Revised manuscript

Click here to view linked References

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00774-021-01250-1

- 1 Title
- 2 Clinical performance of a novel chemiluminescent enzyme immunoassay for FGF23
- 3
- 4 **Running title**
- 5 A Novel CLEIA for FGF23
- 6
- 7 Authors
- 8 Nobuaki Ito^{1*}, Takuo Kubota², Sachiko Kitanaka³, Ikuma Fujiwara⁴, Masanori Adachi
- 9 ⁵, Yasuhiro Takeuchi ^{6,7}, Hitomi Yamagami ⁸, Takehide Kimura ⁸, Tatsuya Shinoda ⁸,
- 10 Masanori Minagawa ⁹, Ryo Okazaki ¹⁰, Keiichi Ozono ², Yoshiki Seino ¹¹, Seiji Fukumoto
- 11 ¹²
- 12

13	¹ Division of Nephrology	and Endocrinology,	The University	of Tokyo Hospital, 7-3-1
----	-------------------------------------	--------------------	----------------	--------------------------

- 14 **Hongo, Bunkyo-ku, Tokyo 113-8655, Japan**
- 15 ² Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2
- 16 Yamadaoka, Suita 565-0871, Osaka, Japan
- ¹⁷ ³ Department of Pediatrics, Graduate School of Medicine, University of Tokyo, 7-3-1
- 18 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- 19 ⁴ Department of Pediatric Endocrinology and Environmental Medicine, Tohoku

20	University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi,
21	980-8575, Japan
22	⁵ Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center,
23	2-138-4 Mutsukawa, Minami-ku, Yokohama, Kanagawa 232-8555, Japan
24	⁶ Endocrine Center, Toranomon Hospital, 2-2-2, Toranomon, Minato-ku, Tokyo 105-8470,
25	Japan
26	⁷ Okinaka Memorial Institute for Medical Research, Toranomon, Minato-ku, Tokyo 105-
27	8470, Japan
28	⁸ Minaris Medical Co., Ltd., 1-8-10 Harumi, Chuo-ku,Tokyo
29	104-6004, Japan
30	⁹ Division of Endocrinology, Chiba Children's Hospital, 579-1 Hetacho, Midoriku, Chiba
31	266-0007, Japan
32	¹⁰ Division of Endocrinology and Metabolism, Third Department of Medicine, Teikyo
33	University Chiba Medical Center, Ichihara, Chiba, Japan.
34	¹¹ Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization
35	(JCHO), 4-2-78, Fukushima, Fukushima-ku, Osaka 553-0003, Japan.
36	¹² Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences,
37	Tokushima University, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
38	

39 *** Corresponding author**

- 40 Mailing address: 7-3-1 Hongo Bunkyo-ku Tokyo 113-8655 Japan
- 41 Telephone: +81-3-5841-3386
- 42 Fax number: +81-3-5800-9760
- 43 E-mail: nobitotky@gmail.com

45 Abstract

46 Introduction: Measurement of fibroblast growth factor 23 (FGF23) has been reported to be clinically useful for the differential diagnosis of chronic hypophosphatemia. However, assays 47for research use only are available in Japan. Thus, the objective of this study was to examine 48the clinical utility of a novel and automated chemiluminescent enzyme immunoassay for the 49measurement of FGF23. 50Materials and Methods: Participants were recruited from July 2015 to January 2017 at six 5152facilities in Japan. Thirty-eight patients with X-linked hypophosphatemic rickets (XLH; 15 males, 23 females, age 0-66 years), five patients with tumour-induced osteomalacia (TIO; 3 53males, 2 females, age 60-73 years), and twenty-two patients with hypophosphatemia (11 54males, 11 females, age 1–75 years) caused due to other factors participated in this study. 55**Results:** With the clinical cut-off value of FGF23 at 30.0 pg/mL indicated in the Diagnostic 56Guideline of Rickets/Osteomalacia in Japan, the sensitivity and specificity of FGF23-related 57hypophosphatemic rickets/osteomalacia without vitamin D deficiency (disease group-1) were $\mathbf{58}$ 59100% and 81.8%, respectively, which distinguished it from non-FGF23-related hypophosphatemia (disease group-2). Furthermore, the diagnostic sensitivity of FGF23-60 related hypophosphatemia with vitamin D deficiency remained at 100%. Among the four 6162patients with FGF23 levels \geq 30.0 pg/mL in disease group-2, two patients with relatively higher FGF23 values were suspected to have genuine FGF23-related hypophosphatemia, due 63

64	to the ectopic production of FGF23 in pulmonary and prostate small cell carcinomas.
65	Conclusion: The novel FGF23 assay tested in this study is useful for the differential
66	diagnosis of hypophosphatemic rickets/osteomalacia in a clinical setting.
67	
68	Keywords: rickets, osteomalacia, FGF23, pulmonary small cell carcinoma, prostate small
69	cell carcinoma
70	
71	

73 Introduction

74

75	Chronic hypophosphatemia causes rickets/osteomalacia by impairing the
76	mineralisation of bone matrix. The aetiological factors of hypophosphatemic
77	rickets/osteomalacia include 1) insufficient phosphate intake and malabsorption, 2) renal
78	tubular diseases, 3) impaired actions of vitamin D metabolites, and 4) inappropriately
79	enhanced actions of FGF23 (FGF23-related hypophosphatemic rickets/osteomalacia) [1].
80	FGF23, produced by osteoblasts/osteocytes, is a hormone that plays a central role in
81	the regulation of blood phosphate concentration [2, 3]. In the renal proximal tubule, FGF23
82	suppresses phosphate reabsorption and decreases the levels of 1,25-hydroxyvitamin D
83	(1,250H ₂ D) that promote phosphate absorption in the intestinal tract. Higher levels of FGF23
84	have been shown to cause several inherited and acquired hypophosphatemic diseases [3, 4].
85	Among inherited diseases, X-linked hypophosphatemic rickets (XLH) caused by mutations in
86	the phosphate regulating endopeptidase homolog X-Linked (PHEX) gene is known to be the
87	most common form. On the other hand, tumour-induced osteomalacia (TIO) is a typical
88	acquired hypophosphatemic rickets/osteomalacia caused by phosphaturic mesenchymal
89	tumours producing FGF23.

90 Since the therapeutic approaches for chronic hypophosphatemia vary depending on

91	the aetiology, differential diagnosis of the precise underlying conditions of hypophosphatemic
92	rickets/osteomalacia is essential in the clinical setting. Previously, we measured FGF23 levels
93	using an enzyme-linked immunosorbent assay (ELISA) kit (Kainos, Tokyo, Japan) and
94	reported that the levels were high in patients with FGF23-related hypophosphatemic
95	rickets/osteomalacia. On the other hand, FGF23 levels were low or low – normal in patients
96	with chronic hypophosphatemia caused due to other factors, such as Fanconi syndrome and
97	vitamin D deficiency. Thus, there was no overlap in FGF23 levels between patients with
98	these two conditions, when the cut-off value of 30.0 pg/mL was used. This cut-off value for
99	the differential diagnosis of hypophosphatemic rickets/osteomalacia was officially
100	recommended in the guidelines of the Japan Endocrine Society and the Japanese Society for
101	Bone and Mineral Research in 2015 [1,5].
102	The intact FGF23 assay (Kainos) is a sandwich ELISA which measures only active
103	and full-length FGF23. The assay has been long used in many clinical and basic research in
104	Japan and other countries [6-8]. However, this ELISA has not been approved for medical use
105	in Japan.
106	Furthermore, Burosumab, a fully humanized anti-FGF23 antibody, has been
107	developed and reported to be efficient and safe during the clinical studies (phase 2 and 3) on
108	XLH and TIO [9-14]. Thus, the development of a precise FGF23 assay that can be used
109	clinically has become increasingly important.

110	In some European countries, the other intact FGF23 measurement system (Liaison
111	iFGF23, DiaSorin, Saluggia, Italy) has been approved for clinical use to evaluate the risks in
112	<u>CKD patients [15 – 17].</u>
113	To meet the increasing demand of intact FGF23 measurement in Japan, an
114	automated and rapid chemiluminescent enzyme immunoassay (CLEIA), Determiner CL
115	FGF23 (Minaris Medical, Tokyo, Japn), referred to as CL-FGF23 hereafter, was developed
116	[1518]. CL-FGF23 recognizes the same set of epitopes as the intact FGF23 assay (Kainos),
117	but the former applies CLEIA and enables specific detection of intact FGF23, as well as
118	higher sensitivity, wider measurement range, and a shorter measurement time than the intact
119	FGF23 assay (Kainos) [<u>18</u> 15].
120	In this report, the clinical utility of CL-FGF23 in the differential diagnosis of
121	hypophosphatemic rickets/osteomalacia and chronic hypophosphatemia was prospectively
122	analysed. Since vitamin D deficiency is an important cause of hypophosphatemic
123	rickets/osteomalacia, the primary objective of this study was to compare the FGF23 levels
124	between patients with FGF23-related hypophosphatemia without vitamin D deficiency
125	(disease group-1) and those with hypophosphatemia not related to FGF23 (disease group-2).
126	As vitamin D deficiency is prevalent even among healthy people, the secondary analysis was
127	a comparison of FGF23 levels between all patients with FGF23-related hypophosphatemia
128	with and without vitamin D deficiency and those in disease group-2.

129	
130	Materials and Methods
131	
132	Patients
133	Registration of the participants was conducted for 19 months (from July 2015 to
134	January 2017) in 7 departments at 6 facilities in Japan. The process of registration and
135	selection of the participants is summarized in Fig.1.
136	Finally, 97 patients diagnosed with hypophosphatemic rickets/osteomalacia and/or
137	chronic hypophosphatemia were enrolled. The diagnostic criterion for 'chronic
138	hypophosphatemia' was two consecutive serum inorganic phosphate levels below the age-
139	adjusted reference range of the sites with an interval of 2 weeks or more.
140	Rickets/osteomalacia was diagnosed according to the 'Diagnostic Manual of
141	Rickets/Osteomalacia' produced by the Japan Endocrine Society and the Japanese Society for
142	Bone and Mineral Research [1]. Exclusion criteria included patients with impaired renal
143	function (estimated glomerular filtration rate $[eGFR] < 60 \text{ mL/min}/1.73 \text{ m}^2$) and
144	rickets/osteomalacia due to causes other than chronic hypophosphatemia. Twenty patients out
145	of the initially enrolled 97 patients were excluded because they met the exclusion criteria or
146	withdrew from the study.

Next, three endocrinologists from independent institutions of the six research sites

148	and having abundant experience on rickets/osteomalacia assembled and reviewed 77 cases
149	between September 2016 and March 2017. After the review, 12 patients were defined as
150	'unclassified', because at least 1 of the 3 designated specialists opposed the diagnosis of
151	'rickets/osteomalacia' or 'chronic hypophosphatemia' in those patients.
152	Finally, the remaining 65 patients were divided into 22 non-FGF23-related (disease
153	group-2) and 43 FGF23-related hypophosphatemia cases by the three specialists. Of those 43
154	patients, 29 cases with 25-hydroxyvitamin D (25OHD) values less than 20 ng/mL were
155	classified as patients with FGF23-related hypophosphatemia and concomitant vitamin D
156	deficiency. Thus, the remaining 14 patients (disease group-1) were classified as FGF23-
157	related hypophosphatemic cases without vitamin D deficiency. Primary analysis comprised
158	patients from groups -1 and -2, whereas secondary analysis comprised those in all patients
159	with FGF23-related hypophosphatemia and group-2.
160	Fasting blood samples from enrolled patients were collected and immediately stored
161	at -20 °C until use. Before initiation of this study and after obtaining written informed
162	consent, approximately 23% (15) of 65 samples from classified patients were frozen and
163	stocked for other investigative purposes. All of these stocked samples were analysed only
164	when additional such consent was obtained.
165	This study was approved by the ethical review board of the six investigational sites,

166 including the Japan Community Health Care Organization (JCHO), Osaka Hospital (approval

167	no. 006510), Osaka University Hospital (No.157801), Kanagawa Children's Medical Center
168	(approved by institutional IRB on 28 August 2015), Toranomon Hospital (No.15-44), Tohoku
169	University Hospital (No.155001), and the University of Tokyo Hospital (No.2015012-11Y
170	and No.2015013-11Y). After written informed consent was obtained from the participants,
171	the serum samples were analysed and clinical data of these patients were collected.
172	
173	Assays
174	Biochemical parameters of serum and urine were measured using an autoanalyser.
175	Intact parathyroid hormone levels were measured using electrochemiluminescence
176	immunoassay or enzyme immunoassay. Levels of $1,250H_2D$ and $250HD$ were measured
177	using radioimmunoassay and competitive protein binding assay (dextran-coated charcoal
178	assay; LSI Medience Corporation, Japan) [4619], respectively. FGF23 was measured using a
179	CLEIA reagent (CL-FGF23; Minaris Medical, Japan) that recognizes only biologically active
180	and intact FGF23 molecules with a detection range of 5.0~10,000 pg/mL. Basic performance
181	of CL-FGF23 was evaluated and reported elsewhere [1518]. A previous study indicates that
182	in healthy adults, the reference range of FGF23 measured using the CLEIA reagent is 19.9-
183	52.9 pg/mL (95% CI) with a mean value of 32.8 pg/mL in 396 healthy adults aged from 36 to
184	67.

186 Statistical analyses

187	Statistical analyses were performed using STATA12 (StataCorp, TX, USA) [1720].
188	Data are expressed as mean \pm S D, and statistical significance was determined using the
189	Kruskal-Wallis test or one-way ANOVA test. Statistical significance was set at $p < 0.05$.
190	

Results

194	The characteristics of patients in group-1 and -2 are summarized in Table 1. In
195	addition, the characteristics of all FGF23-related hypophosphatemic patients with and
196	without vitamin D deficiency are shown (shaded area). In total, 38 patients with XLH (15
197	males, 23 females, age 0-66 years), 5 patients with TIO (3 males, 2 females, age 60-73
198	years), and 22 patients with hypophosphatemia caused due to other factors (11 males and 11
199	females, age 1-75 years) were analysed. In disease group-1 comprising of 14 patients, 11
200	patients with XLH, 2 patients with TIO, and 6 out of 22 patients in disease group-2 were
201	treated with either active vitamin D3 and/or phosphate.
202	The distribution of FGF23 values in disease group-1 and -2 and the whole FGF23-
203	related hypophosphatemia as a reference (shaded area) is shown in Fig. 2. In both disease
204	group-1 and reference, FGF23 values in all cases were higher than 30.0 pg/mL, the
205	previously defined cut-off value. However, FGF23 levels in 4 out of 22 cases in disease
206	group-2 were higher than 30.0 pg/mL.
207	A scatter plot of the serum phosphate and FGF23 values in all patients with FGF23-
208	related hypophosphatemia and disease group-2 (total 65 cases) is shown in Fig. 3. Of the 38
209	XLH cases, 12 were without vitamin D deficiency (grey circles) and 26 had concomitant

210	vitamin D deficiency (black circles). Of the 5 TIO cases, 2 were without vitamin D deficiency
211	(grey triangles) and 3 were affected by vitamin D deficiency (black triangles). In contrast,
212	disease group-2 was re-grouped according to the causes of hypophosphatemia, which
213	included 1 case of Fanconi syndrome due to adefovir dipivoxil (asterisk), 3 cases of
214	denosumab-induced hypophosphatemia (open rhombuses), and 18 cases with vitamin D
215	deficiency (open squares). Of the total 65 cases, 39 and 26 patients were \geq 20 years old (adult
216	patients) and under 20 years old (children), respectively. Thirty-eight XLH patients included
217	16 children (41%), whereas 22 non-FGF23-related hypophosphatemic cases included 10
218	children (45.5%). Reference intervals of serum phosphate were higher in younger children, as
219	such, the patients with relatively high serum phosphate levels (3.0 mg/dL and more)
220	comprised child patients despite XLH or vitamin D deficiency (Fig. 3).
221	The proposed cut-off value (FGF23=30.0 pg/mL) described in the Diagnostic
222	Manual of Rickets/Osteomalacia [1] was applied in Fig. 3, and the clinical performance of
223	CL-FGF23 to differentiate group-1 and -2 was evaluated (Table 2), which revealed that the
224	sensitivity and specificity of CL-FGF23 for the diagnosis of disease group-1 were 100% and
225	81.8%, respectively. Similarly, positive predictive value (PPV), negative predictive value
226	(NPV), and accuracy were 77.8%, 100.0%, and 88.9%, respectively. Secondary analysis
227	conducted in all patients with FGF23-related hypophosphatemia and disease group-2 revealed
228	that the sensitivity, specificity, PPV, NPV, and accuracy in this cohort were 100%, 81.8%,

229 91.5%, 100%, and 93.8%, respectively.

234	In the current study, CL-FGF23 successfully differentiated patients with FGF23-
235	related hypophosphatemia from those with the non-FGF23-related variant, using the
236	previously reported cut-off value of 30.0 pg/mL.
237	Twenty-nine (67.4%) of 43 patients with FGF23-related hypophosphatemia were
238	diagnosed with vitamin D deficiency (< 20 ng/mL). Such patients were excluded from the
239	primary analyses according to the protocol of this study. However, the prevalence of vitamin
240	D deficiency in the adult population in East Asia has been reported to be around 70% [1821-
241	2023]. Therefore, we conducted additional secondary analyses to evaluate the diagnostic
242	performance of CL-FGF23 in all patients with FGF23-related hypophosphatemia, including
243	those with vitamin D deficiency. The primary and secondary analyses produced almost the
244	same sensitivity, specificity, PPV, NPV, and accuracy for the diagnosis of FGF23-related
245	hypophosphatemia in this cohort. The PPV and accuracy were higher in the secondary
246	analyses, which indicated that CL-FGF23 is useful for the diagnosis of FGF23-related
247	hypophosphatemia, such as XLH and TIO, regardless of the presence or absence of vitamin D
248	deficiency.
249	The FGF23 values in 4 out of the 22 cases in disease group-2 were higher than 30.0
250	pg/mL, and Table 3 shows the clinical background of these 4 cases (#1-4) that were

251	registered as non-FGF23-related chronic hypophosphatemia caused due to vitamin D
252	deficiency and related to the primary conditions and/or loss of appetite associated with the
253	treatment. Chronic hypophosphatemia is expected to induce negative feedback on the
254	production of FGF23 in osetoblasts/osteocytes, which results in the suppression of serum
255	FGF23 levels. Moreover, #1–4 showed FGF23 levels over 30.0 pg/mL, despite the existence
256	of vitamin D deficiency-associated hypophosphatemia for more than 2 weeks.
257	In cases #1 and #2, it was suggested that the duration of hypophosphatemia was
258	relatively short, as they did not present any symptoms of rickets/osteomalacia or significant
259	elevation of alkaline phosphatase (ALP). Serum FGF23 levels could not be observed within 6
260	h, regardless of low or high phosphate load, but they were detected after at least 4 to 5 days
261	with continuous load [$\frac{2124}{2225}$]. Thus, one hypothesis to explain the non-suppression of
262	FGF23 in #1 and #2 was that although they were registered as vitamin D deficiency-
263	associated chronic hypophosphatemia cases, they were recognized during hospitalisation for
264	the treatment of chronic myeloid leukemia and adrenal insufficiency after discontinuation of
265	steroid treatment, and during the fluctuation of their actual serum phosphate levels, by
266	chance, low serum phosphate levels were observed twice within an interval of two weeks or
267	more.
268	In contrast, # 3 and # 4 showed markedly elevated ALP, suggesting that prolonged

269 hypophosphatemia was sufficient for developing unmineralized bone and bone metastases

270	contributed to high ALP in case 4. Additionally, FGF23 levels were as high as 71.6 and 469.4
271	pg/mL in some patients without renal dysfunction, suggesting that these patients had FGF23-
272	related hypophosphatemia that was not detected by the attending clinicians. Case 3 was a
273	patient with pulmonary small cell carcinoma who was hospitalized for chemotherapy.
274	Pulmonary small cell carcinoma is one of the neuroendocrine tumours that can ectopically
275	produce hormones, such as adrenocorticotropic hormone (ACTH) and antidiuretic hormone
276	(ADH) [2326]. Although very rare, there have been several cases of pulmonary small cell
277	carcinoma accompanied by hypophosphatemic osteomalacia. In 2016, a case of pulmonary
278	small cell carcinoma with acquired hypophosphatemic osteomalacia was reported, which
279	demonstrated high serum FGF23 levels in the patient and ectopic production of FGF23 in the
280	tumour cells analysed using immunohistochemistry $[2427]$. It is likely that case #3 was
281	actually suffering from FGF23-related hypophosphatemia due to ectopic overproduction of
282	FGF23 in the pulmonary small cell carcinoma, but we could not obtain the tumour tissues to
283	confirm the same.

Case#4 was also treated with chemotherapy in the hospital for prostate small cell carcinoma. Like pulmonary small cell carcinoma, prostate small cell carcinoma is a neuroendocrine tumour that is uncommonly accompanied by the ectopic secretion of ACTH or ADH [2528]. Very intriguingly, several cases of prostate small cell carcinoma with acquired hypophosphatemic osteomalacia have been reported, although serum FGF23 levels have never been assessed in these cases [2629-3538]. Unfortunately, pathological
examination could not be conducted on patients in case #4. However, the prominently high
levels of FGF23 (469.4 pg/mL) and ALP under chronic hypophosphatemic conditions with
normal kidney function could only be possible due to FGF23 overproduction. It is likely that
FGF23 was produced by prostate small cell carcinoma.

After much contemplation, patients in case# 3 and 4 who were once considered as 294false-positive cases for FGF23-related hypophosphatemia were finally assumed to be true 295296cases with ectopic production of FGF23 as a paraneoplastic syndrome of neuroendocrine tumours. After this alteration in assumption, the sensitivity and specificity of the diagnostic 297 performance of CL-FGF23 for FGF23-related hypophosphatemia shifted to 100% and 90.0%, 298respectively, with the cut-off value of 30.0 pg/mL. However, if 44.0 pg/mL of FGF23 was 299applied as a cut-off value, the two disease groups could be completely distinguished. Thus, 300 albeit with a small sample size, this study demonstrated that with a cut-off value of 44.0 301pg/mL, CL-FGF23 can discriminate FGF23-related hypophosphatemia from both the non-302303 FGF23-related variants that are without obvious symptoms of rickets/osteomalacia due to shorter duration of hypophosphatemia as well as canonical non-FGF23-related 304hypophosphatemia, such as Fanconi syndrome and vitamin D-deficient rickets. Indeed, in this 305study, when non-FGF23-related hypophosphatemia without obvious skeletal symptoms was 306 excluded from disease group-2, the cut-off value of 30.0 pg/mL provided 100% 307

308	discriminating accuracy (data not shown). Thus, for the differential diagnosis of the causes of
309	hypophosphatemic rickets/osteomalacia, the current cut-off value of 30.0 pg/mL FGF23 has
310	sufficient sensitivity and specificity.
311	
312	Limitations
313	This was an observational study with a prospective setting, and the sample size was
314	small due to fewer patients with untreated non-FGF23-related hypophosphatemia and
315	FGF23-related hypophosphatemia without vitamin D deficiency. Owing to the small sample
316	size, age, gender, and other demographic parameters could not be matched between the two
317	study groups. Second, while there were other causes for both FGF23-related and non-FGF23-
318	related hypophosphatemia, such patients could not be registered in the current study because
319	of their rarity. Finally, the purpose of this study was to verify the diagnostic performance of
320	CL-FGF23 with a cut-off value (30.0 pg/mL) determined by the existing intact FGF23 assay
321	(Kainos). Therefore, the optimum cut-off value of CL-FGF23 has not been established. The
322	determination of adequate cut-off value for discriminating FGF23-related hypophosphatemia
323	from the non-FGF23-related one will be warranted after the accumulation of clinical data
324	with this new intact FGF23 assay system in the future.
325	

326 Conclusions

328	It is evident from this clinical study that measurements with CL-FGF23 using the
329	existing cut-off value of 30.0 pg/mL proposed in the guidelines in Japan demonstrated high
330	sensitivity and specificity. This novel assay system detects only the active form of full-length
331	FGF23 and is clinically beneficial as an <i>in vitro</i> diagnostic reagent for the detection of
332	FGF23-related hypophosphatemia. This study also suggested that patients with small cell
333	carcinoma in the lung or prostate can suffer from FGF23-related hypophosphatemia. Thus,
334	this could be an interesting topic for future research to clarify the prevalence of FGF23-
335	related hypophosphatemia in patients with neuroendocrine tumours.
336	
337	Research funding
001	Acsearch funding
338	This study was supported by Minaris Medical Co., Ltd.
338 339	This study was supported by <u>Minaris Medical</u> Co., Ltd. Author contributions
338 339 340	Kescarch running This study was supported by Minaris Medical Co., Ltd. Author contributions All authors have accepted responsibility for the entire content of this manuscript and
338 339 340 341	Kescarch funding This study was supported by <u>Minaris Medical</u> Co., Ltd. Author contributions All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
 338 339 340 341 342 	Kescaren nunung This study was supported by Minaris Medical Co., Ltd. Author contributions All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Conceptualisation: NI, KO, and SF.
 338 339 340 341 342 343 	Kestaren running This study was supported by Minaris Medical Co., Ltd. Author contributions All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Conceptualisation: NI, KO, and SF. Formal analysis and investigation: NI.
 338 339 340 341 342 343 344 	Kescarch funding This study was supported by Minaris Medical Co., Ltd. Author contributions All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Conceptualisation: NI, KO, and SF. Formal analysis and investigation: NI. Writing - original draft preparation: NI, and TK.
 338 339 340 341 342 343 344 345 	Kescarein numbing This study was supported by Minaris Medical Co., Ltd. Author contributions All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Conceptualisation: NI, KO, and SF. Formal analysis and investigation: NI. Writing - original draft preparation: NI, and TK. Writing - review and editing: NI, and SF.

346	Funding a	cquisition:	NI,	TK,	SK,	IF, MA,	, YT, M	1M,	RO,	KO,	YS,	and SF.
-----	-----------	-------------	-----	-----	-----	---------	---------	-----	-----	-----	-----	---------

- 347 Resources: NI, TK, SK, IF, MA, YT, HY, TK, TS, MM, RO, KO, YS, and SF.
- 348 Supervision: NI, KO, and SF.

349 **Competing interests**

350 Authors state no conflict of interest.

351 Informed consent

352 Informed consent was obtained from all individuals included in this study.

353 Ethical approval

354 This study was approved by the ethical review board of the six investigational sites.

357

358

359

360

361

362

363

364

365

366

367

368

369

370

Re	ferences
1.	Fukumoto S, Ozono K, Michigami T, Minagawa M, Okazaki R, Sugimoto T, Takeuchi Y,
	Matsumoto T (2015) Pathogenesis and diagnostic criteria for rickets and osteomalacia-
	proposal by an expert panel supported by the Ministry of Health, Labour and Welfare,
	Japan, the Japanese Society for Bone and Mineral Research, and the Japan Endocrine
	Society. J Bone Miner Metab 33:467-73
2.	Fukumoto S, Yamashita T (2007) FGF23 is a hormone regulating phosphate
	metabolism—unique biological characteristics of FGF23. Bone 40:1190-95
3.	Fukumoto S, Martin TJ (2009) Bone as an endocrine organ. Trends Endocrinol Metab
	20:230-36

371	4.	Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto	Τ,

- -- -

.

- 372Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ,
- Lavigne J, Jüppner H (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and 373
- X-linked hypophosphatemia. N Engl J Med 348:1656-63 374

376	5.	Endo I, Fukumoto S, Ozono K, Namba N, Tanaka H, Inoue D, Minagawa M, Sugimoto
377		T, Yamauchi M, Michigami T, Matsumoto T (2008) Clinical usefulness of measurement
378		of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients: Proposal of
379		diagnostic criteria using FGF23 measurement. Bone 42:1235-39
380		
381	6.	Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita
382		T, Nakahara K, Yamashita T, Fukumoto S (2002) Increased circulatory level of
383		biologically active full-length FGF-23 in patients with hypophosphatemic
384		rickets/osteomalacia. J Clin Endocrinol Metab 87:4957–60
385		
386	7.	Ito N, Fukumoto S, Takeuchi Y, Yasuda T, Hasegawa Y, Takemoto F, Tajima T, Dobashi
387		K, Yamazaki Y, Yamashita T, Fujita T (2005) Comparison of two assays for fibroblast
388		growth factor (FGF)-23. J Bone Miner Metab 23:435-40
389		
390	8.	Imel EA, Peacock M, Pitukcheewanont P, Heller HJ, Ward LM, Shulman D, Kassem M,
391		Rackoff P, Zimering M, Dalkin A, Drobny E, Colussi G, Shaker JL, Hoogendoorn EH,
392		Hui SL, Econs MJ (2006) Sensitivity of fibroblast growth factor 23 measurements in
393		tumour-induced osteomalacia. J Clin Endocrinol Metab 91:2055-61

395	9.	Carpenter TO, Whyte MP, Imel EA, Boot AM, Högler W, Linglart A, Padidela R, Van't
396		Hoff W, Mao M, Chen CY, Skrinar A, Kakkis E, Martin JS, Portal AAe (2018)
397		Burosumab Therapy in Children with X-Linked Hypophosphatemia. N Engl J Med
398		378:1987–98
399		
400	10.	Portale AA, Carpenter TO, Brandi ML, Briot K, Cheong HI, et al. (2019) Continued
401		beneficial effects of burosumab in adults with X-linked hypophosphatemia: Results from
402		a 24-week treatment continuation period after a 24-week double-blind placebo-controlled
403		period. Calcif Tissue Int 105:271-84
404		
405	11.	Insogna KL, Briot K, Imel EA, Kamenický P, Ruppe MD et al. (2018) A randomised,
406		double-blind, placebo-controlled, phase 3 trial evaluating the efficacy of Burosumab, an
407		anti-FGF23 antibody, in adults with X-Linked hypophosphatemia: Week 24 primary
408		analysis. J Bone Miner Res 33:1383–93
409		
410	12.	Imel EA, Glorieux FH, Whyte MP, Munns CF, Ward LM et al. (2019) Burosumab versus
411		conventional therapy in children with X-linked hypophosphataemia: A randomised,
412		active-controlled, open-label, phase 3 trial. Lancet 393:2416-27

414	13. Imanishi Y, Ito N, Rhee Y, Takeuchi Y, Shin CS, Takahashi Y, Onuma H, Kojima M,
415	Kanematsu M, Kanda H, Seino Y, Fukumoto S (2021) Interim analysis of a phase 2
416	open-label trial assessing burosumab efficacy and safety in patients with tumour-induced
417	osteomalacia. J Bone Miner Res 36:262-270
418	
419	14. Jan de Beur SM, Miller PD, Weber TJ, Peacock M, Insogna K, Kumar R, Rauch F, Luca
420	D, Cimms T, Roberts MS, San Martin J, Carpenter TO (2021) Burosumab for the
421	treatment of tumour-induced osteomalacia. J Bone Miner Res 36:627-635
422	
423	15. Souberbielle JC, Prié D, Piketty ML, Rothenbuhler A, Delanaye P, Chanson P, Cavalier
424	E (2017) Evaluation of a New Fully Automated Assay for Plasma Intact FGF23. Calcif
425	<u>Tissue Int. 101:510-518</u>
426	
427	16. Cavalier E, Lukas P, Bottani M, Aarsand AK, Ceriotti F, Coşkun A, Díaz-Garzón J,
428	Fernàndez-Calle P, Guerra E, Locatelli M, Sandberg S, Carobene A (2020) European
429	Biological Variation Study (EuBIVAS): within- and between-subject biological
430	variation estimates of β -isomerized C-terminal telopeptide of type I collagen (β -CTX),
431	N-terminal propeptide of type I collagen (PINP), osteocalcin, intact fibroblast growth

432	factor 23 and uncarboxylated-unphosphorylated matrix-Gla protein-a cooperation
433	between the EFLM Working Group on Biological Variation and the International
434	Osteoporosis Foundation-International Federation of Clinical Chemistry Committee on
435	Bone Metabolism. Osteoporos Int. 31:1461–1470
436	
437	17. Laurent MR, De Schepper J, Trouet D, Godefroid N, Boros E, Heinrichs C, Bravenboer
438	B, Velkeniers B, Lammens J, Harvengt P, Cavalier E, Kaux JF, Lombet J, De Waele K,
439	Verroken C, van Hoeck K, Mortier GR, Levtchenko E, Vande Walle J (2021)
440	IConsensus Recommendations for the Diagnosis and Management of X-Linked
441	Hypophosphatemia in Belgium. Front Endocrinol (Lausanne) 12:641543
442	
443	
444	1518. Shimizu Y, Fukumoto S, Fujita T (2012) Evaluation of a new automated
445	chemiluminescence immunoassay for FGF23. J Bone Miner Metab 30:217–21
446	
447	1619. Su Z, Narla SN, Zhu Y (2014) 25-Hydroxyvitamin D: Analysis and clinical
448	application. Clin Chim Acta 433:200–5
449 I	
450	<u>20</u> 17. Website of StataCorp LLC (https://www.stata.com/stata12/)

452	2148. Lu L, Yu Z, Pan A, Hu FB, Franco OH, Li H, Li X, Yang X, Chen Y, Lin X (2009)
453	Plasma 25-hydroxyvitamin D concentration and metabolic syndrome among middle-
454	aged and elderly Chinese individuals. Diabetes Care 32:1278-83
455	
456	2219. Wei J, Zhu A, Ji JS (2019) A Comparison study of vitamin D deficiency among older
457	adults in China and the United States. Sci Rep 9:19713
458	
459	2 <u>3</u> 0. Niikura T, Oe K, Sakai Y, Iwakura T, Fukui T, Nishimoto H, Hayashi S, Matsumoto T,
460	Matsushita T, Maruo A, Yagata Y, Kishimoto K, Sakurai A, Kuroda R (2019)
461	Insufficiency and deficiency of vitamin D in elderly patients with fragility fractures of
462	the hip in the Japanese population. J Orthop Surg (Hong Kong) 27:2309499019877517
463	
464	244. Ferrari SL, Bonjour JP, Rizzoli RJ (2005) Fibroblast growth factor-23 relationship to
465	dietary phosphate and renal phosphate handling in healthy young men. Clin Endocrinol
466	Metab 90:1519–24
467	

468	2 <u>5</u> 2.	Ito N, Fukumoto S, Takeuchi Y, Takeda S, Suzuki H, Yamashita T, Fujita T (2007)
469		Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels
470		in humans. J Bone Miner Metab 25:419–22
471		
472	2 <u>6</u> 3.	Jackman DM, Johnson BE (2005) Small-cell lung cancer. Lancet 366:1385–96
473		
474	2 <u>7</u> 4.	Sauder A, Wiernek S, Dai X, Pereira R, Yudd M, Patel C, Golden A, Ahmed S, Choe J,
475		Chang V, Sender S, Cai D (2016) FGF23-associated tumour-induced osteomalacia in a
476		patient with small cell carcinoma: A case report and regulatory mechanism study. Int J
477		Surg Pathol 24:116–20
478		
479	2 <u>8</u> 5.	Nadal R, Schweizer M, Kryvenko ON, Epstein JI, Eisenberger MA (2014) Small cell
480		carcinoma of the prostate. Nat Rev Urol 11:213–9
481		
482	2 <u>9</u> 6.	Randall RE jr, Lirenman DS (1964) Hypocalcemia and hypophosphatemia
483		accompanying osteoblastic metastases. J Clin Endocrinol Metab 24:1331-3
484		

485	3027. Lyles KW, Berry WR, Haussler M, Harrelson JM, Drezner MK (1980)
486	Hypophosphatemic osteomalacia: Association with prostatic carcinoma. Ann Intern
487	Med 93:275–8
488	
489	3128. Kabadi UM (1983) Osteomalacia associated with prostatic cancer and osteoblastic
490	metastases. Urology 21:65-7
491	
492	3229. McMurtry CT, Godschalk M, Malluche HH, Geng Z, Adler RA (1993) Oncogenic
493	osteomalacia associated with metastatic prostate carcinoma: Case report and review of
494	the literature. J Am Geriatr Soc 41:983–5
495	
496	3 <u>3</u> 0. Nakahama H, Nakanishi T, Uno H, Takaoka T, Taji N, Uyama O, Kitada O, Sugita M,
497	Miyauchi A, Sugishita T, Fujita T (1995) Prostate cancer-induced oncogenic
498	hypophosphatemic osteomalacia. Urol Int 55:38-40
499	
500	341. Pelger RC, Lycklama A, Nijeholt GA, Papapoulos SE, Hamdy NA (2005) Severe
501	hypophosphatemic osteomalacia in hormone-refractory prostate cancer metastatic to the
502	skeleton: Natural history and pitfalls in management. Bone 36:1–5
503	

504	3 <u>5</u> 2.	Cotant CL, Rao PS (2007) Elevated fibroblast growth factor 23 in a patient with
505		metastatic prostate cancer and hypophosphatemia. Am J Kidney Dis 50:1033-36
506		
507	3 <u>6</u> 3.	Ramon I, Kleynen P, Valsamis J, Body JJ, Karmali R (2011) Hypophosphatemia related
508		to paraneoplastic Cushing syndrome in prostate cancer: Cure after bilateral
509		adrenalectomy. Calcif Tissue Int 89:442–5
510		
511	3 <u>7</u> 4.	Mak MP, da Costa e Silva VT, Martin RM, Lerario AM, Yu L, Hoff PM, de Castro G
512		(2012) Advanced prostate cancer as a cause of oncogenic osteomalacia: An
513		underdiagnosed condition. Jr.Support Care Cancer 20:2195–7
514		
515	3 <u>8</u> 5.	Latifyan SB, Vanhaeverbeek M, Klastersky J (2014) Tumour-associated osteomalacia
516		and hypoglycemia in a patient with prostate cancer: Is Klotho involved? BMJ Case Rep
517		bcr-2014-206590
518		
519	3 <u>9</u> 6.	Okazaki R, Ozono K, Fukumoto S, Inoue D, Yamauchi M, Minagawa M, Michigami T,
520		Takeuchi Y, Matsumoto T, Sugimoto T (2017) Assessment criteria for vitamin D
521		deficiency/insufficiency in Japan: Proposal by an expert panel supported by the
522		Research Program of Intractable Diseases, Ministry of Health, Labour and Welfare,

523	Japan, the Japanese Society for Bone and Mineral Research and the Japan Endocrine
524	Society [Opinion]. J Bone Miner Metab 35:1–5
525	
526	4037. Tanaka T, Yamashita A, Ichihara K (2008) Reference intervals of clinical tests in
527	children determined by a latent reference value extraction method. Journal of the Japan
528	Pediatric Association 112:1117–32
529	
530	4138. Ichihara K, Yomamoto Y, Hotta T, Hosogaya S, Miyachi H, Itoh Y, Ishibashi M, Kang
531	D (2016) Committee on Common Reference Intervals, Japan Society of Clinical
532	Chemistry. Collaborative derivation of reference intervals for major clinical laboratory
533	tests in Japan. Ann Clin Biochem 53:347–56
534	
535	4239. Okazaki R, Ozono K, Fukumoto S, Inoue D, Yamauchi M, Minagawa M, Michigami T,
536	Takeuchi Y, Matsumoto T, Sugimoto T (2017) Assessment criteria for vitamin D
537	deficiency/insufficiency in Japan -proposal by an expert panel supported by Research
538	Program of Intractable Diseases, Ministry of Health, Labour and Welfare, Japan, The
539	Japanese Society for Bone and Mineral Research and The Japan Endocrine Society
540	[Opinion]. Endocr J 64:1–6
541	

542	4 <u>3</u> 0.	Okazaki R, Ozono K, Fukumoto S, Inoue D, Yamauchi M, Minagawa M, Michigami T,
543		Takeuchi Y, Matsumoto T, Sugimoto T (2017) Assessment criteria for vitamin D
544		deficiency/insufficiency in Japan: Proposal by an expert panel supported by the
545		Research Program of Intractable Diseases, Ministry of Health, Labour and Welfare,
546		Japan, the Japanese Society for Bone and Mineral Research and the Japan Endocrine
547		Society [Opinion]. J Bone Miner Metab 35:1–5
548		
549		

550									
551	Figure legends								
552									
553	Fig.1 Flow chart of the registration of the participants								
554	The registration flow of this study from the initial enrolment to the final selection of FG23-								
555	related hypophosphatemia without vitamin D deficiency (disease group-1), non-FGF23-								
556	related hypophosphatemia (disease group-2), and FGF23-related hypophosphatemia with								
557	vitamin D deficiency are shown.								
558	*Withdrawal of consent, unmatched to inclusion criteria (higher Cre value, unconfirmed data								
559	of chronic hypophosphatemia, etc.), matched to exclusion criteria								
560	** 'Unclassified case' means that the diagnosis of three council members mismatched.								
561									
562	Fig.2 Comparison of FGF23 levels between FGF23-related hypophosphatemic								
563	rickets/osteomalacia and non-FGF23-related chronic hypophosphatemia with or								
564	without rickets/osteomalacia								
565	FGF23 values measured by CL-FGF23 from disease group-1 and 2 and all FGF23-related								
566	hypophosphatemic patients are plotted and compared in the logarithmic expression in Figure								
567	2.								

568	The solid and broken lines indicate serum FGF23 levels of 30.0 pg/mL (current cut-off value)
569	and 44.0 pg/mL, respectively.

571 Fig.3. Serum phosphate and FGF23 levels in all the participants.

- 572 FGF23 levels measured by CL-FGF23 in a logarithmic fashion and serum phosphate levels
- are plotted in Figure 3.
- 574 Grey circles, XLH without vitamin D deficiency; black circles, XLH with vitamin D
- 575 deficiency; grey triangles, TIO without vitamin D deficiency; black triangles, TIO with
- 576 vitamin D deficiency; asterisk, Fanconi syndrome due to adefovir dipivoxil, open rhombus,
- 577 denosumab-induced hypophosphatemia; open square, vitamin D deficiency without FGF23-
- 578 related hypophosphatemia.
- 579 The solid and broken lines indicate serum FGF23 levels of 30.0 pg/mL (current cut-off value)
- and 44.0 pg/mL, respectively.

Paramete	r	FGF23-relat without v (dis	ted hypophosphatemia itamin D deficiency ease group-1)	FGF23-rel	lated hypophosphatemia (reference)	No hypopl	Pc	
	Reference interval ^a	n	mean ± SD	n	mean ± SD	n	mean ± SD	
Gender (male/female; n)		14	8/6	43	16/27	22	11/11	
Age (yr)	14	21 ± 24	43	32 ± 23	22	35 ± 33	0.25	
Creatinine (mg/dL), serum	0.4~1.1	14	0.47 ± 0.26	42	0.49 ± 0.19	22	0.42 ± 0.26	0.45
Albumin (g/dL), serum	4.1~5.1	13	4.5 ± 0.4	40	4.4 ± 0.4	22	3.9 ± 0.6	< 0.0001
Calcium (mg/dL), serum	8.7~10.3	14	9.4 ± 0.6	42	9.2 ± 0.7	22	8.6 ± 0.8	0.001
	Adult: 2.8~4.6	5	2.0 ± 0.5	27	2.1 ± 0.5	12	1.8 ± 0.5	0.32
Phosphate (mg/dL), serum	Child: 3.3~7.7	9	3.1 ± 0.2	16	3.0 ± 0.7	10	4.0 ± 1.3	0.27
Intact PTH (pg/mL), serum	10~65	11	53.5 ± 25.9	33	89.9 ± 105.8	13	146.5 ± 114.9	0.07
Alkaline phosphatase (U/L),	Adult:100~325	5	398 ± 258	27	579 ± 984	12	731 ± 1055	0.56
serum (JSCC)	Child: 120~1620	9	1418 ± 320	16	1287 ± 375	10	3636 ± 1859	0.0004
1,25(OH) ₂ D (pg/mL), serum	20.0~70.0	11	57.8 ± 25.7	24	63.7 ± 31.8	10	95.7 ± 63.6	0.066
25(OH)D (ng/mL), serum $\geq 20.0^{b}$		14	25.6 ± 3.6	43	18.7 ± 5.9	22	14.1 ± 4.8	< 0.0001
Causes for FGF23-related l	hypophosphatemia	XLF	H (12), TIO (2)	XLH (38), TIO (5)		_		
Causes for hypophe		_	_		Vitamin D deficiency (18), Denosumab induced (3), Fanconi syndrome (1)			

Table 1. Characteristics

a. The reference interval for each biochemical parameter is provided in the previous report [37,38].

b. Definition of vitamin D deficiency by a guidelines of the Japanese Society of Pediatric Endocrinology, the Japanese Endocrine Society and the Japanese Society of Bone and Mineral Metabolism [36, 39, 40]

c. P values are for comparison across all three groups obtained from the Kruskal-Wallis test, one-way ANOVA, as appropriate.

JSCC: Japan Society of Clinical Chemistry method

Table 2. Clinical performance of the FGF23 measurement									
	FGF23-related hypophosphatemia without vitamin D deficiency (Group-1)	Non-FGF23-related hypophosphatemia (Group-2)	Total						
Less than the cutoff value of FGF23 (< 30 pg/mL)	0	18	18						
Above the cutoff value of FGF23 (≥ 30 pg/mL)	14	4	18						
Total	14	22	36						

	Table 3. Profiles of the patients in group-2 (FGF23 30 pg/mL or more)													
#	FGF23	Age	Gender ^a	Pi (mg/dL)	Ca (mg/dL)	ALB (mg/dL)	ALP (U/L)	Intact PTH (pg/mL)	1,25(OH)2D (pg/mL)	25(OH)D (ng/mL)	Cre (mg/dL)	Primary conditions	Accompanying diseases	Registered causes for hypophosphatemia
	(18)	0-7		2.8-4.6 ^b	8.7-10.3 ^b	4.1-5.1 ^b	100-325 ^b	10-65 ^b	20-70.0 ^b	≥20.0 ^c	0.4-1.1 ^b)F -FF
1	31.9	31	М	1.4	7.2	3.0	336	ND	ND	10.2	0.61	Chronic myelogenous leukemia	NA	Vitamin D deficiency
2	43.9	70	F	1.8	8.2	3.7	119	46.0	65.7	11.0	0.67	Adrenal insufficiency induced by steroid withdrawal	Hypertension, Osteoporosis	Vitamin D deficiency
3	71.6	71	F	1.4	8.9	3.5	2886	20.0	36.3	13.0	0.60	Small cell lung carcinoma	Hypertension, Atrial septal defect, Hyperuricemia	Vitamin D deficiency
4	469.4	68	М	0.8	7.6	3.4	3058	ND	ND	15.1	0.49	Multiple bone metastases from prostate small cell carcinoma	NA	Vitamin D deficiency

ND: Not determined, NA: Not applicable

a. M: men, F: women.

b. The reference interval for each biochemical parameter is provided in the previous report. [37,38]c. Definition of vitamin D deficiency follows by a guidelines of the Japanese Society of Pediatric Endocrinology, the Japanese Endocrine Society and the Japanese Society of Bone and Mineral Metabolism [36, 39, 40]

