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Abstract

We prove that the pseudoprocesses governed by heat-type equations of order n>2 have a
local time in zero (denoted by L{j(7)) whose distribution coincides with the folded fundamental
solution of a fractional diffusion equation of order 2(n — 1)/n, n>2.

The distribution of L{j(¢) is also expressed in terms of stable laws of order n/(n — 1) and their
form is analyzed. Furthermore, it is proved that the distribution of L{(?) is connected with a
wave equation as n — oo.

The distribution of the local time in zero for the pseudoprocess related to the Myiamoto’s
equation is also derived and examined together with the corresponding telegraph-type
fractional equation.
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1. Introduction

It is well-known that, for the standard Brownian motion B, the local time in zero,
which is defined as

1 !
Lo = lim 5 [ 1 a(BO) ds (1.1)

has a half-normal distribution coinciding with that of the maximum, that is

2ds 2
_ _ —s°/2t
Pr{Ly(?) € ds} = Pr{onglglgtB(z) € ds} = Tﬁe , s§>0, t>0. (1.2)

We analyze here the distribution of the local time of pseudoprocesses related to
higher-order heat-type equations of the form

Ou "u
.Y R
o= g YER 120, (1.3)

u(x,0) = d6(x),

where ¢, = (—1)""! for n=2p, p € N, while ¢, = £1 for n = 2p + 1.

The pseudoprocesses connected with equations of the form (1.3) were introduced
in the 1960s and have been studied since then by many authors such as Krylov [12],
Daletsky and Fomin [7], Ladokhin [14,15] Miyamoto [18] and Daletsky [6].

The fundamental solution u, to (1.3) is used to construct a signed measure Q, in
the following way. We consider a space of bounded functions (the sample paths of
the pseudoprocess) Z' = {x 1t €[0,00) > x(t)} and a decomposition of the set [0, ]
by means of the time points 0 = fp< --- <t, = £.

We define the cylinders

C={x:a<x(t))<by,. .., <a,<x(1,)<b,}, (1.4)

where g;, b; are real numbers and

by by, n
Qn(C)=/ / [T = xm1:8 = -0 d;, (1.5)

dan j=1
where we put x; = x(#;) (see [12,19-21]).
For fixed #1,...,1,, Q, is a finite g-additive measure on the Borel field generated by
the cylinders C and has finite total variation p,,:

+00 +00 n
Py = / dx / dx, H [tn(x; — X158 — tj-1)]
_ — i—1

] o0 j

+00 n
_ [/ |un(x,t)|dx] S,

because f:fs uy(x,t)dx = 1 and u, is sign varying.

The extension of Q,, is outlined with some details in [7,18], Nishioka [19] for n = 4
and follows easily for the general case, in the same way. The mean value with respect
to this signed measure is also defined and discussed in [19,21].
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The fundamental solution to (1.3) can be written as

1 +o00 S .
up(x, 1) =5 / e i en(ZIN dy (1.6)

—0Q0

n
and becomes, for n even, ¢, = (—1)2*!

1 +Do 1
u,(x, 1) = E/ cos(ax)e™™ " du (1.7)
0
while, for n odd, is equal to

1 [T il
—/ cos(ax + (—1) 2 o"t)do, ¢, = —1,
n
0 (1.8)

un(x: t) = +o00 .
E/ cos(ax + (—=1) 7 o"f)da, ¢, = 1.
0

Formula (1.6) displays a property of autosimilarity which can be expressed as
follows:

1 x
T/ln(x,[):mun(m,l), XGR, t>0.

The study of functions (1.6) goes back (for some special cases) to Bernstein [3],
Hardy and Littlewood [10], Polya [25], Lévy [16] (see [17,5]). The analysis of the
asymptotic behavior of u,(x, t), for x — 00, is carried out by Li and Wong [17] (by
means of the steepest descent method) and by Lachal [13] and shows that they have
an infinite number of zeros and display an oscillatory behavior.

From (1.7) we can conclude that u,(x, f) is symmetric for n even, while, for n odd,
we get

ul(x, 1) = u, (—x,1), (1.9)

where we indicate by u and u, the fundamental solutions for ¢, =1 and —1,
respectively.

For x = 0 all the functions u, are positive-valued (see formula (10) of Lachal [13]).
We also note that the integrals f0+ * u,(x, t)dx do not depend on ¢ (see [13, formula
(11)]) and they are equal to

1
3 n even,
+00 1 1 n1
/ un(x, 1) dx = 5(“;) nodd,c, =(=1)7, (1.10)
0
1
2

(1 +%) nodd, e, = (—1)'F.
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From (1.6) we have also that

+o00 1 +o00 o +0o0 . +00 -
/ tn (2, 1) dox = >~ / doeen =" / e ™ dx = / S(o)e T do = 1.
_ TJ) _

(1.11)

For the special case n = 3, the function u3(x, f) can be expressed by means of the Airy
functions.

For the investigation of functionals of pseudoprocesses a key role is played by the
Feynman—Kac functional (see the authoritative analysis in [4]), which has been
generalized to the case of pseudoprocesses by Daletsky and Fomin [7] and by Krylov
[12], who applied it to the derivation of the arc-sine law for pseudoprocesses of even
order.

For the convenience of the reader we state this result here:

Theorem 1.1. Let V be a piecewise continuous function. The initial-value problem

ow "w P
— =cy—— Vw,
ot " Oxn (1.12)
w(x,0) =1
has solution
t
w(x, 1) = Ex{efo ) dx}, (1.13)
where
Ex{e_fo V(X(S))ds} = lim / /efziﬁV(xf"l)(rﬂ"")Hu(x]' — X3t — tj-1) dx;,
- =l

(1.14)
provided that the limit exists.

The previous theorem transforms the research on the distribution of the
functionals of pseudoprocesses into an analytical problem (namely the solution of
the Cauchy problem (1.12)).

For V(x) = fljo,00)(x), from Theorem 1.1, it is possible to obtain the Laplace
transform of the sojourn time on the positive half-line. This has been done by Krylov
[12], in the even order case, and, in the odd case, by Orsingher [22], Hochberg and
Orsingher [11] and Lachal [13].

For V(x) = Bljge0)(x), a>0, the distribution of the maximum of pseudoprocesses
has been obtained in [1,2], for n = 3,4, and in [13], for any order n>2.

Other functionals, such as the hitting time and place of a half-line have been
studied by Nishioka [20], for the case n = 4.

Our paper is devoted to the study of the distribution of the local time in zero

1 t
Li(1) = lim — / 1 s (X (s)) ds, (1.15)
e—0 2¢ 0 ’
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for the pseudoprocess X(¢),#>0. This analysis can be carried out by applying
Theorem 1.1 to the case where

Vix) = % el (1.16)
0 otherwise.
Our first result is the following double Laplace transform:
00
/0 M Ee PO gy — llﬁ 2, 5>0, (1.17)
where
n for n even,
"= {Zn for n odd. (1.18)

We also prove that the local time Lj(#) possesses a genuine probability distribution
for all n which is connected with the solution of the following fractional diffusion
equation:

o2n=0/my, 1 Q%u

2n—)/n ] 27.2°
ot (5'1 sméi’) ox

u(x,0) =d(x), xeR, t>0.
u(x,0) = 0.

(1.19)

The connection between the distribution of Ljj(#) and Eq. (1.19) is given by the
relationship

Pr{L;(?) € ds} = 2dsuyu—1)/u(s, 1) for s>0, (1.20)

where uy,—1)/x(S, 1)1[0,00)(s) is the folded solution of the fractional equation (1.19).

For n=2 formula (1.20) coincides, up to a constant, with the well-known
relationship of Brownian motion (1.2): indeed, in this case, (1.19) becomes the heat
equation with diffusion coefficient 1/2.

Formula (1.20) permits us to derive the form of the distribution of Lj(f) from that
of u(,—1)/, (Which is studied in [9]), via its representation in terms of stable laws. The
distribution of L{(#) has a positive maximum, the position of which is given by
x = ka1t and kyy_1), is a constant depending on the degree of the
fractional equation (1.19). This implies that, for pseudoprocesses, this law has a
unimodal structure and the most likely values of L{() are, in general, not located at
the origin and move rightward as n — oco. Only in the Brownian case (n = 2) the
distribution decreases for all x>0.

At the limit, as n — oo, Eq. (1.19) becomes the wave equation with propagation
parameter equal to 1/z. This means that, in this case, the distribution of Lfj(z) tends
to degenerate around x = #/7.

The last section of the paper is devoted to the study of the distribution of the
local time in zero, denoted as L(’)” (?), of a pseudoprocess related to the Myiamoto
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equation
ou ' o%u
a—l:—aile-f—zkaixz, XER, [>O, kGR,
u(x,0) = 6(x). (1.21)

We obtain the double Laplace transform

_ 2V2VN I+ k
VICNININ G+ K+ B

and we are able to show that the distribution of L{J” (¢) can be constructed from the
fundamental solution to the fractional telegraph-type equation:

W(B, ,0) 2, B>0 (1.22)

u  du 13

o T e T pae

u(x,0) =90(x), xeR, t>0, keR,
u(x,0) = 0.

(1.23)

From our analysis we obtain that
o0 / a
/ e " Pr{Ly! (1) € ds}dr = 2v2 */j;ke—zﬁw Virkigs, s>0  (1.24)
0

but extracting from (1.24) the distribution of Lé"[ (?) seems prohibitively complicated.

2. About the double Laplace transform of the local time

In this section we derive the general expression for the double Laplace transform
of the local time in zero for the pseudoprocesses X (¢), >0

W (B, 4,0) = / e “E@E D)X (0)=0)ds, n=2, B,1>0. (2.1
0

By choosing V(x) as specified in (1.16) the Feynman—-Kac functional (1.13)
becomes

_B )

X(0) = x) (2.2)

and its limit for ¢ — 0 represents the Laplace transform of L{(?).
By applying Theorem 1.1 function (2.2) can be obtained by solving the Cauchy
problem

ow d'w P

o Mo 2
w(x,0) = 1.

1[78,2](X)W5 (23)
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The technique used to solve (2.3) is based on the Laplace transform
[e ] o.¢] ) n
Wa(B, 2, x) = / e Hw, (B, t,x)dt = / e M E(e P X (0) = x)dr, (2.4)
0 0

where w,(f, £, x) = lim,,owi(p, £, X).

By taking the Laplace transform of (2.3) we get

o"we
—1+IWE =c¢, b l—eqg(x)W? (2.5)

oxr 2 "

with the initial condition in (2.3) yielding the non-homogeneous term.

Then, by integrating (2.5) in [—e¢,¢] and letting ¢ — 0, we prove that the
derivative of order n — 1 must have a discontinuity in x = 0, so that we have the
condition

anle x=0% anle x=07
n n
Cn Gxnfl - ax”*l = ﬁW'l(ﬁa )'9 0) (26)
Our problem consists therefore in solving the nth-order linear equation
o"w,
ann" =AW,—1, forx#0 (2.7)

with the matching conditions

: x= + . —0—
Iw,|=" dw,|" ’
axl - axj _0’ ]_0917~~-,n_2,
X= + x=0"
an—l 114 x=0 an_l W X
C”{ oo T ot = BWu(B. 2,0). (2.8)

We state the following result:

Theorem 2.1. The double Laplace transform W,(B, 4,0) has the following explicit
form:

1 1
—=————————  for n odd,
IR g
nsmﬂ
W.(B,2,0) = 1 | (2.9)
———  for n even,

© n

%

Bl

e

nsin=

=

for 2,p>0 and n=2.
Proof. The general bounded solution to Eq. (2.7) reads
Sherbre® 4 x>0,

Wn(ﬁs A, X) = Zkejdkeekwx _}_%’ x<0,

(2.10)
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where 0y, k =0,1,...,n— 1 are the roots of ¢,,,  ={k € (0,1,...,n—1): RO, <0}
and J ={k e (0,1,...,n—1): RO, >0}

The boundedness of the solutions explains why, for x>0, the first sum is restricted
to I, while, for x <0, the second one applies only to J.

By taking into account the matching conditions (2.8) we get the linear system

S 0iby — S 0idp =0 forl=0,1,...,n—2,
kel keJ

2.11
Z Ozflbk _ Z ozfldk — ﬁWn(ﬁs /13 O) ( )

kel kel Cn A/l

System (2.11) can be rewritten in a Vandermonde form as follows: let

by forkel,
W= iy forked,

then (2.11) can be rewritten as

n—1 09 l=0,1,...,n—2,
Zejcxk: ﬁWn(ﬁ,/LO)’ 1 (2.12)

or, alternatively, as

(R B B %o 0
0o 0, .. O .. 0,4 X 0
05 07 . 0, . 0> _ | o)
0
ml il el et BW (B, 2,0)
ot oot et et ) S

n —
Cn i 1

A crucial point in solving (2.13) is the use of the Vandermonde determinant. We
first note that the determinant of the matrix appearing in (2.13) can be written as

n—1 n—1 n—1 n—2 n—1 n—1j—1
11 =[]0 = 00)... T] 0= 6. =TT T @ -0 =T ] — 00
j=1 j=2 Jj=n—1 r=0 j=r+1 j=1r=0

(2.14)

In order to evaluate x; we must replace the (k + 1)th column of the matrix in
(2.13) with the right-hand side vector of the system thus obtaining a Vandermonde
submatrix of rank n — 1 whose value repeats the form (2.14) with the only additional
condition that j,r#k.
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Thus
(- l)n+k+lﬁWn(ﬁ/L0)H Hj*l(
Cn nfop— r=0
X = " jr#k
[T TEZo0, - 0,)
n+k+1 A - .
cyrt] ﬁvf},(f—lo)n TEZo(0; — 0 T} k;lkl_[j':é(gj
- H Hr_() r)H (gk 6 )H” kl+1
(D) BW LB, 4,0) 1
T IO 0L~ 00
(=" Bw (B, 1,0) 1

e, /7] (=DF T (0, — 00)

r#k
n+1

eV I T2 (0, — 00)

r#k

We are interested in solution (2 10), for x = 0, which reads

W, 4,0) = 7+2xk —7+Zbk
kel kel

1 (=1 BW.(B, 2,0)
= -+ 2.16
% enV/ 2! kze; - 1(9 0) 210

r;ék

From (2.16) we can extract the following expression for the double Laplace
transform W ,(p, 4,0) as follows:

1
Wa(B,2,0) = 2 — - (2.17)
g (1o - o)
Our next task is the evaluation of the product in (2.17). Since

n—1
X' —c, = H(x —0,) = H(x = 0,)(x — Ok),

r#k

where 0;,j =0,...,n — 1 are the roots of c,, we have that
n—1 neiSEn—=1) f —
L or ¢, =1,
O —0,) = i ndy~
H( k )= E}k — 9k SN 6= 1,
r#k
ne— for ¢, =1,
= . (2.18)

_ Qk+Dmi
—ne~ n or ¢, = —1.
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In conclusion we have the following expression for the product in (2.17):

—1 -l i
n—1 1 =D & for =1,
- . _ (2.19)
"_‘%(6" =0 —(_nl) S for = —1,

In order to perform the sum ), ,e@ we need the following elementary formula:

s 1 — e ,,1(b+1) 1 . e@a en(a+bt m(a by e'l(2+b a)

cn = = 0
2ni 2ni s _m i
pyt 1 —en 1 —en en e"n —en
n(a+b)i eW(b*”“) — ¢ r(b a+l) Sin(b_aT'H)n n(a+b)i
=e 7 . = e (2.20)

st

o inZ
o8 _ o8 sin?

(see also [13, formula (25)]).
The set I can be given explicitly in all cases examined as follows.
We start by considering the odd-order case, that is n =2p + 1. For ¢, = 1

3
, {2 +1,. 217} for p even, oo
- 1 3p+1 '
{p—;— ey p;— } for p odd,
while for ¢, = —1
3
) {g, e ,TP} for p even, .
- 1 3p—1 ‘
{p—; ey p2 } for p odd.
In order to verify the previous expressions we note that, in general, the roots
Ok = e“™ of 1 and the roots O = ™ of —1 have negative real parts for k € U =
2,3 and k € V = (552,272), respectively.

These intervals become, for n=2p + 1, U = (&, 25) and ¥ = (2, 2H), We
need then to distinguish between the cases of odd and even p.

If p=2m, clearly U = (m+ 1 3m+ 4) so that, for ¢, =1 we have that k €
[m+1,3m] =[5+ 1,37”], while V (m— 4,3m—i—}—‘) and thus, for ¢, = —1, we get
k e [2=32]

If p=2m+ 1, we see that U = (m + 4,3m + 9) so that, for ¢, = 1 it results that
k€ m+1,3m+2] = 2,25 Finally ¥ = (m+1,3m + 1) and thus, for ¢, = —1,
we getke[m+1,3m+1]= [P*l 2.

We now show that, for n =2p + 1,

e = ! (2.23)

T
= 2sin 7

in the four cases ¢, = 1 (for p = 2m and p = 2m + 1) and ¢, = —1 (again for p = 2m
and p =2m+ 1).
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Consider first the cases where ¢, = 1: by applying formula (2.20) we get that

in n—1 in
sai €7 SIn n e cos
Ze" — (Zn) (2n>’ pzzm’
sinZ sin%
i k_2+l n
e n = 3
p+1 L
el 2 . eTsin (%l)n el cos (&)
e = —= , p=2m+1.
k—p%l Sln; Sln—
For the case ¢, = —1 we have, analogously
2 i gip (22t] i
2 enn eTsin(Bn e cos(£)
Z c n frd a1 = I . p = 2m’
=L sm - S -
(k+ )i =3 n n
E e 3p—1 1
el I ke e sin (%L )n el cos(£)
Yoe , p=2m+1
fpe] sin% sin%
=7

and thus result (2.23) is confirmed.

In the even-order case, that is n = 2p, ¢, = (—1)’*' we have two cases, namely
p=2m-+1and p=2m.

For p = 2m + 1 the roots 0; = S of 1, have negative real parts for k belonging to
the set

I = p+1 3p—1
= IR

and thus

(2.24)

317 1
2kmi

ki Z deri el” sm2 1
e" —_— e —_— —_—

—-—— . 2.25
_p+1 s, Sm% ( )

kel

Qk+ i
For p =2m the roots 0y = ¢ =
the set

P 3p
I=<%,...,=—
{2’ ’2 }

of —1, have negative real parts for k belonging to

(2.26)
and we have again, by applying formula (2.20) that
ZCZkt’I)m _ Z e(2k+n1)m _ '1 . (2.27)
sinZ
kel n

In view of (2.23), (2.25) and (2.27) we obtain the claimed result (2.9). O
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Remark 2.1. If n =2, ¢, = % we obtain, for Brownian motion B, that

/ e “E (e P10| B(0) = 0) dr
0

B V2
VA(V2i+ B)
2
B [e9) iy [ee) _ps o0 e
= e dt/e ds/2 dy. 2.28
~/0 0 K 4 LY 27EZ3 4 ( )
From (2.28) it is straightforward that, for s>0, we have
}’2 s”
Pr{Lo(t) € ds} = ds [ 2p—— dy =25 245 _ Pr{ max B(z) € ds}
’ B s yv2nt3 ’= 2nr 0<z<t '
(2.29)

From the last expression we can conclude that the law of Ly(¢) is obtained by
folding the transition function of Brownian motion (the half-normal) around the
origin. Furthermore (2.29) shows the important coincidence of the distribution of the
local time with that of the maximum of B.

For a non-standard Brownian motion (with » =2 and ¢, = 1), instead of (2.28),
we can derive from (2.9), the following different result:

2
WyB,2,0) = ——————
’ NACNIES )
(/)
9} . e’} e’} —
= e"“’dz/ e P ds/ 222 S 2.30
/0 0 s 4 N 2rt3 d ( )
From the previous expression it is transparent that
Pr{Lz(t)eds}—zﬂ >0, >0 (2.31)
o S} =27 520, . .

Distribution (2.31) is obtained by folding the normal law with variance parameter
1/2.

Note that for the standard Brownian motion (that is for ¢; = %) the Gaussian
distribution, by means of which the law of Ly(¢) is constructed, coincides with the
transition function of the Brownian motion and both satisfy the heat equation

du _o?du

or 2 0x2

with 6> = 1. On the contrary, in the non-standard case, for ¢, = 1, the transition

function of the Brownian motion satisfies Eq. (2.32) with ¢> = 2, while the law of
Li(1) is a solution of (2.32) with ¢? = 1/2.

In general, for any n>2, the equation satisfied by the transition function of

the pseudoprocesses is a higher-order heat equation, while the law of L{(z) is

obtained by folding around the origin the solution of a time-fractional equation of

(2.32)
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order 2(n — 1)/n. To give a deeper insight on this point we examine the case n = 3 in
the next remark.

Remark 2.2. Another special case which merits some attention is that related to
n = 3 for which the double Laplace transform (2.9) becomes

Wi = =V [ [TV gy
Vi (3\/)_ + /3) 0 x
== / e_;JE%,] < ﬁt )dl (233)
0 3
where
E, ,(x)= kz:: F(vk yapen

is the Mittag—Leffler function.
The first relationship of (2.33) shows that

/ e M Pr{L}(1) € ds} dr = ds 3°/2 / oV dy 3“/_ 5>0.
0 «/I
(2.34)
Now the Laplace transform of the solution uy3(x, 7) of the initial value problem
3 1 2
o _ 10U R 10,
ot 370 (2.35)
u(x,0) = o(x), '
u(x,0) =0
is
< 31 5492
At _ 3|x| A
e Muyn(x, )dt = =—=e , 2.36
| et =34 (2.36)
as can be derived from formula (3.3) of Orsingher and Beghin [23].
By comparing (2.34) and (2.36) we have that
/ e M Pr{Li(t) € ds} dt = 2ds / e uy5(s, ) dt (2.37)
0

so that the distribution of LO(t) is obtained by folding the solution of the fractional
equation (2.35).

As we shall see in the next section, this is a general result for the law of the local
time of pseudoprocesses. Unlike the case of standard Brownian motion, the
transition function of pseudoprocesses and the distribution of local time are related
to different equations: the former is the fundamental solution to the higher-order
heat equation (1.3), while the latter resolves the fractional equation (2.35).
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The distribution of Lg(z) can be given different representations. One emerges from
the above discussion: by using the expression of the solution to the fractional
equation (2.35) given in formula (3.5) of Orsingher and Beghin [23], we can write

t
Pr{Li(r) e ds} = %/0 (t— w)_-%ﬁ%(s, wydw s>0, (2.38)
! 3

where ﬁ%(s; w) is the law of the stable r.v. X(o, 1,0) with skewness parameter ff = 1

and scale parameter ¢ = (%s)% (see [27, p. 15], for the previous notation), which
possesses Laplace transform

o) 3
/ e ndi=e V50 2.39)
0o &P

Another representation can be given in terms of Wright functions or as integrals
on suitable Hankel contours. However the most important and meaningful one can
be derived from Fujita [9]: this shows that the solution to (2.35) is symmetric and
possesses two maxima at x = :|:k4/3l%, where kg3 is a constant. The distribution of
Lg(t), which is obtained by folding uy/3(s, 7) around the origin, has consequently a
Gamma-like form and differs substantially from that of the local time of Brownian
motion.

We finally note that in the third-order case (and in general for any odd order) the
distribution of Lg(l) does not depend on the sign of the equation governing the
pseudoprocess: as can be seen from (2.9) the law of the local time is exactly the same
in the two cases ¢, = 1 and ¢, = —1. This is a peculiar feature of the functional
considered here, which does not hold, for example, for sojourn time distribution (see
[11]) and for the maximal law (see [22]). An intuitive explanation of this coincidence
can be the following: the interval concerned by the functional Lj(¢) is symmetric
around zero and, as shown by formula (1.9), the transition function u, (x,?) is
obtained by reflecting around the origin u; (x, 7).

3. Fractional diffusion equations related to the distribution of the local time of
pseudoprocesses

In this section we show that the distribution of L{j(¢) is obtained by folding the
fundamental solution of a fractional diffusion equation of order 2(n — 1)/n. This is
the main difference between the case of Brownian motion and that of
pseudoprocesses. Another important difference is that in the latter case no
connection between the law of the local time and that of the maximum emerges.
In our view this is due to the fact that the maximum of pseudoprocesses does not
obey the reflection principle and, in general, the maximum is not distributed as a
genuine random variable (consult on this point Beghin et al. [2] and Lachal [13]).
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We consider here the fractional equation

aZ(n—l)/nu 1 621/1

orn—D/n — . 29x2°

(5” sma) *
u(x,0) =d(x), xeR, t>0, n=2,
ut(x: 0) = 09

(3.1)

where

n  for n even,
" 2n  for n odd.

Eq. (3.1) is a sort of interpolation between the heat equation (n = 2) and the wave
equation, which is obtained as n — oo. It is a time-fractional equation and the
fractional derivative must be understood in the sense of Dzherbashyan—Caputo, that
is as

10" u(x, s) ds
” — r— form—l<oa<m,
0" u(x, t) r (m —a))o Os —5)
“or = g (3.2)
me(t) for o = m,

where m — 1 = |a] (lo] denoting the integer part of the real number «) (for general
reference on fractional calculus, see [26]). In our case it is o =2(n— 1)/n and
therefore m = 2.

Since the degree of (3.1) is a number inside the interval [1, 2], two initial conditions
are needed.

Equations like (3.1) have been studied by numerous authors (see, for example,
[28,29]) and, for degrees a <2, are called fractional diffusion equations (see [24] for a
general presentation of this topic). For 1 <a<2, fractional diffusion equations have
been studied by Fujita [9].

By formula (3.3) of Orsingher and Beghin [23], we have that the Laplace transform
of the solution uy(,_1y/, to (3.1) is

o0 1 . I 5 gin iyt
fo e ot = gsin S YT, vemza G

We now define the folded solution uy,_1)/,(x, 7) as follows:
_ 2usru—1y/n(x, 1),  x=0,
Wwwm0={0” =0 (34)

Clearly the Laplace transform of uy,_y)/, is

o 1 — X0y sin - %
/ e My nm(x, 1) dt =9, s1n5 T e e AT x>0, n=2. (3.5)
0

It is now a very simple matter to check that the Laplace transform of (3.5) with
respect to x gives (2.9).
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Theorem 3.1. The explicit solution to the Cauchy problem (3.1) reads

n—1
T . T a1 . T
Unn1y/n(X, 1) = —=—Spsin— W _,_ ! <—|x|z 5o, s1n5—)

2 57[ e n

n—1 k —n=l L k

SR (—1) <|x|t né,,sma) b 0 66
=3 ,,smak:() k!F(—",;Ilk+%) , xeR, t>0, (3.

where
k

oo
X
w, = —_—
(%) ; KT (v + 1)
is the Wright function.

Proof. The Fourier—Laplace transform of the solution to (3.1) is

%) 3 o0 . 1 1
/ e dt / M ur 1y, 1) dx == — (3.7)
0 —oo BET 4 (aysing)

and, by inverting the Laplace transform, we get that

. 2n-1) oo\ 2 )
/ gy (x, 0)dx = Esoony | =0 7 (Spsin— ) 7). (3.8)
oo o on
By considering that
1 1 ,
- w2 d 3.9
'z~ 2ni /H ew s (39
where H, is the Hankel contour, it is very easy to obtain that
1 [*® ipx 2n=1) o\ 72 5
le(,1,1)/n(x, l) = E " e E2(n;1)’1 —tn 0y Sin 5_,1 ﬂ dﬁ
_ 1 > —ipx dﬁ w WZ(n"_l)_ldW
T 2n © om), § e e . -2 5
—o00 He WS 4w (5,, sin i) p
) |‘c|17nn;1(6 si ”) o
5n sin & i w—|x nSin 5= Jw d
_ L 1 . (3.10)
2 27[1 Hy wn
Since the Wright function, in view of (3.9), can also be written as
1 ew+yw‘"
Wv = 5 - - d H
,ﬂ(y) 27_“ /Ha wh w
we obtain (forv=(1—n)/n,n=1/n,and y = —|x|t*#(5n sin 5%)) the first relation-

ship in (3.6). O
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Remark 3.1. Let us denote by p,(x;7,4) the stable density

+00

1
per i) =5 [ exp{=ipx— prei T} ap (3.11)
21 J_o

From formula (6.9), p. 583 of Feller [§] we know that a stable density p,(x;y, 1), of
order o € (1,2) and with parameter 4 = 1, has the following series representation for
x>0:

) RS ke T(1+2) . kn(y + )
pa(x,y,l)—nk;( x) s (3.12)

which can be extended on the negative half-line by means of the relationship

(X379, 1) = py(—x; =, 1).

We note that the derivation of expression (3.12) from formula (3.11) is carrled
out by integrating the complex-valued function g(f) = exp{—ifix — |f|%e _‘2}
p € C, on the contour made up by the circular sector of radii (r,R) and of
amplitude ny/20 (see Fig. 1) and then applying the Cauchy theorem and letting
r— 0, R — oo.

r R

Fig. 1. Integration path.
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Formula (3.12) in the special case y = 2 — o reduces to

. r{i+;) 1
P57, 1) = — Z( )k1 —_Z( my
00 k
=§Zw( X) y lW 1), (3.13)
=0 o o

for any x € R.
By comparing (3.6) with (3.13) we get that

15 b n—1 n—1 T on—2
t "t P o, sin—;——, 1
Uu—1)/n(X, 1) = 5 nn;l Pﬁ<|x| nSiS )
15 nx T on—2
= n On — 14
= 5o p_<|x| smén,n_l,>, (3.14)

n

where, in the last step, we have used the following well-known property of the stable
law

P, 0) = )F%p“ (xl_é; ¥, 1).

We must note that the function P above is obtained from the positive branch of
the stable law (3.13) by symmetry. "
Now, from formula (3.14), in view of (3.11), as n — oo, we obtain, for x>0, that

+00

M wa,1)/(x, 1) = 2975 ) exp{—ifxn + ir|B|sign f } dp
11 [* . it 1 t
=332 exp{—lﬁx—i-gﬁ} dﬁ_§5<x—g). (3.15)
Analogously, for x<0, we obtain that
1
Jim a1y 1) = 5 (x+ ) (3.16)
On the other hand, Eq. (3.1) tends, as n — oo, to the wave equation
Fu_1
02 m2ox?’
u(x,0) = i(x),
u(x,0) =0

whose solution is u(x, 1) = [3(x — £) + (x + 1.

Remark 3.2. The main merit of representation (3.14) is that it permits us to give a
picture of the distribution of L{(#). The function uy,_1y/u(x, ?), for x € R and for a
fixed ¢, has the form depicted in Fig. 2A (see also [9]).

It possesses two maxima at x= dky,_ )/ntﬁ, where  kyp—1y, IS a
constant depending on the degree of the fractional equation, and a minimum in
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-1) tV(n=1) n/(n-1)

(B) X=Kyn-1ynt

(A) X kongynt"™

X=Ko(n-1)n

Fig. 2. (A,B) The fundamental solution of (3.1) and the distribution of Lj(#).

zero where

t‘_
Ury—1/n(0, 1) = 5 sin— .

Fig. 2A clearly shows that the fundamental solution to the fractional equation of
order 2(" D e (1,2) is defined and continuous for any x € R (as happens for n = 2)
and lets the two-peak structure of the solution of the wave equation (obtained for
n — 00) emerge.

Therefore, the distribution of L{j(¢) must have the form depicted in Fig. 2B, with a
variance decreasing as n — oo. This last feature of the distribution can be derived
by using, for the stable density, the alternative canonical form (for a#1)

D(x; B, 0) = %/m exp{—iux — olul* (1 + iutan (%oc) sign u) } du. (3.17)

—0Q

Thus, in our case, the solution uy(,_)/, to the fractional equation can be expressed, in
terms of the stable law 1_7%1()“ B, o) with

Yy nn—2
<o) vm(3272).
a cos 5 COS<2n—l)
tan %

ﬁ:— :1)

o
tan 5

as

1 O, si n(5 2
Un(— 1)/n(x 1) = ? <|x|5,, sin 511,1,1005 <§Tl>>

The analysis of this section permits us to state the following result, which gives the
explicit distribution of the local time Lj(¢), for any n>2, in the form of a
Riemann—Liouville integral.
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Theorem 3.2. The distribution of the local time L{(t) for any n=2 is given by

Pr{L{(t) € dx} = typ1y/a(x, 1) dx
dz

d t
=5,,sin£—x/ Pod(z: ), x20, (3.18)
5,1 F(*) n (t_ Z)n—l

n
where pu_i1(t;x) denotes the stable density of order %, =1 and o=
. n, — .
(XOpsin g sm%)”/ =D "with Laplace transform

[ee] s %
/ e Mpaa(t;x)dt = eSS AT x>0, (3.19)
0 n
Proof. By inverting the Laplace transform (3.5) we obtam Uy n—1)/n(X, 1) as the
convolution of the inverse of (3.19) with the inverse of 1~ .
We can check that the expression of the local time distribution given in (3.18) is

non-negative and integrates to one.
In effect we have that

/000 Pr{Lj(?) € ds} = 9, sm / ds/ p,, 1(z;8) —— - Z)" 1

. ) A n—1

| t 00 1 yico _efsé,,smaA 7
5 s1n——1/ dz/ ds—,/ S ' )

5;1 F(;) 0 0 27l y—ico n (Z‘—Z)nil

y+ioco

/ WZRIX oo

e BLI-Y
)nl %F(l—— ’

This result can also be obtained directly from (2.9) by putting f = 0.

e dJ.

It is easy to check that, for n = 3, distribution (3.18) coincides with formula (2.38).

4. The local time for pseudoprocesses governed by Myiamoto’s equation

The pseudoprocess connected with Myiamoto’s equation, that is
Ou o*u 0%u
w- ol T ee
ot ox Ox
has been examined in a paper by Myiamoto [18] and the distribution of the related
maximum is obtained in [2].
The technique necessary to derive the distribution of the local time in zero L} ()

for the pseudoprocess governed by (4.1) can be easily adapted from the above
analysis.

4.1)
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In this case we need to solve the following equation:

otw o*w
1+ W =——+2k—
+ ox* + ox2”’ x#0
subject to the matching conditions
i x=0" i x=0"
Iw=" oIw
-— - = =0,1,2
axj axj 0) ] 0) b 2
x=01 x=0"
cw Pw
- —_— = pW(p,2,0).
ax3 ax3 ﬁ (ﬁ’ 70)

The general bounded solution to (4.2) reads
1
Ae®1¥ + Be?2* + 7 x>0,
W(Bhx) = i
Ce?0¥ 4 De?3~ 4 7 x<0,

where

k+~% . |[—k+~2 k+~i . |—k+~A
Py = 5 +1 3 , 9 =— 5 +1 3 ,

k+~72 . [—k+~7 k+~i . |[—k+~7
Py = — 2 —1 2 5 (/)3: 2 —1 p) .

4.2)

(4.3)

(4.4)

By solving the linear Vandermonde system emerging from (4.4) and based on

conditions (4.3), we get that

4 BW (B, 2,0)
(03 — (@9 — @)@ — @)’
B _ BW (B, 2,0)
(@3 — @)@y — @)@ — @2)
and thus

1
W(/i,)L,O):A+B+Z

_ BB | 1 ) I }
B (@1 = @2) (o3 = 0@ — 02) (93— @) (@9 — @1)

_ BW(B,20) 1

2“/@\7I 4 \/k+2ﬁ < \/k+2ﬁ L \/ —k;ﬁ)

Ll
p

4.5)
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1 1
4 k+2ﬂ< \/k+2ﬂ_i \/szr«/Z)
Y LT NI il S 11 X N ws)
8i /fkgﬂ /k+2ﬁ#z+%ﬁ Z NNVNIEN N/ .
From (4.6) we have that
227
W(p.1,0) = V2Vi+k @47

VI (2ﬁﬁ\/ Vit k+ /3)

which coincides, for kK = 0, with formula (2.9) in the particular case n = 4.
In order to invert the double Laplace transform, formula (4.7) can also be
rewritten as

2
22NN+ E) pe - A
W(ﬁa )”9 0) = ( /l ) / eiﬁx / 672“/5)’\/1\/ \/ZJrk dy dX
0 X
R N N
= 7 e dx. (4.8)
0

We consider then the fractional telegraph-type equation

o1 3
0r3/2 or 230x2’
u(x,0) =d(x), xeR, >0, k € R,

ui(x,0) = 0. (4.9)

By means of arguments similar to those of Orsingher and Beghin [23] it is easy to
check that the Laplace—Fourier transform of the solution u,,(x, t) to (4.9) is equal to

/ e M dt/ e P up(x, dx = Lkz (4.10)
0 —o0 Vit ki B

so that
€ “ ndt = _\/‘M —2V2|x VA Ntk

If we define now

B 2up(x,t), x=0,
m(60 =1 x<0
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we have that

/ e My (x, ) dt = 242 7”/:;;]‘ e WV >, 4.12)
0

By the uniqueness of the Laplace transform we conclude that
Pr{L{)W(t) € ds} =dsupy(s, 1), s=0.

Note that, in the special case k = 0, the Myiamoto equation becomes the heat-type
equation of order n = 4, while the associated fractional equation (4.9) coincides with
(3.1) for n = 4. Therefore the local time has, in this special case, a distribution which
can be obtained from (3.14) by putting n = 4, that is

4:/2 2
w(x, 1) = fpg <2ﬁ|x|;—, 1). (4.13)
2 3 73 3
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