
 

 

 University of Groningen

When malloc() Never Returns NULL -- Reliability as an Illusion
Kudrjavets, Gunnar; Thomas, Jeffrey; Kumar, Aditya; Nagappan, Nachiappan ; Rastogi,
Ayushi
Published in:
Proceedings of 2022 IEEE 33nd International Symposium on Software Reliability Engineering (ISSRE)

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Early version, also known as pre-print

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Kudrjavets, G., Thomas, J., Kumar, A., Nagappan, N., & Rastogi, A. (2022). When malloc() Never Returns
NULL -- Reliability as an Illusion. Manuscript submitted for publication. In Proceedings of 2022 IEEE 33nd
International Symposium on Software Reliability Engineering (ISSRE) IEEE.
https://arxiv.org/abs/2208.08484

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-02-2023

https://research.rug.nl/en/publications/08ca443a-383d-4908-a16f-4442381a8390
https://arxiv.org/abs/2208.08484


When malloc() Never Returns NULL—
Reliability as an Illusion

Gunnar Kudrjavets
University of Groningen

9712 CP Groningen, Netherlands
g.kudrjavets@rug.nl

Jeff Thomas
Meta Platforms, Inc.

Menlo Park, CA 94025, USA
jeffdthomas@fb.com

Aditya Kumar
Snap, Inc.

Santa Monica, CA 90405, USA
adityak@snap.com

Nachiappan Nagappan
Meta Platforms, Inc.

Menlo Park, CA 94025, USA
nnachi@fb.com

Ayushi Rastogi
University of Groningen

9712 CP Groningen, Netherlands
a.rastogi@rug.nl

Abstract—For decades, the guidance given to software engi-
neers has been to check the memory allocation results. This vali-
dation step is necessary to avoid crashes. However, in user mode,
in modern operating systems (OS), such as Android, FreeBSD,
iOS, and macOS, the caller does not have an opportunity to
handle the memory allocation failures. This behavioral trait
results from the actions of a system component called an out-
of-memory (OOM) killer. We identify that the only mainstream
OS that, by default, lets applications detect memory allocation
failures is Microsoft Windows. The false expectation that an
application can handle OOM errors can negatively impact its
design. The presence of error-handling code creates an illusion
of reliability and is wasteful in terms of lines of code and code
size. We describe the current behavior of a sample of popular OSs
during low-memory conditions and provide recommendations for
engineering practices going forward.

Index Terms—Allocator, memory, OOM, OOM killer.

I. INTRODUCTION

This paper is prompted by observations about how various
OSs behave under low memory conditions. Based on our
industry experience, we notice that the application’s OOM
error-handling code never executes on specific OSs. We do
not observe specific pre-programmed actions such as recovery,
retrying allocations, or the presence of relevant log mes-
sages. Instead, applications are just being terminated. How-
ever, recommended software engineering practices encourage
engineers to diligently write error-handling code to verify
the success of each explicit memory allocation [1], [2], [3].
Handling the OOM errors is supposedly necessary to avoid
crashes and ensure that an application continues functioning
in a stable state.

We argue that for popular kernels and OSs based on them,
such as Android, Linux, iOS, or FreeBSD, the core assumption
that an application can reliably handle the OOM conditions is
outdated. In most mainstream OSs, a user mode application
will never have an opportunity to handle a failure to allocate
memory. This deviation from a traditional assumption about
how to design robust applications is caused by modern OSs
using a system component called an OOM killer (see Sec-

tion II-B). Suppose the amount of memory allocated by an
application exceeds a certain quota (e.g., a per-process limit)
or the amount of free memory for an entire OS drops below
a certain threshold. In that case, the OOM killer will start
terminating processes to free memory. Processes that will be
killed can be an application that fails to allocate memory or
any other processes that match the heuristic that the OOM
killer uses. The presence of an OOM killer has implications
on how reliable applications should be designed and what
assumptions they can make about their ability to handle and
recover from errors.

We conduct experiments on Android, FreeBSD, iOS, Linux,
macOS, and Windows to investigate how an application be-
haves under low-memory conditions. We also investigate how
high memory consumption impacts other applications execut-
ing in parallel. Based on the sample of OSs we investigate;
we find that when using default settings: (a) only on Windows,
an application can reliably know if OS does not have enough
memory to satisfy the allocation request and react appropri-
ately, (b) applications consuming the most of memory will
be terminated before other applications executing in parallel
experience the consequences of low-memory conditions, and
(c) though not always a suitable technique, using an OOM
killer is a practical approach to maintain OS’s stability. We
offer suggestions on how applications should be designed
given these limitations and how the presence of an OOM
killer changes the prevailing long-held beliefs about memory
management.

II. BACKGROUND AND MOTIVATION

A. Memory management

An OS is responsible for managing access to various re-
sources exposed to applications. These resources include CPU
time allocation, memory, storage, and direct hardware access.
Accessing any of these resources is based on an application’s
exact demands. For example, an application can create a file,
allocate a fixed size of memory, or request the creation of
a thread. Good programming practices for writing reliable

ar
X

iv
:2

20
8.

08
48

4v
1 

 [
cs

.S
E

] 
 1

7 
A

ug
 2

02
2



code [1], [2], [3] suggest that an application must always
check the return value from a mechanism (e.g., a syscall) used
to manipulate the resources managed by an OS. In theory,
if allocating resources fails, then an application can decide
how to handle this error according to its design principles. An
application can continue to execute in a way that inflicts the
least damage to the users or the system’s overall stability.

This paper focuses on handling a failure to allocate one
category of resources—memory. The kernel manages the en-
tirety of the memory in an OS. The kernel is defined as “the
part of the system that runs in protected mode and mediates
access by all user programs to the underlying hardware (e.g.,
CPU, keyboard, monitor, disks, network links) and software
constructs (e.g., filesystem, network protocols)” [4, p. 22].
User mode is the counterpart to the software running inside the
kernel (kernel mode). The scope of the user mode is limited to
“programs running outside the kernel” [5, p. 298]. This paper
focuses only on user mode applications. Applications such as
a browser, a compiler, or a text editors run in user mode.
All applications distributed by application stores like Google
Play for Android or App Store for iOS and iPadOS execute
in user mode. From a typical user’s point of view, user mode
applications are mainly what they visibly interact with.

The kernel manages memory in chunks of fixed size called
pages or page frames [5], [6]. The memory manager in the
kernel is responsible for tasks such as accounting for memory
usage, managing physical pages, paging, and swapping. All
user mode applications eventually end up requesting memory
from the kernel allocator.

One of the kernel’s responsibilities is to ensure the system’s
overall stability The kernel needs to track the per-process
memory allocations as part of this requirement. If the amount
of free physical pages becomes too small, then this threatens
the stability of an entire OS. To alleviate this situation, the
kernel can terminate user mode processes to release some of
the pages.

The consequences of errors between kernel mode and user
mode are different. The damage caused by incorrect memory
management in user mode is, in most cases, limited to the
scope of a single process. However, a similar mistake in kernel
mode (e.g., in a device driver) has dire consequences, resulting
in a kernel panic [7, p. 18] or a bug check [8] (more commonly
known as BSoD or Blue Screen of Death). As a result, an
entire system becomes unusable.

B. The purpose of the OOM killer

The OOM killer is a built-in facility in some of the OSs
responsible for preemptively monitoring the memory usage
for an entire OS.1,2,3 The logic to decide what processes
to terminate is based on heuristics such as the type of
application, its priority, its memory usage, and a variety of
other implementation-specific details. The OOM killer uses
approaches like monitoring specific watermarks for the number

1https://lwn.net/Kernel/Index/#OOM killer
2https://engineering.fb.com/2018/07/19/production-engineering/oomd/
3https://source.android.com/devices/tech/perf/lmkd

of available and used physical pages of memory, triggering
paging in the kernel, flushing internal caches if needed, and
killing processes as a last resort. The OOM killer operates
within the scope of an individual process. The necessity
to employ an OOM killer is dictated by the fact that an
OS cannot assume that each user mode application manages
memory efficiently and does not have memory leaks. Utilizing
the OOM killer enables an OS to continue providing services
for all the processes while sacrificing a few.

C. Behavioral differences between OSs

The general principles of memory management in modern
OSs are well-document in literature [8], [9], [10], [11], [12],
[13]. However, different OSs may use conceptually contrasting
approaches to memory management that influence the applica-
tion’s design. For example, we enumerate critical differences
between how kernels in Linux (foundation for Android), iOS,
and Windows approach memory management.

• Linux uses a concept called overcommitting [2]. Over-
committing means that when memory is allegedly allo-
cated, a particular memory region is not yet reserved for
the application’s use. The actual allocation of memory
happens when the allocated pages are modified. During
the write operation, a page access fault is triggered, and
only then will kernel attempt to allocate memory. Linux
utilizes the OOM killer by default.

• iOS does not use either paging or swapping [14]. Paging
is an optimization technique to temporarily store the
contents of memory on a disk and reload it as needed.
As a result, iOS can only utilize as much memory as
physically available. Memory is one of the most precious
resources on iOS. That design decision forces the iOS
OOM killer to aggressively terminate applications that
use too much memory.

• Windows, on the other hand, does not use overcommitting
and does not have an OOM killer. The NT kernel was
designed [8], [15] to be robust against user mode appli-
cations requesting “too much memory.” An application
can assume that when a pointer to a region of memory
is returned, memory will be available.

We can see that behavior at the conceptual level between
different OSs varies significantly. These differences, in turn,
can have implications on the design assumptions of applica-
tions that are intended to run cross-platform.

D. Causes for an OOM condition

An OS not having enough memory to complete the desired
operation can either be a permanent or a temporary condition.
For example, if a service has a sudden spike in the number of
requests it must process, this condition can be transient. Once
the number of requests decreases, the memory consumption
will reduce as well. If during that time, either the service or
other applications running in parallel use various mitigation to
temporarily deal with memory pressure, then they can continue
to execute.



If an application has a consistent memory leak (e.g., a cache
that is not bounded or allocations that are never released), then
without killing the process, the OS will eventually run out of
memory. If the leak is in a user mode process, the memory
can be eventually reclaimed by terminating the process(es). If
the leak is in the kernel itself (e.g., in an I/O manager code),
then the only solution to reclaim the memory is to reboot the
system.

E. Strategies to handle the OOM conditions

The standard guidance for engineers is to check the result of
each call to one of the functions related to memory allocation
and assume that they can fail [1], [2], [3]. This rationale
assumes that when memory is unavailable, the allocator will
return a value that signifies that the memory request failed.
If memory allocation fails, the engineer can do any of the
following:

1) Clean up and return: The function needs to release the
resources already allocated at its scope, roll back the changes
in the global state, and return the appropriate error code or
an exception to the caller. The central assumption here is that
the caller will handle the error and perform similar actions.
Eventually, the user or a top-level caller is communicated the
reason why an operation failed. The primary intent behind this
strategy is to return the system to a stable state and ensure
continued execution [3, p. 49].

2) Log an error message and exit the current process: The
basic pattern for this approach is displayed in Listing 1.

Listing 1
HANDLING AN OOM CONDITION IN C.

void *p = malloc(N);

if (!p) {
perror("OOM");
exit(EXIT_FAILURE);

}

The rationale for this behavior is that if no more memory
can be allocated, further use of the application is undesirable.
The best course of action is to record what happened and hope
restarting the application will avoid the problem next time. The
application can also try to flush the pending changes to the
disk, save the current state, or perform other actions to help
with future recovery. There are no guarantees, however, that
any actions, including logging the error message itself (that
may require allocating memory), will succeed.

3) Release and retry: The application can perform a last-
minute attempt to free any resources available (e.g., release
memory allocated for an internal cache) and then retry allo-
cating memory. The reasoning is that if the application stores
many objects in the memory, then the cache can be populated
later, and the freed memory may help the application continue
executing.

4) See no evil, hear no evil, speak no evil: Approaches
like ignoring the problems related to resource manage-
ment [3, p. 223], most famously applied to earlier versions of
UNIX [16], are also possible. Some of the anecdotal reasoning

we have heard in the industry is based on the cost of writing
reliable code versus the probability and consequences of a
crash in non-critical user mode applications.

F. Strategies to anticipate the OOM conditions

We have observed various techniques that applications use
to avoid getting into the OOM situation in the first place. One
of the strategies involves periodically polling the available OS
memory (either a percentage or a fixed size). Based on the
amount of available memory, an application will preemptively
take various steps to reduce the possibility of the OOM.
However, modern OSs utilize concepts such as cgroups in
Linux [17] and job objects in Windows [8], [15]. Those
constructs allow controlling one or more processes as a group.
For example, a creator of a job object can specify how much
memory a single process can allocate or how much I/O the
process can perform. In that state, an application can no longer
use data about the global state to make correct decisions about
memory availability.

Subscribing to low-memory notifications is another way
to be notified about memory pressure. Most modern OSs
enable applications to react to a situation when the number
of free pages falls under a certain threshold. An application
can then try to release resources allocated by it and hope
that the resulting impact on the amount of available memory
is significant enough for the OOM killer not to terminate
the process. However, there are no guarantees that any effort
performed by an application at this stage will be sufficient to
avoid termination.

Anticipatory Memory Allocation [18] is a technique used
to make kernel robust to memory-allocation failures. Sim-
ilar logic can be applied to the user mode applications.
Applications can preemptively estimate how much memory
they need and attempt to pre-allocate this amount during the
startup. For non-critical applications, this approach is very
wasteful because most of the memory will be hoarded and
not used. Similar methods use memory allocation rate as a
predictor [19].

Attempt to outsmart the OOM killer is another possibility.
The source code for kernels of OSs such as various distri-
butions of Linux or FreeBSD is public. The inner workings
of the OOM killer can be inferred from that source code.
Even though iOS is a closed-source OS, the internals of
how Darwin and Mach kernels are implemented are also
documented to some degree [12], [14]. An application can
reverse engineer the algorithm the OOM killer uses to avoid
being terminated. However, each OS can change both the
design and implementation of the OOM killer with each new
release or an update, rendering all preemptive measures an
application has put in place obsolete.

III. EMPIRICAL FINDINGS

Listing 2 contains the essential part of a program4 we use
on different OSs to gather empirical data about what happens

4https://figshare.com/s/8ed507efe7d4ed0f6480



when an application tries to continue allocating memory
without releasing it. The algorithm allocates a fixed size of
memory, dirties the allocated pages by explicitly writing into
them post-allocation, and returns an error when memory no
longer can be allocated. The extra step of dirtying the pages
is necessary to prevent the optimizations related to overcom-
mitting and, in some cases, compilers optimizing away the
allocation code.

Listing 2
ALGORITHM TO CONTINOUSLY CONSUME MEMORY.

/* Any size can be used here. */
unsigned alloc_size = 1024 * 1024 * 10;

while (1) {
void *p = malloc(alloc_size);

if (!p) {
perror("OOM!");
exit(EXIT_FAILURE);

}

/* Dirty the allocated pages. */
memset(p, ’X’, alloc_size);

}

We execute this application on Android, FreeBSD, iOS,
Linux, macOS, and Windows. Both as a single instance and
multiple copies in parallel with varying allocation sizes. We
observe distinct types of behaviors: (a) OOM killer terminates
only the offending application because it consumes most of
the memory, (b) OOM killer terminates a set of processes
(not necessarily including the offender) based on its heuristic
(e.g., background versus foreground, priority, recent usage),
(c) global alerts from an OS indicating lack of memory that
result in a user being presented with a choice of what process
to manually terminate, and (d) malloc() returns NULL when
an OOM condition happens.

This behavior matches what we expect based on inspecting
the source code for various implementations of an OOM
killer and existing documentation. Samples of the output from
various OSs are displayed in Listing 3.

Listing 3
SAMPLES OF BEHAVIOR ON VARIOUS OSS.

# Microsoft Windows 10.0.22000.675
C:\Temp>oom.exe
OOM!: Not enough space

# Ubuntu 20.04.3 LTS (Focal Fossa)
$ ./oom
Killed

# macOS Monterey Version 12.3.1
$ ./oom
zsh: killed ./oom

Our experiments are run with default settings. We do not
modify any parameters specific to overcommitting, process-
related quotas, or use custom user mode memory managers.
Default kernels are used for all the OSs.

Out of all the OSs we experiment with, in case of an
OOM condition, malloc() returns NULL only on Win-
dows. On all the other OSs, a set of processes consuming
most of the memory (or meeting the criteria a particular
OOM killer uses) are terminated by the OOM killer first.

IV. DISCUSSION AND IMPLICATIONS

A. Implications of current state in memory management

The problem of “malloc() never returns NULL,” and short-
comings of the OOM killer have been known since it was
introduced to Linux [20], [21]. Current historical assumptions
about handling the OOM conditions have a variety of adverse
side-effects when it comes to application reliability.

1) Lack of ability to handle errors: When writing code,
engineers assume the possibility of recovering and executing
of error-handling code. For most of the popular OSs, this
assumption is incorrect. In low-memory conditions, an appli-
cation may be killed by the OOM killer using SIGKILL.
SIGKILL (colloquially known as kill -9) is a signal that
causes an application’s immediate termination. Because the
application cannot handle, intercept, or block SIGKILL, an
application must assume that it can be terminated at any
moment, with or without a cause. An application may never
have a chance to handle an OOM condition in its code. As a
result of sudden termination, an application may leave behind
various residues. For example, an application could fail not to
clean up the temporary cache of files on a disk, not release
cross-process synchronization primitives, or even corrupt data.
Therefore, if an application is designed under the assumption
that it will have a chance to handle an OOM condition, then
it needs to be redesigned to match the current reality.

2) Lack of control over the execution environment: In
general, most applications do not fully control their execution
environment. That is especially true for mobile applications on
Android or iOS, where OS “sandboxes” the application. The
OS will prevent an application from making changes to the
device and even querying the data about other applications.
Potential workarounds to avoid being terminated, such as
modifying the OOM killer settings, are not possible by design.

3) Lack of fairness: Ensuring a system’s stability is not
an entirely fair process. An application must not be the most
significant memory consumer to be killed. Another process of
a higher priority may be using more memory, and the appli-
cation may end up on the kill-list regardless. Alternatively, it
may be one of the many applications that are terminated to
ensure that the OS can continue providing services. Even if
an application releases all the memory possible as a response
to a low-memory notification and behaves as a “good citizen”
in a specific ecosystem, it can still be terminated.

4) Maintenance costs: An application’s code base will
contain error-handling code that is never executed. That extra
code needs to be maintained and tested. The presence of extra
error detection and recovery code decreases the clarity of the
code base and its readability [22]. The error-handling code



is shown to be a “substantial source of faults in systems
code” [23]. Other negative side-effects of extra code include
increases in the application’s size. Application size, in turn, is
one of the factors that need to be tightly controlled on mobile
OSs such as Android or iOS [24]. From a testing point of
view, additional execution paths will require developing more
test cases and effort to reach higher code coverage.

B. Discussion points

1) Overcommitting: For server OSs, such as different distri-
butions of Linux and BSD, there are several options to control
an OS’s behavior. An organization that deploys applications
internally can either build a custom kernel or control different
settings related to overcommitting. For example, the Linux
kernel can be configured to disable overcommitting. One of
the risk factors with this approach is that even if a particular
application is designed to handle the OOM events properly,
the behavior of all the other applications is unknown.

2) Multiple platforms: If an application’s code is intended
to run cross-platform on OSs without the OOM killer, it must
handle the possible failures to allocate memory. Ideally, a
version compiled for each platform will be optimal, i.e., no
unnecessary checks for allocation failures if an OOM killer
is present on a target OS. However, there is a downside to
initially omitting the error-handling code. An application that
is originally designed to run only on one OS and later ported
to a different OS will require revisiting all the instances in the
code base where memory allocation is performed.

3) Exclusion from OOM killer: There is a possibility that
applications can exclude themselves from being killed by
the OOM killer. However, that option is not available for
applications installed through an official mobile application
deployment platform such as Apple Store or Google Play
Store. For example, in Linux, an ability to exclude a specific
process from being killed may be available only for privileged
processes depending on the kernel version. Enabling this
approach also introduces the “what if everyone did that”
dimension to the OOM management issue, rendering the
OOM killer ineffective.

4) Silent OOM killer makes debugging time-consuming:
Our observations from the industry indicate that users have
a poor experience when the OOM killer does its job. We
had to debug a multitude of issues when under low-memory
conditions, a process experienced a sudden termination. The
actions of the OOM killer result in a sudden “application
death” caused by SIGKILL. However, for the user, there is no
clear indication of why the application was terminated. This
problem is well-known in the Linux community.5 Anecdotal
evidence from users after enabling systemd-oomd by default
on Ubuntu Desktop supports this observation.6

C. Recommendations

We recommend that engineers adopt the following guiding
principles when designing their applications:

5https://lwn.net/Articles/894546/
6https://lists.ubuntu.com/archives/ubuntu-devel/2022-June/042116.html

1) On OSs that utilize an OOM killer, design applications
with an assumption that they can be terminated at any
time without having a chance to react. This concept
is not new. The desire for an application to gracefully
recover after a crash has been advocated for in the
past [25]. Some applications use patterns such as a global
exception handler for unhandled exceptions. The code
that is part of a global exception handler can perform any
necessary actions before termination. However, global
exception handlers will not execute when the OOM killer
terminates a process.

2) On OSs where an application can subscribe to low-
memory notification events, an application should assume
that its termination is imminent if notified. The best-case
scenario in such situations is to treat this notification as
an opportunity to either trigger the controlled shutdown
sequence or execute a best effort to avoid conditions that
would prevent the application’s restart. An application
should try to commit pending changes, synchronize its
in-memory data structures to the disk, and possibly, as
a last-effort attempt, try to release as much memory as
possible.

3) If an application is intended to be deployed on OSs where
the application can handle an OOM condition, then it
should use a consistent design pattern such as “clean
up and return” everywhere. Utilizing a consistent design
pattern where each function is responsible for error-
handling and cleanup is a design strategy that requires
engineers to exercise this practice meticulously. However,
unless all the dependencies follow a similar approach, this
solves only a part of the problem. Given the engineering
cost, we recommend this approach for critical user mode
applications such as daemons or services, depending on
the nomenclature a particular OS uses.

4) If the design of an application supports recovery in
case of sudden termination, then we recommend that
for memory management, the application switch over
to functions such as xmalloc(),7 xrealloc(), and xfree()
or their equivalents. These functions are guaranteed to
either return successfully or terminate the application
with an appropriate error message. Using the “x-family
memory allocation functions” enables the application to
omit the error-handling code and simplify the error-
handling strategy [22].

5) If an application is developed in C++, the standard
library enables interception of a situation when the new
operator cannot allocate memory. If malloc() will return
NULL, an application can choose how to act under
the OOM conditions in a central location by setting a
custom new-handler.8 The handler can try to release some
memory and retry the allocation, terminate, or perform a
different action depending on the application’s design.

7https://www.freebsd.org/cgi/man.cgi?query=xmalloc
8https://en.cppreference.com/w/cpp/memory/new/set new handler



V. CONCLUSIONS AND FUTURE WORK

Universally checking the result of a request to allocate
memory has been a standard practice for decades. Our recom-
mendation to ignore that guidance on a subset of OSs is clearly
contrarian. However, software development practices need to
adapt to a new reality. That new reality means, for example,
in the case of popular mobile OSs such as Android and iOS,
an application is not in control of what happens in case of
an OOM event. The typical desktop applications that execute
in non-administrative mode have the same limitations. They
cannot change the OS settings, query the details about the
memory usage of other applications, and cannot circumvent an
official OOM killer to prolong their existence. As a result, all
the code that is supposed to execute when an OOM condition
happens will never run. Therefore, there is no reason for that
code to be present.

One topic for the future work we intend to pursue is the
effectiveness of low-memory notifications on OSs that enable
them. We want to study (a) how many and what types of
applications use those mechanisms, (b) what actions do they
perform (e.g., is the memory being released or an event is
just logged), (c) how efficient those actions are (e.g., what
percentage of memory that an application is responsible for
is released), and (d) what is the impact of those actions
(e.g., in what percentage of cases the OOM killer will let
an application continue to execute).

Another subject we are interested in studying is engineers’
belief systems about memory management. Based on our
observations, the beliefs depend on the abstraction level the
engineers work at. Engineers working lower in the stack (e.g.,
compilers, kernel, systems software in general) tend to be
more cognizant of the consequences of memory allocation
failures. They believe in doing everything possible to prolong
the application’s lifetime. We are interested in studying if there
is validity to our observations across the industry.

VI. THREATS TO VALIDITY

Like any other study, the results we present in this paper
are subject to specific categories of threats [26, p. 222–223].

Threats to external validity are related to application of our
findings in a different context. There are a variety of OSs in
existence. Our experiments were run only on a subset of OSs,
albeit the most popular ones. The behavior of various kernels
and OOM killers is constantly evolving. Our conclusions are
drawn only from a sample of available data. For commercial
OSs, we rely on publicly accessible information [8], [12], [14],
[15] about how their kernel behaves. However, that logic can
change during any subsequent releases.

One threat to conclusion validity is related to the fact that
our reasoning is drawn mainly from our experiences with
the development of commercial system software. That implies
a bias towards optimizing certain characteristics of software
(e.g., performance cost, presence of unnecessary lines of code)
and making trade-offs differently than, for example, in the case
of open-source software.

REFERENCES

[1] S. McConnell, Code Complete, 2nd ed. Redmond, WA, USA: Microsoft
Press, 2004.

[2] R. Love, Linux System Programming, 2nd ed. Sebastopol, CA, USA:
O’Reilly Media, May 2013.

[3] J. Noble and C. Weir, Small Memory Software, ser. Software Patterns
Series. Boston, MA, USA: Addison Wesley, Nov. 2000.

[4] M. K. McKusick, G. V. Neville-Neil, and R. N. M. Watson, The Design
and Implementation of the FreeBSD Operating System, 2nd ed. Upper
Saddle River, NJ, USA: Addison Wesley, 2015.

[5] A. S. Tanenbaum and A. Woodhull, Operating Systems: Design and
Implementation, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall,
1997.

[6] D. P. Bovet and M. Cesati, Understanding the Linux Kernel, 2nd ed.
Sebastopol, CA, USA: O’Reilly, 2003.

[7] M. Beck, Ed., Linux Kernel Internals, 2nd ed. Boston, MA, USA:
Addison-Wesley, 1998.

[8] M. E. Russinovich, D. A. Solomon, and A. Ionescu, Windows Inter-
nals, 6th ed. Redmond, WA, USA: Microsoft Press, 2012, OCLC:
ocn753301527.

[9] T. Anderson and M. Dahlin, Operating Systems: Principles and Practice,
2nd ed. Austin, TX, USA: Recursive Books, 2014.

[10] A. S. Tanenbaum, Modern Operating Systems, 2nd ed. Upper Saddle
River, NJ, USA: Prentice Hall, 2001.

[11] W. Stallings, Operating Systems: Internals and Design Principles,
6th ed. Upper Saddle River, NJ, USA: Pearson/Prentice Hall, 2009.

[12] A. Singh, Mac OS X Internals: a Systems Approach. Boston, MA,
USA: Addison-Wesley Professional, 2016, OCLC: 1005337597.

[13] R. Love, Linux Kernel Development, 2nd ed. Indianapolis, IN, USA:
Novell Press, 2005.

[14] J. Levin, *OS internals. Volume 1: User space, 2nd ed. Edison, NJ,
USA: Technologeeks.com, 2017.

[15] J. Richter and C. Nasarre, Windows via C/C++, 5th ed. Redmond,
WA, USA: Microsoft Press, Nov. 2007.

[16] T. V. Vleck. (1993, Mar) Unix and Multics. [Online]. Available:
https://www.multicians.org/unix.html

[17] S. M. Jain, Linux Containers and Virtualization: A Kernel Perspective.
Berkeley, CA, USA: Apress, 2020. [Online]. Available: http:
//link.springer.com/10.1007/978-1-4842-6283-2

[18] S. Sundararaman, Y. Zhang, S. Subramanian, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau, “Making the common case the only
case with anticipatory memory allocation,” ACM Transactions on
Storage, vol. 7, no. 4, pp. 13:1–13:24, Feb. 2012. [Online]. Available:
https://doi.org/10.1145/2078861.2078863

[19] G. Nakagawa, H. Kawata, and S. Oikawa, “Out of memory prevention
based on memory allocation rate,” in 2015 Third International
Symposium on Computing and Networking (CANDAR), 2015, pp. 566–
570. [Online]. Available: https://doi.org/10.1109/CANDAR.2015.41

[20] Y. Jang, “Avoiding OOM on Embedded Linux,” Mountain View,
CA, USA, Apr. 2008, CELF Embedded Linux Conference. [Online].
Available: https://elinux.org/images/a/a3/CELF AvoidOOM.pdf

[21] P. Patare and V. K. Govindan, “Efficient handling of low memory
situations in Linux,” International Journal of Engineering Research
and Technology, vol. 4, 2015. [Online]. Available: https://www.ijer
t.org/research/efficient-handling-of-low-memory-situations-in-linux-
IJERTV4IS020176.pdf

[22] G. J. Holzmann, “Code evasion,” IEEE Software, vol. 32, no. 5, pp.
77–80, 2015. [Online]. Available: https://doi.org/10.1109/ms.2015.112

[23] S. Saha, J.-P. Lozi, G. Thomas, J. L. Lawall, and G. Muller, “Hector:
Detecting resource-release omission faults in error-handling code for
systems software,” in 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2013, pp.
1–12. [Online]. Available: https://doi.org/10.1109/DSN.2013.6575307

[24] M. Hort, M. Kechagia, F. Sarro, and M. Harman, “A survey of
performance optimization for mobile applications,” IEEE Transactions
on Software Engineering, 2021. [Online]. Available: https://doi.org/10
.1109/TSE.2021.3071193

[25] G. Candea and A. Fox, “Crash-Only software,” in 9th Workshop
on Hot Topics in Operating Systems (HotOS IX). Lihue, HI,
USA: USENIX Association, May 2003. [Online]. Available: https:
//www.usenix.org/conference/hotos-ix/crash-only-software

[26] F. Shull, J. Singer, and D. I. K. Sjøberg, Guide to Advanced Empirical
Software Engineering. London: Springer, 2008.


