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REVIEW

Diaphragm-protective mechanical ventilation in
acute respiratory failure

Taiga Itagaki

Department of Emergency and Disaster Medicine, Tokushima University Hospital, Tokushima, Japan

Abstract : Mechanical ventilation injures not only the lungs but also the diaphragm, resulting in dysfunction 
associated with poor outcomes. The chief mechanisms of ventilator-induced diaphragm dysfunction are : disuse 
atrophy due to insufficient contraction and excessive ventilatory support ; concentric load-induced injury due 
to excessive contraction and insufficient ventilatory support ; eccentric load-induced injury due to contraction 
during the expiratory phase ; and longitudinal atrophy caused by high positive end-expiratory pressure. To pro-
tect the diaphragm during mechanical ventilation, maintaining proper levels of diaphragm contraction is par-
amount ; thus, monitoring of respiratory effort and finely tuned ventilator settings are necessary. Furthermore, 
maintaining of synchronization between the patient and the ventilator is also important. As diaphragm dys-
function is more likely to occur in critically ill patients, diaphragm-protective mechanical ventilation strategies 
are essential to reduce the mortality rate of intensive care unit patients. This review outlines clinical evidence 
of ventilator-induced diaphragm dysfunction and its underlying mechanisms, and strategies to facilitate dia-
phragm-protective mechanical ventilation. J. Med. Invest. 69 : 165-172, August, 2022
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INTRODUCTION
 

In respiratory distressed critically ill patients, it is important 
to unload respiratory muscles and prevent muscle fatigue and 
damage, as ventilatory demand significantly exceeds normal re-
spiratory muscle activity (1). Lung injury induced by mechanical 
ventilation itself and spontaneous breathing effort is well known 
(2). Moreover, a study reported that mechanical ventilation may 
also injure the diaphragm (3). In 1988, Knisely et al. first report-
ed abnormal thinning of diaphragmatic muscle myofibers in 
newborns that experienced long-term mechanical ventilation (4). 
In animal studies, short periods of passive controlled mechanical 
ventilation (CMV) induced oxidative stress that lead to protein 
degradation, resulting in diaphragm muscle atrophy and weak-
ness (5-7). In a study with humans, Levine et al. (8) reported that 
prolonged diaphragm inactivity in brain-dead organ donors was 
associated with marked atrophy of diaphragm myofibers. Since 
then, rapid diaphragm atrophy and dysfunction under mechani-
cal ventilation were recognized as ventilator-induced diaphragm 
dysfunction, which is a frequently occurring complication in me-
chanically ventilated patients (3, 9-12). As diaphragm weakness 
is present prior to the admission to the intensive care unit (ICU) 
(13), and sepsis and other critical conditions themselves cause 
diaphragm fragility (14), the term critical illness-associated 
diaphragm weakness is also commonly used for diaphragm dys-
function that occurs in the ICU (15).

Preventing diaphragm injury during mechanical ventilation 
may lead to decreased mechanical ventilator dependence and 
improved outcome ; thus, it is an important issue for all critical 
care givers involved in mechanical ventilation. In this review, 
clinical evidence of ventilator-induced diaphragm dysfunction 

and its underlying mechanisms, and strategies to facilitate dia-
phragm-protective mechanical ventilation are outlined.

CLINICAL EVIDENCE
 

In recent years, it has become possible to evaluate diaphragm 
function noninvasively at the bedside by ultrasonography (16-
18), which has revealed that diaphragm dysfunction is an im-
portant issue affecting patient outcomes as well as ICU-acquired 
weakness. Dres et al. (11) evaluated diaphragm function by 
ultrasonography and examination of twitch tracheal pressure 
in response to bilateral anterior magnetic phrenic nerve stim-
ulation. In the study, they reported that 63% of mechanically 
ventilated patients presented diaphragm dysfunction and 21% 
of patients presented both diaphragm and limb muscle atrophy. 
Moreover, this diaphragm dysfunction was related to prolonged 
ICU stay and increased mortality rate. Goligher et al. measured 
the thickening fraction of the diaphragm (TFdi) by ultrasonogra-
phy, and reported shorter ICU stay in patients with TFdi equiv-
alent to that of healthy subjects at rest (15-30%) (12). Patients 
that received mechanical ventilation presented with increased 
and decreased diaphragm thickness, and both conditions were 
associated with prolonged ventilator dependence and a higher 
mortality rate. 

MECHANISMS OF DIAPHRAGM INJURY INDUCED 
BY MECHANICAL VENTILATION

To prevent diaphragm dysfunction, it is necessary to under-
stand the mechanisms of diaphragm injury. Atrophy owing to a 
suppression of inspiratory effort and injury due to an excessive 
load are the two most important diaphragm injuries during me-
chanical ventilation. Figure 1 summarizes possible mechanisms 
of diaphragm injury. 
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1. Disuse atrophy

Disuse atrophy due to excessive respiratory support is the 
most important mechanism of diaphragm injury during me-
chanical ventilation (19). In animal studies, CMV or high 
levels of pressure support ventilation caused acute atrophy, 
damage of myofibers, and dysfunction (5, 20, 21). Levine et al. 
(8) reported that diaphragm inactivity up to 18-69 hours in 
brain-dead patients was associated with marked atrophy of the 
diaphragm ; however, it did not cause atrophy in the pectoralis 
major. Further histological investigations in human subjects 
revealed that disuse of the diaphragm activated proteolytic path-
ways and caused both diaphragm atrophy and mitochondrial 
dysfunction resulting in impaired contractility (22, 23). Previous 
studies using ultrasonography up to one week after the start 
of mechanical ventilation or until extubation demonstrated a 
decrease in end-expiratory thickness of the diaphragm of more 
than 10% in almost half of mechanically ventilated patients (10, 
24). In both studies, decrease in thickness of the diaphragm was 
observed until the third day of mechanical ventilation, and ob-
served during both controlled and partially assisted ventilation.

2. Concentric load-induced injury 

When ventilatory support is insufficient against inspira-
tory effort, excessive load on the diaphragm causes muscle 
injury (concentric load-induced injury). In histological exam-
inations in healthy subjects and patients with chronic obstruc-
tive pulmonary disease, contraction of the diaphragm against 
excessive load caused acute (< 90 minutes) diaphragm injury, 

inflammation, and weakness (25, 26). Importantly, in critically 
ill patients, especially those with systemic inflammation, sarco-
lemma is susceptible to mechanical stimuli ; thus, diaphragm 
dysfunction through this mechanism frequently occurs (27).

3. Eccentric load-induced injury

Muscle injury occurs when muscles eccentrically contract 
while lengthening (28), and this also applies to the diaphragm 
(29). Theoretically, this injury may happen in mechanically 
ventilated patients. One possible cause is patient-ventilator 
asynchrony (Figure 2). With asynchronies, such as premature 
cycling, ineffective effort, and reverse triggering, the diaphragm 
will be forced to contract in the expiratory phase of the ventilator 
cycle, which results in diaphragm injury (30, 31). Another cause 
is diaphragm braking. The diaphragm contracts even during 
expiratory phase and suppresses the rate of decrease in lung vol-
ume to prevent acute alveolar collapse and following atelectasis 
(32, 33). This contraction during the expiratory phase is poten-
tially injurious to the diaphragm (34, 35). Diaphragm braking 
is strong in situations where alveoli are prone to collapse such 
as when positive end-expiratory pressure (PEEP) is set low (33). 
Expiratory muscle contraction may accelerate diaphragm brak-
ing. Expiratory muscle recruitment is related to weaning failure 
especially in patients with small airway obstruction (36, 37). 
The diaphragm may contract strongly during expiration in cases 
with recruited expiratory muscles. Further studies are needed.

4. Longitudinal atrophy

When the diaphragm is maintained at a shorter (more caudal) 

Figure 1.　Mechanisms of diaphragm injury induced by mechanical ventilation leading to diaphragm dysfunction.
Black arrows indicate mechanisms that have been shown to be associated with poor outcomes. White arrows indicate 
hypothetical mechanisms based on animal experiments. Lower right schema shows changes in sarcomere length according to 
changes in PEEP. (A) normal, (B) acute effect of PEEP, (C) long-term effect of persistent high PEEP, and (D) overstretch after 
the sudden lowering of PEEP.
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position with higher PEEP, the sudden lowering of PEEP, such 
as a spontaneous breathing trial, may cause longitudinal at-
rophy (38). Although the previous study was an animal study, 
higher PEEP shortens the length of sarcomeres (the basic 
contractile unit of muscle fibers composed of two main protein 
filaments, actin and myosin) in the longitudinal direction, and 
gradually, some sarcomeres drop out and others regain their 
original length (reconstruction). Here, the sudden lowering of 
PEEP causes overstretches of sarcomeres leading to a change in 
the length-tension relationship of the diaphragm that may cause 
reduced contraction. Further investigation in human subjects is 
needed.

CLINICAL STRATEGIES TO FACILITATE DIAPHRAGM-
PROTECTIVE MECHANICAL VENTILATION

Preserving spontaneous breathing under light sedation can 
improve oxygenation and prevent atrophy of respiratory muscles. 
In recent years, excessive respiratory effort has been shown 
to exacerbate lung injury, and control of respiratory effort has 
become recognized as an important element of lung protection 
(39, 40). However, this lung protective strategy also carries a risk 
of disuse diaphragm atrophy ; thus, it is important to monitor 
inspiratory effort and consider how much spontaneous breathing 
effort should be preserved.

1. Monitoring diaphragm-injurious inspiratory effort

To optimize diaphragm activity for diaphragm protection, ade-
quate monitoring of inspiratory effort is important. For that pur-
pose, direct examination of the diaphragm by ultrasonography 
is used (Figure 3). Measurement of the diaphragm is performed 
using B-mode or M-mode ultrasonography with the 10-15 MHz 
linear transducer perpendicularly placed on the right chest wall 

at the zone of apposition (41). TFdi is commonly used to quantify 
diaphragm activity and is calculated as follows : ([thickness 
at end-inspiration – thickness at end-expiration] / thickness at 
end-expiration) × 100. TFdi is reported to have a good correlation 
with transdiaphragmatic pressure (Pdi), direct measurement of 
pressure generated by the diaphragm and electrical activity of 
the diaphragm (EAdi) (16). 

Esophageal pressure (Pes) is used as a surrogate of pleural 
pressure (Ppl) to monitor inspiratory effort. To measure Pes, a 
dedicated esophageal balloon catheter is needed and there are 
some technical issues about the position of the balloon and the 
amount of air filled (42). If gastric pressure (Pga) is measured 
simultaneously, Pdi can be obtained (Pdi = Pga – Pes) (43). EAdi 
is measured at the gastroesophageal junction by a dedicated 
catheter fitted with electromyography electrodes and ventilator. 
EAdi can also precisely monitor inspiratory effort (44). However, 
EAdi varies widely even in healthy subjects at rest ; thus, it is 
difficult to specify a target range of EAdi for diaphragm pro-
tection (45). Both Pes and EAdi can diagnose patient-ventilator 
asynchrony when they are monitored with airway pressure and 
flow waveforms.

P0.1 and ΔPocc are simpler methods to evaluate inspiratory ef-
fort at the bedside. P0.1 is defined as negative deflection of airway 
pressure when the airway is occluded for 0.1 sec (46, 47). ΔPocc is 
the airway pressure swing generated by the respiratory muscles 
when the airway is occluded during a whole breath, and it can 
estimate respiratory muscle pressure (Pmus) and inspiratory 
transpulmonary pressure swing (ΔPL) (48). 

Although the cut-off values of safe inspiratory effort that 
protect the diaphragm are not clear, it is important to maintain 
diaphragm activity by achieving the inspiratory effort levels of 
healthy subjects or patients who have been successfully weaned 
from mechanical ventilation (Table 1) (49, 50).

Figure 2.　Patient-ventilator asynchronies with eccentric diaphragm contraction.
(A) Normally triggered (synchronous) breath, (B) premature cycling, (C) ineffective effort, and (D) reverse triggering in pressure 
assist / control ventilation. In A, mechanical insufflation is synchronized with diaphragm contraction. In B to D, negative 
esophageal pressure swing (black arrow) appears while in the expiratory phase of the ventilator cycle (exp). PAW, airway 
pressure ; Pes, esophageal pressure.
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Figure 3.　Ultrasonographic assessment of the diaphragm.
The diaphragm is a low-echoic layer sandwiched between parietal pleura and peritoneum with a high-echoic centerline. 
TFdi, thickening fraction of the diaphragm ; Tdiexp, thickness of the diaphragm at end-expiration ; Tdiinsp, thickness of the 
diaphragm at end-inspiration.

Table 1.　Desirable target values of inspiratory effort for diaphragm protection

Parameter Remarks Range

Inspiratory thickening fraction of the 
diaphragm (TFdi)

Diaphragm activity noninvasively assessed by ultrasonography. 
Continuous monitoring is not feasible. 15-30%

Respiratory muscle pressure (Pmus)
Indicator of pressure generated by inspiratory muscles. Measurement 
of esophageal pressure is required. Pmus can be estimated from 
ΔPocc (estimated Pmus=−3/4×ΔPocc).

5-10 cmH2O

Transdiaphragmatic pressure swing 
(ΔPdi)

Indicator of pressure generated by the diaphragm. Simultaneous 
measurements of gastric and esophageal pressure are required. 5-10 cmH2O

Inspiratory esophageal pressure swing 
(ΔPes)

Surrogate indicator of inspiratory pleural pressure swing. Direct 
parameter of inspiratory effort. Placement of esophageal balloon is 
required.

3-15 cmH2O

Airway occlusion pressure (P0.1)
Negative deflection of PAW when the airway is occluded for 0.1 sec. 
Simple indicator of inspiratory drive with strong correlation with 
EAdi and Pmus. Most ICU ventilators can measure this parameter.

1-4 cmH2O

Airway pressure swing during a whole 
breath occlusion (ΔPocc)

Airway pressure swing when the airway is occluded during a whole 
breath. Simple indicator of inspiratory effort. Some ICU ventilators 
can measure this parameter.

8-20 cmH2O

Electrical activity of the diaphragm 
(EAdi)

Diaphragmatic electrical activity measured at gastroesophageal 
junction. Placement of dedicated catheter fitted with electrodes is 
required.

Uncertain

PAW, airway pressure.
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 2. Avoiding inactivity and insufficient unloading of the diaphragm
Ventilator settings

When tidal volume changes by adjusting inspiratory ven-
tilator settings, inspiratory effort will also change (51). This 
alteration in inspiratory effort is mainly caused by changes 
in ventilatory demand due to chemoreceptor reflex related to 
arterial blood pH. If patients are ventilated with excessive tidal 
volume, inspiratory effort is diminished leading to diaphragm 
atrophy. On the other hand, insufficient ventilatory support 
increases the inspiratory effort, resulting in diaphragm injury.

PEEP also affects inspiratory effort (52). Higher PEEP in-
creases end-expiratory lung volume and moves the diaphragm 
to a more caudal position, which decreases curvature of the dia-
phragm. From this, neuromechanical coupling will change and 
pressure generated by the diaphragm decreases. In a previous 
study, changes in pleural pressure by phrenic nerve stimulation 
decreased when end-expiratory lung volume was high (53). A 
recent randomized controlled trial (ROSE trial) (54) examined 
the effects of an early continuous neuromuscular blocking agent 
(NMBA) in patients with moderate to severe acute respiratory 
distress syndrome (ARDS) and found that it did not reduce 
90-day mortality contrary to the results observed in a previous 
randomized controlled trial (55). However, it has been suggested 
that the higher PEEP strategy applied to the control group (12.5 
cmH2O) may have mitigated inspiratory effort and indirectly 
protected not only the lungs but also the diaphragm (56). PEEP 
is hypothesized to have a preventive effect on eccentric load-in-
duced injury as diaphragm braking is suppressed as continuous 
positive airway pressure levels increase (33). However, caution 
may be required for longitudinal atrophy potentially caused 
after sudden lowering of higher PEEP settings.

 
Mode of mechanical ventilation

The detrimental effects of CMV on the diaphragm can be 
largely ameliorated by assist-control ventilation (ACV) (57), 
intermittent spontaneous breathing during CMV (58), pressure 
support ventilation (59, 60), and adaptive support ventilation 
(61). Marin-Corral et al. (62) reported that Maastricht III organ 
donors whose diaphragm was stimulated spent 41% of ventila-
tion time in assisted and spontaneous modalities. This resulted 
in less diaphragm myofiber damage than in brain-dead organ 
donors relying on full support. Consequently, to preserve sponta-
neous effort, most critically ill patients who require mechanical 
ventilation receive assisted and spontaneous modalities (10, 
15) ; however, in recent clinical trials, atrophy developed during 
both controlled and assisted ventilation (10, 12, 16). Itagaki et al. 
reported that the proportion of controlled ventilation during the 
early-phase of ACV was not associated with maximum variation 
in diaphragm thickness (63). The mechanism that explains why 
assisted breaths are diaphragm-protective is unknown (64). Di-
aphragm atrophy cannot be prevented by the presence of patient 
triggering, and maintaining optimal inspiratory effort level is 
more important.

Sedation
Sedation induced by propofol or benzodiazepines reduces re-

spiratory drive and effort, and also alters ventilatory response to 
hypoxemia and hypercapnea (51, 65). However, for the purpose 
of regulating excessive inspiratory effort, adjustment of ventila-
tor settings and management of factors increasing respiratory 
drive, such as metabolic acidosis or pain, should be implemented 
first before deepening sedation level. Intervention only with se-
dation did not effectively improve patient-ventilator asynchrony 
(66, 67).

Neuromuscular blocking agent use
Early NMBA use did not reduce 90-day mortality of ARDS 

patients in a recent study (54). This result suggests that there 
are some negative issues in lung protection with NMBA, and di-
aphragm atrophy is likely to be a factor. Dianti et al. (68) conduct-
ed a secondary analysis of their prospective cohort study (69) and 
investigated whether the association between NMBA use and 
mortality differed according to baseline diaphragm thickness. 
They found that NMBA was associated with higher mortality in 
patients with baseline diaphragm thickness ≤ 2.3 mm, whereas 
with lower mortality in patients with baseline diaphragm thick-
ness > 2.3 mm. This result suggests that NMBA may be harmful 
to patients who already have diaphragm atrophy, and it is im-
portant to facilitate lung- and diaphragm-protective ventilation.

3. Managing patient-ventilator asynchrony

Some forms of patient-ventilator asynchrony may cause eccen-
tric contraction of the diaphragm during the expiratory phase, 
which results in injury. They include reverse triggering, ineffec-
tive effort, and premature cycling (30, 31). Thus, maintaining 
synchronization between spontaneous breathing and assisted 
ventilation may be diaphragm protective. Monitoring of Pes 
and EAdi has advantages for diaphragm-protective mechanical 
ventilation in terms of both detection of asynchronous events 
and evaluation of inspiratory effort. In our prospective study 
(70), double triggering on the third day of mechanical ventilation 
was associated with strong inspiratory effort and may increase 
diaphragm thickness. Hence, the incidence of double triggering, 
which is the most lung-injurious asynchrony (71), may function 
as a surrogate indicator of a diaphragm-injurious breathing 
pattern.

 

CONCLUSION

Diaphragm injury during mechanical ventilation is common 
and associated with increased morbidity and mortality. As 
excessively weak or strong diaphragm contractions and pa-
tient-ventilator asynchrony are the main mechanisms of injury, 
monitoring and managing respiratory drive and inspiratory 
effort is important for critical care personnel.

In some cases, especially in severe ARDS, there may be a 
conflict between lung protection and diaphragm protection as 
diaphragm inactivity is required to avoid ventilator-induced 
lung injury or patient self-inflicted lung injury, or both. Although 
international experts have proposed prioritizing lung protection 
over protecting the diaphragm when necessary, they prefaced 
this by stating that every effort should be made to protect both 
organs simultaneously (35). Further studies are needed to iden-
tify personalized target values of respiratory effort to establish 
lung- and diaphragm-protective ventilation.
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