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Abstract

Biological swarms use emergent behaviour to perform complex tasks with
minimal resources. Research has shown that local interactions among neigh-
bours leads to emergent behaviour. However, many questions remain unan-
swered on how groups can conduct successful collective motion under chal-
lenging environmental conditions, competing priorities, and in heterogeneous
groups. A full understanding of this process may unlock potential solutions
for computational, robotic, and biological problems. We propose a novel be-
haviour selection algorithm that enables agents to stay in coherent groups
while navigating challenging environments. We evaluate our model, using
a three-dimensional simulator, in obstacle-free and obstacle-filled environ-
ments. We measure the model’s performance in two main ways, it’s ability
to create single cohesive groups, and it’s ability to create groups that explore
efficiently. We find that our model performs, at least, 18% better than sim-
ilar models from the literature. We find our model is robust to increases in
group size, obstacle density, and speed. Our model requires fewer compu-
tational complexities than many similar models, and as such, with further
development we believe it has potential to be implemented as an effective
multi-robotic platform providing efficient collective motion from low-cost in-
dividuals.
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1 Introduction

Researchers often observe biological groups performing feats outside of the
individual’s scope or capability [1] [2] [3]. Fully understanding how to create
a whole that exceeds the sum of its parts has clear benefits for any system
when considering performance or efficiency. It has been suggested that har-
nessing the emergent properties of swarms could generate novel solutions for
computational [4] [5], robotic,[6] [7] and biological problems [8]. As robotic
technologies become more readily available, an opportunity arises for multi-
agent systems that could offer potential solutions in transportation, high-risk
exploration, or search and rescue.

Swarming behaviour is common in nature, and certain manifestations
are easily observed (e.g., shoals of mosquitofish[9] or murmurations of star-
lings[10]). Due to the level of synchronisation in these groups an observer may
assume that there is a single omniscient force orchestrating all members of
the group. However, it has been demonstrated that complex behaviours can
emerge from simplistic rules of interaction among neighbours [11] and that
effective groups do not require any leaders to function [12]. While swarming
is ubiquitous in nature, a complete understanding of the underlying rules is
far from complete. The natural world consists of many layers of interaction,
each having its own properties and complexities, that make it difficult to
extract the rules that connect individuals. Add to this, the obscured inter-
nal motivations of individuals and the difficulties of working with biological
agents, and it becomes clear why extracting certainties about how swarms
operate can be challenging.

Researchers have approached this problem by utilizing models; from the
earliest attempt of simulating flocks for animation [13], through to imple-
menting deep attention networks to model the collective behaviour of fish
[14]. Initially theoretical models dominated research, but as experimental
and analytic techniques improved, models based on biological data became
more common, most recently, we observe an increase in the number of ap-
proaches using artificial intelligence.

In this thesis we will create and evaluate a novel set of interaction rules
designed for collective motion. Our main aim is for our method to achieve
cohesive and mobile groups in obstacle filled environments. We will explore
which variables in our model are significant, and how their adaptation im-
pacts performance. Our model design intent was to maximise simplicity (i.e.,
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simplistic behaviours, simplified decision making) and minimise resource need
(i.e., low range sensors, fewer neighbours considered). Wherever possible, we
used biological examples to generate variable values. We believe that a model
that takes this route will have the potential to reveal underlying rules pre-
viously obfuscated by complex systems, be adaptable into low-cost robotic
implementations, or become a credible tool for inferring how biological agents
may solve collective motion. It is important to understand how our model
performs against other similar models so we will compare and evaluate our
model against others similar models from the literature.

1.1 Research questions and objectives

Develop a novel behaviour selection model that allows collective motion
from simple sensory feedback.

How does our model’s major variables influence its performance?

How does our model’s performance compare against other similar mod-
els from the literature?

Design our model with a level of simplicity and biological inspired vari-
ables such that the model could be used to inform our biological un-
derstanding and guide future implementation of robotic platforms.

Under what conditions is our model successful? How robust is our
model to challenging conditions?

1.2 Main findings, outputs and summary of work

1.2.1 Findings

We find that simple sensory feedback is important for maintaining high
levels of cohesion and mobility during collective motion. Informed
groups (agent’s that gather the knowledge of their number of close-
range neighbours) perform, at a minimum, 18% better in coverage per-
formance than the highest performing uninformed groups.
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We find that swarm traversal in obstacle dense environments is a chal-
lenge and an under-represented area in the literature. In an obstacle-
filled environment our model was able to outperform the coverage re-
sults from Couzins et al. model [15] by a minimum of 21% and Ballerini
et al. model [10] by a minimum of 35%.

We find that models that focus on orientation alignment, while strong
in open spaces, are unsuccessful in object filled environments.

We find that our model has an optimal speed of 4.5 body lengths, BL,
per second, after which, performance begins to break down.

We find our model is able to be simpler in terms of computational
complexity while outperforming comparative modelling approaches.

1.2.2 Outputs

PLOS computational biology paper in preparation

3D Agent simulator

Python Scripts for analysing 3D behaviours

Conference poster presentation ASAB Konstanz (2019)

Conference on-line poster presentation SICB (2020)

1.2.3 Summary of work

Work conducted:

Adaptation of an existing simulation framework to suit our experimen-
tal needs. This involved writing agents, obstacles and data capture
into the simulation as well as the removal of elements that were not
required. The most significant coding required for the functionality of
the agents included behaviours, sensors, collision checking, movement
and neighbour classification. All files were written in C++.
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Creation of a framework to run analysis and created visual representa-
tions of the captured simulation data. The simulation data consists of
agents position, heading angle and behaviour selection for every time-
step. When considering this data over multiple variables, for hundreds
of trials and for hundreds of agents the data points can run into the
millions. To handle and make sense this large amount of data we de-
signed a series of scripts to convert it into a useful format. The most
significant scripts were converting and pre-processing data, calculating
number of clusters and cluster size, calculating the speed and coverage
of the largest cluster and calculating collision rates. All scripts were
written in Python.

Creation of shell scripts to automate the running and organisation of
experiments. This was necessary when our search-space was large and
experiment numbers could run into ten’s of thousands with multiple
variables considered.

1.3 Organisation of the thesis

To assist in the reading of this thesis we detail the sections forthcoming, and
what can be expected to be found within them. We break the continuation
of this thesis into the following four sections.

Chapter 2 - Background: We explore our motivation for conducting
this research and how this supports our long-term research goals. We
then present our literature review detailing the research used to create
and evaluate our model. We identify areas of research we feel are under-
represented and illustrate how our research attempts to reconcile this.
To finalise chapter two, we summarise the major multi-agent simulators
available to us, and explore the limitations and benefits of us using a
custom-built environment.

Chapter 3 - Research Methodology: We detail how we gener-
ated our model and how we conducted our experiments. We provide
a comprehensive account of how we represent the individuals of our
swarm and the interaction rules between them. We explain how our
environmental conditions are set and then we justify each experiment’s
parameters. We complete this section explaining the data we extract,
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the analytic methods we used, and how we represented our data. Fi-
nally, we provide details on how we prove statistical relevance for our
results.

Chapter 4 - Results: We present and give context to the findings for
all proposed experiments. We include figures to visualise the findings.

Chapter 5 - Discussion: We evaluate the results and explain how
they comply or contrast with the literature. We explore our results
through the lens of multi-agent robotic platforms and animal behaviour.
We then consider the limitations of the work and detail opportunities
to improve it. Finally, we address future work, some that has already
been undertaken, and some that constitutes our future plans.
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2 Background

2.1 Motivation

Collective motion has been studied in a wide variety of biological systems
such as fish [15] [16], insects [17] [18] [19], and birds [10] [20]. The common
biological advantages found are predator avoidance, improved foraging and
effective migration[21]. In each case, the exact methods and motives behind
each form of co-operation might be distinct, but with the highly diverse range
of agents involved (i.e., environment and agent cognition) we could assume
that there will be an overlap in the process. It would seem unlikely that every
species that performs some version of collective motion has arrived at that
result through completely independent means. Therefore, we expect to be
able to implement simplistic models using simplistic behaviours to achieve
effective collective motion. We hope by implementing our model in this
manner we will ensure biological plausibility, and computational efficiency for
robotic platforms. This approach would still allow for subsequent increases
in the model’s complexity to improve performance if needed.

To design our model and understand its place in the literature, we look
at research related to collective motion; more specifically but not exclusively
to those related to fish schooling. We focus on the following factors,

How agents are modelled. We will examine how an agent’s field of
view is represented in terms of range, shape, and blind spots. We will
consider body shape and simulation representation. We will consider
what sensing ability is given to individuals and how it is implemented.
We will explore the behaviours that agents can use (e.g., avoidance,
attraction) and how each behaviour is achieved.

Which variables are significant (e.g., group size, speed, turning
rate). We consider what variables are commonly explored and how
they may be useful to our model.

How group performance is evaluated. We examine what perfor-
mance metrics are implemented, and in what way they are effective.
We investigate the methods used to capture these metrics and consider
if they are relevant to our model.

Findings related to emergent properties of collective motion.
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We consider any findings that reveal details about how groups move
around in space.

2.2 Literature review

The first attempt at modelling swarm behaviour with actor-controlled rules
was developed by Craig Reynolds in 1987[13]. Reynolds’ primary interest
was from an animation perspective; he was interested in achieving visually
effective flocks to reduce the workload of animating individual actors. He de-
signed independent actors who followed a rule set to achieve visual flock-like
behaviour. To paraphrase his rule set (in descending order of importance):
actors avoid collisions with neighbours, actors match velocity with neigh-
bours, actors attract to the flock centre. It is important to note that no
attempt is made by agents to match the orientation of neighbours. Ori-
entation becomes common in later models, however, it is still an unsolved
questions about how significant orientation alignment is in swarms. Reynolds
raises some important discussion points, namely, how the perception of ac-
tors could be modelled, and how many neighbours an actor requires to be
effective, given that it is not feasible to interact with every member of the
population. Reynolds also introduces the concept of environmental obstacles
and how taking the average of conflicting behaviours could result in an issue,
when that average places agents on a collision path. Although these factors
are drawn upon, no clear attempts are made to answer any specific questions.
Reynolds admits that ”it is difficult to objectively measure how valid these
simulations are”, which we concluded is not surprising, as his approach was
that of animation, and as such, he desired an aesthetically pleasing swarm
not necessarily a swarm, that could be tested for effectiveness to any other
measures.

Huth & Wissel [16] developed a model to explore fish schooling. They
concluded that fish have to take into consideration more than a single neigh-
bour to show the ”typical characteristics of a real fish school”. They tested
the number of nearest neighbours considered up to a maximum of four neigh-
bours. Their implementation relies on spherical zones identifying and clas-
sifying neighbours in repulsion, parallel, attraction and search areas [fig.1].
They use four distinct behaviours, collision avoidance, search, attraction and
parallel orientation (an additional behaviour compared to Reynolds[13]). The
performance metrics they consider are polarisation (a measure of how direc-
tionally aligned all agents are) and the nearest neighbour distance, NND.
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This model is in 2-D and did not address what impact moving to a 3-D
model might have on results. Huth & Wissel focus on two different methods
for decision making: Average(A-model) and Decision (D-model). A-model
takes the arithmetic average of the neighbours influence and the D-model
gives the greatest weight to the neighbour in the zone of interest and then
halves the weight for any subsequent neighbour. For Huth & Wissel the
A-model was much more successful.

Figure 1: Huth & Wissel [16] visual representation of their model’s spherical re-
pulsion (dotted area), parallel (vertical lined area) and attraction (diagonally lined
area) zones. Includes visualisation of obscured zone to the rear of the agent.

Vicsek et al.[22] introduced the idea of a self-propelled particle (SPP)
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model. The simple model combined a fixed velocity along with an orientation
matching between particles. Vicsek recognised an alignment similarity be-
tween the results of his model and ferro-magnetism. The model they created
is not biologically focused but it is important to note that Vicsek et al. do
comment that SPP are much more common in biology than physics and that
their findings may have more impact in a ”wide range of biological systems
involving clustering and migration”. Most interestingly, if alignment match-
ing manifests results comparable to ferro-magnetism, where ferro-magnetism
alignment is not controlled by the individual but in fields, this may imply
that alignment might not be controlled by the individual but by external
conditions.

Couzins et al. [15] approach swarming as a collective behaviour problem,
they show how swarms can transition between movement patterns by indi-
viduals adapting the size of their behavioural zones. In their 3-D simulation
they apply three behaviours repulsion, orientation, and attraction. They
use metric spherical zones[fig.2] to classify which behaviours individuals run,
based on the neighbours they find in each zone. Individuals follow the follow-
ing hierarchical rules: Firstly, collision avoidance is given the highest priority.
Secondly, individuals are attracted to neighbours in the attraction zone and
align to neighbours in the alignment zone, if neighbours are in both zones,
they average the results of each behaviour from both zones. The resulting
direction is used to set the agent’s new heading angle. The averaging of
conflicting behaviours (when behaviours suggest heading directions that do
not match), whilst a common concept and conceptually simple for a reader,
sets a more complex requirement on an agent; to understand and manipulate
multiple behaviours. Couzins et al. use polarisation and angular momentum
(the measure of how synchronised a group’s turning is around the group’s
centre of mass) as assessment measures for their movement patterns. They
found that by changing the size of zone of repulsion(zor) individuals can
move location within the group. This is highly significant as it is scale-free
behaviour (i.e., it does not require the individual’s full knowledge of the
group structure to achieve, therefore the behaviour is consistent regardless
of group size). One problem with the model is that it requires no limit on
the number of neighbours an individual considers when making decisions for
alignment and attraction. This means the number of neighbours an individ-
ual could potentially be measuring in Couzins simulation was up to 99 and
this number seems biologically implausible and computationally extravagant
for individuals to calculate in dense groups.
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Figure 2: Couzins et al. [15] visual representation of zones of repulsion (ZOR),
orientation (ZOO) and attraction (ZOA).

Kunz & Hemelrijk’s [23] model explored how body size and body form in-
fluence swarm formation. Their model is implemented with three behaviours
repulsion, attraction, and alignment. In this model the zones used to classify
neighbours are more complicated than previous models explored. They use
a 2-D model[fig.3] (their results in 3-D showed no changes) that promotes
attraction to the front and alignment to the sides. They find that distribu-
tion of individuals is not homogeneous across swarms (emergent sorting) and
that heterogeneity of agent size influences this (small agents tend to occupy
middle of the swarm and larger agents on the edge). This model, like Couzins
[15], requires no limit on the number of neighbours an individual considers.

Grégoire et al. [12] using a 2-D SPP model they were able to show that
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Figure 3: Kunz & Hemelricjk’s [23] visual representation of their model’s two
implementations of asymmetric repulsion, orientation and attraction zones. Both
show a wide occlusion zone but change the shape and volume of the repulsion and
alignment zones.

with only local noisy alignment interactions individuals were able to maintain
group cohesive motion in an infinite space. This model does not match the
level of agent’s complexity seen in other models but shows that alignment is
successful in maintaining coherent and mobile groups.

Tien et al. [24] captured video of real fish shoals and imposed a model to
fit the video data. They identified a repulsion, neutral and attraction zone
[fig.4]. The neutral zone was identified as an area where neighbours have
no clear influence on an individual. This discovery of a neutral zone was
in contrast with existing proposed models. This method of using biological
data gives an empirical view of biological swarms but may suffer from being
species specific and over-fitting.

Viscido et al. 2005[25] researched the influence of group size and number
of influential neighbours on individuals’ movement decisions. They found
both variables are important, particularly the ratio between the two values
(i.e., having the number of neighbours considered smaller than the total
population allows for more dynamic swarms). Viscido et al. define eight
schooling metrics,
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Figure 4: Tien et al. [24] visual representation of their model’s spherical zones,
repulsion, neutral and attraction.

� path curvature - the number of degrees of turning for each cm travelled
averaged across individuals and trials.

� nearest neighbour distance.

� group size.

� expanse - the mean quadratic distance from every individual to the
center of gravity for that group.

� polarisation.

� group speed - mean velocity for the centre of gravity of the group at
each time point.

� stragglers - number of individuals 5+ body lengths form the nearest
neighbour.

� collision rate - the mean number of agents’ volumes that overlap per
simulation.
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which they use to assess the influences of population size and influence
neighbours. Viscido et al. directly addresses the lack of direct biological data,
maintaining that swarming behaviours underlying rules of interaction are still
not fully understood due to this. They summarise ”As a result, simulations
(including our own) continue to be based more on the presumptions of their
authors than on actual data”.

Ballerini et al. [10] propose a topological system of neighbour selection
rather than a metric system, which had been the most popular assumption
up until their paper. They discovered that birds would consider 6/7 topo-
logical neighbours for decision making. They also reported topological to
outperform metric in a simplistic perturbation simulation. To achieve their
model, they captured stereo images of real flocks and generated 3-D repre-
sentations. They were able analyse the reconstructions and generate a simple
model to show that individuals need to consider only six or seven topological
neighbours to maintain cohesion. Their 2-D model relies on alignment and
uses a simulated predator as an external disruption. The benefits of using a
topological model are evident, however, this unlimited topological distance is
available for animals with little of their environment obscured. So, this could
be useful for bird flocks but not possible for animals with a relatively short-
range view (e.g., fish due to underwater conditions). The model they created
is simplistic in the sense that the only behavioural connection between neigh-
bours is their alignment and does not consider additional behaviours.

Cavagna et al. [26] explored scale free correlations in bird flocks by con-
structing a 3-D model from captured data of starlings. Scale free correlation
is the ability for a swarm to have a collective response to a stimuli no matter
an individual’s position in the swarm or the population of the swarm. They
state that scale free correlation provides agents with an improved perception
as individuals can affectively leverage the perception of the entire group.
Cavagna et al. make an important distinction that scale free correlation is
not difficult to achieve, many simple behaviour-based rules can achieve it, but
that noise is a key component in its creation. Too little noise and the group
is too ordered, too much noise and the group fractures. They do note that
the particular method that starlings use to achieve such high correlations
eludes them. It is also important to note that they found ”that two birds 1
m apart in a 10-m-wide flock are as strongly correlated as two birds 10 m
apart in a 100-m-wide flock” this distance between agents is sustainable in
this environment (i.e., open sky) but would not in other environments (e.g.,
murky water) so may not translate to other swarming animals in different
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Figure 5: Ballerini et al. [10] representation of 2D model experimentation &
performance of metric and topological performance under predation conditions

environments.
Lukeman et al. [20] attempt to bridge the gap left by theoretical models

that use no biological data and models that use small group sizes. They did
this by using a large data set to reverse engineer a 2-D interaction model.
Lukeman et al. found that a metric, 360-degree, concentric circle with a
weighted forward focus fit the biological data [fig.6]. Some issues, addressed
in the paper, are that the data captured was from ducks swimming on top
of a lake. This means that the model deals with a relatively slow movement
speed. This may result in individuals who are less concerned with forward
collisions and can spend more time looking behind them (resulting in the
360-degree model). This may culminate in a model that is not optimal for
fast group traversal. The non-symmetrical focus is a reoccurring feature
especially in models that use biological data, this preferential treatment to
neighbours in directions relative to the individual makes sense when collisions
from that direction would be more problematic.

Herbert-Read et al. [9] and Katz et al.(2011)[27] simultaneously con-
ducted similar research modelling fish rules of interaction based on captured
schooling data. They produced comparable results in finding that repulsion
to close neighbours and attraction to distant neighbours shown in many mod-
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Figure 6: Lukeman et al. [20] 2D model representing an agent’s repulsion, align-
ment and attraction zone. Including an area of focus rather than an area of
occlusion

els are supported by their findings. However, both studies found that there
was little proof that individuals aligned to the orientation of their neighbours
and that the polarisation seen in many groups was due to a bi-directional
velocity matching to agents in-front and behind combined with an attraction
behaviour to neighbours who turn but only unidirectionally (those agents
in-front). This lack of alignment matching was a surprising result as most
models had some implementation of this behaviour within their model. Katz
et al. and Herbert-Read et al. considered group size up to 30 and 8 re-
spectively, and this model held for all group sizes tested. Both studies sited
the commonly overlooked importance of acceleration in models that individ-
uals matching and reacting to speed was an often-overlooked part of models.
Both models also show evidence that individuals consider just a single nearest
neighbour at a time, again going against that majority of models that con-
sider multiple agents and take an average of their behaviours. Both papers’
findings go against the grain of the established models up until this point.
However, Herbert-Read et al. do not discount alignment as a possibility and
point towards Radakov DV (1973) as an example of how alignment could be
beneficial for predator avoidance, Herbert-Read et al. suggest the possibility
of model adaptation based on situational context (e.g., a change in behaviour
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selection due to predation occurring).
Niizato & Gunji [28] propose a 3-D model that implements metric and

topological interaction (MTI) which allows agents both options for identify-
ing neighbours [fig.7]. They justified this as a class (metric) and collection
(topological) cognition, where class can ignore individuality and look at the
group as a whole, and collection will consider agents as individuals and the
differences between them. The measure used to distinguish which version is
used depends on how matched agents’ orientation is. If they are higher in
dissimilarity than the threshold then the model uses the topological version,
if they are similar enough then the metric version is applied. Niizato & Gunji
show that using this method of switching between metric and topological can
generate internal noise that leads to scale free correlation.

Figure 7: Niizato & Gunji’s [28]model displaying topological and MTI neighbour
selection

Warren 2018[29] presents a ’donut’ model for collective motion in human
crowds. The two areas of the donut (the ring and the hole) having differing
decay rates over a metric distance for how the individual considers neigh-
bours. The idea of sectioning a metric model this way is highly effective for
Warren, however creating the model based on a observations of human in-
teractions may elevate the required individual’s level of cognition to a degree
where it is infeasible for less able individuals.

Ried et al. [30] approach their model from a collective learning stand-
point. Where agents can sense the environment and then learn and adapt
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to make decisions. They believe an approach like this removes more as-
sumptions from the creation of individuals and leads to less over-fitting (i.e.,
agents are created to prove a particular behaviour at the cost of all others).
This method approaches the issue of over-fitting in a unique way, but the
implementation of the model is outside of the scope of this project.

Heras et al. [14] use a deep attention network to model collective motion
from biological data of fish swarms. They use this method, as they claim
it can be predictive in collective motion but still be not overly complex to
become incomprehensible. They find that individuals can be responsive to
up to twenty neighbours but can focus on as little as one or two. The num-
ber of neighbours is contextualised by the speed, direction, and position of
other neighbours. They also reported that repulsion, alignment, and attrac-
tion zones had overlap which is often overlooked in previous models. Deep
attention networks have been successful in multi-dimensional problems, it is
possible that this method of generating interaction rules could be successful
for uncovering underlying rules. A challenge remains if they are able to stay
”human-readable” and not lose their context.

Li et al. [31] presented that often fish would adapt their position in
a school to take advantage of environmental physical properties, namely,
neighbour-induced flows. This implies that there can be many complicated
layers to animal swarming than just local rules of interaction in a metric or
topological model. There is the possibility that alignment might be caused
from fish aligning their bodies into vortex flows that make swimming more
efficient, and this would support earlier findings that positioning of individu-
als was not related to neighbour orientation but position. The problem with
introducing findings like this into our model is that they can be very species
dependent and may not translate to other swarms. One of our aims is to
avoid over-fitting.

2.3 Knowledge gaps

Based on the literature review we identify four areas that we believe are
under-represented and fall into the scope of our thesis.

� Three-dimensional collective motion in obstacle filled environments

� How groups stay cohesive and mobile under changing conditions
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� How a groups heterogeneity of individuals can influence collective mo-
tion.

� Alternative methods to how individuals make behaviour selections be-
tween competing priorities.

Our model will focus on a single piece of sensory feedback, the number
of close-range neighbours. Our model will represent a simple idea, as an
individual if you are satisfied with the number of neighbours around you
then your priority is exploring, if you are not satisfied, your priority is finding
more neighbours. We will use our model to explore how effective this method
of collective motion is. We will then proceed to test how the model reacts to
changing internal and external variables compared to other models from the
literature.

2.4 Multi-Agent simulators

The most recent comprehensive review of agent-based modelling and simu-
lation conducted by Abar [32] found 86 tools available to researchers. At the
time of writing, CoMSES website OpenABM [33] stores over 800 different
models. There are many options, however, most of these packages fall out-
side our application domain or are inappropriate for the aims of our project.
The following table lists simulators we investigated as platforms to create
our model. Our criteria included licensing availability, language, simulated
dimensions, and scope [Table.1].

We also considered creating our environment and model within a game
engine. Two viable options explored were Unity[42] and Unreal[43]. The
advantage this would have allowed us was the massive available libraries for
physics (e.g., fluid dynamics), collision detection (e.g., continuous collision
detection(CDD)) and complicated body modelling. The popularity of these
engines ensures libraries have high quality support and constant development.
They are designed with visualisation in mind so also hold the advantage of
being highly capable of displaying simulations. The disadvantage related to
this kind of product is the significant time investment required to learn.

We rejected most platforms for not having the required flexibility we
needed, anticipated learn-times being too high or a software’s lack of contin-
ued support. Although all the packages we explored can fulfil our simulation
needs there is no benchmark software that is used commonly in the research.
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Simulator Licensing Source
code

Model di-
mensions

Use case

Behaviour
composer
[34]

open
source

Java 2D/3D Natural science social
networking.

Breve [35] open
source

C++ 3D Artificial life simula-
tions.

Bsim [36] open
source

Java 3D Particle simulations.

DigiHive
[37]

closed
source

C++ 3D Simulations of artifi-
cial life and emergent
phenomena.

F.L.A.M.E
[38]

open
Source

C 2D/3D Large-scale, multi-
purpose simulations.

GridABM
[39]

open
source

Java 3D Large-scale, high-
performance agent-
based modeler.

Repast
Simphony
[40]

open
source

Java 2D/3D Complex biological
adaptive systems.

Swarm [41] open
source

Java
Object-C

2D/3D Extreme-scale biologi-
cal systems.

Table 1: Simulators considered for this project

As such, we decided to create our own, to guarantee flexibility in our ex-
perimental approach, and ensuring we could trust the results. Using our
own simulator (described in the Research Methodology) also ensured we can
adapt and modify the system easily and without restriction. Finally, we al-
ready had access and experience with the platform from previous work, so
it added minimal additional learning time to the project. We expect to ex-
pand the platform (e.g., GUI, agent body form) in the future as we intend
to continue to use it for experimentation after this project.
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3 Research Methodology

3.1 Simulation Architecture

The three-dimensional multi-agent simulator was implemented in C++ with
visual interface supported by OpenGL. The simulation environment was
adapted from software written by Dr. Alexandros Giagkos. The software’s
original purpose was to simulate UAV communication networks. With Dr.
Giagkos’ permission we re-purposed the environment and added obstacles
and self controlled agents. The simulation environment is initialised as a
continuous cube volume (defined by length, ltank) which contains free-floating
obstacles (fixed in space) and agents. The obstacles and agents are defined
as solid spheres with fixed radii, r obstacle and r agent, respectively.

Figure 8: Simulation tank representation, displaying example of randomly placed
obstacles and agents.

During testing of our simulations we discovered that our system reaches a
steady-state between appropriately 4 - 6 minutes. We measured steady-state
as the plateauing of the number of clusters and the size of the largest cluster.
Based on this, each experimental trial runs for a duration of 10 minutes with
the final 2 minutes reserved for data collection. Allowing our system to reach
its steady-state, before we capture data, reduces the impact of the starting
conditions upon our results.
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3.2 Agents

Figure 9: 2-D representation of our 3-D agent’s fov

Agents are represented using a position vector (p ⟨x,y,z⟩), heading direc-
tion (h ⟨ θ, ϕ ⟩), and speed, s. θ and ϕ correspond to the agents two degrees
of freedom, heading angle in the horizontal and vertical plane, respectively.
Agents can only traverse in the direction of their heading angle.

It is assumed that agents have access only to the positions and heading
directions of neighbours that are within their field of view, fov. The fov of an
agent is defined by radius, r fov (how far the agent can see) and two relative
angles (θfov and ϕfov) with respect to the heading direction. The fov is fur-
ther divided into three non-overlapping concentric spherical zones; avoidance
(z avoid), alignment (z align) and attraction (z attract). The relative size of each
zone in relation to r fov is defined by r avoid and r align, see [fig.9]. Agents’ deci-
sion making is based upon identifying neighbours within each zone. Suppose
dij is the distance between agent i ’s and agent j ’s circumference, agent j
would be classified in agents i ’s z avoid if dij < r avoid, z align if dij > r avoid and
dij < r align, or z attract if dij > r align.

For initialisation, agents are randomly assigned co-ordinates from within
the most central voxel as their starting position. Each agent is generated
with a random heading direction, all agents heading directions are matched
to this value ± 5° in both θ and ϕ. We initialise all agents this way to
ensure our initial conditions are not influencing cluster splits. For obstacle
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filled environments the obstacles are initialised randomly throughout the
tank excluding the central voxel in which agents are initialized to ensure
the simulation does not commence where an obstacle starts in the midst of
the swarm.

3.3 Model design

Simulations are run in discrete time steps t, with τ increments. The position
of an agent, i, is updated according to,

pi(t + τ) = pi(t) + si(t)hi(t)τ, (1)

where heading direction, h i, is controlled by running one of the four be-
haviours listed below:

Avoidance behaviour prevents the agent from colliding with close-range
objects,

havoid = −
navoid∑
j ̸=i

pij(t)

| pij(t) |
−

oavoid∑
k=1

pik(t)

| pik(t) |
. (2)

Where navoid and oavoid indicate neighbours and obstacles in the z avoid
at time t, p ij = (pj - pi) / | (pj - pi)| is the unit vector in the direction of
neighbour j and p ik = (pk - pi) / | (pk - pi)| is the unit vector in the direction
of obstacle k.

This behaviour calculates a heading direction that maximises divergence
from any obstacles or neighbours that have been detected in the avoidance
zone.

Alignment behaviour allows the agent to orient itself to the heading di-
rection of the N nearest neighbours found in the z align, (nalign)

halign =

nalign∑
j=1

hj(t)

| hj(t) |
. (3)

This behaviour calculates a heading direction that takes the average of its
N nearest neighbours heading directions detected from within in the align-
ment zone.
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Attraction behaviour allows the agent to move towards N nearest neigh-
bours found in the z attract, (nattract)

hattract =
nattract∑
j=1

pij(t)

| pij(t) |
. (4)

This behaviour calculates a heading direction to intercept the centre of
gravity of the N nearest neighbours detected in the attraction zone.

Search behaviour modifies the agent’s heading direction using,

hsearch = θi(t) + δθmax, ϕi(t) + δϕmax (5)

where δ is a random value between -1 and 1.
This behaviour manifests such that when an agent searches it sets a head-

ing direction randomly from a direction that falls within its current fov.
Once agents have generated a heading direction we apply a constraint

to limit their maximum turning angle. We designed agents with an a-
symmetrical maximum turning rate in the horizontal, θmax, and vertical axis,
ϕmax. When implementing new a heading direction, h(t+τ), if the change
in θ ≤ θmax and the change in ϕ ≤ ϕmax then we can update the current
heading, h(t), to the proposed h(t+τ). If the direction heading difference is
larger in the horizontal axis or the vertical axis, then we rotate the heading
in the desired direction by θmax or ϕmax respectively. This results in agents
using the horizontal plane more than the vertical plane to orient themselves
to new heading directions. This reduces the tendency for agents to perform
manoeuvres that result with them flipping vertically. Although there are
examples of fish that swim ’up-side down’ (e.g., African Catfish[44]) this is
not typical and we wanted to avoid this in our simulation. By limiting the
maximum turning angle we cap their turning speed to approximately 180
degrees in the horizontal per second and 90 degrees in the vertical per sec-
ond. Although turning rates are species and situationally dependant this
rate would be considered standard [45].

3.4 Behaviour Selection

We hypothesise that creating cohesive and mobile swarms can be approached
as a behaviour selection problem. Existing research which used similar sets of
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Figure 10: Visualisation of asymmetric turning restriction in horizontal and ver-
tical planes. Zone inside dashed lines shows acceptable heading directions, if new
heading direction falls outside of the zone the closest restriction boundary becomes
the new heading direction

behaviours has shown that while alignment increases the mobility of groups,
attraction enables them to maintain cohesion. However, these two behaviours
will often calculate divergent heading angles. This issue has been addressed
before by averaging the heading angles from competing behaviours [15] [16].
Here we propose an alternative method to solve this trade off, utilising timely
decisions to select one single behaviour based on simple sensory feedback
(nalign). The agent’s goal is to maintain a minimum count of neighbours in
the z align. If this is achieved, they select the alignment(mobility) behaviour,
if it is not, they choose attraction(cohesion) behaviour.

The behaviour selection process is hierarchical (Algorithm 1) with avoid-
ance and search behaviours having the highest and lowest priority, respec-
tively. While avoidance behaviour ensures safety, search is activated only
when there are no neighbours in the fov. If there are no neighbours or ob-
stacles in the z avoid, the agent chooses between alignment and attraction
behaviours using a logistic function
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Palign =
1

1 + e−K(nalign−M)
(6)

which calculates the probability of selecting alignment behaviour, palign,
based on the number of neighbours found in the z align, nalign. palign increases
non-linearly with the increase of nalign (sigmoid curve) from the range of 0
(100% attraction) to 1 (100% alignment). The variables M and K are the
inflection point and growth rate of the sigmoid curve, respectively. With
M controlling the likelihood of the agent selecting the alignment behaviour;
palign increases with decreasing M (100% when M=0). K determines ran-
domness in behaviour selection. If K=0, palign is 0.5 resulting in equal proba-
bility of selecting either behaviour. [Fig.11] is a visualisation of this function.

Figure 11: Figure showing the influence of M and K on calculating palign
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Algorithm 1: Behaviour Selection

Result: h (new heading direction)
Inputs: positional data of agents and obstacles
if agent or obstacle detected in zavoid then

h = havoid;
else if agents detected then

if agents only in zalign then
h = halign;

if agents only in zattract then
h = hattract;

else if agents in zalign and zattract then
Calculate palign;
R = rand(0,1);
if R > palign then

h = hattract;
else if R < palign then

h = halign;
end

end

else if no agents detected then
h = hsearch;

end

When K ≫ 1, the function simplifies into a conditional statement,

palign =


1 if nalign > M

0.5 if nalign = M

0 otherwise

. (7)

Research shows that logistic functions have been successfully applied to
behaviour selection problems in multi-agent systems [46] and have proved an
accurate model for describing the decision-making process observed in real
animal groups, specifically in decisions between two distinct options.

In situations where agents can detect only neighbours in the z align there
is no selection to make, and they run the alignment behaviour. Similarly,
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when neighbours are only found in z attract they run the attraction behaviour.
A visual representation of examples of behaviour selection can be seen in
[fig.12].

Figure 12: Visual representation of how neighbour placement influences behaviour
selection (2D projection). Top left: Neighbour inside avoidance zone; avoidance
behaviour selected. Top right: All neighbours in alignment zone; alignment be-
haviour selected. Bottom left: All neighbours in attraction zone; attraction be-
haviour selected. Bottom right: Neighbours inside alignment and attraction zone;
Calculate Palign selected.
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3.5 Experimental Design

3.5.1 Physical restrictions

When new positional vectors are calculated for agents, we do not permit
changes in position that would result in agents, obstacles or tank walls inter-
secting (i.e., collisions). We resolve these situations by ignoring the proposed
positional change. We consider these ignored movements as collisions and
track the collision rate for each trial.

3.5.2 Variables

A full list of significant variables can be found in [Table.2]. It shows the most
typical set up for trials unless otherwise stated in the experiment details.
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Table 2: Experimental Variables

Parameter Symbol Units of measurement Values
Agent

field of view θfov, ϕfov degree 270
avoidance radius r avoid L 4
alignment radius r align L 10*

fov radius r fov L 24
speed s L s-1 6*

agent radius r agent unit 1
Simulation

obstacle radius r obstacle L 5
obstacle density dobstacle % of total environment 2
tank length ltank L 335*

Experimental variables
preferred neighbours in zalign M n/a 10*

logistic growth rate K n/a 1*
number of neighbours considered N n/a g-1*

time step increments τ seconds 0.1
group size g n/a 200*

horizontal turning rate θmax degree s-1 180
vertical turning rate ϕmax degree s-1 90

* unless otherwise stated
2L = agent body length (BL)

Our variable selection for field of view simulates a wide vision range with
an area of occlusion directly behind the agent. This was inspired from work
by Pita et al.[47] and their research into fish field of view and similar fov
implementations from the literature [15], [16]. Our value for ravoid was se-
lected based upon the findings of [9] that observed 1.5-2 body lengths to be
a typically maintained distance between individuals. Partridge & Pitcher[48]
present the hypothesis that fish use their lateral line for close range orien-
tation and their vision for longer range attraction. Therefore, the value for
ralign was selected as relatively low value to represent this sensor type. It also
reflects our belief that identifying a neighbour’s orientation is an easier task
to perform at closer ranges. The value for rfov was selected to represent a
long-range identification method (i.e, vision) but still somewhat limited to
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reflect the medium (i.e, reduced visible range for underwater due to turbid-
ity). The values for speed and turning rate are based on [45]; it is important
to note that while we do not represent a specific species, we have aimed to
chose variables that would comfortably fall within realistic ranges based on
animal type and body length. Obstacle radius was selected as a size large
enough to alter heading direction, we found that smaller obstacles did not
interrupt swarms. M values range from 0 - 20. Calculating an accurate max-
imum number of agents that can fit inside an agents zalign is a considerable
problem [49]. We used Mhallah’s work [49] to estimate an appropriate value
and then confirmed by testing to see the highest reported number of agents
seen inside an agents zalign over a 100 minute trial. The combination of these
resulted in our maximum 20 agents, however as covered in later sections we
could have reduced our range slightly as we found an agent achieving above
16 neighbours regularly was rare. Wherever possible, the selection of these
variables are inspired by observations in nature or common practice in other
models from literature. We aimed to maintain a level of biological plausibility
without over-fitting to a specific species.
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3.6 Experiments

Table 3: Experiment listings

Experiment no. Description
Design
(section)

Results
(section)

1
Comparison of 5 model
variants

3.6.1 4.1 - 4.1.4

2
How N influences
performance

3.6.2 4.2

3
How M & K influence
performance

3.6.3 4.3 - 4.4

4
How do informed decisions
influence performance

3.6.4 4.5

5
How does speed influence
performance

3.6.5 4.6

6
How does group size influence
performance

3.6.6 4.7

7
How does obstacle density
influence performance

3.6.7 4.8

8
How does ralign ratio influence
performance

3.6.8 4.9

9
How does heterogeneity
influence performance

3.6.9 4.10

3.6.1 Comparison of five behaviour selection variants

Our model design focuses on the idea that controlling the number of close-
range neighbours is important to collective motion. To explore the validity
of this idea we used equation 1 to create four behaviour selection variants to
begin to understand how the parameters M and K influence group perfor-
mance and the results that can be achieved within the bounds of our model.
We created 4 variants: 1) Align (M=0, K=4), 2) Probability-based (M=10,
K=2), 3) Attract (M = 20, K =4) and 4) Coin flip(K=0), full comparison
of variants can be found in Table[4]. Among these, the Probability-based
variant is the only one which negotiates between attraction and alignment
behaviours based on nalign. The other two (Align and Attract variants) are
chosen as the extremes in behaviour selection against which the performance
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of the Probability-based variant can be evaluated. Agents running the Align
variant will always select the alignment behaviour if there is at least one
neighbour in the z align. Similarly, agents running the Attract variant will
always select the attraction behaviour as maintaining 20 neighbours in the
z align is rare. Coin-flip does not require an M value as when K = 0 palign

= 0.5 so there is always an even chance of either alignment or attraction
behaviour being selected. Using these four variants we aim to start under-
standing the range of behaviours available to our model. We hypothesize that
the Probability-based variant will be successful, as it will select attraction
when it needs more neighbours and alignment when it has neighbours and
wants to be mobile. We also include an additional Control variant: 5) for
the Control variant the heading direction is calculated by taking the average
of both directions proposed by alignment and attraction behaviours. This
method of averaging the two is taken from the literature Couzin et al. [15]
and was fully explained in the background section. This allows us to compare
our model (using a single behavioural choice) against a classic model (using
an average of behaviours).

Table 4: Variant variables and their influence on Palign

Variant M Value K Value N Value Palign

Align 0 4 g-1 1
Attract 20 4 g-1 0
Coin flip n/a* 0 g-1 0.5
Control n/a** n/a** g-1 n/a

Probability-based 10 2 g-1 Depends on nalign

* Coin flip’s M value is irrelevant when K = 0 as Palign is always 0.5
** control does not use the logistic function to calculate behaviour selection
it averages attraction and alignment behaviours at every time-step.

3.6.2 What is the minimum nalign and nattract needed to maintain
performance?

Previous research suggests that when an agent is making a decision it is
sufficient to consider only a small number of neighbours [16] [10]. This en-
couraged us to evaluate if the same principle can be applied to our simulation

39



framework: i.e., once a behaviour is selected (either align or attract), what is
the minimum number of neighbours needed to calculate a heading direction
that maintains a good group performance? We addressed this question by
first comparing our variants, but this time with the number of neighbours
considered as six agents. We then explored varying N between 1 and 12,
with increments of 1, to begin to understand the relationship between N and
individual variants’ performances.

3.6.3 How does M and K impact performance?

After creating four discrete variants of our model we decided to evaluate
further how the full range of M and K impact performance, we first varied
M between 0 and 20 with increments of 2 (in these experiments, we set K
= 2). We then varied K between 0 and 4 with increments of 0.2 (in these
experiments we set M = 10). We believed that adaptation of M and K could
result in differing levels of cohesion and mobility.

3.6.4 Comparing informed versus uniformed decisions

The coin-flip variant is an uninformed variant, this means behaviour selec-
tion is not dependant on the nalign(i.e no matter the value of nalign, palign =
0.5). We want to know how significant it is for individuals to be informed
(i.e., making their decisions based on nalign). Is the ratio of palign driving
performance or are the timely decisions by the informed variant improving
performance? To address this question, we run simulations for pre-set un-
informed palign values in the range 0 - 1 with increments of 0.1, essentially
removing the agent’s ability to react to nalign.

3.6.5 Speed

All previous experiments have been conducted with a constant speed (6 body
lengths per second), to assess how robust our variants are to the differing
speeds we explore the in the range from 3L s-1 to 15L s-1 with incremental
steps of 3L s-1.

3.6.6 Group size

To maintain the density of the agents (number of agents divided by volume
of tank), the tank is scaled with the number of agents for a given trial. To
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calculate the tank dimensions, we first approximate the minimum voxel size
required to contain all agents spaced by z avoid. Once we have generated this
cube, we multiply it by ten in all dimensions to achieve the final tank.

All previous experiments have been run with a constant group size (200
agents), to assess how robust our variants are to differing group sizes we ex-
plore the following range of group sizes 50, 100, 200 and 400. Our motivation
for altering group size was to explore how well our model scales with group
size.

3.6.7 Obstacle density

Obstacle density is scaled with the volume of the tank to maintain a constant
obstacle density. All previous experiments have been run with a constant
obstacle density 1% or without obstacles. To assess how our variants perform
under differing obstacle densities we explore densities of 0.5%, 1%, 2%, 4%
and 8%. In [Table.5] we show how obstacle density manifests as the average
distance between obstacles in our simulation.

Density Label
Average distance
between obstacles

0.0% dobstacle0 N/A
0.5% dobstacle1 25BL
1.0% dobstacle2 20BL
2.0% dobstacle3 16.5BL
4.0% dobstacle4 13.5BL
8.0% dobstacle5 12 BL

Table 5: Obstacle density and average distance between obstacles

3.6.8 How does the ratio between zalign and zattract impact the
performance of the variants?

For all previous experiments ralign has been constant, and as such the vol-
umes of zalign and zattract also do not change. Research has proposed that fish
may utilise alignment behaviour using their lateral-line (close-range) and at-
traction behaviour using vision (long-range)[48]. We believe it is reasonable
that as the distance between agents increases so does the difficulty to match
alignment accurately. Therefore, we selected a close-range zalign. Our zalign
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sizing limited the number of agents that could fit within the zone, this estab-
lished the range of from M = 0 (complete alignment) to M = 20 (complete
attraction). By changing the size of ralign we increase the number of agents
that can fit inside this zone and make lower values of M easier to satisfy. To
understand what influence the changing volume of zalign has over performance
we modify ralign in the rage of 10 to 18 with incremental steps of 4. We do
not alter ravoid or rfov so the maximum range of an agent’s fov and the volume
of the Zavoid does not alter. These changes manifest as increasing the range
an agent can identify orientation in its neighbours, increasing the zone size
that an agent considers its neighbours ’close’ whilst maintaining the overall
fov size.

3.6.9 Exploring heterogeneity

For all previous experiments we studied homogeneous groups that consisted
of identical agents. In robotics, this is not the case [50]. To begin to under-
stand how group heterogeneity may alter group performance we explore two
simple implementations. Firstly, we take two unique variants (a: Align and
b: Probability-based) and assign them to individuals. We control the ratio
between the two variants across the whole swarm, from 0 (100% variant a)
to 100 (100% variant b) with incremental steps of 10%. This is to simulate a
swarm containing a mix of individuals from each variant a and b. Secondly,
we explore the same two variants, this time each agent can change its state
between variant a and b and the ratio is now used to control the probability
of an agent choosing a variant. This is designed to simulate an agent tending
to decide its internal state between the two variants. Again, we control the
ratio between the two variants from 0 (100% chance of choosing variant a)
to 100 (100% chance of choosing variant b) with incremental steps of 10%.

3.7 Data Analysis

All simulations were repeated 100 times (i.e., trials). For each trial we cap-
tured data only from the final two minutes at a sampling rate of 1hz, once
the simulation had reached a steady state. The data analysis was performed
off-line using custom written python scripts.
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3.7.1 Captured data

For each captured frame we log agents’ positions and heading angles, number
of neighbours found in the z avoid, z align and z attract and behaviour selections.
We also record the positions of obstacles for each trial. In addition, for each
experiment we generate a meta file detailing all experimental variables. All
files are saved in a csv file format.

3.7.2 Group performance metrics

We measure group performance using two metrics: cohesion and mobility.
In an ideal scenario agents stick together and move freely within their en-
vironment. However, agents often split into smaller groups (i.e., clusters)
when they are avoiding collisions (e.g., obstacles). These splits can be even
(e.g., two similar sized clusters) or uneven (e.g., one large and multiple small
clusters). To account for these variations, we evaluate cohesion using two
measures: number of clusters and the number of agents in the largest cluster
(represented as a percentage of the group size). To detect clusters, we wrote
a modified DBSCAN algorithm [51]. In our implementation we assume that:
1) one agent is enough to form a cluster and 2) a new cluster is formed when
agents from the new cluster do not have an intersecting fov with agents from
the existing cluster. The higher the number of clusters or the smaller the
largest cluster size, the less cohesive the group is. Achieving very cohesive
groups can come at the detriment of movement, so we use two measures to
evaluate mobility: speed of the largest cluster and coverage, the number of
unique voxels discovered. Speed is calculated as the instantaneous velocity
of the largest cluster’s centre of gravity. Coverage is calculated as the per-
centage of voxels discovered by atleast 30% of the group. The higher the
speed the more mobile we consider groups. Coverage indicates the level of
mobility and cohesion so we use it as our major performance indicator.

3.7.3 Group emergent properties

To understand better the underlying mechanics that control group perfor-
mance we calculate the polarisation, angular momentum, the behaviour dis-
tribution of the largest cluster. Polarisation indicates how aligned agents are
in respect to neighbours and angular momentum indicates how well the group
can synchronise turns. These measures have been used in the literature to
analyse swarm behaviour [15], [25]. Behaviour distribution we developed to
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measure the ratio of avoidance, attraction and alignment behaviours selected
by a variant across full range of trials.

3.7.4 Statistical tests

We ran one way analysis of variance (ANOVA) followed by Turkey Kramer
multiple comparisons test to compare the coverage performance of the five
variants at a significance level of p≤0.05. We did this to ensure that we could
confidently report statistical significance between the results we found when
comparing variants. ANOVA was used to first assess differences between the
five variants as a group, then Turkey Kramer was used to assess statistical
difference between each set of pairs.
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4 Results

4.1 Comparison of variants (Experiment 1)

We conducted the comparison of the five variants([table.3]) under two differ-
ent conditions. First, we set the number of neighbours considered for heading
direction calculations to allow the maximum neighbours possible (N = G-1).
Then we ran the same comparison but with six neighbours (N = 6). All
results for coverage showed statistical difference to p≤0.05, except for the
comparison between Coin flip and Control under N = 6 conditions where
there was no statistical difference between the coverage results.

4.1.1 Maximum neighbours (N = G-1) (Experiment 1)

The Align variant is the best performing in obstacle-free environments. How-
ever, it drops 65% in performance when placed into an obstacle-filled envi-
ronment. This break-down in performance stems from a loss of cohesion; a
50% drop in largest cluster percentage and a 6 cluster increase in the average
number of clusters; seen in [fig.13a and b]. Irrespective of obstacles, the Align
variant is able to maximise its speed under both conditions [fig.13c] proving
itself a highly mobile variant.

The Attract variant is the worst performing variant in both environments
at least 45% worse in coverage than the next worst variant. This is due to the
variant being highly cohesive but very immobile. These features also result
in the Attract variant seeing no change in performance when placed in an
obstacle-filled environment, as the number of obstacle encounters is minimal.
When considering all the variants shown in [Fig.13], the Attract variant has
the highest cohesion. It achieves the highest largest cluster percentage, 100%,
and the lowest number of clusters possible, 1. However, this high cohesion is
at the expense of speed, making Attract the slowest of all variants.

In terms of coverage, the Probability-based variant is the best performing
variant in obstacle-filled environments, and the second best in obstacle-free
environments. The Probability-based variant is able to combine the cohesive
ability of the Attract variant and the mobility of the Align variant. It achieves
the second fastest speed whilst simultaneously achieving a high cohesion.

Unexpectedly, the results show that the Coin-flip variant outperforms the
Control variant. The behaviour selection difference between the two variants
is that Control combines the heading directions of alignment and attraction
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Figure 13: Comparison of variants when N = G-1. Figure shows results in obstacle-
free (empty bars) and obstacle-filled (black bars) environments; i) Align (M = 0,
K = 4), ii) Probability-based (M = 10, K = 2), iii) Attract (M = 20, K = 4),
and iv) Coin flip (K = 0). In addition, a model adopted from Couzin et al. [15]
is shown as a Control. Performance values are averaged over 100 trials and error
bars indicate standard error of the mean. In all simulations, N = G-1, G = 200, s
= 6 units s-1. a) Number of agents in the largest cluster is shown as a percentage of
the total group size. b) Number of clusters which is indicative of the coherence of
the group(i.e. a high number of clusters suggests a poor coherence performance).
c) Speed of the largest cluster. d) Coverage at 30% group size threshold (number
of voxels entered by at least 30% of the group size).
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behaviours, and Coin-Flip randomly selects one. We did not expect to see
such a significant difference caused by the difference in behaviour selection
method. Although both Control and Coin flip are able to achieve higher
levels of cohesion than the Probability-based variant they can not compete
with it’s mobility performance.

4.1.2 Six neighbours, (N=6) (Experiment 1)

The results show it is not essential for individuals to be informed on all mem-
bers of the group to achieve optimal performance. When we reduce N from
G-1 to 6 [fig.14] we see a drop in cohesion for Probability-based, Coin flip and
Control variants but overall performance is not significantly reduced. The
Probability-based variant retains the highest performance in obstacle-filled
environments and second highest in obstacle-free environments. For both the
Align and Attract variants we see little difference in performance; the results
mainly mirror the trends shown by unlimited neighbour results. In both vari-
ants that focus on only one behaviour we see little change in performance;
this implies that N is more significant for variants that switch between align-
ment and attraction behaviours. The biggest change observed is the speed
increase seen in Control. This increase means that now the difference between
Coin-flip and Controls performance is statistically insignificant.

4.1.3 Behaviour distribution for variants (Experiment 1)

The results show that mobility and cohesion performance is not dictated by
the volume of behaviour selected (i.e., the Probability-based variant is able
to achieve 80% of the Align variants speed with 50% of alignment behaviour
selection). When we visualise the behaviour selection distribution of the
five variants, [fig. 15] displays the underlying differences in decision-making
and how that reflects in the performance. We observe that the as variant’s
use higher percentages of attraction behaviour the percentage of avoidance
increases. In contrast high alignment ratios do not cause the same depen-
dency. The Probability-based variant shows that it is possible to maintain
a high level of cohesion and a fast speed by balancing favourable ratios of
behaviour selection. The Control variant does not show a breakdown for
behaviour selection, because its method of selection is the average of the two
behaviours. We can however observe its avoidance rate; it shows that this
method of selection requires higher levels of avoidance behaviour than the
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Figure 14: Comparison of variants when N = 6. Figure shows results in obstacle-
free (empty bars) and obstacle-filled (black bars) environments; i) Align (M = 0,
K = 4), ii) Probability-based (M = 10, K = 2), iii) Attract (M = 20, K = 4),
and iv) Coin flip (K = 0). In addition, a model adopted from Couzin et al. [15]
is shown as a Control. Performance values are averaged over 100 trials and error
bars indicate standard error of the mean. In all simulations, G = 200, and s = 6
units s-1. a) Number of agents in the largest cluster is shown as a percentage of
the total group size. b) Number of clusters which is indicative of the coherence of
the group(i.e. a high number of clusters suggests a poor coherence performance).
c) Speed of the largest cluster. d) Coverage at 30% group size threshold (number
of voxels entered by at least 30% of the group size).
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Figure 15: Comparison of behaviour distribution in variants; i) Align (M = 0,
K = 4), ii) Probability-based (M = 10, K = 2), iii) Attract (M = 20, K =
4), and iv) Coin flip (K = 0). In addition, a model adopted from Couzin et
al. [15] is shown as a Control. Tested in obstacle-free (a) and obstacle-filled (b)
environments. Performance values are averaged over 100 trials. In all simulations,
G = 200, s = 6 units s-1 and N = 6. Percentage relates to the total percentage a
behaviour contributes against all decisions made by whole group over all trials.

random selection of a behaviour used in the Coin flip variant.

4.1.4 Variant collision rates

Across all variants the collision rate is extremely low; approximately 1 in
every 19,000 movement selections leads to a collision. There is a noticeable
difference in the rates of collisions for different variants, shown in [table.6].
We observe a trend for collisions to increase slightly when obstacles are added
to the environment, which was expected as the difficulty of traversal is in-
creased. The results show an improvement in the collision rate for Coin flip,
Control and Attract variants when N is reduced, this implies that, for these
variants, data from agents with a closer proximity is more valuable for re-
ducing situations with collision risk. In contrast, we notice little change or a
slight increase in collision rates for Align and Probability variants under the
same conditions. It is possible that these variants need a higher number of
neighbours in obstacle-filled environments for optimal performance.
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Table 6: Collision rates for compared variants

variant
N = g-1 N = 6

obstacle free obstacle filled obstacle free obstacle filled
Align 5.6 7.6 4.3 8.9

Coin flip 28 30.11 15.6 17.3
Prob 15.2 16.5 15.8 18.4

Control 36.1 52.3 24.4 23.7
Attract 259.3 259 199.8 200.5

4.2 How N influences performance between variants
(Experiment 2)

Our findings show that 6 neighbours are the optimal number for creating
cohesive and mobile groups with the Align variant in obstacle-free environ-
ments. This mirrors the findings of Ballerini et al.[10]. We observe in [Fig.16]
that the performance makes a steep increase between N = 1 to N = 6. After
this steep increase there is then a clear plateau in performance. This optimal
N value is not duplicated in obstacle-filled environments; the performance is
much lower and there is no clear plateau once N = 6. Obstacle disruption to
the group without a method of attraction causes a large cohesion issue for
the Align variant, and it sees a large increase in splits and a reduction of the
largest cluster size.

In the Probability-based variant we observe a much slower, consistent
increase in performance up until N = 6, and then a more gradual increase
until N = 9, before we start to encounter a plateau in performance. [Fig.14e,f
and h] shows that the Probability-based variant has a higher starting perfor-
mance at very low levels of N compared to the Align variant. [Fig.14c and
g] show that the addition of obstacles makes little difference to the largest
clusters speed of either variant, implying that obstacles challenge cohesion,
for these variants, more than they challenge mobility. Although N = 6 is
not the optimal value for this variant it does account for the majority of its
performance.

4.3 How M influences performance (Experiment 3)

In obstacle-filled environments the optimal range spans from M = 8 to M =
12. In this range we observe a trade-off emerge, as M increases so the largest
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Figure 16: Comparison of variants, Align (left column) and Probability-
based (right column) with N value range 1-12, in obstacle-free (empty points)
and obstacle-filled (black points) environments; Align (M = 0, K = 4), ii)
Probability-based (M = 10, K = 2). Performance values are averaged over
100 trials. In all simulations, G = 200, s = 6 units s-1. a&e) Number of agents in
the largest cluster is shown as a percentage of the total group size. b&f) Number
of clusters which is indicative of the coherence of the group(i.e. a high number of
clusters suggests a poor coherence performance) c&g) Speed of the largest cluster.
d&e) Coverage at 30% group size threshold (number of voxels entered by at least
30% of the group size).
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cluster size increases, but the speed reduces. So as M increases groups become
more cohesive but slower. We can see that in an obstacle-free environment
any increase in M leads to a decrease in performance; M = 0 (Align variant)
is the highest performing. We observe in [fig.17] that once M > 15 the
performance converges for the two environments and it flattens. Above M
= 15 the mobility is reduced to a point where obstacles no longer noticeably
impact performance.

4.3.1 Behaviour distribution as a function of M (Experiment 3)

When we view M as a function of behaviour selection, we can identify that
our highest performing section (M = 8 to M = 12) is the area that sees
behaviours converge to their most even mix. We observe that the ratio of
attract plateaus at M = 13; any increase in M beyond that point causes a
reduction in alignment, and an increase in avoidance. Using our behaviour
selection model this sets a cap of the selection the attraction behaviour to no
more than 28% of the time. In [fig.18] we can see that the level of alignment
selection drops sharply from M = 7 to M = 12, indicating that this is range
in which individuals start to struggle to maintain this number of neighbours
in the zalign. This figure shows that obstacles have a minimal impact on
the trend of behaviour selection, as a function of M. We observe a slightly
higher ratio of avoidance behaviour, towards mid M values, at the cost of
less attraction and alignment behaviour.

4.3.2 Polarisation and angular momentum as a function of M (Ex-
periment 3)

We can see from [fig.19a] that as M increases, polarisation drops. This is
caused by the decrease in alignment behaviour, and mirrors the trend seen
in [fig.18] and [fig.17c]. The alignment behaviour allows groups to stay po-
larised, reducing the probability of avoidance, and subsequently reduces dis-
order in the group, thus maximising speed.

[Fig.19b] shows that groups display higher angular momentum in obstacle-
filled environments at lower values of M. We see that once M > 10 that obsta-
cles stop having an influence on angular momentum and the values converge,
this may occur because as M increases the group becomes less mobile and is
less likely to encounter as many obstacles.
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Figure 17: Visualisation of how change in M value influences performance in
obstacle-free (empty points) and obstacle-filled (black points) environments. Per-
formance values are averaged over 100 trials. In all simulations, G = 200, s = 6
units s-1, N = 6 and K = 2. a) Number of agents in the largest cluster is shown
as a percentage of the total group size. b) Number of clusters which is indicative
of the coherence of the group(i.e. a high number of clusters suggests a poor co-
herence performance). c) Speed of the largest cluster. d) Coverage at 30% group
size threshold (number of voxels entered by at least 30% of the group size).
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Figure 18: Visualisation of how behaviour selection changes as a function of M.
Performance shown in obstacle-free (left) and obstacle-filled (right) environments.
Performance values are averaged over 100 trials. In all simulations, G = 200, s =
6 units s-1, N = 6 and K = 2. Percentage indicates the ratio of the total number
of behavioural selections made by the entire group.

Figure 19: Visualisation of polarisation and angular momentum as a function of
M. Performance shown in obstacle-free (open dot) and obstacle-filled (closed dot)
environments. Performance values are averaged over 100 trials. In all simulations,
G = 200, s = 6 units s-1, N = 6 and K = 2. Polarisation measures how aligned
the largest group is 0 being fully unaligned and 1 being fully aligned across the
duration of the trials. Angular momentum indicates how synchronised the largest
groups turning angle is, relative to the groups centre of gravity, across the duration
of all trials.
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4.4 How K influences performance (Experiment 3)

[Fig.20] shows there is no discernible trend observed in the performance of
the Probability-based variant, when we change the K value (excluding K=0,
as under this condition the variant becomes the Coin flip variant). Although
we know that changing K influences the flexibility of behaviour selection
based on nalign it does not create enough of a measurable trend change in our
performance metrics.

4.5 How the performance of uninformed variants com-
pares to informed variants (Experiment 4)

Uninformed coverage performance peaks at 8.5% in the palign range of 0.5 -
0.7. However, informed decision making (Probability-based variant) outper-
forms the uninformed pre-set behaviour ratios on coverage at every ratio. The
palign ratios are an expansion of the 0.5 palign ratio of the Coin flip variant to
include a wider range of palign probabilities. [Fig.21d] shows that the coverage
performance for the full range of pre-set Palign values is, at minimum, 20%
lower than the Probability-based variant(dashed-line). This shows that the
timing to decisions is an important feature to the Probabilty-based variant’s
success. In [fig.21a,b and c] we can see ratios where the uninformed vari-
ants can outperform the informed in mobility and cohesion. However, when
those specific ratios perform highly on cohesion they perform very poorly on
mobility, and vice-versa.

4.6 The influence of speed (Experiment 5)

We find that the range of M = 8 to M = 12 generates the best performance.
It reveals an optimal speed for our model at 9 units s-1 (black line). The
general trend is, that as the speed increases cohesion becomes more difficult,
but twice as fast does not translate to half as cohesive. Groups with slower
speeds maintain a higher cohesion and a higher relative max speed. This
results in a more consistent coverage performance across a larger range of M
vales. However, the M range of 8-12 allows groups with faster speeds to take
advantage of a ’sweet-spot’ where the higher absolute speed and the relative
high level of coverage, combine to generate high coverage results.
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Figure 20: Visualisation of how the probability-based variant’s performance
changes as a function of K in obstacle filled environments. Performance values
are averaged over 100 trials. In all simulations, G = 200, s = 6 units s-1 and N
= 6. a) Number of agents in the largest cluster is shown as a percentage of the
total group size. b) Number of clusters which is indicative of the coherence of the
group(i.e. a high number of clusters suggests a poor coherence performance). c)
Speed of the largest cluster. d) Coverage at 30% group size threshold (number of
voxels entered by at least 30% of the group size).
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Figure 21: Comparison of uninformed pre-set Palign ratios (black points) and
highest performing informed decisions from the Probability-based variant(dashed
line). Performance values are averaged over 100 trials. In all simulations G = 200,
s = 6 units s-1 and N = 6. a) Number of agents in the largest cluster is shown as a
percentage of the total group size. b) Number of clusters which is indicative of the
coherence of the group(i.e. a high number of clusters suggests a poor coherence
performance). c) Speed of the largest cluster. d) Coverage at 30% group size
threshold (number of voxels entered by at least 30% of the group size).
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Figure 22: Visualisation of how change in M value influences performance at
different speeds (3,6,9,12,15 units s-1) Performance values are averaged over 100
trials. In all simulations G = 200 in an obstacle-filled environment. a) Number of
agents in the largest cluster is shown as a percentage of the total group size. b)
Number of clusters which is indicative of the coherence of the group(i.e. a high
number of clusters suggests a poor coherence performance). c) Speed of the largest
cluster. d) Coverage at 30% group size threshold (number of voxels entered by at
least 30% of the group size).
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4.7 The influence of group size (Experiment 6)

Our results show that as group-size increases maintaining cohesion is more
difficult, but the largest cluster size is not limited, and as such, splits are not
solely influenced by the number of individuals in a group. We can observe
from [fig.23a and b] that for all variants, the number of clusters and the size
of the largest cluster show, that splits are not symmetrical (i.e., if at group
size 200, the Probability-based variant, has a largest cluster that is 50%, and
a total of 4 clusters, the other 3 clusters cannot be symmetrical with the
largest). We see an anomaly for coin-flip, as it shows a very high velocity
for group size 50 which is unexpected. This is due to the small group size
and low cohesion performance. Agents in small clusters are able to fit all
members of the group into their zalign, as such, without any neighbours to
attract to, the Coin Flip variant cannot make any other choice than to run
the alignment behaviour, this means it takes on the properties of the Align
variant.

4.8 The influence of obstacle density (Experiment 7)

The Probability-based variant shows a resistance to splits in higher obstacle
density environments. We can see in [fig.24b] that both other variants over-
take the Probability-based variant in number of clusters. All other measures
hold very similar trends and performance. We see a performance drop in cov-
erage that is not explained by a corresponding drop in cohesion or mobility;
we lack conclusive proof, but from watching visualisations, we believe that
as the density increases it can create a ’trap’ for swarms, where they traverse
to a location that is surrounded by obstacles. This ’trap’ causes them to be
redirected around in the same voxel space and as such limits exploration.
As we recognise only novel exploration for our coverage measure this would
cause a noticeable decrease in coverage.

4.9 The influence of Zalign size (Experiment 8)

The results indicate that there may be an optimum ratio for zalign and zattract
as increasing the zalign size beyond 14 units showed a decline in coverage.
[Fig.25d] shows that increasing our rAlign increases cohesion and maintains
higher speeds through a wider range of M values. This translates into sig-
nificantly higher coverage across all values of M for both larger sizes tested.
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Figure 23: Visualisation of how change in group size influences performance for
three variants; i) Probability-based (M = 10, K = 2), ii) Coin-flip (K = 0), iii)
Control. Performance values are averaged over 100 trials. In all simulations G =
200 in an obstacle-filled environment. a) Number of agents in the largest cluster
is shown as a percentage of the total group size. b) Number of clusters which is
indicative of the coherence of the group(i.e. a high number of clusters suggests a
poor coherence performance). c) Speed of the largest cluster. d) Coverage at 30%
group size threshold (number of voxels entered by at least 30% of the group size).
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Figure 24: Visualisation of how change in obstacle density influences performance
for three variants; i) Probability-based (M = 10, K = 2), ii) Coin-flip (K = 0),
iii) Control. Performance values are averaged over 100 trials. In all simulations
G = 200 with obstacles present at densities 0.5%, 1%, 2%, 4% and 8%. a) Number
of agents in the largest cluster is shown as a percentage of the total group size. b)
Number of clusters which is indicative of the coherence of the group(i.e. a high
number of clusters suggests a poor coherence performance). c) Speed of the largest
cluster. d) Coverage at 30% group size threshold (number of voxels entered by at
least 30% of the group size).
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However, the smaller of the two outperforms the larger consistently, until
high values of M, where the speed starts to drop. Cohesion and speed are
similar in performance for both, but 14 outperforms 18 in coverage. We be-
lieve that as a zone size shrinks this negatively influences the ability of the
behaviour to run optimally which is why we see this drop in performance as
the ratio changes.

4.10 The influence of heterogeneity (Experiment 9)

Generating heterogeneous groups by combining two set of agents using dif-
fering variants failed to create any measurable improvement. In all items
of [fig.26] we can observe that for every performance metric, and every per-
centage ratio split of the two variants, we were unable to find a performance
that surpasses their equivalent homogeneous group (in this figure 0% repre-
sents the Align variant and 100% represents the Probability based variant).
Obstacles have a negative influence in a manner consistent with how they
influence homogeneous groups; creating heterogeneous groups in this way has
no measurable influence on obstacles. We hypothesised a synthesis of these
variants could outperform the individual variants but it is clear that for this
method it is not the case.

Generating heterogeneous groups by having agents switch between dif-
fering variants shows potential to create an improvement over homogeneous
groups, but only in obstacle-filled environments. In obstacle-filled environ-
ments a 50% split between the variants results in an increased largest cluster
size compared to the homogeneous groups. We observe a lower number of
clusters between the range of a 50-80% split. Any percentage inclusion of
align sees an increase in speed when compared to a homogeneous probability
variant. In terms of coverage, we see a very slight increase at 50% and 80%,
compared to the performance of the Probability-based variant. The perfor-
mance in obstacle-free environments the highest performer defaults back to
0% Probability-based variants (the Alignment variant) that we have seen in
Experiment 1.
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Figure 25: Visualisation of how change in zalign volume influences the performance
of M. Variant types combined; Align (M = 0, K = 4), ii) Probability-based (M
= 10, K = 2). Performance values are averaged over 100 trials. In all simulations G
= 200, in obstacle-filled environments. a) Number of agents in the largest cluster
is shown as a percentage of the total group size. b) Number of clusters which is
indicative of the coherence of the group(i.e. a high number of clusters suggests a
poor coherence performance). c) Speed of the largest cluster. d) Coverage at 30%
group size threshold (number of voxels entered by at least 30% of the group size).

63



Figure 26: Visualisation of how generating heterogeneous groups from multiple
variant types influences performance. Variant types combined; Align (M = 0, K
= 4), ii) Probability-based (M = 10, K = 2). Performance values are averaged
over 100 trials. In all simulations G = 200, in obstacle-filled environments (closed
dots) and obstacle-free environments (open dots). a) Number of agents in the
largest cluster is shown as a percentage of the total group size. b) Number of
clusters which is indicative of the coherence of the group(i.e. a high number of
clusters suggests a poor coherence performance). c) Speed of the largest cluster.
d) Coverage at 30% group size threshold (number of voxels entered by at least
30% of the group size).
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Figure 27: Visualisation of how generating heterogeneous groups from individuals
propensity to select a variant influences performance. Variant types combined;
Align (M = 0, K = 4), ii) Probability-based (M = 10, K = 2). Performance
values are averaged over 100 trials. In all simulations G = 200, in obstacle-filled
environments (closed dots) and obstacle-free environments (open dots). a) Number
of agents in the largest cluster is shown as a percentage of the total group size. b)
Number of clusters which is indicative of the coherence of the group(i.e. a high
number of clusters suggests a poor coherence performance). c) Speed of the largest
cluster. d) Coverage at 30% group size threshold (number of voxels entered by at
least 30% of the group size).

65



5 Discussion

5.1 Summary

We proposed a novel behaviour selection model based on simple sensory
feedback. Our model allows individuals to use the number of close-range
neighbours to determine behaviour selection. We believe that the simplistic
mechanism of counting neighbours would easily translate into robotic plat-
forms and has biological plausibility. From the controller we were able to
make different variants by modifying M. The Align variant (M=0) performs
best in obstacle-free environments, it is highly mobile, and has a low level of
avoidance behaviour. The disadvantage of the Align variant is that it is not
suitable for obstacle-filled environments; we find that alignment behaviour
heavy variants cannot maintain cohesion when presented with the challenge
of avoiding obstacles. The Attract variant (M=20) is highly cohesive but
very immobile, it selects the avoidance behaviour for approximately 75% of
its decisions, and as such, is unable to move the group. In terms of coverage,
our probability based variant (M = 10) performed best in obstacle-filled and
second best in obstacle-free environments. It has a low collision rate, and
was robust when speed, group size, and obstacle density increased.

5.2 Main findings

A major aim for this project was to try to ensure that our simulation environ-
ment and model were designed, wherever possible, with biological plausibility
and computational efficiency. We decided to use a three-dimensional simula-
tion to ensure our results would be more relevant to real-world environments.
We implemented simplistic methods to see if it is possible to achieve a high
level of performance, while requiring less exertion on individuals. We de-
signed our model to allow agents to select only a single behaviour at a given
time-step, rather than averaging multiple priorities. We focused on reducing
the number of neighbours required for calculations. We designed behaviours
to be simplistic in execution (e.g., move in the opposite direction from an
obstacle). Our fov has no priority for neighbours in different areas and is a
simple circular shape. With our fov we also consider external influences: how
swarms can function in low-visibility environments or with short-range sens-
ing ability. We know robotic platforms may have to rely on vision systems
that are only effective to a certain range and underwater environments have
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poor long-range visibility. Both scenarios would require collective motion
methods that work with limited range sensing. Our model’s rfov (12 body
lengths) is smaller than similar models from the literature (Viscodo et al.:
180BL [23], Kunz & Hemelrijk: 25-50BL [21], Couzins et al.: 15-30BL [12]).
Our individual’s ralign is designed to simulate short range orientation identi-
fication. We believe it seems a more plausible premise that identification of
neighbours’ orientation is easier at short-range compared to long-range.

5.2.1 Timely informed decisions are key to performance

From the comparison of the variants, specifically their behaviour ratios, we
observe that the alignment behaviour and attraction behaviour maximises
mobility and cohesion respectively. Therefore, we believe the Probability-
based variant’s performance stems from being able to select the most appro-
priate behaviour for its situation more often than the other variants. This is
supported by the fact that when we statistically match the Palign to Pattract

ratio, to that of the Probability-based variant, but continue to make random
decisions based on the ratio rather than taking into account nalign the perfor-
mance does not match that of the probability-based variant. This indicates
that the timing of decisions is key and that taking into account the number
of neighbours around you is an effective method of identifying the timing.

5.2.2 Conflicting priorities can be better managed with informed
priority rather than compromise

We observed that several of our variants can outperform the Control vari-
ant that uses an averaging technique to decide optimum heading direction.
Firstly, comparing the performance of the Coin-flip and Control variants (for
N = 6) the results show that the coverage performance is statistically inter-
changeable (cohesion was slightly better with the Control variant and speed
was slightly higher on coin-flip). In these results we consider two things,
firstly, the Control variant considers double the number of agents at every
time-step (12 compared to 6, as the Control variant uses nalign and nattract for
heading direction calculations). Secondly, the Control variant requires con-
siderably more avoidance than the Coin-flip variant. Based on our belief that
correct behaviour selection improves performance, we can see that selecting
randomly between the two behaviours, or combining, causes similar coverage
results. We believe this is because the averaging of two behaviours causes
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more occasions of redundant behaviour selection (e.g., more unneeded align-
ment behaviour, leading to higher avoidance). We believe randomly selecting
a behaviour causes optimum selections to be missed (e.g, attract to be se-
lected when align would have been the optimal choice). When comparing the
Probability-based variant, which makes informed single behaviour decisions,
we see that it outperforms the Control variant on coverage in all variations of
environments and values of N. We don’t believe that our results conclusively
determine that single decision-making can always outperform averaging, but
we do determine that it is possible to accomplish better performance with
single decision controllers, and we believe that optimum behaviour selection
is key.

5.2.3 The ratio of an individual’s fov is important in challenging
environments

A problem we began to explore with our model was how swarms can function
under challenging conditions (e.g., low visibility, limited hardware). Based
on our results, our low-range rfov proves it to be a feasible option for collective
motion under these conditions. Something key to these findings, when we
adapt the size of ralign( which changes the volume ratio of zalign and zattract)
it has a clear impact on performance. We see an increase of 2BL in ralign
results in an increase in coverage across all values of M. However, extend-
ing ralign a further 2BL results in a drop in performance. This indicates
that the ratio between the two zones is important for making sure both
behaviours contribute to the overall heading direction across time. These
changes were made without extending rfov. The literature holds examples of
more complicated fov implementations; A-symmetrical alignment zones[48],
and non-interaction zones[22]. When we consider these modifications along
with the multiple ratios available with rfov, ravoid, and ralign the search space
becomes very large, and would require further testing to explore the entire
parameter space. We suspect that there is no universal framework for fovs,
it seems more likely that the sensing ability and movement of the individuals
involved dictates to some degree the most effective fov set-up for optimum
collective motion.

68



5.2.4 Avoiding obstacles is not a straight-forward problem for
groups running simplistic models

We used obstacle density as a way to test our controllers performance under
difficult environmental conditions. The results show that the Probability-
based model has the best coverage results, under these conditions. Obstacles
show a consistent impact upon all variants that move enough to encounter
them. We can see from the results that obstacles create more disruption to
cohesion that they do to group speed. This implies that obstacles do not
significantly halt movement but disrupt the group’s structure. Therefore,
variants that maintain a robust group structure will be more resilient to the
effects of obstacles. It seems likely that biological agents have a distinct
system for navigating their environment, and unlike our model, do not rely
on the emergent properties of their collective motion rules to deal with ob-
stacles. Different priorities are probably given to large impassable sections
of environment compared to the priorities of neighbours. However, in very
low-visibility conditions pre-planning of routes to avoid obstacles may not
always be possible, and as such, this method is valuable in those scenarios.

5.2.5 The probabilistic approach achieved through M,K and N
improves performance but there is still room for further
progress

Across most experiments we treated M as a range. Even though we noticed
different behaviour distributions across all values of M, the distinct variants
are represented at low (Align), mid-range (Probability-based) and high (At-
tract) values of M. The M range we explored is not an independent range,
it is tied to an individual’s ralign. The range we explored (M0 - M20) is rel-
ative to the number of neighbours that can comfortably fit into the zalign.
We observed that as ralign changes, the range m=0 to m=20 no longer ap-
plies in the same way; M=20 would no longer be considered an attraction
only variant if the zalign is much larger. Care would need to be taken when
defining the range for differing ralign values to ensure the model had an accu-
rate response to nalign. We found no single N value that could be applied to
satisfy all ranges of M. The number of neighbours an individual considers is
an often discussed topic in the literature. We found that our Align variant
follows a similar rule set to the Ballerini et al. model [10]. Their model uses
topological alignment to achieve collective motion under the threat of preda-
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tion. Although our implementation relies on a low-range metric model, we
both find that six neighbours maximises performance. This implies that an
alignment-based model requires only 6 neighbours, irrespective of whether it
uses topological or metric identification of those neighbours. The Probability-
based optimum for N was nine, but we observed from the literature swarm
examples that were able to achieve lower numbers of neighbours with stricter
fov[16]. Often models that can use lower numbers of neighbours implemented
more complicated fov frameworks, such as A-symmetric avoidance zones [16],
directionally focused fovs[20], or more complex shapes [23]. This would sug-
gest that prioritising in sensing abilities, through dedicated zones or specific
shapes, could be key to reducing the number of neighbours needed to cal-
culate accurately. We believed K would be important in generating noise
in the decision-making process. Existing research had shown that noise was
necessary for swarms, and could improve performance[52]. However, in our
simulations we saw very little difference in performance across the full range
of K (excluding K=0 where it becomes the Coin-flip variant). We believe
that the frequency of decisions per second removes any significant impact K
could could have, as it has an averaging effect, which results in very similar
behavioural selection. With hindsight, we may have been more successful by
using a fuzzy logic approach to determine behaviour-selection, rather than
the logistic function. Fuzzy logic can be effective for problems with impre-
cise membership (M range if considered low, medium, high) and can deal
well with decision making based on cognition of noisy data [53]. It also com-
plements a biological understanding or a vision implemented solution, where
counting a precise number of neighbours is less plausible than reacting to the
concept of none, some or many neighbours around you.

5.2.6 Our model can be easily expanded to create more optimal
solutions

The model is universal in the sense that Align, Attract, Probability-based
and Coin flip variants can all be generated by modifying M and K values.
This flexibility opens up new possibilities to develop more adaptive control
architectures, as M and K could be modified depending on external stimuli.
Research shows support for this kind of state transition in biology [54]. This
would allow the distinct strengths of multiple variants to be available in a
combined variant (e.g., a switch from the Align variant to the Probability-
based variant if obstacles are detected). We began to observe success for this
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kind of model without an intelligent mechanism for switching variants in our
heterogeneous experimentation results.

5.2.7 Relevance of our results to biological insights and robotic
implementation

Our model showed that dealing with conflicting priorities in collective motion
can be solved effectively by choosing a single option. While it is less complex
than averaging conflicting priorities this does not prove that biological agents
use this method. However, it does offer support to this as a plausible option.
The timing of decisions proved to be key for performance, and our method
of decision making relied upon counting neighbours. In nature animals can
recognise other animals from within their species. Therefore, counting the
number of individuals in close proximity would not be a massive leap. We do
believe that the process of counting should be modelled in a non discrete way
(e.g., fuzzy logic), we discuss this in more detail in the further work section.

In the literature, biological agents can be identified with personalities,
often contrasting shy and bold agents [55]. Through the lens of our model
we could interpreted our align agents as bold (due to their high speed and
explorative nature) and attract as shy agents (due to their proximity to
neighbours and minimal movement). With this in mind, our heterogeneity
experiments imply that mixing bold and shy behaviours is not conducive to
successful groups, but the fact that individuals may switch between shyness
and boldness is much more successful. We would expect biological agents’
shyness or boldness to be a spectrum and to be controlled externally via
influences such as predation or hunger and internally by experience. We could
conclude that the trade off between effective exploration and swarm cohesion
is controlled by the distribution and fluctuation of ’shyness’ or ’boldness’ each
agent displays.

Our model shares many aspects with Arkin’s definition of robotic mo-
tor schema [56]. Motor schema can be used to create reactive navigation in
robots by taking in and processing sensory data to select behaviours. Arkin
states that from all the possible sensory data we select only what is relevant
(nalign in our case). Other similar approaches [57] [58] successfully use hier-
archical schema to control navigation in robots. Based on these examples we
believe our model could be converted into a motor schema for a multi-agent
robotic platform. We believe we have created a simple and effective model
and while behaviours, decision-making, sensing ranges and the methods of
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selection are relativity straightforward to implement our simulator relies on
individuals being able to measure distance and angles between agents effec-
tively. When implementing this into a robotic platform we are posed with
a problem; measuring distances and angles reliably and accurately is not a
straightforward task for an agent who is gathering data from the environment
in a non-precise fashion (e.g vision, LiDar). Thus, our model provides only
the concept for a simplified controller. Although it would require further
work to implement this model the next step on the way is possible; if given
the specification of a robots sensors the simulation could be easily modified
to test the level of precision required when considering neighbour positioning
and angle calculation. If the precision needed is very high it would prove the
model is not fit for robotic implementation in its current form.

5.3 Assumptions and limitations of the work

5.3.1 Assumptions

� Individuals can locate neighbours position and orientation -
We provide individuals with the ability to identify neighbours orienta-
tions (up to 5 body lengths away) and positions (up to 12 body lengths
away). We justify this as a visual ability that individuals would be able
to use to identify the distance and orientation of neighbours based on
their proximity.

� Field of view We assumed that individuals have a concentric, multi-
zoned field of view. With 270 degrees of freedom in all directions from
the heading direction. We assumed that agents are able to identify,
using distance, which neighbours fall into each zone.

� Behaviour implementation For avoidance behaviour, we assume
that individuals have the capability to calculate a heading direction
that maximises divergence from identified obstacles. For alignment, we
assume agents have the capability to calculate a heading direction that
will match their neighbours orientation. For attraction we assume in-
dividuals have the capability to calculate a heading direction that will
intercept the centre of gravity of a group of neighbours.
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5.3.2 Simulator limitations

� Individuals body shape - Research shows that body shape has an
impact on swarming behaviour [23]. Our model required a physical
representation so that we could model collisions. We selected a spher-
ical form so that calculating collisions would be less intensive, and to
avoid our model over-fitting to that a particular body. It seems likely
that the specifications of an individuals body shape contributes to how
individuals traverse; we are aware that a spherical body would not be
considered typical in nature or robotics.

� No occlusion - In our simulation we did not implement the occlusion
of agents when there is no line of sight from an individual to a neigh-
bour. Occlusion is a relevant problem in swarms, and research has
shown occlusion is an important factor in swarm decisions, detection
capabilities and positioning within the group [59]. We did not imple-
ment this capability due to the additional calculations required, and
with the lack of realistic body shape previously mentioned, we believed
adding occlusion to an unrealistic body form would have provided less
conclusive or relevant results about the effects of occlusion.

� Fixed speed - Our model relies on agents having an internal constant
drive to move them forwards. However, swarms are made up from
multiple agents, traversing at multiple speeds, accelerating and decel-
erating. Research shows that individuals’ speed, especially accelera-
tion, is significant in information transfer and cohesion [60]. Constant
speed is a common simplification that we encountered throughout our
background research.

� Simplification of obstacles - In our model obstacles are free floating
spheres, we chose this to reduce collision calculations. These are un-
realistic obstacles and as such may have less relevance to how swarms
avoid as a group compared to more varying shapes and sizes (that
nature typically offers).

� Environmental conditions - Our aim with having a low range fov
compared to other models was to simulate the conditions that can be
found in underwater environments that have low visibility. We have
simplified the issue and reduced the sensing capabilities of our model.
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This ignores issues such as the clarity of water, and how the visible
light spectrum is affected underwater. We also do not implement fluid
dynamics, buoyancy, gravity, momentum or other physics-based me-
chanics to our simulation. We believe that these factors most likely
have an impact on how swarms traverse, but the time required to im-
plement these mechanics falls outside of the scope of this project

� Simulation uncertainty - For all simulations we control the seed
used to generate random values used (e.g., agent/obstacle placement
during initialisation). This allows us to re-run specific trials whenever
required. We did not conduct specific testing to ascertain if our system
was generating noise that was creating uncertainty between identical
trials (e.g., inconsistent rounding errors that compound overtime and
lead to significant changes in agents positioning). However, we can state
that the data we captured from the trials is identical across multiple
replicated trials and that during testing when we encountered errors
they were always present or repeated trials until they were debugged
and fixed. This provides us with a level of confidence that if there is
inherent noise in the system its influence is not significant enough to
alter the data we are collecting.

5.3.3 Analytic limitations

One of the biggest considerations we undertook when creating performance
metrics was how to measure successful groups for mobility and cohesion. Our
coverage measure requires cohesion and explorative movement which are the
two indicators we decided we valued most. Due to the way that we divide the
space into voxels and how agents are allocated to voxels we have the potential
to cause anomalies (e.g., agents movement may run along a boundary line
splitting agents between multiple voxels and not registering either voxel as
explored). We believe that although this is a possibility, all variants tested
are subject to this possibility and we have conducted enough trials to reduce
the significance if it does happen.

5.4 Future work

In the process of creating this thesis, much of our experimentation revealed
new hypothesises and potential routes of experimentation. We intend to
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develop the following lines of research.
A central focus for this project has been the number of significant neigh-

bours. We hypothesise that the values and methods we currently use are not
the optimum. We suspect that appreciating multiple neighbours, making cal-
culations based on multiple variables of each neighbour, and doing this multi-
ple times a second is a challenging task, and we aim to simplify it. We intend
to use our current model, but with two modifications. Firstly, adapting the
fov so that we can control the priority given to neighbours based on heading
direction. Secondly, we will implement a more refined avoidance mechanism,
based on matching neighbour’s alignment and speed. Our hypothesis is that
by reducing the volume of avoidance behaviour with a preventative method,
individuals will not need to recalculate positioning as often. We will then
perform experiments where individuals select a single neighbour from a pool
of neighbours, where the chance of selecting that neighbour is weighted by
distance. We will test different values for the number of agents in a pool, and
different weighting techniques for selection. Ideally, we aim to develop a sys-
tem that requires individuals to consider only one neighbour at a time, at a
low update rate, and from a small pool of neighbours, without compromising
performance.

We developed a system that allowed individuals to identify the direction
of an external stimulus. We wanted individuals to have the ability to sense
the strength of a signal across multiple sensors, so they could adjust their
behaviour based on its location. We were inspired by taxis behaviours ob-
served in biological systems. To complement this, we also plan to implement
a more refined movement system than the one used in our experimentation.
Individuals will be given the ability to control their minimum and maximum
travel speed and their rate of acceleration, based on external influences (e.g.,
neighbour movement, stimulus strength) or internal influences (behaviour
selection, simulated hunger). This would allow agents to have much more
dynamic speeds that would match the priority or utility of the need at hand
(i.e., agents could slow when presented with avoidance, or increase speed
when attracting). Originally, the inspiration for this was creating swarms
consisting of Braitenberg vehicles[61]. We are no longer taking this direction,
and intend to utilise the systems differently. From the literature we observe
that when exploring swarm behaviour, research often provided a common
goal (e.g., food source, shelter, environmental conditions). Revisiting our
previously mentioned reservations around constant speed, we intend to ex-
plore how external stimuli, numbers of informed individuals, and acceleration
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Figure 28: Preliminary results on (1) how different variants adapt to external
stimuli (obstacles) and (2) how the Probability based variant reacts to an obstacle
encounter. 2a) Change in orientation for all agents in group, including pink (first
agent to encounter obstacle), orange (most rear agent in group), blue (average of
the group). 2b) Groups average speed. 2c) Polarisation of the group. 2d) Angular
momentum of the group
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alignment influence collective motion. We plan to use our existing model,
but replace constant speed with variable speed, acceleration and decelera-
tion, and provide agents with the external signal sensing. We plan to test
what ratios of informed individuals (given ability to sense) vs uninformed in-
dividuals influences collective motion most positively. Also, how individuals
may use acceleration alignment as a method of information transfer to assist
predation avoidance.

We made an initial simple attempt at exploring heterogeneity in our ex-
perimentation. In the process of building our model, we devised the capabil-
ity to generate multiple distribution ranges on specific variables (e.g., normal
distribution on turning rates, normal distribution on M values), and the abil-
ity to insert noise into our system at specific points (e.g., sensors, internal
calculations, movement execution of movement). We intend to use these sys-
tems to explore heterogeneity further, but due to the size of the search space
we plan to use a heuristic search method(e.g., evolutionary approaches) to
explore the parameter space more effectively. We believe genetic algorithms
would be a good fit, our agents become our population, and our performance
metrics the measures of fitness. The first implementation we plan would be
to explore the fov framework. We would generate individuals with random
ravoid, ralign, rfov, θfov and ϕfov values. Then through multiple iterations, and
we would find optimum solutions for collective motion. We plan to add noise
and distributions to these solutions to explore how heterogeneity could im-
prove our solutions. We have started developing an analytic tool designed
to track the average positions of individuals in the swarm, relative to their
group. We believe that sensing ability may influence swarm positioning, as
such, we would analyse how fov influences this. We also starting exploring
information transfer in terms of how agents avoid obstacles. Preliminary re-
sults for this analysis can be found in [Fig.28]. The destination of this further
work is to adapt our findings into control strategies for multi-agent robotic
platforms. Developing low-cost bio-inspired collective motion strategies to
be used in aquatic robots or drones would be the desired outcome from our
research.
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