid bacteria (AAB), Pseudomonas,
Enterobacteriaceae, total bacteria, and total fungi in the PMA-free and PMA-treated samples were determined
by quantitative PCR (qPCR). gPCR results were expressed as log copy numbers per millilitre of milk as

previously described [43].

4.4.3 Bioinformatic and data analyses

Raw sequences were quality checked and processed using the software FastQC (Version 0.11.9),
Cutadapt (version 2.3), and the DADA2 pipeline [98,213] as previously described [43]. The same forage
sequences analysed previously [Chapter 2] were used in this study. However, sequence data associated with
forage were simply merged (1/1 ratio of read counts) according to the feeding combination described above to
form a new dataset. Although forage sequences were examined separately from those of milk, their
corresponding sequence tables were merged using the function mergeSequenceTables() before removing
chimeras and assigning taxonomy as described in the DADA2 tutorial for big data. Forage and milk processed
sequences were therefore assigned ASV (amplicon sequence variant) names at once, and downstream
analyses regarding alpha and beta diversity were performed using the phyloseq (version 1.30.0) package [217].
Based on a preprocessing analysis establishing the significant effect of sampling period on the microbial
structure, the alpha- and beta-diversity metrics of milk microbial communities were analysed separately for each
sampling periods on the PMA-treated dataset. For the alpha-diversity analysis, Chao1, Shannon, and Inverse
Simpson indices were computed. Local contribution to beta-diversity (LCBD) and principal coordinate or
component analyses (PCoA, PCA) were used to capture the beta-diversity as previously described [ Chapter 2,
255]. Sequence data were transformed by Centered Log-Ratio (CLR) or by Phylogenetic Isomeric Log-Ratio
(PhILR) to assess the compositional and the phylogenetic structures of the milk microbiota [252,253]. Statistical
analysis of group comparisons was performed using the Kruskal-Wallis and post-hoc tests with false discovery
rate correction of the p-values. The R package ALDEx2 4.0 was used to compute taxa differential abundance
[256] at the ASV level. Function pathway prediction was performed on PMA-free data using the package Piphillin
[121], to account for the whole functional potential of the microbiota, irrespective of viability. The R package

ComplexHeatmap 2.4.2 [225] was used for data visualization.

84



In addition to the differential abundance testing described above, the PhILR transformed milk dataset
was analysed using a sparse logistic regression model implemented in the glmnet (version 3.0.2) R package
[313] to identify “balances” that discriminate milk samples between forage combinations [253]. In the PhILR
transform approach, the phylogenetic information is used to transform the microbiome data into an
unconstrained space with an orthogonal basis [253]. The resulting log-ratios of the geometric mean relative

abundances of adjacent clades are called “balances” [253].

Sparse partial least squares regression (SPLS) coupled with general linear models, and canonical
correspondence analysis (CCpnA) were computed to determine associations between milk microbial
communities, milk parameters, and farm characteristics as previously described [Chapter 2], using MixOmics
(version 6.11) (37), MaAsLin2 (https://github.com/biobakery/MaAsLin2), and phyloseq. A heatmap was used to

visualise the abundance level and distribution of the selected ASVs among milk samples and feeding typologies.

The online molecular ecological network analysis pipeline (MENAP, http://ieg4.rccc.ou.edu/mena) was
used to construct ASV co-occurrence networks for each typology on PMA-treated data as described in Chapter
2. For each network, the node (representing an ASV) parameters including the within-module connectivity (Z;)
and among-module connectivity (P;) indices were used to determine topological roles, that included module

hubs, network hubs, peripherals, and connectors [265].

To gain deeper insight into the similarities of microbial community composition among forage types
regardless of the predefined feeding combinations, we applied a partitioning clustering approach using the
partitioning around medoids (PAM) algorithm on Euclidean distances calculated from PhILR transformed data.
We used the PAM algorithm implemented in the factoextra 1.0.7 [314] R package by applying the eclust()
function that provides at once the information on gap statistics to get the optimum number of clusters, silhouette
analysis, and cluster graph, which are accessed through the functions fviz_gap_stat(), fviz_silhouette(), and
fviz_cluster() respectively. In addition to silhouette analysis, ordination in the PhILR space was performed as
previously described to validate the cluster analysis results. Forage rations (whether from composite or single
forage type) were then classified into different forage ration community types defined by the number of clusters

obtained.

Co-occurring ASVs among forage types composing each forage combination and the associated milk
samples were investigated by calculating intersects with the software VENN DIAGRAMS available online at
http://bicinformatics.psb.ugent.be/webtools/Venn/. The abundance and distribution of shared ASVs among
forage and corresponding milk in each combination were visualized by constructing a heatmap and a chord

diagram using Complexheatmap [225] and Circos v0.63-9 [315], respectively.

85



4.5 Results

4.5.1 Microbial community types of forage combinations

Significant differences in the phylogenetic structure of microbial communities were found between H
and GL, GLC, or GLICI forage combinations, as well as between those of GL and GLC or GLICI (Fig. 4-1A,
supplemental Fig. C1 A). Bacterial pools provided by GLC and GLICI forage rations were phylogenetically
similar. Cluster analysis of forage rations at the farm level showed three community types. This result was
validated by gap statistics, silhouette analysis (supplemental Fig. C1 B-C), and a PCoA evaluating cluster
separation (Fig. 4-1B). Cluster 1 gathered all samples of the H type, broadly exhibiting co-dominance of
Enterobacteriaceae, Microbacteriaceae, Sphingomonadaceae, Beijerinckiaceae, and Pseudomonadaceae (Fig.
4-1C). Most forage rations containing a mixture of grass/legume and corn silage when both were inoculated
composed cluster 2. Samples in this cluster were either largely dominated by Lactobacillaceae or co-dominated
by Lactobacillaceae and Acetobacteraceae or Bacillaceae. Cluster 3 gathered almost all GL samples,
characterized by relatively high proportions of Beijerinckiaceae, Rhizobiaceae, and Enterococcaceae.
Additionally, forage rations in this cluster were either largely dominated by Lactobacillaceae or co-dominated by
Lactobacillaceae and Leuconostocaceae. Forage rations co-dominated by Acetobacteraceae and
Enterobacteriaceae (sample 3HMNIP3) or by Bacillaceae and Pseudonocardiaceae (sample 5SHNIP2) exhibited

the highest LCBD indices compared with others within clusters 2 and 3, respectively.

4.5.2 Diversity of raw milk microbial communities

Similar alpha-diversity metrics (Chao1, Shannon, and inverse Simpson indices) were observed
between raw milk samples across forage ration combinations (supplemental Fig. C2). Beta diversity analysis
performed at the genus level showed that in the fall, GL, GLC, and GLICI milk samples harboured similar
microbial community structures, each significantly different from that of H milk (Fig. 4-2A). In the spring, while H
milk samples showed similar community structures with GL and GLC, a significant difference was observed
between H and GLICI (Fig. 4-2B). Interestingly, GL, GLC and GLICI milk samples exhibited significantly different
community structures (p<0.05) from each other. However, in the fall, milk microbial communities of H compared
with GL, or GLC versus GLICI were phylogenetically similar, while those of H and GL were significantly different
from GLC and GLICI (Fig. 4-2C). In the spring, H, GL, and GLC milk samples were phylogenetically similar, but
each was significantly different from GLICI (Fig. 4-2D). Regardless of the sampling periods, Serratia,
Pseudomonas, unclassified Enterobacteriaceae, and Cellulosimicrobium generally dominated milk samples.
Samples exhibiting higher LCBD indices were enriched in either one or combinations of the genera Lactobacillus,
Lactococcus, EscherichialShigella group, Kocuria, Novosphingobium, Vulcaniibacterium, Schlegelella, Rothia
or Psychrobacter (Fig. 4-2E-F).
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Almost all the ASVs found to be differentially abundant between milk samples in the fall and in the
spring (96 % of 47 ASVs) were Proteobacteria, and the remaining Actinobacteria (supplemental Fig. C3 A-B).
Among these taxa, Pseudomonas, unclassified Enterobacteriaceae, Serratia, and Cellulosimicrobium were the
most abundant. Compared with GL or GLC, most of the differentially abundant taxa exhibited higher relative

abundance in GLICI milk samples across both sampling periods.

We identified 19 balances that discriminated between milk samples associated with the forage types
(supplemental Fig. C4). Among balances, mostly Proteobacteria were involved at all taxonomic levels. However,
concerning Firmicutes, we found that the abundance of Clostridium disporicum, Clostridium, Paeniclostridium,
Coprococcus, Romboutsia sedimentorum, Romboutsia, Veillonella dispar, and an unclassified
Peptostreptococcaceae relative to the Actinobacteria including Bifidobacterium, Cellulosimicrobium, Kocuria,
and other members of the Actinobacteria class distinguished GLICI or GLC from GL or H milk samples.

Moreover, the level of Leuconostoc relative to that of Weissella also separated GLICI from GLC milk samples.

PMA-gPCR analyses performed to estimate live microbial loads in milk revealed that neither L.
buchneri, L. plantarum, LAB, AAB, Pseudomonas spp., Enterobacteriaceae, nor total bacteria varied significantly
between milk samples in the fall (Fig. 4-3A). However, a significantly lower abundance (p<0.05) of total fungi
was observed in GLICI compared with H milk samples (Fig. 4-3A). In the spring, a significant enrichment of LAB
was observed in GLICI compared with GL milk samples (p<0.05), as were Pseudomonas in GLICI compared
with GLC and GL milk samples, respectively (p<0.05), and Enterobacteriaceae in GLICI compared with GL milk
samples (p<0.05). Total bacterial loads were significantly higher in GLICI or GLC compared with GL (p<0.05)
and H (p<0.0001), respectively (Fig. 4-3B). Although not significant, L. buchneri and L. plantarum levels were

consistently higher in GLC and GLICI milk samples, respectively, across both sampling periods.
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Figure 4-2: Milk community diversity and composition a

cross forage types. Principal component analysis (left)

with corresponding post-hoc test (right) based on CLR transformed data of milk samples in the fall (A) and the
spring (B) or based on PhILR transformed data in the fall (C) and the spring (D). Milk groups associated with

different letters are significantly different according to a

multiple comparison analysis using the Wilcoxon rank

sum test with FDR correction. Relative abundance of the 21 more abundant genera in the microbiota of milk

samples collected in the fall (E) and the spring (F). Local

contribution to beta diversity values denote the indices

89



of sample local contribution to the observed beta-diversity between groups. Values are proportional to sample
contribution to the beta diversity.
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Figure 4-3: Comparative analysis of milk viable microbial loads across forage types. Microbial loads expressed
in log copy numbers are compared between H milk sample and those from cows fed with the three other forage
types, or between GLICI milk samples and those from GLC or GL in the fall (A) and the spring (B). p values are
obtained following a Kruskal Wallis test. Asterisks above boxes indicate significant differences and flag p-values
from a Wilcoxon rank tests as follows: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

4.5.3 Distribution of Lactobacillales in raw milk and prediction of function pathways
The milk dataset was comprised of 569 ASVs of which those assigned to the order Lactobacillales (~11
%) accounted for only 1 % of total relative abundance. Broadly, 28 ASVs occurred in H milk samples, 25 in GL,
20 in GLC, and 18 in GLICI milk samples (Fig. 4-4A). The core LAB among milk samples included Lactobacillus
represented by two phylotypes, and Lactococcus represented by a single phylotype. Within each feeding
combination, none of the core LAB phylotypes, those shared between group pairs, nor those found specific to a

group (Fig. 4-4B-C, supplemental Fig. C5A-B) were consistently detected among milk samples. Moreover,
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several samples harboured one or two phylotypes of either Lactococcus, Lactobacillus, Leuconostoc,

Streptococcus, Weissella, or Enterococcus as the sole representatives of the LAB community.

Regarding predicted metabolic pathways, we found that compared with GL and GLC, GLICI milk
samples were significantly enriched in specific features associated with the biosynthesis of secondary
metabolites, metabolism of cofactors and vitamins, carbohydrate metabolism, energy metabolism, biofilm
formation, amino acid metabolism, thermogenesis, and nucleotide metabolism across sampling periods

(supplemental Fig. C6-7).

4.5.4 Milk characteristics and association with microbial communities

Milk content in fat, protein, urea, and lactose, as well as SCC did not vary significantly between forage
types, nor across sampling periods (supplemental Table C1). Regardless of the feeding type, the multivariate
multi-table analyses revealed three clusters of milk microbial communities (supplemental Fig. C8 A). SCC and
fat content were the main variables contributing to the formation of cluster 1, while protein and lactose content
highly contributed to the formation of cluster 3. Among the 78 taxa selected by the sPLS approach, i) Firmicutes
including Staphylococcus, Enterococcus, and Streptococcus dysgalactiae, ii) Actinobacteria represented by
Corynebacterium bovis, Corynebacterium glutamicum, and Frigoribacterium, and iii) Proteobacteria comprising
Pantoea, Acinetobacter, Acinetobacter bouvetii, and Acinetobacter guillouiae mostly contributed to the
separation of clusters on component 1 (supplemental Fig. C8 B). These taxa that were all associated with cluster
1 positively correlated with SCC and fat content. On component 2, i) Actinobacteria including Bifidobacterium
pseudolongum, Rhodococcus, Corynebacterium, and Bifidobacterium mongoliense, i) Proteobacteria
comprising Offowia, Pseudomonas, and Comamonas koreensis, and iii) Bacteroidetes including
Chryseobacterium were the main contributors to the cluster separation (supplemental Fig. C8 B). Cluster 2 was
mainly composed of taxa that showed negative correlations with the milk parameters mentioned above
(supplemental Fig. C8 C), while taxa composing cluster 3 were roughly positively associated with protein,
lactose, and longitude. The MaAsLin2 approach revealed 38 microbial features significantly associated with the
use of inoculants, milk fat and protein content, as well as the SCC. Mostly i) Firmicutes including phylotypes of
unclassified Peptostreptococcaceae, Lactobacillus, Staphylococcus, Enterococcus, W5053, unclassified
Carnobacteriaceae, Lactococcus, and S. dysgalactiae, and ii) Actinobacteria comprising Brachybacterium, B.
mongoliense, Micrococcus, and Corynebacterium positively correlated with inoculants. In addition to phylotypes
of cluster 1, those of Corynebacterium humireducens and B. pseudolongum, found in cluster 3, positively
correlated with SCC.
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Figure 4-4: Distribution and proportion of LAB communities among milk groups. (A) Venn diagram of LAB
phylotypes among milk groups. Proportion of the core and unique LAB phylotypes among GLICI and GLC (B)
or GL (C) milk samples. Milk samples originating from inoculated forage types are separated according to the
inoculants used for the grass or legume (first letter) and corn (second letter) ensilage. Accordingly, ‘A" = 11G22,
‘B” =11C33, “C" = 11CFT, “D” = Biotal Buchneri 500, and “E” = Biotal Supersile. Taxa are coloured according
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to their unicity to a group (GLC versus GLICI, GLICI versus GL) or whether they were shared (core) by group
pairs.

The CCpnA result (Fig. 4-5) also showed three clusters and revealed that in addition to milk SCC and
fat content, ASVs composing cluster 1 were correlated with forage storage forms. Cluster 3 that mainly correlated
with protein and lactose contents were also found to be more associated with the spring season than with the
fall. Interestingly, ASVs composing this cluster were also found to correlate more with the inoculant Biotal
Buchneri 500 and to a lesser extent with inoculants 11G22 and 11C33 used concomitantly in grass/legume and
corn silage. Taxa gathered into cluster 2 correlated with inoculants 11G22 and 11CFT, as well as Biotal Buchneri
500 and 11CFT, both inoculant pairs used concurrently on two GLICI farms. ASVs significantly correlated with
milk components and categorical variables were not the most abundant, although encompassing the major phyla
detected (supplemental Fig. C9). However, the greatest prevalent ASVs were distributed in cluster 3, of which
the most abundant included phylotypes of unclassified Enterobacteriaceae, B. pseudolongum, Aerococcus, and
C. humireducens. On the other hand, ASVs composing cluster 1 were generally the less prevalent, but seemed
to exhibit higher prevalence within the H forage. The most abundant ASVs of this cluster included S.

dysgalactiae, Staphylococcus, and C. glutamicum.

4.5.5 Milk microbial network analysis and topological roles

The GL milk microbial community network exhibited a higher size and average geodesic path but
contained a lower average degree than that of GLC, indicating a lower complexity level (supplemental Table
C2). The 135 nodes composing the GL milk network formed four modules and mostly co-excluded rather than
co-occurred, as 80 % of the 1089 links connecting them were negative (supplemental Fig. C10 A). The GL nodes
belonged to Proteobacteria, Actinobacteria, Firmicutes, and Fusobacteria, each totalling 61, 37, 36 and 1
phylotypes, respectively. Proteobacteria, including phylotypes of Aeromonas, Cedecea, Hafnia,
Janthinobacterium, Lelliothia, Methylobacterium, Pseudomonas, Serratia, Yersinia, and other unclassified
Enterobacteriaceae essentially populated modules 2 and 4 within the network, sharing only positive relationships
among themselves. The Lactobacillus phylotype exhibited essentially negative relationships with other taxa
including  Proteobacteria, ~ Actinobacteria, and  Firmicutes, the latter including Aerococcus,
Lachnospiraceae_NK3A20 group, Pediococcus, Ruminococcaceae_NK4A214 group, Ruminococcaceae_UCG-
005, Staphylococcus, Weissella, and an unclassified Carnobacteriaceae. The P. pentosaceus phylotype shared
positive relationships with Firmicutes identified as Staphylococcus and Carnobacteriaceae, and negative
relationships with other Firmicutes including Staphylococcus, Jeotgalicoccus, and Aerosphaera. Besides
phylotypes assigned to the genera Lactobacillus and Pediococcus, no other phylotypes related to inoculants
used by these farmers were involved in this network. The analysis of topological roles identified two phylotypes

of Pseudomonas as keystone species of the module hubs category (Fig. 4-6).
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Figure 4-5: Canonical correspondence analysis based on the selected taxa. Triplot of canonical relationships
between phylotypes (round and star shaped points) and milk parameters (arrows), inoculants (+), forage storage
form (+), or sampling periods (+) for milk samples associated with all the feeding combinations. Fall and Spring
denote the fall 2015 and the spring 2016 seasons, respectively. Storage forms include loose (Ls), square bales
(SqB), conventional silo (CvS), bag silo (BgS), stack silo (StS), round bale (RdB), oxygen limiting silo (OLS),
and bunker silo (BkS). Buch_500, 11CFT, and 11G22 denote the inoculants Biotal Buchneri 500, 11CFT, and
11G22. Ino_Partial (partially inoculated) and Ino_Full (fully inoculated) correspond to mixed forage rations for
which one (corn silage) or both forage types (with grass or legume silage) were inoculated. Milk parameters
included proteins (Prot), lactose (Lact), sample altitude (Alt), and sample longitude (Long). Round points depict
taxa selected by the sPLS and star shaped points those selected by the MaAsLin2 approaches. Round points
with red centre are taxa selected by both methods. Triangles correspond to samples.

The GLC milk network formed a single module (supplemental Fig. C10 B) composed of 57 nodes
(supplemental Table C2) and 1067 links, the latter of which 74 % were positive, indicating more co-occurrence
than co-exclusion between phylotypes. Nodes were assigned to the phyla Proteobacteria, Firmicutes, and
Actinobacteria, which were represented by 40, 10 and 7 phylotypes, respectively. Firmicutes included phylotypes
of Lactococcus, Staphylococcus, Streptococcus, Turicibacter, Romboutsia, Ruminococcaceae_UCG-005 group,

Facklamia tabacinasalis and Aerococcus. Inoculant related phylotypes were not involved in the GLC network.

94



The analysis of topological roles did not reveal keystone species, as all nodes were classified as peripherals
(Fig. 4-6). However, there was a considerable shift in the extent of topological roles between GLC nodes and

those of the GL network.

For the GLICI network, 135 nodes (supplemental Table C2) were interconnected with 1041 links
illustrating more co-exclusion (85 %) than co-occurrence. This network was co-dominated by the phyla
Proteobacteria, Firmicutes, and Actinobacteria, which were represented by 51, 42, and 40 phylotypes,
respectively. The phyla Bacteroidetes and Patescibacteria, each represented by a single phylotype, were the
less prevalent. This network thus exhibited a higher diversity level compared with those of GL and GLC. The
GLICI network was composed of two disconnected modules, of which the smallest composed of 26 essentially

co-occurrent nodes was dominated by Proteobacteria (supplemental Fig. C10 C).

In the larger module, two unconnected phylotypes of Lactobacillus shared principally negative
relationships with Firmicutes including phylotypes classified as Acidaminococcaceae, Carnobacteriaceae,
Clostridiaceae, Enterococcaceae, Erysipelotrichaceae, Lachnospiraceae, Leuconostaceae,
Peptostreptococcaceae, Ruminococcaceae, and Staphylococcaceae, as well as phylotypes of the phyla

Actinobacteria, Proteobacteria and Patescibacteria.

P. pentosaceus represented by a single phylotype shared negative relationships with other Firmicutes
including phylotypes of Staphylococcus, Streptococcus, Enterococcus, Jeotgalicoccus, Carnobacteriaceae, and
Lactobacillus, as well as other phylotypes classified as Actinobacteria and Proteobacteria. The genus
Enterococcus, represented by two phylotypes, also shared essentially negative relationships with other
Firmicutes including phylotypes of Staphylococcus, Streptococcus, Weissella, Jeotgalicoccus,
Carnobacteriaceae, Enterococcus, Ruminococcaceae_UCG-005 group, Leuconostoc, P. pentosaceus,
Lactobacillus, Atopostipes, Clostridium_sensus_stricto, Paeniclostridium, and Cellulosillyticum, as well as
phylotypes of the phyla Actinobacteria, Proteobacteria, and Patescibacteria. Co-occurrence relationships
involving Firmicutes were observed between phylotypes of Staphylococcus and Actinobacteria (including
Corynebacterium casei, Corynebacterium, Micrococcus, Brachybacterium, and Brevibacterium senegalense) or
Proteobacteria (including Budvicia, between Romboutsia and Clostridium_sensu_stricto), and between
Cellulosilyticum and Candidatus Saccharimonas. The network topological analysis identified three module hubs
(keystones species) including the phylotypes of Pseudomonas, Lactobacillus, and Rhodococcus. All the other

nodes in the network were peripherals.
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Figure 4-6: Network topological roles of the milk microbiota. Labelled ASVs represent module hubs (keystone
species).

4.5.6 Shared bacteria between forage types and the corresponding raw milk

Comparing the bacterial communities between preserved forage and associated raw milk within the
same feeding combination, we identified common phylotypes between both ecosystems. The proportions of
shared and unique phylotypes between forage and milk varied across feeding typologies (Fig. 4-7A). Since a
phylotype represents a unique sequence variant in the whole dataset and given that the raw milk microbiota
originates from the dairy farm and its vicinity, we assumed that the concurrent occurrence of a phylotype in both
forage and milk was plausibly the consequence of a transfer from forage to milk, with no assumption on the
mode of transfer. Lower bacterial transfer rates from forage to milk were observed in H, GLCI, and GL feeding

combinations, where milk samples shared 18, 19, and 21 % of their microbial community with corresponding
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forage rations, respectively. Higher bacterial transfer rates from forage rations to milk were observed for GLC
and GLICI forage combinations, as milk samples shared 31 and 30 % of their bacterial phylotypes with the

respective associated forage.

A total of 113 phylotypes shared between forage and milk were identified, encompassing
Proteobacteria (74), Firmicutes (26), and Actinobacteria (13) (Fig. 4-7B, Fig. C11). Proteobacteria, including
phylotypes of Serratia and an unclassified Enterobacteriaceae, and Actinobacteria including Cellulosimicrobium
largely dominated the milk microbial community considered to originate from forage. However, Firmicutes
included, but not limited to, phylotypes of Lactobacillus, P. pentosaceus, L. buchneri, Weissella, Lactococcus,
Enterococcus, Leuconostoc, Clostridium, and Staphylococcus. Interestingly, although these phylotypes were
found among the core microbiota between forage and milk samples, they were not necessarily the most
abundant in forage. Likewise, P. pentosaceus found at high relative abundance in the GLICI forage ration was
not detected in the associated milk, whereas it was detected in milk samples from three other forage
combinations showing lower relative abundance in forage (e.g., GL, GLC, and GLCI rations). Additionally,
phylotypes of the phylum Firmicutes were not identified in all forage rations and milk samples across the feeding
combinations (supplemental Fig. C11). Surprisingly, 96 % of the phylotypes significantly enriched in milk
samples from the H, GL, GLC, and GLICI feeding combinations when compared to each other (supplemental
Fig. C3 A-B) were members of those presumably transferred from forage (supplemental Fig. C11). Moreover, of
the 39 phylotypes significantly enriched in the GLICI milk compared with H, GL, and GLC counterparts regardless
of the sampling periods (supplemental Fig. C3 A-B), 92 % were part of the GLICI forage ration. Likewise, for the
GLC type, 93 % of the 40 phylotypes enriched in milk were shared with silage. Lower proportions of 62 % out of
39 phylotypes and 63 % out of 41 phylotypes were observed in the GL and H typologies, respectively. Another
noteworthy observation is the occurrence of phylotypes of Rhodococcus, A. guillouiae, Staphylococcus,
Acinetobacter, Pseudoclavibacter, an unidentified Enterobacteriaceae, and Enterococcus that correlated with
milk SCC among those presumably transferred from forage. Other phylotypes including Brevundimonas,
Frigoribacterium, Pantoea, and Jeotgalicoccus that positively correlated with milk SCC were also identified in

feeding types but were not found in corresponding milk samples (data not shown).
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Figure 4-7: The core phylotypes between forage types and corresponding milk samples. (A) Venn diagrams
showing the number of phylotypes shared between forage types and corresponding milk samples. (B) Chord
diagram illustrating the distribution of the 30 more abundant phylotypes potentially transferred from forage types
to milk.
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4.6 Discussion

We recently analysed the microbiota of hay and ensiled forage types including grass/legume and corn
silage both uninoculated or inoculated at harvest and found significant differences in the compositional and
phylogenetic structures [Chapter 2]. In the dairy farms from which forage samples were collected, farmers
implemented when applicable a mixed forage ration by adding corn silage to grass/legume silage, whether
inoculated or not. In this study, we found that microbial communities composing these forage rations could be
grouped into three community types, broadly distinguishing H, GL, and GLICI from each other. Most of the GLC
rations exhibited high similarity to GLICI, while GLCI rations were evenly distributed between silage community
types. This suggests that in mixed forage rations involving grass/legume and corn silage, inoculating one or both
types of feed would not lead to much difference in the resulting bacterial community composition compared to
that of GLC. The observed phenomenon could be explained by the high prevalence and high relative abundance
of Acetobacteraceae in corn silage, or Leuconostocaceae in uninoculated grass/legume silage as previously
reported [22,281,293]. As discussed earlier [Chapter 2], the genus Weissella was the main Leuconostocaceae
in GL silage and was found to co-occur with undesirable taxa such as Enterobacteria in silage. This observation
therefore emphasizes the advantages of microbial additives when ensiling grass/legume forage plants to obtain
good-quality silage [243,288]. Further investigations involving more farm types will improve our understanding
of the microbiological quality and aerobic stability of mixed forage rations and refine our findings on their

community types.

Milk samples were not clustered otherwise than by the formation of two groups that perfectly matched
the sampling periods (fall and spring), which are sub-categories of a predefined variable in our experimental
design. Only the a priori defined feeding combinations were used for the statistical analysis of diversity measures
for milk microbiota, regardless of the forage ration community types described above. The observed
inconsistency in beta diversity patterns among feeding types associated milk samples collected in the fall and
the spring corroborates previous studies in which variations of the milk microbiota across seasons was
demonstrated [6,12,316]. Indeed, Li et al. [6] showed that during cooler seasons, the growth of psychrotrophic
bacteria such as Pseudomonas was favoured, whereas Firmicutes and Proteobacteria correlated with higher
temperatures. However, in this study, significantly higher loads of total bacteria, LAB, Pseudomonas, and
Enterobacteriaceae were observed in GLICI milk samples compared with GL, as were Pseudomonas in GLICI

compared with GLC, and total bacteria in GLC compared with GL in the spring compared to the fall.

Using high-throughput sequencing techniques, several studies have demonstrated the high complexity
and diversity of bovine raw milk microbiota, from which the genera Pseudomonas and Acinetobacter are
generally considered as the more common [5,6,17,72]. In the current study, the genus Acinetobacter was not

found among the top 20 more abundant genera of the PMA-treated nor the PMA-free datasets, from which five
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and 23 phylotypes, respectively, were identified. Instead, milk samples were co-dominated by the phylotypes of
Pseudomonas, unidentified Enterobacteriaceae, Serratia, and to a lesser extent Cellulosimicrobium. Moreover,
these genera which have been associated with refrigerated raw milk [7,43,70,310] encompassed the more
abundant ASVs differentially enriched across milk groups in both sampling periods, particularly in GLICI
compared with GLC. Serratia liquefaciens and Pseudomonas spp. have recently been reported as the
predominant psychrotrophic bacteria that produce heat-resistant proteolytic and lipolytic enzymes with high
spoilage potential [310,317]. In a concomitant study on forage microbiota (Chapter 2), it was found that
phylotypes of Pseudomonas and Serratia were among the Proteobacteria that positively correlated with
Firmicutes, and that members of these genera were generally more abundant in inoculated grass/legume silage
compared with uninoculated counterparts. This suggests that in addition to warmer temperatures in the spring
compared to fall, the farms using the GLICI forage ration along with the implemented farming practices probably

contributed to higher loads of Pseudomonas and Enterobacteriaceae in corresponding milk samples.

However, we observed erratic patterns of raw milk contamination by Lactobacillales, exhibiting only
three phylotypes as the core LAB from which two were assigned to the genus Lactobacillus and the last to
Lactococcus. Similar results showing the thinness of the core microbiota from 112 cow milk samples were
reported by Li et al. [6]. These authors found that Acinetobacter and Pseudomonas were the sole genera shared
by all milk samples they analysed. Regarding LAB, the same authors reported a high prevalence of the genus
Lactococcus (~99 %). Kable et al. reported a more diverse core microbiota encompassing 29 taxa at the genus
level (from 899 raw milk samples), among which unidentified Aerococcaceae, Enterococcus, and Streptococcus
represented the LAB community [54]. Recently, Parente et al. used the FoodMicrobionet database to analyse
the results from five studies that examined a total of 199 bulk tank milk samples from various regions around the
world, and found that the genera Pseudomonas, Streptococcus, Lactococcus, and Acinetobacter showed the
highest prevalence rates of ~98, ~97, ~93, ~93 %, respectively [37]. Using a culture-dependent approach,
Gagnon et al. analysed 1,239 LAB isolates from 48 bulk tank milk samples and found that Lacticaseibacillus
casei/paracasei, P. pentosaceus, Weissella paramesenteroides/thailandensis, and Lactococcus lactis were the
most prevalent with 60, 42, 40, and 30 % prevalence rates, respectively [22]. Moreover, these authors revealed
that despite the substantial enrichment of 35 % in lactobacilli in the microbiota of inoculated grass/legume silage
compared with uninoculated counterparts, the associated milk samples exhibited similar LAB profiles. These
findings support the hypothesis that there is not a clearly defined pattern of raw milk contamination on dairy

farms, particularly for LAB.

In this study, some phylotypes of Streptococcus, Staphylococcus, Corynebacterium,
Enterobacteriaceae, Acinetobacter, Jeotgalicoccus, Rothia, Rhodococcus, Aerosphaera, Budvicia,

Brevundimonas, Solibacillus, Pseudoclavibacter, Enterococcus, Frigoribacterium, Pantoea, and Bifidobacterium
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positively correlated with SCC. The genera Streptococcus, Staphylococcus, Corynebacterium, Enterococcus,
Acinetobacter, as well as members of Enterobacteriaceae have been commonly identified as mastitis causing
agents [52,306,318,319]. Regarding these taxa, our findings corroborate those of Rodrigues et al. [58] who
reported positive correlations with milk SCC. The genera Jeotgalicoccus, Bifidobacterium, and Solibacillus were
found among the most abundant taxa of the bovine teat microbiota [305,306], while Brevundimonas was
identified as a dominant taxa in clinical mastitis samples [320]. In the current study, except for
Enterobacteriaceae, none of the phylotypes encompassing these taxa were found differentially abundant among

milk samples associated with the five forage combinations.

We found that phylotypes of Pseudomonas, Rhodococcus, B. mongoliense, Kocuria, Chryseobacterium
bovis, Brachybacterium, Antricoccus, Comamonas koreensis, Chryseobacterium, Lactobacillus, and Otfowia
negatively correlated with proteins. Apart from Ottowia and Antricoccus, the proteolytic activity of these taxa has
been previously demonstrated [189,321-323]. Although these taxa correlated with some of the inoculants used
for ensiling, none of the corresponding phylotypes mentioned above were differentially enriched between milk
from the five feeding types. The genus Ottowia has been identified in a variety of environments such as activated
sludge [324], archaeological dental calculus [325], or minced pork [326], whereas Antricoccus was reported in
natural caves [327] and toothbrushes [328]. Although we did not find any report of the occurrence of these two

genera in raw milk, the significance of their potential proteolytic activities should be investigated.

Several studies have analysed changes in the microbial communities of raw milk throughout the
production chain from milking on dairy farms [7,43] to storage in silos at the processing facilities [18,54]. In this
study, since milk samples were collected directly after milking, they correspond to time zero on the time scale
associated with the production and transportation chain from milking to processing plants. Therefore, the
constructed networks relate much more to bacterial entry into milk from the sources of contamination (during
milking and in the bulk tank) than to a substantial growth of microorganisms in the milk matrix. In this context,
because the network modules can be regarded as microbial niches [299], the phylotypes they contain, whether
co-occurring or co-excluding, would logically share the ability to grow and populate the respective habitats they
originate from. Hence, taxa co-occurrence would mainly reflect a milk co-contamination or a concurrent
occurrence of taxa at the sources of contamination. For instance, most phylotypes found to correlate with SCC
and that would plausibly originate from the internal and external areas around the teat or the udder shared the
same modules across all networks, notably modules 1 and 3 in the GL or module 1 in the GLICI networks.
Interestingly, these modules also contained typical taxa associated with the skin such as Aerococcus or
Acinetobacter [308,329], or those known as mastitis pathogens located in the teat canal such as Streptococcus,
Escherichia, Staphylococcus, and Corynebacterium [52,306,318,319]. The analysis of topological roles derived

from the networks revealed phylotypes of Pseudomonas, Rhodococcus, and Lactobacillus as module hubs,

101



indicating their importance for their network stability [298]. Because these taxa may occur in a wide variety of
contamination sources, it is difficult to interpret their relevance in their original communities. However, the
observed variations of network topologies improve our understanding of differences between raw milk microbial

communities associated with forage ration combinations [297].

Although silage has been considered as one of the most important sources of spore-forming and
thermoduric bacteria that contaminate raw milk on the dairy farm [9,112,143,330], Doyle et al. [12] analysed
several microbial habitats on the farm environment and found silage as a minor contributor to the milk microbiota
compared with the teat surface and herd faeces. Using a culture-dependent method and random amplified
polymorphic DNA, Gagnon et al. [22] recently confirmed their finding regarding LAB communities found in raw
milk and that probably originated from silage. Here, using a metataxonomic approach, we complement these
previous findings by providing more insight into the rates of microbial transfer from five forage ration

combinations to corresponding raw milk on dairy farms.

Our results show that silage-based forage rations, particularly GLC and GLICI, share more phylotypes
with raw milk produced on corresponding farms compared to that observed in the milk from cows fed a H ration.
Among the 113 presumably transferred phylotypes, Proteobacteria were by far the most represented compared
to Firmicutes and Actinobacteria, each at 65, 23, and 12 %, respectively. Rather than observing a significant
enrichment of Lactobacillaceae in milk samples from the GLICI forage type as they dominated the microbiota of
the corresponding forage ration, phylotypes assigned to Enterobacteriaceae (mainly Serratia, unidentified
Enterobacteriaceae, Yersinia, and Hafnia-Obesumbacterium), Pseudomonadaceae (Pseudomonas),
Promicromonosporaceae (Cellulosimicrobium), and Aeromonadaceae (Aeromonas) were listed among the
differentially abundant taxa and were the most represented. Interestingly, 92 % of phylotypes enriched in the
GLICI milk, among which all those cited above, were identified in the microbiota of the associated forage ration,
as were 93 % of those enriched in the GLC milk. However, these proportions were considerably reduced in the
ration involving a single forage type (H or GL). These findings clearly demonstrate that although bacteria from
forage may represent a low proportion of the associated raw milk microbiota, they may be the main taxa
distinguishing between milk from different feeding combinations. Our results show that the mixture of
grass/legume and corn silage significantly impacts the raw milk microbiota compared with a single forage-based
ration. Considering the case of GLICI versus GLC milk samples, it appears that differences in their microbial
communities were mostly driven by higher relative abundances of Proteobacteria in the GLICI forage type.
However, this is not specific to GLICI milk as similar observations can be made when the same comparison is
performed between other feeding combinations. Therefore, based on the current study, it is difficult to provide

reliable explanations on a direct influence of silage inoculants on raw milk microbiota upon milking.
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However, the significance of other sources of milk contamination may explain the observed low
proportions of the shared phylotypes relative to those uniquely occurring in the forage types or milk samples
from the same feeding combination. These sources of microorganisms include the bedding material, faeces,
cow skin, water, humans, milking machines and pipelines, bulk tank, air, pasture, and other feed components
[5,19,143,308]. These observations suggest a lack of correlation between taxa abundance in forage and their
abundance in milk. Supporting this hypothesis, Driehuis et al. [112] reported in their review dealing with the
impact of silage on the quality of dairy foods that raw milk contamination by aerial spores from silage or by direct
contact of raw milk with silage are negligeable when milking hygiene is properly applied. Bacteria from silage
therefore take indirect milk contamination routes, possibly involving sporadic transfer of silage onto the bedding
or directly to the cow skin (of which the teat surface is cleaned before milking), improper human handling, or via
faeces that can contaminate the bedding and the teat surface. Indeed, spore forming bacteria from silage were
found to withstand harsh conditions along the cow gastrointestinal tract and subsequently end up in the faeces
[290,331]. Although still under debate, it should be considered that silage bacteria may translocate via the entero-
mammary pathway previously described [41,72,332]. On a dairy farm, the interconnections among the microbial
sources, which by themselves can be selective habitats, might explain why a clear pattern of milk contamination

by silage bacteria was not in evidence in this study.

4.7 Conclusion

The microbiota of forages can be grouped into three community types broadly distinguishing between
H, GL, and GLICI samples, GLC showing high similarity with GLICI. However, a subsequent classification of
microbial communities in milk associated with the forage ration combinations was not observed. Since milk
samples exhibited significant variation in microbial community across sampling periods, we can presume that
seasonality would have greater influence on the milk microbiota than forage rations. Nevertheless, the effect of
forage ration combinations on the milk microbiota appeared more substantial in the spring, as significantly higher
loads of LAB, Pseudomonas, Enterobacteriaceae, and total bacteria were observed in GLICI compared with milk
samples associated with other feeding combinations. This study was carried out using freshly produced bulk
tank milk, for which we demonstrated erratic patterns of contamination at the farm. Bacteria from forage rations
encompassing H, GL, GLC, GLCI, and GLICI may account for up to 31 % of microbial community in the
corresponding milk. Trends of direct contamination of milk by forage bacteria were not evidenced for any of the
113 phylotypes presumably transferred from forage to milk. Although significant differences were observed
between GLICI and GLC milk samples, they were driven more by Enterobacteriaceae and other Proteobacteria,
rather than by LAB communities. Drawing reliable conclusions on the influence of silage inoculants on the raw
milk microbial community is therefore challenging. Additional milk samples taken at the end of the transport

chain from dairy farms to processing plants may reveal further effects of transport on raw milk microbiota. Further
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investigations involving more farm types and the integration of metagenomics and metabolomics would be

needed to better understand the impact of cow feeding with inoculated silage on milk quality and processability.
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Conclusion

Les travaux réalisés dans le cadre de cette thése avaient pour but d’améliorer le niveau de
connaissance sur le microbiote des fourrages préservés (foin, ensilages d’herbe/légume et de mais inoculés ou
non inoculés) sur le microbiote du lait cru. Ces travaux étaient axés sur 'hypothése que I'analyse de la diversité
et de la prévalence des communautés microbiennes présentes dans les ensilages et le lait cru permet de
connaitre I'impact de ces fourrages fermentés sur la qualité microbiologique du lait. Afin d'obtenir le maximum
d’information concernant le lien entre les pratiques de gestion des fourrages dans les fermes laitiéres et la
composition bactérienne du lait cru, la métataxonomique a été placée au cceur des investigations. Par cette
approche d’analyse des communautés microbiennes dite culture-indépendante qui s'appuie sur le séquengage
a haut-débit d'une portion du géne de 'ARNr 16S, nous avons démontré que les espéces bactériennes
présentes dans les fourrages sec ou fermentés peuvent étre transférées au lait cru. Les résultats obtenus
suggerent que dans I'environnement des fermes laitiéres, ces transferts se feraient de maniére sporadique.
L'intégration des paramétres physicochimiques des fourrages et du lait cru a 'analyse des données issues du
séquencage par des méthodes statistiques multivariées et multi-table ont permis de déterminer les corrélations
entre ces paramétres et les taxons (définis au niveau de variant de séquence), et ainsi de mieux comprendre

I'écologie microbienne des fourrages et du lait cru.

L'originalité de cette thése se décline en trois thémes principaux, a savoir la préservation de l'intégrité
du microbiote du lait cru conservé aux fins d’'analyses microbiologiques, I'effet des pratiques de gestion des
fourrages préservés sur leur microbiote viable, et I'impact de ces pratiques de gestion sur la composition
microbienne du lait cru. Compte tenu de I'inévitable croissance microbienne observée dans le lait cru au cours
du temps malgré la réfrigération, ou encore I'altération des parois cellulaires des bactéries lors de la congélation,
le maintien de la diversité et de 'abondance des espéces microbiennes qu'il contient est primordial et constitue
un gage de la qualité et de fiabilité des résultats d’analyse du microbiote. Tout en mettant en évidence I'altération
du microbiote du lait lors de sa conservation sous réfrigération (4 °C) ou sous congélation (-20 °C), nous avons
démontré que 'azidiol utilisé seul ou en combinaison avec le DMSO permet de maintenir I'intégrité et la viabilité
du microbiote a court ou moyen terme. Nos résultats suggérent également qu’en plus de I'azidiol et du DMSO,
I'ajout d'un composé antifongique pour limiter la croissance des levures et des champignons microscopiques
permettrait une plus longue durée de conservation d'échantillons de lait. De futurs travaux réalisés dans cette
perspective amélioreront les conditions de préservation d’échantillons de lait cru, particuliérement lors d’études
d’envergure impliquant la microbiologie du lait ou des produits laitiers. Par ailleurs, nos travaux montrent
clairement que le choix de la région du gene de I'ARNr 16S & séquencer peut considérablement affecter
linterprétation des résultats et rendre inappropriée la comparaison de ces derniers avec ceux disponibles dans

la littérature. La convergence des efforts de recherche vers un consensus méthodologique des pratiques

105



d’'analyse du microbiote du lait et des produits laitiers de la collecte d’échantillons a I'analyse des séquences est

vivement souhaitable.

Il ressort de I'analyse du microbiote des fourrages que le foin présente une structure microbienne trés
différente de celle des ensilages. Bien que les inoculants soient recommandés pour améliorer la qualité des
ensilages, nos résultats ont montré que leur usage n'induit pas systématiquement une modification conséquente
du microbiote. D'autres facteurs tels que le type de silo ou la période d’échantillonnage (automne ou printemps)
influenceraient concurremment la composition et la structure microbiennes des ensilages d’herbe/légume et de
mais, et ainsi masqueraient les effets spécifiques des inoculants. Toutefois, les analyses de réseaux ayant
révélé des différences topologiques entre les ensilages inoculés et non inoculés, il se pourrait que les inoculants
aient une influence considérable sur la co-occurrence des espéces bactériennes. Ceci démontre l'intérét de
I'analyse des réseaux de co-occurrence ou de co-exclusion pour une meilleure compréhension de I'écologie
microbienne des ensilages. Les résultats obtenus montrent également qu’au niveau des variants de séquences,
seules les phylotypes présents a la fois dans les ensilages inoculés et non inoculés sont les plus dominants au
sein des bactéries lactiques. Cependant, l'inoculation des ensilages d’herbe ou de légumineuse réduit
grandement la prévalence et 'abondance des espéces du genre Weissella, alors que dans le cas des ensilages
de mais, les lactobacilles sont dominants avec ou sans I'ajout d'inoculants. Malgré I'application d'inoculants lors
de la préparation des ensilages de mais, la prolifération des bactéries du genre Acetobacter semble récurrente,
particulierement a l'automne. L'ambigité autour des propriétés fermentatives de cette bactérie ou de sa
capacité a initier la détérioration aérobie des ensilages de mais nécessite d’avantages de travaux de recherches
visant a préciser les conditions de développement de cette bactérie et déterminer ses interactions (compétition,
coopération) avec les bactéries lactiques. De tels travaux impliqueraient évidemment la recherche de nouveaux

inoculants plus compétitifs et capables de prolonger par leur action inhibitrice, la stabilité aérobie des ensilages.

Les pratiques de gestion des fourrages a la ferme impliquent aussi la préparation des rations pour les
vaches. Au cours de nos travaux, cing types de rations a base de fourrage ont été recensés, a savoir le foin (H),
les ensilages d’herbe/légume non inoculés (GL), les mélanges d’ensilages d’herbe/légumineuse non inoculés
et de mais non inoculés (GLC), les mélanges d'ensilage d’herbe/légumineuse non inoculés et de mais inoculés
(GLCI), et les mélanges d’ensilage d’herbe/légumineuse et de mais inoculés (GLICI). L’analyse microbiologique
de ces rations a révélé trois types de communauté microbienne distinguant principalement H, GL, et GLICI les
unes des autres. Cependant, seules les populations bactériennes présentes dans les échantillons de lait
associés aux fermes GLC et GLICI ont présenté des différences significatives entre elles. Toutefois, il est
intéressant de noter que la charge bactérienne des lactobacilles pourtant utilisés comme inoculants n'est pas
plus importante dans les échantillons de lait des fermes GLICI comparé a ceux des fermes GLC. De plus, le

microbiote du lait varie plus en fonction de la période d’échantillonnage (automne, printemps) que selon le type
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de fourrage dans la ration. Nos travaux montrent qu'au niveau de la ferme laitiére, les transferts de bactéries
des ensilages au lait cru ne semblent pas suivre un modele prédictible, car s'effectuant possiblement de maniére
aléatoire. Néanmoins, il apparait que les rations pour vaches a base principalement d’ensilages, contribuent
jusqu'a 31 % a la formation des communautés bactériennes du lait cru. De plus, environ 92 % des phylotypes
enrichis uniquement dans I'une ou l'autre des fermes GLC et GLICI sont également présents dans les ensilages
correspondants. Ainsi, plutdt que par le nombre d’espéces bactériennes ou leur abondance respective,
I'importance des rations a base d’ensilages d’herbe/légumes et de mais comme source de contamination du lait
se démontre plus par l'introduction dans le lait d'espéces bactériennes qui déterminent les dissimilarités du
microbiote. D'aprés nos résultats, les genres bactériens potentiellement transférés des ensilages au lait sont
surtout des Proteobacteria telles que Serratia, Pseudomonas et Lelliottia, les Firmicutes telles que Lactobacillus,
Lactococcus, Clostridium et Romboultsia, et les Actinobacteria telles que Cellulosimicrobium. Il est important de
noter que parmi les lactobacilles, un phylotype de Lentilactobacillus buchneri a été identifié dans les échantillons
d'ensilages et de lait des fermes GLICI. Considérant le caractere sporadique du transfert de bactéries
d’ensilages vers le lait cru, toute bactérie, y compris 'inoculant, présente dans I'ensilage peut contaminer le lait
dépendamment de ses aptitudes a survivre ou a se développer dans les sites de contamination. L'analyse des
réseaux de co-occurrence des phylotypes a révélé dans I'environnement a la ferme des niches microbiennes
qui rappellent en effet les sources de contamination du lait telles que les surfaces intérieures et extérieures du
pis. Cependant, les résultats obtenus ne permettent pas d’établir avec précision I'impact des inoculants sur la
composition microbienne du lait. Toutefois, nos travaux démontrent clairement que les ensilages constituent
une source de contamination du lait par les espéces potentiellement pathogénes pour les animaux, d'altération
et d'intérét technologique pour le lait et les produits dérivés. Outre les bactéries, les levures et moisissures font
partie intégrante du microbiote des ensilages et du lait cru. Sileur importance dans la détérioration des ensilages
est bien connue, peu d'informations sont disponibles quant a leur diversité et leur importance pour I'aptitude du
lait & la transformation ou encore pour la qualité des produits laitiers. Des travaux semblables a ceux présentés
dans cette thése, orientés sur I'impact des fourrages préservés sur les communautés fongiques du lait cru
permettraient d'améliorer nos connaissances des microorganismes qui déterminent la qualité microbiologique
du lait.
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Annexe A — Matériel supplémentaire du chapitre 2
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Figure A1: Heat map showing the distribution, prevalence, and abundance of taxa at the species level in fresh
and five-day stored unpreserved raw milk based on the V3-V4 dataset. Taxa coloured red are those that
underwent log2-fold change during the storage.
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Figure A6: Temporal stability of microbial communities in preserved raw milk across 30 days of storage as
described by 16S rRNA gene sequencing of the V/6-V8 region. (A) Variation in alpha diversity measures during
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the storage of treated raw milk. For Chao1 estimates, Shannon, and InvSimpson indices, salmon lines represent
linear mixed-effects fit against the storage time and the 95 % confidence interval is shaded. (B) Diversity trends
between samples from the same farm at consecutive timepoints. Blue lines represent linear mixed-effects fit
against the storage time and the shade the 95 % confidence interval. (C) Diversity trends between samples from
different farms at consecutive timepoints. Purple lines represent linear mixed-effects fit against the storage time
and the 95 % confidence interval is shaded. NoPre: No treatment, AZ4: Azidiol, BR4: Bronopol, DMSO: Dimethyl
sulfoxide, AZDm: Azidiol & DMSO.
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Figure A7: Box plots illustrating multiple comparison tests between storage timepoints of preserved raw milk as
described by amplicon sequencing of the V6-V8 variable region. Letters above a box indicate significance group.
Timepoints with different letters were significantly different. P-values provided were derived from the
corresponding Ime analysis shown in Fig. A5. (A) Multiple comparisons based on the Jensen-Shannon
divergence measures computed within aliquots of the same sample for treatment AZ4 as illustrated in Fig. A5-
A. (B) Multiple comparisons based B-diversity measures computed between aliquots of all samples for
treatments AZ4, BR4 and AZDm as illustrated in Fig. A5-C.
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Figure A8: Community instability and taxa dynamics in unpreserved and preserved milk samples over the
storage time as depicted by high-throughput amplicon sequencing of the 16S rRNA targeting the V6-V8 region.
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at the genus level is coloured by its corresponding phylum.
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Annexe B — Matériel supplémentaire du chapitre 3

Table B1: Chemical composition of hay in the Fall 2015 and Spring 2016.

Parameters! Fall 2015 (n=6) Spring 2016 (n=6) p value
Moisture (%) 134+32 12.7 £ 3.1 0.75
Crude protein (%) 11.0+1.6 12.7+21 0.15
Soluble protein (%) 8.6 +13.6 36+0.2 0.15
ESC (%) 82+15 83120 0.42
NFC (%) 232123 256+ 3.1 0.13
ADF (%) 383124 372432 0.42
aNDF (%) 63.0+1.6 572+52 0.04
TDN (%) 60.6+1.8 60.1+£1.9 0.57
Calcium (%) 05+041 0.7+0.1 0.11
Phosphorus (%) 0200 0.3+0.0 0.17
Magnesium (%) 0200 0.2+0.0 0.52
Potassium (%) 16+0.3 22+0.3 0.04

Within a row, each mean is given with the corresponding standard deviation. p values were obtained after
performing a Wilcoxon Rank Sum Test across sampling periods. ' ESC, ethanol soluble carbohydrates; NFC,
non-fibre carbohydrates; ADF, acid detergent fiber; aNDF, amylase derived neutral detergent fiber; TDN, total
digestible nutrient.
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Table B2: Chemical and fermentation characteristics of GL and GLI silage in the Fall 2015 and Spring 2016

Parameters’ Fall 2015 p value*  Spring 2016 p value?
GL (n=14)2 GLI (n=8)2 GL (n=15)  GLI (n=8)

Moisture (%) 55.1+106 59.1+51 041 515+103 58.1+80 0.14
Crude Protein (%) 181+23 185123 0.76 17.3+£33 193+27 023
ADF-CP (%) 105+£23 97+28 0% 109+43 95+32 0.36
Soluble Protein CP (%) 554+85 56.3+43 0.91 51.7+£81 595+80 <0.05
Ammonia (%) 14+£0.6 1505 054 12106 1.8+£05 <0.05
Ammonia CP (%) 76+32 80%21 0.35 66+25 93124 <0.05
Ammonia SP (%) 13.6+41 143141 0.68 127+39 162+52 0.10
ADF (%) 342+26 342+44 071 346+35 346+43 087
aNDF (%) 473+53 468+51 0.73 50276 472181 0.60
Crude Fat (%) 35+06 36+£02 068 3404 37107 0.30
Fatty Acid (%) 21+05 21+£03 083 21+03 21104 0.72

Volatile Fatty Acid (%) 7.1+£35 93+12  0.39 7035 10.9+32 <0.05
NFC Carbohydrates (%) 249+43 24447 0.83 239+38 227+47 038

Carbohydrates (%) 158+64 124+59 0.21 184+80 10.1+£57 <0.05
pH 45+04 4302 018 45204 44+02 0.44
Lactic Acid (%) 44+21 5309 017 44+23 61%22 0.15
VFA Lactic Acid (%) 559+158 574+80 083 63.1+200 556+93 0.22
Acetic Acid (%) 31+£22 35+12 029 23+17 4417 <0.05
Butyric Acid (%) 03+04 04+03 072 01+02 03+03 0.24

1 ADF, acid detergent fiber; aNDF, amylase derived neutral detergent fibre; ADF-CP, acid detergent fiber-protein;
Soluble Protein CP, soluble crude protein fraction; Ammonia CP, crude protein associated ammonia; Ammonia
SP, soluble protein associated ammonia; NFC carbohydrates, ethanol-soluble carbohydrates as percentage of
non-fiber carbohydrates; VFA Lactic Acid, lactic acid as percentage of total volatile fatty acid. 2 No significant
difference was obtained across sampling periods for GL and GLI, respectively. ® p values were obtained after
performing a Wilcoxon Rank Sum Test.
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Table B3: Chemical and fermentation characteristics of C and Cl silage in the Fall 2015 and Spring 2016

Fall 2015 p Spring 2016 p
Parameters’ C (n=4)2 Cl(n=8)2  value® C(n=4) Cl(n=8)  value’
Moisture (%) 68+7.8 622+36 020 645+6.1 61121 020
Crude Protein (%) 7.5+16 7607 0.30 74+1.0 6.8+07  0.10
ADF-CP (%) 122+£10 10239 050 123+05 123+13 073
Soluble Protein CP (%)  462+29 51656  0.05 493+£59  599+73  <0.05
Ammonia (%) 0.7+£03 1003 0.20 0.8+0.1 1103  <0.01
Ammonia CP (%) 9.0+£16 126+31* <005 103+15 163+27 <0.05
Ammonia SP (%) 19.5+ 3.1 241+46 <005 21.1+£26  273x41 <0.05
ADF (%) 263+8 225+2.1 0.30 249+38  243+66 0.1
aNDF (%) 449111 391+£23  0.20 43£58 353+11.7 017
Crude Fat (%) 25+0.1 28+0.2 <0.05 25%0.1 28+03  0.31
Fatty Acid (%) 21£05 26+0.1 0.06 24+£0.1 27£03 011
Volatile Fatty Acid (%) 64+25 49+14 0.40 51+0.6 6.1+£27 031
NFC Carbohydrates (%) 43.4+127 484+25 (.61 452+64  494+42 031
Carbohydrates (%) 38+44 1.7+08 0.27 26+09 156+13  0.06
pH 3.8+0.2 3711 0.10 3.9+0.0 39+£02 061
Lactic Acid (%) 49+£17 26+15 0.10 34+05 41+£19 061
VFA Lactic Acid (%) 775+£52 528+241 <006 660+77 59.2+156 0.31
Acetic Acid (%) 13+1.2 23£13 0.30 18+0.5 2608  0.09
Butyric Acid (%) ND ND - ND ND -
Propanediol (%) 09+£13 18+0.9 0.20 16+04 2.0£09 02

1 ADF, acid detergent fiber; aNDF, amylase derived neutral detergent fibre; ADF-CP, acid detergent fiber-protein;
Soluble Protein CP, soluble crude protein fraction; Ammonia CP, crude protein associated ammonia; Ammonia
SP, soluble protein associated ammonia; NFC carbohydrates, ethanol-soluble carbohydrates as percentage of
non-fiber carbohydrates; VFA Lactic Acid, lactic acid as percentage of total volatile fatty acid. 2 Within a row, the
superscript following a mean and corresponding standard deviation indicates the significance of the difference
with the same category during the next sampling period. 3 p values were obtained after performing a Wilcoxon

Rank Sum Test.
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Table B4: Keystone phylotypes of the GL pMEN

Keystones Phylum Family / Species Phylotypes' Module
Network hubs  Firmicutes Weissella sp. ASV248 3
Proteobacteria Sphingomonas sp. ASV27 2
Connectors  Actinobacteria Rhodococcus sp. ASV183 1
Firmicutes Bacillus sp. ASV21 2
Lentilactobacillus buchneri ASV113 5
Loigolactobacillus coryniformis ASV101 3
Lactiplantibacillus plantarum ASV66 2
Lactobacillus spp. ASV163 1
ASV178 2
ASV93, ASV637 3
ASV97, ASV24, 4
ASV226
ASV4T, ASV118 5
Lactococcus sp. ASV440 6
Pediococcus spp. ASV152, ASV474, 1
SV221, ASV244
ASV204 2
Lactobacillaceae ASV125, ASV324 1
Weissella spp. ASV275, ASV262, 2
ASV290, ASV67,
ASV186, ASV190,
ASV198
ASV600 6
Proteobacteria Aeromonas sp. ASV29 4
Allorhizobium group ASV111 1
Methylobacterium adhaesivum ASV179, ASV128 1
Methylobacterium sp. ASV94 2
Pantoea spp. ASV56, ASV39 3
Pseudomonas spp. ASV14, ASV3 4
Serratia sp. ASV9 4
Stenotrophomonas spp. ASV162, ASV115 2
Enterobacteriaceae ASV17, ASV25, 4

ASV30

1 Phylotypes highlighted in red are GL connectors that changed their topological role to peripherals in the GLI

network.

151



Mobile Elements

oo

Aerobic Anaerobic

o8
@
M II

oo

Relative Ahurdance

v Facultatively
Anaerobic

1
‘ I
o
a
an IIII a
el [

Gram Positive

-
I |
| I

“| ¥orms Biofilms o+ Gram Negative

B

g

Relative Abundance

°

H

a0

l ) II.
- .. o.a .
i K [

Potentially Stress Tulerant
Pathogenic

e
i
H

13

Relative Abundance
2

H

I II I I -
" I Actincbacteria
) il | &

[ Firmicutes
B . Aernblc Anaerobic o Mohxle Elemenls
" [ Proteobacteria
o :
£.
2 [ Other
2
) I - I I
- I o I -_—
[ o H 4 H
Facultatively 130 Forms Biofilms Gram Negative
Anaerobic "
8" o
2
£,
B ase
s oz
] 3 T FR—T T T

Gram Positive Potentially Stress Toleranl

Pathogenic
T oA
e
o
e
i i .
o o a 6L L]

Figure B1: Predicted contribution to the phenotypic traits inferred by BugBase. Relative abundance of the phyla
that contributed to microbial phenotypic traits in preserved forage in the fall 2015 (A) and spring 2016 (B).

Relative Abundanze _
H

152



Biatal Buchneri 500

Histidine metaboism
Citrale cycle (TCA cycle)]

Arginina biesynthasis

Valine, louting and isalsucine degradation
Glysing, serine and threonine metabolism
Nitrogen metzbolism

Arginine and proline metabolism

Fruntose and manncse metabsism
Thiamine metabelism

Pratein xpert

Alanine, aspartate and glutamate metabolism
Biotin metaboiism

Propanoate metabalism

Galastese metaboism

Pantosa and glucuransts intarconversions k200040
Usiquinone and other temenaie-quinane bissthesis k00130,

I

Metabolic pathways ka0100]
Biosynthesis of amina acids ks01230
Carbon metabalism k501200
Mismatch repsir k503430
Lysins biosynthssis ko00300
Waling, laucine and isolsucine biosynthesis ke00250
Glyoxylate and dicamoylate metabolism

Peptidoglycan biosynthesis.

Wicrobial metabalism in diverse environments

Phasphatransisrasa system [PTS)

Fatty acdl metabolsm

Falty acid biosynthesis

One carbon pool by folate

Glyserophaspholipid metabolism

Terpenaid backbons biosynthesis

Furine metabolism

Folate biosynthesis

Glycolysis { Gluconeagenesis

2-Oxacarboxylic acid metabulism

Biosynthesis of secandary metabalites

Ribasame

Aming sugar and nucleside sugar metaboiism

DN repiication

Pantothenate and CoA biosynthesis

Carbon fixation pathwrays in prokaryotes

RNA degradation

Quorum sensing

Cysteine and methionine metabolism

Pyrimicine metsbalism

ABC transparters.

Pyruvate metabolism

Pentose phosphate pathway

Streptomycin biosynthesis
tyrasine and tryptophan bi

AmincacyHRNA biasynthesis

Iathana metabalism

Cell cycle - Gaulobacter

Starch and sucrose metabolism

Phenytalanine metabalism

Nicotinate and nicotinamide metacolism

Benzacte degradation

Sslanocompaund matabolism

Butancate metabelism

Garbon fixation in phatosynthetic organisms

Two-compenent system

Homelagous recombination

Base excision repai

Oxidative phaspharylation

Tyrosine metabolism

Bacterial sucration systam

Drug metabolism - other snzymes

Sulfur metabalism

Degradation of sromatic compounds

beta-Lactam resistance

Glutathione metabelisi

Biofim formation - Vibria cholerag

Cationic antimicrobial peptide {CAMP) resistance

Flid shear stress and atherosclerasis

Biofim formation - Pseudamensas seruginasa

Biofilm formation - Escherichia col

ol G R

StorageForm

[ T R

Forage Type
aLpExz Effect [l
ZHMNIP_HZ

BHNIP_BZ
AHMNIP_HZ
THNIP_S2
IHNIMIP_H2
AHMNIP_HZ
AHNIP_S2
SHNIP_S2
1HNIP_B2
2HIP_82
3HNIP_B2
4HNIP_B2
THNIP_B2
FHMNIP_H2
BHIMIP_HZ
THIMIP_HZ
2HIMIP_H2
SHIMIP_H2
AHIMIP_H2
SHIMIP_H2
THIMIP_HSG2
THIMIP_ HSHZ

Forage Type Prevalence ALDExZ Effect CLR Abundance Storage Form
| [B W22 I - [ ] M Bag_silo
4

0.2

0 i3 B oL_silo

] 02 lz W Round_Bale
P Square_Bale
0.4 ! I stack_Silo

Figure B2: Distribution of differentially abundant function pathways predicted using Piphillin in inoculated and
uninoculated grass/legume silage in the fall 2015.

153



Mitrogen metabalism ko091

Arg
Phospholipase D signaling pathway faa072
Gholine metabolism in cancer Ka05231

@ biosynthasis 100220

Sulfur matabalism kn00920
2-Oxacarhoxylic acid metabolism k001210
Waline, leucing and isaleusing biosynthesis  ka0c2a0)

Nicotinate and nicotinamide metabolism ko0CTE0
beta-Lactam resistance k001501
Puring metabolism ko00230
Ribosame: ko03010
Butancate metabolism ko0CS50
AmingacylHRNA biosynihesis. ko0g70)
Pyruvate metabolism ko0C820
Arginine and preline metabokism ln0E230)
Benzoata degradation kn00362
Alaning, aspartate and glutamata metabolism ke00250)
Fyrimidine metabolism ko00240
Glysine, serine and threonine metabolism  ke0o260
Pentose and glucuronate interconversions  ka00940]
Biosynthesis of szcandary maisbalies ka0 1110
Fentose phosphate pathway k000230
Glutathione metaboism ko004B0
Glycolysis  Gluconeagenesis Kn02910
Methane metabalism kn0CHG0.
Basterial secrefion system ko070
Biosynthesis of amino acids. kol1230
WMetabolic pathways ka01100
Carbon melaboliem k01200
Frapanosts metsbalism k00840,
Carban fixation pathways in prokaryofes 1000720
Fatty acid metabolism kn01212
Microbial matabalism in divarse envirenments ke0 1120
Tue-comgonant system k002020
Cysteine and methionine metabolism ko0e270
Aming sugar and nucleotide sugar metabolisma0es20.
Folate biosynthesis ko00730
Waline, leucine and isaleucine degradation kn00260
Tyrosine metabolism ko050
ABC transporters. ka02010
Citrate cycle (TCA cycle) k00920
Oxidative phospharylation ko0C190,
Glyoxylste and dicarboxylats metabolism  ke0C530
Cuorum sensing ko0202¢
Biosynthesis of type |l palyketide preducts  ka01057

StorageFom

SHNIP_S3

Forage Type

Prevalence

ALDEx2 Effect
2HMNIP_H3
EHNIP_B3
HMNIP_H3
THNIP_S3
IHNIMIP_H3
ZHMNIP_H3
4HNIP 53
THNIP_BS
2HNIP_BS
IHNP_BS
AHNIE_B3
SHNIP_B3
THNIP_B3
HMNIP_H3
SHIMIP_H3
THIMIP_H3
ZHIMIP_H3
SHIMIP_H3
AHIMIP_H3
SHIMIP_H3
1HINIP_HES
THIMIP_HSH3

Forage Type Prevalence ALDEx2 Effect CLR Abundance Storage Form
L 20 1 _4 M B3g_silo
GLI 15 05 2 Conv_Silo

10 4] o OL_silo

5 s l_z M Round_Bale

& : 5 Square. Bale
I stack_Silo

Figure B3: Distribution of differentially abundant function pathways predicted using Piphillin in inoculated and
uninoculated grass/legume silage in the spring 2016.

154



Nen-Inoculated 11C33 11CFT Biotal Buchneri 500

Carbon metabolism ko01200

Motz pathuays L e
Biosynthesis of secondary metabolites k001110 o [
Purine metabolism k000230 i ‘ | [

Microbial metabolism in diverse environmentsko01120

Pyruvate metabolism ko00620
Glycine, serine and threonine metabolism koD0260

Biosynthesis of amino acids ko01230
Quorum sensing ko202 B BN
ABC transporters ko02010 c
Two-component system k002020 ] I [ I
o
e 1 | ] K
= % ) o o o o o o o o o o o o 5
o= = = = = = = = = = = = = il
g o o 1 1 1 1 1 1 1 1 1 1 1 1
5 & o o o o o o o o o o o a a
e+*8 z z z z = = 2 2 = = = =
= = = = = I 4 I I & = I I
= § T 3 3 % 5 v & = f 5 5
Forage Type Prevalence ALDEx2 Effect CLR Abundance Storage Form
Hc N2 6 M Bag_silo
. cl -0.2 +] . Bunk_Silo
L P 4 M Conv_silo
I-o_s Ia [ stack_Silo
-0.8 2
B
Quorum sensing ko02024
Metabolic pathways koD1100
Biosynthesis of secondary metabolites ko01110 I
ABC transporters ko0D2010
Microbial metabolism in diverse environmentsko01120 - E -
Biosynthesis of amino acids ko01230
Cysteine and methionine metabolism ko00270

Glycine, serine and threonine metabolism  ko00260
Two-component system ko02020

Bacterial chemotaxis ko02030 -
Folate biosynthesis ko00790 D g
® o = w
£ ¢ 3 I I N D
'; % E 2} o © © 2} e} «® 2] o © fie] fie] <1
g g = = = = = = = = = = = = B
® o N | 1 I I I 1 I I 1 I 1 1
Pl o:of oY oYofofofofororofs
w
8 = 2 £ £ f f £ £ £ 2 I =
x & = ¥ o ~ © © o~ - % = wn
Forage Type Prevalence ALDEx2 Effect CLR Abundance Storage Form
Hc iz ! 1 iB° M Bag_silo
Hc 0.5 4 2 Bunk_Silo
0 3 M Conv_Silo
L 5 | stack_Silo
1

Figure B4: Distribution of differentially abundant function pathways predicted using Piphillin. Inoculated and
uninoculated corn silage in the fall 2015 (A) or spring 2016 (B).

155



g
i

&
IIIlIIIIIIIl oo

| B S B S |

~13 -0F -0% B0 01 02 03

Loading

o
e
e

o
em

e
-
e

v

vm
-
aren

-
i
o
o
o
v
=
setim

sriim
s
e

=
anen
-
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Figure B9: Sparse partial least square regression analysis of physicochemical parameters and bacterial ASV
for inoculated grass/legume silage. (A) Correlation circle plot based on the first two dimensions. (B) Loading
plots of ASV showing their contributions to the first (left) and second (right) components. (C) Clustered image
map showing correlations between physicochemical parameters and ASV.
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Figure B10: Prevalence, abundance, and distribution across clusters of ASV significantly correlated with
physicochemical parameters for inoculated grass/legume silage.
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Figure B11: Sparse partial least square regression analysis of physicochemical parameters and bacterial ASV
for uninoculated corn silage. (A) Correlation circle plot based on the first two dimensions. (B) Loading plots of
ASV showing their contributions to the first (left) and second (right) components. (C) Clustered image map
showing correlations between physicochemical parameters and ASV.
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B-1 Supplemental Results

B-1.1 Forage physicochemical characteristics associated with microbial
communities

Among the 60 microbial features selected by the sPLS approach within H community assemblies,
Proteobacteria including an unclassified Rhizobiaceae, a species of the group Allorhizobium-Neorhizobium-
Pararhizobium-Rhizobium (Allorhizobium-NPR sp.), and Pantoea agglomerans, Actinobacteria including
unclassified Microbacteriaceae, and Bacteroidetes represented by Spirosoma sp. exhibited the highest loading
weights in sPLS component 2 (Fig. B5 B), showing their high contribution in the separation of clusters in
component 2 (Fig. B5 B-C). The MaAsLin2 approach selected 55 microbial features significantly associated with
magnesium, moisture, and NDF contents, as well as the storage form of hay. MaAsLin2 is a complementary
approach to sPLS in that it can integrate categorical variables in the analysis model. The top 50 features with
significant associations are shown in the supplementary data (Fig. B5 D). Actinobacteria including Nocardioides
sp. and Proteobacteria including Serratia sp., Pseudomonas sp., and Yersinia sp. that were found significantly
associated with moisture content (Fig. B5 D) are expected to be part of cluster 1. The canonical relationships
between taxa found to be significantly associated with quantitative and categorical variables identified after SPLS
and MaAsLin2 analyses were modelled using CCpnA. This analysis revealed that within the variable describing
hay storage forms detected by MaAsLin2 analysis, loose hay, not square bales, correlated with community
variation. CCpnA also confirmed the impact of sampling periods on taxa occurrence and abundance within H

microbiotas.

For the GL samples, Firmicutes represented by Lactobacillus spp., Proteobacteria including
Methylobacterium sp. and Sphingomonas sp., and Actinobacteria represented by Curtobacterium sp.
contributed the much to the separation between clusters in component 1 (Fig. B7 B). On the other hand,
Firmicutes including Weissella spp., Lactobacillus spp., and Pediococcus sp., Actinobacteria comprising
Aeriscardovia spp. and Corynebacterium sp., and finally Proteobacteria represented by Serratia sp. exhibited
the highest contribution to cluster separation in component 2 (Fig. B7 B). Of the 77 ASV distributed among the
three clusters, Firmicutes almost essentially composed cluster 1, indicating distinctively higher correlations
between putative taxa and moisture, FA and VFA (Fig. B7 C). Proteobacteria, mostly positively correlated with
pH, mainly composed cluster 2. Other Firmicutes showing stronger associations with CP_NH3 mainly composed
cluster 3. Complementarily, MaAsLin2 analysis identified 27 ASV significantly associated with pH values, LA,
moisture, crude fat (CF), and ammonia (NH3). For instance, while some Firmicutes including Lactobacillus spp.,
L. buchneri, Pediococcus parvulus, and Carnobacterium sp. were found negatively correlated with pH, hence
indicating their high contribution to silage low pH, others such as Weissella paramesenteroides, Lactococcus

sp., Pediococcus sp., and P. pentosaceus were positively associated with pH, thus under certain circumstances
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involved in silage high pH outcomes. Consequently, the latter ASV would drop into cluster 2, and the remaining
into cluster 1. The analysis of these canonical relationships also revealed that in addition to pH, ASV composing
cluster 2 were correlated with silage storage forms including square bales, round bales, and oxygen-limiting silos
(Fig. 3-8B, Fig. B7 D). On the other hand, all ASV composing cluster 1 and most ASV composing cluster 3,
principally those identified by the sPLS approach and generally highly correlated with moisture, LA, FA, CP, and
VFA, were also correlated with conventional and stack silos (Fig. 3-8B). It appears that cluster 1, specifically
composed of ASV that were correlated with LA and moisture, are largely dominated by Firmicutes, although
Erwinia sp., and another unclassified Enterobacteriaceae were present. Almost all ASV in this cluster largely
occur in conventional silos (concrete-stave silos), bag silos, and oxygen-limiting silos. ASV composing cluster 2
broadly exhibited highest prevalence levels, particularly within round bales, square bales, and bag silo groups,
wherein they generally occurred at low relative abundance, except P. pentosaceus, W. paramesenteroides, and
Pediococcus sp. that exhibited highest relative abundance (Fig B8). ASV that fell into cluster 3 were generally

the least prevalent and abundant, occurring almost essentially in conventional and oxygen-limiting silos.

In the case of GLI samples, sPLS regression selected for 79 ASVs of which Proteobacteria represented
by Methylobacterium sp and Firmicutes including Pediococcus sp. and Lactobacillus sp. exhibited high
contributions for the separation of clusters in component 1, while Firmicutes including Lactobacillus spp. and an
unclassified Clostridiaceae contributed the most to cluster separation in component 2 (Fig. B9 B). The MaAsLin2
analysis resulted in the selection of 67 ASV that variably correlated with the type of inoculant used during
ensiling, the form of storage applied, or ESC, LA, acetic acid (AA), calcium, and phosphorus contents (Fig. B9
C). Some Firmicutes including Lactobacillus spp. and Weissella sp. showed positive correlations with both AA
and LA contents, indicating the influence of the ensiling environment on the species development. The ASV
composing cluster 1 were mostly associated with silage storage forms including oxygen-limiting and
conventional silos, as well as inoculant types including 11G22 and Biotal Supersile, while ASV in cluster 2 mostly
associated with the inoculant Biotal Buchneri 500. However, cluster 1 grouped ASV with the highest prevalence
levels and broader distribution patterns among conventional and oxygen-limiting silos (Fig. B10). Except for
Corynebacterium sp. and Yersinia sp. that belong to the phyla Actinobacteria and Proteobacteria respectively,
all ASV in this cluster were Firmicutes of the genera Lactobacillus, Ligilactobacillus, Limosilactobacillus,
Lentilactobacillus, Weissellla, Pseudogracilibacillus, Pediococcus, and Staphylococcus. Within cluster 2, all
ASV, practically absent from oxygen-limiting silos, were mostly Proteobacteria, while in cluster 3, ASV mostly

included Firmicutes with few occurrences in oxygen-limiting silos.

Within the selected microbiota of uninoculated silage, Firmicutes represented by Lactobacillus spp.
contributed the most to the separation of clusters on component 1, while other Lactobacillus spp. contributed

the most to cluster separations on component 2 (Fig. B11 B). The 40 ASV composing the sPLS derived clusters
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belonged to the phyla Firmicutes and Proteobacteria (Fig. B11 C). The MaAsLin2 modelling revealed 113 ASV
significantly associated with CP_ADF, LA, and the silage storage forms. Compared with the sPLS approach,
additional phyla including Actinobacteria and Bacteroidetes were selected. Most of these taxa were positively
correlated to silage storage forms, while only six including Lactobacillus spp., Acetobacter spp., an unclassified
Lactobacillales, and Enterobacteriaceae positively correlated with LA content. On the other hand, among ASV
negatively associated with LA were Firmicutes and mostly Proteobacteria. Firmicutes included Pedicoccus sp.,
L. diolivorans, L. buchneri, and other lactobacilli. Proteobacteria were represented by Ameyamaea spp.,
Achromobacter sp., Comamonas sp., Providencia stuartii, Providencia spp., and Morganella morganii. Taxa
grouped in cluster 1 appeared to mostly associate with bag and stack silos, while those in cluster 2 correlated
with conventional silos. As illustrated in Fig. B12, taxa that significantly correlated with C metadata were not
uniformly distributed among silage storage forms. Broadly, lower prevalence levels were observed within
members of cluster 1 compared with those in cluster 2, and taxa with the highest relative abundance were not
necessarily the more prevalent. The latter included as members of cluster 1 Lactobacillus sp. occurring in
conventional, stack, and bag silos, Acetobacter sp. occurring in stack silos, Pseudomonas sp. occurring in a Bag
silo, and Lactobacillus spp. occurring in a stack silo. Among ASV composing cluster 2, those with highest relative
abundance included Serratia sp. occurring mostly in conventional and stack silos, and Lactobacillus sp.

occurring mostly in conventional and bag silos.

Of the 50 ASV identified by the sPLS approach (Fig. B13 C) within the CI microbial community,
Proteobacteria including Lelliottia sp., Enterobacter spp., Raoultella terrigena, and an unclassified
Enterobacteriaceae, and Firmicutes represented by Lactobacillus spp. and Vagococcus fluvialis highly
contributed to the separation of clusters on the sPLS component 1, while a Proteobacteria identified as Serratia
sp. exhibited a strong contribution to cluster separation on component 2 (Fig. B13 B). Modelling the relationships
between the selected variables and microbial communities using MaAsLin2, we identified 20 ASV significantly
associated with CP, AA, and ESC, as well as the silage storage form and the type of inoculant used for ensiling.
Proteobacteria represented by Methylobacterium adhaesivum, and Firmicutes including Lactobacillus sp. and
Leuconostoc sp. were negatively correlated with AA, indicating their probable sensitivity to high amounts of AA.
Moreover, ASV composing cluster 1 mostly associated with the inoculant 11CFT, while those found in cluster 2
mostly associated with the inoculant 11C33 and with bunker silo. As depicted in Fig. B14, of all the taxa selected,
Proteobacteria and Firmicutes were the most represented. However, Firmicutes which mostly composed cluster
1 were the more prevalent, being largely distributed across conventional and bunker silos. The most abundant
taxa included Lactobacillus sp. occurring in conventional silos, Acetfobacter sp. occurring in conventional silos

and a bunker silo, and Lactobacillus sp. and Latilactobacillus sakei both occurring in conventional silos.
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B-1.2 Molecular ecological network analyses

Within the GL network, we found that the node corresponding to L. buchneri positively interacted with
Lactobacillus spp. and showed negative relationships with other Lactobacillus spp. as well as Pediococcus spp.,
Weissella sp., Bacillus sp., and Sphingomonas sp. Lactiplantibacillus plantarum, represented by a single
phylotype, exhibited only negative relationships with four ASVs including Pediococcus sp., Lactobacillus sp.,
Bacillus sp., and Sphingomonas sp. In addition to Sphingonomas sp., other Proteobacteria phylotypes including
M. adhaesivum, Allorhizobium group., Pantoea spp., and Stenotrophomonas positively interacted with
Firmicutes comprising Pediococcus spp., Enterococcus sp., Loigolactobacillus coryniformis, and Lt. sakei (Fig.
B15A).

On the other hand, the GLI network (Fig. B15 B) was composed of 47 nodes of which more than 87 %
were Firmicutes and the remaining Proteobacteria. L. buchneri only co-occurred with Lactobacillus sp., while
sharing negative relationships with more than 87 % of nodes, including Proteobacteria (Pseudomonas sp.,
Serratia spp., Allorhizobium group) and Firmicutes (Bacillus spp., Lactobacillus spp., Lactobacillus acidipiscis,
Limosilactobacillus panis, L. coryniformis, Pediococcus spp., P. pentosaceus, Weissella spp., W.
paramesenteroides, Oceanobacillus caeni, and Kroppenstedtia sanguinis). Like L. buchneri, L. plantarum
exhibited the same pattern of interactions with other nodes in the network, sharing a unique positive relationship
with a phylotype of Lactobacillus sp. and negative relationships with the same taxa as L. buchneri, except L.
coryniformis. Of the 47 keystones phylotypes identified in the GL pMEN, the two network hubs included a
Firmicutes classified as Weissella sp. and a Proteobacteria classified as Sphingomonas sp. (Table B4).
Connectors were composed of Actinobacteria including Rhodococcus sp., Firmicutes represented by a
phylotype of Bacillus sp., L. buchneri, L. plantarum, L. coryniformis, Lactococcus sp., nine phylotypes of
Lactobacillus spp., eight phylotypes of Weissella spp., and two phylotypes of unclassified Lactobacillaceae, and
Proteobacteria including a phylotype of Aeromonas sp., Allorhizobium group, Methylobacterium sp., Serratia sp.,
two phylotypes of M. adhaesivum, Pantoea spp., Pseudomonas spp., Stenotrophomonas spp., and three

phylotypes of unclassified Enterobacteriaceae (Table B4).

The C network was composed of 80 % Firmicutes including 17 phylotypes of Lactobacillus spp., two
phylotypes of L. coryniformis, and one phylotype of Pediococcus parvulus, and 20 % Proteobacteria represented
by one phylotype of Pseudomonas sp., three phylotypes of Serratia spp., and one phylotype of unclassified
Enterobacteriaceae. All the five phylotypes of Proteobacteria positively interacted with each other, and with
Firmicutes including principally Lactobacillus spp. and L. coryniformis, indicating that these lactobacilli covaried
with Proteobacteria. However, the other phylotypes of lactobacilli and that of P. parvulus negatively interacted
with Proteobacteria (Fig. B15 C). On the other hand, 55 nodes composing the CI network were subdivided into

two modules (Fig. B15 D), involving mostly Firmicutes (80 %) and Proteobacteria (18.18 %), the phylum
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Actinobacteria being represented by a single phylotype. Among the Firmicutes contained in the CI network were
one phylotype of L. buchneri, two phylotypes of L. plantarum, two phylotypes of L. coryniformis, one phylotype
of Paucilactobacillus hokkaidonensis, 34 phylotypes of Lactobacillus spp., one phylotype of P. parvulus, P.
pentosaceus, Weissella sp., and Leuconostoc sp. Proteobacteria of this network included three phylotypes of
Acetobacter spp. and Serratia spp., one phylotype of Klepsiella sp., Pseudomonas sp., Yersinia sp., and an
unclassified Enterobacteriaceae. Oerskovia sp. was the sole Actinobacteria of the Cl network. L. buchneri
positively interacted with Firmicutes only, including P. parvulus, Lactobacillus sp., and L. plantarum, while
exhibiting negative relationships with almost all Proteobacteria and Actinobacteria, as well as most of other
Firmicutes including L. plantarum, Pl. hokkaidonensis, L. coryniformis, and P. pentosaceus. L. plantarum shared
positive relationships with P. parvulus and eight other lactobacilli, and negative relationships with all
Proteobacteria, Actinobacteria, and most of the other Firmicutes. The two phylotypes of L. plantarum had
different node degrees, probably indicating different ecological roles in the silage fermentation process.
Concerning P. pentosaceus, another species constitutive of some inoculants, positive relationships were shared
with only few Firmicutes comprising L. coryniformis, while negative relationships were shared with most

Proteobacteria and other Firmicutes.
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Annexe C — Matériel supplémentaire du chapitre 4

Table C1: Milk characteristics in the fall 2015 and the spring 2016

Parameters  Fall 2015 p value Spring 2016 p value
H GL GLC  GLICI H GL GLC GLICI
(n=5) (n=7) (n=4) (n=T7) (n=5) (n=7) (n=4) (n=T7)

Fat (%) 427+ 402+ 401+ 4.01% 032 420+ 401+ 383 4.03%+ 0.05
0.40 0.10 0.20 0.10 0.20 0.10 0.20 0.20

Protein (%) 330+ 32+ 330%x 330% 012 330+ 320 320+ 33+ 0.08
0.01 0.10 0.05 0.10 0.10 0.10 0.10  0.10

Urea-N (mg/dl) 1260+ 1210+ 970+ 1120+ 040 1380+ 1170+ 1040+ 1010+ 0.18
4.40 2.50 1.70 2.01 2.50 3.50 320 1.80

Lactose (%) 450+ 460+ 460+ 450+ 023 450+ 500+ 460+ 460+ 0.32
0.10 0.10 0.01 0.10 0.13 0.03 010 0.10

SCC (x104ml) 29.60+ 1459+ 1795+ 1797+ 0.66 1744+ 1646+ 1243+ 1531 0.70
228.80 4750 80.10 448 108.20 10450 56.60 29.60

SCC, somatic cell counts. Mean values are followed with corresponding standard deviation.

Table C2: Topological properties of the empirical pMENSs in milk microbial communities and their associated
random pMENs

Empirical networks Random networks

Average Average  Modularity Average

Feeding Similarity Network degree Average clustering (No. of Average clustering
type threshold size (avgK) path  coefficient modules) path coefficient Modularity
GL 081 135 1613 306 032  032(4) 88‘1‘1’ ggfi 0.16 0,05
GLC 037 57 F44 133 078 000(1) o0F DIOF 002x002
GLICI 089 135 1542 198 028  020(2) gg‘:’i 8(2)‘:’i 0.17 £ 0.01
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Figure C1: Cluster analysis of forage ration types. Clustering was computed using the portioning around
medoids algorithm. (A) Principal component analysis showing the separation of forage ration bacterial
communities in three distinct clusters. Gap statistics (B) was performed to estimate the right number of clusters
and the silhouette analysis (C) was used for clustering validation.
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Figure C2: Alpha-diversity of milk bacterial communities. p values indicate the significance of the Kruskal Wallis
test performed to compare milk samples from distinct feeding combinations.
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Figure C3: Differentially abundant taxa among milk samples. Differential abundance was performed using the
ADEX2 algorithm on microbial community data from milk samples collected in the fall (A) and the spring (B). The
heatmap illustrates the distribution and abundance of differentially abundant taxa across feeding types.
Corresponding paired group comparisons, effect sizes, and taxonomic classification (phylum level) are displayed
as heatmap annotation on the left.
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Figure C4: Phylogenetic balances separating milk microbiota by forage type. For example, the balance of the
phylum Firmicutes relative to the class Actinobacteria discriminates H from GLICI and GLC milk samples.
Firmicutes are represented by Clostridium disporicum, Clostridium sp., Paeniclostridium sp., Coprococcus sp.,
Romboutsia sedimentorum, Romboutsia sp., Veillonella dispar, and an unclassified Peptostreptococcaceae
while Actinobacteria include Bifidobacterium spp., Cellulosimicrobium spp., Kocuria spp., Corynebacterium spp.,
Saccharopolyspora rectivirgula, and more.
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Figure C6: Differentially abundant function pathways among milk samples for fall. Differential abundance was
performed using the ADEX2 algorithm on milk sample microbial community data. The heatmap illustrates the
distribution and abundance of differentially abundant features across feeding types. Corresponding paired group
comparisons, effect sizes, and taxonomic classification (phylum level) are displayed as heatmap annotation on
the left.
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Figure CT: Differentially abundant function pathways among milk samples for spring. Differential abundance
was performed on milk sample data using the ADExX2 algorithm. The heatmap illustrates the distribution and
abundance of differentially abundant features across feeding types. Corresponding paired group comparisons,
effect sizes, and taxonomic classification (phylum level) are displayed as heatmap annotation on the left.
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Figure C8: Sparse partial least square regression on milk parameters and ASV. (A) Correlation circle plot based
on dimensions 1 and 2. (B) ASV contribution loading plots on the first (left) and second (right) components. (C)
Clustered image map of correlations between milk parameters and ASV.
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Figure C9: Distribution, prevalence, and abundance of phylotypes significantly correlated with milk parameters.
Milk samples are grouped according to the type of forage storage form prevailing in the dairy farm. Accordingly,
Ls = loose hay, SqB = square bales, CvS = conventional silo, OLS = oxygen-limiting silo, RdB = round bales,
BgsS = bag silo, StS = stack silo, CvS+OLS = Forage stored in conventional silo and oxygen-limiting silos on the
same farm; similarly for CvS+RdB, CvS+BkS wherein BkS = bunker silo, OLSq where OL and Sq denote OLS
and SqgB, respectively. The information on inoculants used for ensiling and feed typologies are provided as
heatmap annotation on the bottom. Associated clusters determined by sparse partial least square regression
are provided as heatmap annotation on the left.
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samples associated with the GL (A), GLC (B), and GLICI feeding typologies(C). Edges comprise blue lines
representing co-occurrence relationships, and red lines representing the co-exclusions. Modules are numbered

when occurring more than once in a network.
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Figure C11: Distribution, prevalence, and abundance of shared phylotypes between forage types and milk
samples.
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