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Abstract 

The prevalence of insulin resistance and diabetes mellitus is rising globally in epidemic 

proportions. Diabetes and its complications contribute to significant morbidity and mortality.    

Increase in sedentary lifestyle and consumption of more energy-dense diet increased the 

incidence of obesity which is a significant risk factor for type 2 diabetes. Obesity acts as a 

potent upstream event that promotes molecular mechanisms involved in insulin resistance and 

diabetes mellitus. However, the exact molecular mechanisms between obesity and diabetes are 

not clearly understood. In the current study, we have reviewed the molecular interactions 

between obesity and type 2 diabetes.   

Keywords: Diabetes mellitus, obesity, oxidative stress, adipokine, adiponectin, 

adipocyte, Glut-4, insulin signal transduction.       
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Introduction  

The prevalence of diabetes mellitus (DM) globally is growing rapidly [1]. This chronic disorder 

has a negative effect on most metabolic pathways of the body, which results in generating toxic 

byproducts and tissues dysfunction [2]. Diabetes and its ensuing complications result in  

considerable morbidity and mortality [3, 4][5-7]. Type 2 diabetes (T2DM) is the most common 

form of DM which is associated with lower insulin sensitivity in peripheral tissues known as 

insulin resistance [7, 8]. Insulin resistance is a state of reduced insulin signaling efficiency 

through lower response to circulatory insulin by adipocytes and myocytes which in turn, 

disturbs normal metabolic pathways in these tissues [8]. Insulin signaling pathway is a complex 

cellular event involving various signaling molecules and the exact pathophysiology of insulin 

resistance is not completely understood yet. Overweight and obesity are some of the critical 

risk factors for the development of insulin resistance [8, 9]. There is growing evidence 

suggesting that obesity has deleterious negative impacts on insulin signaling pathways and 

increases the risk of insulin resistance [10-12]. However, the exact mechanism is not elucidated 

yet [13]. In the current study, we review about the possible interactions between obesity, insulin 

signaling pathways and DM. The current review aimed to shed light into the molecular 

mechanisms linking obesity and insulin resistance for developing new non-pharmacological 

preventive and therapeutic approach for the management of insulin resistance and DM.    

Obesity  

Obesity is defined as a medical state of excess body fat accumulation, especially in certain 

body areas such as around the abdomen and hip [14]. In this condition, oral intake of food is 

higher than the energy expenditure in the body and thereby, metabolic mechanisms shift toward 

storing excess substrates as adipocytes [15]. Hence, obesity is now identified as an imbalance 

between calories consuming and calories expenditure by hypertrophy, hyperplasia or enlarging 
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the adipocytes [16]. Adipose tissue responds to this excessive intake of nutrients by increased 

storage of fatty acids in an enlarged mass of adipose tissue [16]. Obesity is a pathologic 

condition completely different from being overweight which only means weighing too much 

[14, 17]. While the overweight state commonly arises from the excess weight of various tissues 

such as muscles, bones, adipose tissues and higher amount of body water, obesity is referred 

to more bodyweight due to higher fatty tissues [17]. For example, a person with only seventy 

kg of bodyweight and high fatty tissues may be obese, but another person weighing 120 kg and 

having a normal amount of adipose tissues may not be obese [18]. However, the incidence of 

obesity is higher among overweight individuals [18].   

Obesity is closely associated with many pathologic states [19]. It has been frequently reported, 

the prevalence of various disorders such as cardiovascular disease, renal failure, neuro-

behavioral illnesses, digestive diseases, respiratory disorders as well as metabolic 

complications are higher among the obese subjects than to healthy population [17, 20]. Hence, 

obesity has now considered as the main risk factor for these complications and lowering the 

bodyweight and readjusting the balance between feeding and energy expenditure is the main 

target of many non-pharmacological preventive and therapeutic approaches for managing these 

conditions [21-23].        

Insulin signal transduction, insulin resistance and diabetes mellitus  

Insulin signal transduction (IST) is a complex molecular event involving various signaling 

molecules and enzymes (fig 1) [24]. Briefly, IST is activated by binding of appropriate 

substrates (insulin and insulin like growth factors (IGFs)) to the α chain of insulin receptor 

(IR). IR is a transmembrane tyrosine kinase composed of two separate chains known as α and 

β chains [25]. This binding to IR stimulates structural changes in the β chain by auto-

phosphorylation in tyrosine residues followed by various downstream events such as 
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recruitment of various adaptor proteins i.e. insulin receptor substrates (IRSs), Shc protein 

(SHC-transforming) and APS protein (adapter protein with a PH and SH2 domain) [26, 27]. 

These events will provide a binding site for the insulin receptor substrates-1 (IRS-1) [27]. 

Activated IRS-1 then binds to the PI3K (phosphoinositide 3-kinase) to activate it. Activated 

PI3K will promotes the conversion of PIP2 (phosphatidylinositol 4,5-bisphosphate) to PIP3 

(phosphatidylinositol 3,4,5-trisphosphate) [28]. PIP3 is a potent activator of PKB (protein 

kinase B, also known as Akt), which in turn facilitates glucose entering into the cells by 

localization of GLUT-4 (glucose transporter type 4) on the cellular membranes of adipocytes 

and myocytes, and inhibits glycogen synthase kinase leading to an increase in glycogen 

synthesis [28, 29].  In addition, there are other types of insulin-dependent kinases such as 

ERK1/2 (extracellular signal-regulated kinase 1/2), atypical PKC (protein kinase C), S6K1 

(ribosomal protein S6 kinase beta-1), SIK2 (serine/threonine-protein kinase 2), AKT, mTOR 

(mammalian target of rapamycin) and ROCK1 (rho-associated protein kinase 1), AMPK 

(AMP-activated protein kinase) and GSK3 (Glycogen synthase kinase) which can similarly 

phosphorylate IRSs and promote the IST [27, 30].  

 
Figure 1: Schematic picture of insulin signaling pathways. It is initiated by binding the 
substrate (insulin) to its specific receptors and completed by Glut-4 localization into the 
cell membrane (IRSs= insulin receptor substrates, PI3K= Phosphoinositide 3-kinase, 
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PIP2= Phosphatidylinositol 4,5-bisphosphate, PIP3= Phosphatidylinositol 3,4,5-
trisphosphate, Akt=protein kinase B, Glut-4= glucose transporter type 4)  

 

Any disturbance in the IST steps will result in a drop of peripheral insulin sensitivity resulting 

in insulin resistance and increased likelihood of DM [24]. Most patients with diabetes 

especially type 2 diabetes (T2DM) have some degree of insulin resistance [24, 31].  T2DM is 

the most common type of diabetes [32]. Insulin resistance plays a crucial role in T2DM and 

gestational diabetes (diabetes occurring during pregnancy) [32, 33]. On the other hand, type 1 

DM (T1DM) [32] results from autoimmune destruction of pancreatic beta cells [32][34][32, 

35].   

Obesity, Insulin Resistance and Diabetes Mellitus   

Obesity is an important risk factor which triggers various molecular pathways involved in the 

pathophysiology of insulin resistance and DM [10, 19]. In the following sections, we discuss 

the various molecular pathways by which obesity contributes to the development of insulin 

resistance and DM, especially T2DM.   

1. ER Stress  

Endoplasmic reticulum (ER) is a large intracellular organelle consisting of a network of tubules 

found in most eukaryotic cells except for red blood cells and spermatozoa. ER has many 

synthesizing, folding, secretory and transferring functions [36]. It produces almost all 

transmembrane molecules (lipids and proteins) and is responsible for most proteins secreted 

from the tissue such as insulin [37]. There are two types of ER known as smooth and rough or 

granular [36]. While rough ER is studded with many protein-producing structures known as 

ribosomes, the smooth ER lacks them [36]. Since ER membrane is continuous with the outer 

layer of nucleus membrane, it is involved in the folding of synthesized proteins in distinct types 

of sacs known as cisternae via different chaperones such as protein disulfide isomerase (PDI), 

endoplasmic reticulum protein 29 (ERp29), the Hsp70 family member BiP/Grp78, calnexin 
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and the peptidylpropyl isomerase family [36, 38]. In addition, ERis involved in the protein 

transport in special vesicles to the Golgi apparatus [38]. Moreover, smooth ER is included in 

the synthesis and release of lipids, steroids and phospholipids [36]. ER has other physiologic 

functions such as calcium storage [39].    

ER stress or the so-called unfolded protein response (UPR), is a term mainly referred to any 

conditions in which a higher load of activities are imposed to the ER which will disturb its 

normal function [36]. ER stress is an adaptive cellular response which cells use to align the ER 

functional capacity with higher demand [36]. In the pathologic state, the normal process of 

protein folding is disturbed and physiologic capacity of tissues (such as beta-cells) for protein 

(e.g. insulin) synthesis and secretion are significantly reduced so that the misfolded proteins 

accumulate in the cell [36]. There is growing evidence that ER stress contributes to a variety 

of disorder such as insulin resistance and DM [40]. Chronic unfolded protein responses, which 

arise from ER dysfunction due to chronic ER stress, has a negative impact on beta-cell function, 

insulin release and insulin signaling [37, 41]. Prolonged ER stress also contributes to 

inflammation dependent beta-cell death by promoting different pro-apoptotic pathways in the 

pancreatic cells [37]. It can markedly reduce the pancreatic islets' capacity for postprandial 

insulin secretion and thereby impairing glucose homeostasis [37]. ER stress impairs IST 

activities such as Akt and IRSs and induce insulin resistance in adipocytes, hepatocytes and 

myocytes [37, 42-44]. ER stress is now considered as the main inducer for insulin resistance 

and DM [37, 41].       

A variety of physiological, pathological and pharmacological agents can induce ER stress [39], 

including obesity [40, 41, 43]. Interestingly, ER stress markers such as BiP, phosphorylated 

PERK and phosphorylated α-subunit of eukaryotic translational initiating factor 2 (eIF2a) are 

up-regulated in the adipose tissue and the liver of obese subjects [43]. Besides, free fatty acids, 
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which are commonly raised in obesity, can induce ER stress in adipocytes and beta-cells [41, 

45]. Hence, obesity is usually accompanied by some degree of ER stress [41, 46-48].  

Obesity can act as a potent upstream event for insulin resistance and DM by promoting ER 

stress [40, 41, 43]. For example, obesity-induced ER stress in hepatocytes suppresses the 

normal IST via c-Jun N-terminal kinase activation and reduces the insulin sensitivity in liver 

tissue [37, 49-51]. Also, Kawasaki et. al, in 2012 demonstrated that obesity induces ER stress 

via promoting oxidative damages which in turn impairs insulin signaling in 3T3-L1 adipocytes 

[52]. They found that, ameliorating the ER stress by chaperones, improved insulin signaling in 

adipocytes [52]. Similarly, Park and coworkers in 2014 reported that the inhibition of 

cytochrome P450 4A (CYP4A) ameliorated obesity-induced ER stress which in turn, improved 

insulin sensitivity in mice [53]. Moreover, Liang et. al, in 2015 demonstrated that obesity 

dependent ER stress reduced insulin sensitivity by impairing the IR signaling in brain tissues 

of obese rats [54]. This evidence suggests that obesity induces insulin resistance at least partly 

via increasing the ER stress [55].   

2. Oxidative Stress  

Oxidative stress is a condition of imbalance between free radical species and antioxidant 

defence system of the cells in favor of the free radicals [56, 57]. This pathologic state is due to 

the generation of more free radicals and weakening of the cellular antioxidative defence system 

in the biologic environment [57, 58]. All biologic molecules with an unpaired electron(s) are 

targets of the attack by the free radicals [59-61]. There is growing evidence that oxidative 

damage by free radical species negatively affects most steps of the insulin signaling pathway 

and increases the risk of DM [61]. It can impair normal IST at several points including Akt 

signaling, Glut-4 expression/translocation/localization, IRSs activation and p38-MAPK (p38 

mitogen-activated protein kinases) pathways [61, 62]. Therefore, readjusting the balance 

between free radicals and antioxidant defensive system and lowering the rate of oxidative 
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damages is one of the important strategies for improving insulin sensitivity and preventing DM 

[62, 63]. Besides, any condition or agent which can induce oxidative stress, potentially increase 

the likelihood of DM [64].  

Obesity and higher amount of adipose tissues are associated with an increased free radical 

generation and oxidative stress [15]. It interferes with molecular mechanisms involved in the 

free radical production at many levels [15]. Recent findings suggested that obesity is a potent 

inducer for pro-oxidant enzymes generating free radicals such as Nox1, Cox2, Lox3, Mpo4, 

Cytochrome-P450, eNOS5 and Xox6 [65-71]. Therefore, a  higher rate of free radicals is 

produced under the influence of adipocyte tissues [65-71]. In addition, some evidence suggests 

a negative effect of obesity on the antioxidant defensive system [72-74]. An et. al. in 2018 

demonstrated that, the rate of superoxide dismutase (SOD), catalase (CAT) and glutathione 

peroxidase (GPx) antioxidant enzymes activities were lower than the healthy state in 

individuals with a high body mass index (BMI) [72]. Similarly, Mohseni and coworkers in 

2018 reported that SOD and CAT enzymes activity were diminished in obese children. This 

was accompanied by insulin resistance in these children [74]. They also demonstrated that by 

potentiating the cellular defensive antioxidative system reversed the obesity-induced insulin 

resistance and improved glucose homeostasis in obese children [74]. This suggests that obesity 

induces oxidative damages either by stimulating free radical production or weakening the 

antioxidant defence systems [65-74]. In addition, this evidence suggests that obesity can impair 

normal IST and induce insulin resistance by promoting oxidative stress [65-74].   

3. Beta-cell dysfunction 

 
1 NADPH oxidase  
2 Cyclooxygenases  
3 Lipoxygenase 
4 Myeloperoxidase 
5 Endothelial nitric oxide synthase  
6 Xanthine oxidase  
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Most cases of T2DM have some degree of beta-cell dysfunction [75]. There is also a lower 

functional mass of pancreatic islets producing insulin in patients with DM [76]. Any factor that 

can affect the normal function of beta-cells can disturb the normal glucose homeostasis and 

increase the risk of DM [77, 78]. There is growing evidence indicating that obesity is a risk 

factor for impaired beta-cell function and can significantly reduce their mass and efficiency 

[79-81]. This demonstrates that obesity induces various molecular pathways involved in beta-

cells apoptosis such as inflammation, ER stress and oxidative damages thereby, reducing their 

functional capacity [82-84].   

However, there are some controversies regarding the effects of obesity on beta-cells [85]. Some 

recent evidence suggests that obesity induces beta-cell regeneration and stimulates beta-cell 

expansion in a compensatory mode [85-89]. They state that beta-cell mass increases adaptively 

in response to a higher demand for glucose production and secretion in obese subjects [87]. 

This obesity-induced beta-cell proliferation suggests that we do not have a complete 

understanding of the impacts of obesity on pancreatic islets yet [90]. It seems that obesity has 

a bi-directional relationship with beta-cells. Obesity may reduce the functional capacity of beta-

cells by promoting various pathophysiologic molecular pathways as well as induce beta-cell 

proliferation in a compensatory mode in response to a higher demand for insulin.        

4. Mitochondrial Dysfunction 

Mitochondrial dysfunction is a key feature commonly observed in tissues in the diabetic milieu 

[91, 92]. Mitochondrial dysfunction negatively affects various molecular pathways and cellular 

functions in DM such as beta-cell function, insulin secretion, insulin sensitivity, glucagon 

secretion and glucose metabolism [92-95]. Therefore, improving mitochondrial efficiency is 

one of the main potential therapeutic targets for the management of patients with diabetes [6, 
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93, 95-97]. On the other hand, any factor which can induce mitochondrial dysfunction can be 

a potential risk factor for the development of insulin resistance and DM [8, 98, 99].  

There is growing evidence suggesting that obesity is accompanied by some level of 

mitochondrial dysfunction [16, 100, 101]. Obesity can impair mitochondrial function through 

several pathways such as oxidative stress and inflammation [16]. Overfeeding (as commonly 

seen in obese subjects) can overwhelm the Krebs cycle and the mitochondrial respiratory chain 

capabilities for the normal metabolism of nutrients. This will impose a higher workload to the 

mitochondria leading to mitochondrial dysfunction and oxidative stress which in turn, impairs 

insulin signal transduction resulting in insulin resistance [16]. Also, inflammation is another 

link between obesity and mitochondrial dysfunction. Obesity-induced inflammatory responses 

negatively modulate mitochondrial function resulting in impaired insulin sensitivity [16]. 

Obesity also reduces mitochondrial mass and the number of active mitochondria [102]. Ritov 

et al. in 2005 demonstrated that subsarcolemmal mitochondria were reduced in muscles of 

obese subjects and was associated with insulin resistance [102]. Most aspects of mitochondrial 

biology such as fusion, biogenesis, energetic processes and oxidative events are under the 

influence of obesity which negatively modulates mitochondrial function [103, 104]. Recently, 

Constantin-Teodosiu et al. in 2019 found that the number of mitochondrial DNA (mtDNA) 

copy, which is raised by exercise and lowering the bodyweight, is related to the level of insulin 

sensitivity [105]. They reported that obesity induces insulin resistance by decreasing the 

mtDNA number while lowering the bodyweight reversed these events [105]. Therefore, insulin 

resistance observed in the obese subjects is at least partly related to obesity-induced 

mitochondrial dysfunction [93, 106, 107].           

5. Adipokines and Adiponectin 
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Adipose tissues have many endocrine activities [108]. It means that adipocytes are no longer 

considered to be dormant cells that only stores fat and energy, but also can produce, store or 

release of many active biologic molecules as well as proinflammatory cytokines [108]. 

Adipokines and adiponectin are two separate classes of peptides with potent modulatory effects 

on insulin sensitivity. They are produced and secreted by adipose tissues into the circulation 

[109]. After the discovery of leptin as the first adipokines in 1994, hundreds of these molecules 

have been detected which are all produced by adipocytes and are closely involved in insulin 

sensitivity and glucose homeostasis [110, 111]. These adipocyte-derived peptides can disturb 

insulin signal transduction and induce insulin resistance and DM [112]. Some of these 

adipokines can improve insulin sensitivity [111, 113]. It has been suggested that while some 

adipokines impair insulin sensitivity by inducing inflammation, adiponectin improves insulin 

sensitivity through its anti-inflammatory effects [113, 114]. Adipokines can be classified as 

insulin-sensitizers (i.e. visfatin, adiponectin and fibroblast growth factor-21 (FGF-21)) and 

insulin-antagonizers (i.e. TNF-α, interleukin (IL)-6 and resistin) [66, 115]. In addition to these 

classifications, adipocytes-derived cytokines can modulate insulin sensitivity through 

mechanisms not completely elucidated yet [116].        

While adipose tissue of lean individuals secretes anti-inflammatory mediators (e.g. 

adiponectin, transforming growth factor-beta (TGFβ), apelin, IL-1 receptor antagonist, IL-10, 

IL-4, IL-13) obese adipose tissue mainly secretes proinflammatory cytokines [117]. In addition 

to adipokines, there are other potent inflammatory cytokines such as TNF-α, IL-1, IL-6, 

visfatin, resistin, angiotensin II and plasminogen activator inhibitor which produced are 

secreted by adipose tissue of obese subjects [117, 118]. All of these mentioned inflammatory 

mediators have a negative impact on insulin sensitivity and significantly increases the risk of 

DM [119, 120]. Hence, more adipose tissue, especially visceral adipose tissue, translates to 

more inflammatory responses thereby increasing insulin resistance [117, 121, 122]. Denis et 
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al. in 2017 found that higher chemokines and cytokines in plasma of African American women 

were related to an increased risk of insulin resistance and development of DM [122]. Besides, 

Rakotoarivelo et al. in 2018 demonstrated that subcutaneous and visceral adipose tissues have 

a varying profile of inflammatory cytokines in obese individuals in a different pattern compared 

to non-obese individuals [123]. Similarly, Kang and colleagues in 2016 reported that higher 

production of some cytokines such as leptin and resistin in visceral adipose tissues is closely 

associated to lower insulin sensitivity [124]. They found that, serum levels of adipocyte-

derived cytokines, as well as mRNA and protein expressions, are predictors of DM in obese 

individuals [124]. This evidence strongly suggests that inflammatory responses are a major link 

between obesity and insulin resistance [122-124].  

 
Fig 2: Possible molecular pathways involved in obesity-induced insulin resistance 

  

6. Insulin Signal Transduction Elements  

The previous sections demonstrate that obesity can impair insulin signaling pathways by the 

aforementioned mechanisms. In addition, we have evidence to demonstrate that obesity can 

exert direct insulin antagonizing effects via impairing expression/localization/activities of 

various critical elements of IST [125-127]. For example, it may reduce Glut-4 

expression/localization [125, 127-129], induces IRs polymorphism and disturb its 



14 
 

phosphorylation/activity [127, 130, 131] or impair PI3/Akt signaling pathways [127, 132, 133]. 

These direct effects potentially impair insulin signaling pathways and thereby, reduces insulin 

sensitivity. 

Kahn and coworkers in 1993 demonstrated that high-fat diet dependent obesity down-regulated 

Glut-4 expression in rats [125]. Seraphim and colleagues in 2001 provided data demonstrating 

that obesity altered Glut-4 expression which in turn reduces insulin sensitivity [129]. MacLaren 

et al. in 2008 demonstrated that obesity has strong effects on the genes involved in insulin 

sensitivity such as PI3, Akt2 and Glut-4 [127]. Atkinson et al in 2013 suggested that obesity 

induces insulin resistance by reducing Glut-4 expression which was reversed by Glut-4 

overexpression in high-fat diet mice [126]. Kubota et al. in 2016 provided further evidence 

indicating that obesity-induced insulin resistance is related to the altered 

expression/localization of IRs in the hepatic cells [131]. Saravani and coworkers in 2017 found 

that central obesity is associated with an altered profile of Glut-4 and IRs expression in adipose 

tissues in an Iranian population of obese subjects [130]. This evidence suggests that obesity 

can negatively modulate the expression, localization or activity of various IST elements [127, 

130-133]. These effects have a negative impact on insulin sensitivity and increase insulin 

resistance. Hence, we can conclude that the negative effect on genes involved in insulin 

signaling is another possible pathway by which obesity impairs insulin sensitivity and induces 

insulin resistance.        
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Table 1. Possible molecular interactions between obesity and insulin resistance (ER= 
endoplasmic reticulum, IST=insulin signal transduction, Glut-4=glucose cotransporter type 4, 
IRSs=insulin receptor substrates, Akt=protein kinase B) 

Molecular mechanisms  Effects on insulin sensitivity  References  

ER Stress 
Overwhelms ER capacity, induces ER stress and 

thereby, impairs normal process of protein 
assembly/release   

[37, 40, 41, 
43, 49-55] 

Oxidative Stress 
Strongly stimulates upstream events inducing 
oxidative damages, and so promotes oxidative 

stress-dependent insulin resistance   
[65-74] 

Beta-Cell Dysfunction Reduces functional mass of beta-cells by 
promoting apoptosis and impairs beta-cell function  [79-81] 

Mitochondrial 
Dysfunction 

Disturbs normal mitochondrial functions and 
induces mitochondrial dysfunction leading to 
improper insulin secretion and lower levels of 

insulin sensitivity   

[93, 106, 107] 

Proinflammatory 
Mediators 

Promotes inflammatory responses and thereby 
inflammation-induced insulin resistance  

[117, 119-
122] 

Insulin Signal 
Transduction Elements 

Negatively modulates insulin signaling pathways 
by disturbing the expression/activities of IST 

elements as Glut-4, IRSs, Akt and etc.  

[127, 130-
133] 

 

Conclusion  

The prevalence of insulin resistance among obese subjects is higher than the non-obese 

population. This observation led to the hypothesis that "obesity induces diabetes mellitus" 

which was confirmed by experimental and clinical evidence. However, the precise molecular 

interactions between obesity and insulin resistance are not well elucidated. Based on the current 

knowledge, we propose that obesity can impair insulin signaling pathways via at least six 

molecular mechanisms such as promoting ER stress, inducing oxidative damages, enhancing 

inflammatory events, impairing the IST elements' activity, lowering the pancreatic beta-cell 

efficiency and by developing mitochondrial dysfunction.  
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