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Abstract: Pneumonia is a common cause of morbidity and mortality and is most often caused by 

bacterial pathogens. COVID-19 is characterized by lung infection with potential progressive organ 

failure. The systemic consequences of both disease on the systemic blood metabolome are not fully 

understood. The aim of this study was to compare the blood metabolome of both diseases and we 

hypothesize that plasma metabolomics may help to identify the systemic effects of these diseases. 

Therefore, we profiled the plasma metabolome of 43 cases of COVID-19 pneumonia, 23 cases of 

non-COVID-19 pneumonia, and 26 controls using a non-targeted approach. Metabolic alterations 

differentiating the three groups were detected, with specific metabolic changes distinguishing the 

two types of pneumonia groups. A comparison of venous and arterial blood plasma samples from 

the same subjects revealed the distinct metabolic effects of pulmonary pneumonia. In addition, a 

machine learning signature of four metabolites was predictive of the disease outcome of COVID-19 

subjects with an area under the curve (AUC) of 86 ± 10 %. Overall, the results of this study uncover 

systemic metabolic changes that could be linked to the etiology of COVID-19 pneumonia and non-

COVID-19 pneumonia. 

Keywords: COVID-19; non-COVID-19 pneumonia; metabolomics; metabolic profiling;  

multivariate statistics; machine learning; plasma; mass spectrometry; community-acquired  

pneumonia; system biology 

 

1. Introduction 

The coronavirus disease 2019 (COVID-19) pandemic has been the primary health 

concern affecting millions of human lives worldwide in the last two years. The illness, 

which began with a series of pneumonia cases of unknown etiology, was soon confirmed 

to cause severe acute respiratory syndrome [1–3]. COVID-19 primarily affects the respir-

atory system and can progress into a life-threatening systemic illness with organ failure 

[4]. The majority of COVID-19 cases are either asymptomatic or with minor symptoms, 

while 14% develop severe symptoms, including pneumonia and acute respiratory distress 

syndrome (ARDS), of which 5% of critical cases lead to 2.3% fatality [5]. The primary clin-

ical manifestation of a COVID-19 infection is pneumonia, a common acute respiratory 

infection involving the alveolar and distal bronchi of the lungs [6]. Community-acquired 

pneumonia (non-COVID-19 pneumonia) is an important disease entity, which is 
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frequently caused by bacterial pathogens and results in significant morbidity and mortal-

ity [7,8]. Ever since the onset of COVID-19, attempts have been made to compare the clin-

ical features of COVID-19 pneumonia with non-COVID-19 pneumonia, which could help 

in distinguishing COVID-19 pneumonia from other respiratory diseases [9–12]. 

It is now known that COVID-19 has different radiological features than non-COVID-

19 pneumonia [13–15]. However, limited information is available concerning other clinical 

characteristics of COVID-19 disease [9,10,12]. As inflammation caused by pneumonia af-

fects pulmonary blood circulation, biochemical changes might also be detectable in the 

blood. Details on the disease mechanisms of COVID-19 have been uncovered using ge-

nomic, transcriptomic, and proteomic approaches [16–27]. However, limited studies have 

investigated metabolomic changes with a particular emphasis on COVID-19 disease and 

non-COVID-19 pneumonia [28–30]. Metabolomics offers a unique advantage for the char-

acterization of biochemical events influenced by COVID-19 disease. Some studies have 

indeed characterized the COVID-19-metabolome within the context of clinical features, 

cytokine levels, and disease severity [31,32]. However, the impact of pulmonary patho-

physiology on the plasma metabolome has not yet been investigated in detail. Addition-

ally, the blood concentrations of inflammatory mediators are altered in COVID-19 and 

linked to pathomechanisms and clinical outcomes [33,34]. 

The aim of this study was to characterize the blood metabolome of patients with se-

vere COVID-19 pneumonia and non-COVID-19 pneumonia. We report the metabolic in-

vestigation of plasma samples in subjects with COVID-19 disease, pneumonia, and con-

trols. We also compare venous and arterial plasma samples from the lung artery and the 

lung vein to elucidate the metabolic differences that may result from lung inflammation. 

Furthermore, we compare transpulmonary gradients of different inflammatory cytokines 

between the three patient groups. Finally, we correlate metabolic changes with measured 

cytokine levels in these subjects and identify potential markers for disease severity. 

2. Materials and Methods 

2.1. Subject Recruitment and Sampling 

The present work used the baseline data and follow-up data of the COVID-19 cohort 

CORSAAR (n = 43) and its control cohort PULMOHOM, which are multi-center studies 

focusing on pathomechanisms and the role of risk factors in COVID-19 and other inflam-

matory lung diseases. Within the PULMOHOM cohort study, 23 patients with non-

COVID-19 pneumonia and 26 control patients undergoing elective non-pulmonary sur-

gery have been included. The inclusion criteria for this non-pulmonary, surgical cohort 

were planned surgery, no known pulmonary disease, male sex, central venous line (CVC), 

and peripheral arterial line (PAL) placement during surgery. We chose patients undergo-

ing surgery because a central venous catheter and an arterial catheter were placed as rou-

tine measures and allow for obtaining blood without further invasive procedure. Patients 

for the COVID-19 cohort were included within 3 days of admittance to the hospital and 

recruited at the Saarland University Hospital Homburg, the Caritas Hospital Saarbrücken 

(St. Theresia and St. Josef), the Hospital Saarbrücken (Winterberg), and the SHG-Hospital 

Völklingen. The studies have been approved by the ethics committee of the Medical Coun-

cil of the Saarland (Ethikkommission der Ärztekammer des Saarlandes, 62/20), and all 

patients or their legal representatives gave their informed consent. Basic and anthropo-

morphic characteristics and vital parameters were assessed based on measurements, ques-

tionnaires, and standardized interviews; basic data are shown in Table 1. There were no 

differences in age and BMI between the groups (ANOVA testing with Bonferroni post-

hoc testing), only the COVID-19 group included female patients. The COVID-19 group 

comprised 33 hospitalized patients on normal care units, 8 ventilated patients on the ICU, 

and one outpatient. From the hospitalized patients, 10 patients died in the course of the 

disease. All COVID-19 patients were recruited during the first wave of COVID and there-

fore were infected most likely by the alpha variant (B.1.1.7). Information regarding 
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comorbidities of the study cohort is included in Supplementary Table S1. Detailed char-

acteristics of all COVID-19 patients is included in Supplementary Table S2. 

Table 1. Distribution of age, sex, and BMI between the study groups. 

Item Control 
Non-COVID-19 

Pneumonia 

COVID-19 

Pneumonia 

Patient number 26 23 43 

Sex, % male 100 100 65 

Age 62.54 (11.39) 65.57 (14.88) 55.98 (27.44) 

BMI 26.37 (5.34) 27.27 (9.67) 27.22 (6.07) 

Data are mean (SD) and n (%). 

Approximately 20 mL of blood was drawn from CVC and PAL: 2 EDTA (ethylenedi-

aminetetraacetic acid) tubes with 5 mL, 2 serum tubes with 10 mL, and 2 RNA-PAX gene® 

tubes with 5 mL. We then centrifuged the samples from the EDTA and serum tubes in the 

Beckmann Coulter type Allegra X-30R Centrifuge. The EDTA samples were centrifuged 

at 2500 g for 20 min at 20 °C. The serum tubes had to be allowed to clot for 30 min before 

centrifugation and the samples could then be centrifuged at 1300 g for 10 min at 20 °C. 

EDTA and serum were pipetted off immediately after centrifugation. In the case of the 

EDTA samples, the supernatant and the serum were frozen at −80 °C and stored. Only the 

supernatant of the serum samples was frozen. The subsequent sample transport to the 

biomaterial bank took place on dry ice. 

2.2. Measurements of the Blood Concentration of the Cytokines 

The samples were evaluated using the multiplex cytokine array from Myriad (City, 

USA). Until the test was carried out, all samples were stored under −70 °C. A part (aliquot) 

of each sample was added to individual multiplexes of the selected MAP (multi-analyte 

profile) and to a blocker. Different assays were used for the different cytokines. The Hu-

man Inflammation MAP® v 1.1 was used for the inflammatory biomarker and was there-

fore used for the evaluation of most of the cytokines in our study. 

In addition, special Custom Maps® were created in order to test individual cytokines 

that would otherwise be distributed over several multiplexes. These included the cyto-

kines AXL, HCC-4, FAS, HGF, TRAIL-R3, AFP, CA-125, CA-19-9, CEA, hCG, NSE, MMP-

1, MMP-7, MMP-9 total, ANG -1, CA-9, Decorin, IL-18bp, PECAM-1, and SP-D. 

2.3. Metabolite Extraction 

The plasma samples were thawed on the ice for 30 min prior to extraction. Plasma 

sample containing 11 µL was mixed with 100 µL of an ice-cold extraction solvent (metha-

nol/water, 8/1, −20 °C) that contained 2 µg/mL of D6-glutaric acid and U13C-ribitol as in-

ternal standards. Subsequently, the mixture was vortexed at (1400 rpm, 4 °C, 10 min) and 

centrifuged at (13,000 g, 4 °C, 10 min) to precipitate proteins and extract metabolites. The 

supernatants (90 µL) were transferred to glass vials, evaporated to dryness at 4 °C using 

speed-vac, and stored at −20 °C until gas chromatography-mass spectrometry (GC-MS) 

measurement. Pooled quality control samples were prepared by mixing 10 µL of plasma 

from each sample and sample pools were extracted using the aforementioned steps. 

2.4. GC-MS Measurements 

Before GC-MS measurement, dried metabolite extracts were derivatized using an au-

tomated derivatization robot (Gerstel MPS). The first derivatization was performed by 

adding 15 µL of (20 mg/mL) methoxyamine hydrochloride in pyridine (Sigma-Aldrich), 

shaken for 90 min at 40 °C. The second derivatization was performed by adding an equal 

volume of N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) (Macherey-Nagel) un-

der continuous shaking for 30 min at 40 °C. The sample (1 µL) was injected into an SSL 
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injector at 270 °C in spitless mode. GC-MS analysis was performed using an Agilent 7890A 

GC equipped with a 30 m DB-35MS + 5m Duraguard capillary column (0.25 mm inner 

diameter, 0.25 µm film thickness). Helium was used as the carrier gas at a flow rate of 1.0 

mL/min. The GC oven temperature was held at 80 °C for 6 min, subsequently increased 

to 300 °C at 6 °C/min, and held at that temperature for 10 min. The temperature was in-

creased to 325 °C at 10 °C/min and held for an additional 4 min, resulting in a total run 

time of 60 min per sample. The GC was connected to an Agilent 5977B MSD. The transfer 

line temperature was set to 280 °C, and the MSD was operating under electron ionization 

at 70 eV. The MS source was held at 230 °C and the quadrupole at 150 °C. Full scan mass 

spectra were acquired from m/z 70 to m/z 800 at a scan rate of 5.2 scans/s. Pooled samples 

were measured after every eighth GC-MS measurement for quality control and data cor-

rection [35]. 

2.5. Data Processing 

Deconvolution of mass spectra, peak picking, integration, and retention index cali-

bration was performed using our in-house software [36]. Compounds were identified us-

ing an in-house mass spectral library by spectral and retention index similarity. The fol-

lowing deconvolution settings were applied to scan data: peak threshold: 5; minimum 

peak height: 5; bins per scan: 10; deconvolution width: 7; no baseline adjustment; mini-

mum 15 peaks per spectrum; no minimum required base peak intensity. Retention index 

calibration was based on a C10–C40 even n-alkane mixture (68281, Sigma-Aldrich, Mu-

nich, Germany). Relative quantification was carried out using the batch quantification 

function of our in-house software [36]. Data were normalized to quality control pool meas-

urement and intensity of the internal standard (D6-Glutaric acid). 

2.6. Statistical Analysis 

Metabolomics data were further processed using Metaboanalyst 5.0 [37]. Cube root 

transformation and range scaling methods were applied to obtain Gaussian distribution. 

Principal component analysis (PCA) was performed to identify intrinsic clustering. Su-

pervised clustering was performed using partial least squares discriminant analysis (PLS-

DA). Further, the model accuracy was tested using cross-validation by 100 permutations 

to avoid over-fitting. R2 and Q2 values were used to assess the goodness of the fit and 

predictive ability of the PLS-DA model. The groups’ (COVID-19 disease, non-COVID-19 

pneumonia, and controls) significant metabolic differences were identified using ANOVA 

(p < 0.05) adjusted for multiple hypothesis testing using FDR correction. A post-hoc anal-

ysis using Tukey’s HSD was performed to identify within groups’ (COVID-19 disease 

against controls and non-COVID-19 pneumonia against controls) significance. Arterial 

and venous sample differences from the same individuals were identified by performing 

repeated measures ANOVA in r [38]. Box-and-whisker plots and ROC curve analysis plots 

were plotted using r packages. Heat maps of differentially expressed metabolites were 

created using Metaboanaylst 5.0. Significant metabolites were further submitted for path-

way analysis using a pathway analysis tool (MetPA) in Metaboanalyst 5.0 [37]. 

To analyze the transpulmonary gradients of cytokine concentrations, we determined 

the difference between the concentrations obtained from samples from the peripheral ar-

terial catheter and the central venous catheter (CVC) (Δ-concentration). These Δ-concen-

trations were compared between the three patient groups (ANOVA test). Furthermore, 

the significant difference between the venous and arterial concentration of each cytokine 

within each group was analyzed with paired t-test. A significance value of p ≤ 0.05 was 

applied to all tests, and SPSS V27 (IMB) was used for analysis. 

2.7. Machine Learning Approaches 

Machine learning approaches such as support vector machines (SVM) were em-

ployed to identify the predictive marker metabolites for disease outcomes. In brief, the 
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synthetic minority oversampling technique (SMOTE) was used to fit imbalances for the 

training set [39]. SMOTE takes the minority class data points and creates new data points 

which lie between any two nearest data points joined by a straight line. Hyperparameter 

tuning was performed on the SVM classifier with training data. SVM-recursive feature 

elimination (RFE) was used to select features (metabolites) for the classification algorithm 

[40]. Essentially, this method trains the model on the original number of features, and 

importance is given to each feature. The least important features are taken out, and then 

the process is repeated to a specified number of features. Finally, cross-validation was 

used to determine an optimal number of features. For each iteration of splitting the data 

into test and hold-out set, different features were selected by SVM-RFE. Only those fea-

tures selected by SVM-RFE in each iteration were used for the training of the SVM classi-

fier. The SVM classifier was trained on the 10 train datasets to evaluate variability han-

dling with the classifier. 

3. Results 

3.1. Exploratory Statistical Analysis of Plasma Metabolites 

We performed metabolic profiling of plasma samples collected from 43 COVID-19 

pneumonia, 23 non-COVID-19 pneumonia, and 26 control subjects. Data processing using 

our in-house software resulted in the detection of 157 metabolites detectable across all 

samples [36], of which the structural identity of 67 metabolites was confirmed by using an 

in-house metabolic reference library. Metabolite levels were normalized to the internal 

standard and pooled quality control samples. In addition, the data matrix was log-trans-

formed and Pareto scaled for further statistical analysis. Principal component analysis 

(PCA) revealed inherent clusters among the sample groups of COVID-19 pneumonia, 

non-COVID-19 pneumonia, and controls based on the metabolic profile (Figure S1). More-

over, a partial least square discriminant analysis (PLS-DA) revealed clear discrimination 

among the three groups (Figure 1a). A cross-validation analysis using 100 randomly per-

mutated models indicated a good predictive ability of the original PLS-DA model with 

cumulative R2 and Q2 values of the model 0.87 and 0.53, respectively (Figure 1b). Q2 rep-

resents the predictive ability of the model and is calculated by comparing the predicted 

data with the original data. 

 

Figure 1. Exploratory multivariate statistical analysis. (a) Partial least square discriminant analysis 

(PLS-DA) score plot depicting clustering of COVID-19 pneumonia (CovP), control, and non-

COVID-19 pneumonia (CAP) samples. (b) Plot obtained after performing a random permutation 

test with 100 permutations on PLS-DA model. The red asterisk indicates the best classifier (R2 = 0.87, 

Q2 = 0.53), R2 is the explained variance, and Q2 is the predictive ability of the model. Q2 represents 
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the model’s predictive ability and is calculated by comparing the predicted data with the original 

data. The calculated prediction error (Predicted Residual Sum of Squares or PRESS) is divided by 

the initial sum of squares and subtracted from 1. High R2 and Q2 values represent the model’s good 

predictive ability and confirm our PLS-DA model’s validity. The inset table summarizes Q2, R2, and 

the accuracy of the best model. Comps mean the number of components. 

3.2. Significant Metabolic Alterations 

Metabolic alterations among the groups were identified using ANOVA (p-value< 

0.05), adjusted for multiple hypotheses testing by false discovery rate (FDR). Metabolites, 

discriminating all three groups, were selected using post-hoc analysis. Overall, 66 metab-

olites showed significant alterations among COVID-19 pneumonia, non-COVID-19 pneu-

monia, and controls (Supplementary Table S3). These include amino acids, fatty acids, 

amino sugar derivatives, and organic acids. Unknown metabolites that were not matched 

with the in-house library are annotated using their retention indices. An overview of the 

top 40 differentially altered metabolites among COVID-19 pneumonia, non-COVID-19 

pneumonia, and controls are depicted in Figure 2. Further post-hoc analysis (Tukey’s 

HSD) uncovered the specific differences between the groups (Supplementary Table S3). 

Significant differences in the levels of 29 metabolites were observed in COVID-19 pneu-

monia compared to the control subjects. Levels of aspartic acid, galactose, glycine, lactic 

acid, lyxose, maltose, ornithine, phenylalanine, pyroglutamic acid, ribose, serine, and tau-

rine were increased while fumaric acid levels were decreased in COVID-19 pneumonia 

patients (Figure S2). In the non-COVID-19 pneumonia compared to the control subjects’ 

group comparison, 37 metabolites were identified as significant. Wherein, we observed 

increased levels of erythrose 4-phosphate, fructose, gluconolactone, gluconic acid, glucu-

ronic acid, isoleucine, meso-erythritol, methionine, threonic acid, tyrosine, urea, and xyli-

tol in non-COVID-19 pneumonia patients (Figure S3). 
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Figure 2. Heatmap of top 40 significantly altered metabolites in group comparison (COVID-19 pneu-

monia (CovP), control subjects, and non-COVID-19 pneumonia (CAP)) selected after ANOVA (p < 

0.05). The colors from green to red indicate the increased concentration (normalized peak area) of 

metabolites. 

3.3. Pathway Analysis 

Metabolites selected as significant from the post-hoc analysis between the two 

groups, COVID-19 pneumonia and non-COVID-19 pneumonia, were further subjected to 

pathway analysis. Interestingly, pathway analysis revealed distinct metabolic responses 

in the COVID-19 pneumonia and non-COVID-19 pneumonia group. The top five path-

ways that were enriched in the COVID-19 pneumonia group were arginine biosynthesis, 

glutathione metabolism, aminoacyl-tRNA biosynthesis, pyruvate metabolism, and ala-

nine, aspartate, and glutamate metabolism (Figure 3a). In comparison, the top five path-

ways altered in the non-COVID-19 pneumonia group were the pentose phosphate path-

way, aminoacyl-tRNA biosynthesis, pentose and glucuronate interconversions, phenylal-

anine, tyrosine and tryptophan metabolism, and valine, leucine and isoleucine metabo-

lism (Figure 3b). 
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Figure 3. Topology map of altered metabolic pathways describing the impact of metabolites selected 

from comparative post-hoc analysis (Tukey’s HSD). (a) The top five altered metabolic pathways in 

the COVID-19 pneumonia (CovP) group. 1. Arginine biosynthesis, 2. Glutathione metabolism, 3. 

Aminoacyl-tRNA biosynthesis, 4. Pyruvate metabolism, 5. Alanine, aspartate, and glutamate me-

tabolism. (b) The top five altered metabolic pathways in the non-COVID-19 pneumonia (CAP) 

group. 1. Pentose phosphate pathway, 2. Aminoacyl-tRNA biosynthesis, 3. Pentose and glucuronate 

interconversions, 4. Phenylalanine, tyrosine, and tryptophan metabolism, 5. Valine, leucine and iso-

leucine metabolism. 

3.4. Machine Learning Signature to Predict Disease Outcome 

Next, we applied a machine learning approach based on a support vector machine 

(SVM) to disclose the metabolic signature that can predict the COVID-19 outcome (recov-

ered vs deceased). Among the 43 COVID-19 patients recruited for this study, 32 recovered 

and 10 deceased. At first, we applied the synthetic minority oversampling technique 

(SMOTE) to fit imbalances in the training dataset. Hyperparameter tuning was performed 

using repeated randomized cross-validation on the SVM classifier with training data. Sub-

sequently, SVM-recursive feature elimination (RFE) was applied to select metabolite fea-

tures for the classification algorithm. RFE aims to select features by recursively consider-

ing smaller and smaller sets of features. Finally, cross-validation was employed to deter-

mine an optimal number of features. The SVM classifier was trained on the 10 training 

datasets to evaluate variability handling with the classifier. We applied receiver operating 

characteristic (ROC) to evaluate our classification model. The classifier correctly predicted 

outcomes (recovered vs deceased) of the COVID-19 subjects with an area under the ROC 

curve (AUC) of 86 ± 10 % (Figure 4a). Box-whisker plots of the concluding four marker 

metabolites (threonine, RI1532.53, RI1557.73, and RI1150.81) predictive of disease fatality 

(recovered vs deceased) in COVID-19 individuals are presented in Figure 4b. In addition, 

the predictive power of the final model was evaluated via a precision–recall curve. Preci-

sion is the ratio of the number of true positives divided by the sum of true positives and 

false positives, which characterizes the ability of the model to predict the positive samples 

correctly. It is complemented by the recall metric, which is the ratio of true positives to the 

actual positives of the data. A perfect model will have a precision and recall of 1 for every 

chosen threshold. The information of the precision–recall curve is summarized via the 

AUC metric (Figure S4). 
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Figure 4. Machine learning analysis using support vector machine (SVM) depicting prediction of 

disease outcome (recovered vs deceased) in COVID-19 pneumonia subjects. (a) Receiver operating 

characteristic (ROC) plot of the true positive rate (i.e., sensitivity) and the false positive rate (i.e., 1-

specificity). ROC is used to evaluate classification models that classify subjects into one of two cat-

egories (recovered or deceased). The area under the ROC curve provides a way to measure the ac-

curacy (1 highest and less than 0.5 low). The present classifier correctly classifies the cohort for dis-

ease outcome (recovered vs deceased) with an area under (AUC) the ROC of 86 ± 10 %. The blue 

line is the mean and the grey area is the standard deviation of all ROCs of train split. (b) Box-and-

whisker plots of metabolites used in the SVM classifier model, illustrated as normalized peak area 

differences between recovered (green box) vs deceased (red box) subjects. 

3.5. Effect of Pneumonia on the Plasma Metabolome and Cytokines 

We then set out to elucidate the plasma metabolic effects of pneumonia specific for 

COVID-19 and non-COVID-19 pneumonia. Accordingly, we compared the plasma metab-

olome of systemic venous (pre-lung) and arterial (post-lung) blood samples from the same 

individuals. To identify significant metabolic differences in arterial vs venous samples, 

we performed a repeated-measures ANOVA. As a result, significant differences in nine 

metabolite levels were revealed across arterial and venous samples specific for COVID-19 

pneumonia (Figure 5a). We observed increased levels of octadecanoic acid, RI1501.16, 

RI1028.76, RI2473.8, RI3150.76, RI1021.65, RI3150.76, and RI1021.65 in the arterial samples, 

reflecting the contribution from lung metabolism. Contrarily, in arterial vs venous sam-

ples from non-COVID-19 pneumonia patients’ levels of two metabolites (RI2960.53 and 

RI2350.12) were significantly lower (Figure 5b). 
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Figure 5. Significant metabolite differences in venous and arterial samples revealed by repeated-

measures ANOVA. (a) Box-and-whisker plots of COVID-19 pneumonia (CovP) specific significant 

metabolic differences in venous (green box) and arterial samples (red box). (b) Box-and-whisker 

plots of non-COVID-19 pneumonia (CAP) specific significant metabolic differences in venous (green 

box) and arterial samples (red box). (Asterisk indicates p ≤ 0.05). 

Next, we investigated whether the blood concentrations of cytokines were changed 

after the passage of the pulmonary circulation (Supplementary Table S4). A paired t-test 

was employed to compare venous (pre-lung) and arterial (post-lung) samples. Significant 

differences in Factor VII, IgA, IgM, IL-1beta, and TGB were observed in the COVID-19 

group (Figure 6a), while EN-RAGE and IL-1RA showed significant alteration in both 

COVID-19 and non-COVID-19 pneumonia groups (Figure 6b). PAI-1 levels were signifi-

cant in the non-COVID-19 pneumonia group (Figure 6c). 
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Figure 6. Significant cytokines differences in venous and arterial samples. (a) Box-and-whisker plots 

of COVID-19 pneumonia (CovP) specific significant cytokine differences. (b) Box-and-whisker plots 

of both non-COVID-19 pneumonia (CAP) and COVID-19 specific significant cytokine differences; 

(c) Box-and-whisker plots of both non-COVID-19 pneumonia (CAP) specific significant cytokine 

differences. (Venous (green box), arterial samples (red box), an asterisk indicates p-value ≤ 0.05). 

Next, we compared the differences between venous and arterial blood samples (“Δ-

concentrations”) between the groups. Here, cytokines IgM, EN-RAGE, IL1-RA, and 

ICAM-1 showed significantly different Δ-concentrations between COVID-19 pneumonia 

and the control group (Figure 7a). While cytokine PAI-1showed significant differences in 

Δ-concentrations between non-COVID-19 pneumonia and control groups (Figure 7b). 

Overall, these data revealed that the composition of the blood metabolome and cytokine 

pattern within the lung is disease-specific and differs between COVID-19 and non-

COVID-19 pneumonia. 
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Figure 7. Cytokines with significant differences in the delta values. (a) Box-and-whisker plots of 

COVID-19 pneumonia (CovP) specific significant differences in delta values as compared to con-

trols. (b) Box-and-whisker plots of both non-COVID-19 pneumonia (CAP) specific significant cyto-

kine differences in delta values as compared to controls. [non-COVID-19 pneumonia (blue box), 

Control samples (green box), COVID-19 pneumonia (red box), an asterisk indicates p-value ≤ 0.05]. 

4. Discussion 

In this study, we employed a non-targeted plasma metabolomics approach to iden-

tify group-specific differences among COVID-19 pneumonia, non-COVID-19 pneumonia, 

and control groups (Supplementary Table S3). Disease-specific metabolic alterations were 

detected in COVID-19 pneumonia and non-COVID-19 pneumonia groups (compared to 

controls unless otherwise specified) and can be used to develop biomarker patterns pre-

dictive of disease fatality. A transpulmonary gradient of metabolites and cytokines was 

found for several metabolites and cytokines highlighting the role of the lung in the mod-

ulation of systemic disease consequences. 

Plasma concentrations of amino acids were specifically altered in the COVID-19 

pneumonia group such as aspartic acid, glycine, and serine (Figure S2). An increase in the 

levels of glycine has previously been linked with COVID-19 infection [41]; an increase in 

glycine activates porphyrin metabolism, which is a key step for disease progression [41]. 

Notably, taurine levels were specifically increased in the COVID-19 pneumonia group 

while these levels were slightly decreased in the non-COVID-19 pneumonia group. In hu-

mans, leucocytes have been described to have the highest levels of taurine [42], where it 

acts as an antioxidant affecting immune function [43]. Alternately, taurine metabolism has 

also been shown to influence sepsis by altering the release of important inflammatory me-

diators [44], indicating a similar response in COVID-19 pneumonia. In line with this, lactic 

acid levels were significantly increased in the COVID-19 pneumonia group. Lactic acid 

has been shown to affect immune functions via the regulation of immune cell-specific sig-

naling pathways [45,46]; lactic acidosis contributes to the inflammatory response through 

dysregulation of cytokines and macrophage activation [47]. Lactic acid is also strongly 

associated with sepsis, which can be attributed to mitochondrial dysfunction [48–50]. 

Thus, increased lactic acid levels in the plasma of COVID-19 pneumonia patients are in-

dicative of a sepsis-induced inflammatory response [51]. 

Significant changes in the levels of the essential amino acids viz. methionine, tyro-

sine, and isoleucine were observed in the non-COVID-19 pneumonia group (Figure S3). 

An increase in the levels of methionine and tyrosine could be related to bacterial infection 

as these are amino acids that are typical for pathogen metabolism [52]. Isoleucine, a 

branched-chain amino acid, acts as a transcriptional regulator in bacterial pathogenesis 
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[53]. It functions as a host metabolic signal that regulates virulence gene expression in 

certain bacteria, including a common pneumonia-causing bacteria Staphylococcus aureus 

[53]. We also observed higher urea levels in non-COVID-19 pneumonia individuals, 

which corroborates with previous reports [54]. In non-COVID-19 pneumonia subjects, 

pneumonia is often followed by dehydration which results in increased reabsorption of 

urea by the kidney. Earlier studies have also reported an association of urea levels with 

mortality and the severity of non-COVID-19 pneumonia [55]. 

Interestingly, our pathway analysis revealed distinct metabolic responses in COVID-

19 pneumonia patients (Figure 3a). Arginine metabolism plays a vital role in the immune 

response [56]. Arginine is the direct precursor in nitric oxide (NO) synthesis, a key signal-

ing molecule [57]. Altered arginine metabolism is also indicative of the oxidative response 

and can contribute to endothelial dysfunction observed in COVID-19 pneumonia [58]. Al-

tered arginine metabolism has also been reported in previous COVID-19 studies [59,60]. 

Glutathione metabolism is extremely important for the regulation of cellular ROS and the 

function of the immune system [61]. Moreover, it has been shown that COVID-19 pneu-

monia affects redox cellular homeostasis, a key step in the cytopathic effects of viral infec-

tions [62]. Notably, viral infections including COVID-19 induce increased glycolytic flux 

along with an increased pyruvate metabolism [63,64]. Viral infections primarily target 

glycolysis by modulating glucose transporters, which are important for the host cell re-

sponse and immune activation [65]. Moreover, alterations in alanine-, aspartate-, and glu-

tamate- metabolism were also observed in COVID-19 pneumonia patients. This pathway 

is essential in the generation of GABA, a signaling molecule with omnipresent receptors 

on various immune cells [66]. GABA has been shown to modulate inflammation and clear-

ance of alveolar fluid in acute lung injury [67]. 

In comparison, impacted pathways in non-COVID-19 pneumonia patients revealed 

different metabolic responses (Figure 3b). The pentose phosphate pathway is important 

for polyamine metabolism and suggestive of an oxidative stress response to infection due 

to its NADPH supply [68]. Aminoacyl-tRNA synthesis is vital for protein synthesis and is 

indicative of response to infection by regulating transcription, translation, and various 

signaling pathways [69]. Pentose and glucuronate interconversions pathways lay a piv-

otal role in the clearance of toxic substances [70]. Toxic substances are cleared by conjuga-

tion with other compounds to mask the toxic groups. D-glucuronic acid is a key molecule 

that binds to toxic substances assisting their clearance through the pentose and glucu-

ronate interconversions pathway, which is increased in the non-COVID-19 pneumonia 

group [70]. Phenylalanine, tyrosine, and tryptophan biosynthesis could be explained by 

the catabolism of muscle protein as a response to infection; leading to the release of phe-

nylalanine, which is used for the synthesis of inflammatory molecules [71]. Valine, leu-

cine, and isoleucine (BCAA) metabolism stipulate aggressive glucose consumption and 

subsequent amino acid synthesis, which corroborates with earlier reports as well [72]. 

In addition, we identified a panel of four metabolites that could predict the outcome 

(recovered vs deceased) of the COVID-19 individuals. Among three unknown metabo-

lites, the structural identity of threonine was confirmed by our in-house library. This par-

ticular amino acid has been shown to be one of the direct indicators of inflammatory dis-

eases such as sepsis [73]. As demonstrated in rats, a decrease in threonine levels was di-

rectly correlated with an increased synthesis of both mucins and gut epithelial proteins 

during sepsis [73]. The reduced levels of threonine in the plasma of deceased COVID-19 

pneumonia subjects could be indicative of the severity of sepsis and may serve as a good 

marker to predict the disease outcome [74]. Moreover, the strong correlation of these four 

metabolites in predicting disease outcomes for COVID-19 warrants future targeted inves-

tigation. 

Since COVID-19 pneumonia is a heterogeneous disease distinguished by thrombosis, 

pulmonary embolism, and inflammatory cell infiltration [75,76], we expected strong mod-

ulations of plasma metabolites and inflammatory cytokines in the lung. Pinpointing dif-

ferences in the blood composition of the lung artery and vein could provide a snapshot of 
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biochemical and inflammatory activities happening during pneumonia. We revealed sig-

nificant concentration changes between venous and arterial blood in nine metabolites in 

COVID-19 pneumonia and in two metabolites in non-COVID-19 pneumonia (Figure 5). 

Interestingly, the fatty acid octadecanoic acid (stearic acid) was significantly altered in the 

venous and arterial comparison of the COVID-19 pneumonia group. Octadecanoic acid 

has previously been reported to be altered in bronchoalveolar lavage fluid of COVID-19 

subjects [77]. Octadecanoic acid has been shown to decrease nuclear factor-kB activity and 

inflammatory cell accumulation [78]. Octadecanoic acid may exert some regulatory effect 

on fibrogenesis by suppressing myofibroblast differentiation [79]. Additionally, the accu-

mulation of saturated fatty acids such as octadecanoic acid is an indicator of disruption of 

the structural and functional characteristics of the cells inducing cell death mediated by 

apoptosis or necrosis [80]. Other metabolic entities identified as transpulmonary activities 

need further structural confirmation, concerning their role in lung pathogenesis of 

COVID-19 pneumonia and non-COVID-19 pneumonia. Several cytokines have significant 

transpulmonary gradients within non-COVID-19 pneumonia and COVID-19 disease, 

more prominent in the COVID-19 group. As expected, no differences were observed 

within the control group. The venous concentration of cytokines correlated with disease 

severity and outcome in an earlier study [34]. 

Overall, our study provides unique insights into the pathophysiology of pneumonia 

in COVID-19 and non-COVID-19 pneumonia using metabolic differences. The study has 

limitations and strengths. The patient sample includes more men than women, which 

might cause a bias. We initially included only male patients to account for cyclic changes 

of the blood metabolome in female individuals. With the beginning of the COVID-19-pan-

demics, we decided to also include female patients to address this novel disease. Moreo-

ver, we did not correct for several underlying factors such as diet or medication. The 

strength of the study is based on the unique patient collection that allowed for various 

biosamples to study the transpulmonary gradient of cytokines and metabolites. Threonine 

along with three other metabolites could serve as predictive biomarkers for COVID-19 

disease severity. We observed systematic changes in transpulmonary levels of octadeca-

noic acid along with six other metabolites in COVID-19 subjects that could be indicative 

of fibrogenesis. Similarly, prominent changes in transpulmonary levels of cytokines were 

also observed in COVID-19 subjects. These data highlight the role of the lung in the mod-

ulation of systemic inflammation and might also help to understand how lung infection 

caused dysfunction in other organs. 
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