
TRANSFORMER-BASED MULTI-HOP QUESTION GENERATION

JOHN EMERSON
Bachelor of Science, University of Lethbridge, 2018

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

© John Emerson, 2022

TRANSFORMER-BASED MULTI-HOP QUESTION GENERATION

JOHN EMERSON

Date of Defence: August 22, 2022

Dr. Y. Chali Professor Ph.D.
Thesis Supervisor

Dr. W. Osborn Associate Professor Ph.D.
Thesis Examination Committee
Member

Dr. J. Zhang Associate Professor Ph.D.
Thesis Examination Committee
Member

Dr. J. Sheriff Assistant Professor Ph.D.
Chair, Thesis Examination Com-
mittee

Dedication

For the underdogs.

iii

Abstract

Question generation is the parallel task of question answering, where given an input con-

text and, optionally, an answer, the goal is to generate a relevant and fluent natural language

question. Although recent works on question generation have experienced success by utiliz-

ing sequence-to-sequence models, there is a need for question generation models to handle

increasingly complex input contexts to produce increasingly detailed questions. Multi-hop

question generation is a more challenging task that aims to generate questions by connect-

ing multiple facts from multiple input contexts. In this work, we apply a transformer model

to the task of multi-hop question generation without utilizing any sentence-level supporting

fact information. We utilize concepts that have proven effective in single-hop question gen-

eration, including a copy mechanism and placeholder tokens. We evaluate our model’s per-

formance on the HotpotQA dataset using automated evaluation metrics, including BLEU,

ROUGE and METEOR and show an improvement over the previous work.

iv

Acknowledgments

First, I’d like to thank my thesis supervisor, Dr. Yllias Chali, for his guidance, support, and

all the knowledge I’ve gained from him throughout my master’s program.

I’d also like to thank my supervisory committee members, Dr. Wendy Osborn and Dr.

John Zhang, for their time and effort, the feedback they provided on my work, and the many

courses I took with them during my time at the University of Lethbridge.

I’d also like to thank my office mate, Deen Mohammad Abdullah, who provided valu-

able suggestions for my research and was always willing to answer any questions I had.

I also have to thank my family for supporting me and always taking an interest in my

work. I couldn’t have done it without you.

Lastly, I’d like to thank Two Guys & A Pizza Place for giving me the strength to power

through many late nights at the university over the past two years. If it wasn’t for you, I’d

have a few thousand less in student loans to repay. I regret nothing.

v

Contents

Contents vi

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 1
1.3 Contributions . 3
1.4 Thesis Organization . 4

2 Background 5
2.1 Introduction . 5
2.2 Artificial Neural Networks . 5

2.2.1 The Perceptron . 5
2.2.2 Feed-Forward Neural Networks 7
2.2.3 Recurrent Neural Networks . 8
2.2.4 Sequence-to-Sequence Learning 10
2.2.5 Attention . 11
2.2.6 Dropout . 13

2.3 Natural Language Processing Concepts 14
2.3.1 Tokenization . 14
2.3.2 Part-of-Speech Tagging . 15
2.3.3 Named-Entity Recognition . 15
2.3.4 Word Embeddings . 16

2.4 Automated Evaluation Metrics . 19
2.4.1 BLEU . 20
2.4.2 ROUGE-L . 20
2.4.3 METEOR . 21

2.5 The Transformer Model . 21
2.5.1 Input Feeding . 22
2.5.2 Positional Encoding . 22
2.5.3 Encoder and Decoder Stacks . 24
2.5.4 Multi-Head Attention . 25
2.5.5 Position-Wise Feed-Forward Layer 27

2.6 Training and Inference . 28

vi

CONTENTS

2.6.1 Learning Paradigms . 28
2.6.2 Gradient-Based Optimization . 28
2.6.3 Greedy Decoding . 31
2.6.4 Beam Decoding . 31

2.7 Summary . 33

3 Related Work 34
3.1 Introduction . 34
3.2 Early Approaches . 34
3.3 Seq-to-Seq Approaches . 35

3.3.1 Introduction . 35
3.3.2 Paragraph-Based Question Generation 35
3.3.3 Answer-Aware vs. Answer-Agnostic Question Generation 36
3.3.4 Question Type Prediction . 37
3.3.5 Inquisitive Question Generation 38
3.3.6 Sequential Question Generation 38
3.3.7 Other Types of Question Generation 38

3.4 Multi-Hop Question Generation . 39
3.5 Summary . 41

4 Multi-Hop Question Generation 42
4.1 Introduction . 42
4.2 Motivation . 42
4.3 Task Definition . 43
4.4 Proposed Model . 44

4.4.1 Model Overview . 44
4.4.2 Placeholder Tokens . 44
4.4.3 Encoder . 46
4.4.4 Decoder and Pointer-Generator 48

4.5 Summary . 50

5 Experiment Details and Discussion 51
5.1 Introduction . 51
5.2 Dataset . 51

5.2.1 Data Cleaning and Splitting . 54
5.3 Implementation Details . 55
5.4 Evaluation Results and Discussion . 57
5.5 Summary . 59

6 Conclusion 60
6.1 Introduction . 60
6.2 Summary . 60
6.3 Future Work . 60

Bibliography 63

vii

CONTENTS

A System-Generated Questions 72

B SpaCy Part-of-Speech Tags 74

C SpaCy Named Entity Tags 76

viii

List of Tables

2.1 One-hot encodings (left) contrasted with dense word embeddings (right). . . 17

5.1 Performance comparison between our model and MulGQ (Su et al., 2020). . 57

ix

List of Figures

1.1 An example of single-hop question generation. 1
1.2 An example of multi-hop question generation. 3

2.1 A perceptron with and without a bias unit. 6
2.2 A feed-forward network with bias units. 7
2.3 An unrolled recurrent neural network. 9
2.4 A recurrent sequence-to-sequence model. 11
2.5 Dropout applied to a feed-forward neural network (Srivastava et al., 2014). . 13
2.6 A sentence annotated with part-of-speech tags. 15
2.7 Sequence of text annotated with named entity tags. 15
2.8 Transformer model architecture (Vaswani et al., 2017). 23
2.9 (Left) Scaled dot-product attention. (Right) Multi-head attention consists

of several attention layers running in parallel (Vaswani et al., 2017). 26
2.10 An example of beam decoding, where k = 2. 32

4.1 The encoder of our proposed model. 46
4.2 Overview of the proposed model. 48

5.1 Bridge-type question from the HotpotQA dataset (Yang et al., 2018). 52
5.2 Comparison-type question from the HotpotQA dataset (Yang et al., 2018). . 53

x

Chapter 1

Introduction

1.1 Introduction

In this chapter, we discuss the motivation for the work presented in this thesis, list the

research contributions of this thesis, and describe the organization of its various compo-

nents.

1.2 Motivation

Question generation is a research area within natural language processing that has seen

considerable interest in recent years. The increased research interest has primarily been

driven by improvements in the effectiveness of deep learning and the advent of sequence-

to-sequence models. There are numerous variations of the question generation task, all of

which share the same basic structure: given a selection of text as input, a question gener-

ation system should produce a relevant, thought-provoking question that is grammatically

correct. Figure 1.1 demonstrates the process of generating a question that requires a single

reasoning hop over an input context.

Many practical applications can benefit from the improvement of question generation

Input Context: Oxygen is used in cellular respiration and released by photosynthesis,
which uses the energy of sunlight to produce oxygen from water.

Generated Question: What life process produces oxygen in the presence of light?

Figure 1.1: An example of single-hop question generation.

1

1.2. MOTIVATION

systems. Most notably, question generation systems can generate query suggestions for

search engines (Zamani et al., 2020). If a user searches the internet for information about a

specific topic, the search engine can create query suggestions based on the articles returned

by the user’s original search. Similarly, e-commerce websites can utilize the technology

to generate questions from user-supplied product reviews automatically (Yu et al., 2020).

The generated questions can then be used to filter out irrelevant reviews, only showing the

user reviews that are relevant to their interests. Question generation can also be applied

in educational settings for reading comprehension evaluation (Heilman and Smith, 2010).

Such questions can serve as a self-evaluation tool or spur the reader to investigate a par-

ticular topic further. Question generation research can also contribute to the advancement

of conversational systems, such as those utilized by digital personal assistants (Zhao et al.,

2018).

In addition to the practical applications, question generation systems can also be uti-

lized to advance research in other areas of natural language processing, such as the parallel

task of question answering. Given a query, a question answering system determines the

correct answer by examining a selection of input text. Since question answering systems

often rely on deep learning models trained in a supervised fashion, they require large, high-

quality datasets which map queries and input contexts to answers. Manually generating

these datasets is time-consuming and expensive. Question generation systems can be uti-

lized to automate this process (Du et al., 2017).

Although improvements have been made in recent years, early research on question

generation has focused on input contexts of restricted sizes, usually no more than a sen-

tence or small paragraph. Additionally, the depth of reasoning required to answer automat-

ically generated questions has also been limited. The multi-hop question generation task

addresses these deficiencies. Instead of generating a question that requires simple reason-

ing over the input context, multi-hop question generation attempts to automatically create

questions that require the reader to reason over multiple pieces of information from vari-

2

1.3. CONTRIBUTIONS

Input Context 1: The Androscoggin Bank Colisée (formerly Central Maine Civic Center
and Lewiston Colisee) is a 4,000 capacity (3,677 seated) multi-purpose arena, in Lewiston,
Maine, that opened in 1958. In 1965 it was the location of the World Heavyweight Title
fight during which one of the most famous sports photographs of the century was taken of
Muhammed Ali standing over Sonny Liston.

Input Context 2: The Lewiston Maineiacs were a junior ice hockey team of the
Quebec Major Junior Hockey League based in Lewiston, Maine. The team played its home
games at the Androscoggin Bank Colisée. They were the second QMJHL team in the
United States, and the only one to play a full season. They won the President’s Cup in 2007.

Generated Question: The arena where the Lewiston Maineiacs played their home
games can seat how many people?

Figure 1.2: An example of multi-hop question generation.

ous input contexts. Figure 1.2 demonstrates the process of generating a multi-hop question

from multiple input contexts. To answer the generated question, two separate reasoning

hops must be performed, which requires answering two smaller questions in turn. The first

reasoning hop is “where did the Lewiston Maineiacs play their home games?” The answer,

the Androscoggin Bank Colisée, can be found within Input Context 2. The second rea-

soning hop is “How many people can the Androscoggin Bank Colisée seat?” The answer,

3,677, can be found within Input Context 1 and serves as the final answer to the generated

question.

The work presented in this thesis seeks to evaluate the effectiveness of using a transformer-

based model to perform multi-hop question generation.

1.3 Contributions

The work presented in this thesis contributes to the research on multi-hop question

generation in the following ways:

• We establish that non-pre-trained transformer-based models are an effective way to

generate high-quality questions that require multiple reasoning hops to be answered.

• We show that enhancements such as placeholder tokens and a copy mechanism,

3

1.4. THESIS ORGANIZATION

which have proven effective for single-hop question generation, can be successfully

leveraged for the multi-hop question generation task.

• We demonstrate that randomly initialized embeddings can outperform GloVe embed-

dings for the multi-hop question generation task.

• We compare the performance of our model to the previous work on multi-hop ques-

tion generation and demonstrate a significant improvement in multiple evaluation

metrics and the amount of training time required.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides the background

information required to understand the various technologies used in our proposed model.

Chapter 3 discusses the previously completed work on question generation. Chapter 4

describes the problem of multi-hop question generation and introduces our proposed model.

Chapter 5 discusses the dataset utilized for this project, the automated evaluation metrics

employed, the model’s implementation details, and the results of our experiments. Chapter

6 summarizes the work that has been completed in this thesis and provides directions for

future research on the multi-hop question generation task.

4

Chapter 2

Background

2.1 Introduction

This chapter provides the background information necessary to understand the previous

work on question generation and the approach presented in this thesis. We start by intro-

ducing artificial neural networks, including deep learning concepts such as recurrent neural

networks, sequence-to-sequence learning and attention. We then discuss some essential

ideas for natural language processing, including tokenization, word embeddings, and au-

tomated evaluation metrics. We then provide an overview of The Transformer, a critical

part of our proposed model. Lastly, we discuss concepts related to deep neural networks’

training and inference process.

2.2 Artificial Neural Networks

2.2.1 The Perceptron

The perceptron is the simplest example of an artificial neural network (ANN). It com-

prises an input layer consisting of n input nodes, followed by a single output node. Each

node within the input layer receives a numeric value, commonly referred to as a feature, as

input. Each feature xi is then multiplied with its corresponding weight wi. The products are

summed to form a linear combination z. Equation 2.1 formalizes this calculation.

z =
n

∑
i=0

wixi (2.1)

5

2.2. ARTIFICIAL NEURAL NETWORKS

Figure 2.1: A perceptron with and without a bias unit.

y = σ(z) =
1

(1+ e−z)
(2.2)

The final prediction y produced by the perceptron’s output node is determined by applying

an activation function to the linear combination z. In practice, many different activation

functions can be utilized. One of the most common activation functions is the sigmoid

function (equation 2.2) which maps the linear combination to a value in the interval (0,1).

The weights inside the perceptron are randomly initialized and then gradually adjusted

(learned) to reduce the incorrectness of the perceptron’s predictions.

The perceptron commonly includes an additional node in the input layer known as a bias

unit, which constantly emits the value 1. Similar to the other nodes in the input layer, the

output of the bias unit is multiplied by a weight, and the result is included in the perceptron’s

linear combination. Including a bias unit in the perceptron increases the flexibility of the

model by determining the extent to which each individual node is activated. Equation 2.3

formalizes the calculation of the linear combination z when the perceptron includes a bias

unit.

6

2.2. ARTIFICIAL NEURAL NETWORKS

Figure 2.2: A feed-forward network with bias units.

z = (
n

∑
i=0

wixi)+b (2.3)

2.2.2 Feed-Forward Neural Networks

Feed-forward networks are one of the most common types of neural networks. Their

name is derived from the fact that the information within the network only flows forward,

without any recurrence. Feed-forward networks consist of an input layer, zero or more

hidden layers, and an output layer.

While the number of nodes within the input layer is equal to the number of input features

present in the data being processed, the number of hidden layers, and the number of nodes

within each of those layers, are largely hyperparameters that are dependent on the problem

at hand. The number of nodes within the output layer depends on the network’s desired

output. If the network is applied to a binary classification problem, the output layer will

likely consist of a single node that utilizes the sigmoid activation function. Since the output

7

2.2. ARTIFICIAL NEURAL NETWORKS

of the sigmoid function, z, falls in the range (0,1), z < 0.5 will indicate a prediction for

class 1, while z >= 0.5 will indicate a prediction for class 2. If the network is applied to

a multi-class classification problem consisting of n possible classes, the output layer will

likely consist of n nodes. In such a case, the outputs, or logits, of each node in the output

layer can be fed into the softmax function, which normalizes the logits so that they may be

interpreted as probabilities for each possible class.

so f tmax(⃗Z) =
ezi

∑
K
j=1ez j

(2.4)

Equation 2.4 demonstrates how the softmax calculation is performed. The function accepts

a vector Z⃗ consisting of K logits as input. The standard exponential function is applied to

each logit in Z⃗. Next, each result is divided by the sum of all exponentials. The resulting

values sum to 1, allowing them to be interpreted as probabilities.

Similar to the perceptron, the hidden and output layers within a feed-forward network

may also include a bias unit. Figure 2.2 illustrates the structure of a feed-forward neural

network.

2.2.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are another commonly used neural architecture.

They were explicitly designed to process sequential data, making them an excellent choice

for many problems within natural language processing, where the input to the model often

consists of sequences of text of varying lengths. In contrast to feed-forward networks, the

architecture of RNNs contains a loop which allows processed information to be fed back

into the model. This allows the model to remember what has been processed in the se-

quence and utilize it while processing the current data, resulting in a rich encoding of the

input sequence.

Figure 2.3 illustrates the unrolling process that takes place when an RNN processes an

input sequence. At each time step t in a sequence of length n, the input xt is fed into the

8

2.2. ARTIFICIAL NEURAL NETWORKS

Figure 2.3: An unrolled recurrent neural network.

RNN along with the hidden state from the previous time step, ht−1. The RNN utilizes these

inputs to generate a new hidden state ht . The output of an RNN at a given time step t is

formalized in equation 2.5. Here, xt represents the input to the RNN, ht−1 represents the

hidden state from the previous time step, and f represents a non-linear function. The exact

implementation of f is dependent on the type of RNN being used.

ht = f (xt ,ht−1) (2.5)

Long Short-Term Memory

Long Short-Term Memory (LSTM) is a form of RNN that attempts to solve one of the

most significant problems with RNNs: vanishing and exploding gradients (Hochreiter and

Schmidhuber, 1997). The term ‘gradient’ refers to a derivative of a function with more than

one input variable. Neural networks can be formalized as a function and their weights can

be considered input variables. This allows gradients to be computed for each weight within

a neural network, which are then utilized to adjust those weights. This process is referred

to as training and it is discussed further in section 2.6.

Processing an extended sequence with an RNN means that the parameter matrices of the

model will be repeatedly multiplied with each part of the input sequence. These repeated

multiplications can make the gradients too small to learn long-term dependencies. It can

also cause the gradients to become too large, making the training process unstable. LSTMs

9

2.2. ARTIFICIAL NEURAL NETWORKS

incorporate a cell into their architecture which contains an input gate, an output gate, and

a forget gate. These gates allow the cell to retain information from the previous cell state,

allowing the model to handle long-range dependencies more effectively.

Gated Recurrent Unit (GRU)

Gated Recurrent Units are a more recent form of RNN that also aim to address the

problem of vanishing/exploding gradients and model long-range dependencies (Cho et al.,

2014). Instead of using a cell as a long-term memory, GRUs utilize a reset gate and an up-

date gate that operate directly on the hidden state to control precisely how much information

from the previous state should be retained or forgotten.

2.2.4 Sequence-to-Sequence Learning

Sutskever et al. (2014) combined two LSTMs into a single, unified model and trained

it in an end-to-end fashion to perform machine translation between English and French.

This model architecture proved so effective that it now forms the basis of a huge portion

of research on natural language processing. This model architecture is often referred to as

sequence-to-sequence learning since it accepts a variable-length sequence as input and pro-

duces an output sequence of a different length. The flexibility provided by this architecture

means that it can be applied to many different problems, including question generation.

Sequence-to-sequence models consist of two major components, the first known as the

encoder. The encoder is responsible for taking the input sequence and converting it into an

encoded representation. The second part, the decoder, uses the encoded representation of

the input sequence to generate an output sequence. In the case of question generation, a

sequence-to-sequence model will typically accept a sequence of text, known as the context,

as input and generate a relevant, high-quality question as output. The exact implementation

of the encoder and decoder is dependent on the problem at hand. In the case of Sutskever

et al. (2014), the encoder and decoder are simply multi-layer LSTMs, but for other tasks,

the exemplary architecture can be much more intricate.

10

2.2. ARTIFICIAL NEURAL NETWORKS

Figure 2.4: A recurrent sequence-to-sequence model.

Figure 2.4 illustrates how a trained RNN-based sequence-to-sequence model performs

question generation. The input sequence is fed into the model and encoded into a fixed-

length vector. This encoded representation of the input sequence is then fed into the de-

coder with a special token, the <sos> token. The <sos> (start-of-sequence) token signals

the decoder to begin generating the output sequence. At each time step during the decoding

process, the decoder greedily chooses the most likely token by conditioning on the input

sequence and the previously generated tokens. The decoding process continues until a stop-

ping condition is reached. In the case of question generation, the stopping conditions are

usually the production of a question mark or the output sequence reaching a pre-determined

maximum length. The overall goal of a sequence-to-sequence model is to generate the most

probable output sequence y, given an input sequence x. Equation 2.6 formalizes this con-

cept.

argmax
y

p(y|x) (2.6)

2.2.5 Attention

Although RNN-based sequence-to-sequence models are a powerful construct, they suf-

fer from one critical deficiency: the fixed-length vector used to represent the encoded input

sequence results in a bottleneck, limiting the amount of information stored. As the length

11

2.2. ARTIFICIAL NEURAL NETWORKS

of the input sequence increases, the model’s overall performance tends to decrease.

Bahdanau et al. (2014) introduced the concept of attention as a way of addressing this

deficiency while researching neural machine translation. Their proposed approach extends

the RNN-based sequence-to-sequence architecture, allowing the model to look back at the

input sequence during the decoding process, determining which words from the input se-

quence are most relevant to the current time step while generating the output sequence.

In addition to generating a fixed-length vector representing the entire input sequence, the

hidden states from the encoding process are saved. At each time step during the decoding

process, the model utilizes the saved encoder hidden states in conjunction with the current

decoder hidden state to generate a context vector. The model conditions on this context

vector to predict the next token in the output sequence.

To form the context vector, the model must first calculate an alignment between the

current decoder hidden state and each encoder hidden state. The alignment specifies how

important each encoder state is to the current decoder state. The alignment, ai j, is calculated

as shown in equation 2.7, where h j refers to the hidden state of the encoder at position j

in the input sequence, si refers to the hidden state of the decoder at position i in the output

sequence, and f is a feed-forward network.

ai j = f (si,h j) (2.7)

Once the alignments between a decoder state and the encoder states have been calculated,

the model computes the weights, wi j, as follows:

wi j =
eai j

∑
Tx
k=1 eaik

(2.8)

Finally, the model computes the context vector as a sum of the encoder hidden states

12

2.2. ARTIFICIAL NEURAL NETWORKS

Figure 2.5: Dropout applied to a feed-forward neural network (Srivastava et al., 2014).

weighted by the alignments, as shown below:

ci =
Tx

∑
j=1

wi jh j (2.9)

2.2.6 Dropout

Ensemble methods are sometimes used to increase the performance of deep neural net-

works. These methods create and combine multiple models, resulting in improved perfor-

mance compared to a single model (Aggarwal, 2018).

An ensemble method that is commonly used in deep neural networks is dropout. Dropout

introduces a hyperparameter p, representing the probability that connections entering and

exiting the input and hidden layers of a network will be randomly zeroed out. Figure 2.5

demonstrates this concept on a feed-forward neural network.

Randomly dropping out nodes during the training process has the effect of training a

slightly different neural network configuration during each forward pass, which is why

dropout can be considered an ensemble method (Aggarwal, 2018). This has the effect of

reducing co-adaptation among the network’s nodes. Co-adaptation refers to the situation

where a node only produces helpful output when supplied with a specific input context

13

2.3. NATURAL LANGUAGE PROCESSING CONCEPTS

from several other nodes within the network (Hinton et al., 2012). By applying dropout to

a network, each node is given a chance to learn to detect some feature, given a wide variety

of internal contexts within the network. This is desirable since it reduces the phenomenon

known as overfitting, where the model memorizes the training data but fails to generalize

accurately when tested on unseen data. It should be noted that dropout is only applied

during the training process and not during inference.

2.3 Natural Language Processing Concepts

2.3.1 Tokenization

Before a machine learning model can be applied to textual data, the data must be pre-

processed into a cleaner, more predictable form. One of the most crucial steps in the pre-

processing stage is tokenization, which refers to splitting a sequence of text into discrete

elements capable of being represented numerically.

The simplest form of tokenization splits a sequence of text on its whitespace. For exam-

ple, the sentence “The man rode his bicycle.” would be tokenized as [‘The’, ‘man’, ‘rode’,

‘his’, ‘bicycle.’]. Notice how splitting the sentence on whitespace results in the period be-

ing included in the token representing the word bicycle, which is not ideal. Tokenizing on

white space is also inadequate when multiple words should be regarded as a single token.

For example, a city name such as San Francisco would be tokenized as [‘San’, ‘Francisco’]

when we want [‘San Francisco’].

To alleviate these issues, rule-based tokenizers are provided by open-source libraries

such as NLTK (Natural Language Toolkit)1 and spaCy2, and are often utilized for natural

language processing and question generation research.

1https://www.nltk.org/
2https://spacy.io/

14

2.3. NATURAL LANGUAGE PROCESSING CONCEPTS

2.3.2 Part-of-Speech Tagging

Part-of-Speech (POS) tagging refers to annotating a sequence of text with labels that

specify the grammatical role served by each token. The predicted tags for a sequence

are represented numerically and fed into a machine learning model as an additional input

feature. Part-of-speech taggers can be rule-based or utilize a machine learning model to

generate tag predictions. Appendix B contains a list of the part-of-speech tags that belong

to the spaCy library, which we use in our proposed model. Figure 2.6 demonstrates how a

sentence is annotated with part-of-speech tags.

Figure 2.6: A sentence annotated with part-of-speech tags.

2.3.3 Named-Entity Recognition

Named-entity recognition (NER) refers to annotating a sequence of text with labels that

indicate whether or not a token represents a named entity and, if so, the specific type of

entity. Like part-of-speech tags, named-entity tags can also be an input feature to machine

learning models. Figure 2.7 illustrates the result of tagging a sequence of text with a NER

model belonging to the spaCy library.3 Appendix C provides a complete list of the NER

tags that belong to this library, which we use in our proposed model.

Figure 2.7: Sequence of text annotated with named entity tags.

3https://explosion.ai/demos/displacy-ent

15

2.3. NATURAL LANGUAGE PROCESSING CONCEPTS

2.3.4 Word Embeddings

Before a sequence of text can be fed into a neural model, the textual data must first

be represented numerically. Early research on natural language processing utilized one-

hot vectors for encoding tokens numerically. With one-hot encoding, each token in the

system’s vocabulary is represented by a vector consisting entirely of zeros except for a

unique position in the vector which contains the value one. There are a couple of notable

deficiencies with one-hot encoding. Firstly, the vectors are very sparse. As the size of the

system’s vocabulary grows, so must the dimension of the one-hot encodings. Secondly, the

vectors do not contain helpful information about the tokens they represent.

Bengio et al. (2003) had the idea to represent each token in a system’s vocabulary as

a dense vector of floating-point values. These dense vectors, known as word embeddings,

allow tokens to be represented by significantly fewer dimensions than one-hot encoding.

Typically, dense word embeddings will consist of 200-300 dimensions (Mikolov et al.,

2013; Pennington et al., 2014; Bojanowski et al., 2016), but they can also be larger or

smaller. Word embeddings can also contain much more information about the tokens they

represent. The values inside the word embeddings are randomly initialized and learned with

the rest of a model’s parameters. As a result of this process, tokens commonly seen near

each other within the training data will be represented by embeddings that exhibit a high

degree of similarity. In contrast, tokens rarely seen near each other will be represented by

considerably different embeddings. The similarity between embeddings can be ascertained

by computing the cosine similarity between them. Equation 2.10 formalizes how cosine

similarity is calculated, where A and B are embeddings, A ·B is the dot product between A

and B, ||A|| represents the magnitude of A, and ||B|| represents the magnitude of B.

similarity(A,B) =
A ·B

||A||||B||
(2.10)

As an example, table 2.1 contrasts one-hot encoding with dense word embeddings for a

small vocabulary consisting of five tokens. It is safe to assume that the words ‘coffee’ and

16

2.3. NATURAL LANGUAGE PROCESSING CONCEPTS

‘tea’ will appear in similar contexts within a corpus. This will result in their embeddings

displaying a high cosine similarity. The same is true for ‘vehicle’, ‘truck’ and ‘motorcycle’.

However, it is unlikely the words ‘coffee’ and ‘motorcycle’ will be seen close to each other

very often, resulting in a much lower cosine similarity.

Table 2.1: One-hot encodings (left) contrasted with dense word embeddings (right).

co f f ee = [1,0,0,0,0] co f f ee = [−0.540,−0.299,−0.675,0.157...]

tea = [0,1,0,0,0] tea = [0.449,−0.002,−1.044,0.426...]

vehicle = [0,0,1,0,0] vehicle = [0.766,−0.464,1.539,−0.072...]

truck = [0,0,0,1,0] truck = [0.350,−0.361,1.505,−0.070...]

motorcycle = [0,0,0,0,1] motorcycle = [−0.404,−0.707,0.034,0.434...]

Word embeddings are also highly effective at modelling relational concepts present in

the training data from which they were derived. For example, the embeddings for different

nouns will exhibit roughly equal offsets between their masculine and feminine variations.

The same is true for other grammatical concepts, including verb tenses and singular/plural

variations of nouns. Semantic relations such as the association between a country and its

capital city also demonstrate this concept.

Pre-trained word embeddings are a form of transfer learning that have become very

popular within question generation research in recent years (Du et al., 2017; Zhao et al.,

2018; Su et al., 2020). Transfer learning refers to the process of training a model for a par-

ticular task and then reusing it as the starting point when training another model to perform

a different task. With pre-trained word embeddings, rather than learning each embedding’s

representation from scratch, it is possible to use previously learned embeddings inside a

new model. The pre-trained embeddings can be used as a starting point for the word em-

beddings within the new model, in which case their parameters are unfrozen, meaning that

they continue to be trained with the rest of the model. This is commonly referred to as

fine-tuning. The embeddings can also be frozen, in which case they remain unaltered while

17

2.3. NATURAL LANGUAGE PROCESSING CONCEPTS

the new model is trained. It is important to note that the effectiveness of using pre-trained

embeddings in a given model depends on the problem at hand, the dataset from which the

embeddings were derived, and the algorithm used to create the embeddings. As discussed

below, pre-trained word embeddings can be classified as either context-free or context-

dependent.

Context-Free Word Embeddings

Context-free word embeddings were the first type of pre-trained embedding to appear

when the Word2Vec model was proposed (Mikolov et al., 2013). Word2Vec learns tokens’

embeddings by training a small feed-forward network on a simple word prediction task.

The resulting weights in the network are directly used to form the embedding for each

token.

Pennington et al. (2014) proposed GloVe (Global Vectors for Word Representation), an

alternative approach that generates word embeddings through a count-based process rather

than deep learning. First, their approach builds a co-occurrence matrix by counting how

often tokens co-occur in a corpus. Next, dimensionality reduction is applied to the co-

occurrence matrix to produce the final embedding for each token.

In 2016, the fastText model was proposed, which was trained similarly to Word2Vec,

but utilized subword tokenization to allow embeddings to be generated for tokens not seen

during the training process (Bojanowski et al., 2016).

Pre-trained embeddings classified as context-free do not distinguish between the differ-

ent meanings that a single token can have. Consider the following sentences:

1) The man went to the river bank.

2) The airplane began to bank.

3) The man withdrew some cash from the bank.

Even though the token ‘bank’ has a unique meaning in each sentence, context-free word

embeddings only possess a single embedding for each token, which is shared by each pos-

18

2.4. AUTOMATED EVALUATION METRICS

sible meaning a token has.

Context-Dependant Word Embeddings

Pre-trained models that produce context-dependent word embeddings are not limited

to a single embedding for each token in their vocabulary. Instead, they accept a sequence

of tokens as input and create a contextual embedding for each token in the sequence by

applying an encoding process. The embedding generated for each token depends on the

other tokens present in the sequence and their relative positions. This allows the model to

generate a unique embedding for each meaning that a single token can have.

BERT (Bi-Directional Encoder Representation from Transformers) (Devlin et al., 2018)

generates contextual embeddings by using a transformer trained as a masked language

model. ELMo (Embeddings from Language Model) utilizes a multi-layer bi-directional

LSTM in a similar fashion (Peters et al., 2018).

2.4 Automated Evaluation Metrics

Natural language processing models can be evaluated using manual techniques or au-

tomated evaluation metrics. Manual evaluation techniques rely on humans to assess the

performance of a model on some predetermined criteria. Automated evaluation metrics

rank a model’s performance by comparing its output to the reference output provided by

the dataset. Manually evaluating the performance of a model is often seen as less desir-

able since it is time-consuming and tends to produce inconsistent results across evaluators

(Clark et al., 2012). As a result, most of the research in natural language processing is

evaluated using automated metrics. These metrics are deterministic and ensure that the

results produced by different models can be compared consistently without requiring a sig-

nificant turnaround time. A strong correlation between the automated metric and human

evaluators should be identified for an automated metric to become widely used in natural

language processing research. This allows researchers to conclude that an improvement in

19

2.4. AUTOMATED EVALUATION METRICS

the automated metric will also result in a real-world improvement (Clark et al., 2012).

2.4.1 BLEU

BLEU (Bilingual Evaluation Understudy) (Papineni et al., 2002) is a precision-based

metric initially designed for evaluating machine translation systems that has been shown to

correlate highly with human evaluations. BLEU generates a score by comparing a candidate

sentence to one or more reference sentences. It calculates modified n-gram precisions by

determining what percentage of n-grams within the candidate sentence are present in the

reference sentence. A significant problem with precision-based metrics is their tendency to

assign a high score to candidate sentences with extensive repetition. BLEU addresses this

inadequacy by clipping the counts of the n-grams in the candidate sentence to the number of

times they occur within the reference sentence. This technique naturally penalizes candidate

sentences that are too long compared to the reference sentences. While some evaluation

metrics utilize recall to penalize candidate sentences shorter than the reference, BLEU uses

a brevity penalty.

By default, BLEU generates modified n-gram precision scores for unigrams, bigrams,

trigrams and four-grams. The resulting scores can be combined into a single aggregate

score by calculating a weighted mean, or they can be viewed individually. The resulting

scores fall in [0,1], where 1 represents a candidate sentence that perfectly matches the

reference. BLEU scores for n-grams of a lower cardinal value demonstrate the adequacy of

the candidate sentence. In contrast, scores for n-grams of higher cardinal values represent

the fluency of the candidate sentence.

2.4.2 ROUGE-L

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) (Lin, 2004) is an evalu-

ation metric initially designed to evaluate text summarization and machine translation sys-

tems. There are multiple ROUGE variations, but the most commonly employed variation to

evaluate question generation systems is ROUGE-L, which considers the order of tokens in

20

2.5. THE TRANSFORMER MODEL

the candidate sentence when generating a score. It does this by first determining the longest

common subsequence (LCS) between the candidate and reference sentences. Once the LCS

has been found, the precision between the unigrams in the LCS and the candidate sentence

is calculated. Next, the recall between the LCS and the reference sentence is calculated.

The precision and recall calculations are then used to generate an F-score for the model’s

prediction.

2.4.3 METEOR

METEOR (Metric for Evaluation of Translation with Explicit ORdering) (Lavie and

Agarwal, 2007) is another evaluation metric initially designed to evaluate machine transla-

tion systems. METEOR first calculates an alignment between the candidate and reference

sentences’ unigrams. It then calculates precision and recall between the aligned sentences

and uses these two values to calculate an F-score, where recall is weighted more heavily

than precision by default. In addition to performing this calculation using the surface forms

of words, METEOR also allows this calculation to be performed using stemmed words and

synonyms.

2.5 The Transformer Model

Noting the success that recurrent sequence-to-sequence models utilizing attention have

experienced in natural language processing tasks, Vaswani et al. (2017) designed a new

sequence transduction model known as The Transformer. The Transformer disposes of re-

currence, relying almost entirely on the concept of attention, which allows it to be trained

with a high degree of parallelization. Like other sequence-to-sequence models, The Trans-

former consists of an encoder and a decoder. The encoder comprises an embedding layer,

a positional encoding, and a stack of encoder blocks. The decoder contains an embedding

layer, a positional encoding, and a stack of decoder blocks followed by a linear layer and

a softmax function. This section describes how The Transformer processes training data in

21

2.5. THE TRANSFORMER MODEL

parallel, and then details each model component.

2.5.1 Input Feeding

While recurrence-based sequence transduction models process input sequentially, The

Transformer processes the entire input sequence in parallel. Given an input sequence con-

sisting of n tokens, The Transformer’s encoder produces n hidden states corresponding to

each token in the input sequence. The hidden state produced for each token is a function of

all of the tokens in the sequence and their relative positions.

During the training process, The Transformer’s decoder also operates in a parallel fash-

ion. As seen in section 2.2.4, recurrence-based sequence-to-sequence models condition on

the previously generated tokens of the output sequence when producing a new token to add

to the output sequence. This approach is impossible when training a transformer since each

token in the generated output sequence is predicted in parallel. Instead, a technique known

as teacher-forcing is used when training a transformer-based model. This involves feed-

ing a sample’s reference output sequence into the decoder rather than previously predicted

tokens. Before the reference output sequence is fed into the decoder, the <sos> token is

prepended to the beginning of the sequence, which shifts each token in the reference se-

quence to the right by one position. This results in the correct token from the reference

sequence being fed into the decoder at a given position rather than the decoder’s prediction

for the previous position.

During the inference process, the decoder of a trained transformer model must sequen-

tially generate an output sentence since no reference output is available to the model.

2.5.2 Positional Encoding

Recurrent neural networks encode textual data sequentially, gradually building up an

encoded representation of the sequence. This approach results in information about the

relative positions of tokens within the sequence being implicitly incorporated into the en-

coded representation. Since The Transformer processes each sequence token in parallel,

22

2.5. THE TRANSFORMER MODEL

Figure 2.8: Transformer model architecture (Vaswani et al., 2017).

positional information cannot be automatically built into the encoded representation. A po-

sitional encoding must be manually applied to each token in the input and output sequences

before The Transformer can process them.

Static Positional Encoding

Vaswani et al. (2017) utilize sine and cosine functions of different frequencies to gener-

ate static positional encodings for their model. Equations 2.11 and 2.12 formalize how these

positional encodings are calculated. In the given equations, pos represents a position within

a sequence, i refers to a particular dimension of the positional encoding, and dmodel denotes

the hidden dimension of the model. Note that the dimension of the positional encoding

must match the dimension of the word embeddings so they may be added together.

Although frequency-based and learned positional encodings each perform well, Vaswani

et al. (2017) hypothesized that frequency-based encodings allow the model to generalize

23

2.5. THE TRANSFORMER MODEL

more effectively when processing sequences longer than those seen during the training pro-

cess.

PE(pos,2i) = sin(
pos

100002i/dmodel
) (2.11)

PE(pos,2i+1) = cos(
pos

100002i/dmodel
) (2.12)

Learned Positional Encoding

Recent transformer implementations such as BERT (Bi-direction Encoder Representa-

tions from Transformers) (Devlin et al., 2018) have had success with learned positional

encodings. Rather than generating a fixed, frequency-based encoding and applying it to

each token in a sequence, a vector corresponding to each position can be randomly initial-

ized and learned with the rest of a model’s parameters.

2.5.3 Encoder and Decoder Stacks

Encoder Stack

The Transformer’s encoder is composed of a stack of identical encoder blocks. In fig-

ure 2.8, the number of encoder blocks within the encoder stack is denoted by Nx. Each

encoder block is divided into two sublayers: the multi-head attention layer, detailed in sec-

tion 2.5.4, and the position-wise feed-forward layer, which is described in section 2.5.5.

There is a residual connection (He et al., 2015) around each of these sublayers, and layer

normalization (Ba et al., 2016) is applied after each of them. To facilitate the application

of the residual connections, the input and output dimensions of each of the sublayers must

match the hidden dimension of the model.

24

2.5. THE TRANSFORMER MODEL

Decoder Stack

The decoder is also composed of a stack of identical decoder blocks, where each block

consists of three sublayers. In figure 2.8, the number of decoder blocks within the decoder

stack is denoted by Nx. The first sublayer is a multi-head attention layer, whose imple-

mentation differs slightly from the implementation seen in the encoder blocks. Since The

Transformer utilizes teacher-forcing during the training process to predict each token of

the output sequence in parallel, a masking scheme is needed to ensure that each position

within the output sequence does not attend to subsequent positions. Without such a mask-

ing scheme, the model would not learn to make predictions based on the previous tokens

supplied by the reference output. The second sublayer is another multi-head attention layer.

Unlike the first attention layer, which calculates self-attention on the output sequence, the

second attention layer calculates attention between the output sequence and the encoded

input sequence. The third sublayer is a position-wise feed-forward layer, identical to the

one used in the encoder blocks. Each of the three sublayers in the decoder stack utilizes a

residual connection (He et al., 2015), followed by layer normalization (Ba et al., 2016).

2.5.4 Multi-Head Attention

The multi-head attention layer is the most vital part of The Transformer. It allows the

model to process a sequence by applying several attention mechanisms, known as heads,

in a parallel fashion. The weights corresponding to each head are randomly initialized, and

each head learns to attend to different features within a sequence.

Within the multi-head attention layer, each head utilizes scaled dot-product attention.

Equation 2.13 demonstrates how scaled dot-product attention is calculated. The equation

has three inputs: Q, which represents queries of dimension dk, K, which represents keys of

dimension dk, and V , which represents values of dimension dv. Q, K and V are matrices

generated by applying linear transformations to the model’s hidden states. To calculate

attention, we first calculate the dot-product between the queries and the keys and then scale

25

2.5. THE TRANSFORMER MODEL

Figure 2.9: (Left) Scaled dot-product attention. (Right) Multi-head attention consists of
several attention layers running in parallel (Vaswani et al., 2017).

the result by
√

dk. We then take the softmax of this result and utilize it to weight the values.

Essentially, the output of equation 2.13 is a weighted sum of the values, where the weight

applied to each value is calculated by applying a compatibility function to the queries and

the keys.

Attention(Q,K,V) = so f tmax(
QKT
√

dk
)V (2.13)

Each head within the multi-head attention layer has three linear layers that are applied

to the model’s hidden states to generate the matrices represented by Q, K and V . Equation

2.14 demonstrates this concept. Scaled dot-product attention is calculated in parallel for

each head. The results, which are of dimension dv, are concatenated together to form

vectors of dimension dmodel and are then passed through a final linear layer. Equation

2.15 demonstrates this concept.

headi = Attention(QW Q
i ,KW K

i ,VWV
i) (2.14)

26

2.6. TRAINING AND INFERENCE

MultiHead(Q,K,V) =Concat(head1, ...,headh)W O (2.15)

The multi-head attention layers within the encoder blocks function as self-attention lay-

ers. The query, key and value are all taken from the output of the previous encoder block.

Each position within the input sequence is permitted to attend to every other position.

The first multi-head attention layer within the decoder blocks also functions as a self-

attention layer. The inputs to this layer are taken from the outputs of the previous decoder

block. In contrast to the encoder, the decoder’s self-attention layer is only permitted to

attend to earlier positions within the output sequence rather than every position within the

sequence. As mentioned in section 2.5.3, masking is utilized to enforce this constraint when

calculating dot product attention.

The second multi-head attention layer within the decoder blocks calculates attention

between the encoded input and output sequences. The previous decoder block supplies

queries while keys and values are taken from the output of the encoder.

2.5.5 Position-Wise Feed-Forward Layer

The position-wise feed-forward (PWFF) layer consists of a linear layer followed by a

ReLU activation function and a second linear layer. The PWFF layer can be formalized

by equation 2.16, where W represents a trainable weight matrix, and b denotes bias. Each

encoder and decoder block has a separate PWFF layer with unique parameters. The PWFF

layer for a given block is applied to each position within the sequence in parallel.

PWFF(x) = max(0,xW1 +b1)W2 +b2 (2.16)

27

2.6. TRAINING AND INFERENCE

2.6 Training and Inference

2.6.1 Learning Paradigms

Machine learning algorithms can be divided into three main categories: supervised

learning, unsupervised learning, and reinforcement learning. The two main differences be-

tween these categories are how their training data is structured and how feedback is given

to the system for learning.

In supervised learning approaches, the dataset that the model is trained on contains

samples consisting of an input and an expected output. The goal of the model under super-

vised learning is to determine how to map the input data to the expected result. Problems

within natural language processing that perform language generation usually fall under this

category, including question generation.

With unsupervised learning approaches, the system is not provided with training data

that dictates the expected output. Instead, the system is only supplied with input data, and

the learning algorithm is expected to identify patterns present within the data. Unsupervised

learning is commonly used in natural language processing to construct language models

(Devlin et al., 2018) and pre-trained word embeddings (Mikolov et al., 2013).

Reinforcement learning approaches are often applied to problems consisting of dynamic

situations where the number of possible states is too large to explicitly model and the ef-

fectiveness of the system’s actions is easy to evaluate. Initially, the system does not know

the actions it should perform in a specific situation, and it gradually learns which steps to

take through a reward-based reinforcement process. Rewards are generated based on the

effectiveness of the system’s actions, and the learning process seeks to maximize the reward

(Aggarwal, 2018).

2.6.2 Gradient-Based Optimization

Gradient-based optimizers are the backbone of deep learning models. Their goal is to

reduce the incorrectness of the model’s output as much as possible by gradually adjusting

28

2.6. TRAINING AND INFERENCE

its learnable parameters.

During the training process, there are two related phases: the forward pass and the

backward pass. The forward pass, also called forward propagation, involves passing a

sample from the training dataset through the model to predict the ideal output. During the

backward pass, also known as backpropagation, the optimizer determines how much each

trainable parameter in the model should be adjusted and performs the update accordingly.

Before the backward pass can be completed, the result produced by the forward pass

must be compared to the reference output provided by the dataset to derive a numeric value

that represents the incorrectness of the model’s prediction. The function utilized to calculate

this measure of incorrectness is known as the loss function. The choice of loss function for

a given model depends on the problem being solved and the format of the model’s output.

For example, binary cross-entropy loss and multi-class cross-entropy loss can be considered

the default loss functions for binary and multi-class classification problems, respectively

(Brownlee, 2019).

The derivative of the loss function with respect to each trainable parameter in the model

is calculated by applying the chain rule. This process starts at the output layer and continues

toward the input layer, which is why it is known as the backward pass. Naive implemen-

tations of this process can be very costly due to repeated calculations. Dynamic program-

ming ensures that each calculation is only performed once, which significantly improves

efficiency (Aggarwal, 2018).

Once the gradient of the loss function has been calculated with respect to each of the

model’s trainable parameters, the parameters are updated simultaneously. Although the ex-

act way that the parameters are updated is dependent on the optimization algorithm in use,

the parameters are adjusted by stepping them in the opposite direction of the gradient (Ag-

garwal, 2018). The size of the adjustments made to the trainable parameters is determined

by a hyperparameter α, known as the learning rate.

29

2.6. TRAINING AND INFERENCE

Batching

Batching is a concept that determines how much data is used to calculate the gradient

of the loss function each time the model’s trainable parameters are updated. Stochastic

gradient descent (SGD) updates the trainable parameters in the model after a single sample

is processed. Batch gradient descent updates the model’s parameters after processing all

of the samples in the training data. Mini-batch gradient descent is a compromise of the

previous two approaches; it updates the trainable parameters in the model based on a mini-

batch consisting of n samples (Ruder, 2016).

Researchers will often specify how many epochs were required to train their model. A

single epoch refers to a complete pass through the training dataset. For example, if a dataset

consists of 1024 samples with a mini-batch size of 16, then the trainable parameters in the

model will be updated 64 times in a single epoch. Each of these updates can also be referred

to as a training step.

Learning Rate Scheduling

The learning rate, α, does not have to remain constant throughout the training process.

A more significant learning rate can be used near the beginning of the training process

to allow the model to make large jumps toward a local minima. As training progresses,

gradually lowering the learning rate results in the optimizer making increasingly smaller

adjustments to the model’s parameters. The combined effect is a training phase that is both

quick and stable.

Gradient Clipping

As mentioned in section 2.2.3, recurrent neural networks are particularly susceptible to

the exploding gradients problem. Gradient clipping is a technique that can be used to re-

duce this problem. It refers to modifying the derivatives calculated during backpropagation

(Aggarwal, 2018).

Value-based gradient clipping defines maximum and minimum thresholds for the com-

30

2.6. TRAINING AND INFERENCE

puted gradients. Gradients that fall above or below these thresholds will be clipped to the

specified maximum or minimum. Norm-based clipping scales the gradient vector so that

the norm equals a specified value (Aggarwal, 2018).

2.6.3 Greedy Decoding

At inference time, trained models are used to generate an output sequence from a given

input sequence. The simplest way to do this is through greedy decoding. Once the input

sequence has been encoded, we initialize the output sequence with the <sos> token and

feed it into the decoder. The model will select the most probable token from the vocabulary

and append it to the generated sequence. The updated output sequence is then fed back into

the decoder. Again, the most probable token is appended to the generated sequence. This

process repeats until either a pre-determined maximum output sequence length has been

reached or a token signalling the end of the output sequence has been generated.

2.6.4 Beam Decoding

Although greedy decoding is guaranteed to choose the token with the highest proba-

bility at each decoding step, the resulting sequence is not guaranteed to have the highest

overall probability. To find the output sequence with the highest overall likelihood, we

would have to perform an exhaustive search, which requires us to generate every possible

sequence and choose the most likely one. The computational requirements for this approach

are astronomical. Beam decoding improves upon greedy decoding while maintaining rea-

sonable computational requirements. It generates a fixed number of candidate sequences

and allows the most probable one to be selected as the final output sequence.

To utilize beam decoding, we start by choosing the beam width, k, which determines

how many candidate output sequences will be tracked during the decoding process. At the

first time step in the decoding process, we feed k candidate sequences initialized with the

<sos> token into the decoder to begin the generation process. We then append one of the

k most probable tokens to each of the k candidate sequences. The k candidate sequences

31

2.7. SUMMARY

Figure 2.10: An example of beam decoding, where k = 2.

are fed back into the decoder at the subsequent step, and the top k tokens are selected for

each candidate. Note that while at this point there are k2 candidates in total, only the top

k candidates are kept while the rest are discarded. This process repeats until k candidates

have reached a stopping condition. Once k candidates have reached a stopping condition,

the candidate with the highest overall probability will be chosen. Like greedy decoding, the

stopping conditions include reaching a pre-determined maximum output sequence length

or the production of a token that signals the end of the generated sequence.

The candidates that will be kept or pruned are computed by multiplying the log proba-

bilities of a candidate’s tokens and dividing the result by the total length of the sequence.

Calculating the probabilities in log space ensures that arithmetic underflow does not oc-

cur. Dividing the result by the sequence length allows sequences of different sizes to be

compared.

32

2.7. SUMMARY

2.7 Summary

This chapter provided the background information necessary to understand the previ-

ous work on question generation and the approach presented in this thesis. We introduced

artificial neural networks, including deep learning concepts such as recurrent neural net-

works, sequence-to-sequence learning and attention. We then discussed some essential

ideas for natural language processing, including tokenization, word embeddings, and au-

tomated evaluation metrics. We then provided an overview of The Transformer, a critical

part of our proposed model. Lastly, we discussed concepts related to deep neural networks’

training and inference process. In the next chapter, we discuss the previous work on ques-

tion generation.

33

Chapter 3

Related Work

3.1 Introduction

This chapter discusses the previous work completed on question generation. We start

by briefly describing the techniques that early question generation works relied on. We

then detail how neural models following the sequence-to-sequence architecture have been

applied to solve different variations of the question generation task. Lastly, we cover the

previous work on multi-hop question generation.

3.2 Early Approaches

Research into question generation began with The First Question Generation Shared

Task Evaluation Challenge (Rus et al., 2010), which challenged researchers to automati-

cally generate questions from single sentences and paragraphs. Early research on question

generation largely utilized approaches that split the task into two distinct phases: content

selection and question construction (Pan et al., 2019). The content selection phase deter-

mines which parts of an input context are worth asking about and which question type is the

most suitable. The question construction phase is responsible for assembling a fluent and

grammatically correct question directly answerable by the input context. To perform con-

tent selection, early works mainly relied on syntactic (Liu et al., 2010; Smith and Heilman,

2011) and semantic parsing (Yao et al., 2012; Lindberg et al., 2013; Mazidi and Nielsen,

2014; Chali and Hasan, 2015). The question construction phase typically applied hand-

crafted rules or templates to the input context to produce questions.

34

3.3. SEQ-TO-SEQ APPROACHES

Rule-based approaches operate by transforming the input context from its declarative

form into a question (Ali et al., 2010; Pal, 2010; Smith and Heilman, 2011). In contrast,

template-based strategies generate questions by plugging the input context into hand-crafted

question templates (Chen and Aist, 2009; Liu et al., 2010; Liu et al., 2012; Labutov et al.,

2015).

3.3 Seq-to-Seq Approaches

3.3.1 Introduction

The hand-crafted rules and templates limited the variety and quality of questions that

early question generation systems could produce. Neural question generation systems based

on the sequence-to-sequence architecture overcome these limits by utilizing a data-driven

approach, eliminating the requirement to spend time designing rules and templates. Instead,

they leverage the information provided by large, high-quality datasets to jointly learn to

select content from the input context and generate a fluent and relevant question. This

approach results in greater flexibility in the type of questions produced.

3.3.2 Paragraph-Based Question Generation

Du et al. (2017) were the first to perform question generation using a sequence-to-

sequence model when they attempted to generate questions for reading comprehension.

They experimented with input contexts consisting of a single sentence and an entire para-

graph. They successfully generated questions from single sentences, while paragraph-based

question generation proved much more difficult due to the increased amount of information

that must be disregarded.

More recent works on neural question generation have attempted to improve perfor-

mance when working with paragraph-sized inputs and have experienced greater success.

Du and Cardie (2018) experimented with generating paragraph-level question-answer pairs

from Wikipedia articles. They utilized a coreference resolution system that operates on the

35

3.3. SEQ-TO-SEQ APPROACHES

context paragraph and answer span to filter out irrelevant information. Zhao et al. (2018)

noted the importance of paragraph-level question generation and pointed out that approx-

imately twenty percent of the questions in the SQuAD dataset (Rajpurkar et al., 2016) re-

quire paragraph-level information to be asked. They utilize a gated self-attention encoder to

focus on essential and related parts of the input context. They also apply a maxout pointer

mechanism to allow out-of-vocabulary tokens to be copied from the input context to the

generated question while limiting repetition. Kumar et al. (2020) experiment further with

paragraph-level question generation by utilizing copy mechanisms and paragraph-specific

dictionaries.

3.3.3 Answer-Aware vs. Answer-Agnostic Question Generation

Typically, the datasets used to train neural question generation systems explicitly label

the answer span within the input context. This information can be leveraged to improve

the performance of question generation models by helping them learn which parts of the

input context are most closely related to the reference question. Zhou et al. (2017) were

the first to explicitly use answer position information as an input feature to their model by

applying the BIO tagging scheme. This approach has been adopted by many subsequent

works on question generation (Zhao et al., 2018; Li et al., 2019; Kumar et al., 2020). Guo

et al. (2018) take a slightly different approach and encode the input context and answer

using separate RNNs. Kim et al. (2018) successfully applied this technique as well while

researching ways to limit answer tokens from appearing in generated questions. Sun et al.

(2018) posited that context tokens near that answer span are crucial to generating a high-

quality question. They designed a model that focuses more on these tokens by utilizing

learnable positional embeddings that reflect the distance between a given token and the

labelled answer span.

Answer-agnostic question generation, also called answer-unaware question generation,

is a variation where the training data does not explicitly label the answer span. This task is

36

3.3. SEQ-TO-SEQ APPROACHES

more challenging than answer-aware question generation since the system must determine

which part of the input context to focus on before generating a question. It is also viewed as

more desirable since fewer constraints are placed upon the training data, and the question

generation process is not overly influenced by being trained on specific answers. Du and

Cardie (2017) perform answer-agnostic question generation on paragraphs by learning to

select important sentences from the input context. Subramanian et al. (2018) created a

model that learns to predict phrases from the input context that are capable of serving as the

answer to a question. Their model then conditions on these phrases to generate questions.

Scialom et al. (2019) generate questions in an answer-agnostic setting using transformer-

based models, named-entity recognition and contextualized word embeddings. Nakanishi

et al. (2019) and Wu et al. (2020) utilize question type prediction to guide the question

generation process in the absence of an explicitly labelled answer span.

3.3.4 Question Type Prediction

Question type prediction has also been applied in the answer-aware setting since au-

tomatically generated questions often contain interrogative words that do not match the

content of the question. Duan et al. (2017) created a system that consists of two sequence-

to-sequence models. The first model generates a question template beginning with an inter-

rogative word by conditioning on the input context. The second model generates a question

by filling the template with tokens from the input context. Sun et al. (2018) explicitly model

the probability of generating different interrogative words by conditioning on the answer

span within the input context. Zhou et al. (2019) further experiment with question type

prediction by creating a single, unified model that performs question type prediction and

generation. Wang et al. (2020b) use question type prediction to generate multiple questions

of varying types, rather than simply treating question generation as a one-to-one task.

37

3.3. SEQ-TO-SEQ APPROACHES

3.3.5 Inquisitive Question Generation

Curiosity-driven question generation, also referred to as inquisitive question generation,

refers to the task of automatically generating questions that are not directly answerable by

the input context (Scialom and Staiano, 2020; Ko et al., 2020). The produced questions

should be closely related to the input context and aim to improve the reader’s understanding

of the discussed topic. They are meant to provoke the reader to investigate the topic at hand

further to gain a deeper understanding.

3.3.6 Sequential Question Generation

Sequential question generation attempts to produce a series of related and intercon-

nected questions from the input context. The tendency of errors to cascade through re-

currently generated sequential questions complicates this task. Questions generated se-

quentially also tend to become shorter with each generation. Chai and Wan (2020) ex-

perimented with generating sequential questions in a semi-autoregressive fashion. Their

approach grouped target questions based on their type and generated questions for each

group in parallel to limit error cascades and dependencies between questions. Nakanishi

et al. (2019) tackle sequential question generation within the answer-agnostic setting by

generating questions that are conversational and facilitate a back and forth between the

information provided by the input context and the reader.

3.3.7 Other Types of Question Generation

Explicitly modelling facts and relations between entities within the input context has

been applied to decrease the likelihood of producing irrelevant questions. Wang et al.

(2020a) built a knowledge graph to represent facts about the relationships between enti-

ties from the input context and then used it to generate questions. Li et al. (2019) utilized

off-the-shelf information extraction tools to extract relations from the input context relevant

to the given answer to assist the question generation process and ensure it focuses on critical

information.

38

3.4. MULTI-HOP QUESTION GENERATION

Nema et al. (2019) implement a neural question generation model that uses two separate

passes to generate questions. The refinement pass improves the first (rough) pass, which

increases the likelihood that the generated question is syntactically correct and semantically

close to the input context.

Yu et al. (2020) generate questions from online product reviews. The authors overcome

the absence of a dataset linking questions and product reviews by utilizing reinforcement

learning to combine relevant reviews with crowdsourced question-answer pairs. Zhang and

Bansal (2019) also experiment with reinforcement learning to prevent the topic covered by

a generated question from drifting too far away from the input context and desired answer.

Varanasi et al. (2020) perform question generation by leveraging the powerful self-

attentions provided by a pre-trained BERT-based model and experience significantly faster

training times than previous works.

3.4 Multi-hop Question Generation

Multi-hop question generation is a relatively new area of research, and little work has

been completed on it thus far. Gupta et al. (2020a) assert that a common problem with

sequence-to-sequence question generation systems is their limited capacity to focus on

more than one supporting fact. They take inspiration from recent works that perform multi-

hop question answering and create a multi-hop question generation system that utilizes re-

inforcement learning to address this problem. Their proposed model uses an answer-aware

bi-directional LSTM to encode the input context. The encoded input context is then fed into

a supporting fact prediction layer, which utilizes a feed-forward network to predict which

sentences in the input context are supporting facts that can be used to generate a question

that requires multi-hop reasoning. The output of the supporting fact prediction layer is

concatenated with the encoded input context and fed into another bi-directional LSTM to

obtain a supporting fact-aware encoding of the input context. The decoder consists of a

pointer-generator similar to the design proposed by See et al. (2017). During training, the

39

3.4. MULTI-HOP QUESTION GENERATION

model’s reward is generated by conditioning on the generated question and the input context

to predict which sentences in the input context are supporting facts. These predictions are

compared to the ground-truth supporting facts to compute an F1 score, which is regularized

by a ROUGE-L score between the generated question and the ground truth question. The

downfall of the approach introduced by Gupta et al. (2020a) is that it requires supporting

facts to be explicitly labelled within the training data.

Su et al. (2020) create a sequence-to-sequence multi-hop question generation system

that does not require supporting facts to be explicitly labelled within the training data.

Their model’s encoder uses two bidirectional LSTMs to encode the input context and the

answer separately. A third bidirectional LSTM combines the encoded representations into

an answer-aware context encoding. They build a graph representing named entities in the

input context, where edges between entities indicate that they are seen in the same para-

graph, masking out entities that are not closely related to the answer. They use a graph

convolutional network to propagate multi-hop information on the answer-aware subgraph

and apply a bi-attention mechanism Seo et al. (2016) to produce an updated multi-hop an-

swer encoding. The multi-hop answer encoding is combined with the original answer-aware

context encoding via bidirectional LSTM, resulting in an updated answer-aware context en-

coding. Lastly, a reasoning gate is applied to the original and updated answer-aware context

encodings. The decoder consists of a uni-directional LSTM and a maxout pointer genera-

tor. Although the work published by Su et al. (2020) improves upon the previous research

by not requiring supporting sentences to be explicitly labelled within the training data, it

still relies on an LSTM-based model, which processes input contexts sequentially. This is

less than ideal since the input contexts for the multi-hop question generation task tend to be

longer than those seen in traditional question generation research, which leads to increased

training times.

Pan et al. (2021) attempted to use multi-hop question generation to build a dataset suit-

able for training a multi-hop question answering system in a setting where no manually

40

3.5. SUMMARY

created training data is available. Their system consists of operators, reasoning graphs, and

question filtration. Operators are operations that retrieve, generate and fuse information

from the input context. They are implemented with rules and pre-trained models. Rea-

soning graphs accept operators as input, combining them in the correct order to generate

question/answer pairs. Question filtration uses a pretrained GPT-2 (Radford et al., 2019)

model to remove unnatural and irrelevant questions. The downfall of the approach intro-

duced by Pan et al. (2021) is that it relies on hand-crafted operators and reasoning graphs,

which limit the diversity of the questions it can generate. In contrast, question genera-

tion models based entirely on neural models are not limited to generating certain types of

questions.

3.5 Summary

This chapter briefly discussed the techniques that early question generation systems

relied on. We then detailed how neural models following the sequence-to-sequence ar-

chitecture have been applied to solve different variations of the question generation task.

Lastly, we covered the previous work on multi-hop question generation. The next chapter

provides an in-depth description of our proposed multi-hop question generation system.

41

Chapter 4

Multi-Hop Question Generation

4.1 Introduction

We begin this chapter by describing the motivation behind the multi-hop question gen-

eration task. Next, we formally define our proposed model’s task and training objective.

Lastly, we introduce our proposed model, which is based on the Transformer architecture,

and detail its various components.

4.2 Motivation

There is a need for research that improves the ability of question generation systems

to handle increasingly complex input contexts. Previous research on question generation

has mainly focused on generating questions from a single sentence or paragraph. The com-

plexity of the questions generated by these systems and the depth of reasoning required

to answer them are limited. Multi-hop question generation is a relatively new area of re-

search that attempts to create more complex questions from larger input contexts consisting

of multiple related paragraphs. They require the reader to understand the content in each

context paragraph and then make multiple reasoning hops over that information to answer

the question.

Two main challenges arise from the added complexity of multi-hop question genera-

tion. First, the proposed model must find a way to identify connected pieces of information

scattered throughout the context paragraphs. Second, the model must determine how to

combine the collected information to generate a syntactically correct question that the input

42

4.3. TASK DEFINITION

context can directly answer. The larger input contexts that are utilized in multi-hop ques-

tion generation are what complicate these two challenges. On the one hand, much more

information is available to the model that can be used to generate a specific, high-quality

question. On the other hand, there is an increase in the amount of irrelevant information that

must be disregarded so that the generated question does not stray too far from the desired

topic.

A transformer forms the base of our proposed multi-hop question generation model. We

enhance the model by applying effective mechanisms from research on single-hop question

generation. The rest of this chapter details our proposed multi-hop question generation

model.

4.3 Task Definition

The multi-hop question generation task can be formalized as the conditional probability

shown in equation 4.1. Given an input context C = (c1,c2,c3, ...,cn), we wish to generate

the question Q = (q1,q2,q3, ...,qm) that has the highest probability. ci and qi represent the

tokens at position i within the input context and generated question. n and m represent the

number of tokens within the input context and generated question. The input context C

is created by concatenating the tokens of two related context paragraphs. The generated

question should be directly answerable by performing multiple reasoning hops over the

information provided by the input context C.

p(Q|C) =
m

∏
1

p(qi|q[1:i−1],C) (4.1)

Loss =
N

∑
i=1

−logp(Qi|Ci;θ) (4.2)

All the trainable parameters in the proposed model are learned in unison in an end-

to-end fashion. This is accomplished by minimizing the negative log-likelihood loss of

43

4.4. PROPOSED MODEL

the model over the training dataset. Equation 4.2 formalizes this concept. The training

dataset consists of N samples containing a reference question Qi and an input context Ci. θ

represents all of the model’s parameters, learnable and fixed.

4.4 Proposed Model

4.4.1 Model Overview

All of the previous works on multi-hop question generation have relied on sequence-

to-sequence models where both the encoder and decoder are comprised of LSTMs (Gupta

et al., 2020a; Su et al., 2020). Although these models have proven very effective, models

based on recurrence offer little opportunity for parallelization during the training process.

Vaswani et al. (2017) proposed The Transformer as an efficient alternative to recurrence-

based sequence transduction models. The Transformer relies heavily on the concept of

self-attention and positional encoding to process sequential data in a parallel fashion. Our

model utilizes the transformer architecture as the basis of both the encoder and the decoder.

We modify the decoder with a pointer-generator, allowing it to copy out-of-vocabulary to-

kens from the input context and select tokens from a fixed vocabulary. Our model also em-

ploys a pre-processing technique that utilizes placeholder tokens to allow out-of-vocabulary

named-entity tokens to be copied from the input context to the generated question. We now

discuss each of the model’s components in detail.

4.4.2 Placeholder Tokens

Scialom et al. (2019) studied the effectiveness of transformer-based models for the

single-hop question generation task. They found that the transformer model outlined by

Vaswani et al. (2017) was ineffective at producing satisfactory results. For their research,

they utilized SQuAD (Rajpurkar et al., 2016), which is one of the most popular datasets for

single-hop question generation. Within this dataset, approximately 52% of samples contain

answers with named entities. Scialom et al. (2019) attributed the poor performance of the

44

4.4. PROPOSED MODEL

base transformer model to this fact. Since neural question generation models typically uti-

lize vocabularies of a fixed size, many tokens within the input context will fall outside of

this vocabulary. In such a case, it is common practice to represent each out-of-vocabulary

token with a single, common token that signifies that the original token is unknown to

the model. For example, consider the sentence, “Taylor Swift was born on December 13,

1989.” Suppose this sentence is given to a question generation model as an input context,

and the tokens ‘Taylor’ and ‘Swift’ are not included in the model’s fixed vocabulary. In

that case, the resulting input to the model will be, “[unk] [unk] was born on December 13,

1989,” where [unk] represents an unknown token. Given the original sentence as input, the

model should generate a question like, “When was Taylor Swift born?” The replacement

of the tokens ‘Taylor’ and ‘Swift’ with the [unk] token makes this impossible.

Scialom et al. (2019) dealt with this issue by performing named-entity recognition on

each sample’s input context and reference question. For each sample in their training data,

they replaced each named-entity token with a unique placeholder token corresponding to

the detected type of named entity and its order of appearance. These unique placehold-

ers were included in their model’s fixed vocabulary. Using this pre-processing technique,

our example sentence would be pre-processed into, “[person 1] [person 2] was born on

December 13, 1989.” This allows the model to generate a question such as, “When was

[person 1] [person 2] born?”. As a post-processing step, any placeholder tokens within

the generated question are replaced with the original token they represent, resulting in the

question, “When was Taylor Swift born?” This mechanism alone allowed Scialom et al.

(2019) to increase the performance of their model to a level on par with the previous works

based on recurrent models.

We utilized the spaCy library (Honnibal and Montani, 2017)4 to perform named-entity

recognition on the HotpotQA dataset (Yang et al., 2018) to determine the prevalence of

named entities. We found that ∼75% of answers contained at least one named-entity

4https://spacy.io/

45

4.4. PROPOSED MODEL

token while ∼60% of answers contained only named-entity tokens. Noting the success

that Scialom et al. (2019) achieved using this technique in a single-hop setting where only

∼52% of answers contained named entities, we utilize the same technique in our multi-hop

question generation model. Details of the HotpotQA dataset are provided in section 5.2.

4.4.3 Encoder

Figure 4.1 illustrates the design of our encoder, which is based on the standard trans-

former encoder detailed in section 2.5.

Figure 4.1: The encoder of our proposed model.

In section 4.3, we stated that the input context is created by concatenating the tokens of

two separate, related context paragraphs. When joining these paragraphs, we separate them

with a [sep] token. The motivation behind explicitly marking this boundary is to aid the en-

46

4.4. PROPOSED MODEL

coder in building a connection between relevant entities across the two context paragraphs,

resulting in a question that requires multiple reasoning hops to be answered.

For each token in the input context, the vector fed into the encoder is created by con-

catenating three separate embeddings. These embeddings correspond to the token being

encoded, the part-of-speech tag for the token, and an answer position tag. A positional

encoding is added onto the vector once the embeddings have been concatenated. The po-

sitional encoding used in the encoder is the frequency-based positional encoding designed

by Vaswani et al. (2017), which we detailed in section 2.5.

We utilize the spaCy Python package (Honnibal and Montani, 2017)5 to tokenize the

text in our dataset and perform named entity recognition on each sample’s context para-

graphs and reference question. As discussed in section 4.4.2, each token identified as a

named entity is replaced with a placeholder token. For each sample in the dataset, we cre-

ate a dictionary that maps each placeholder token back to its original token. We utilize

separate embedding layers for placeholder and non-placeholder (standard) tokens. This de-

sign choice allows us to individually control whether the embeddings corresponding to each

token type are frozen or learned during the training process. It also allows us to experiment

with using pre-trained word embeddings for the standard tokens while the embeddings for

the placeholder tokens are learned from the training data.

We further utilize the spaCy Python package (Honnibal and Montani, 2017) to generate

part-of-speech tags for each token in the input context. These tags are embedded with

vectors that are learned from the training data.

Answer position tags are generated for each token in the input context using the BIO

tagging scheme (Zhou et al., 2017). The BIO tagging scheme labels each token with one

of three tags: [B], [I], and [O]. When a token within the input context is tagged with the

[B] (beginning) tag, this token represents the beginning of the answer sequence. The [i]

(inside) tag indicates that a token is part of the answer sequence but is not the first token of

5https://spacy.io/

47

4.4. PROPOSED MODEL

the answer sequence. The [O] (outside) tag means that the token is not a part of the answer

sequence. The answer sequence appears in multiple locations throughout the input context

in some samples. In such cases, each answer sequence is tagged using the BIO scheme.

The answer position tags are embedded with vectors learned from the training data.

4.4.4 Decoder and Pointer-Generator

Figure 4.2: Overview of the proposed model.

The decoder is based on the standard transformer decoder detailed in section 2.5. Simi-

lar to the encoder, separate embedding layers are used for placeholder and standard tokens.

48

4.4. PROPOSED MODEL

The positional encoding utilized by the decoder is the frequency-based positional encoding

introduced by Vaswani et al. (2017), which we detailed in section 2.5. Unlike the encoder,

no additional input features are utilized, and the positional encoding is added to the de-

coder’s input.

We modify the decoder with a pointer-generator, allowing the model to choose between

selecting a token from its fixed vocabulary or copying an out-of-vocabulary token from the

input context. As discussed in section 4.4.2, neural question generation models are usually

limited to a vocabulary consisting of a fixed number of tokens, which results in many of

the tokens within the input context being represented by the [unk] token. For this reason,

copy mechanisms are ubiquitous in sequence-to-sequence question generation models. Fur-

thermore, Scialom et al. (2019) demonstrated that copy mechanisms provide a slight ben-

efit even when using placeholder tokens to represent named entities since no named-entity

recognition model has perfect accuracy. Suppose the named-entity recognition model fails

to recognize a named-entity token within the input context. In that case, that token will be

represented by the [unk] token if it is not a member of the model’s vocabulary.

The pointer-generator we utilize is based on the implementation introduced by See et al.

(2017), which was designed to be used with an RNN-based sequence-to-sequence model

for the text summarization task. Previous works from different areas of natural language

processing have adapted this pointer-generator design to the transformer model (Prabhu and

Kann, 2020; Jiang et al., 2021). Within these adaptations, the input to the pointer-generator

is mapped from the original components in the RNN-based implementation to analogous

elements in the transformer model.

During the generation process, a soft switch is utilized for each position in the generated

question to determine whether to select a token from the model’s fixed vocabulary or copy

an out-of-vocabulary token from the input context.

pgen = σ(wT
h∗h

∗
t +wT

s st +wT
x xt +bptr) (4.3)

49

4.5. SUMMARY

P(w) = pgen pvocab(w)+(1− pgen) ∑
i:wi=w

at
i (4.4)

The soft switch pgen ∈ [0,1] for position t in the generated question is shown in equation

4.3, where wh∗ , ws, and wx are learnable vectors, and bptr is a learnable scalar. st represents

the decoder hidden state, xt represents the input to the decoder, and h∗t represents a context

vector calculated by summing the encoder hidden states, which are weighted by an attention

distribution at . We derive at by averaging the heads of the encoder-decoder attention layer

from the last decoder block. For each sample, an extended vocabulary is formed by taking

the union of the tokens in the model’s fixed vocabulary and the tokens that appear within

the input context. The probability of a token w from the extended vocabulary appearing at

position t in the generated question is calculated by summing its generation probability and

copy probability, as shown in Equation 4.4, where i represents each position in the input

context where the token w occurs. Notice that if the token w is not a member of the model’s

fixed vocabulary, then pvocab(w) is zero. If the token w does not appear in the input context,

then ∑i:wi=w at
i is zero.

4.5 Summary

We began this chapter by describing the motivation behind multi-hop question gen-

eration. Next, we formally defined the task and the model’s training objective. Lastly,

we introduced our proposed model based on the transformer architecture and detailed its

various components. In the next chapter, we provide details on the dataset, our model’s

implementation, and the results of our model’s performance.

50

Chapter 5

Experiment Details and Discussion

5.1 Introduction

We begin this chapter by detailing the contents of the HotpotQA dataset, which we use

to train and evaluate our proposed model. We then describe how the dataset is cleaned

and divided into various splits. Next, we discuss the implementation details of our model.

Lastly, we discuss the performance of our model and the results of the automated evaluation

metrics.

5.2 Dataset

For training and evaluating our model, we utilize HotpotQA (Yang et al., 2018), which

was created for the parallel task of multi-hop question answering. HotpotQA consists of

113k samples derived from Wikipedia articles. Each sample consists of the following:

• Ten context paragraphs, including titles.

• A reference question.

• An answer.

• A list of supporting sentences.

• The question’s difficulty.

• The question’s type (bridge or comparison).

51

5.2. DATASET

• A unique ID number.

While ten context paragraphs are provided for each sample, only two of those para-

graphs contain supporting sentences which create the path of reasoning that connects the

question to the answer. The remaining eight paragraphs serve as distractors for the question

answering task, which we discard for the question generation task.

We also discard the supporting sentence information. Gupta et al. (2020b) utilized this

information to predict which sentences from the context paragraphs should serve as input

to their question generation model. We feel that excluding supporting sentence informa-

tion and learning to generate questions from the complete context paragraphs is a more

challenging and valuable task, a sentiment shared by other researchers (Su et al., 2020).

Context 1: The Androscoggin Bank Colisée (formerly Central Maine Civic Center and
Lewiston Colisee) is a 4,000 capacity (3,677 seated) multi-purpose arena, in Lewiston,
Maine, that opened in 1958. In 1965 it was the location of the World Heavyweight Title
fight during which one of the most famous sports photographs of the century was taken of
Muhammed Ali standing over Sonny Liston.

Context 2: The Lewiston Maineiacs were a junior ice hockey team of the Quebec
Major Junior Hockey League based in Lewiston, Maine. The team played its home
games at the Androscoggin Bank Colisée. They were the second QMJHL team in the
United States, and the only one to play a full season. They won the President’s Cup in 2007.

Answer: 3,677 seated.

Reference question: The arena where the Lewiston Maineiacs played their home
games can seat how many people?

Figure 5.1: Bridge-type question from the HotpotQA dataset (Yang et al., 2018).

Samples in the HotpotQA dataset are divided into two different question types: bridge

and comparison. Samples containing bridge questions identify an entity that connects the

two context paragraphs and utilize that connection to form a question. Figure 5.1 demon-

strates a bridge-type sample, where Androscoggin Bank Colisée is the bridge entity that

connects the two context paragraphs. To answer the reference question, two separate rea-

52

5.2. DATASET

Context 1: Henri Leconte (born 4 July 1963) is a former French professional tennis player.
He reached the men’s singles final at the FrenchOpen in 1988, won the French Open men’s
doubles title in 1984, and helped France win the Davis Cup in 1991. Leconte’s career-high
singlesranking was world No. 5.

Context 2: Jonathan Stark (born April 3, 1971) is a former professional tennis
player from the United States. During his career he won two Grand Slam doubles titles
(the 1994 French Open Men’s Doubles and the 1995 Wimbledon Championships Mixed
Doubles). Stark reached the World No. 1 doubles ranking in 1994.

Answer: Jonathan Stark.

Reference question: Which tennis player won more Grand Slam titles, Henri Leconte or
Jonathan Stark?

Figure 5.2: Comparison-type question from the HotpotQA dataset (Yang et al., 2018).

soning hops must be performed, which requires answering two smaller questions in turn.

The first reasoning hop is “where did the Lewiston Maineiacs play their home games?”

The answer, the Androscoggin Bank Colisée, can be found within Input Context 2. The

second reasoning hop is “How many people can the Androscoggin Bank Colisée seat?”

The answer, 3,677, can be found within Input Context 1 and serves as the final answer to

the reference question.

Questions belonging to comparison samples are formed by selecting a different entity

from each context paragraph and asking about a property they share. Figure 5.2 demon-

strates a comparison-type sample, where the question is formulated by comparing two pro-

fessional tennis players, Henri Leconte and Jonathan Stark. Again, two separate reasoning

hops must be performed. The first reasoning hop is “How many Grand Slam titles did Henri

Leconte win?” By reading Input Context 1, we can infer that he has not won any. The sec-

ond reasoning hop is “How many Grand Slam titles did Jonathan Stark win?” The answer,

two, can be found within Input Context 2 and serves as the final answer to the reference

question.

53

5.3. IMPLEMENTATION DETAILS

5.2.1 Data Cleaning and Splitting

We removed samples from the dataset containing a simple yes or no answer since these

samples were not suitable for our task. Performing question generation in the answer-aware

setting requires answer spans to be explicitly labelled within the input context. A simple

answer of yes or no usually will not be literally found within the input context, which makes

labelling the answer span impossible for these training samples. Removing these samples

resulted in 91,911 usable samples. 78,909 of those samples contain bridge-type questions,

while 13,002 are comparison-type. Our dataset was divided into three splits: training,

validation and test. The training split was used to learn the model’s trainable parameters,

while the validation split was used for hyperparameter tuning. The test split was only used

to evaluate the model once its hyperparameters were selected. The training split received

80% of the dataset’s samples, while the validation and test split each received 10%. We

shuffled the samples in the dataset before assigning them to a split and stratified the splits

on the sample type and question difficulty. The unique ID number of each sample was used

to ensure that there was no data leakage between the splits.

Since the HotpotQA dataset was derived from Wikipedia articles, the data was reason-

ably clean, and minimal preprocessing was necessary. Although it is possible to debate the

correctness of the contents of Wikipedia articles, the articles themselves tend to be well

written. They do not contain slang and are not littered with unnecessary punctuation or

emojis. Other datasets used for question generation research, such as the Amazon ques-

tion/answer dataset, have been known to contain such material since its samples are crowd-

sourced from product pages on its e-commerce platform, where there are no standards for

the style of writing that is acceptable.

We utilized regular expressions to remove punctuation from the splits, except for apos-

trophes, hyphens and question marks. The text belonging to each sample was not converted

to lowercase since utilizing cased text resulted in better performance.

54

5.3. IMPLEMENTATION DETAILS

5.3 Implementation Details

Our proposed model was implemented in the Python programming language using Py-

Torch (Paszke et al., 2019)6. This open-source machine learning framework implements

tensor operations and deep neural networks with extensive support for hardware accelera-

tion. We experimented with many different hyperparameter configurations to achieve the

best possible results during the training process. The chosen hyperparameters and other

implementation considerations are discussed below.

Deep learning models that handle natural language processing tasks utilize vocabular-

ies to map tokens to numeric values. Our proposed model uses a single vocabulary shared

by the encoder and the decoder. This vocabulary consists of placeholder tokens, which re-

place named entities, and non-placeholder (standard) tokens. In natural language process-

ing models, it is common practice to restrict the token vocabulary to the n most common

tokens in the training data. It is also common to exclude tokens from the vocabulary if they

appear with a frequency less than a specified threshold. Restricting the token vocabulary

reduces the number of trainable parameters in the model and reduces noise in the input data.

We built our token vocabulary by first deciding which standard tokens to include. We deter-

mined which standard tokens in the training data were present in the glove.840B.300d.txt7

file and counted the frequency of those tokens within the training data. We then selected

the top 40,000 tokens that appeared more than twice within the training data. Next, we

selected the placeholder tokens that occurred more than five times within the training data.

We found it beneficial to specify separate threshold frequencies for each token type since

the embeddings for the placeholder tokens were learned, and the embeddings for the stan-

dard tokens were frozen. It is also the case that to learn a helpful embedding for a token, it

needs to be seen an adequate number of times within the training data.

We created a separate vocabulary which mapped each part-of-speech tag to a unique

numeric value. Since each part-of-speech tag appeared numerous times within the training

6https://pytorch.org/
7https://nlp.stanford.edu/projects/glove/

55

5.3. IMPLEMENTATION DETAILS

data, we did not find it necessary to restrict which tags were included in the vocabulary.

We initially hoped to utilize pre-trained word embeddings to represent non-placeholder

tokens within our model. We experimented with initializing the embeddings of the standard

tokens with the embeddings provided in the glove.840B.300d.txt file. We found that using

these pre-trained embeddings was less effective than using randomly initialized ones, even

when fine-tuning the pre-trained embeddings. We also found that the large number of train-

able parameters that resulted from training the randomly initialized embeddings caused the

model to overfit, even when a more significant dropout probability was applied. Interest-

ingly, the model performed best when the placeholder token embeddings were learned from

a random initialization while the standard token embeddings were initialized randomly and

frozen. We utilized 300-dimensional vectors for the token embeddings.

The embeddings representing the part-of-speech tags consisted of 16 dimensions, while

the answer position embeddings consisted of 4 dimensions. We experimented with both

learned and static positional encodings in our model, but static positional encodings per-

formed slightly better.

Taking the size of the word embeddings, part of speech embeddings and answer position

embeddings into account, we arrive at a hidden dimension of 320. The size of the position-

wise feed-forward layers in both the encoder and decoder is set to 640. The encoder and

decoder each consist of 3 blocks. We utilized 8 heads in each multi-head attention layer.

Finally, the dropout was set to .10 for all layers in the model. The model consists of ∼19

million trainable parameters, which were initialized using the Xavier initialization scheme

(Glorot and Bengio, 2010).

We utilized the Adam optimizer (Kingma and Ba, 2014) in conjunction with the learning

rate schedule shown in equation 5.1, which was originally introduced by Vaswani et al.

(2017). In this equation, dmodel represents the hidden dimension of the model, step num

represents the current training step, and warmup steps is a hyperparameter that allows

the learning rate to increase linearly for the first warmup steps training steps. Similar to

56

5.4. EVALUATION RESULTS AND DISCUSSION

Vaswani et al. (2017), we set the number of warmup steps to 4000. We trained our model

for a total of 50 epochs.

lrate = d−0.5
model ·min(step num−0.5,step num ·warmup steps−0.5) (5.1)

We tested the results of our model using greedy decoding and beam decoding with

several beam widths. For some hyperparameter configurations, beam decoding produced

superior results. For the hyperparameter configuration we have described so far, we found

that greedy decoding produced the best results in terms of the automated evaluation metrics.

5.4 Evaluation Results and Discussion

To evaluate the performance of our proposed model, we utilize automated evaluation

metrics to score the predictions produced for the samples in the test split. The evaluation

metrics used consist of BLEU (Papineni et al., 2002), ROUGE-L (Lin, 2004), and ME-

TEOR (Lavie and Agarwal, 2007). These metrics were chosen for their popularity within

the question generation research community. Evaluating the proposed model with these

metrics will allow its performance to be directly compared to previous work on multi-hop

question generation.

Table 5.1: Performance comparison between our model and MulGQ (Su et al., 2020).

BLEU 1 BLEU 2 BLEU 3 BLEU 4 ROUGE-L METEOR

MulQG 40.15 26.71 19.73 15.20 35.30 20.51

Our Model 42.13 30.44 23.84 19.42 39.26 22.78

Table 5.1 contrasts our model’s performance on the test split with the results of the

MulQG model proposed by Su et al. (2020). We compare our proposed model to this work

because it matches our task more closely than either of the other previous works on multi-

hop question generation. Namely, both our model and the model proposed by Su et al.

57

5.4. EVALUATION RESULTS AND DISCUSSION

(2020) utilize the same dataset and perform multi-hop question generation in an answer-

aware setting free of supporting sentence information. The scores for our model were

generated using the evaluation script created by Sharma et al. (2017)8. This is the same

evaluation script utilized by Su et al. (2020) to evaluate the performance of their MulQG

model. Our model shows a notable improvement in each of the automated evaluation met-

rics.

One of the main motivations of the work presented in this thesis was to reduce the time

required to train a multi-hop question generation system by utilizing a Transformer-based

model instead of relying on recurrent neural networks. Since the multi-hop question gen-

eration task utilizes input contexts that are longer than those seen in traditional question

generation research, the amount of training time required can increase dramatically when

using RNNs. Our proposed model achieved the results listed above with a modest 19 mil-

lion trainable parameters. The MulQG model, on the other hand, consists of ∼57 million.

This low number of trainable parameters combined with The Transformer’s high degree of

parallelization results in our model taking much less time to train. Our model takes approx-

imately 5 hours to train on a Titan Xp GPU, while MulQG requires about 41 hours on a

comparable GPU.

Our proposed model is not only quick, it also produces very high quality questions.

The generated questions demonstrate a high degree of fluency and many of them contain

more detail than the reference questions provided by the dataset. An example of a system-

generated bridge-type question is shown below.

Reference Question: The horse - collar tackle is most closely associated with a profes-

sional football player who was drafted by what team in 2002 ?

Generated Question: The horse - collar tackle is most closely associated with a former

American college and professional football player who was drafted by what team in 2002 ?

8https://github.com/Maluuba/nlg-eval

58

5.5. SUMMARY

The generated question is very similar to the reference question, but it elaborates upon it

by specifying that the professional football player was a former American college football

player as well. An example of a system-generated comparison-type question is shown

below.

Reference Question: Which was released first Point of Order or The Celluloid Closet ?

Generated Question: Which documentary was released first Point of Order or The Cellu-

loid Closet ?

Again, the system-generated question exhibits greater detail than the reference question by

specifying that the films being compared are documentaries.

5.5 Summary

We began this chapter by detailing the contents of the HotpotQA dataset. We then

explained how we cleaned the dataset and divided it into training, validation and test splits.

Next, we discussed the implementation details of our model. Lastly, we discussed the

results of the automated evaluation metrics, the amount of time required to train the model,

and the quality of the generated questions.

59

Chapter 6

Conclusion

6.1 Introduction

This chapter begins by summarizing the work presented in this thesis. We then discuss

potential future work that can be completed for the multi-hop question generation task.

6.2 Summary

In this thesis, we proposed a transformer-based model for the multi-hop question gener-

ation task. We incorporated components into our model including a pointer-generator and

placeholder tokens to limit the negative effects of out-of-vocabulary tokens. We trained and

tested our model using the same dataset as the previous works, and evaluated our model’s

performance using the same evaluation script. The results of the automated evaluation

metrics demonstrated a clear improvement over the previously published research. Our

proposed model also required significantly less time to train than the previous work.

6.3 Future Work

Since multi-hop question generation is a relatively new area of research, there are many

possible improvements for future work. While carrying out the work presented in this

thesis, we identified several improvements that may be worth exploring.

While testing the performance of our proposed model, we found the dataset to be lack-

ing in a couple of ways. Each sample in the HotpotQA dataset consists of only a single

ground-truth question. This can be problematic since, in multiple cases, we found that the

60

6.3. FUTURE WORK

question generated by our model was equivalent to the ground-truth question. Still, the

evaluation metrics did not assign a perfect score since they did not match completely. This

issue particularly affected comparison-style questions, an example of which is shown be-

low.

Generated question: Which film was released first The Castaway Cowboy or College

Road Trip?

Ground-truth question: Which film was released first College Road Trip or The Castaway

Cowboy?

As discussed in section 5.4, some of the questions generated by our proposed model in-

cluded more detail than the ground-truth questions, yet they were also penalized.

Generated question: Frederick Cleveland Hibbard graduated from what public land - grant

research university located in Columbia Missouri US?

Ground-truth question: Frederick Hibbard graduated from what public land - grant uni-

versity?

The HotpotQA dataset could be improved by adding additional ground-truth questions for

each sample. For the comparison-style samples, an additional reference question could be

added where the two named entities being compared are swapped. Additional reference

questions containing more detail could be added for the bridge samples.

Adding a new reference question to each of the 79k bridge samples would require a

significant amount of human labour since this task would have to be completed manually.

As for the comparison-style samples, we initially thought it may be possible to automate

the process of swapping the named entities being compared. Unfortunately, this is not pos-

sible, and this task would require a considerable amount of human labour as well. Since

the named entities being compared are not explicitly labelled within the training data, an

automated implementation would require these entities to first be manually annotated. Uti-

61

6.3. FUTURE WORK

lizing a named-entity recognition model to complete this annotation would be inadequate

since not all entities would be detected accurately and the swap would not be performed

correctly. Even if each named entity could be detected automatically with perfect accuracy,

there is often more than two named entities per reference question, so it is not trivial to

choose which entities must be swapped.

Another way to improve the model’s performance is to experiment with different pre-

trained word embeddings, including context-dependent embeddings, which may be better

suited than the GloVe embeddings we attempted to leverage in our implementation.

Finally, we think it would be promising to determine how to incorporate a knowledge

graph into the encoder of a transformer-based model. Su et al. (2020) utilized a graph

convolutional network in conjunction with an LSTM-based model, and it appears to be

highly effective at handling the extended input context associated with multi-hop question

generation.

62

Bibliography

Charu C. Aggarwal. Neural Networks and Deep Learning. Springer, Cham, 2018. ISBN
978-3-319-94462-3. doi: 10.1007/978-3-319-94463-0.

Husam Ali, Yllias Chali, and Sadid A. Hasan. Automatic question generation from sen-
tences. In Actes de la 17e conférence sur le Traitement Automatique des Langues Na-
turelles. Articles courts, pages 213–218, Montréal, Canada, July 2010. ATALA. URL
https://aclanthology.org/2010.jeptalnrecital-court.36.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.
URL https://arxiv.org/abs/1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate, 2014. URL https://arxiv.org/abs/1409.
0473.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural prob-
abilistic language model. J. Mach. Learn. Res., 3(null):1137–1155, mar 2003. ISSN
1532-4435.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information, 2016. URL https://arxiv.org/abs/1607.04606.

Jason Brownlee. How to choose loss functions when training deep learning neu-
ral networks. https://machinelearningmastery.com/how-to-choose-loss-functions-when-
training-deep-learning-neural-networks/, Jan 2019.

Zi Chai and Xiaojun Wan. Learning to ask more: Semi-autoregressive sequential question
generation under dual-graph interaction. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 225–237, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.21. URL
https://aclanthology.org/2020.acl-main.21.

Yllias Chali and Sadid A. Hasan. Towards topic-to-question generation. Computational
Linguistics, 41(1):1–20, March 2015. doi: 10.1162/COLI a 00206. URL https://
aclanthology.org/J15-1001.

Wei Chen and Gregory Aist. Generating questions automatically from informational text.
2009.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

63

BIBLIOGRAPHY

rnn encoder-decoder for statistical machine translation, 2014. URL https://arxiv.
org/abs/1406.1078.

A. Clark, C. Fox, and S. Lappin. The Handbook of Computational Linguistics and Nat-
ural Language Processing. Blackwell Handbooks in Linguistics. Wiley, 2012. ISBN
9781118347188. URL https://books.google.ca/books?id=6BJOwNHD1osC.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding, 2018. URL https://
arxiv.org/abs/1810.04805.

Xinya Du and Claire Cardie. Identifying where to focus in reading comprehension for neu-
ral question generation. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2067–2073, Copenhagen, Denmark, September
2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1219. URL
https://aclanthology.org/D17-1219.

Xinya Du and Claire Cardie. Harvesting paragraph-level question-answer pairs from
Wikipedia. In Proceedings of the 56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 1907–1917, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1177. URL
https://aclanthology.org/P18-1177.

Xinya Du, Junru Shao, and Claire Cardie. Learning to ask: Neural question genera-
tion for reading comprehension. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1342–
1352, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi:
10.18653/v1/P17-1123. URL https://aclanthology.org/P17-1123.

Nan Duan, Duyu Tang, Peng Chen, and Ming Zhou. Question generation for question
answering. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 866–874, Copenhagen, Denmark, September 2017. As-
sociation for Computational Linguistics. doi: 10.18653/v1/D17-1090. URL https:
//aclanthology.org/D17-1090.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256. JMLR Workshop and Conference
Proceedings, 2010.

Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian Yin, Hong Chi, James Cao, Peng
Chen, and Ming Zhou. Question generation from SQL queries improves neural se-
mantic parsing. In Proceedings of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1597–1607, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1188. URL
https://aclanthology.org/D18-1188.

64

BIBLIOGRAPHY

Deepak Gupta, Hardik Chauhan, Ravi Tej Akella, Asif Ekbal, and Pushpak Bhattacharyya.
Reinforced multi-task approach for multi-hop question generation. In Proceedings of
the 28th International Conference on Computational Linguistics, pages 2760–2775,
Barcelona, Spain (Online), December 2020a. International Committee on Computational
Linguistics. doi: 10.18653/v1/2020.coling-main.249. URL https://aclanthology.
org/2020.coling-main.249.

Deepak Gupta, Hardik Chauhan, Akella Ravi Tej, Asif Ekbal, and Pushpak Bhattacharyya.
Reinforced multi-task approach for multi-hop question generation, 2020b. URL https:
//arxiv.org/abs/2004.02143.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition, 2015. URL https://arxiv.org/abs/1512.03385.

Michael Heilman and Noah A. Smith. Good question! statistical ranking for question
generation. In Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pages 609–
617, Los Angeles, California, June 2010. Association for Computational Linguistics.
URL https://aclanthology.org/N10-1086.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R.
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detec-
tors, 2012. URL https://arxiv.org/abs/1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9:1735–80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

Matthew Honnibal and Ines Montani. spaCy 2: Natural language understanding with
Bloom embeddings, convolutional neural networks and incremental parsing. To appear,
2017.

Weiwei Jiang, Junjie Li, Minchuan Chen, Jun Ma, Shaojun Wang, and Jing Xiao. Im-
proving neural text normalization with partial parameter generator and pointer-generator
network. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 7583–7587, 2021. doi: 10.1109/ICASSP39728.
2021.9415113.

Yanghoon Kim, Hwanhee Lee, Joongbo Shin, and Kyomin Jung. Improving neural ques-
tion generation using answer separation, 2018. URL https://arxiv.org/abs/1809.
02393.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.
URL https://arxiv.org/abs/1412.6980.

Wei-Jen Ko, Te-yuan Chen, Yiyan Huang, Greg Durrett, and Junyi Jessy Li. Inquis-
itive question generation for high level text comprehension. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 6544–6555, Online, November 2020. Association for Computational Linguistics.

65

BIBLIOGRAPHY

doi: 10.18653/v1/2020.emnlp-main.530. URL https://aclanthology.org/2020.
emnlp-main.530.

Vishwajeet Kumar, Manish Joshi, Ganesh Ramakrishnan, and Yuan-Fang Li. Vocabulary
matters: A simple yet effective approach to paragraph-level question generation. In Pro-
ceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Com-
putational Linguistics and the 10th International Joint Conference on Natural Language
Processing, pages 781–785, Suzhou, China, December 2020. Association for Computa-
tional Linguistics. URL https://aclanthology.org/2020.aacl-main.78.

Igor Labutov, Sumit Basu, and Lucy Vanderwende. Deep questions without deep under-
standing. In Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 889–898, Beijing, China, July 2015. As-
sociation for Computational Linguistics. doi: 10.3115/v1/P15-1086. URL https:
//aclanthology.org/P15-1086.

Alon Lavie and Abhaya Agarwal. Meteor: An automatic metric for mt evaluation with high
levels of correlation with human judgments. In Proceedings of the Second Workshop on
Statistical Machine Translation, StatMT ’07, pages 228–231, USA, 2007. Association
for Computational Linguistics.

Jingjing Li, Yifan Gao, Lidong Bing, Irwin King, and Michael R. Lyu. Improving ques-
tion generation with to the point context. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3216–3226,
Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1317. URL https://aclanthology.org/D19-1317.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Sum-
marization Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for
Computational Linguistics. URL https://aclanthology.org/W04-1013.

David Lindberg, Fred Popowich, John Nesbit, and Phil Winne. Generating natural language
questions to support learning on-line. In Proceedings of the 14th European Workshop on
Natural Language Generation, pages 105–114, Sofia, Bulgaria, August 2013. Associa-
tion for Computational Linguistics. URL https://aclanthology.org/W13-2114.

Ming Liu, Rafael A. Calvo, and Vasile Rus. Automatic question generation for litera-
ture review writing support. In Proceedings of the 10th International Conference on
Intelligent Tutoring Systems - Volume Part I, ITS’10, pages 45–54, Berlin, Heidelberg,
2010. Springer-Verlag. ISBN 3642133878. doi: 10.1007/978-3-642-13388-6 9. URL
https://doi.org/10.1007/978-3-642-13388-6_9.

Ming Liu, Rafael Alejandro Calvo, and Vasile Rus. G-asks: An intelligent automatic ques-
tion generation system for academic writing support. Dialogue Discourse, 3:101–124,
2012.

66

BIBLIOGRAPHY

Karen Mazidi and Rodney D. Nielsen. Linguistic considerations in automatic question
generation. In Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pages 321–326, Baltimore, Maryland,
June 2014. Association for Computational Linguistics. doi: 10.3115/v1/P14-2053. URL
https://aclanthology.org/P14-2053.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space, 2013. URL https://arxiv.org/abs/1301.3781.

Mao Nakanishi, Tetsunori Kobayashi, and Yoshihiko Hayashi. Towards answer-unaware
conversational question generation. In Proceedings of the 2nd Workshop on Machine
Reading for Question Answering, pages 63–71, Hong Kong, China, November 2019.
Association for Computational Linguistics. doi: 10.18653/v1/D19-5809. URL https:
//aclanthology.org/D19-5809.

Preksha Nema, Akash Kumar Mohankumar, Mitesh M. Khapra, Balaji Vasan Srinivasan,
and Balaraman Ravindran. Let’s ask again: Refine network for automatic question
generation. In Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3314–3323, Hong Kong, China, November
2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1326. URL
https://aclanthology.org/D19-1326.

Santanu Pal. Qgstec system description–juqgg: A rule based approach. 06 2010.

Liangming Pan, Wenqiang Lei, Tat-Seng Chua, and Min-Yen Kan. Recent advances in
neural question generation. CoRR, abs/1905.08949, 2019. URL http://arxiv.org/
abs/1905.08949.

Liangming Pan, Wenhu Chen, Wenhan Xiong, Min-Yen Kan, and William Yang Wang. Un-
supervised multi-hop question answering by question generation. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 5866–5880, Online, June 2021. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.469. URL
https://aclanthology.org/2021.naacl-main.469.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for au-
tomatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, ACL ’02, pages 311–318, USA, 2002.
Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL
https://doi.org/10.3115/1073083.1073135.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning

67

BIBLIOGRAPHY

library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vec-
tors for word representation. In Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, 2014. URL http://www.aclweb.org/anthology/
D14-1162.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations, 2018. URL
https://arxiv.org/abs/1802.05365.

Nikhil Prabhu and Katharina Kann. Making a point: Pointer-generator transformers for
disjoint vocabularies. In Proceedings of the 1st Conference of the Asia-Pacific Chap-
ter of the Association for Computational Linguistics and the 10th International Joint
Conference on Natural Language Processing: Student Research Workshop, pages 85–
92, Suzhou, China, December 2020. Association for Computational Linguistics. URL
https://aclanthology.org/2020.aacl-srw.13.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Processing, pages 2383–2392, Austin,
Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/
D16-1264. URL https://aclanthology.org/D16-1264.

Sebastian Ruder. An overview of gradient descent optimization algorithms, 2016. URL
https://arxiv.org/abs/1609.04747.

Vasile Rus, Brendan Wyse, Paul Piwek, Mihai Lintean, Svetlana Stoyanchev, and Christian
Moldovan. The first question generation shared task evaluation challenge. In Proceed-
ings of the 6th International Natural Language Generation Conference. Association for
Computational Linguistics, July 2010. URL https://aclanthology.org/W10-4234.

Thomas Scialom and Jacopo Staiano. Ask to learn: A study on curiosity-driven question
generation. In Proceedings of the 28th International Conference on Computational Lin-
guistics, pages 2224–2235, Barcelona, Spain (Online), December 2020. International
Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.202.
URL https://aclanthology.org/2020.coling-main.202.

Thomas Scialom, Benjamin Piwowarski, and Jacopo Staiano. Self-attention architectures
for answer-agnostic neural question generation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pages 6027–6032, Florence, Italy,

68

BIBLIOGRAPHY

July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1604. URL
https://aclanthology.org/P19-1604.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization
with pointer-generator networks, 2017. URL https://arxiv.org/abs/1704.04368.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension, 2016. URL https://arxiv.org/abs/
1611.01603.

Shikhar Sharma, Layla El Asri, Hannes Schulz, and Jeremie Zumer. Relevance of unsu-
pervised metrics in task-oriented dialogue for evaluating natural language generation.
CoRR, abs/1706.09799, 2017. URL http://arxiv.org/abs/1706.09799.

Noah A. Smith and Michael Heilman. Automatic factual question generation from text.
2011.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/
papers/v15/srivastava14a.html.

Dan Su, Yan Xu, Wenliang Dai, Ziwei Ji, Tiezheng Yu, and Pascale Fung. Multi-hop
question generation with graph convolutional network. In Findings of the Association for
Computational Linguistics: EMNLP 2020. Association for Computational Linguistics,
2020. doi: 10.18653/v1/2020.findings-emnlp.416. URL https://doi.org/10.18653%
2Fv1%2F2020.findings-emnlp.416.

Sandeep Subramanian, Tong Wang, Xingdi Yuan, Saizheng Zhang, Adam Trischler, and
Yoshua Bengio. Neural models for key phrase extraction and question generation. In
Proceedings of the Workshop on Machine Reading for Question Answering, pages 78–
88, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/W18-2609. URL https://aclanthology.org/W18-2609.

Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yanjun Ma, and Shi Wang. Answer-focused
and position-aware neural question generation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 3930–3939, Brussels,
Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.
18653/v1/D18-1427. URL https://aclanthology.org/D18-1427.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks, 2014. URL https://arxiv.org/abs/1409.3215.

Stalin Varanasi, Saadullah Amin, and Guenter Neumann. CopyBERT: A unified approach
to question generation with self-attention. In Proceedings of the 2nd Workshop on Nat-
ural Language Processing for Conversational AI, pages 25–31, Online, July 2020. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2020.nlp4convai-1.3. URL
https://aclanthology.org/2020.nlp4convai-1.3.

69

BIBLIOGRAPHY

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017. URL
https://arxiv.org/abs/1706.03762.

Siyuan Wang, Zhongyu Wei, Zhihao Fan, Zengfeng Huang, Weijian Sun, Qi Zhang, and
Xuanjing Huang. PathQG: Neural question generation from facts. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 9066–9075, Online, November 2020a. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.emnlp-main.729. URL https://aclanthology.org/
2020.emnlp-main.729.

Zhen Wang, Siwei Rao, Jie Zhang, Zhen Qin, Guangjian Tian, and Jun Wang. Diver-
sify question generation with continuous content selectors and question type model-
ing. In Findings of the Association for Computational Linguistics: EMNLP 2020,
pages 2134–2143, Online, November 2020b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.findings-emnlp.194. URL https://aclanthology.org/
2020.findings-emnlp.194.

Xiuyu Wu, Nan Jiang, and Yunfang Wu. A question type driven and copy loss en-
hanced frameworkfor answer-agnostic neural question generation. In Proceedings of
the Fourth Workshop on Neural Generation and Translation, pages 69–78, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.ngt-1.8. URL
https://aclanthology.org/2020.ngt-1.8.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan
Salakhutdinov, and Christopher D. Manning. Hotpotqa: A dataset for diverse, ex-
plainable multi-hop question answering, 2018. URL https://arxiv.org/abs/1809.
09600.

Xuchen Yao, Gosse Bouma, Yi Zhang, Paul Piwek, and Kristy Boyer. Semantics-based
question generation and implementation. Dialogue & Discourse, 3, 03 2012. doi: 10.
5087/dad.2012.202.

Qian Yu, Lidong Bing, Qiong Zhang, Wai Lam, and Luo Si. Review-based question genera-
tion with adaptive instance transfer and augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 280–290, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.26.
URL https://aclanthology.org/2020.acl-main.26.

Hamed Zamani, Susan Dumais, Nick Craswell, Paul Bennett, and Gord Lueck. Gener-
ating clarifying questions for information retrieval. In Proceedings of The Web Con-
ference 2020, WWW ’20, pages 418–428, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450370233. doi: 10.1145/3366423.3380126. URL
https://doi.org/10.1145/3366423.3380126.

Shiyue Zhang and Mohit Bansal. Addressing semantic drift in question generation
for semi-supervised question answering. In Proceedings of the 2019 Conference on

70

BIBLIOGRAPHY

Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2495–2509,
Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1253. URL https://aclanthology.org/D19-1253.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa Ke. Paragraph-level neural question
generation with maxout pointer and gated self-attention networks. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, pages 3901–
3910, Brussels, Belgium, October-November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/D18-1424. URL https://aclanthology.org/D18-1424.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, and Ming Zhou. Neural
question generation from text: A preliminary study, 2017. URL https://arxiv.org/
abs/1704.01792.

Wenjie Zhou, Minghua Zhang, and Yunfang Wu. Question-type driven question gener-
ation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 6032–6037, Hong Kong, China, November 2019. As-
sociation for Computational Linguistics. doi: 10.18653/v1/D19-1622. URL https:
//aclanthology.org/D19-1622.

71

Appendix A

System-Generated Questions

Question Type: Bridge.
Reference Question: The first televised speech in the House of Commons of the United
Kingdom was made by a politician that was assassinated by what group ?
Generated Question: The first televised speech in the House of Commons of the United
Kingdom was made by a British Conservative politician who was assassinated by what
organization ?

Question Type: Bridge.
Reference Question: The horse - collar tackle is most closely associated with a profes-
sional football player who was drafted by what team in 2002 ?
Generated Question: The horse - collar tackle is most closely associated with a former
American college and professional football player who was drafted by what team in 2002 ?

Question Type: Bridge.
Reference Question: When was the American director producer and screenwriter born
who co - founded Amblin Entertainment ?
Generated Question: When was the American director producer and screenwriter born
who co - founded Amblin Entertainment with Kathleen Kandice Kennedy ?

Question Type: Bridge.
Reference Question: The Pangaea Expedition is a worldwide voyage led by a South
African - born Swiss adventurer who studied what at Stellenbosch University ?
Generated Question: The Pangaea Expedition is a worldwide voyage led by a South
African - born Swiss professional explorer and adventurer who studied what at Stellen-
bosch University in Western Cape ?

Question Type: Bridge.
Reference Question: In 2011 what was the population of the town in which Phil Nilsen
was born ?
Generated Question: What was the population in 2011 of the town where Phil Nilsen was
born ?

Question Type: Comparison.
Reference Question: Which was founded first Virginia Commonwealth University or

72

A. SYSTEM-GENERATED QUESTIONS

Batangas State University ?
Generated Question: Which university was founded first Virginia Commonwealth Uni-
versity or Batangas State University ?

Question Type: Comparison.
Reference Question: Which was released first Point of Order or The Celluloid Closet ?
Generated Question: Which documentary was released first Point of Order or The Cellu-
loid Closet ?

Question Type: Comparison.
Reference Question: Which is taller Trump Tower or Americas Tower ?
Generated Question: Which skyscraper is taller Trump Tower or Americas Tower ?

73

Appendix B

SpaCy Part-of-Speech-Tags

Fine-grained Tag Description
AFX affix
JJ adjective
JJR adjective, comparative
JJS adjective, superlative
PDT predeterminer
PRP$ pronoun, possessive
WDT wh-determiner
WP$ wh-pronoun, possessive
IN conjunction, subordinating or preposition
EX existential there
RB adverb
RBR adverb, comparative
RBS adverb, superlative
WRB wh-adverb
CC conjunction, coordinating
DT determiner
UH interjection
NN noun, singular or mass
NNS noun, plural
WP wh-pronoun, personal
CD cardinal number
POS possessive ending
RP adverb, particle
TO infinitival to
PRP pronoun, personal
NNP noun, proper singular
NNPS noun, proper plural

74

B. SPACY PART-OF-SPEECH TAGS

Fine-grained Tag Description
-LRB- left round bracket
-RRB- right round bracket
, punctuation mark, comma
: punctuation mark, colon or ellipsis
. punctuation mark, sentence closer
” closing quotation mark
“” closing quotation mark
“ opening quotation mark
HYPH punctuation mark, hyphen
LS list item marker
NFP superfluous punctuation
symbol, number sign
$ symbol, currency
SYM symbol
BES auxiliary “be”
HVS forms of “have”
MD verb, modal auxiliary
VB verb, base form
VBD verb, past tense
VBG verb, gerund or present participle
VBN verb, past participle
VBP verb, non-3rd person singular present
VBZ verb, 3rd person singular present
ADD email
FW foreign word
GW additional word in multi-word expression
XX unknown
SP space

75

Appendix C

SpaCy Named Entity Tags

Tag Description
PERSON People, including fictional
NORP Nationalities or religious or political groups
FACILITY Buildings, airports, highways, bridges, etc.
ORGANIZATION Companies, agencies, institutions, etc.
GPE Countries, cities, states
LOCATION Non-GPE locations, mountain ranges, bodies of water
PRODUCT Vehicles, weapons, foods, etc. (Not services)
EVENT Named hurricanes, battles, wars, sports events, etc.
WORK OF ART Titles of books, songs, etc.
LAW Named documents made into laws
LANGUAGE Any named language
DATE Absolute or relative dates or periods
TIME Times smaller than a day
PERCENT Percentage (including “%”)
MONEY Monetary values, including unit
QUANTITY Measurements, as of weight or distance
ORDINAL “first”, “second”
CARDINAL Numerals that do not fall under another type

76

