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Abstract

This paper presents a comprehensive set of
probing experiments using a multilingual lan-
guage model, XLM-R, for temporal relation
classification between events in four languages.
Results show an advantage of contextualized
embeddings over static ones and a detrimen-
tal role of sentence level embeddings. While
obtaining competitive results against state-of-
the-art systems, our probes indicate a lack of
suitable encoded information to properly ad-
dress this task.

1 Introduction

Time is a pervasive element of human life
with no counterpart in any other cognitive do-
mains (Bonomi and Zucchi, 2001). Such perva-
siveness is mirrored in natural languages through
sets of devices that allows speakers to refer to time,
to reason about time and things that unfold in time.
Reasoning about time is one of the central com-
ponents of common sense knowledge (Pianesi and
Varzi, 1996; Boyd, 2010; Geva et al., 2021) and
its modeling has been at the core of many early
approaches in Computational Linguistics and Ar-
tificial Intelligence (Schank and Abelson, 1975;
McDermott, 1982; Allen, 1984; Passonneau, 1988;
Moens and Steedman, 1988). More recently, spe-
cific Natural Language Understanding (NLU) tasks
related to time have been developed, ranging from
the identification of temporal expressions (Mani
et al., 2001; Mazur and Dale, 2010), to measur-
ing the duration of events (Pan et al., 2006b,a;
Zhou et al., 2019), and the ability to order them
chronologically(Mani et al., 2003; UzZaman and
Allen, 2010; Ning et al., 2018; Wen et al., 2021).
More complex tasks have challenged models to
extract storylines (Chambers and Jurafsky, 2008;
Minard et al., 2015; Caselli and Inel, 2018), under-
stand narratives (Mostafazadeh et al., 2017, 2020;
Lal et al., 2021), and answer temporally related
questions (Llorens et al., 2015; Ning et al., 2020).

Recent work has focused on recasting temporal
relation classification as a Natural Language In-
ference (NLI) task where fine-tuned pre-trained
language models (PTLMs) have achieved good re-
sults (Vashishtha et al., 2020).

Embedding representations, both static and con-
textual, have shown to play a key role to improve
systems’ results on different time-related bench-
marks, especially for the classification of tempo-
ral relations between pairs of events (Mirza and
Tonelli, 2016; Cheng et al., 2020). When it comes
to contextualized embeddings the probing of such
models for temporal knowledge has not been prop-
erly investigated yet. If we embrace the vision of
PTLMs as large repositories of linguistic knowl-
edge (Derby et al., 2021; Mosbach et al., 2020; Mi-
aschi et al., 2020), it is a natural question to probe
these models for their knowledge about events and
time. We present an extensive study on temporal
relation probing of PTLMs using five temporally
annotated corpora in four languages (i.e., English,
French, Spanish, and Italian). Although the se-
lected languages all belong to Indo-European fam-
ily, they present differences for the tense-mood-
aspect (TMA) system while showing similarities at
the lexico-pragmatic level. Our probing tasks fo-
cus on temporal ordering of pairs of events (E–E),
either in the same sentence or in different ones.

Our contributions Our work has three contribu-
tions: (i) it is the first work to probe a multilingual
PTLM, XLM-R base, for temporal knowledge
between event pairs; (ii) we study the impact of
multilingual contextualized representations against
monolingual counterparts based on static word em-
beddings; (iii) we compare zero-shot PTLM against
fine-tuned models for temporal reasoning to inves-
tigate whether the models have acquired real tem-
poral knowledge. Code and data are available.1

1https://github.com/irenedini/tlink_
probing

https://github.com/irenedini/tlink_probing
https://github.com/irenedini/tlink_probing


3198

2 Data Overview

We have selected five corpora annotated with lan-
guage specific adaptations of ISO-TimeML (Puste-
jovsky et al., 2010). ISO-TimeML is, at the same
time, an annotation meta-model for marking events,
temporal expressions, and relations between them,
and a full-fledged annotation language. ISO-
TimeML has 13 values used to classify tempo-
ral relations, based on Allen’s interval temporal
logic (Allen, 1983) where each value expresses
how an event chronologically relates to another
event or a temporal expression. In the following
paragraphs we present a short overview of the five
corpora we have used. For our experiments, we
have extracted all temporal relations between event
pairs, either occurring in the same sentence or in
difference sentences. Table 1 presents a summary
of the temporal relations between events for each
corpus.

EN-TimeBank The English TimeBank (Puste-
jovsky et al., 2003) is a corpus of 183 documents
manually annotated following the TimeML anno-
tation guidelines (Saurı et al., 2006). The whole
corpus has gone through a curation phase for the
SemEval 2013 TempEval-3 task (UzZaman et al.,
2013), where an extra test set of 20 documents
has been annotated with the same guidelines. In
our experiments, we follow the TempEval-3 split
for training and test distributions, excluding the
automatically annotated data (i.e., silver data dis-
tribution). EN-TimeBank uses the full 13 temporal
values from ISO-TimeML to classify event-event
relations.

IT-TimeBank The Italian TimeBank (Caselli
et al., 2011) has 254 documents, comparable in
size and annotation to the EN-TimeBank. We have
followed the official split into train and test from
the EVALITA 2014 EVENTI task (Caselli et al.,
2014). Similarly to EN-TimeBank, the 13 fine-
grained temporal values have been used to classify
temporal relations.

FR-TimeBank French TimeBank (Bittar et al.,
2011) is a corpus of 107 documents in French anno-
tated following an adaptation to French of TimeML.
The corpus does not present an official split into
train and test. To obviate to this, we have first
extracted all temporally annotated event pairs and
then created a train and test distribution following
a 75-25 split. FR-TimeBank also uses the full 13

temporal values for classifying temporal relations

EN-TB-Dense The TimeBank-Dense cor-
pus (Cassidy et al., 2014) contains only 36
documents from the training portion of the
EN-TimeBank. EN-TB-Dense approximates a
complete graph of all possible temporal relations
over events and temporal expressions by labeling
all pairs locally, i.e., same sentence and adjacent
sentence pairs. EN-TB-Dense simplifies the set of
possible temporal relation values by reducing it to
five and introducing a new value, VAGUE, for all
relations that do not carry a clear semantics.

ES-TimeBank The Spanish TimeBank (Saurı
and Badia, 2012) contains 210 documents in Span-
ish. We have followed the official release into train
and test splits. Similarly to the EN-TimeBank-
Dense, the authors have simplified the set of pos-
sible temporal relations to five plus VAGUE. How-
ever, the overlap is limited only to BEFORE AFTER,
with the other three being new.

3 Temporal Probing

Our probing task investigates the capabilities of
PTLMs to encode information about events and
their temporal ordering. To probe such informa-
tion across multiple languages, we use XLM-R
base (Conneau et al., 2020),2 a large multilingual
model that has achieved state-of-the-art results on
many NLU tasks. Following previous work (Ten-
ney et al., 2019; Jawahar et al., 2019; Vulić et al.,
2020; de Vries et al., 2020, inter alia), we extract
embedding representations from each layer and use
them to train a linear SVM whose objective is to
predict the value of a temporal relation between a
given pair of events. By default, we feed the SVM
with four concatenated embeddings: the embed-
dings of the sentence containing each event in the
pair and those of each event. In case the event pair
occurs in the same sentence, we duplicate the sen-
tence representation. Sentences are represented by
averaging the embeddings of the tokens excluding
XLM-R base’s special tokens.

We compare the default settings with three vari-
ations: (i) we use only the embeddings of the
events in the pair; (ii) we use the embeddings
from two XLM-R base models previously fine-
tuned with the EN-TimeBank and EN-TB-Dense

2https://huggingface.co/
xlm-roberta-base

https://huggingface.co/xlm-roberta-base
https://huggingface.co/xlm-roberta-base
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EN-TimeBank IT-TimeBank FR-TimeBank EN-TB-Dense ES-TimeBank
Temporal Relation Train Test Train Test Train Test Train Test Train Test

BEFORE 180 83 167 38 107 32 884 378 834 62
AFTER 184 90 79 15 36 10 729 275 499 47
INCLUDES 67 15 47 19 2 3 207 57 – –
IS_INCLUDED 64 29 46 28 2 1 265 52 – –
DURING 4 0 0 0 125 30 – – – –
SIMULTANEOUS 132 45 131 46 26 9 72 22 – –
IMM_BEFORE 11 1 2 1 6 1 – – – –
IMM_AFTER 5 1 3 0 0 1 – – – –
BEGINS 11 0 0 0 15 5 – – – –
BEGUN_BY 11 0 1 0 5 1 – – – –
ENDS 4 1 0 1 3 2 – – – –
ENDED_BY 21 0 2 0 7 1 – – – –
IDENTITY 140 15 217 50 78 42 – – – –

OVERLAP – – – – – – – – 4,478 307
BEFORE_OVERLAP – – – – – – – – 907 74
OVERLAP_AFTER – – – – – – – – 336 26
VAGUE – – – – – – 1,995 634 29 5

Table 1: Summary of the distribution of the temporal relations between pairs of events in all five corpora. For the
EN-TB-Dense, the values for the training are obtained by merging together the training and the development sets.

corpora recasted in forms of Natural Language In-
ference pairs for temporal reasoning as described
in Vashishtha et al. (2020); (iii) we use monolin-
gual static word embeddings obtained with the
word2vec skip-gram (w2v) model (Mikolov
et al., 2013) (see Appendix A for details). Lastly,
all probing variations are compared with a dummy
classifier predicting the majority class in each cor-
pus.

4 Results

Figure 1 summarizes the results for all corpora and
settings. Details per corpus are in Appendix B.

Although all probing models outperform their
respective baselines, our results further confirm
that temporal relation classification is a challenging
task. XLM-R embeddings consistently obtain the
best results across all languages and granularities of
the temporal relations, improving the performance
of static embeddings. With the exclusion of EN-
TB-Dense, the presence of sentence embeddings is
detrimental, confirming previous findings (Miaschi
and Dell’Orletta, 2020). Although temporal rela-
tions are a discourse phenomenon at the interface
of the semantics and pragmatics dimensions, it ap-
pears that the event only embeddings from XLM-R
already store sufficient semantic information to per-
form this task.

Regardless of the granularity of the temporal re-
lations, it clearly emerges from all the plots that the
best results for XLM-R are obtained between layers
6 and 8. Performances are consistently sub-optimal

for early layers, especially 1–4. For higher layers,
i.e., 10–12, results are disappointing, with the ex-
ception for English whose best probe is at layer
11.Given the task and previous findings on the en-
coding of linguistic knowledge in PTLMs (Tenney
et al., 2019; Jawahar et al., 2019), this is not fully
expected. Ideally, if PTLMs tend to encoded more
semantic features in the top layers, performances
for this task should not degrade on the top layers,
as we see for Spanish, Italian, and French, or, at
least, they should remain on a plateau.

A further finding concerns the role of fine-
tuned models for temporal reasoning, namely
XLM-R_tbd and XLM-R_tb. The models have
been fined-tuned using the English corpora EN-
TB-Dense and EN-TimeBank recasted for tem-
poral reasoning. We expected the embeddings
from these models to be more competitive than
basic XLM-R, but this is not the case. In general,
we observe a better performance for XLM-R_tbd
than XLM-R_tb, in-line with the results reported
by Vashishtha et al. (2020). The better results of
XLM-R_tbd hold also in cross-lingual settings, re-
gardless of the granularity of the temporal values
used in the specific corpus.

When comparing results across corpora, two di-
mensions are at play: the first is the granularity
of the temporal values; the second is the number
of training examples. A general pattern we ob-
serve is the following: the less temporal values
are to be learned, the better the results of a trained
model, provided that the annotated data are consis-
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(b) EN-TB-Dense (non-vague)
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(e) EN-TimeBank
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(f) IT-TimeBank
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Figure 1: Overview of the probing results across all corpora. For each plot, the x-axis reports the layer id of XLM-R
base, the y-axis reports the micro-F1. In the legend on the bottom left side, ns stands for “no sentence”; tbd and
tb refer to the fine-tuned XLM-R base models for temporal reasoning: tbd stands for EN-TB-Dense, tb stands
for EN-TimeBank.

tent. To better illustrate this, we focus our analysis
on the EN-TB-Dense and ES-TimeBank first. Both
corpora adopt coarse grained temporal values and
have the largest number of annotated data. Nev-
ertheless, the way the value VAGUE is used in the
two corpora is not the same. In EN-TB-Dense,
given the specific annotation framework, VAGUE

is used both in case of an existing temporal rela-
tion with an unclear semantics but also for event
pairs with no temporal relation. This is not the case
in Spanish. Such a difference is mirrored in the
results: as soon as we remove VAGUE, scores in
the EN-TB-Dense improve while they remain the
same in ES-TimeBank. When considering the cor-
pora with fine-grained temporal values, we observe
that the F1-score in EN-TimeBank is the lowest (in
absolute terms), while results are much better for
IT-TimeBank and FR-TimeBank. The differences
in this case can only be due to a more consistent ap-
plication of the annotation guidelines in Italian and
French than in English. Support to this claim can
be found in the fact that Italian and French have a
lower number of sentences in training, 695 and 412
respectively, than English, namely 834. To gain
insights, we have analyzed the overlapping events
between Train and Test splits, i.e., how many times
the same event appears in Train and Test, even if
coupled with a different event and with a differ-
ent temporal value. While FR-TimeBank has the
largest overlap (58%), IT-TimeBank has the lowest

(29%) and EN-TimeBank is in the middle (35%).
If it was just a matter of data, we would expect
the EN-TimeBank to obtain better F1-scores than
IT-TimeBank.

Comparison with state of the art is limited to EN-
TB-Dense and IT-TimeBank. No previous work
for this task is available FR-TimeBank and ES-
TimeBank, and for EN-TimeBank we only have
access to systems which classified temporal rela-
tions from raw text. Concerning the EN-TB-Dense,
the best system, SECT (Cheng et al., 2020), adopts
a multi-task learning approach using a GRU archi-
tecture. On the E–E classification it achieves an
F1-score 0.650, gaining 0.098 points with respect
to our best training layer. A more similar architec-
ture, CATENA (Mirza and Tonelli, 2016) a linear
SVM combining pre-trained word embeddings and
additional features, obtains an F1-score of 0.519,
only 0.012 points above us. As for Italian, the best
system, FBK-HTL-time (Mirza and Minard, 2014),
a feature-based linear SVM, achieves an F1-score
of 0.688, beating our approach of 0.062 points.

Statistical significance testing We also per-
formed statistical significance tests across all the
probing systems using the McNemar’s test. We
ran the significant tests using two different settings:
first by considering the last embedding layer of the
PTLMs and subsequently the embedding layer that
gave the best results for each probing. Details can
found in Appendix C.
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All probing experiments are consistently signifi-
cant when compared to their respective baselines,
with the exclusion of the EN-TimeBank corpus.

When focusing on the differences between the
PTLM embeddings and the static ones, the results
are more scattered, with different behaviors across
each dataset. We observe significant differences
in the majority of cases when sentence representa-
tions are excluded from the static embeddings. Two
datasets, ES-TimeBank and IT-TimeBank, present
peculiar behaviors when compared to the others.
For the ES-TimeBank, probes with PTLM embed-
dings tend to be not statistically significant with
respect to the static ones. The opposite trend, on
the contrary, can be observed for the IT-TimeBank.

Finally, across all the PTLM probes, a clear ten-
dency that emerges is that significant differences
can be observed only when using XML-R_tb
embeddings, while only in few cases the signifi-
cant difference can be observed when using the
XML-R_tbd embeddings.

5 Conclusion

This paper investigates the knowledge encoded in a
large multilingual PTLM, XLM-R base, for tem-
poral relation classification between pairs of events
in four languages and five corpora with varying
granularities of temporal values. Our results point
out that temporal relation classification between
events is very challenging and the linguistic knowl-
edge in XLM-R is limited to properly address it.
While contextual embeddings are more “powerful”
than static ones, current fine-tuned models for tem-
poral reasoning (Vashishtha et al., 2020) are not
helpful as one would expect. Our probes indicate
that adding more information, i.e., sentence repre-
sentations, to lexical entities is detrimental, mean-
ing that “global” semantic information is already
encoded at the lexical level. Finally, our models
are competitive with state-of-the-art systems, indi-
cating that improvements are due either to specific
architectures or extra features capturing additional
knowledge not available in the contextual embed-
dings.
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A Monolingual Static Embeddings

All monolingual static word embeddings have been taken from this repository: https://vectors.
nlpl.eu/repository/ . We have used the versions from the 2017 CoNLL shared task.

B Probes Models: Detailed Results

The following Tables presents detail results for each corpus from our experiments. We have highlighted in
green the best results for each corpus across all models. For each probe model, we have highlighted in
bold the best results. Scores correspond to micro-F1.

Layer score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12

XLM-R 0.409 0.435 0.432 0.464 0.465 0.475 0.492 0.486 0.468 0.461 0.507 0.496 –
XLM-R_NS 0.362 0.396 0.392 0.416 0.434 0.439 0.451 0.486 0.498 0.469 0.500 0.479 –
XLM-R_TBD 0.425 0.473 0.448 0.46 0.467 0.479 0.497 0.487 0.476 0.481 0.496 0.502 –
XLM-R_TB 0.418 0.432 0.418 0.455 0.447 0.461 0.459 0.437 0.444 0.432 0.416 0.428 –

W2V – 0.398
W2V_NS – 0.470

BASELINE – 0.447

Table B.1: Results on EN-TB-Dense

Layer score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12

XLM-R 0.564 0.593 0.57 0.601 0.618 0.622 0.645 0.664 0.66 0.651 0.655 0.656 –
XLM-R_NS 0.603 0.605 0.603 0.607 0.633 0.614 0.670 0.689 0.668 0.672 0.672 0.653 –
XLM-R_TBD 0.564 0.566 0.570 0.562 0.601 0.605 0.614 0.618 0.608 0.620 0.618 0.610 –
XLM-R_TB 0.580 0.555 0.595 0.605 0.607 0.610 0.633 0.643 0.633 0.631 0.626 0.601 –

W2V – 0.622
W2V_NS – 0.628

BASELINE – 0.589

Table B.2: Results on ES-TimeBank

Layer score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12

XLM-R 0.286 0.321 0.275 0.307 0.318 0.371 0.396 0.379 0.379 0.379 0.400 0.346 –
XLM-R_NS 0.264 0.300 0.336 0.300 0.307 0.336 0.332 0.368 0.371 0.389 0.404 0.354 –
XLM-R_TBD 0.293 0.307 0.311 0.336 0.361 0.393 0.382 0.393 0.339 0.336 0.357 0.282 –
XLM-R_TB 0.279 0.307 0.300 0.296 0.271 0.271 0.279 0.296 0.268 0.279 0.271 0.246 –

W2V – 0.279
W2V_NS – 0.268

BASELINE – 0.321

Table B.3: Results on EN-TimeBank

https://vectors.nlpl.eu/repository/
https://vectors.nlpl.eu/repository/
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Layer score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12

XLM-R 0.480 0.460 0.520 0.515 0.545 0.551 0.535 0.540 0.581 0.581 0.545 0.530 –
XLM-R_NS 0.490 0.540 0.545 0.551 0.591 0.621 0.621 0.591 0.606 0.616 0.586 0.601 –
XLM-R_TBD 0.460 0.470 0.505 0.535 0.510 0.535 0.510 0.515 0.535 0.586 0.545 0.566 –
XLM-R_TB 0.470 0.500 0.485 0.530 0.495 0.490 0.460 0.465 0.455 0.465 0.414 0.338 –

W2V – 0.369
W2V_NS – 0.444

BASELINE – 0.253

Table B.4: Results on IT-TimeBank

Layer score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12

XLM-R 0.338 0.324 0.338 0.396 0.424 0.482 0.511 0.511 0.482 0.460 0.446 0.439 –
XLM-R_NS 0.331 0.345 0.388 0.403 0.424 0.482 0.511 0.525 0.518 0.511 0.511 0.453 –
XLM-R_TBD 0.331 0.324 0.367 0.432 0.432 0.468 0.475 0.482 0.460 0.439 0.460 0.475 –
XLM-R_TB 0.353 0.345 0.324 0.388 0.353 0.388 0.410 0.381 0.396 0.345 0.353 0.295 –

W2V – 0.345
W2V_NS – 0.317

BASELINE – 0.216

Table B.5: Results on FR-TimeBank

C Statistical Testing

The Tables from C.1 to C.10 illustrate the results of the McNemar’s tests for each language and each
probing model (including the baseline based on the most frequent class). The values in all the Tables
correspond to p-values. The threshold of the α value for significance has been set to < 0.05.

C.1 PTLMs last layer
The Tables from C.1 to C.5 report the p-value scores for each language when using the last layer of each
PTLM.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R – 0.235 0.734 < 0.001 < 0.001 0.147 0.007
XLM-R_NS – 0.171 0.006 < 0.001 0.652 0.085
XLM-R_TBD – < 0.001 < 0.001 0.055 < 0.001
XLM-R_TB – 0.057 0.002 0.033
W2V – < 0.001 0.002
W2V_NS – 0.069
BASELINE –

Table C.1: Significance EN-TB-Dense - last layer.
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Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R – 0.911 0.037 0.014 0.136 0.203 0.003
XLM-R_NS – 0.053 0.024 0.181 0.271 0.006
XLM-R_TBD – 0.740 0.664 0.498 0.410
XLM-R_TB – 0.242 0.065 0.031
W2V – 0.736 0.057
W2V_NS – 0.006
BASELINE –

Table C.2: Significance ES-TimeBank - last layer.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R – 0.888 0.038 0.004 0.053 0.028 0.555
XLM-R_NS – 0.022 0.002 0.040 0.022 0.444
XLM-R_TBD – 0.358 1.000 0.760 0.343
XLM-R_TB – 0.386 0.624 0.033
W2V – 0.780 0.290
W2V_NS – 0.184
BASELINE –

Table C.3: Significance EN-TimeBank - last layer.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R – 0.029 0.435 < 0.001 0.024 0.556 < 0.001
XLM-R_NS – 0.419 < 0.001 < 0.001 0.024 < 0.001
XLM-R_TBD – < 0.001 0.001 0.171 < 0.001
XLM-R_TB – 0.047 < 0.001 0.009
W2V – 0.065 < 0.001
W2V_NS – < 0.001
BASELINE –

Table C.4: Significance IT-TimeBank - last layer.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R – 0.832 0.359 0.003 0.099 0.019 < 0.001
XLM-R_NS – 0.728 0.001 0.060 0.011 < 0.001
XLM-R_TBD – < 0.001 0.007 0.728 < 0.001
XLM-R_TB – 0.222 0.766 0.080
W2V – 0.327 0.005
W2V_NS – 0.038
BASELINE –

Table C.5: Significance FR-TimeBank - last layer.
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C.2 PTLMs best layer
The tables from C.6 to C.10 report the p-value scores for each language when using the best layer of each
PTLM.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R (11) – 0.639 0.830 0.005 < 0.001 0.036 < 0.001
XLM-R_NS (11) – 0.901 0.017 < 0.001 0.081 0.003
XLM-R_TBD (12) – 0.013 < 0.001 0.055 < 0.001
XLM-R_TB (6) – < 0.001 0.608 0.430
W2V – < 0.001 0.002
W2V_NS – 0.069
BASELINE –

Table C.6: Significance EN-TB-Dense - best layer.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R (8) – 0.198 0.037 0.152 0.067 0.124 0.002
XLM-R_NS (8) – < 0.001 0.005 0.001 0.004 < 0.001
XLM-R_TBD (8) – 0.597 0.935 0.740 0.251
XLM-R_TB (10) – 0.640 0.897 0.003
W2V – 0.736 0.057
W2V_NS – 0.006
BASELINE –

Table C.7: Significance ES-TimeBank - best layer.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R (11) – 1.000 0.043 0.002 < 0.001 < 0.001 0.045
XLM-R_NS (11) – 0.066 0.003 < 0.001 < 0.001 0.035
XLM-R_TBD (9) – 0.241 0.097 0.052 0.691
XLM-R_TB (8) – 0.668 0.470 0.520
W2V – 0.780 0.290
W2V_NS – 0.184
BASELINE –

Table C.8: Significance EN-TimeBank - best layer.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R (10) – 0.256 1.000 0.212 < 0.001 0.072 < 0.001
XLM-R_NS (7) – 0.382 0.015 < 0.001 0.003 < 0.001
XLM-R_TBD (10) – 0.177 < 0.001 0.036 < 0.001
XLM-R_TB (4) – 0.013 0.532 < 0.001
W2V – 0.065 < 0.001
W2V_NS – < 0.001
BASELINE –

Table C.9: Significance IT-TimeBank - best layer.
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Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R (8) – 0.804 0.503 < 0.001 < 0.001 < 0.001 < 0.001
XLM-R_NS (8) – 0.286 0.003 < 0.001 < 0.001 < 0.001
XLM-R_TBD (8) – 0.015 0.009 0.002 < 0.001
XLM-R_TB (7) – 0.608 0.164 < 0.001
W2V – 0.327 0.005
W2V_NS – 0.038
BASELINE –

Table C.10: Significance FR-TimeBank - best layer.


