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Editorial

Celebrated Econometricians: Katarina Juselius and Søren
Johansen
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This Special Issue collects contributions related to the advances in the theory and practice
of Econometrics induced by the research of Katarina Juselius and Søren Johansen, whom
this Special Issue aims to celebrate.

The research of Katarina and Søren has been advancing Econometrics on fundamental
issues, such as on common trends, equilibrium relations, adjustment to the (dis-)equilibrium
relations, rationality of agents and on the discussion of resulting policy recommendations.
Their research addressed issues of representation, identification, estimation, inference and
policy implications, developing methodology and providing inspiring and paradigmatic
applications in several applied areas of Economics.

One main body of work in Katarina’s and Søren’s research concerns Cointegration
analysis using Vector Autoregressions (VAR), often referred to CVARs, both when the
variables are integrated of order 1 (I(1)) and 2 (I(2)). Their contributions go beyond CVARs
and have a very wide range, which is also partly reflected in the contributions of this
Special Issue.

As a collection, the papers appearing in this Special Issue continue this tradition by
providing advances on several topics, many of them related to the econometric analysis of
nonstationary time-series. At the same time, from a complementary angle they also offer
a recent perspective on the scope, breath and importance of some of the contributions of
Katarina and Søren to Econometrics.

The papers in this Special Issue are both theoretical and applied, and they are grouped
in the following areas for simplicity of exposition in this editorial. A first group of papers
provides a historical perspective on Katarina’s and Søren’s contributions to Econometrics.
A second group concentrates attention on representation theory; a third one focuses on
estimation and inference. A fourth one deals with extensions of CVARs for modeling and
forecasting, and a final fifth group is centered on empirical applications. These groups of
papers are reviewed below; a final section of this editorial is dedicated to our many thanks
associated with the preparation of this Special Issue.

1. A Historical Perspective

A first set of four papers, Archontakis and Mosconi (2021), Juselius (2021), Mosconi
and Paruolo (2022a, 2022b), focuses on some of the contributions from Katarina and Søren
to Econometrics, especially on early developments of cointegration.

Two separate interviews (Mosconi and Paruolo 2022a, 2022b), offer the reader a
glimpse of Katarina’s and Søren’s motivation, hurdles and accomplishments in developing
their research agenda. While several other joint interviews of Katarina and Søren exist,
the ones in this Special Issue focus on their distinct contributions and hopefully provide a
better account of their personal points of view.

Katarina’s paper (Juselius 2021) is a complement to her interview in Mosconi and
Paruolo (2022a); in this paper she gives account of her ’Research Odyssey’ associated
with the idea to understand macroeconomic data. She discusses rational and imperfect
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knowledge expectations and how to learn from the many periods of crisis. The paper gives
a concise but comprehensive overview of Katarina’s model building approach based on
“searching for a theory that fits the data” rather than “data that fits the theory”.

Archontakis and Mosconi (2021) provide an bibliometric analysis on Katarina’s and
Søren’s publications using a multivariate Bass model. They distinguish methodological and
applied papers citing Katarina’s and Søren’s research and find cross-fertilization between
the two areas. They show that the number of applied papers per quarter citing Katarina’s
and Søren’s work does not seem to have peaked yet, while the methodological literature
referring to their work reached the peak after the turn of the century, with a flat trajectory
after the maximum (a similar behavior is observed in a minority of Nobel prize winners,
and it is defined as “staying power” in the literature).

2. Representation

A second set of four papers (Barigozzi et al. 2020; Bauer et al. 2020; Franchi and Paruolo
2021; Johansen 2019) is concerned with representation theory, which plays a central role
in Cointegration. An example of this is Granger’s Representation Theorem, which shows
that Cointegration (Common trends) and Equilibrium Corrections Mechanism (ECM) are
dual concepts.

Søren’s paper (Johansen 2019) derives the CVAR(∞) representation, and the corre-
sponding finite order approximation, for a subset of observed variables generated by a
higher dimensional CVAR model with lag order 1, which also includes a set of unobserved
strongly exogenous random walks. The paper discusses cointegration, non-causality and
weak exogeneity conditions for the observed variables and is motivated by some of the
hypotheses proposed in Hoover (2020) in this Special Issue. The two papers allow to
connect more explicitly cointegration analysis with the approach to modeling based on
causal graphs.

Barigozzi et al. (2020) consider I(1) dynamic systems with fewer shocks than variables
and that are in this way “singular”. Examples of these systems belong to the classes of
Dynamic Factor Models (DFM) and DSGE models. They discuss conditions for existence
of cointegration and ECM and discuss how the VAR representation can be chosen to have
finitely many lags.

Bauer et al. (2020) discuss the system representation of VARMA processes with any
integration order at any frequency, using a particular parametrization called the canonical
form. They discuss the topological properties of the parametrization, using the cases of
I(1) and I(2) systems at zero frequency as illustrations. These properties are used to discuss
sequences of hypotheses in the I(1) and I(2) cases.

Finally, Franchi and Paruolo (2021) discuss the notion of basis of the cointegration
space when processes are integrated of any integer order. They show that polynomial
cointegration vectors correspond to root functions, for which several results from the
literature exists. They show that several polynomial cointegration spaces can be defined
for I(d) systems with d = 2, 3, . . . , but that a relevant notion (invariant to this choice) is the
one of canonical sets of root functions, which act as bases of these spaces. The I(2) case is
used to illustrate how some results from the literature can be applied to reduce the number
of elements in the canonical set of root functions, i.e., how to make this basis minimal in an
appropriate sense.

3. Inference

The third set of four papers is concerned with the derivation of new (asymptotic)
results for estimation and inference in cointegrated systems (Bernstein and Nielsen 2019;
Hansen 2018; Kurita and Nielsen 2019; Li and Bauer 2020).

Hansen (2018) considers GMM estimators for the Reduced Rank Regression model and
shows that it is identical to the Maximum Likelihood Estimator under Gaussianity derived
in Johansen (1988). This shows that Normality is not needed to motivate the Reduced Rank
Regression estimator.
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Bernstein and Nielsen (2019) consider the asymptotic distribution of the Likelihood
Ratio (LR) test for cointegration rank and of the LR test for known cointegration vectors
when the true cointegration rank is lower than the one in the tested hypothesis. They
illustrate their results with an analysis of monthly US treasury bonds with one and two
year maturity, testing for a stationary yield rate spread.

Kurita and Nielsen (2019) consider partial models with breaks in deterministic terms
and Pseudo LR test for the cointegration rank; they derive and tabulate the relevant
limit distributions. They illustrate their results with the analysis of partial system of UK–
Germany log trade balances and the wedge between unit labor costs, conditional on UK
and German Gross Domestic Products and the terms of trade.

Li and Bauer (2020) consider estimation in I(2) VAR models when the lag length is
chosen as an increasing function of sample size, to allow for VARMA-type data generating
processes. Their result are similar to the ones obtained for I(2) systems with fixed lag-length
under appropriate conditions on the growth of the lag-length.

4. Modeling and Forecasting

A fourth set of four papers is concerned with modeling and forecasting (Castle et al.
2017; Haldrup and Rosenskjold 2019; Hetland 2018; Hoover 2020).

Hetland (2018) proposes and discusses an extension of the CVAR model called the
Stochastic Stationary Root Model. Properties of the process are discussed. Because the
likelihood cannot be computed in closed form, a particle filtering approximation is proposed
and discussed.

Haldrup and Rosenskjold (2019) consider modeling log death rates by age and time,
using US and French mortality tables. They propose a parametric model and fit it with a
two step procedure; this allows them to extract four common factors that are later analyzed
as a CVAR.

Hoover (2020) discusses the use of CVARs for the analysis of causality links among
variables in the form of Directed Acyclical Graphs. An earlier version of this paper gen-
erated the problem addressed in Johansen (2019), and the published version of the paper
illustrates Johansen (2019)’s results in this context.

Castle et al. (2017) discuss systematic forecast failure, called forediction failure. They
propose a step-indicator saturation test to check in advance for invariance of forecast
performance to policy changes. A simulation study is used to estimate the potency of this
invariance test.

5. Applications

A final set of three papers focuses on applications, (Gjelsvik et al. 2020; Goldberg et al.
2020; Lütkepohl and Netšunajev 2018).

Lütkepohl and Netšunajev (2018) study the relationship between the stock market
and monetary policy. They consider a CVAR for log industrial production, log consumer
prices, log non-energy commodity prices, the log Euro Stoxx price index and the 3 month
Euribor rate. They extend the CVAR model to include a two-states Markov-switching
mechanism for the conditional covariance matrix. They use this model to test alternative
identification schemes connecting the variables, and produce impulse responses for the
chosen specification. For this specification, a contractionary monetary policy shock induces
long-lasting (albeit long-run neutral) negative effects on production and on the price level.

Gjelsvik et al. (2020) analyze wage formation in Norway using data from manufactur-
ing, private services and the public sector. They use a partial model of log wages in these
three sectors along with the log of the consumer price index, conditionally on a set of other
variables. They also allow for broken deterministics and use the critical values derived
in Kurita and Nielsen (2019) for cointegration rank determination. They conclude that
collective wage negotiations in manufacturing have defined wage norms over the period
1980Q1-2014Q4.

3
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Goldberg et al. (2020) consider the Bilson–Fama regression of future change of the spot
exchange rate on the forward premium and find break points for nearly every country. This
and further analyses question the widespread view that currency returns are predictable or
that developed country markets are less rational.

6. Thanks

We would like to thank all contributors to this Special Issue: their willingness to
participate and resilience to the editorial review process is what made this Special Issue
possible. We also wish to thank Kerry Patterson for asking us to act as Guest Editors for
this Special Issue and to Marc Paolella and the Editorial Board of Econometrics for their
patience in waiting for it to slowly materialize.

Last but not least, we would like to thank Katarina and Søren for their research,
teaching and example. We are indebted to them in many ways, including for their inspiring
research in Econometrics.

Conflicts of Interest: The authors declare no conflict of interest. Information and views set out in this
paper are those of the authors and do not necessarily reflect the ones of the institutions of affiliation.
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A Conversation with Katarina Juselius

Rocco Mosconi 1,* and Paolo Paruolo 2
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2 European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy;
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Abstract: This article was prepared for the Special Issue ‘Celebrated Econometricians: Katarina
Juselius and Søren Johansen’ of Econometrics. It is based on material recorded on 30–31 October 2018
in Copenhagen. It explores Katarina Juselius’ research, and discusses inter alia the following issues:
equilibrium; short and long-run behaviour; common trends; adjustment; integral and proportional
control mechanisms; model building and model comparison; breaks, crisis, learning; univariate
versus multivariate modelling; mentoring and the gender gap in Econometrics.

Keywords: cointegration; CVAR; I(1); I(2); common trends; adjustment; breaks; model comparison;
gender gap

JEL Classification: C32; B41; C01; C10; C30; C52

Introduction

On 30–31 October 2018 the authors sat down with Katarina Juselius in Copenhagen
to discuss her contributions to Economics and Econometrics. Figure 1 shows photos of
Katarina taken on that day; other recent photos are shown in Figure 2. The list of her
publications can be found at https://www.Economics.ku.dk/staff/emeriti_kopi/?pure=
en/persons/142900.1

In the following, frequent reference is made to Vector Autoregressive (VAR) models
with Cointegration restrictions, labelled as CVAR, see Juselius (2006)–in particular Part II
on the I(1) model and Part V on the I(2) model. In the rest of the article, questions are in
bold and answers are in Roman. Text additions are reported between [ ] or in footnotes.

What do you think of micro-based versus macro-based Macroeconomic models?

I am sceptical to micro-based macro, partly because I have always been critical of the
representative agent’s approach. In the 1970s there appeared many excellent publications
discussing its many unrealistic assumptions on aggregation. But for some reason, the
criticism lost steam, the representative agent with rational expectations survived, and micro
foundations of macro models became a “must” in academic work.

For me it is puzzling why the criticism did not have a greater impact on the mainstream
theory considering that there are so many important aspects on the aggregate economy–
such as unemployment, inflation, GDP growth, exchange rate, interest rate, inequality,
speculation–that cannot be properly addressed in a representative agent’s framework.

Considering all the major problems we face today both in the domestic and the
international economy, it is obvious that more than ever we need an empirically well
founded macro-based Macroeconomics. While Keynes already laid the foundations for such
a theory, the old-fashioned Keynesianism needs of course to be modified to account for what
we have learned about expectation formation based on imperfect knowledge/incomplete
information, persistent equilibria, coordination failure and much more.

5
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Figure 1. Katarina Juselius, 30 October 2018 in Copenhagen.

Joseph Stiglitz jointly with coauthors has proposed a new approach “disequilibrium
Economics”, which I think is a promising candidate for such a theory. Whether Stiglitz’s
disequilibrium Economics will change the direction of Economics is hard to predict, but
based on previous experience perhaps one should not be too optimistic. When confronted
with serious criticism, the Economics profession has too often responded with silence. For
example, after the financial crisis, many methodologically oriented scholars, such as the
editors and contributors of the Journal of Economic Methodology, were convinced the time
for change had finally come, see Colander et al. (2009).

Numerous books were published addressing the mistakes and the misconceptions
leading to the crisis, explaining why things went so wrong, and what could have been
done instead. It might seem absurd, but the majority of the profession continued along the
same path, modifying some assumptions here and there, but basically continuing as if the
financial crisis was just a black swan.

I am often called “heterodox”, “not an economist” or just ignored simply because I
openly criticize mainstream models for relying on assumptions that do not describe the
economic reality well enough. One of our prominent mathematical statisticians, Niels
Keiding, once asked me “Why are economists not afraid of empirical data? Medical doctors
sure are”. While I had no really good answer, I know how hard it has been to raise a serious
debate about the great divide between major empirical findings and standard mainstream
assumptions, in spite of their important consequences for macroeconomic policy.

How can policy-makers learn about different policy options from a CVAR? Can CVAR
answer policy questions?

I believe that policy-makers can primarily benefit from a CVAR analysis because
it can improve our understanding of the dynamic transmission mechanisms of basic
macroeconomic behaviour. For example, policy-makers facing a problem mostly think of
one endogenous variable (the variable of interest) being pushed by a number of exogenous

6
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variables. In practice, the assumed exogenous variables often exhibit strong feed-back
effects from changes in the “endogenous” variables.

Figure 2. Katarina Juselius, 3 October 2016 in Milan.

The CVAR does not make use of the endogenous–exogenous dichotomy, but studies
the economy as a system allowing for important feed-back effects in all equations of the
system. Since policy-makers often are quite conservative in their economic beliefs, a well
done CVAR analysis would highlight certain aspects of the model where such beliefs might
be incorrect. Hence, a CVAR analysis could help policy makers avoid making bad decisions
and, subsequently, to be criticized for them.

Another way a CVAR analysis can be useful is by learning from other countries’
experience. For example, Finland, Sweden, and Japan experienced a housing bubble in the
early nineties that resembled the more recent house price crisis in 2007. By applying a CVAR
analysis to those countries–looking at the crisis mechanisms using the same perspective–
policy-makers could have learned more about which policies are likely to work and which
are not. They might even have been able to recognize the approaching crisis in time to
prevent it.

The usefulness of addressing counter-factual policy questions with the CVAR might be
more questionable. Judea Pearl would argue that a model like the CVAR is not appropriate,
because the policy variables are set by the policy-maker and are not stochastically generated
by the market as the VAR variables are assumed to be. Whether his–mostly theoretical–
argument is empirically important is hard to say.

It is certainly the case that a policy variable like the federal funds rate is not behaving
like a market determined stochastic variable. But at the same time, a CVAR analysis of the
term structure of interest rates–inclusive the fed rate–seems to work reasonably well. But,
perhaps one should be a little cautious with the conclusions in such as case.

What should we learn from crisis periods?

When the economy runs smoothly it doesn’t matter much if you have a slightly wrong
model, because things work anyway. When you are in a crisis period it matters a lot
whether you correctly understand the economic mechanisms and how they work in the
economy. The cost of wrong models can then be huge.

The question is, of course, whether it is at all possible to estimate economic mechanisms
in a crisis period. For example in the official Danish macro model, the financial crisis is left
out altogether with the motivation that it is too extreme to be analyzed econometrically.
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I disagree. By experience I know it is possible to get plausible estimates over periods
containing a serious crisis.

For example, I have used the CVAR model to address two very serious crisis periods:
the house price crisis in Finland (Juselius and Juselius 2014) in the early nineties, and the
more recent financial crisis in Greece (Juselius and Dimelis 2019). Both convinced me that it
is possible to uncover the destructive forces that unfold during a crisis and that this would
help policy-makers to mitigate the worst consequences of a crisis. So in principle I believe
it would be a big mistake to leave out a crisis from the sample period.

People have sometimes asked me: “How can you use such periods, which are truly
extraordinary, and then expect to find the mechanisms that apply in normal times”. This is
clearly a relevant question and I may not be able to provide more than a tentative answer: If
the sample covers a crisis episode, then one usually needs to apply the I(2) model because
it is explicitly specified to account for changes in equilibrium means and/or growth rates.
In addition, it is specified to distinguish between levels, changes and acceleration rates, of
which the latter is a key aspect of the crisis dynamics.

In normal periods, however, you will observe that acceleration rates are essentially
zero. Hence, the acceleration rates take the role of crisis dummies in the I(2) model.
However, it should also be acknowledged that the crisis mechanisms of the model may
no longer be relevant after the crisis. For example, in the Greek analysis, the crucial
crisis mechanism–the strong self-reinforcing mechanism between the bond rate and the
unemployment rate–is likely to disappear or at least to change somewhat when the crisis is
finally over.

But based on my experience, the main CVAR results seems to hold both for the pre-
and post-crisis period. Perhaps the great variability of the data during a crisis period is also
a good thing as it is likely to improve the precision of the estimates.

The I(2) model is related to the notion of integral and proportional control developed
in the 1960s and 1970s. Can the I(2) analysis be useful for understanding the
pronounced persistence away from long-run equilibrium relations?

It is hard to come up with any argument to why the I(2) analysis would not be useful,
as the I(2) model is basically designed for integral control. However, the I(2) model is useful
not just in integral control situations, but in a more general setting. If growth rates exhibit
persistence and the levels move persistently around long-run trends, then the I(2) model
should naturally be the preferred choice.

Also, the I(2) model has also a richer structure than the I(1) model and it has frequently
given me insights that I would not have gotten otherwise. This has, in particular, been
the case with house and stock prices and the effect of their persistent movements out of
equilibrium on the aggregate economy. Without using the I(2) model, I do not think it
would be possible to capture the complex mix of error-increasing and error-correcting
behaviour in house and stock prices that ultimately led to the financial crisis.

It is quite interesting that economic time-series seem to have become increasingly
persistent in the period following financial deregulation. At least I have often found that
the I(2) model cannot be rejected based on the trace test for this period. I might have been
naive, but I thought this would lead to a greater interest for I(2) applications. However,
when you make a search of “I(2)” in the Economics literature, you do not find many papers.
It is almost as if this fabulously rich model does not exist. But, of course, the I(2) model is
more complex than the I(1) model, albeit not more difficult than many other models.

Perhaps, people stay away from the I(2) model because they think that unit roots do
not make sense in economic data. And, of course, economic series cannot drift away forever
as unit root processes in theory can. If one considers a unit root to be a structural economic
parameter, then I agree that neither I(2) nor I(1) would make much sense. But, if one thinks,
like I do, that unit roots are useful approximations that measure the degree of persistence
of economic time series, then it makes a lot of sense.

I believe macroeconomists could do much better by exploiting the richness of the I(2)
model, rather than just ignoring it.
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Do you think the notion of near unit root is crucial for measuring persistence?

I certainly do because near unit root Econometrics provide some powerful tools that
help us to uncover important mechanisms that have generated persistence in key economic
time-series.

Take for example the unemployment rate, defined as a ratio between zero and one.
Because of this, many economists would argue that it is a stationary variable and, hence,
should not be modelled as a unit root process. Nevertheless, it is a very persistent near unit
root variable for which the largest inverse root [henceforth simply referred to as root] of
the autoregressive characteristic polynomial is typically larger than 0.95.

If you have a sample size of say 80 quarterly observations, you would often not be
able to reject the null of a unit root in this case. Many empirical econometricians would,
therefore, argue that the unit root approximation is fine as long as the unit root hypothesis
cannot be rejected based on the conventional 5% rule. But the economist would nonetheless
(correctly) argue that it is not a structural unit root.

If, instead, we have a sample of 3000 daily observations and an empirical root of 0.99,
then this empirically large root is likely to be rejected as a unit root, even though the degree
of persistence is much higher in this case. The 5% rule has the consequence that the larger
the sample size, the easier it is to reject a unit root and vice versa. Hence, sticking to this rule
implies that an econometrician would treat a persistent (0.9 root) variable as nonstationary
and a persistent (0.99 root) variable as stationary, whereas an economist would argue that
both are stationary independent of the test outcome. Not exactly a situation of clarity!

I hold the pragmatic view that if persistence–for example a long movement away
from equilibrium–is an important empirical property of a variable or relation, then we
should try to model that property. And one way of doing it is by classifying one’s data and
relations as I(0), near I(1) and near I(2) and relate them to short run, medium run and long
run structures in the data.

For example, a powerful way to uncover the puzzling persistence in unemployment
rates is to collect the relevant data and estimate the I(2) model, then find out which other
variable(s) are cointegrated with the unemployment rate and how the adjustment takes
place in the long, medium and the short run, and which the exogenous forces are. If
competently done such a model analysis would help us to understand much more about
unemployment persistence and its causes than a conventional model analysis. But near-
unit-root Econometrics would probably require a lot more research to offer well worked
out procedures for empirical modelling.

I have used this idea to understand the Phillips curve, which has been declared dead
numerous times, but still seems to be how policy makers think about unemployment and
inflation. The former looks very much like an I(1) series with a small but persistent drift,
whereas the latter is almost stationary with a small and persistent drift. That the two series
have a different order of persistence explains the lack of empirical support for Phillips
curve: inflation rate, being a near I(1) variable, cannot cointegrate with unemployment rate,
being a near I(2) variable. To recover the Phillips curve we need to add at least one more
previously omitted (ceteris paribus) variable.

Edmund Phelps argued in his “Structural Slumps” book, see Phelps (1994), that the
natural rate of unemployment, rather than a constant, is a function of the real interest
rate–possibly also the real exchange rate. I found that the long persistent swings in unem-
ployment rate were cancelled by cointegration with the long-term interest rate implying
that they shared a similar persistence and that the residual was cointegrated with the
inflation rate. Thus, by exploiting the persistence in the data it was possible to recover
the Phillips curve with a Phelpsian natural rate (Juselius and Dimelis 2019; Juselius and
Juselius 2014) and, in addition, to learn a lot more about the internal system dynamics and
the exogenous forces that had pushed the unemployment rate and the interest rate out of
their long-run equilibria.

This way of exploiting the data, I have sometimes called the Sherlock Holmes approach
to empirical modelling. By following it you will find results that either support or reject

9



Econometrics 2022, 10, 20

your priors but you will also find new unexpected results. If you do not sweep the puzzling
results under the carpet, but let them rest in your mind, you may very well later come
across some new results that put the old puzzles in a new light. These are moments of
pure happiness.

At one stage it struck me that I almost always needed to add one or two additional
variables to my hypothetical economic relations to achieve stationarity. A systematic feature
usually means a common cause. In retrospect, it took me embarrassingly long to realize that
the common cause was related to expectations in financial markets formed by imperfect
knowledge/incomplete information. Subsequently, I have learnt how crucial the impact of
complex feedback dynamics from the financial sector is on the real economy.

Should inflation and interest rates be treated as stationary, or as I(1) even if they have a
long-run equilibrium value?

As I already discussed above, my view of empirical modelling is rather pragmatic,
as it has to be because every realistic application is immensely demanding. It is always a
struggle to make sense of macroeconomic data relative to the theory supposed to explain it.
In this struggle the “perfect” or the “true” easily becomes the enemy of the “good”. This
applies for sure to the modelling of inflation and interest rates: both of them are crucial for
the economy and none of them obey mainstream economic theory.

Like unemployment rate, interest rates can be assumed to be bounded from below by
zero (or that is what we previously thought) and from above by some upper limit. Inflation
is not necessarily bounded but central banks usually do whatever they can to make it so.
Whatever the case, both of them are persistent but differ in degree.

Inflation rates look more like a near I(1) process, whereas interest rates move in long
persistent near I(2) swings around something that could possible be interpreted as a long-
run equilibrium value. The question is of course what “long run equilibrium” means if
economic relationships do not remain stable over long periods of time. For example, the
period before and after financial deregulation describe two completely different regimes.
Few equilibrium means remain constant across these two periods.

What is important in my view is that the inverse roots of the characteristic polynomial
associated with nominal interest rates often contain a double (near) unit root–or rather one
unit root and one near unit root. No theoretical prior would predict such an empirical
finding and based on the conventional specific-to-general approach one would probably
have swept this puzzling persistence under the carpet. But based on the general-to-specific
approach it has been possible to suggest a coherent narrative in which a crucial element is
financial market expectations based on imperfect knowledge (Juselius and Stillwagon 2018).

Because the stochastic trend in inflation is persistent of a lower degree than nominal
interest rates, one would typically not find cointegration in a bivariate model of inflation
and one interest rate and one would have to add at least one more variable. It turns out
that by combining inflation with the spread between a short and a long interest rate one
usually finds cointegration. This is because the long persistent swing in nominal interest
rates are annihilated in the spread which then is cointegrated with the inflation rate. A
plausible interpretation is that inflation is cointegrated with expected inflation measured
by the spread.

The similarity to the Phillips curve model is quite striking: there we had first to
combine unemployment rate with the (long term) interest rate to obtain a stationary
cointegration relation for inflation. Thus, the long term interest rate needs to be cointegrated
with either the unemployment rate or the short term interest rate to get rid of the persistent
swings so that what is left can cointegrate with inflation rate.

Whatever the case, the real interest rate is generally too persistent to be considered
stationary even though it is claimed to be so in many empirical papers. Such a claim is often
based on a badly specified empirical model and, hence, a sizeable residual error variance
that makes statistical testing inefficient. To me, such an analysis represents just a missed
opportunity to learn something new.
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The CVAR model has parameters related to long-run relations and to short-term
adjustment. Other approaches in the literature focus only on the long-term relations,
like for example Fully Modified Least Squares. What do you think is the advantage of
CVAR over other approaches essentially focusing on the long-run relations?

Believing that a long run relation without the corresponding short-run dynamics is
sufficient for understanding an economic problem is like thinking you only need your feet
but not your eyes to get to your destination. In a certain sense, bivariate cointegration in a
non-stationary world corresponds to correlation in a stationary world. It tells you there is a
causal relationship but you need the short-run dynamics to understand the causal links.

There are numerous examples in my publications where it was the short-run dynamics
that made me rethink the causal mechanisms of the economic problem. The application
to the monetary transmission mechanisms in Denmark–discussed in every detail in my
cointegration book (Juselius 2006)–is a good example. I found a stable, completely plausible
money demand relation consistent with economic theory, but the estimated short-run
dynamics contradicted that theory on essentially all counts. I then spent 10–20 years to
understand why.

Another example of why the dynamic adjustment is so crucial is an empirical appli-
cation to climate change which was done in collaboration with Robert Kaufmann [Robert
hereafter], from Boston University (Kaufmann and Juselius 2016). I met Robert at a climate
conference in Italy where he introduced me to a fascinating climate data set obtained from
ice drilling in Vostok. The data base contained ten climate variables (among others: surface
temperature, sea temperature, sea levels, CO2, methane) measured over 400,000 years and
based on a frequency of one observation per 1000 years. The dominant feature over this
period is the regular occurrence of glacial cycles.

The well known Milankovitch theory was able to associate them with orbital variations
such as precession, eccentricity and obliquity of the Earth relative to the Sun. However,
the power to explain the glacial cycles with these measures was rather poor and most of
the variation in temperature over the glacial cycles remained unexplained. Our purpose
was to do better based on a CVAR for 10 climate variables conditional on the Milankovitch
orbital variables.

The cointegration results showed that the long-run forces were important, but not as
important as the dynamic feedback effects which were able to explain most of the variability.
Our conclusion was that if you disregard the short-term adjustment, you will only explain
a small part of the glacial cycle phenomena, whereas if you include the short-run feedback
you can do much better.

Of course, this type of data and models are not meant to predict what will happen
next year, but to learn something about the physics of climate change. For example, our
results showed that CO2 was the major determinant of surface temperature in this long
period without anthropogenic effects on the climate. The results also showed that the CO2
effect was strengthened by the feedback dynamics. This became strikingly evident when
we estimated the effect on temperature from doubling CO2 in the atmosphere.

While most climate models would predict that a doubling leads to an increase of
roughly 3◦ or 4◦ Celsius, our CVAR model predicted an increase of almost 11◦ Celsius.
That’s a difference between something which is a disaster and the end of our civilization.
But every time climate scientists update their models it is a little scary to learn that the
new version shows that the previous one had again underestimated the effect of CO2 on
our climate.

Did you find I(2) behaviour in that case?

The data display long persistent cycles, between 80,000 and 100,000 years long, which
showed up in the model as quite large complex pairs of inverse characteristic roots. The
trace test, however, rejected I(2). I believe this was partly because the CVAR is not (yet)
designed to handle large cyclical roots close to the unit circle, partly because of the com-
pression of data into 1000 year averages. I would think that if instead we had access to
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100 year observations there would be strong evidence of I(2). This is actually something I
still would be keen on studying.

Your difficulties in publishing the result on CO2 seem to suggest that journals and
academia in general are somewhat conservative

“Somewhat conservative” is clearly an understatement. But, science is conservative
and for good reasons. One should not jump away from an established path at every whim.
What is harder to accept is the stubborn conservatism that is more about protecting one’s the-
oretical stance. I always thought Economics was exceptionally conservative, partly because
of its axiomatic foundation which makes it less prone to listen to empirical arguments.

The difficulties with getting our CVAR results published in climate journals suggest
that it can also be difficult in physical sciences. I guess that the CVAR methodology may
seem difficult and strange the first time you come across it. By now Climate Econometrics
has become much more established and it is probably easier to publish papers today using
cointegration techniques.

How can the CVAR methodology affect the learning process in economics?

If adequately done, the CVAR structures the data in economically relevant directions
without imposing theory-consistent restrictions on the data prior to testing. By this you
give the data the right to speak freely about the underlying mechanisms rather than to
force them to speak your favourite story. Macro-data are quite fragile–one realization at
each time t from the underlying process–and if you torture them enough they will usually
confess. This, I believe, may partly explain the confirmation bias that seems quite prevalent
in empirical Economics and which is not how to bring about innovation in learning.

The conventional specific-to-general approach starts with a theory model derived
from some basic assumptions which are seldom tested. One example is the assumption of
what is endogenous and what is exogenous in the model. Another is the assumption that
omitted ceteris paribus variables do not significantly change the obtained results. Both of
them tend to be rejected when tested within the CVAR model, and both of them tend to
affect the conclusions in a very significant way. If the basic hypotheses are not correct, then
the scientific value of the whole modelling analysis is of course questionable, because then
it would be impossible to know which results are true empirical findings and which are
just reflecting the incorrectly imposed restrictions.

Another example is the assumption of long-run price homogeneity which is an im-
plicit assumption of most economic models. Central banks are mandated only to control
CPI inflation, which makes sense under long-run price homogeneity. But over the last
30–40 years, long-run price homogeneity between CPI prices, house prices and stock prices
has consistently been rejected due to the fact that stock prices and house prices have be-
haved completely differently from CPI prices. Central banks have focused primarily on CPI
inflation, and by doing so, contributed to the devastating house and stock price bubbles
and a steadily growing inequality in our societies.

I believe these problems could have been avoided if more attention had been paid
to the signals in the data which were strong and clear after the financial deregulation in
the eighties. But academic professors and policy makers were looking at the data through
lenses colored by conventional theory, such as efficient markets, rational expectations and
representative agents. Inconsistencies with data evidence were labeled theoretical puzzles
and had no consequence for practical policy.

What can we do to change the status quo?

The question is of course if it is at all possible for empirical Econometrics to break the
monopoly of theoretical Economics. While I do not have an answer to this question, I can
at least refer to discussions I have had with other scholars.

One possibility is to make use of competitions like in other areas such as architec-
ture. For example, if the government wants to build an opera house, they announce a
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competition and whoever has the best project will win the competition. Similarly, if the
government want to understand what the mechanisms are behind the soaring house and
stock prices in order to avoid a new crisis, they could announce a competition. The team
that most convincingly is able to explain past and present crisis mechanisms should win the
competition. Of course, I can think of many relevant objections to such competitions, but in
any case it might be an important step to bring Macroeconomics closer to empirical reality.

I have discussed these issues many times with David Colander [Dave hereafter], one
of the most innovative persons I have ever met. Some years ago he presented a proposal
for how to reform university teaching of Economics based on a research oriented line and a
more applied line. As the majority of students end up working for governments, research
institutes, or institutions like the IMF, the ultimate aim was to offer a better training in how
to solve real world problems.

On a practical level, one of Dave’s suggestions was a big database into which the
government as well as other public and private institutions could upload problems they
wanted to be solved. University professors would then be allowed to pick problems related
to their area of expertise, work out a proposal for how a research group of professors and
students would address the problem, and submit the application to the relevant agency.
This would have the advantage of bringing important problems closer to the university and
would train students to solve real problems under qualified guidance. I should mention
that the above is only a small part of his elaborate proposal which was then available as a
written memo.

Is empirical research in Economics different from Physical Sciences? Do you think
that changing the theories starting from evidence in the data is easier there?

Physical sciences tend to agree, to a larger extent than Economics, upon common rules
based on which the profession is willing to accept results as being scientifically valid. But
when this is said not everyone in physics agrees. For example, when I sometimes discuss
the difficulties in social sciences with my son, who is a physicist, he argues that it’s more or
less the same in his field.

I believe there is a difference in grade in the sense that physical laws are laws in a
much stricter sense. Once they have been established, after being suitably tested, they are
hard to challenge, whereas economic laws are not “laws” in the same sense, they are much
more mental inventions. Hence, one would think that the scientific community would
be more willing to modify or change basic assumptions when they appear incompatible
with reality.

In your applied research you address different problems: how do you select your
research topics?

The short answer is that my research topics are forced on me by the many “why”s I
stumble over in my CVAR analyses. This process started already with my first real economy
application to the Danish money demand problem in the late eighties. I was fortunate to
find empirical support for a stable, plausible money demand relation.

This was something I was really happy about, but there were other puzzling “why”s
associated with the adjustment dynamics. So I decided to study German monetary trans-
mission mechanisms hoping find an answer to my “why”s there. Some of the German
results seemed to provide at least partial answers, but then they led to a whole bunch of
new “why”s, which I subsequently tried to answer by studying monetary mechanisms in
Italy and Spain.

As I was not able to satisfactorily solve the puzzling why’s, I turned my attention on
the international monetary transmission mechanisms where the purchasing power parity
(PPP) and uncovered interest rate parity (UIP) provide the cornerstones. Again, some of the
results made sense theoretically, but others raised new “why”s. The most important finding
was that PPP needed the UIP to become stationary, indicating that they were inherently
tied together.
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Michael Goldberg stumbled over my first Journal of Econometrics paper discussing
this and told me the results were exactly in accordance with the theory of imperfect
knowledge based expectations he and Roman Frydman had worked out. It then dawned
on me that many of my “why”s probably had to do with such expectations in financial
markets and how they affected the real economy.

Two of the most important variables in the macro economy are the real interest rate
and the real exchange rate and both of them exhibited this puzzling persistence. The idea
that it was this persistence which had caused the puzzling persistence in unemployment
rates suddenly struck me. This was a very important breakthrough in my research. From
this stage onwards, I knew the direction.

Another example is a study of foreign aid effectiveness based on 36 African countries,
which was commissioned by the UN-WIDER institute. Initially it involved one of my PhD
students, but then the project grew and I also became actively involved. As it turned out,
among those 36 countries, a few important ones, Tanzania and Ghana, were sticking out in
a way that prompted many new “why”s. We picked them out for a much more detailed
analysis which subsequently became another research publication. It is the trying to answer
the “why”s of one paper that has often led to new papers.

Let’s now discuss model building strategy. can you discuss the role of the
deterministic components in the cointegrating vectors? how can structural breaks be
distinguished from unit roots?

When I start a new project, I always spend a lot of time examining the graphical display
of the relevant data. The first step is to examine the variables in levels and differences
searching for features which stick out, such as a change in growth rate or a shift in the
level of a variable. At this stage I also check the national economic calendar to identify the
time points of major political reforms and interventions, because, in my view, an empirical
analysis of a macroeconomic problem is always about combining economic theory with a
institutional knowledge.

If I spot a sudden shift in the level of a variable followed by a blip in its difference and
it coincides with a known political reform, I will add a shift dummy in the cointegration
relations and an impulse dummy in the equations. In the final model I always check
whether such a shift dummy is long-run excludable and whether the impulse dummy is
statistically significant. The testing is important because a political reform often causes a
shift in the equilibrium level of several variables so that the level shift may cancel in the
cointegration relations.

While it is good scientific practice to test a prior hypothesis that a break has taken
place at a certain known point in time, it is harder to defend a practice where step dummies
are added only to be able to accept the stationarity of the variable. For example, as already
discussed, unemployment is often found to be a very persistent process with a double near
unit root. The trace test frequently concludes that it is not statistically different from an I(2)
process, which can be a problem for a researcher believing it should be stationary.

By introducing sufficiently many deterministic level shifts so that stationarity around
the level shifts can be accepted one might be able to solve the dilemma. But, whether you
model the variable stochastically with the I(2) model or deterministically with many level
shifts, you still need to address the puzzling persistence. I would clearly prefer to model it
stochastically unless the breaks coincide with known policy reforms. To introduce breaks
for the sole purpose of avoiding the I(1) or the I(2) model is not a good practice.

What about non-normality and dummies?

To assume Gaussian distributions is tempting, because then you have access to a very
large tool box. And, because it is extremely demanding to adequately model macroeco-
nomic time-series, you need as many tools as possible. This is because the series are often
short, strongly autocorrelated, and subject to regime changes. In addition, macro models
have to address path-dependencies, interrelated equations and aggregate behaviour that is
typically different in the short, medium and long run. On top of all this inference is based
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on a sample where you have just one observation at each time t from an underlying process
which seldom is stable over extended periods of time. It is almost a miracle that the VAR
model frequently is able to give a satisfactory summary of all this.

However, the assumption that the system is being hit by white noise shocks that
cumulate via the dynamics of the process to generate the exogenous trends is a bold one,
and an assumption that often needs to be modified.

Empirically, the VAR model is subject to many choices: we choose to study p variables
among all the potentially relevant ones and we choose to cut the lag length at a not too
large value k. In practice, normality is seldom accepted in the first unrestricted version of
the VAR model. This is of course no surprise, as the residuals are not really estimates of
white noise errors, but instead a summary of everything that has been left out of the model.

The effect of omitted variables can to some extent be accounted for by the VAR dy-
namics. But the effect of policy interventions and reforms are usually part of the residuals.
Fortunately, policy events are numerous and their individual effect on the aggregated
economy is mostly tiny. Hence, one can use the central limit theorem to justify the normal-
ity assumption.

The problem is that the effect of some of the policy events is far from small. For
example, financial deregulation had an enormous effect on the economy, value added
tax reforms exhibited also a very significant effect. The effect of other extraordinary
events such as hurricanes, floods, fires, will often stick out as non-normal residuals. Such
extraordinary effects have to be properly controlled for using dummies, or they will bias
the VAR estimates. This is because the model will otherwise try to force these big effects
onto the x variables.

I usually add dummies one at the time. First the ones I believe have to be there as
they are a proxy for a real known event. Then I may add a few more if it is absolutely
necessary to achieve residual normality or symmetry. Adding too many dummy variables
to the model is generally not a good strategy as large effects are also very informative and
dummying them out may destroy the explanatory power of your model.

The graphical display may also show transitory blips in the differenced series, that
is a big blip followed by a blip of similar size but of opposite sign. They are typically the
consequence of a mistake, sometimes a typing mistake, but mostly a reaction to a market
misconception. For example, financial markets often bid up the price of an asset only
to realize it was a mistake and the price drops back next period. But because they are
symmetrical they affect excess kurtosis and not skewness, which is less serious. I often just
leave them as they are. But if the jumps are huge, I usually control for them by a transitory
impulse dummy (. . . 0, 0, +1, −1, 0, 0. . . ).

How do you interpret the results of the trace test? How strictly do you use the 5%
critical value in testing hypotheses?

Some people think that a “rigorous approach” to testing requires a strict adherence
to standard rules (such as the 5% critical value). I have never been an advocate of the 5%
rule, but have always based my choice on the whole range of empirical p-values. The 5%
rule is reasonable when you strongly believe in the null hypothesis and, hence, are not
willing to give it up unless there is massive evidence against it. Adhering to the 5% rule
is particularly problematic in situations when the econometric null hypothesis does not
coincide with the economic null.

The trace test of cointegration rank is a good example. The standard procedure relies
on a sequence of tests where you start in the top testing the econometric null hypothesis “p
unit roots, that is no cointegration”. But this null seldom corresponds to the economic null
as it would imply that your preferred economic model has no long run content. If the first
null hypothesis is rejected, then you continue until the first time p − r unit roots cannot
be rejected. This means that the test procedure is essentially based on the principle of “no
prior economic knowledge” regarding the the number of exogenous trends. This is often
difficult to justify.
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The econometric null is based on the number of unit roots (a simple hypothesis) and
a 5% rule applied to a top-down series of tests will often favour the choice of too many
common trends and, hence, too few cointegration relations. This is particularly problematic
if your data contains a slowly adjusting economic long-run relation. Given the short
samples usually available in Economics, a 5% trace test will often conclude that a slowly
adjusting relation could possibly be a unit root process.

Hence, the top-down test procedure and a (blind) use of 5% critical values may lead to
a rejection of a very plausible economic relation for the sole reason that it has a low mean
reversion rate. As if this is not bad enough, treating a stationary relation as a common
stochastic trend will also affect your model inference in unknown ways.

To circumvent this problem, I usually start the analysis by asking what is the number
of exogenous trends consistent with the economic model in question. I usually test this
number using the 5% rule, but I also check the plausibility of this choice against the closest
alternatives, for example based on their trace test statistics and the characteristic roots.
When deciding in favour or against adding one more cointegrating relation, I also look
at the plausibility of the cointegration relation and the sign and the significance of the
corresponding adjustment coefficients.

The most problematic situation is when there is no clear distinction between large and
small canonical correlations and, hence, no distinct line between stationary and nonstation-
ary directions. This is often a signal that your information set is not optimally chosen and
that some important variables are missing. When in doubt about the right choice of rank
I often try to enlarge the information set for example with a potentially important ceteris
paribus variable such as the real exchange rate, a variable often ignored in the theory model
but extremely important in practice. Surprisingly often this solves the problem.

Another illustration of the misuse of the 5% rule is the test of long-run exclusion in the
CVAR. Here the econometric null is that a variable is not needed in the long run relations.
In this case it is hard to argue that the econometric null coincides with the economic null
as the variable was chosen precisely because it was considered an important determinant
in the long-run relations. To throw it out only because we cannot reject that it might be
long-run excludable on the 5% level seems a little foolish.

The main reason this problem arises is because the econometric null hypothesis is often
chosen because of convenience, for example when the econometric null corresponds to a
single value whereas the plausible economic null corresponds to a composite hypothesis.
Whatever the case, whether you reject or accept a hypothesis, I think you have to openly
argue why and then back up your choice with the p-value of the test.

How do you handle, in general, the problem of competing models? Do you like the
idea of encompassing proposed by David Hendry?

Yes, I think it is a very useful idea. But I also think it is important to distinguish
between encompassing in the econometric sense versus encompassing in the economic
sense, even though the two concepts are clearly related. David introduced the concept of
encompassing as a way of comparing empirical models. You may consider two models
explaining Y, one as a function of a subset of X1 variables and the other of X2 variables.
Then you estimate a model for Y as a function of X1 and X2 and ask which of the two
models encompasses the big model.

David Hendry [David hereafter] and Grayham Mizon published the paper “Evaluating
Econometric Models by Encompassing the VAR” (Hendry and Mizon 1993) which discussed
the general-to-specific principle–which I am very much in favour of–applied to the VAR
model as a baseline against which a more specific model should be evaluated. One may
say the VAR model provides the econometrician with a set of broad confidence bands
within which the empirically relevant model should fall. The advantage of encompassing
is that it formalizes a principle for how to weed out models that do not describe the data
sufficiently well.
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However, the problem of competing models in Economics is even more important as
there are many competing schools in Economics but no clear criterion for how to choose
between them. Because there is one empirical reality–defined by the relevant data–but
several models trying to explain it it seems obvious to discriminate between them by
encompassing the CVAR.

I have tried to formalize this idea by the concept of a so called “theory-consistent
CVAR scenario”, which basically describes a set of testable hypotheses on the pulling
and pushing forces in the CVAR model. In short, a scenario specifies a set of empirical
regularities that one should find in a CVAR analysis, provided the theoretical assumptions
of the economic model were empirically correct. Such a comprehensive testing often reveals
a significant discrepancy between theory and empirical evidence.

The crucial question is why the reality differs so much from the theoretical model.
It is a question that haunted me for many years until I begun to see a systematic pattern
in the empirical results. They pointed to some theoretical assumptions associated with
expectations in the financial markets that were clearly empirically incorrect but not ques-
tioned by the majority of the profession. The scenario analysis made it very explicit where
the inconsistencies between theory and empirical evidence were and often helped me to
understand why.

But, the formulation of a scenario is no easy task. While I was still actively teaching I
used to ask my students to formulate a scenario prior to their econometric analysis, but in
most cases it was too difficult without my help. This is a pity, because I am convinced it is a
very powerful way to solve the dilemma of competing models in Macroeconomics and to
bring macroeconomic models closer to reality.

Linearity is a common assumption. Do you think it might be important to consider
non-linear adjustment?

I consider the CVAR model to be a first order linear approximation to a truly non-
linear world. The question is of course how significant the second order or third order
components are. If a first order approximation works reasonably well, then the second or
third order components might not be so crucial. But, if the first order approximation works
poorly, then it may of course be a good idea to consider for example non-linear adjustment.
This could be the case in stock price models where adjustment behaviour is likely to be
different in the bull and the bear market. Many people are risk averse and react differently
when prices go up than when prices go down, so nonlinearity in the adjustment is likely to
be useful in this case.

It is of course much easier to construct a linear model to start with. Take for example
the smooth transition model as a very plausible nonlinear adjustment model describing
adjustment from one equilibrium level to another. In the linear CVAR model, this can be
approximated by a level shift (a step dummy) in the cointegration relations combined with
a sufficiently flexible short-run dynamics. In many cases this linear approximation will
work almost as well (sometimes better) than the nonlinear alternative.

Another example is the nonlinear model of shifts between stochastically evolving
equilibria. These models have been proposed to describe the long-lasting swings we often
see in the data. They are typical of variables strongly affected by financial market behaviour
such as exchange rates, interest rates, and stock prices which tend to fluctuate between
high and low levels. But these stochastically switching equilibrium models can in many
cases be more precisely described by the I(2) CVAR model.

As a starting point, I think one could try to approximate potential non-linear effects
with the linear I(1) or I(2) model with dummy variables and then exploit the CVAR estimates
to develop a better nonlinear model. The difficulty is that the non-linear possibilities are
almost infinite which makes it to hard know where to start, unless you have a very clear
idea of where in the model the non-linear effects are.
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Univariate models, small and large-scale multivariate macro models are all used in
applied macroeconomics: how do you think they relate to each other?

Basically, a univariate time-series model of x1 is a sub-model of a small-scale multi-
variate model of x1, . . . , xk, which in turn is a sub-model of a large-scale multivariate model
of x1, . . . , xk, . . . , xm. Hence, one should be able to argue why the smaller model with less
information is preferable to a larger model with more information.

It is of course totally acceptable that people can choose between different perspectives
when they approach a problem and it may be fully rational to focus on a smaller subset of
the relevant information set. What I find to be problematic is the standard use of univariate
Dickey–Fuller tests to pre-test the order of integration of each variable of a multivariate
model. The absurdity of this becomes obvious when the result of the pre-tests is in conflict
with the result of the more informative multivariate tests.

At one stage I became rather frustrated over this lack of coherence. To my great
irritation I was often asked by referees to add univariate Dickey–Fuller tests to my papers,
which I never did. Also, I consistently demanded any table with such tests to be removed if
they had been added by a coauthor. They often reacted with puzzlement: why not calculate
the univariate Dickey–Fuller tests? A simple thought experiment explains my concern.

Consider a paper which ultimately is analyzing a CVAR model but starts with a bunch
of univariate Dickey–Fuller tests. Imagine now that the univariate pre-tests were placed at
the end of the paper. Would this have any effect on the main conclusions of the paper?

I hired a student to find empirical CVAR analyses in papers published in a number
of good-ranking journals over a period of 10 years that reported tables with pretesting. In
most cases the pretests had no effect whatsoever on the final conclusions. In some cases
the pre-tests led the researcher to make incorrect choices such as throwing out a relevant
variable that was found to be stationary by the pretests.

To throw out variables as a result of pretesting is of course complete nonsense, because
a multivariate model can easily handle a stationary variable but also because a pretested
“stationary” variable may not be considered stationary in the multivariate model. This is
because what matters is whether a variable corresponds to a unit vector in the cointegration
space and this depends on the choice of cointegration rank. If this choice is too small–which
is frequently the case–then the pretested “stationary” variable would often be rejected as a
unit vector in β and the consequence would be a logical inconsistency in the analysis.

The perspective of large-scale macro models is usually different from small-scale
models. This is in particular so if by large-scale you mean the large macro models used
by finance ministries all over the world. They are typically characterized by a large set of
behavioural (and definitional) relationships where the status of variables as endogenous,
exogenous and ceteris paribus are assumed a priori and where little attention is given
to dynamic feedback effects. As such, it is hard to argue that a small-scale multivariate
model is a sub-model of these models as they represent two different approaches to macro-
modelling. In my book (Juselius 2006) I have proposed a procedure to connect the two.

Common trends have been shown to be invariant to the extension of the information
set. Can this be used to devise a progressive modeling strategy, where results from
(one or more) small-scale CVAR models are inputs to a larger scale model?

The unsolved problem here is how to uniquely extract and identify individual common
stochastic trends. While it is straightforward to determine the space spanned by the p − r
common stochastic trends in a p-dimensional CVAR model, it is much more difficult to
economically identify these common stochastic trends. Kevin Hoover, Søren and I have
worked on this difficult problem for many years with the purpose of solving the problem
of long-run causality in economic models.

However, the potential of common trends analysis stretches far beyond this problem.
It seems plausible that there are a limited number of common stochastic trends in the
world. The invariance of common stochastic trends suggests that we should find linear
combinations of these common stochastic trends in small-scale CVAR models. The set
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of these extracted common stochastic trends could then be analyzed using cointegration
techniques.

Let’s say that we have extracted 10 common stochastic trends from a number of
small-scale CVAR models and that we find the cointegration rank to be 7. This would
be consistent with three fundamental stochastic trends in the economy, for example an
inflation trend, a productivity trend, and a financial trend. The problem is, as already said,
how to uniquely identify them so that we can put labels on them. I think it is a fantastic
research problem.

What is the role of cross section versus panel data models?

Cross-section models can provide a different perspective on the economy than time-
series models, because they add valuable information about individual characteristics at
each point in time unavailable in aggregate time-series data. But the time perspective, such
as feedback dynamics, is missing in cross section models.

In panel data models you have the possibility for both perspectives provided you have
access to fairly long panel data sets. Personally I think reasonably long consumer panel
data sets as we have in Denmark are extremely valuable as they combine the best of the
two worlds. But, of course, they can not address all issues of macroeconomic relevance.

An interesting research project that has been on my wish list for a long time is to
study the aggregated output from simulated agent-based models to learn more about the
connection between micro and macro. For example, would the aggregate behaviour have
similar properties in terms of cointegration, adjustment, and feedback dynamics as we
usually find in our CVAR models?

You never used panel cointegration techniques. Is it because you are skeptical
about them?

As I already said, I find panel cointegration models based on micro data to be poten-
tially very valuable, but I am much more skeptical about such analyses based on a panel of
countries. In my view, countries are individually too different to be merged into the same
model structure. In most cases I have come across, the panel analysis is based on so many
simplifying assumptions that in the end it is hard to know which of the results are true
empirical results and which are due to the simplifying restrictions forced on the data.

For example, one can easily find examples of misuse of country panel data in Develop-
ment Economics. This is because, for many of these countries, data are only available on an
annual basis over a post-colonial period. The quality of data is often low, partly because
data collection methods may not be very reliable, partly because observations are missing
during periods of war and unrest. This has led many development economists to merge
the countries in a panel to get more information out of the data. But as such this is no
guarantee that the results to become more reliable; it can easily be the other way around.

To look into this problem, Finn Tarp, Niels Framroze Møller and I started a big
project where we studied 36 Sub-Saharan countries regarding the effectiveness of their
development aid on GDP growth, investment, private consumption and government
expenditure. It was a huge data base and the computer output was almost killing.

Just the initial specification of an adequate VAR for each country was as a major task:
first we had to identify the time points for extraordinary events such as wars, military
coups, famines, droughts, and floods and then we had to control for them by appropriate
dummy variables. Because the individual countries differed a lot, a major task was to
classify them into more homogeneous groups.

Niels suggested a first coarse division according to whether aid had a significant
long-run effect on GDP or investment, whether aid was exogenous to the system, whether
it was purely adjusting to the macro-system, or none of the above. But also within these
more homogeneous groups, individual countries differed a lot for example in terms of the
magnitude of parameter estimates. We concluded that there were positive and significant
effects of aid in almost all countries being studied. This was in stark contrast to panel data
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studies published in high ranking journals which showed that foreign aid has had no, or
even negative, effect on the growth of GDP and investment.

The lesson seems to be that unless you control properly for extraordinary events and
other data problems before pushing the panel data button, you can get basically any result.

So your conclusion is that aid has been effective given some country-specific
characteristics. Would it be possible to use these characteristics in a panel data set-up
where you include all countries? Could they be a mediator of the effectiveness of aid?

No, I do not really think so. The countries are generally too diverse. As I already
mentioned you might be able to use a smaller group as a panel, but not all of them. By
studying each country separately, you can identify characteristic features which would be
impossible to recognize if they are treated as a homogeneous group.

Take for example a country like Tanzania where Nyerere–the president up to mid-
eighties–was a charismatic person with bold visions. The donor countries were generally
favourable towards him and Tanzania received a lot of aid, substantially more than any
other country in that same period. However, Nyerere believed in a strong currency and used
the foreign aid to maintain a fixed exchange rate rather than to improve the development
of the country.

Another example is Ghana where a military dictator took over the government in the
early seventies. He declared that he had no intention to pay back previous development
loans, the perfect recipe for not getting additional loans. As a consequence, the national
currency was subject to extreme devaluations followed by hyperinflation.

These are just two examples of the type of heterogeneity you will come across in
development countries and they are in no way “black swans”. Just to understand the
country-specific framework within which the aid is supposed to work requires a lot of
work. If you pay attention to all the difficulties that must be solved before you do a panel
analysis, the desire to do a panel analysis may evaporate altogether. And if you do all the
necessary work, the need for a panel analysis may no longer be so great.

We put a lot of work into this project because of its importance. Rich donor countries
give less than 1% of their GDP in foreign aid to improve the quality of life for very
vulnerable people. Even though less than 1% is not a lot, there are many who would
look for a good argument suggesting not to help those who are much worse off. It is
unacceptable, in my view, if such an argument is based on too simplified and misleading
econometrics.

Our paper was finally published in the Oxford Bulletin (Juselius et al. 2014), after first
having been rejected by those Development Economics journals that had published the
studies we criticized. One of the Oxford Bulletin referees wrote that he had been of the firm
opinion that foreign aid was not contributing to development, but had changed his mind,
because–as he wrote–the analysis of our paper was so carefully done that he could not find
anything to criticize. I felt very proud.

Can you provide more details on the quality of the data in this research and the
consistency across countries of the variables you analyzed?

We used annual data starting from the 60s, which is when most African countries
became independent. But because the 60s was a very volatile transition period we decided
to leave out this decade for most countries. The data–consisting of total foreign aid and
five key macro variables–were collected from the official data bases, the Penn World Tables
and World Development Indicators where data are reported in a reasonably consistent way
across countries.

A few countries were excluded due to many missing data points and for two countries
we had to add variables to be able to make sense of the results. We were able to keep
36 countries for a detailed CVAR analysis based on roughly 45 annual observations. Every
step was carefully reported, but with six variables and only 45 data points it was more or
less pointless to apply the recursive tests to check for parameters stability.
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Therefore, the parameter estimates should be thought of as representing average
effects over the sample period. Despite the shortness of our time series, the data were
surprisingly informative, possibly due to their large variation. Still, I think it is plausible
that the transmission mechanisms of foreign aid have undergone changes over the last
decades, similarly as macroeconomic mechanisms have changed in the industrialized part
of the world.

It could, therefore, be quite interesting to extend our study with a more recent data set
based on quarterly macro data. For many of the countries such data are available starting
from the 90s. But on the whole I believe the results we obtained from our annual sample
were completely plausible, often telling an interesting story about vulnerable economies
struggling to find their way out of poverty.

You said that when the sample is short it is not easy to analyze the stability of the
parameters and the possibility of structural breaks: can you elaborate on this?

An interesting example of long-run stability is the Danish money demand relation
which is thoroughly analyzed in my book (Juselius 2006). It was my first illustration of
Maximum Likelihood cointegration and was published in 1990 in the Oxford Bulletin
of Statistics and Economics based on fifteen years of quarterly data from 1972 to 1987
(Johansen and Juselius 1990).

It was a volatile period covering two oil crises, several devaluations of the Danish
krona and a far-reaching political decision to deregulate financial movements. A priori
there was good reason to suspect that the parameters of the estimated money demand
relation would not be totally stable. Even though the recursive stability tests did not signal
any problem, the rather short sample of fifteen years made these tests rather uninformative.

At a later stage I updated the data by adding data from 1988 to 1994. To my relief
I got essentially the same parameter estimates for the money demand relation as before
(Juselius 1998). Based on the extended data, the recursive stability tests were now more
informative and they confirmed that the money demand relation was stable.

However, the recursive tests also showed that this was not the case with the first
cointegration relation–a partially specified IS relation–which exhibited a complete structural
break around mid eighties due to Denmark’s financial deregulation. Ironically, the 5%
rule would have selected a non-constant, meaningless, relation and left out the stable and
meaningful one, a good illustration of the hazards of blindly using the 5% rule.

When I started writing my book I decided to use the Danish money demand data as
an empirical illustration of the CVAR methodology. A first version of my book was based
on the 1994 data set, but in 2004 when the text was more or less finished, I could no longer
ignore the fact that the data were rather old. So I updated it once more with additionally
10 years of quarterly observations, now up to 2004.

The first time I run the CVAR with the new data, a whole flock of butterflies fluttered
in my stomach. If the empirical results had changed significantly, then I would have had to
rewrite large parts of my book. But, fortunately, all major conclusions remained remarkably
stable, albeit the estimates changed to some minor extent.

After my retirement in 2014 somebody asked me if the Danish money demand relation
was still going strong. So out of curiosity I updated my data once more and found out that
the money demand relation was no longer in the data! Adding the period of unprecedented
credit expansion that led to the overheated economy ending with the financial crisis, seemed
to have destroyed the stability of the money demand relation.

As such it is an interesting finding that prompts the question “why?”. Is it because
of the exceptionally high house and stock prices in the more extended period compared
to the almost zero CPI inflation rate and historically low interest rates have changed the
determinants of money demand? Would we be able to recover the old relationship by
extending the data with house price and stock price inflation? I would not be too surprised
if this was the case.
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All this raises an important discussion about the stability of economic mechanisms.
The underlying rationale is of course that social norms and behaviour tend to change over
time as a consequence of political reforms but also of political views or propaganda, as
there nowadays is too much evidence for around the world. However, also economic norms
and dogmas are likely to influence behaviour. If economic models show that competition
is good and greed is even better then some politician will use it in their propaganda as
evidence in favour of their policy.

Of course it would be absolutely fantastic if we had access to powerful econometric
tools which could tell us exactly when a structural change has occurred, but I doubt very
much this will ever be the case, not even remotely so. Structural change is seldom a black or
white event; things change in a much more blurred way. Take for example the overheated
economy at the beginning of this century that ended with the financial crisis–the so called
long “moderation” period.

If this turns out to be a transitory event, albeit very long-lasting, then the breakdown
of the money–demand relation may not represent a structural change. Updating the money–
demand data to the present date might give us back the old parameter estimates. Even
though I doubt it very much, it is nonetheless a possibility. In most of my professional life I
have struggled with questions like this.

Econometric analysis is fantastic when it helps to make complex structures more
transparent, when it forces you to understand puzzling features you would otherwise not
have thought about, and when it teaches you to see the world in a new light. But it does not
let you escape the fact that it is you who are in charge, it is your judgement and expertise
that is a guarantee for the scientific quality of the results.

You have been mentoring many Ph.d. students and young researchers, like the
younger version of the two of us. What did you like or dislike about this? Any
forward-looking lessons for other econometricians?

In all these years I have immensely enjoyed guiding students both at the Economics
Department in Copenhagen, but also at other departments during our many travels. But
to be both a good teacher, a good supervisor and a good researcher at the same time is
basically “mission impossible” as long as 24 h a day is a binding restriction. Even though I
spent all my time (including late evenings, weekends, and holidays) on these activities, I
nevertheless always felt I should have done more.

On top of all this I also had the ambition to engage in the public debate, not to mention
obligations to family and friends. So, time was always in short supply and every day
was a struggle to meet deadlines and a compromise between everything that needed to
be done. It took surprisingly long until my body begun to protest increasingly loudly.
In the end it forced me to slow down a little. This is the not-so-good aspect of being an
(over)active researcher.

My best teaching memories are without comparison from our many Summer Schools of
the Methodology of the Cointegrated VAR. To experience highly motivated, hard-working
students willing to give up all other temptations in beautiful Copenhagen only to learn a
little more econometrics was a very precious experience and I feel enormously privileged
to have had it.

The secret behind this success was that we offered the students a firm theoretical
base, a well-worked out guidance for how to apply the theory to realistic problems and a
personal guidance of their own individual problems, often a chapter of their PhD thesis.
A typical day started with Søren [Johansen] discussing a theoretical aspect of the CVAR
(and students came out looking happy and devastated at the same time), then I illustrated
the same aspect using the Danish money demand data (students begun to look somewhat
more relaxed), and in the early afternoon a teaching assistant explained the same aspect
once more based on a new application (students begun to say now they had grasped it).

Finally in the late afternoon, early evening, they had to apply the theory on their own
data (students were totally lost, but after competent guidance happiness returned). It was a
tough experience, but many students learned immensely in three weeks. One of them said
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he had learned more than during three years of full time studies at home. If I should give
any lesson for other econometricians, this is the one.

Another extremely good experience was a series of Nordic–later also European–
workshops from 1989 to 2000 where we met two, three times a year to discuss ongoing
research in the cointegrated VAR model. This was a different way of guiding young
researchers–like the two of you–by offering a direct involvement in the research process. It
was truly learning-by-doing research. Most of the cointegration results in Søren’s book and
in my own were developed and intensely discussed in this period. A workshop usually
lasted for 3–5 days and we were engaged in discussions every single minute. When the
workshop closed I think we were all practically dead.

But I believe we found it enormously exciting. It was a once-in-the-lifetime experience.
This is also a lesson I would happily give to other econometricians.

Is there a “gender gap” in Econometrics?2

When I started my academic career as a young econometrician, the gender gap was
very large indeed. There were only a few female colleagues at the department and very,
very few female professors altogether in Economics. But, even though the gap has become
smaller, it has not disappeared.

To some extent, I believe it is a question of a male contra a female culture. The tra-
ditional language/jargon in Economics is a male-dominated language foreign to many
women. For example, theoretical ideas are formulated in the abstract terms of a “repre-
sentative agent” who maximizes a well-defined utility function derived from a preference
function that often reflects greed.

This way of thinking is not very attractive to many women, who would chose Eco-
nomics because they are concerned about the huge income gap between industrialized and
developing countries, the well-being of their parents, children, friends (not an “agent”) and
would like to understand why a good friend became unemployed and what to do about
it. I think it is quite telling that the two most popular fields among female economists are
Labour Economics and Development Economics.

The question is whether the abstract way of formulating Economics is absolutely
necessary from a scientific point of view. I find it probematic that trivialities or common
sense results are often presented in an almost opaque language which tends to make
economic reasoning inaccessible to laymen.

In the book, Chang (2014) “Economics: a user’s guide”, the well-known Cambridge
economist Ha-Joon Chang argues that 95% of Economics is just common sense, but made
more complex by abstract mathematics. His accessible and highly qualified text illustrates
this point. On the whole I believe more women would be attracted to research in Eco-
nomics if one would allow more common sense reasoning and pluralism into the teaching
of Economics.

Many times in my teaching, I noticed the cultural difference between male and female
students. My male students were often fascinated by the technical aspects, whereas my fe-
male students were more excited by the applied aspects. For example, when I demonstrated
the derivation of the trace test, the guys were flocking around me after class ended asking
questions to the technical aspects. When I illustrated how one could use the technical stuff
to ask relevant empirical questions, the female students did the same. They were willing to
learn the technical stuff, but mostly because it was necessary for the empirical applications.

The gender gap in publications also reflects a similar difference in attitudes. Many
top journals tend to favour “technical” work, partly because it’s easier to assess whether a
mathematical result is right or wrong than an applied empirical result. But the fact that
the editorial boards of top journals are mostly populated by men might also contribute to
the gender gap. Notwithstanding today’s strong emphasis on empirical work, top journals
tend to favour rigorously applied theories and mathematical models which are illustrated
with simple examples or alternatively applied to simple problems.
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Since many real life problems are much more difficult to formulate using rigorous
mathematics they are, therefore, much harder to publish in top journals. When I started
teaching the CVAR methodology–which is based on rigorous mathematical statistical
principles–I thought it would help female (and male) students to overcome this problem.
But it did not work out as I had hoped. The main problem was that the empirical reality
seldom supported the rigorously derived economic model.

As I have learnt over and over again, journal editors are not happy to accept a paper
reporting results which contradict previously published ones. The consequence was that
my PhD students often tried to “sit on two chairs”: on one hand they wanted to use the
CVAR method in a rigorous way, on the other hand they wished the results to support
mainstream economic models. I believe it was still another “mission impossible” and I
sometimes regret that I had put them in this situation.

Nowadays there are more female students in Economics than in the past, so things are
slowly changing. Many of them are still interested in empirical work often in Labor and
Development Economics, but their research is much more related to Microeconometrics
than to what I would call disequilibrium Macroeconometrics.

Did you feel kind of alone in this mainly male environment?

If I feel alone, then it is because I am rather alone in my view about what is important in
empirical macroeconomic modelling and how it should be done. Considering all disasters
in the world around us, it is obvious to me that we desperately need a much better economic
understanding of real world problems, rather than still another model of a toy economy.

I am also aware of the dilemma between rigour and empirical relevance in Economics.
I have seen numerous examples of really bad empirical CVAR applications where the
data have been read in, the CVAR button has been pushed and meaningless results have
been printed out that say nothing useful about our economic reality. While there should
be no shortcuts in science and empirical results should be derived in a transparent way
obeying accepted scientific rules, I strongly believe there should also be room for informed
judgement, what Dave Colander would call “the art of Economics”. I also believe this is
what a rigorously done CVAR analysis can do for you.

Since I have always been outspoken with my views both in academic forums and in
the public debate, I have also got my part of male anger, more nowadays than when I was
younger. Perhaps I was more diplomatic then or just more good-looking. Whatever the
case, being one of the very few female economists was not just negative, I probably did not
have to fight as hard for attention as a comparable male econometrician.

But the fact that my research has received a lot of interest among econometricians,
economic methodologists and the public is something I value very highly. Many of my
absolutely best and most valued colleagues and friends are male economists or econometri-
cians, as for example Søren, the guest editors and the contributors of this wonderful Special
Issue. So, on the whole I have been very fortunate in my professional life.
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Abstract: This article was prepared for the Special Issue “Celebrated Econometricians: Katarina
Juselius and Søren Johansen” of Econometrics. It is based on material recorded on 30 October 2018
in Copenhagen. It explores Søren Johansen’s research, and discusses inter alia the following issues:
estimation and inference for nonstationary time series of the I(1), I(2) and fractional cointegration
types; survival analysis; statistical modelling; likelihood; econometric methodology; the teaching and
practice of Statistics and Econometrics.
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Introduction

On 30 October 2018 the authors sat down with Søren Johansen in Copenhagen to
discuss his wide-ranging contributions to science, with a focus on Econometrics. Figure 1
reports a photo of Søren taken on the day of the conversation; other recent photos are
reported in Figure 2. The list of his publications can be found at the following link:
http://web.math.ku.dk/~sjo/.1

In the following, frequent reference is made to vector autoregressive (VAR) equations
of order k for a p × 1 vector process, Xt, for t = 1, . . . , T, of the following form:

ΔXt = ΠXt−1 +
k−1

∑
i=1

ΓiΔXt−i + εt, (1)

where Π and Γi are p × p matrices, and Δ = 1 − L and L are the difference and the lag
operators, respectively.

Various models of interest in cointegration are special cases of (1), in particular the
cointegrated VAR (CVAR), defined by restricting Π in (1) to have reduced rank, i.e., Π = αβ′

with α and β of dimension p × r, r < p. Another matrix of interest is the p × p matrix
Γ = I − ∑k−1

i=1 Γi, see Johansen (1996, chp. 4) for further reference. For any matrix α, α⊥
indicates a basis of the orthogonal complement to the span of α; this orthogonal complement
is the set of all vectors orthogonal to any linear combinations of the column vectors in α.

In the rest of the article, questions are in bold and answers are in Roman. Text
additions are reported between [ ] or in footnotes. Whenever a working paper was later
published, only the published paper is referenced. The sequence of topics covered in the
conversation is as follows: cointegration and identification; survival analysis and convexity;
model specification.
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Figure 1. Søren Johansen, 30 October 2018 in Copenhagen.

What is your current research about?

I worked on several projects. With Bent Nielsen [referred to as Bent hereafter] I have
studied some algorithms and estimators in robust statistics including M-estimators, see
Johansen and Nielsen (2019), and with Morten Ørregaard Nielsen [referred to as Morten
hereafter] I have worked on fractional cointegration and other topics in cointegration, see
for instance the paper on a general formulation for deterministic terms in a cointegrated
VAR model Johansen and Nielsen (2018).

I have collaborated with Kevin Hoover on the analysis of some causal graphs, and just
written a paper for this Special Issue (Johansen 2019) on the problem that for a CVAR the
marginal distribution of some of the variables is in general an infinite order CVAR, and one
would like to know what the α coefficients in the marginal model are.

I have also recently worked with Eric Hillebrand and Torben Schmith (Hillebrand
et al. 2020) on a cointegration analysis of the time series of temperature and sea level, for
the Special Issue for David Hendry in the same journal. We compare the estimates for
a number of different models, when the sample is extended. There has been a growing
interest in using cointegration analysis in the analysis of climate data, but the models have
to be built carefully taking into account the physical models in this area of science.

The notion of cointegrating space was implicit in Engle and Granger’s 1987 paper. You

mentioned it explicitly in a paper of yours in 1988.2 Could you elaborate on this?

When you realize that linear combinations of cointegrating vectors are again cointe-
grating, it is natural to formulate this by saying that the cointegrating vectors form a vector
space. That of course implies that you have to call the zero vector “cointegrating”, even if
there are no variables involved. Moreover a unit vector is also cointegrating, even though
only one variable is involved. I sometimes try to avoid the word ”cointegration”, which
obviously has connotations to more then just one variable, and just talk about stationary
linear combinations.

This lack of acceptance, that a cointegrating vector can be a unit vector, is probably
what leads to the basic misunderstanding that almost every applied paper with cointegra-
tion starts with testing for unit roots with univariate Dickey-Fuller tests, probably with the
consequence that stationary variables will not be included in the rest of the analysis. It is,
I think, quite clear that analysing the stationarity of individual vectors in a multivariate
framework by testing for a unit vector in the cointegrating space is more efficient than
trying to exclude variables from the outset for irrelevant reasons.
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(a) (b)

Figure 2. Søren Johansen: (a) 24 February 2016 in Copenhagen; (b) 3 October 2016 in Milan.

Going back to the cointegrating space, it is a natural concept in the following sense.
The individual cointegrating relations are not identified, and one has to use restrictions
from economic theory to identify them. But the cointegrating space itself is identified, thus
it is the natural object to estimate from the data in the first analysis.

Hence the cointegrating space is a formulation of what you can estimate without hav-
ing any special knowledge (i.e., identifying restrictions) about the individual cointegrating
relations. The span of β (which is the cointegrating space) is therefore a useful notion.

Estimation and testing for cointegration are sometimes addressed in the framework of
a single equation.

When estimating a cointegrating relation using regression, you get consistent estimates,
but not valid t-statistics. Robert Engle [referred to as Rob hereafter] worked out a three-
step Engle-Granger regression which was efficient, see Engle and Yoo (1991). Later Peter
Phillips (1995) introduced the fully modified regression estimator, where the long-run
variance is first estimated and then used to correct the variables, followed by a regression of
the modified variables. If there are more cointegrating relations in the system, and you only
estimate one, you will pick up the one with the smallest residual variance. It is, however, a
single equation analysis and not a system analysis, as I think one should try to do.

How were your discussions on cointegration with the group in San Diego?

My contact with the econometric group in San Diego started when I met Katarina
Juselius [referred to as Katarina hereafter]. She had met David Hendry [referred to as David
hereafter] while on sabbatical at London School of Economics in 1979. She was one of the
first to use PcGive.3 Rob was visiting David in those days. That meant that in 1985, when
we went for a month to San Diego, we met Clive Granger [referred to as Clive hereafter],
Helmut Lütkepohl and Timo Teräsvirta. So when I started to work on cointegration we
knew all the right people.

We were well received and discussed all the time. Clive was not so interested in
the technicalities I was working on, but was happy to see that his ideas were used. Rob,
however, was more interested in the details. When we met a few years later at the 1987
European Meeting of the Econometric Society in Copenhagen, he spent most of his lecture
talking about my results, which is the best welcome one can receive.
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So I was certainly in the inner group from the beginning. In 1989, we spent three
months in San Diego with Clive, Rob, David, Timo Teräsvirta and Tony Hall. That was
really a fantastic time we had. There was not any real collaboration, but lots of lectures
and discussions.

I later collaborated with David on the algorithms for indicator saturation he had
suggested. His idea was to have as many dummy regressors a you have observations. By
including first one half and then the other half you get a regression estimator, and we found
the asymptotic properties of that, see Santos et al. (2008).

Later I continued to work on this with Bent, see Johansen and Nielsen (2009); that lead
to a number of papers on algorithms, rather than likelihood methods. We analysed outlier
detection algorithms and published it in Johansen and Nielsen (2016b), and a paper on the
forward search, Johansen and Nielsen (2016a).

How was cointegration being discussed in the early days?

Clive in Engle and Granger (1987) was the first to suggest that economic processes
could be linear combinations of stationary as well as nonstationary processes, and thereby
allowing for the possibility that linear combinations could eliminate the nonstationary
components. That point of view was a bit difficult to accept for those who worked with
economic data. I think the general attitude was that each macroeconomic series had its
own nonstationary component.

In Engle and Granger (1987) they modelled the multivariate process as a moving
average process with a non-invertible impact matrix, and they showed the surprising result
that this “non-invertible” system could in fact be inverted to an autoregressive model
(with infinite lag length). Thus a very simple relation was made to the error correction (or
equilibrium correction) models studied and used at London School of Economics.

David was analysing macroeconomic data like income and consumption using the
equilibrium correcting models, see Davidson et al. (1978). He realized very early that some
of the results derived from the model looked more reasonable if you include the spread
between income and consumption (for instance) rather than the levels of both. He did not
connect it to the presence of nonstationarity.

One of the first applications of the ideas of cointegration was Campbell and Shiller
(1987), who studied the present value model in the context of a cointegrating relation in
a VAR. The first application of the CVAR methodology was Johansen and Juselius (1990).
Here the model is explained in great detail, and it is shown how to test hypotheses on the
parameters. Everything is exemplified by data from the Danish and Finnish economies.

Another early paper of the CVAR was an analysis of interest rates, assumed to be
nonstationary, while still the spreads could be stationary, as discussed in Hall et al. (1992).
These papers contain examples where one can see directly the use and interpretation
of cointegration.

How did you start thinking about identification of cointegrating vectors?

The identification problem for cointegrating relations is the same as the identification
problem discussed by the Cowles Commission, who modelled simultaneous equations for
macro variables and needed to impose linear restrictions to identify the equations. We were
doing something similar, but trying to model nonstationary variables allowing for linear
cointegrating relations, and we needed linear restrictions on the cointegrating coefficients
β in (1) in order to distinguish and interpret them.

Then one can use the Wald condition for identification, which requires that the matrix
you get by applying the restrictions of one equation to the parameters of the other linear
equations should have full rank r − 1, see e.g., Fisher (1966) Theorem 2.3.1. This condition,
however, contains the Data Generating Process (DGP) parameter values. This implies
that the rank condition cannot be checked in practice, because the DGP is unknown. I
asked David what he would do, and he said that he checks the Wald rank condition using
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uniform random numbers on the interval [0, 1] instead of the true unknown parameters.
This approach inspired me to look for the mathematics behind this.

How did you derive the explicit rank conditions for identification?

For simultaneous equations, the restrictions Ri imposed on the parameters θi of
equation i, R′

iθi = 0, define also a parametrization using the orthogonal complement
Hi = Ri⊥ and the parameter is θi = Hiφi. The classical Wald result is that if θ denotes the
matrix of coefficients of the DGP for the whole system, then θ is identified if and only if the
rank of the matrix R′

iθ is r − 1 for all i.
I realized soon that I should apply the restrictions not to the parameters but to the

parametrizations as given by the orthogonal complements of the restrictions, and the Wald
condition can be formulated as the condition rank (R′

i(Hi1 , . . . , Hik )) ≥ k for any set of k in-
dices not containing i. This condition does not involve the DGP values and, if identification
breaks down, it can be used to find which restrictions are ruining identification.

I reformulated the problem many times and my attention was drawn to operations
research, so I asked Laurence Wolsey, when I was visiting the University of Louvain, who
suggested the connection to Hall’s Theorem (for zero restrictions) and Rado’s Theorem (for
general linear restrictions), see Welsh (1976). The results are published in Johansen (1995a).

The solution found was incorporated in the computer programs we used when we
developed the theory for cointegration analysis. With a moderate amount of equations, the
results can be useful to modify the restrictions if they are not identifying, by finding out
which restrictions cause the failure of identification.

The value added of this result is the insight: we understand the problem better
now, and finding where these conditions fail can help you reformulate better exclusion
restrictions. Katarina has developed an intuition for using these conditions, which I do not
have. You need to have economic insight to see what is interesting here; for me, it is a nice
mathematical result.

I also discussed the result with Rob and he said that it’s interesting to see the identi-
fication problem being brought back into Econometrics. After Sims’ work, identification
of systems of equations had been sort of abandoned, because in Sims’ words, you had
“incredible sets of restrictions”.

You introduced reduced rank regression in cointegration. How did this come about?

In mathematics, you reformulate a problem until you find a solution, and then you
sometimes find that someone else has solved the problem–this is what happened with
reduced rank regression in cointegration, which I worked out as the Gaussian maximum
likelihood estimation in the cointegrated VAR model.

When I first presented the results–later published in Johansen (1988b)–at the European
Meeting of the Econometric Society in 1987 in Copenhagen, I was fortunate to have Helmut
Lütkepohl in the audience who said: “isn’t that just reduced rank regression?”. This helped
me include references to Anderson (1951), Velu et al. (1986) and to the working paper
version of Ahn and Reinsel (1990). Finally, reduced rank regression is also used in limited
information calculations, which can be found in many textbooks.

I used Gaussian maximum likelihood to derive the reduced rank estimator, but Bruce
Hansen in this Special Issue, Hansen (2018), makes an interesting point, namely that
reduced rank regression is a GMM-type estimator, not only a Gaussian Maximum Likeli-
hood solution.

Finally, my analysis revealed a kind of duality between β and α⊥ which can be
exploited to see how many models can be analysed by reduced rank regression. As
summarized in my book (Johansen 1996) reduced rank regression can be used to estimate
quite a number of different submodels, with linear restrictions on β and/or α and allowing
different types of deterministic terms. But of course it is easy to find sub-models, where
one has to use iterative methods to find the maximum likelihood estimator.
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How did you start working on Granger-type representation theorems?

In 1985 I was shown by Katarina the original working paper by Clive before it was
published; this was when I started working on cointegration. I started with an autoregres-
sive representation of a process, and found its moving average representation that Clive
used as the starting point. I find that a more satisfactory formulation, trying to understand
the structure of what he was working on, and I produced the paper on the mathematical
structure, Johansen (1988a).

I was looking for something simple in the very complicated general case with processes
integrated of any integer order, and I settled to focus on what I called the “balanced case”,
that is a relation between variables that are all differenced the same number of times. The
balanced case is very simple, and was a way of avoiding a too complicated structure.
However, I was focusing on the wrong case, because it is the unbalanced case which is of
importance in the I(2) model.

The mathematical structure paper, however, contains “the non-I(2) condition” (see
Theorem 2.5 there), which states that α′

⊥Γβ⊥ need to be full rank in I(1) VAR systems in (1)
with Π = αβ′. That came out as just one small result in this large paper, but that was the
important result which was missed in the Engle and Granger (1987) paper.

This links to the I(2) model and its development.

In 1990 Katarina obtained a grant from the Joint Committee of the Nordic Social Sci-
ences Research Council. The purpose was to bring together Ph.D. students in Econometrics
together with people working in private and public institutions in the Nordic Countries to
teach and develop the theory and the applications of cointegration. We had two to three
workshops a year for 6 or 7 years. The work we did is documented in Juselius (1994) [see
Figure 3].

In the beginning, Katarina and I would be doing the teaching and the rest would
listen, but eventually they took over and presented various applications. It was extremely
inspiring to have discussions on which direction the theory should be developed. One such
direction was the I(2) model, and I remember coming to a meeting in Norway with the
first computer programs for the analysis of the I(2) model on Katarina’s portable Toshiba
computer with a liquid crystal screen.

It was a very inspiring system we had, where questions would be raised at one meeting
and I would then provide the answers at the next meeting half a year later. Identification
was discussed, I(2) was discussed, and computer programs were developed, and people
would try them out. I kept the role as the “mathematician” in the group all the time and
decided early on that I would not try to go into the Economics.

Which I(2) results came first?

The I(2) model was developed because we needed the results for the empirical analyses
in the group, and the first result was the representation theorem, Johansen (1992). This
contained the condition for the process generated by the CVAR to have solutions which are
I(2), generalizing “the non-I(2) condition” to “the non-I(3) condition”.

The next problem I took up was a systematic way of testing for the ranks of the
cointegrating spaces, which I formulated as a two stage analysis for ranks, Johansen (1995b).
This problem was taken up by Anders Rahbek and Heino Bohn Nielsen who took over and
analysed the likelihood ratio test for the cointegration ranks, Nielsen and Rahbek (2007).

The likelihood analysis for the maximum likelihood estimation of the parameters
is from Johansen (1997). When I developed the I(2) model, I realized that the balanced
case is not the interesting one. You need relationships for the I(2) processes of the type
β′Xt + ϕ′ΔXt to reach stationarity, and this is the so-called “multi-cointegration” notion.

I realized from the very beginning that Clive’s structure with the reduced rank matrix
in the autoregressive model Π = αβ′ in (1) is an interesting structure. So one wants to see
how one can generalize it. This of course can be done in many ways but the collaboration
with Katarina on the examples was very inspiring.
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Figure 3. Front and back cover of Juselius (1994), vol. I (of IV). Areas in black indicate sites where the
Nordic workshops took place between 1990 and 1993.

One such example is to take two log price indices pit, i = 1, 2, where each one is I(2),
but p1t − p2t is I(1); one could then have that p1t − p2t + ϕΔp1t comes down to stationarity,
where Δp1t is an inflation rate and ϕ is some coefficient. She pointed out that the important
part of the I(2) model was that it allowed for the combination of levels and differences
in a single equation, and this is exactly the unbalanced case. In order to understand this
I needed to go back and first work out the representation theory, and then start on the
statistical analysis.

What asymptotic results did you derive first?

The asymptotics for the rank test in the I(1) model came first. I attended a meeting
at Cornell in 1987, where I presented the paper on the mathematical structure of error
correction models (Johansen 1988a). I included one result on inference, the test for rank.
For that you need to understand the likelihood function and the limits of the score and
information. I could find many of the results, but the limit distribution of the test for rank
kept being very complicated.

At the conference I met Yoon Park who pointed out that the limit distributions had
many nuisance parameters, and that one could try to get rid of them. This prompted me to
work through the night to see if the nuisance parameters would disappear in the limit. I
succeeded and could present the results in my lecture the next day.

So the mathematical structure paper Johansen (1988a) had the rank test in it and its
limit distribution, see Section 5 there. The most useful result was that the limit distribution
of the test for rank r is the same as if you test that Π = 0 in the CVAR with one lag and
p − r dimensions, that is, a multivariate setup for the analogue of the Dickey-Fuller test.

The limit distribution for the rank test with Brownian motions is something I always
showed as a nice result when I lectured on it, but it is in a sense not so useful for analysis,
because we don’t know its mean, variance, or quantiles. So to produce the tables of the
asymptotic distribution you must go back to the eigenvalue problem with random walks
and then simulate the distribution for a sufficiently large value of T.

I think, the next result I worked on was the limit distribution for β̂. It was derived
using the techniques that Peter Phillips had developed, see Phillips (1986). He had picked
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the right results on Brownian motion from probability and used them to analyse various
estimators, and I could simply use the same techniques.

Ted Anderson’s reduced rank regression, Peter Phillips’ Brownian motions, Phil
Howlett’s results (about which I found out much later) on the non-I(2) condition (Howlett
1982) were all fundamental to my work, but the reason that I could exploit all these methods
and results was my basic training in probability theory, and I am very grateful for the
course Patrick Billingsley gave in Copenhagen in 1964–1965.

What are recent related results that you find interesting?

The paper by Onatski and Wang (Onatski and Wang 2018) has some very nice results.
They consider a multivariate Dickey Fuller test, testing that Π = 0 in the VAR in (1). They
let the dimension p of the system go to infinity proportionally to the number of observations
T, and they get an explicit limit distribution. This is based on results on the eigenvalues of
matrices of i.i.d. observations in large dimensions, which has been studied in Mathematics
and Statistics. Onatski and Wang have an explicit expression for the limit distribution of
the multivariate Dickey Fuller test, called the Wachter distribution.

They refer to the paper Johansen et al. (2005) where we do the simulations to discuss
Bartlett’s correction. Part of that is simply simulating the multivariate Dickey Fuller test
for different dimensions and different p. And they show that their asymptotic formula fits
nicely with our simulations. Extensions to cases with deterministic terms and breaks, and
the ones for rank different from 0 should be carefully considered.

Tell us about your contribution to fractional cointegration.

Morten wrote his thesis on fractional processes 2003 at Aarhus University, and I was
asked to sit on his committee. Some years later I had formulated and proved the Granger
representation theorem for the fractional CVAR (FCVAR) in Johansen (2008), where the
solution is a multivariate fractional process of order d, which cointegrated to order d − b.
We decided to extend the statistical analysis from the usual CVAR to this new model for
fractional processes.

The fractional processes had of course been studied by many authors including Peter
Robinson and his coauthors, like Marinucci, Hualde and many others. There are therefore
many results on the stochastic behaviour of fractional process on which we could build our
statistical analysis.

The topic had mostly been dealt with by analyzing various regression estimators and
spectral density estimators, where high level assumptions are made on the data generating
process. I thought it would be interesting to build a statistical model, where the solution is
the fractional process, so one can check the assumptions for the model.

We had the natural framework in the VAR model, and we just needed to modify
the definition of differences and work out properties of the solution. From such a model
one could then produce (likelihood) estimators and tests, and mimic the development of
the CVAR.

We decided, however, to start with the univariate case, simply to get used to the
analysis and evaluation of fractional coefficients. We published that in Johansen and
Nielsen (2010), and our main results on the FCVAR, that is the fractional CVAR, are in
Johansen and Nielsen (2012).

It helped the analysis that for given fractional parameters b and d, the FCVAR model
can be estimated by reduced rank regression. We found that inference on the cointegrating
relations is mixed Gaussian, but now of course using the fractional Brownian motion, so
basically all the usual results carry over from the CVAR.

We are currently working on a model where each variable is allowed its own fractional
order, yet after suitable differencing, we can formulate the phenomenon of cointegration.
The analysis is quite hard with some surprising results. It turns out that inference is
asymptotically mixed Gaussian both for the cointegrating coefficients, but also for the
difference in fractional order.

34



Econometrics 2022, 10, 21

For fractional cointegration, you appear to be attracted more by the beauty of the
model and the complexity of the problem, rather than the applications. Is this the case?

You are absolutely right. There is not a long tradition for the application of fractional
processes in Econometrics, even though some of the examples are financial data, where
for instance log volatility shows clear sign of fractionality and so do interest rates when
measured at high frequency, see Andersen et al. (2001).

Clive and also other people have tried to show that fractionality can be generated
by aggregation. Granger (1980) takes a set of AR(1) autoregressive coefficients with a
cross-sectional beta distribution between −1 and +1; then integrating (aggregating) he gets
fractionality of the aggregate. However, if you choose some other distribution, you do not
get fractionality.

As another source of fractionality, Parke (1999) considered a sum of white noise
components εt which are dropped from the sum with some given probability. If you
choose some specific waiting time distribution, you obtain the spectrum or auto-covariance
function of a fractional process. There is also another result by Diebold and Inoue (2001)
who show that a Markov switching model generates fractionality. Still we lack economic
questions that lead to fractionality.

I read about an interesting biological study of the signal from the brain to the fingers.
The experiment was set up with a person tapping the rhythm of a metronome with a finger.
After some time the metronome was stopped and the person had to continue tapping the
same rhythm for a quarter of an hour. The idea was that the brain has a memory of the
rhythm, but it has to send a signal to the fingers, and that is transmitted with an error. The
biologist used a long memory process (plus a short memory noise) to model the signal.

Have you ever discussed fractional cointegration with Katarina?

No, she refuses to have anything to do with it, because she is interested in Macroe-
conomics. She feels strongly that the little extra you could learn by understanding long
memory, would not be very interesting in Macroeconomics. It will also take her interest
away from the essence, and I think she’s right. In finance, something else happens. Here
you have high frequency data, and that seems a better place for the fractional ideas.

Tell us about your contributions in survival analysis.

I spent many years on developing the mathematical theory of product integration,
which I used in my work on Markov chains, Johansen and Ramsey (1979). I later collabo-
rated with Richard Gill on a systematic theory of product integration and its application
to Statistics, Gill and Johansen (1990). The interest in the statistical application of product
integration came when I met Odd Aalen in Copenhagen. He had just finished a Ph.D.
on the theory of survival analysis using counting processes, with Lucien Le Cam from
Berkeley, and was spending some time in Copenhagen.

Towards the end of his stay, he presented me with a good problem: he asked me if
I could find the asymptotic distribution of the Kaplan-Meier estimator, which estimates
the distribution function for censored data. As I had worked with Markov chains, I could
immediately see that I could write the estimator as a product integral.

Of course this doesn’t help anyone, but a product integral satisfies an obvious differ-
ential equation. And once you can express the estimator as the solution of a differential
equation, you can find the asymptotic distribution, by doing the asymptotics on the equa-
tion instead of the solution. So we found the asymptotic distribution of what has later been
called the Aalen-Johansen estimator, see Aalen and Johansen (1978).

How did this come about?

The breakthrough in this area of Statistics came with the work of David Cox, who in
1972 presented the Cox survival model (Cox 1972) in which you model the hazard rate.
That is, the intensity of the event under consideration, unemployment for instance, in a
small interval around time t, given the past history. The hazard function is allowed to
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depend on explanatory regressors. The expression for the likelihood then becomes a special
case of the product integral.

In our department Niels Keiding worked with statistical methods applied to medical
problems. He got interested in survival analysis and wanted to understand the mathemati-
cal theory behind it, so he was teaching the theory of point processes and martingales. A
typical example of such problems is to follow a group of patients for a period to see, for
instance, how a treatment is helping cure a disease. Ideally you follow all patients for as
long as it takes, but in practice you have to terminate the study after a period, so the data
is truncated.

The data is made more complicated to work with, because people can leave the study
for other reasons, and hence the data is censored. Such data consists of a sequence of
time points, and is therefore called a point process. Niels was very active with this type
of data and he and his colleagues wrote the book Andersen et al. (1992), describing both
applications and the theory of the analysis, including some of my work with product
integration with Richard Gill.

Did this research have practical implications?

At the University of Copenhagen a retrospective study of the painters syndrome was
conducted. The reason for and time point of retirement were noted for a group of painters,
and as control group the same data were recorded for bricklayers. Such data is typically
made more complicated by individuals changing profession or moving, or dying during
the period of investigation.

One way of analysing such data is to draw a plot of the estimated integrated intensity
of retirement due to brain damage (painters’ syndrome), which can take into account
the censoring. It was obvious from that plot that the risk of brain damage was much
higher for painters than for brick layers. This investigation was just a small part of a larger
investigation which resulted in changing working conditions for painters, and much more
emphasis on water based paint.

Tell us about your work on convexity.

The topic was suggested to me by Hans Brøns shortly after I finished my studies and I
had the opportunity to go to Berkeley for a year. The purpose was to write a thesis on the
applications of convexity in probability. The important result in functional analysis was
the theorem by Hewitt and Savage (Hewitt and Savage 1955) about representing points in
a convex set as a mixture of extreme points. We hoped to find some applications of this
result in probability theory.

The simplest example of such a result is that a triangle is a convex set with three
extreme points, and putting some weights on the extreme points, we can balance the
triangle by supporting it at its center of gravity, which is the weighted average of the
extreme points. Another simple example is the set of Markov probability matrices, with
positive entries adding to one in each row. The extreme points are of course the matrices
you get by letting each row be a unit vector.

A more complicated example is the following: in probability theory there is a well
known Lévy-Khintchine representation theorem, which says that the logarithm of the
characteristic function of an infinitely divisible distribution is an integral of a suitable
kernel with respect to a measure on the real line. It is not difficult to show that these
functions form a compact convex set. One can identify the extreme points to be either
Poisson distributions or the Gauss distribution. The representation theorem then follows
from the result of Hewitt and Savage. This provided a new understanding and a new proof
of the Lévy-Khintchine result.

Another result I worked on I still find very intriguing. If you consider a non-negative
concave continuous function on the unit circle, normalized to have an integral of 1, then
such functions form a convex compact set. The challenge is to find the extreme points. I
found a large class of extreme points, which have the property that they are piecewise flat.
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I needed a further property: that at each corner of the function, where the flat pieces meet,
there are only three pieces meeting. Imagine a pyramid with four sides, so that four lines
meet at the top. This function is not an extreme point, but if you cut the tip off the pyramid,
then at each of the four corners created will have only three sides meeting, and then it is an
extreme point.

The set of functions has the strange property that each point in the set (a concave
function) can be approximated uniformly close by just one extreme point.

Tell us about other models you worked on.

I once collaborated with a group of doctors who were investigating the metabolism of
sugar, say, by the liver in order to find a good measure of liver capacity. The data was the
concentration of sugar in the blood at the inlet and the outlet of the liver. There were three
models around at the time. One modelled the measurement at the inlet and the other at
the outlet.

In developing the model we used an old idea of August Krogh–Winner of the Nobel
Prize in Physiology or Medicine in 1920 “for his discovery of the capillary motor regulating
mechanism”–of modelling the liver as a tube lined with liver cells on the inside, such that
the concentration of sugar at the inlet would be higher than the concentration at the outlet.
This physiological model gave the functional form of the relation between the inlet and
outlet concentrations, which we used to model the data.

We used the data to compare the three models and found out that ours was the best. I
worked on this with Susanne Keiding, see Keiding et al. (1979) and Johansen and Keiding
(1981). We analyzed the data by nonlinear regression that used the mathematics of the
model, the so called Michaelis-Menten kinetics.

It is not so common to check model assumptions as suggested by David Hendry. What
is your view on this?

In my own training in mathematics, I could not use a theorem without checking its
assumptions. This is obviously in the nature of mathematics. Our education in Statistics
was based on Mathematics, so for me it was natural to check assumptions when you have
formulated a model for the data.

At the Economics Department of the University of Copenhagen Katarina held for
9 years a “Summer School in the Cointegrated VAR model: Methodology and Applica-
tions”. In total we had about 300 participants. I would give the theoretical lectures and
Katarina would tell them about how they need to model the data in order to investigate the
economic theories.

The main aspect of the course, however, was that they brought their own data and
had a specific economic question in mind concerning their favourite economic theory.
They spent all afternoons for a month doing applied work, choosing and fitting a model,
checking assumptions of the model, and comparing the outcome with economic knowledge
they had. Katarina would supervise the students, and they were encouraged to discuss
among themselves. They had never tried such a thing and learned a tremendous amount.

On a smaller scale, most courses should include some software for doing econometric
analysis. Such programs would often produce output for different models (different lag
length, cointegration rank, and deterministic terms) as well as misspecification tests. It
seems a good idea to include the interpretation of such output in a course, so one can have
a discussion of what it means for a model to be wrong, and how one can react to change it
for the better.

Is the ability to check assumptions related to likelihood models—i.e., models with a
likelihood?

A very simple regression model, that everyone knows about, is to assume for two
series Xt, Yt that they are linearly related Yt = βXt + εt, and the error terms εt are mutually
independent and independent of the Xts. Obviously, without specifying a precise family of
distributions for the error term, one cannot talk about likelihood methods. So what do we
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gain by assuming Gaussian errors for example? We can derive the least squares method,
but in fact Gauss did the opposite. He derived the distribution that gave you least squares.

There is another application of a parametric model that is also useful. Suppose you
realize, somehow, that the regression residuals are autocorrelated. Then you would like to
change the estimation method, and a method for doing that is to build a new model, which
can tell you how to change the method. This is where an autoregressive model for εt would,
after a suitable analysis of the likelihood, the score, and information, tell you what to do.

So I think the answer is that the likelihood method tells you how to get on with the anal-
ysis, and what to do when your assumptions fail. In this light, one can see that the failure
of conducting inference using a cointegrating regression can be remedied by formulating
the CVAR with Gaussian errors and then derive the methods from the likelihood.

How did your training help you, and what does this suggest for education needs in the
econometric profession?

I think what helped me in Econometrics is the basic training I received in Mathematical
Statistics. At the University of Copenhagen, the degree in Statistics (“candidatus statisticae”)
was introduced in 1960, when Anders Hjorth Hald was appointed professor of Statistics.
He appointed Hans Brøns as the second teacher.

Anders Hald had been working for a number of years as statistical consultant and
later as professor of Statistics at the Economic Department at the University of Copenhagen.
He was inspired by the ideas of R. A. Fisher at Cambridge, and our Statistics courses were
based on the concept of a statistical model and analysis of estimators and test statistics
derived from the likelihood function. The purpose was to educate statisticians to do
consulting with other scientists, but also to develop new statistical methods. The teaching
was research-based and included many courses in mathematics.

The teaching attracted very good students. In those days, if you had a background
in mathematics, there was essentially only one thing you could use it for, and that was
teaching at high school. I was very interested in mathematics but did not want to teach at
high school, so I became a statistician. This would allow me to collaborate with scientists
from other fields, something that I would enjoy a lot.

Our department grew over the years to about 10 people and we discussed teaching
and research full time. It was a very inspiring environment for exchanging ideas and
results. We regularly had visitors from abroad, who stayed for a year doing teaching
and research. For my later interest in Econometrics the course by Patrick Billingsley in
1964–1965 was extremely useful, as it taught me advanced probability theory. He was
lecturing on what was to become the now classical book on convergence of probability
measures (Billingsley 1968) while he was visiting Copenhagen.

What should one do when the model doesn’t fit?

There does not seem to be an easy set of rules for building models, so it is probably
best to gain experience by working with examples. Obviously a model should be designed
so it can be used for whatever purpose the data was collected. But if the first attempt fails,
because it does not describe the data sufficiently well, it would possibly be a good idea to
improve the model by taking into account in what sense it broke down.

You could look for more explanatory variables, including dummies for outliers, differ-
ent variance structure or perhaps study related problems from other countries, say, to get
ideas about what others do. It is my strong conviction that the parametric model can help
you develop new estimation and test methods to help to find a model which better takes
into account the variation of the data.

As students, we only analysed real life data and sometimes even had a small collab-
oration with the person who had taken the measurements. Our role would be to help
building a statistical model and formulate the relevant hypotheses to be investigated in
collaboration with the user. Then we would do the statistical analysis of the model based
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on the likelihood function. With this type of training we learned to discuss and collaborate
with others.

How and why should models be built?

I do not think that there are general rules for model building, partly because models
can serve so many different purposes. By considering many examples, it is my opinion that
you can develop a feeling for what you do with the kind of problems you are investigating.
But if you change field, you probably have to start from scratch. Thus the more experience
you have with different types of models, the more likely it is that you can find a good
model next time you need it.

I personally find that the main reason for building and analyzing models is that you
want to be able to express your own understanding of the phenomenon to other people.
The mathematical language has this nice property that you can communicate concepts in a
precise way. I think about the model as a consistent way of formulating your understanding
of the real world.

It is interesting to consider an average of measurements as something very relevant and
useful in real life. The model for i.i.d. variables includes the nice result of the law of large
numbers, and gives us a way of relating an average to an abstract concept of expectation in
a model. But perhaps more important than that, is that it formulates assumptions, under
which the result is valid, and that gives you a way of checking if the average is actually a
good idea to calculate for the data at hand.

Another practically interesting concept is the notion of spurious correlation, which
for nonstationary data can be very confusing, if you do not have a model as a basis for
the discussion, see for instance the discussion of Yule (1926). It was the confusion about
the notion of correlation (for nonstationary time series variables) that inspired the work of
Clive on the concept of cointegration.

Could you elaborate on the theory and practice of likelihood methods
in Econometrics?

Econometric textbooks often contain likelihood methods, but they do not have a
prominent position. There are only few books which are based on likelihood methods from
the beginning, as for instance Hendry and Nielsen (2007). In the space between models
and methods, the weight is usually on the methods and how they perform under various
assumptions. There are two good reasons to read textbooks, one is that you can then apply
the methods, and the other is that you can then design new methods.

When R. A. Fisher introduced likelihood analysis, the starting point was obviously
the model, and the idea is that the method for analysing the data should be derived from
the model. In fact it is a unifying framework for deriving methods that people would be
using anyway. Thus instead of remembering many estimators and statistics, you just need
to know one principle, but of course at the price of some mathematical analysis.

By deriving the method from first principles you also become more aware of the
conditions for the analysis to hold, and that helps checking for model misspecification,
which again can help you modify the model if it needs improvement. It is clear that the
likelihood requires a model, and the likelihood analysis is a general principle for deriving
estimators and test statistics; yet it usually also requires a lot of mathematical analysis, and
the solutions often need complicated calculations.

It is, however, not a solution to all problems, there are counter examples. In particular,
when the number of parameters increases, the maximum likelihood estimator can be
inconsistent. A standard example is to consider observations (Xi, Yi), i = 1, . . . , n which
are independent Gaussian with mean (μi, μi) and variance σ2. In this simple situation
σ̂2 → 1

2 σ2 in probability, the so-called “Neyman-Scott Paradox”.
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What are the alternative approaches with respect to a well-specified statistical model?

The simple regression model, where the calculations needed to find the estimator is
the starting point, is an example of an algorithm which is often taken as the starting point,
and which does not require a statistical model. The statistical model is needed, when you
want to test hypotheses on the coefficients, and the parametric statistical model is useful if
you want to derive new methods.

Of course there exists many methods, expert systems, based on complicated nonlinear
regressions. I am not an expert on these, but I note that the people behind them collaborate
with statisticians.

So what needs to be avoided is the use of Statistics without knowledge of it. Correct?

Sounds like a good idea! Many people think that Statistics is a set of well developed
methods that we can just use. I think that can be a bit dangerous, and highly unsatisfactory
for the users. It would of course be lovely, but a bit unrealistic, that all users should have a
deep understanding of Statistics, before they could use a statistical method. I explained
elsewhere the summer course we had in Copenhagen, where the students are put in a
situation where they have to make up their minds about what to do, and that certainly
improves learning.

Are statisticians especially trained to collaborate?

As a statistician, you study all the classical models about Poisson regression and
two-way analysis of variance, survival analysis and many more. If the exercises contain
real data, you will learn to formulate and build models and choose the right methods for
analyzing them. It is of course in the nature of the topic that if you are employed later in a
medical company doing controlled clinical trials, then you will have to collaborate with
the doctors.

The education should therefore also try to put the students in situations, where such
skills can be learned. The problem is of course that if you end up in an insurance company
or in an economics department you probably need different specializations. So in short I
think the answer to your question is Yes! the students should be trained to collaborate.

Hence, is Statistics a science at the service of other sciences?

Of course Statistics as a field has a lot of researchers working at Universities on
teaching and developing the field, but most statisticians work in industry or public offices,
pharmaceutical companies, insurance companies, or banks.

Another way of thinking about it was implemented by my colleague Niels Keiding.
In 1978 he started a consulting service for the medical profession at the University of
Copenhagen, using a grant from the Research Council. The idea was to help the university
staff in the medical field getting expert help with their statistical problems, from planning
controlled clinical trials, to analysing data of various sort. This has been a tremendous
success and now is a department at the University with around 20 people working full
time in this, as well as some teaching of Statistics for the doctors.

Any message on the publication process?

I remember when I was in Berkeley many years ago, in 1965, I took a course with
Lester Dubins, who had just written a book called “How to gamble if you must”, Dubins
and Savage (1965). I was then working with the coauthor on my first paper, Johansen and
Karush (1966). I must have been discussing publications with Lester, and he kindly told me
“But you have to remember, Søren: every time you write a paper and get it published, it
becomes slightly more difficult for everybody else to find what they want”.

This carried a dual message on the benefit of advancing knowledge and the associated
increased cost in retrieving information. Fortunately, this cost has been greatly reduced by
the current powerful internet search engines available.
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ment, discusses problems to be solved when confronting theory with the data, and, as a solution,
proposes a so-called theory-consistent CVAR scenario. A number of early CVAR applications are mo-
tivated by the urge to find out why the empirical results did not support Milton Friedman’s concept
of monetary inflation. The paper also proposes a method for combining partial CVAR analyses into a
large-scale macroeconomic model. It argues that an empirically-based approach to macroeconomics
preferably should be based on Keynesian disequilibrium economics, where imperfect knowledge
expectations replace so called rational expectations and where the financial sector plays a key role for
understanding the long persistent movements in the data. Finally, the paper argues that the CVAR is
potentially a candidate for Haavelmo’s “design of experiment for passive observations” and provides
several illustrations.
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1. Introduction

I was happy to accept the invitation by the guest editors to write this survey paper
based on my retirement lecture given at the Economics Department of the University of
Copenhagen in 2014. Retirement is one of the important dividing lines in a long active
life that gives you the opportunity to slow down and to reflect on your achievements.
When preparing for my retirement lecture I asked myself: who inspired me to choose
econometrics; what were the main questions that motivated my research; how did I go
about answering them; what stones did I stumbled on; and the most important one: did
my research contribute to useful answers of important questions. In writing this paper, I
have allowed myself to focus almost exclusively on my own research together with my
many coauthors. While the paper is far from a balanced account of all the good research
that has inspired me, the bibliographies in the papers to be discussed bear witness of the
many important contributions on which this research rests.

Over a long academic career it is almost unavoidable that some scholars have been
more influential than others. For me, David Hendry and Clive Granger were enormously
influential for my thinking in the early formative years. I found the “general-to-specific”
error correction approach developed by David utterly exciting and the numerous time-
series methods proposed by Clive very inspiring. To be a colleague and a friend of both of
them has been an invaluable privilege in all these years.1 My research has benefitted a lot
from their highly innovative research.

1 Sadly, Clive left us already in 2009, all too early.
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However, it was the working paper on cointegration and error correction (Granger 1983)
that fundamentally changed both my professional career and my personal life. From the
outset I was intrigued by the concept of cointegration and how it related to the more
familiar concept of error-correction. Clive’s paper defined cointegration as part of a vector
moving average model for unobservable errors, whereas error correction models were
based on the autoregressive model formulated for variables. At that time it was difficult to
estimate moving average models—definitely more so than error correction models—and
I could not see how to use cointegration in empirical work. Therefore, I asked Søren
Johansen to give a prepared comment on Clive’s paper at the Nordic Statisticians meeting
in 1982. Søren, recognizing the great potential of Clive’s cointegration idea as a means
for solving the problem of nonstationarity in economic time-series processes, gave an
insightful presentation.

As most economic time series are nonstationary, but the statistical theory used to
analyze them was based on the assumption of stationarity, this was clearly extremely
important. One can say that we stumbled over a gold mine of relevant problems that
needed to be solved. The first one was to formulate the concept of cointegration in the
context of a vector autoregressive model. With Søren’s formal training in mathematical
statistics it did not take long until he had derived a rigorous solution in terms of an
autoregression with a reduced rank impact matrix, as well as a maximum likelihood
solution for its estimation based on reduced rank regression. Many more useful results
followed in a steady stream. I was thrilled—and still am—by the numerous possibilities
that cointegration analysis offers to ask new and relevant questions in economics.

In the mid-nineties, most of the econometric tools needed for a full-fledged Cointe-
grated Vector AutoRegressive (CVAR) analysis were derived and I could start focusing on
what interested me most: to develop the CVAR as an empirical methodology in macroe-
conomics. I had come across Trygve Haavelmo’s Nobel Prize winning monograph “The
Probability Approach to Economics” (Haavelmo 1944) and was immediately struck by its
beauty. Trygve Haavelmo, as it appeared, had already—before I was born—formulated a
stringent vision of a likelihood based approach to economic modeling that seemed to be
the answer to my own rather muddled methodological questions. Haavelmo’s concept of a
“designed experiment for data by passive observations” was exactly what I needed when I
struggled to work out how to associate the theoretical structures of macroeconomic models
with the much richer structures of the CVAR model.

Common to almost all my empirical papers was the puzzlement that the CVAR results
in one way or the other seemed to contradict basic assumptions of the underlying economic
theory. Especially in the early years, it was something I was strongly worried about: had I
misunderstood something crucial? Did I apply the CVAR in the correct way? I happened
to stumble over a methodology book by David Colander and then read almost everything
I could find from his pen. His thorough insight in the methodology of economics helped
me see that the problems were not necessarily related to the CVAR model.

All this and much more is discussed in the rest of the paper which is organized around
four major themes.

The first one is about the development of the econometric foundations of the CVAR
and describes (i) major stepping stones that were needed in order to apply cointegration
techniques to relevant economic problems, (ii) my first attempts to confront economic
theories with data and my puzzlement when results did not support standard economic
assumptions, and (iii) the development of a user-friendly software.

The second theme is about the development of the CVAR as an empirical methodology
and describes (i) numerous difficulties to be solved when confronting economic theories
with the data; (ii) my many efforts to formulate a viable link between the economic model
and the data as structured by the CVAR, which finally lead to the concept of a so called
theory-consistent CVAR scenario; and (iii) my attempts to associate the CVAR approach
with Trygve Haavelmo’s probability approach to economics.
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The third theme is about early applications starting with the Danish money demand
which was primarily used as a check of the derived econometric results but also to under-
stand the mechanisms governing price inflation. The Danish money demand study is about
successes but also puzzling results, which forced me to search for alternative explanations
to inflation pressure. Finally, this part discusses a procedure for how to combine partial
CVAR models into a larger model in which all aspects of the inflationary mechanism can
be studied.

The forth theme is about a new approach to empirical macro. The long persistent
swings in the data are tentatively explained by replacing rational expectations with im-
perfect knowledge expectations. In particular, real exchange persistence is related to
speculative behavior in foreign currency markets affecting nominal exchange rates but not
consumer prices. This part also discusses why persistent long swings in real asset prices
are prone to generate long swings in the real economy, particularly in the unemployment
rate. The potential of the CVAR to act as a “design of experiment” in macroeconomics is
illustrated with unemployment dynamics in a crisis period based on the Finnish house
price crisis in the nineties and the recent Greek depression.

The paper ends with some personal reflections on obstacles and bumps on the long
journey and concludes with a discussion of what we should require from empirically
relevant macroeconomics.

2. Econometric Foundations

The starting point of the cointegration project was the unrestricted VAR(k) model:

Δxt = Πxt−1 +
k−1

∑
i=1

ΓiΔxt−i + μ0 + μ1t + Φ1Dt + Φ2St + εt, (1)

t = 1, ..., T

where xt is a p × 1 data vector, μ0 is a p × 1 vector of constant terms μ1 a p × 1 vector of
trend coefficients, Dt a a m × 1 vector of dummy variables, St an s × 1 vector of seasonal
dummies, and εt ∼ Niid(0, Ω). In the first years, (1) was analyzed without a linear
trend and dummies in the model. However, as most macroeconomic data are trending
and riddled with extreme events, it did not take long before we realized that both are
indispensable for an adequately specified model. This led Johansen (1994) to discuss the
dual role of the constant and the trend in the CVAR and to provide a solution. With
time we learned the simple lesson that the choice of VAR specification from the outset
should be either for non-trending data with μ1 = 0 and with the constant restricted to the
cointegration relations, or for trending data with μ1 	= 0 and with the trend restricted to
the cointegration relations.

When xt is integrated of order one, I(1), all components in (1) except Πxt−1 are
stationary. Therefore, either Π = 0 or of reduced rank, r. It was a defining moment when
Søren in 1986 was able to find the likelihood-based solution to Π = αβ′ where α, β are p × r.
After that it was possible to address economic problems in an I(1) world using a likelihood
based VAR analysis.

Inverting (1) with Π = αβ′ allowed us to express the vector, xt, as a function of the
shocks, εt, and the deterministic terms constant, trend, and dummies:

xt = β⊥(α
′
⊥Γβ⊥)

−1α′
⊥

t

∑
i=1

(εi + Φ1Di + μ0 + μ1i) + C∗(L)(Φ1Dt + μ0 + μ1t + εt) + A (2)

where Γ = I − ∑k−1
i=1 Γi, A depends on initial values and β′A = 0, β⊥ and α⊥ are p ×

p − r matrices orthogonal to β and α, α′
⊥ ∑t

i=1 εi, is a measure of the p − r stochastic
trends, β⊥(α′

⊥Γβ⊥)−1 denote the coefficients with which the stochastic trends load into
the variables, and C∗(L)(Φ1Dt + μ0 + μ1t + εt) represents stationary movements around
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the trends. The formulation (2) allowed us to calculate impulse response functions and
long-run dynamical effects of exogenous shocks to the system, the so called long-run
multiplier effects.

Economic data frequently exhibit too much persistence to be tenable with the I(1) as-
sumption. The condition that xt is I(2), i.e., nonstationary of second order, was formulated
in Johansen (1992) as the reduced rank of α⊥Γβ′

⊥ = ξη′, where ξ, η are p − r × s.
Fortunately, it was only the cointegration rank test that needed a nonstandard distri-

bution. After the rank was found, the nonstationary data was transformed to stationarity
partly by differencing and partly by taking stationary linear combinations of the levels: this
leads to standard Gaussian and χ2 asymptotic inference in the transformed model. A large
number of important economic hypotheses, such as exogeneity, endogeneity, long-run
homogeneity, identifying restrictions, zero restrictions, etc. could then be tested using
standard procedures.

2.1. Econometric Theory and Economic Applications

Already in 1986, Søren worked out the representation theory, the probability the-
ory, and the statistical theory that were necessary for applying likelihood-based coin-
tegration analysis to empirical problems. The results were subsequently published in
Johansen (1988). At the same time as Søren derived the theoretical results, I applied them
to the Danish data consisting of real money holdings (M2), real aggregate demand, a
weighted deposit rate for M2, and the long-term bond rate. While the primary goal was to
have a test case for the theoretical results, the ultimate goal was to obtain a likelihood based
estimate of the Danish money demand relation for M2. Luckily, this relation turned out to
be incredibly stable over time—possibly the most stable macroeconomic relation I have
ever come across. This was invaluable as we were able to develop the main cointegration
tools and test them based on data that gave reasonably interpretable results. Later on,
we had ample possibilities to tackle more challenging problems which often forced us to
rethink both econometrics and economics.

The results of this first “going back and forth” between econometric theory and money
demand became a working paper in 1987. It was submitted to Econometrica, where it
was lying for more than two years and then rejected. In 1990, it was finally published
in Oxford Bulletin of Economics and Statistics and became highly cited.2 The paper
discusses, theoretically and empirically, how to test and impose a reduced rank on the VAR
model, how to test hypotheses on the cointegration parameters β, and on the adjustment
coefficients α. The trace test showed that the rank was one, which was fortunate as it greatly
simplified the statistical analysis. It was also fortunate that the cointegration relation was
readily interpretable as a deviation from a plausible long-run money demand relation.
Furthermore, it turned out that money stock alone was adjusting to β′

1xt with a significant
α coefficient, i.e., all the remaining α coefficients could be set to zero. Johansen (1992)
subsequently showed that this was the condition for when the CVAR estimates of the
cointegration relation are equivalent to the ones obtained from a single equation error
correction model.

In many ways, it was a rich paper illustrating a variety of the rather complex coin-
tegration methods with a realistic application to macroeconomic data. It received a lot
of interest both among econometricians and empirical macroeconomists and it therefore
bothers me that the deterministic terms were not satisfactorily specified. Today, I would
approach the empirical analysis somewhat differently.

The next joint paper, Johansen and Juselius (1992), discusses some additional tests
on the cointegration relations β′xt based on an empirical application to the purchasing
power parity (PPP) and the uncovered interest rate parity (UIP) for UK data. The paper
shows theoretically and empirically how to test the same restriction on all β vectors, which
corresponds to a transformation of the data vector, and how to test the stationarity of a

2 Google scholar records 18132 citation in November 2020.
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known vector in β, for example, the stationarity of the real interest rate. The latter test
procedure was extended to the case where some of the coefficients of a cointegration vector
are known but others have to be estimated, for example, the stationarity of the real interest
rate with an equilibrium mean shift.

It was also the first application where some of the cointegration relations ( β′xt) looked
nonstationary, but the same cointegration relations corrected for the short-run dynamics
(β′Rt) seemed perfectly stationary. This puzzling feature led to the development of the I(2)
model as will be described below.

A third joint paper, Johansen and Juselius (1994), discusses the important issue of
identification of the long-run cointegration structure in terms of formal, empirical, and
economic identification. Formal identification is needed to ensure that the parameters are
estimable, empirical identification that all parameters necessary for formal identification
are statistically significant, and economic identification that the results make economic
sense. The paper shows theoretically and empirically how to impose and test identifying
restrictions on a full β structure and discusses all three aspects of identification based on
an IS-LM model for Australian data.

With these three papers, the basic tools for a realistic analysis of economic problems in
a nonstationary I(1) world had been worked out. This was sufficient as long as economic
data were assumed to be either stationary or at most I(1). However, as the puzzling
empirical results in Johansen and Juselius (1992) showed, the possibility of I(2) variables
had to be taken seriously. The test of the I(2) hypothesis was formally derived in Johansen
(1992) and illustrated with an analysis of PPP and UIP between Australia and the USA.
Juselius (1995) reported a similar analysis between Germany and Denmark. Common
for these papers was the finding that at least one of the cointegration relations, β′xt, was
nonstationary, whereas β′Rt (for which the short-run effects had been concentrated out)
was definitely stationary. This made sense in a CVAR model where xt ∼ I(2), β′xt ∼ I(1),
and (β′xt +ω′Δxt) ∼ I(0), where ω′Δxt ∼ I(1). Based on the so-called two-step procedure,
it was then straightforward to estimate and analyze the I(2) model. Subsequently the
two-step procedure was replaced by the likelihood based procedure in Johansen (1997).
Juselius (1999a) used the likelihood based procedure to study long-run and medium-run
price homogeneity among six US price indices.

Thus, the I(2) analysis was initiated by trying to understand why the empirical
results looked so strange, illustrating that the theoretical advances often were motivated by
empirical necessity.

In the mid-nineties, most of the CVAR theory was developed and all ingredients
needed for a successful cointegration analysis were available. Cointegration had become
the standard way of analyzing economic time-series. The mathematical results needed
for the probability/statistical analysis of cointegration were summarized by Søren in
his book “Likelihood based inference in Cointegrated Vector Autoregressive Models”
Johansen (1996). Ten years later, my book “The Cointegrated VAR model: Methodology
and Applications” (Juselius 2006) was published, offering detailed discussions of the CVAR
as an empirical methodology for macroeconomic applications.

In 1999, the Energy Journal commissioned David Hendry and myself to produce two
expository papers on unit roots and cointegration for the readers of the journal. Hendry and
Juselius (2000) explained the concepts in the context of a single equation error correction
model, and Hendry and Juselius (2001) in the context of a system CVAR model. The two
papers became highly cited also outside the field of energy economics demonstrating the
profession’s interest in applying cointegration in various branches of economics.

The appealing novelty of the CVAR model was that it was tailor-made to study long-
run, medium-run, and short-run structures in the same model, allowing the complexity of
the empirical reality to be grasped and better understood. Cointegration and the adjustment
dynamics, the so-called pulling forces, were analyzed in the autoregressive representation
of the model, while common trends, long-run multipliers and impulse response functions,
the so-called pushing forces, were analyzed in the moving average representation. The
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CVAR offered a detailed and immensely rich analysis of a variety of economic issues,
including estimates of dynamic long-run effects of policy changes which had previously
been difficult to estimate. Hoover et al. (2009) argue that “the CVAR model has a good
chance of nesting a multivariate, path-dependent data-generating process and relevant
dynamic macroeconomic theories”. I was convinced that this approach would mean a big
step forward toward an improved understanding of our macroeconomy.

2.2. Developing a User Friendly Software

Henrik Hansen translated our various program codes into a nice menu-driven package,
CATS in RATS, version 1 (Hansen et al. 1994). It was the first software package to contain
all the various tests and tools and the demand for it was correspondingly huge. However,
the CVAR methodology was subject to an intense development and the need for an updated
version grew for each year. In particular, we desperately needed a menu-driven program for
a full-fledged I(2) analysis based on likelihood-based principles. For two years, Jonathan
Dennis worked extremely hard to produce the next version CATS in RATS, Version 2.0.
(Dennis et al. 2006). It contained not just a full I(2) analysis, but also a variety of new and
improved features. Among others it added an expert system for long-run identification
that greatly facilitated the search for empirically meaningful long-run structures in the data.
It increased my own productivity enormously, probably by a factor of 50 or more. Recently,
Jurgen Doornik translated the RATS code into OxMetrics and invested a huge amount of
time and effort into the project. In particular the coding of the I(2) analysis into OxMetrics
was a major achievement. CATS, version 3.0 is now available (Doornik and Juselius (2017)).

3. The CVAR as an Empirical Methodology

From the outset, the idea of the CVAR was to offer a framework in which data would
be allowed to speak freely without being silenced by prior restriction and in which basic
hypotheses could be adequately tested and empirically relevant structures estimated. It
is Popperian in this sense that the fundamental principle builds on the ability to falsify a
hypothesis, to let the statistical analysis guide you toward an empirically relevant model.
If the latter is inconsistent with your prior, then the analysis will often help you to see why
your prior was wrong.

I was convinced this would make it possible to properly test the basic underlying
assumptions of macroeconomic models and hoped it would replace the standard procedure
of forcing the chosen theory model onto the data—also when they protest strongly. To my
disappointment, not many economists seemed interested in having their models robustified
or falsified in this fashion.

3.1. Confronting Theories with Data

While I never expected the empirical results to perfectly support standard theory, it
came as a surprise that the results and conclusions differed so much. Discovering that
some very fundamental relationships which most macroeconomic models relied on were
not supported by the data was very disturbing and forced me to start thinking about
methodological issues. After many unsuccessful attempts to interpret the CVAR results
in terms of standard theory, it dawned on me that many economic theories might make
more sense in a stationary than a non-stationary world. Few economic models at that time
made an explicit distinction between stationary and nonstationary processes. Therefore,
the idea of stochastic trends as the exogenous drivers of a system and dynamic adjustment
to long-run equilibrium relations seemed foreign to most economists. Exogeneity played
an important role but was differently defined in economics and econometrics. In the
former case, it was essentially assumed, in the latter defined as weak, strong, and super
exogeneity. The latter were formulated in terms of the statistical model and, thus, testable.
See Engle et al. (1983).

Ever since the seminal paper by Sargan (1964), error correction models had been
developed in numerous papers mostly by David Hendry and his followers. These were
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mostly applied as single equation models and the error correction mechanism was assumed
to be a measure of an equilibrium error. However, even these relatively simple and
economically intuitive error correction models did not seem to exert much influence
on standard economic thinking. What seemed to be needed, I thought, was a bridging
principle that would link theoretical macroeconomic models in economics to the pulling
and pushing forces of the CVAR model. Juselius (1993) was my first attempt to discuss this
dichotomy in terms of a monetary problem without yet offering a bridging principle.

The ceteris paribus assumption—everything else constant or, more realistically, “ev-
erything else stationary”—was another issue I was concerned about. In a theoretical model,
this assumption allows you to keep certain variables fixed and, therefore, to focus on those
of specific interest. In an empirical model you have to bring these ceteris paribus variables
into the analysis by conditioning. If they are stationary, the conclusions from the theoretical
model are more likely to be robust, but if they are non-stationary, the conclusions can—and
often do—change fundamentally. Because of this, it worried me that I frequently found
important economic determinants such as the real interest rate, the real exchange rate, and
the term spread to be empirically indistinguishable from a unit root process. In those cases
when they are not explicitly part of the macroeconomic model, they are nonetheless part
of the ceteris paribus clause. When these variables were included in the CVAR system I
often found that conclusions changed, sometimes fundamentally so. The theory division of
variables into endogenous, exogenous and fixed could not a priori be assumed to hold in
the empirical model.

Expectations, which play such a prominent role in economic models, were problematic
for CVAR models formulated in terms of observed variables. Economists usually solve this
problem by making assumptions on how (rational) economic agents would forecast future
outcomes given the chosen theoretical model—the so-called model based rational expec-
tations hypothesis (REH). From the outset, I was skeptical of using REH as an empirical
modeling device, mostly because I considered REH behavior to be highly unrealistic or
even irrational in a nonstationary world with frequent breaks. The fact that Johansen and
Swensen (1999, 2004) found essentially no support for the REH hypotheses when tested in
the context of a CVAR model, only confirmed my doubts. Unfortunately, I had no clue how
to solve the problem of unobserved expectations in a CVAR and for many years it was a
constant worry. After stumbling over the theory of imperfect knowledge expectations, I
began to see a possible way forward. However, it took me many attempts and a long time
and until I was able to formulate a CVAR scenario that also included testable assumptions
on theory-consistent expectations. See Juselius (2017, 2021a).

Finally, there was the important issue of aggregation from the micro to the macro
level. Most theoretical models in macroeconomics were based on the assumption of a
representative agent. This simplifying assumption facilitated a mathematical formulation
of the economic problem but often at the expense of its empirical relevance. It certainly
seemed to be one reason why my empirical CVAR results deviated so strongly from the
ones assumed in mainstream macroeconomic models.

The adoption of the Euro increased the interest in Euro-wide analyses and, there-
fore, the need to create sufficiently long historical data series aggregated over individual
European countries with national currencies. The practical problem of aggregating the com-
ponents of a macro variable—e.g., EU-wide GDP—turned out to be utterly complex and
even more so when data were nonstationary. Juselius and Beyer (2009) studied the sensitiv-
ity of different aggregation methods and proposed a procedure that properly accounted
for the nonstationarity of the series.

3.2. Linking Theory and Evidence: A Bridging Principle

The question of how to link a macroeconomic model to the data is a difficult one. A
statistically well-specified empirical model (necessary for correct inference) and an econom-
ically well-specified theoretical model represent two basically different entities. To make
things worse, econometricians and economists often use concepts which sound similar
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but have different meanings. The concepts of exogeneity, steady-state, and equilibrium
are just a few examples. Johansen and Juselius (2006) was an attempt to improve the
dialog between the econometrician and the economist by offering a dictionary between the
two languages.

Based on my experience with CVAR modeling, I became convinced that macroeco-
nomic data were primarily informative about long-run economic relations identified among
the cointegrated relations β′xt, and about the exogenous forces, measured by the stochas-
tic trends α′

⊥ ∑t
i=1 εi. Recursive constancy tests convinced me that the transitory effects,

measured by Γi, were inherently unstable. The idea was therefore to assess the economic
model in two steps: first by testing its long-run equilibrium structure and, if not rejected,
then its short-run adjustment structure conditional on the long-run. Econometrically, such
a two-step procedure made sense as the long-run parameter estimates are super-consistent
contrary to the short-run which are ordinary consistent.

In 1999 I was invited to give a presentation at a conference on “Macroeconomics and
the Real World” held in Bergamo, Italy. At that time I had been struggling to formulate a
complete set of testable long-run hypotheses for a model of monetary inflation (Friedman
1970; Romer 1996), subsequently labeled a theory-consistent CVAR scenario. Kevin Hoover,
my official discussant, got interested in the idea and we have been collaborating since
then. My Bergamo paper was published in the special issue of the Journal of Economic
Methodology (Juselius 1999b).

Over the next many years I continued to develop principles for how to translate
basic assumptions about the shock structure and steady-state behavior of the monetary
model into testable hypotheses on the pulling and pushing forces of the CVAR. Such a
theory-consistent CVAR scenario is a summary of the empirical regularities one should
find in the data if the basic assumptions of the theoretical model are empirically valid.
This idea became a guiding principle of my book (Juselius 2006), in which I demonstrated
that essentially all basic assumptions on monetary inflation in Romer (1996) were strongly
rejected by the data.

I also tried to formulate a complete set of testable hypotheses about the purchasing
power parity (PPP) and the uncovered interest rate parity (UIP). To my surprise, the results
were neither straightforward, nor trivial. But, due to other demanding commitments, it took
me roughly 10 years until I finally worked out a full theory-consistent CVAR scenario in
a chapter of the Handbook of Econometrics (Juselius 2009b). The paper showed that a
stationary PPP was empirically inconsistent with observed integration properties of the
data, a result that supported the theory of imperfect knowledge economics (Frydman and
Goldberg 2007, 2011).

Massimo Franchi visited our department in 2006–2007, and we decided to take a closer
look at Ireland (2004) with the title “A method for taking the model to the data”. It is a
methodological paper in which a real business cycle theory is formulated as a Dynamic
Stochastic General Equilibrium model and estimated based on US data. Both the code and
the data were available online. Massimo replicated all results of the paper and showed that
many key results were empirically fragile. Based on a theory-consistent CVAR scenario,
we tested all basic assumptions. They were all rejected and the main conclusions were
reversed (Juselius and Franchi 2007).

In 2008, I was guest editor of a special issue for the E-journal Economics with the
title Using Econometrics for Assessing Economic Models. See Juselius (2009a). All submitted
papers documented lack of support for at least some of the assumptions of the underlying
economic model.

In this period, I supervised numerous students and their empirical results were almost
without exception similarly disappointing. It was against this background that I wrote
Juselius (2010, 2011).
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3.3. Haavelmo’s Probability Approach and the CVAR

As mentioned in the introductory section, my most important methodological inspi-
ration came from the Nobel Prize-winning monograph Haavelmo (1944). In particular,
Trygve Haavelmo’s discussion of statistical inference in economic models based on ex-
perimental design data and on non-experimental data was useful for my understanding.
In the first case, data are artificially isolated from other influences so that the validity
of the ceteris paribus clause is satisfied. In the second case, data are obtained by “pas-
sive” observations for which there is no control of the theory that has generated them.
Trygve Haavelmo’s simple message was that the statistical inference is valid provided
the experimental design is valid. The question was then under which conditions this is
the case for macroeconomic models. While a prior economic model may or may not be
basically correct, it seldom describes data by passive observations very precisely and the
ceteris paribus clause is definitely not satisfied. One could asked whether it was at all
possible to confront macroeconomic models with our complex economic reality without
compromising high scientific standards. Trygve Haavelmo’s answer was to introduce the
concept of a ”design of experiment” for data obtained by passive observations and discuss
the validity of inference in that framework. How to construct such a designed experiment
was a question that accompanied me in the many years to come.

To ensure valid inference, I thought the statistical model had to be sufficiently general
(broad) to represent a set of possible economic models, among which the most relevant
one could be selected. In a typical macro situation, there is a variety of models to choose
from, but just one data set obtained by passive observations. Therefore, the habit to
just assume that the data have been correctly sampled for a preselected model cannot
be considered good science: If the statistical model is restricted from the outset in a
theoretically prespecified manner, it would be impossible to know which results are true
empirical facts and which are due to the assumptions made.3 With time, I became ever
more convinced that valid inference requires that data are allowed to speak freely about
the underlying economic mechanisms and that a key part of the modeling process entails
conditioning on important ceteris paribus variables: data by passive observations are never
artificially isolated from other factors.

Thus, it seemed mandatory that a probability-based approach to economics should
adequately describe all dominant features of economic data in the broad context of a
multivariate dynamic macroeconomic model. Juselius (1994) was an early and incomplete
attempt to discuss the CVAR model as such a ”design of experiment” for data by passive
observations. Roughly 20 years later, in connection with the celebration of Haavelmo’s
centenary birthday, Hoover and Juselius (2015) provided more elaborate arguments for
this claim and Juselius (2015) translated one of Haavelmo’s own economic models into
a theory-consistent CVAR scenario. This is the closest I have come to demonstrating the
potential of the CVAR as a design of experiment for data by passive observations.

4. Early Applications

In the early years of my academic career, the extant macroeconomic doctrine was
strongly influenced by Milton Friedman’s monetary theory, which essentially said that
money should be controlled in order to control inflation. Friedman’s slogan was that
“inflation is always and everywhere a monetary problem”. What was needed was a
monetary authority that was dedicated to keep money supply aligned with the equilibrium
level of a money demand relation. My goal was to estimate such a relation for Denmark.

Most attempts to estimate a money demand relation were based on simple regression
models, or in some exceptional cases single equation error correction models. I was con-
vinced that the CVAR model would produce much improved estimates and was therefore
excited to apply it to Danish data. Some of the results in Johansen and Juselius (1990)
also fulfilled my expectations. I found a completely stable money demand relation with

3 Such assumptions are, for example, long-run proportionality, exogeneity and endogeneity status, expectation formation, and so on.
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a plausible coefficient to the cost-of-holding money, measured by the long-short interest
rate spread.

Econometrically, the results were straightforward: the trace test suggested that the
rank was one, so there was no need to impose (difficult) identifying restrictions on the
long-run structure. Economically, some results were plausible: the estimated cointegration
relation was directly interpretable as an equilibrium error from a long-run money–demand
relation. However, other results were more puzzling. The adjustment coefficients suggested
that only money stock was adjusting to deviations in money demand. Hence, monetary
shocks had no permanent effect on the system and the exogenous shocks came from
aggregate income, the interest on M2, and the long-term bond rate. That cumulated shocks
to the interest rates acted as exogenous drivers to the system was against the expectations
hypothesis that predicted a stationary interest rate spread.

It was a successful econometric example, but some of the results were economically
puzzling. From day one, I learned the hard lesson that the CVAR approach forces you to
understand the economic problem in the full context of its system dynamics. Over the next
several years I was driven by the urge to better understand why some of the results were
so puzzling, making me investigate alternative inflationary transmission mechanisms. This
is what the subsequent subsections are about.

4.1. Is Inflation a Monetary Phenomenon?

One problem with the Johansen and Juselius (1990) results was that inflation rate
was not part of the VAR system. At that time we were not yet aware of the implication of
nominal-to-real transformation that the inflation rate should also be included as a system
variable.4 Perhaps, the puzzling results were due to the missing inflation rate?

As expected, the CVAR extended with the inflation rate produced one additional
cointegration relation, identified as a stationary relation among inflation and the two
interest rates. The estimated coefficients of the money demand relation were the same as
before, which was not surprising as the cointegration property is invariant to extensions of
the information set. However, the rest of the results were also very similar: (i) money stock
was still purely adjusting, (ii) monetary shocks had no exogenous impact on the system,
and (iii) deviations from long-run money demand did not significantly affect the inflation
rate. See Juselius (1998a).

The conclusion was that adding inflation to the system did not resolve the empirical
puzzle. In terms of the pulling and pushing forces, the results showed almost the opposite
of what I had expected: money stock, the short-term interest rate, and inflation rate
were purely adjusting and the long-term bond rate and the real GDP represented the
exogenous forces. The hypothesis that an empirically stable money–demand relation is a
prerequisite for inflation control was, therefore, completely refuted. Juselius (2006) showed
that this conclusion—as well as the other results—was robust to extending the sample with
40 quarterly observations.

I began to ponder whether the Danish inflation rate might have been more affected by
the actions of the Bundesbank than of the Danish National Bank. As Denmark is a small
open economy and Germany is a strong and dominant neighbor, the idea did not seem
too far-fetched. Juselius (1996) investigates this hypothesis by analyzing the monetary
transmission mechanisms in Germany. Parameter constancy tests revealed a fundamental
break in the structure around 1983 and the sample had to be split in two. The results were
quite interesting. In the first period, the results seemed to support my prior: a plausible
monetary policy rule was identified and inflation was significantly adjusting to it. In the
second period, the same policy rule was found but inflation was no longer adjusting to
it. I tentatively concluded that financial deregulation and increased globalization were
behind the changes in monetary transmission mechanisms.

4 Kongsted (2005) shows that under long-run price homogeneity it is possible to transform nominal money, m; income, y; and prices, p to real money,
m − p, real income, y − p, and inflation, Δp without loss of information.
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This was the first time I obtained results showing that macroeconomic transmission
mechanisms might have changed around the mid-eighties. To learn more, I began to study
monetary transmission mechanisms more systematically. Juselius (1998b) compared the
Danish and German results with similar analyses of Spain and Italy. While the conclusion
was that monetary transmission mechanisms had changed, the results showed that the
changes took place at different time points due to different institutional set-ups. The com-
parative study was, therefore, followed up with more detailed country-specific analyses:
Juselius (1998a) discussed the Danish case, Juselius (2001) the Italian case, and Juselius and
Toro (2005) the Spanish case.

My many attempts to estimate monetary transmission mechanisms made me increas-
ingly skeptical about Friedman’s strong claim. Rather than (CPI) inflation always and
everywhere being a monetary problem, the results indicated almost the opposite that
inflation was “never and nowhere a monetary problem”.5

4.2. Is Inflation Imported?

The next question, whether Danish inflation is primarily imported, led me to study
the international transmission mechanisms between Denmark and Germany. The analysis
was motivated by the two theoretical cornerstones of international macroeconomics: the
purchasing power parity (PPP) and the uncovered interest rate parity (UIP). The PPP
condition was assumed to hold as a stationary or near I(1) process, whereas the UIP
condition described a market clearing condition. I found essentially no empirical support
for the stationarity of the two conditions: the deviations from the PPP and the UIP exhibited
a pronounced persistence that was empirically indistinguishable from a first—or even a
second—order nonstationary process, whereas a combination of the two was found to be
stationary.

During my work on the PPP–UIP problem, it dawned on me that the CVAR model with
its informationally rich pulling and pushing structures contained an enormous potential
for combining deductive and inductive inference. Juselius (1995) reports not just tests of
the stationarity of the PPP, UIP, and combined relation, but of basically every possible
hypothesis related to the foreign transmission mechanisms. This detailed analysis offered
a wealth of new information, again some of it quite puzzling. For example, the trace test
found the data vector to be I(2) and tests of unit vectors in β found prices and the exchange
rate to be individually I(2). The test of overall long-run proportionality of the two prices
was accepted, whereas proportionality between relative prices and the nominal exchange
rate was strongly rejected.

To shed light on this puzzle, I checked the estimates of the stochastic I(2) trend
and its loadings. The former showed that the I(2) trend was primarily generated by the
twice cumulated shocks to the long-term German bond rate. The latter showed that the
I(2) trend loaded onto the two prices but also onto the exchange rate, explaining the
lack of cointegration between the price differential and the nominal exchange rate. The
fact that the stochastic I(2) trend originated from shocks to the German bond rate and
that it loaded onto the nominal exchange rate (as well as onto the Danish and German
price levels) pointed to the financial market as a crucial player in the foreign exchange
market. Roman Frydman and Michael Goldberg pointed out to me that the results were
consistent with imperfect knowledge expectations in a monetary model for exchange rate
determination. It was the beginning of a long collaboration between Roman and Michael
and the econometrics group in Copenhagen.

In 1996, Søren and I moved to the European University Institute in Florence, Italy, for
five years. Ronald McDonald was a visiting scholar during this period and we initiated a
joint collaboration on the PPP and UIP for USA-Germany and USA-Japan. The information
set was now extended with the short-term interest rates and we used monthly rather

5 Many years later I revised my thinking on this: inflation is in fact a monetary problem, but after deregulation of capital movements, it is asset price
inflation and house price inflation and not CPI inflation that react strongly on excess liquidity.
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than quarterly observations. The inclusion of short rates in the analysis allowed us to
additionally address the expectations hypothesis and the term structure of interest rates.
While this increased the richness of the economic structures, extending the system to seven
equation seriously complicated the identification of the long-run cointegration structure.
The solution was first to analyze a smaller model—consisting of prices, the long-term
interest rates, and the nominal exchange rate—and then to use the cointegration results of
the smaller model as the starting point for the big model. This procedure—dubbed specific-
to-general in the choice of the information set—builds on the invariance of cointegration to
expansions of the information set.6 If cointegration is found in a smaller set of variables, it
will also be found in an extended set. Since then, I have successfully used this principle as
a means to manage long-run identification in high-dimensional systems. (Juselius 2006,
chp. 19) provides a detailed discussion of the merits of this method.

The research results were published in Juselius and MacDonald (2004, 2006). Many of
the findings were similar to the ones in Juselius (1995). Long-run proportionality between
the price differential and the nominal exchange rate was also now strongly rejected for both
country pairs. But, unlike Juselius (1995), we applied the nominal-to-real transformation,
nonetheless, and performed the analysis in the I(1) model, acknowledging the loss of some
data information.7

The results showed that inflation rates were, again, purely adjusting, so inflationary
shocks had no long-run effect on the system. An interesting result was the very slow
inflation adjustment to the PPP, in contrast to the fast adjustment to the combined PPP–UIP
relation. It suggested that the long and persistent deviations from PPP were sustainable as
long as they were compensated by similar deviations in the interest rate differential. The
long-term bond rates were found to be weakly as well as strongly exogenous in both the
small and the big system. Interestingly, the real exchange rate was weakly exogenous in the
small system but no longer so in the big system. Thus, statistically significant adjustment
of the real exchange rate required the short rates to be part of the model, illustrating the
peril of the ceteris paribus clause for conclusions when data are non-stationary.

At that time, many of the results were puzzling based on standard theory: (i) infla-
tionary shocks were not driving nominal interest rates, instead interest rate shocks were
pushing the inflation rates; (ii) the long-term bond rates were exogenous to the system
rather than the short rates; and (iii) the short-long interest spread was nonstationary in
contrast to the expectations hypothesis. While these results were puzzling from the point
of view of standard macroeconomic models, Juselius (2017) subsequently showed that they
were perfectly consistent with the theory of Imperfect Knowledge Economics (Frydman
and Goldberg 2007, 2011).

4.3. CPI Inflation and Excessive Wage Claims

While Juselius (1995) showed that Danish inflation was partly imported, the extent
to which wage inflation had been pushing price inflation was still an open question. My
first study of wage, price, and unemployment dynamics is described in (Juselius 2006,
chp. 20). The choice of variables, manufacturing wages, consumer prices, producer prices,
productivity, and unemployment was motivated by standard theories for centralized wage
bargaining, assuming that a proposed pay rise by the labor union reflects a trade-off
between a higher consumption wage against lower employment. Whether the employers’
union accepts the pay rise is assumed to be a trade-off between future profits and firm

6 More than twenty years later, Johansen and Juselius (2014) showed that the invariance property was also valid for common stochastic trends, albeit
in a slightly more complicated way. While the labeling of the estimated shocks changes when the information set is expanded, the stochastic trend(s)
of the small model remain the same in the expanded model. Assume, for example, that the Danish bond rate is strongly exogenous in a domestic
VAR model for Denmark and, thus, a common stochastic trend. Now, if the shocks to the Danish bond rate originate from shocks to the German
bond rate and the German bond rate is added to the model, then the German rate becomes the “new” common stochastic trend. However, it is
basically the same as the old one.

7 Johansen et al. (2010) subsequently report a full-fledged I(2) analysis.
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competitiveness against the increased risk of a union strike. Both unions are assumed to
maximize their share of future productivity increases.

During the sample period (1971:1–2003:1) the European markets had become increas-
ingly integrated implying on one hand improved profit possibilities, on the other more
fierce competition. For Danish enterprises, facing relatively high wage costs, the latter was
a serious problem. The consequence of the almost fixed krone in the EMS arrangement
after 1983 was that a less competitive export firm could no longer count on exchange
rate realignments to improve its competitiveness. To remain in the market, an exporting
enterprise had basically three possibilities: (i) to reduce employment until the marginal
cost equaled the competitive price, (ii) to increase labor productivity, or (iii) to outsource
production. All three measures were used and all of them affected the unemployment rate.

From the eighties onward, unemployment rates fluctuated in long and persistent
swings around long-run average values, not just in Denmark but in most European coun-
tries. These long and persistent unemployment episodes were puzzling from the point
of view of standard theories that assumed unemployment rates to be stationary around a
constant rate, the natural rate of unemployment. This inspired Edmund Phelps to write the
theory of “Structural Slumps” (Phelps 1994), arguing that the natural rate of unemployment
is a function of the real interest rate and/or the real exchange rate.

These considerations motivated me to extend the data vector with the long-term bond
rate and the real exchange rate. The system, now containing seven variables, was quite
large and I used the specific-to-general approach in the choice of information set to manage
the complexity of identifying a plausible long-run structure. In the first step, I analyzed the
first five of the set of variables and, in the second step I added the interest rate, and in the
third step the real exchange rate. This allowed me to study the effect of the ceteris paribus
assumption “real interest rate and real exchange rate constant” on wage determination.
It also allowed me to test some of the fundamental hypotheses of Phelps’ structural slumps
theory and helped me to understand how globalization and financial deregulation had
affected the mechanisms of the labor market.

The results showed that the nominal wage and the two price variables were individu-
ally I(2) and that overall long-run homogeneity among them was statistically acceptable.
Therefore, based on the nominal-to-real transformation, the nominal variables were re-
placed by the real consumer wage, the price wedge between consumer and producer wages,
and consumer price inflation. Based on this change, the model could now be analyzed
in the I(1) framework without loss of information. The econometrically motivated price
wedge was also an important economic variable, as its coefficient can be interpreted as a
measure of the relative bargaining power of employers and employees. The price wedge is
also assumed to reflect the degree of product market competition, which—if high—is likely to
result in pricing-to-market behavior (Krugman 1986).

The empirical results of the Danish wage and price mechanisms are discussed in detail
in (Juselius 2006, chp. 20). One important finding—revealed by the tests of parameter
constancy—was a significant change in the mechanisms around mid-eighties. The change
was so fundamental—similar to the German monetary mechanisms in 1983—that it left me
with no other options than to split the sample period in two parts: the first part comprised
the seventies up to mid-eighties, the other from the mid-eighties up to 2003.

The results for the first regime suggested a narrative that was about strong labor
unions, rigid institutions, devaluations and realignments and, for the second regime, about
increasingly weak labor unions and improvements of labor productivity. Excessive wage
claims seemed to have caused both price inflation and unemployment in the first regime but
foremost unemployment in the second. In the second regime, competitiveness was largely
achieved by producing the same output with less labor as evidenced by unemployment
and trend-adjusted productivity being cointegrated. There was evidence of a Phillips
curve relationship in both regimes, but it was rather insignificant in the first whereas
strongly significant in the second. In the latter regime, the strong co-movements between
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unemployment and the real bond rate were consistent with a Phelpsian natural rate. In both
regimes, inflation was significantly adjusting to the real exchange rate.

I found the results exciting and was eager to know whether they had any generality
outside Denmark. At this time, Javier Ordonez visited our department and we decided to
study the Spanish wage and price dynamics using a similar approach. The Spanish results,
published in Juselius and Ordóñez (2009), showed that the basic mechanisms behind the
determination of wage, price and unemployment were very similar, albeit with some
differences that seemed to reflect institutional differences between the two countries. In a
recent article, Juselius (2021b) find support for the above mechanisms based on US data.

4.4. Combining the Results: A Proposal for a Large-Scale Macro Model

The advantage of the VAR approach is that the data are allowed to speak freely without
being silenced by prior restriction. The disadvantage is that the number of parameters
increases substantially with each included variable. Adding one variable leads to (2p − 1)k
new parameters, where p is the dimension of the variable vector and k is the autoregressive
lag. This can quickly become prohibitive in macroeconomic models, where sample periods
seldom are very long.

To circumvent this problem, Juselius (1992) proposed a procedure for combining
partial models into a larger macro model. The idea was to study how CPI inflation
was affected by monetary inflation, wage inflation, and imported inflation by estimating
cointegration relations in three partial VAR models. Econometrically, the procedure is
based on the invariance of the cointegration property to expansions of the information set.
Economically, it rests on the interpretation of a properly identified cointegration relation
as a deviation from a long-run equilibrium value, implying that it could be treated as
a convenient summary measure of the most important information from the sector in
question. For example, if wages at time t are on the equilibrium level, then the value of
the cointegration relation would be approximately zero, implying no wage pressure on
CPI inflation. In contrast, if the absolute value of the cointegration relation is large, then
wages are either below or above their equilibrium level with a potentially large impact on
CPI inflation.

I used the same idea in Juselius (2006, Part VI) where more detailed and extensive
analyses of the three sectors are reported. Figure 1 below illustrates the procedure. First,
the relevant long-run relations are identified based on smaller CVAR models, then the
deviations from these relations enter as the main explanatory variables in a bigger model
explaining key economic determinants, such as CPI inflation, the unemployment rate and
the interest rate8. The list of key variables can of course be extended as illustrated in
Juselius (2006, chp. 22). For the period 1972–2003, the results showed that (i) the identified
cointegration relations represented the major bulk of the explanatory power with only mi-
nor effects from short-run changes of the system variables, (ii) excess money had essentially
no effect on the CPI inflation rate, (iii) wage inflation had a large inflationary effect until
capital deregulation in the mid-eighties and only a modest effect afterwards, and (iv) wage
increases reflected a smaller part of the productivity growth after globalization and capital
deregulation than before. Labor unions seemed to have become increasingly powerless.

While not perfect, the results from the big combined model seemed very promising.
The idea of using the “specific-to-general” in the choice of information set and the “general-
to-specific” in the search for a parsimoniously parametrized model begun to look like a
feasible way to overcome both the dimensionality problem of the CVAR and the complexity
problem of large macro models.

8 The variables in the figure are defined as follows: w is nominal manufacturing wages, pc is consumer prices, py is the price of output, c is productivity,
u is unemployment, Rb is the long-term bond rate, Rd is the deposit rate, Δp is CPI inflation, m is money stock, y is real GDP, q is the real exchange
rate, a superscript f stands for foreign country, and a superscript ∗ for an equilibrium value. A more detailed account can be found in Juselius (2006,
Part VI).
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Wage effects, I1 =
{w, pc − py, c, u, Rb, Δp}

Monetary effects, I2
= {m, y, Rb, Rd, Δp}

External effects I3 =

{q, Δp, Δp f , Rb, R f
b}

gives an estimate of deviations from steady-state in each sector

w − w∗, w∗ = f1(I1) m − m∗, m∗ = f2(I2)
Δp − Δp∗, Δp∗ = f3(I3)

Rb − R∗
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b = f4(I3)

which are used as determinants for
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Figure 1. Using cointegration relations from partial models as the main economic determinants in a
large macroeconomic model.

I was excited about the possibility to use the above principle to handle large scale
macro models, such as the traditional Keynesian macro models consisting of numerous
behavioral relations in which endogeneity, exogeneity, and ceteris paribus are given a
priori. Such a behavioral relation could be subject to a CVAR analysis without the need
to fix the status of a variable as endogenous or exogenous and with the possibility to add
relevant ceteris paribus variables. Furthermore, the stationarity of the presumed behavioral
relations could be properly tested and efficiently estimated, dynamic feedback effects and
long-run dynamic multiplier effects would be readily available.

By combining such partial dynamic models into a large-scale model of the economy,
one would obtain something resembling a general (dis)equilibrium macromodel. It would
be based on the assumption that deviations from equilibrium values—the equilibrium
errors—are the most crucial determinants of key variables in the economy, such as output
growth, unemployment, wage inflation, interest rate, CPI inflation, house price inflation,
stock price inflation, and real exchange rate. At the same time it would provide useful
information about the dynamics of each subsector of the economy. I thought it would
give large-scale macro models a much needed face lift and be a powerful method for an
improved understanding of our complex economic reality. To my disappointment the idea
has not yet been realized anywhere in the world, at least not to my knowledge.

5. Towards a New Methodological Approach

After having applied the CVAR to numerous empirical problems, it became ever more
evident that there was more persistence in the data than standard models could explain.
I often found the data to be indistinguishable from I(2) and this was not just for price
variables, like the CPI, but also for relative prices, nominal and real exchange rates, and
even real and nominal interest rates, which a priori were expected to be stationary or at
most I(1). Even unemployment, another important real economy variable, was often found
to be indistinguishable from I(2) and cointegrated with the real interest rate and the real
exchange rate.

Many economists would argue that such findings are implausible as economic vari-
ables could not drift away forever as a true I(2) process can, nor could equilibrium errors
be I(1) as economic variables do not move infinitely away from their equilibrium values.
However, while this is obviously correct, it does not exclude the possibility that variables
over finite samples may exhibit a persistence that is empirically indistinguishable from
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a unit root or a double unit root process. Furthermore, because economic relationships
seldom remain unchanged for long periods of time, the infinity argument may not be
very relevant in economics. In line with this, Juselius (2013) argues that a statistical unit
root should not be given an interpretation as a structural economic parameter and that
the classification of variables/relations as either stationary, (near) I(1) or (near) I(2) is a
requisite for successful empirical modeling.

What makes a near I(2) process extremely interesting is that such a process is able
to generate long-lasting swings, a typical feature of economic variables (Johansen 1997
2006; Paruolo and Rahbek 1999). In spite of this, applications of the I(2) model are rare in
the literature. To understand why, Juselius (2014) discusses a simple case, Δxt = ωt + εx,t
where ωt = ωt−1 + εω,t and the shocks εω,t are small compared to the shocks εx,t i.e.,
the signal-to-noise ratio is small. Simulations show that univariate Dickey–Fuller tests
hardly ever detect the second unit root in the drift term, whereas the multivariate tests
almost always find it. This is particularly so when the signal-to-noise-ratio is small,
typical of asset prices in speculative markets. As most people use univariate rather than
multivariate tests to determine the order of integration, the results may explain why
econometricians/economists find economic variables/relations to be I(1) rather than I(2).

Why is this important? Knowing the approximate order of integration and cointegra-
tion among variables is a very important and useful piece of information in the modelling
process. For example, an I(1) variable cannot be significantly related to an I(0) variable,
neither can an I(2) variable to an I(1) variable, but they can be combined to form a sta-
tionary cointegrated relationship. Therefore, by exploiting the information in the data
given by the integration/cointegration properties of the variables, one can obtain robust
estimates of long-run, medium-run, and short-run structures in the data, thus improving
the specification of the economic model. In the words of Hoover et al. (2009), the CVAR
allows the data to speak freely about the mechanisms that have generated them. Juselius
(2006, 2013) provide more detailed discussions.

5.1. Long Swings in Financial Market Behavior

At that time, financial behavior was rarely part of macroeconomic models as—somewhat
simplistically—a fully rational financial actor was assumed to know when the market price
deviated from its equilibrium price and then would act accordingly. Rational financial
markets would, therefore, drive financial prices back to equilibrium and the equilibrium
prices would correctly reflect movements in the real economy. Because financial prices were
assumed to be correctly determined, deregulated financial markets were good, not harmful,
to the real economy. Therefore, there was no need to regulate and no reason to worry about
the effect of financial market behavior in macroeconomic models. The reasoning relied
on the efficient market hypothesis, that was based on the rational expectations hypothesis
and the assumption that economic models are known and stable over time. However, all
these assumptions seemed at odds with what I constantly saw in the data: the frequent
structural breaks, the frequent changes of exogeneity status, the long and persistent swings
around equilibrium values indistinguishable from a unit root process.

That the deviations from some of the fundamental economic parities—the Fisher
parity, the term spread, the purchasing power parity, the uncovered interest rate parity—
were statistically indistinguishable from unit root processes seemed particularly worrisome
to me. Where did this additional persistence come from? It seemed inconsistent with
standard REH models which assumed much faster adjustment to long-run equilibria. Why
did the persistent swings not vanish with the nominal-to-real transformation when the
nominal deflator was the consumer price index? It gradually dawned on me that long and
persistent swings in both the nominal and the real magnitude of a variable were typically
found in prices associated with financial behavior, such as exchange rates, interest rates,
stock prices, house prices, energy prices, and prices for precious metals. It raised the
question why did they fluctuate in a manner detached from the development of standard
consumer prices and real productivity growth in the economy?
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As already mentioned, this empirically very strong feature turned out to be largely
consistent with a monetary model for the exchange rate based on imperfect knowledge
expectations (Frydman and Goldberg 2007, 2011). The imperfect knowledge argument
is that no one can know—not even in probabilistic terms—what the true fundamental
value of an asset is. This is because the value of a financial asset is a function of future—
unpredictable—cash flows. Given such Knightian uncertainty, market participants interpret
in diverse ways a wide range of news about fundamental factors, from real growth and
inflation rate announcements to political developments and debt crises. This diversity
combined with loss aversion can then explain why forecasts of future asset prices tend to
generate persistent movements around benchmark values.

The theory of imperfect knowledge economics provided me with an explanation of
the puzzling finding that the real exchange rate and the real interest rate differential were
empirically near I(2). In Frydman et al. (2008, 2012) we addressed the PPP puzzle and the
long swings puzzle both theoretically and empirically.

Another strain was offered by Hommes (2006) and Hommes et al. (2005a, 2005b),
which similarly focus on the persistent swings in asset prices. In this theory, financial
markets are populated by fundamentalists using economic fundamentals to forecast future
price movements, and by chartists—trend-followers—using technical trading rules to
forecast prices. Financial actors are switching endogenously between mean-reverting
fundamentalists and trend-following chartists depending on how far away the price is
from long-run equilibrium values. Positive feedback prevails when the chartists dominate
the market and negative feed-back when the fundamentalists dominate.

Common to the above models is that today’s asset price depends on future prices
which, in varying degree, are being forecasted under imperfect knowledge and, therefore,
deviate from the price derived under the REH. In both models prices can deviate from long-
run benchmark values for extended periods of time, thereby generating self-reinforcing
expectational cycles. All this seemed to provide a rational for my puzzling findings and
was a motivation to focus on financial behavior and its role for the real economy.

5.2. Persistent Movements and Time-Varying Coefficients

How to analyze such self-reinforcing expectational cycles econometrically is, however,
far from simple. Inspired by (Frydman and Goldberg 2007, 2011), Juselius and Assenmacher
(2017) interpreted the long swings in the real US dollar-Swiss franc rate in the context of a
simple model with time-varying coefficients using the following assumptions: A financial
actor understands that PPP holds in the long run, but not necessarily in the short run.
He/she is, therefore, in the short-term likely to react on a number of other determinants, zt,
such as changes in interest rates, relative incomes and consumption, and many more. In
such a world, financial actors tend to attach time-varying weights, Bt, to relative prices
depending on how far away the nominal exchange rate is from its fundamental PPP
value, i.e.,

st = A + Bt(pd,t − p f ,t) + zt. (3)

where st is the log of the nominal exchange rate, pd,t − p f ,t is the log of the relative price
between domestic and foreign country, and Bt fluctuates around 1.0. The change in the
nominal exchange rate can then be expressed as

Δst = BtΔ(pd,t − p f ,t) + ΔBt(pd,t − p f ,t)− ΔBtΔ(pd,t − p f ,t) + Δzt,

where ΔBtΔ(pd,t − p f ,t) can be assumed very small. In addition, Frydman and Goldberg

(2007) makes the assumption that
∣∣∣ΔBt(pd,t − p f ,t)

∣∣∣ � ∣∣∣BtΔ(pd,t − p f ,t)
∣∣∣. This is backed up

by simulations showing that a change in ΔBt has to be implausibly large for ΔBt(pd,t − p f ,t)
to have a noticeable effect on Δst. Therefore,

Δst � BtΔ(pd,t − p f ,t) + Δzt, (4)
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where Δst, Δ(pd,t − p f ,t) and Δzt are typically near I(1) processes. To study the properties
of this type of time-varying parameter model, Tabor (2014) considered the CVAR model:

ΔYt = α(Yt−1 − βtXt−1) + εy,t, where εy,t ∼ niid(0, σ2
εy) (5)

ΔXt = εx,t where εx,t ∼ niid(0, σ2
εx )

He generates the data with α = −1 and βt = β0 + ρβt−1 + εβ,t, where εβ,t ∼
niid(0, σ2

εβ
). Then, E(βt) = β0

1−ρ = β for ρ = {0.0, 0.5, 0, 95}. α = −1 implies that the
adjustment of Yt back to β′

tXt is immediate. Instead of estimating a time-varying parameter
model, Morten fitted a constant parameter CVAR model to the simulated data, so that
(βt − β)Xt becomes part of the CVAR residual. The results in Tabor (2014) show that the
closer ρ is to 1, the more persistent is the estimated gap term, Yt − β̂′Xt, and the smaller is
the estimated adjustment coefficient α—albeit still highly significant. Furthermore, as long
as ρ < 1, the mean of the estimated β̂ approximately equals its true value β. When ρ = 1,
this is no longer the case.

Thus, the pronounced persistence away from long-run equilibrium values and the
small adjustment coefficients often found in constant-parameter CVAR models is potentially
a result of time-varying coefficients due to forecasting under imperfect knowledge. Juselius
(2017) shows that this may explain the persistence of the PPP gap and the inability to reject
I(2) persistence using the CVAR. Even though under this assumption, the I(2) model is
just an approximation of a model with time-varying coefficients, it may, nonetheless, be a
useful approximation. The linear VAR with constant parameters gives access to a vast
econometric literature on estimation and testing, whereas the complexity of estimating a
time-varying parameter VAR model is daunting except for small models with only one or
a few time-varying parameters.

When analyzing the PPP and the UIP conditions for various countries based on I(2)
CVAR models, the results frequently supported the main assumption of the imperfect
knowledge based monetary model that the deviations from the PPP was cointegrated
with the spread between the domestic and foreign real interest rates. By interpreting the
persistent movements in the real exchange rate as a proxy for an uncertainty premium in the
foreign currency market—proposed by Frydman and Goldberg (2007)—the results show
strong empirical support for a stationary uncertainty adjusted UIP condition. Furthermore,
Johansen et al. (2010) reported an econometric analysis of the full set of international parity
conditions using German—US data.

Juselius and Assenmacher (2017) also report a similar study of Swiss-US data in
which equilibrium error-increasing behavior is used to identify the channels through which
self-reinforcing feedback mechanisms takes place. The results show that such behavior
plays a significant role for the persistent fluctuations in exchange rates, interest rates, and
prices. They also show that once loss-aversion and uncertainty is allowed for, the excess
return puzzle disappears, suggesting that agents are behaving rationally but that imperfect
knowledge outcomes are very different from the ones in an REH world.

5.3. Real Exchange Rate Persistence and the Real Economy

The derived CVAR scenario for an imperfect knowledge monetary model in Juselius
(2017) provides an explanation for why asset prices, but not CPI prices, tend to fluctuate
in long persistent swings and, consequently, why real trend-adjusted asset prices are
empirically almost indistinguishable from their nominal trend-adjusted magnitudes, and
why interest rate differentials are near I(2). The imperfect knowledge-based monetary
model fits the data remarkably well as shown in Juselius (2006, chp. 21) for Denmark versus
Germany, Juselius and MacDonald (2004) for Japan versus USA, Juselius and MacDonald
(2006) for Germany versus USA, Juselius and Assenmacher (2017) for Switzerland versus
USA, and Juselius and Juselius and Stillwagon (2018) for UK versus USA.

Common to the above papers is the finding that Purchasing Power Parity needs
Uncovered Interest Parity to become a stationary parity relation. The implication is that
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equilibrium in the goods market is not directly associated with purchasing power parity
but with a stationary relation between a nonstationary real exchange rate and the interest
rate spread. Thus, the real exchange rate can persistently appreciate/depreciate as long
as the real interest rate differential moves in an offsetting manner. As these persistent
swings around equilibrium values are caused by speculative behavior in the market for
foreign exchange, they are essentially outside domestic policy control—at least as long as
transactions in the foreign currency market are neither regulated nor taxed.

For the US dollar and the UK pound market, Juselius and Stillwagon (2018) found
that it is the interest rate expectations—measured by consensus forecasts of professional
forecasters—that are pushing the interest rates and the exchange rate in the long run.
Furthermore, the results show that it is the shocks to the US consensus forecasts—rather
than the UK ones—that are dominating the long persistent swings. An interesting finding
is that changes in the nominal exchange rate are pushing the foreign currency market in
the medium run with interest rates following suit, whereas expectational shocks to the
interest rates are pushing the market in the long run with the nominal exchange following
suit. These results are basically consistent with imperfect knowledge based models.

That the fundamental parity conditions—in particular the PPP and the UIP—were
systematically found to be non-stationary, prompted the question of how this is affecting
the real economy.

Juselius (2013) was my first attempt to address the two-way interdependence between
the real economy and financial behavior in asset markets. The theme of the paper was
strongly influenced by Phelps’ hypothesis that the natural rate of unemployment is a
function of the real interest rate and/or the real exchange rate. Because Phelps’ “Structural
Slumps” book assumed the latter to be stationary, I was excited to examine the implications
of them being nonstationary instead.

In a stationary world, exporting and importing enterprises would be insulated from
changes in the relative costs, if the nominal exchange rate correctly reflects relative costs
between the two countries. In a nonstationary world, where the nominal exchange rate is
typically determined by speculative transactions, it is much less affected by the trade in
exports and imports.9 Thus, an exporting firm would have to resort to “pricing-to-market”
strategies rather than mark-up-pricing (Krugman 1986), or it would lose market shares. For
example, over a prolonged period of currency appreciation, such a firm will experience a
mounting pressure to be competitive. As raising the price is not feasible, there are few other
options than to improve productivity. This can be done, for example, by requiring workers
to produce more per hour, firing the least productive workers, outsourcing production,
or introducing new technology. All these measures affect unemployment rate. When
the exchange rate finally reverses—now depreciating—the pressure on competitiveness
is released but, because competing enterprises in foreign countries now experience an
appreciating exchange rate and, therefore, have to resort to similar measures, prices do not
rise much.

Thus, consumer prices—determined by fierce competition in an international market—
remain low and stable, whereas asset prices—determined by speculative expectations—
tend to fluctuate in long persistent swings. The fact that the unemployment rate and trend-
adjusted productivity have been co-moving and that the natural rate of unemployment has
been a function of the real interest rate—rather than a constant—are consistent with the
above mechanisms (Juselius 2006, chp. 20; Juselius and Ordóñez 2009).

These results can also explain the inflation puzzle, e.g., why inflation has been low and
stable over time (below 2% for several decades) at the same time as the nominal interest rate
has moved in long persistent swings and, hence, why CPI inflation and nominal interest
rate are typically not found to be cointegrated, against the Fisher parity assumption.

9 In the dollar euro market, around 75% of all transactions are purely speculative. The remaining 25% are related to the trade in exports and imports
but, due to forward contracts, future expectations play a significant role.

61



Econometrics 2021, 9, 5

They also suggest that any attempt to control inflation by changing central bank
interest rate is likely to be ineffective. To be effective, such a policy rule would require
the above parities to hold as stationary conditions, or important parts of the transmission
mechanism are broken. Evidence of this was found in Johansen and Juselius (2001) in which
the Federal Funds rate was shown to be an inefficient instrument for US inflation control
during the Greenspan monetary policy period. While the inflation rate has been low in
periods of inflation targeting, my claim is—supported among others by the CVAR analyses
in Juselius (1998b)—that it has been so for other reasons, primarily financial deregulation
and global competition.

One consequence of the low inflation rate is that the pressure on the central bank
to raise its interest rate has been low for several decades. Exceptionally low interest rate
levels have in turn led to easy credit and a corresponding strong increase in liquidity. The
consequence of high, credit-financed, demand for real estate and stock is that house and
stock prices have sky-rocketed. At the same time, the CPI inflation rate has remained low.
Juselius (2019) reports a comprehensive analysis of the soaring Danish house and stock
prices, totally detached from the CPI prices and the real GDP, that ultimately led to the
Danish house price bubble in 2007 and then to the financial crisis in 2008.

Juselius (2019) demonstrates empirically that accruing imbalances often tend to coun-
terbalance each other, sometimes over extended periods of time and argues that a balance
maintained by several imbalances is a very fragile balance: sooner or later a large shock
to the system will cause the balance to collapse—as happened in 2007 when the house
price bubble burst and similarly in 2008 when the financial crisis hit the world econ-
omy with unprecedented force. Thus, the great recession seems to have grown out of
many imbalances—initiated by financial behavior—which were allowed to develop over a
long time.

Over time I have become ever more convinced that financial behavior is an extremely
important determinant of the real economy. This was also the main conclusion in Colander
et al. (2009) which already in 2008 argued that unrealistic financial models have had a large
and detrimental effect on real economies. A few months later, this claim turned out to be
almost too correct.

5.4. Crises Periods and Comparative Studies

At a time when many argued that the Great Recession was a once in a life time event—a
black swan—that could not have been foreseen, I vividly remembered a similar crisis at
the beginning of the nineties in Finland. The deregulation of the Finnish credit market in
1986 had resulted in an overheated economy and in strongly increasing real estate prices.
When the house price bubble burst, unemployment rates soared and reached more than
20%—from a starting position of 1.6%—in a very short period of time. In a joint project with
my son Mikael Juselius (Juselius and Juselius 2013), we asked the questions (i) whether
the Finnish experience could be understood as a balance sheet recession10, (ii) whether the
unemployment dynamics made sense in the context of Phelps’ Structural Slumps theory
(Phelps 1994), and (iii) whether the theory of Imperfect Knowledge Economics (Frydman
and Goldberg 2007, 2011) could explain the persistent movements in the data. To answer
these questions, we applied the CVAR model to inflation, unemployment, a short- and a
long-term interest rate.

Econometrically, our CVAR model performed surprisingly well—considering the wild
fluctuations of the Finnish data. The results—reported in Juselius and Juselius (2013)—gave
support to all three priors: the Phelps’ hypothesis that the natural rate of unemployment
is a function of the real interest rate; the Frydman and Goldberg Imperfect Knowledge
hypothesis of pronounced persistence in the long-term real interest rate; and the Koo
hypothesis of the Central Bank interest rate as an ineffective instrument during a balance

10 Motivated by the collapse of the Japanese real estate bubble a few years after the Finnish crisis, Richard Koo (2010) published his first book on
balance sheet recessions.
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sheet recession. Furthermore, based on a smooth transition model in which the transition
variable was designed to capture household sector leverage—adjusted for movements in
the value of the housing collateral, the paper demonstrated that strongly increasing house
prices had played a crucial role for the depth and the length of the subsequent crisis. As
soon as house prices started falling and the house debt exceeded the value of the collateral,
the leverage effect was shown to become extremely important.

Altogether, the Finnish results seemed to be able to shed light on the dynamic transmis-
sion mechanisms of inflation, unemployment and interest rates in a crisis period. It raised
the question whether the results could have been used to foresee the housing bubble
15 years later, or whether there were lessons to be learned for other countries with a similar
bubble experience. The latter was the underlying motivation in Juselius and Dimelis (2019)
to address the empirical mechanisms governing the Greek depression, the most serious
and destructive of all European crises.

Many aspects of the Finnish crisis were similar to the ones in Greece: the deregulation
of the Finnish credit market in 1986 resulted in a booming housing market and a serious
house price bubble; joining the eurozone caused the Greek bond rate to drop to previously
unprecedented levels and caused a credit financed boom in aggregate demand. As in
Finland, Greek wages and prices—in particular real estate prices—were rising and compet-
itiveness was deteriorating. When the Greek bubble burst, the drop in aggregate income
and the rise in unemployment rate were huge and of similar magnitudes as in Finland.
However, the Greek crisis, while similar in many aspects to the Finnish one, differs strongly
in others. For example, the source of the debt (private/public, external/internal), the
strong/weak institutional set-up, and in particular the exchange rate regime are defining
differences of crucial importance. The fact that Finland was able to devalue its currency
while Greece was not, is likely to have made all the difference for the length of the crisis. It
is one reason why the comparison with Finland is interesting.

Unlike the Greek economy, Finland managed to get out of the crisis in approximately
three—admittedly very hard—years by devaluing the Finnish markka with 33%. Moreover,
unlike the Greek experience, the Finnish unemployment rate came down quite fast, albeit
stabilizing at a somewhat higher level compared to the pre-crisis period. One reason why
the Greek unemployment was stuck at very high levels seemed to be the prolonged period
of policy uncertainty following the outbreak of the crisis. Unlike the Finnish analysis, the
Greek analysis therefore required a variable measuring confidence as well as two variables
measuring the development of the Greek competitiveness within and outside the eurozone.

In the Greek analysis, the most striking result was a critical relationship between
the bond rate and the unemployment rate: As the crisis erupted, the bond rate increased
sharply followed by a strong increase in unemployment, the increase in unemployment
rate caused the bond rate to increase further and unemployment to follow suit, and so on.
This vicious cycle was orchestrated by a continuous fall in the confidence rate that kept
deteriorating until relative producer costs stopped increasing around 2012. The empirical
results showed that all variables, except CPI inflation, exhibited self-reinforcing feedback
behavior somewhere in the system, a feature that is likely to have aggravated the problems
and effectively prevented good policy solutions. As the euro rate was determined by
factors mainly outside the Greek control, Greece was stuck in a situation with no feasible
options: a dramatic lowering of wage costs was politically impossible; leaving the euro
would have been extremely costly due to the large external debt. At the same time the
confidence in the Greek economy continued to drop which added to the depressed state of
the economy.

The two papers illustrate an important methodological principle: by using the same
“experimental design”, here the CVAR model, and controlling for institutional differences
by conditioning on appropriately selected variables, one can learn about similarities and
dissimilarities in different economies. I thought this would be particularly valuable when
addressing policy changes and the response to them.
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Juselius et al. (2014) followed a similar principle when studying the effectiveness of for-
eign aid in 36 South Saharan African countries. Among these, 29 countries were classified
into four more homogeneous groups according to aid effectiveness11. Within these groups
more detailed analyses were performed. The results showed that the overall qualitative
conclusions were rather similar for the vast majority of South Saharan African countries.
However, the results also showed that the dynamics of the transmission of aid onto the
macro economy differed a lot depending on the classification. This was not surprising as
such: aid is given for different purposes in different countries. Econometrically, our results
pointed to the peril of using panel data analyses as a basis for policy advice in such diverse
countries as South Saharan African countries. As aid effectiveness has frequently been stud-
ied based on panel data analyses which—implicitly or explicitly—assume homogeneous
countries across the panel, this should be a reason for concern.

A small number of countries fell outside the classification criteria, among them Ghana
and Tanzania. Based on an extended data set, Juselius et al. (2017) studied the transmission
mechanisms of aid in more detail for these two countries. It turned out that both countries—
for political reasons—had manipulated their exchange rate for extended periods of time,
with the consequence that the aid transmission mechanism did not follow a standard
pattern. Conditional on the anomalous exchange rate regimes, the aid transmission results
became economically interpretable again. Yet another example of the importance of the
ceteris paribus clause.

The three papers in this section and many others mentioned earlier serve the purpose
of illustrating the potential of the CVAR as a design of experiment for data obtained by
passive observations. Perhaps it is time to challenge the frequent claim that it is not possible
to apply designed experiments in macroeconomics.

6. Some Reflections

The title of this paper “Searching for a theory that fits the data” was chosen to empha-
size the distinction between my own empirical approach and the one that underpins most
empirical research in economics: “Searching for data that fits the theory”. This difference
reflects, no doubt, what the researcher considers most important: the empirical reality or
the theory supposed to explain it. For me it was never a choice: to better understand what
was going on in the empirical economy was the main reason why I chose a university
career in economics. To develop empirical methods that could increase the transparency
of economic mechanisms and potentially improve economic policy decisions has been an
important personal driver in all these years of extremely hard work.

To stumble over the CVAR and see its great potential as a methodology for empirical
economics was like winning a lottery. However, while I believe the CVAR has fully lived
up to its promises, the way it has been applied in the literature has been disappointing.
Numerous papers report all kind of CVAR analyses, most of them give the impression
of being done by statistical non-experts: data have been read in and the CVAR button
has been pushed. However, the CVAR methodology cannot be applied mechanically:
it depends upon the researcher’s statistical expertise and requires interaction between
the econometrician, the economist and the data. For example, it does not make sense
to work with a CVAR model until you have checked whether (1) the sample period is
representative for your questions, (2) the chosen information set is sufficiently broad to
answer the questions of interest, (3) the most important institutional changes have been
controlled for, (4) the parameters of interest are reasonably stable over time, (5) the residual
mis-specification tests are acceptable, and many more. If you sidestep these important
steps, you will very likely get nonsense. Perhaps this is the reason why the impact of the
CVAR on economic modeling has been so disappointing.

11 The division into groups depended on whether foreign aid and the macro-economy—measured by GDP, investment, private consumption, and
government expenditure—(1) had been unrelated in the long run; (2) whether aid had no long-run effect on the macro-economy—tested as a unit
vector in α—but the latter had been influencing aid; (3) whether aid has been exogenous with respect to the macro economy and finally; or (4)
whether aid and the macro-economy have been tied together in an interdependent relationship.
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A frequent claim is that the quality and informational content of macroeconomic data
are too low for a CVAR analysis to be reliable. I agree that economic time series data seldom
represent the true measurements of the theoretical model. For example, the representative
agent’s income, consumption, and hours worked in a DSGE model has little in common
with the various measurements of aggregate income, private consumption, and total hours
worked that can be found in the national statistical publications. However, while macro
data are clearly contaminated with measurement errors, such errors may not be of great
concern for the more important long-run analysis unless they are systematic and cumulate
to a nonstationary process. Whatever the case, theoretically correct measurements do not
exist and, thus, cannot be used by politicians and decision makers to react on. The forecasts,
plans and expectations that agents base their decisions on are the observed data and we
better understand them, however imperfect they are.

A related claim is that, unless the empirical model is constrained by theory from the
outset, one would not be able to make sense of the results: without the mathematical logic
of the theoretical model, one opens up for quackery. I hold the opposite view. Scientific
objectivity can only be achieved provided data are not constrained from the outset in
a theoretically prespecified direction. When they are, it is impossible to know which
results are due to the assumptions made and which are true empirical findings. This point
was amply illustrated in Juselius and Franchi (2007) where essentially all assumptions
underlying a DSGE model by Ireland (2004) were found to lack empirical support. When a
well-specified CVAR was fitted to the same data the results showed that all conclusions
were reversed. Thus, the conclusions of the Ireland paper reflect the assumptions made
rather than true empirical findings.

Another related claim is that CVAR models are so general that they can show any-
thing.12 Over time, I have applied the CVAR model to numerous problems in a variety of
countries and for many different time periods. These applications have convinced me that
macroeconomic data are surprisingly informative, but only if you let them speak freely
about the story they want to tell. This, of course, does not mean that data can speak by
themselves without theory, nor without rigor: a CVAR analysis should obey equally strict
rules as a mathematical analysis of an economic model. A well-specified CVAR model,
estimated by a full information maximum likelihood method, describes by definition all as-
pects of the data and, thus, summarizes the empirical features that an empirically relevant
theory should be able to explain. Typical features are unit root nonstationarity, structural
change, non-constant parameters, dynamic long-run equilibrium relationships, and self-
reinforcing feedback mechanisms. All of them have strong implications for the choice of
economic model. For example, I(2) nonstationarity is consistent with economic relations
that deviate persistently—in a near I(1) manner—from long-run equilibria, suggesting
that the choice of economic model should be based on disequilibrium economics. Guzman
and Stiglitz (2020) discuss the basic features of such a theory.

Disequilibrium economics again points to complex adjustment dynamics and
nonstandard—non-REH—expectations as the relevant concepts. Data covering crises
periods typically reveal such features. While many economists consider crisis periods to
be aberrations outside the range of economic modeling, they are not outside the range
of a well-specified CVAR analysis. Economic crises are often devastating for ordinary
people’s lives and any lesson that can be learned should not be missed. In 2008, standard
mainstream models did not spot the accruing imbalances and, hence, failed to prevent
and explain the economic crisis. As these models are still based on essentially the same
assumptions, it seems unlikely that they will be able to foresee the next crisis in time to
prevent it. See also the critique in Stiglitz (2018).

12 This, in my view, is a sure proof that the person in question has never performed a proper CVAR analysis. Hundreds of students in the Copenhagen
summer schools, who have struggled to make a well-specified CVAR deliver results in accordance with their favorite economic model—often
without success—would certainly nod in agreement.
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The CVAR results have typically favored traditional Keynesian macroeconomics, albeit
modified with expectations based on uncertainty and imperfect knowledge and controlling
for the effect of financial behavior. As the dynamic macroeconomic disequilibrium theory
proposed in Guzman and Stiglitz (2020) is broadly in line with the above, I argue in Juselius
(2021b) that the CVAR may have the potential to work as an empirical methodology for dis-
equilibrium macroeconomics. The fact that the many—then theoretically puzzling—CVAR
results reported in Section 4 would no longer be puzzling in the context of disequilibrium
economics, should contribute to the plausibility of this suggestion.

I will end the tale of my personal odyssey by hoping that this journey, bending and
looping as it has been, can convince at least some econometricians, economists and policy-
makers that well-founded empirical findings rather than theoretical convictions should
guide economic policy. The abundance of theoretically puzzling—but empirically and
econometrically well founded results—signal the need for new theory and deserve to
be taken seriously. No doubt, empirically unfounded economic policy is likely to have
exacerbated some of the defining problems of our time, such as recurring crises, increasing
inequality, and growing populism. The development of a more relevant macroeconomics
that serve not just the few but all is desperately needed.
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Abstract: We showcase the impact of Katarina Juselius and Søren Johansen’s contribution to econo-
metrics using bibliometric data on citations from 1989 to 2017, extracted from the Web of Science
(WoS) database. Our purpose is to analyze the impact of KJ and SJ’s ideas on applied and method-
ological research in econometrics. To this aim, starting from WoS data, we derived two composite
indices whose purpose is to disentangle the authors’ impact on applied research from their impact
on methodological research. As of 2017, the number of applied citing papers per quarter had not yet
reached the peak; conversely, the peak in the methodological literature seem to have been reached
around 2000, although the shape of the trajectory is very flat after the peak. We analyzed the data
using a multivariate dynamic version of the well known Bass model. Our estimates suggest that the
methodological literature is mainly driven by “innovators”, whereas “imitators” are relatively more
important in the applied literature: this might explain the different location of the peaks. We also
find that, in the literature referring to KJ and SJ, the “cross-fertilization” between methodological and
applied research is statistically significant and bi-directional.

Keywords: bass diffusion model; bibliometrics; cointegration

1. Introduction

Using bibliometric methods in order to value the quantity and quality of knowledge
produced by researchers is increasingly the standard practice in most disciplines (Garfield
et al. 1978; Redner 1998). In the field of economics, Kalaitzidakis et al. (1999) provided a
ranking of European departments based on ten top journals, which was later updated and
expanded to include, amongst others, also a ranking of academic journals in economics
(Kalaitzidakis et al. 2003). At the same time, Coupé (2003) published a paper including
rankings for researchers based on publications and citations; there, he explicitly mentions
the highly-cited work by Søren Johansen and Katarina Juselius on cointegration, stating
that “first in the citation ranking is Søren Johansen. Thanks to his top cited papers on
cointegration written at the beginning of the 1990s, he is first on the three different citation
rankings”(Coupé 2003, p. 1336).

The aim of this paper is to showcase, through a bibliometric analysis, the impact of
Katarina Juselius (KJ) and Søren Johansen’s (SJ) contribution to the field of econometrics. An
important distinctive trait of their scientific production is to combine methodological and
applied research, placing their work in the so-called “Pasteur’s Quadrant” (Stokes 1997),
characterized by use-inspired basic research, where applied objectives are chased in parallel
with fundamental scientific creativity. This motivates our main research question: what is
the influence of KJ and SJ’s work on applied and methodological research in econometrics?
We believe that, from this analysis, we can learn something about the mechanisms of
scientific discovery in general. Although the methodology used in this paper is different,
our analysis has some resemblance to the work by Stigler (1994), who analyzed citation data
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in the journals of statistics and probability, investigating the mechanisms of knowledge
diffusion within and across fields. Among other findings, he observed that “there is a
tendency for influence to flow from theory to applications to a much greater extent than in
the reverse direction” (see Stigler 1994, p. 94). As we will show in this paper, this is, to some
extent, confirmed also in the abundant literature inspired by KJ and SJ, although the flow
running from applied econometrics toward econometric methodology is also clearly visible
in this case. We think that this depends on the peculiar approach to empirical research
inspired by KJ and SJ work, “in which data would be allowed to speak freely without
being silenced by prior restriction and in which basic hypotheses could be adequately
tested and empirically relevant structures estimated”—the quote is taken from Juselius
(2021, p. 6), in the same Special Issue of Econometrics hosting this paper. This approach
requires a continuous dialogue with methodologists, posing to them challenging requests
for appropriate statistical models and suitable probability results allowing for correct
inference within such models.

Our empirical investigation is based on citation data collected through the Web of
Science (WoS) database, based on which we derived two new composite indices whose
purpose is to disentangle the citations originated in the applied econometric research from
those coming from the methodological research. Our analysis reveals that the majority of
citations (about 85%) arise from applied research. Of course, to put this figure into perspec-
tive, one should compare it with the share of methodological research in econometrics in
general: unfortunately, we do not have this information (our impression is that the share
is somewhat lower than 15%). Interestingly, the dynamic pattern of the two indices is
quite different: the citation peak in the applied literature does not seem to be reached yet,
whereas the peak in the methodological literature seems to have occurred around the turn
of the century. To analyze these bibliometric data, we resorted to a multivariate dynamic
version of the well known Bass (1969) model, proposed by Boswijk et al. (2009) building
on Franses (2003), Boswijk and Franses (2005) and Fok and Franses (2007). Bibliometric
evidence suggests that Bass-type models provide a useful way to fit most Nobel in Eco-
nomics prize winner citation trajectories; see Bjork et al. (2014). This fact might indicate
that, up to a point, economic knowledge could follow the well-known product life cycle,
which is usually characterized by the following phases: introduction, growth, maturity
(including peak) and decline, within the context of a scholar’s professional lifetime and
beyond. An interesting aspect of Bass models is that they describe the diffusion pattern as
dependent on two key parameters, p and q, measuring the relevance of innovation and
imitation, respectively: these two parameters are shown in Min et al. (2018) to have an
important role in the growth and decay of citation counts in several scientific disciplines.
In this paper, we will show that, according to our estimates, the relative importance of
imitative and innovative mechanisms is quite different for methodological and applied
econometric research: this seems to be responsible for the different trajectories of the two
research strands.

The paper is organized as follows: Section 2 describes the data collection and manage-
ment process to support the analysis. Section 3 presents the univariate and multivariate
Bass model, and Section 4 illustrates our empirical findings. Finally, Section 5 concludes
and provides directions for further research.

A word on notation used in the paper. The backshift operator L is defined as
LXt = Xt−1, where Xt is a time series; the difference operator is defined as Δ = 1 − L,
so that ΔXt = Xt − Xt−1. In is the n × n identity matrix, un,i is the i-th column of In,
1n = ∑n

i=1 un,i, 0m,n is an m × n matrix of zeros, diag{ai} is the block diagonal matrix
whose generic diagonal block is the matrix ai (of course any of the ai’s could also be
a scalar).

2. The Data

This section describes the line of thought and the data collection process, including the
source and sample size, while providing some preliminary analysis through stylized facts.
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To the purpose of this study, we consider the scientific production on cointegration by
KJ and SJ as an indissoluble whole, where economic questions motivate the development
of econometric theory and the development of econometric theory sharpens the economic
questions. Their papers on cointegration are, therefore, analyzed together, whether single
authored or coauthored and whether the main focus is on methodology (with just an illus-
trative example) or application (with a pedagogical effort to illustrate how the methodology
can be applied to a real problem).

On 9 April 2018, we collected from the Web of Science (WoS) the data about the
citations received by KJ and SJ for papers between 1989:Q1 and 2017:Q3.1 For practical
reasons, we limit the analysis to the 10 most quoted papers, which are presented in Table 1,
sorted by publication date.

Table 1. The 10 “Top Cited” papers by S. Johansen and K. Juselius, in chronological order (data
collected on 9 April 2018).

Order (Time) Paper Citations (WoS) New Citations (WoS)

1 Johansen (1988) 4008 4008
2 Johansen and Juselius (1990) 2567 1060
3 Johansen (1991) 2256 997
4 Johansen (1992c) 170 45
5 Johansen and Juselius (1992) 477 90
6 Johansen (1992b) 249 40
7 Johansen (1992a) 251 69
8 Johansen and Juselius (1994) 196 32
9 Johansen et al. (2000) 167 60
10 Hendry and Juselius (2001) 112 56

10,453 6457

The total number of citations received by the top ten papers amounted at that time to
10,453, whereas the number of citing papers was 6457, 2 so that every citing paper cites, on
average, 1.62 papers, with a maximum of 7 observed four times.3 In terms of the number
of citations, well ahead of the rest of the publications, are the papers by Johansen (1988) in
the Journal of Economic Dynamics & Control with 4008 citations, the joint paper by Johansen
and Juselius (1990) in the Oxford Bulletin of Economics & Statistics with 2567 citations, and
the paper by Johansen (1991) in Econometrica with 2256 citations. For each paper, the
last column in Table 1, “new citations”, indicates the number of citing papers referring
to that paper and to none of the earlier ones: for example, paper number 7 is cited by
251 papers, but only 69 of them cite paper number 7 and none of the earlier. A high “new
citations”/citations ratio suggests that the paper has broken new ground in the field: for
example, the paper by Hendry and Juselius (2001) treats data from the field of energy, and
as a result, energy-related papers often cite Hendry and Juselius (2001), rather than the
earlier papers. Notice that the first three papers account for 84.5% of the citations and 93.9%
of the citing papers.

To avoid double counting, we focus on the number of citing papers rather than on
the number of citations,4 and we define by ct the number of citing papers published in
quarter t (t ranges from 1989:Q1 to 2017:Q3, i.e., 115 quarters). Based on the WoS data,
we split ct into two composite indices aimed at measuring the impact of KJ and SJ ideas
on applied and methodological econometric research, respectively.5 To this aim, we have
analyzed each of the 6457 citing papers, classifying them according to their methodological
or applied nature. The classification is essentially based on the title of the citing paper.6 We
adopted the following classification:

• Purely applied (PA) papers: the title refers to an application, with no reference to an
econometric method, technique or issue. We have found nPA = 4198 such papers.
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• Mainly applied (MA) papers: the title refers both to an econometric method, tech-
nique or issue and an application, and the focus seems to be on the latter (e.g., “Does
exchange-rate volatility affect import flows in G-7 countries? Evidence from cointe-
gration models”). We have found nMA = 1451 such papers.

• Purely methodological (PM) papers: the title refers to an econometric method, tech-
nique or issue, with no reference at all to an application. We have found nPM = 716
such papers.

• Mainly methodological (MM) papers: the title refers both to an econometric method,
technique or issue and an application, and the focus seems on the first (e.g., “Robust
cointegration testing in the presence of weak trends, with an application to the human
origin of global warming”). We have found nMM = 92 such papers.

We have, therefore, derived four quarterly time series, labeled cPA,t, cMA,t, cPM,t
and cMM,t, counting the citing papers of each group in each quarter; of course, ct =
cPA,t + cMA,t + cPM,t + cMM,t. The four time series are reported in Figure 1, where one
can observe that the behavior of cPA,t and cMA,t is quite similar, steadily increasing over
time, with some low frequency fluctuations, which seem to be shared by both series
(the correlation is 69.5%). Conversely, cPM,t has a peak around the year 2000 with about
10 papers per quarter, and then it declines until 2005, seeming to stabilize at around 5 papers
per quarter. The series cMM,t is irregular, due to the small number of MM papers, but
resembles cPM,t to some extent, as it shows a higher frequency around the year 2000; then,
the frequency seems to slightly decline.

Figure 1. Time series plot of cPA,t, cMA,t, cPM,t and cMM,t, quarterly data from 1989:1 to 2017:3.

Finally, by combining the four series with suitable weights, we obtained two composite
indicators, whose purpose is to measure the impact of KJ and SJ ideas on applied (c1,t) and
methodological (c2,t) research:

c1,t = cPA,t + ωcMA,t + (1 − ω)cMM,t (1)

c2,t = cPM,t + ωcMM,t + (1 − ω)cMA,t (2)

Of course c1,t + c2,t = ct for any ω by construction. Composite indicators have
several pros and cons, as illustrated for example in Nardo et al. (2008) and Kuc-Czarnecka
et al. (2020): they allow to summarize complex, multi-dimensional realities, reducing
the dimensionality. On the other hand, they might simplify too much, and, even more
importantly, the selection of indicators and weights could be the subject of dispute. It is,
therefore, important to motivate clearly one’s weighting choice and to provide an extensive
sensitivity analysis. We provide a thorough discussion of both aspects in Appendix B.
In short, the baseline results presented in this paper are based on ω = 0.85. This choice
is motivated by two main reasons: (i) ω should be in the range from 0.5 to 1, extremes
excluded, since the papers classified as MA (or MM) should contribute mainly (ω > 1/2)
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to the applied (or methodological) index but also, to a lesser extent (1 − ω > 0), to
the methodological (or applied) index; (ii) ω = 0.85 would be approximately equal to
nPA/(nPA + nPM) = 0.8545—in practice, this corresponds to the assumption that the share
of “applied research” of an MA paper is similar, on average, to the share of applied research
in the econometric literature referring to KJ and SJ papers in general. Notice, however, that,
as illustrated in Appendix B, the main results of our econometric analysis are robust to the
choice of ω in the range from 0.5 to 1.

In order to fix ideas, we provide a short example based on the first few citations in
the WoS data. For the year 1989, we have to split the only two existing citations by Baillie
and Bollerslev (classified as MA) and Gilbert (classified as PM).7 Thus, for this example we
have obtained the series illustrated in Table 2.

Table 2. Illustration of the classification scheme: citations in 1989.

Author(s) Quarter ct cPA,t cMA,t cPM,t cMM,t c1,t c2,t

Baillie-Bollerslev 1989:Q1 1 0 1 0 0 0.85 0.15
1989:Q2 0 0 0 0 0 0 0
1989:Q3 0 0 0 0 0 0 0

Gilbert 1989:Q4 1 0 0 1 0 0 1

The cumulative applied index at time T = 115, i.e., 2017:Q3, is equal to the following:

C1,T =
T

∑
t=1

(cPA,t + ωcMA,t + (1 − ω)cMM,t)

= 4198 + 0.85 × 1451 + 0.15 × 92 = 5445.2,

while the cumulative methodological index will be equal to the following:

C2,T =
T

∑
t=1

(cPM,t + ωcMM,t + (1 − ω)cMA,t)

= 716 + 0.85 × 92 + 0.15 × 1451 = 1011.8.

This shows that the majority of citations originates from applied research: defining
Ct = C1,t + C2,t, the ratio C1,T

CT
is 84.4%, whereas C2,T

CT
is 15.6%. To check the appropriateness

of our classification scheme, we analyzed how these ratios vary by publishing journal.
Tracking down the 6457 citing papers, we obtained from the WoS database that they
appeared in 696 distinct journals. Table 3 provides the ranked list of the top 20 journals by
the number of citing papers: these journals hosted 2676 citing papers, i.e., 41.4%.

The evidence in Table 3 seems to confirm the validity of our classification: the average
c1,t for the papers that appeared in mainly applied journals (for example, Energy Policy,
Journal of International Money and Finance, Journal of Policy Modelling) is above 90%. To
the other extreme, the average c2,t is above 90% for the Journal of Econometrics and for
Econometric Theory (but also for Econometrica, which hosted 24 citing papers). Other journals,
such as Oxford Bulletin of Economics and Statistics, Journal of Applied Econometrics, Journal
of Forecasting are more balanced, with an average c2,t around 50%. We believe that the
evidence in Table 3 supports the idea that classifying based on the title and the abstract is
more accurate than classifying based on the publishing journal.

The time series c1,t and c2,t are illustrated in Figure 2. The plot shows some evidence
of a “second wind” especially in the applied index c1,t but to some extent also in the
methodological index c2,t: both series seem to have a peak around 1998, after which they
start decreasing very slowly, but around 2004 the citations start increasing again, especially
for the applied research index, whereas the references found in methodological papers
remain rather steady. A possibility/conjecture is that the second wind was triggered by the
2003 Nobel Prize in Economics, which popularized the concept of cointegration in a wider
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variety of scientific disciplines. The trajectory of c1,t resembles the cases of Friedrich Hayek,
referred to in Bjork et al. (2014) as "bi-modal", whereas the trajectory of c2,t resembles more
closely the cases of Kenneth Arrow and Milton Friedman, called “staying power” in Bjork
et al. (2014). Boswijk et al. (2010) also claim the same with different wording: they report
evidence of a “second life” for the famous Engle and Granger (1987) paper in Econometrica
after the authors were awarded the Nobel prize in 2003, an event which is likely to have
revamped the interest in the work of KJ and SJ as well.

Table 3. The top 20 journals supplying citations to S. Johansen and K. Juselius’ works.

Rank Journal CT
C1,T
CT

C2,T
CT

1 APPLIED ECONOMICS 539 92.0% 8.0%
2 APPLIED ECONOMICS LETTERS 254 89.2% 10.8%
3 ENERGY ECONOMICS 208 94.9% 5.1%
4 ECONOMIC MODELLING 204 92.7% 7.3%
5 ENERGY POLICY 172 95.1% 4.9%
6 JOURNAL OF ECONOMETRICS 154 2.9% 97.1%
7 J. OF INTERNATIONAL MONEY & FINANCE 135 95.7% 4.3%
8 JOURNAL OF POLICY MODELING 121 96.4% 3.7%
9 ECONOMICS LETTERS 104 62.0% 38.0%

10 JOURNAL OF MACROECONOMICS 96 92.0% 8.0%
11 OXFORD BULLETIN OF ECON. & STAT. 92 46.5% 53.5%
12 ECONOMETRIC THEORY 86 0.2% 99.8%
13 EMPIRICAL ECONOMICS 81 88.6% 11.4%
14 JOURNAL OF FUTURES MARKETS 70 96.1% 3.9%
15 JOURNAL OF APPLIED ECONOMETRICS 68 54.7% 45.3%
16 MANCHESTER SCHOOL 66 94.6% 5.4%
17 ENERGY 61 92.5% 7.5%
18 JOURNAL OF BANKING & FINANCE 58 94.8% 5.2%
19 JOURNAL OF BUSINESS & ECON. STAT. 55 38.4% 61.6%
20 JOURNAL OF FORECASTING 52 51.4% 48.6%

All Journals 6457 84.4% 15.6%
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Figure 2. The composite citation indices c1,t (thick red, left scale) and c2,t (thin blue, right scale),
quarterly data from 1989:1 to 2017:3.

3. The Bass Diffusion Model

The Bass diffusion model (Bass 1969) is widely used in many fields. Originally developed
for marketing applications, the model has since been adopted also in other fields, such as
the analysis of the diffusion of technological innovation (see Guseo and Guidolin 2008),
bibliometric analysis (see Bjork et al. 2014) and epidemiology (see Eryarsoy et al. 2021).
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The continuous time Bass model assumes a population of m potential adopters. Let us
define by t > 0 the time of adoption of a randomly picked potential adopter: t is therefore
a random variable. Define by f (t) the corresponding density, and by F(t) =

∫ t
0 f (u)du the

cumulative density function, i.e., the probability that adoption occurs before t. Notice that
the expected number of adopters at time t is given by the following:

C̄(t) = mF(t) (3)

and the corresponding “adoption intensity” is given by the following:

c̄(t) = m f (t). (4)

Bass assumes that the hazard rate f (t)
1−F(t) is a linear function of the expected number

of previous adopters:

f (t)
1 − F(t)

= p + qF(t), (5)

where q is defined as the “imitation parameter” (or internal influence, or word-of-mouth
effect) since it represents the idea that some potential adopters (imitators) tend not to adopt
initially, but are more likely to adopt when the innovation is widespread. Conversely,
p is defined as the “innovation parameter” (or external influence or advertising effect)
since it represents the idea that some potential adopters (innovators) decide to adopt the
innovation regardless of the level of diffusion. It is interesting to observe that when q = 0,
Equation (5) implies a constant hazard, and therefore the Bass model collapses into the
exponential distribution. In other words, in the absence of imitators, the adoption peak, as
in the exponential distribution, would occur at the beginning of the process.8

Using (3) and (4), the differential Equation (5) can be rewritten as follows:

c̄(t) = mp + (q − p)C̄(t)− q
m

C̄(t)2. (6)

The solution to (6) with C̄(0) = 0 is the following:

C̄(t) = m
1 − e−(p+q)t

1 + q
p e−(p+q)t

, (7)

so that

c̄(t) =
∂C̄(t)

∂t
= m

p(p + q)2e−(p+q)t(
p + qe−(p+q)t

)2 . (8)

Starting from the latter equation, one can easily find the timing of the adoption peak
tP (i.e., the inflection point of the diffusion curve), the corresponding peak c̄P, and the level
of adoption at the peak C̄P:

tP =
1

p + q
ln
(

q
p

)
, (9)

c̄P = c̄
(

tP
)
= m

(p + q)2

4q
, (10)

C̄P = C̄
(

tP
)
= m

q − p
2q

. (11)

Formula (9) shows that the location of the peak depends on the innovation parameter
p and the imitation parameter q through the sum (p + q) and the ratio q

p : as clear in
Formula (5), when either innovators or imitators or both are very active so that the sum
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(p + q) is large, then the hazard is large, which leads to a rapid exhaustion of the population
at risk and therefore to an early peak.

3.1. Bass Discrete Time Model

A number of estimation procedures have been proposed to estimate the parameters m,
p and q (see for example Satoh 2001). Bass (1969) suggested a simple estimation strategy
based on Ordinary Least Squares (OLS) applied to a discretized version of (6) where
essentially the expected adoption stock C̄(t) and the expected adoption flow c̄(t) are
replaced by the observed counterpart Ct and ct = Ct − Ct−1, and an error term is added.
This leads to the following:

ct = mp + (q − p)Ct−1 − q
m

C2
t−1 + ut. (12)

In the standard discrete time Bass model, ut is assumed to be iidN
(
0, σ2), so that OLS

is the natural candidate for estimation. To apply OLS, (12) is then reparameterized as
follows:

ct = β0 + β1Ct−1 + β2C2
t−1 + ut. (13)

The “reduced form” parameters β = (β0, β1, β2)
′ are related to the “structural form”

parameters θ = (m, p, q)′ by the following:

β0 = mp,

β1 = q − p, (14)

β2 = − q
m

.

and these relations can be inverted:9

m =
−β1 −

√
β2

1 − 4β0β2

2β2
,

p =
β0

m
=

−β1 +
√

β2
1 − 4β0β2

2
, (15)

q = −mβ2 =
β1 +

√
β2

1 − 4β0β2

2
.

Assuming that ut is uncorrelated, homoskedastic and normal, ML estimates of the pa-
rameters vector, say β̂, can be obtained by OLS, and the corresponding variance–covariance
matrix Σ̂β̂ can be obtained as usual.10 Replacing β̂ in (15) instead of β gives θ̂ = θ(β̂).
Defining by

Jθ.β =
∂θ

∂β′

and using the delta method, the variance–covariance matrix associated to θ̂ is given by
the following:

Σ̂θ̂ = Ĵθ.βΣ̂β̂ Ĵ′
θ.β, (16)

where Ĵθ.β is the estimated counterpart of Jθ.β. Tedious computation shows the following:

78



Econometrics 2021, 9, 30

Jθ.β =
∂θ

∂β′ =
1
δβ

⎡⎢⎢⎣
1 − β1+δβ

2β2

β1(β1+δβ)−2β0β2

2β2
2

−β2
β1−δβ

2 −β0

−β2
β1+δβ

2 −β0

⎤⎥⎥⎦, (17)

where δβ =
√

β2
1 − 4β0β2. Ĵθ.β is therefore obtained by replacing β̂ in (17).

We remark that when one considers n “seemingly unrelated” equations such as
(13), i.e.,

ci,t = β0,i + β1,iCi,t−1 + β2,iC2
i,t−1 + ui,t, i = 1, ..., n, (18)

and the variance–covariance matrix of ut = (u1,t, ..., un,t)
′, say Ωu, is not diagonal, then

equation by equation OLS is no longer equivalent to ML. In this case, the likelihood can
be maximized by iterated Seemingly Unrelated Regression Equations (SURE), obtaining

β̂i =
(

β̂0,i, β̂1,i, β̂2,i
)′

, i = 1, ..., n, Ω̂u, and the variance–covariance matrix of β̂ =
(

β̂
′
1, ..., β̂

′
n

)′
,

i.e.,

Σ̂β̂ =

⎡⎢⎢⎣
Σ̂β̂1

· · · Σ̂
′
β̂n ,β̂1

...
. . .

...
Σ̂β̂n ,β̂1

· · · Σ̂β̂n

⎤⎥⎥⎦.

Then, applying (15) and (16) to each pair (β̂i, Σ̂β̂i
) it is easy to obtain the ML estimates

of the structural parameters θi = (mi, pi, qi)
′ and the associated variance–covariance matri-

ces.

3.2. Boswijk and Franses Model

Boswijk and Franses (2005), henceforth BF, emphasize two major problems in the
model (13):

• The assumption that ut is uncorrelated is at odds with the empirical evidence that
deviations of the observed adoption path with respect to the ideal equilibrium path
are persistent.

• The assumption that ut is homoskedastic is disputable since, at the beginning and at
the end of the diffusion process, when ct is expected to be close to zero, the variance
of ct is likely to be much smaller than around the peak; related to this, simulating (13)
with an homoskedastic and Gaussian error is likely to produce negative values of ct
in the initial and final phases of the diffusion.

To deal with the first problem, they propose the following alternative model:11

Δct = α
(

ct−1 − mp − (q − p)Ct−1 +
q
m

C2
t−1

)
+ ut. (19)

To understand the relationship between (12) and (19) it is interesting to observe
that, adding and subtracting α

(
−(q − p)Ct−2 +

q
m C2

t−2
)

to the right hand side of (19), and
rearranging, one obtains the following:

Δct = α
(

ct−1 − mp − (q − p)Ct−2 +
q
m

C2
t−2

)
− α

(
(q − p)ΔCt−1 − q

m
ΔC2

t−1

)
+ ut. (20)

To interpret (20), define the following:

c∗t = mp + (q − p)Ct−1 − q
m

C2
t−1,

and notice that c∗t is the expected value or ct according to the Bass discrete time model (12).
Using the notation c∗t , (20) can be rewritten as the following:
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Δct = α
(
ct−1 − c∗t−1

)
− αΔc∗t + ut. (21)

The parameter α is expected to be negative. The first term in (21), i.e., α
(
ct−1 − c∗t−1

)
,

can be thought of as an Error-Correction Mechanism: if ct−1 = c∗t−1, the ECM is ineffective;
if instead ct−1 > c∗t−1, then the ECM term partly corrects the disequilibrium by reducing ct
with respect to ct−1; conversely, if ct−1 < c∗t−1, then, through the negative α, ct will increase
with respect to ct−1. The second term in (21), i.e., −αΔc∗t , can be thought of as a “Target
Seeking” Mechanism, which induces dynamics in ct, even if ct−1 = c∗t−1 and ut = 0: in fact
Δc∗t will be zero when ΔCt−1 (and therefore ΔC2

t−1) is zero, which happens when the target
level m is reached and therefore Ct−1 = Ct−2 = m. Another viewpoint on the BF model,
seen as an AR(2) model for Ct with state dependent parameters is given in Appendix A.

It is important to remark that the standard Bass model (12) is a special case of (19) with
α = −1, so that one can set up a test H0 : α = −1 to decide which model is preferable. The
interpretation of the parameters m, p and q is exactly the same in both models since (19) is
a generalized version of the original Bass model, where the “adjustment intensity”, instead
of being fixed at −1, is represented by the unrestricted parameter α. For example, when
α = −0.5, only half of the disequilibrium observed at the end of a time unit is adjusted
within the subsequent time unit: this gives rise to some persistence in the disequilibrium.

To deal with the second problem (heteroskedasticity), BF propose to model ut as the
following:

ut = cφ
t−1εt, (22)

where εt is assumed to be uncorrelated and homoskedastic with variance σ2, so that the
variance of ut is assumed to be proportional to c2φ

t−1; the authors do not consider φ as a
parameter to be estimated, but they rather fix it heuristically to either 1/2 or 1, finding
that 1/2 is preferable in their application. In the application, we will use the residuals
of the homoskedastic model to test for homoskedasticity vs. heteroskedasticity of the
proposed type.

Model (19) can be reparameterized in different ways:

Δct = α
(

ct−1 − β0 − β1Ct−1 − β2C2
t−1

)
+ ut, (23)

= αct−1 + γ0 + γ1Ct−1 + γ2C2
t−1 + ut. (24)

The parametrization (24) is suited for estimation, either with OLS when ut is assumed
to be uncorrelated and homoskedastic, or by WLS (dividing left and right by cφ

t−1), if
ut is assumed to follow (22). Conversely, the parametrization (23) is useful because the
parameters in β = (β0, β1, β2)

′ are related to the parameters θ = (m, p, q)′ as in (15):
therefore if we obtain estimates of β and Σβ̂, we can map them into estimates of θ and Σθ̂

using (15) and (16) directly.12

Let us define γ′ = (γ0, γ1, γ2). Assuming that ut ∼ iidN
(
0, σ2), ML estimates of

π′ = (α, γ′) can be obtained by OLS in (24), obtaining α̂, γ̂ and the corresponding variance–
covariance matrix:

Σ̂π̂ =

[
σ̂2

α Σ̂
′
γ̂.α̂

Σ̂γ̂.α̂ Σ̂γ̂

]
.

Notice that β = − 1
α γ; therefore, ML estimates of β are given by the following:

β̂ = − 1
α̂

γ̂. (25)

We then obtain the following:
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Jβ.π =
∂β

∂π′ =
1
α2

⎡⎣ γ0 −α 0 0
γ1 0 −α 0
γ2 0 0 −α

⎤⎦ =
1
α2 (γ, −αI3),

and, using the delta method, we have the following:

Σ̂β̂ = Ĵβ.π Σ̂π̂ Ĵ′
β.π =

1
α̂2

(
γ̂γ̂′

α̂2 σ̂2
α −

Σ̂γ̂.α̂γ̂′ + γ̂Σ̂
′
γ̂.α̂

α̂
+ Σ̂γ̂

)
, (26)

where Ĵβ.π is the estimated counterpart of Jβ.π . Starting from (25) and (26) one can obtain θ̂

and Σ̂θ̂ using (15) and (16). In particular, replacing Σ̂β̂ = Ĵβ.π Σ̂π̂ Ĵ′
β.π in (16), one obtains

the following:

Σ̂θ̂ = Ĵθ.βΣ̂β̂ Ĵθ.β
′ = Ĵθ.β Ĵβ.π Σ̂π̂ Ĵβ.π

′ Ĵθ.β
′.

Additionally, in this case, when one considers n “seemingly unrelated” equations such
as (24), i.e.,

ci,t = αici,t−1 + γ0,i + γ1,iCi,t−1 + γ2,iC2
i,t−1 + ui,t, i = 1, ..., n, (27)

and the variance–covariance matrix of ut = (u1,t, ..., un,t)
′, for example Ωu, is not diagonal,

then equation by equation OLS is no longer equivalent to ML. In this case, the likelihood
can be maximized by iterated SURE, obtaining π̂i = (αi, γ̂0,i, γ̂1,i, γ̂2,i)

′, i = 1, ..., n, Ω̂u, and
the variance-covariance matrix of π̂ =

(
π̂′

1, ..., π̂′
n
)′, i.e.,

Σ̂π̂ =

⎡⎢⎣ Σ̂π̂1 · · · Σ̂
′
π̂n ,π̂1

...
. . .

...
Σ̂π̂n ,π̂1 · · · Σ̂π̂n

⎤⎥⎦.

Then, starting from each pair
(
π̂i, Σ̂π̂i

)
one can obtain the ML estimates of the struc-

tural parameters θi = (mi, pi, qi)
′ and the associated variance–covariance matrices as

illustrated above.
As for the asymptotic properties of ML estimates of the structural parameters, Boswijk

and Franses (2005) prove that m̂ is consistent in T (as the time span increases CT ideally
coincides with m), whereas p̂ and q̂ are not; moreover, they show that the asymptotic
distribution cannot be proved to be normal. However, they demonstrate with an extensive
simulation that when the frequency is allowed to go to infinity along with the time span,
then m̂, p̂ and q̂ are essentially unbiased and asymptotically normal; they also show that
this is approximately valid, even with a fixed time span, at least if it includes the inflection
point ln q−ln p

p+q . In other words, if the observed time span includes the inflection point and
the sampling frequency is reasonably high, their results suggest that using the standard
normal and the χ2 for making inference on the parameters is a reasonable approximation.

3.3. Boswijk et al. Multivariate Model

Boswijk et al. (2009), henceforth BFF, propose a multivariate generalization of (19).
The BFF model is made up of n equations, and can be written as follows:

Δci,t =
n

∑
j=1

αij

(
cj,t−1 −

(
pj + qj

)
Cj,t−1 +

qj

mj
C2

j,t−1 − pjmj

)
+ ui,t, i = 1, ..., n, (28)

where, in a simplified homoskedastic version of the model, we might assume that ut =

[u1,t, ..., un,t] ∼ iidNn(0, Ω).13 Along the lines of the BF model, (28) may be reparametrized
as follows:
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Δci,t =
n

∑
j=1

αij

(
β′

jXj,t−1 − β0j

)
+ uit, i = 1, ..., n, (29)

with

X ′
jt =

[
cj,t, Cj,t, C2

j,t

]
, β′

j =
[
1, −β1j, −β2j

]
or, more compactly,

Y t = αβ′X t−1 + ut, (30)

where

Y t
n×1

=

⎡⎢⎣ Δc1,t
...

Δcn,t

⎤⎥⎦, X t
(3n+1)×1

=

⎡⎢⎢⎢⎣
X1,t

...
Xn,t

1

⎤⎥⎥⎥⎦, ut
n×1

=

⎡⎢⎣ u1,t
...

un,t

⎤⎥⎦,

α
n×n

=

⎡⎢⎣ α11 · · · α1n
...

. . .
...

αn1 · · · αnn

⎤⎥⎦, β
(3n+1)×n

=

⎡⎢⎢⎢⎣
β1 · · · 0
...

. . .
...

0 · · · βn
β01 · · · β0n

⎤⎥⎥⎥⎦.

Since this paper’s main goal is to celebrate Søren Johansen and Katarina Juselius, it is
nice to remark that, apart from the exclusion restrictions in β, and the fact that the rank
of αβ′ is actually full, (30) has the mathematical form of the “reduced rank regression”
popularized by Søren and Katarina; therefore, in estimating and interpreting the model,
we can benefit directly from the results inspired by their work, in particular Hansen (2003).
Notice that the (exclusion) restrictions on the matrix β can be written as the following:

vec(β) = Hβϕβ + hβ (31)

for suitable restriction matrices Hβ and hβ.14 It might be also interesting to consider
restrictions on α of the following type:

vec(α) = Hαϕα, (32)

for example to test the hypothesis that the matrix α is diagonal, under which (28) would
collapse into n “seemingly unrelated” BF equations such as (19).15 Of course, when α is
unrestricted, we have that Hα = In2 and ϕα = vec(α).

Assuming that ut ∼ iidN (0, Ω), the log-likelihood function is given by �(ϕ, Ω) =

− T
2

[
n ln(2π) + ln|Ω|+ tr(Ω−1Muu)

]
, where Muu = T−1 ∑T

t=1 utu′
t. Since the log-likelihood

score is bi-linear in the parameters α and β, one can employ the generalized reduced rank
regression algorithm proposed by Hansen (2003) for likelihood maximization of I(1) VAR
models under linear restrictions. This provides maximum likelihood estimates of the

parameters ϕ =
[
ϕ′

α,ϕ′
β

]′
and Ω, for example, ϕ̂ and Ω̂.16

To work out the variance–covariance matrix associated to ϕ̂, notice that the model (30)
under the restriction (31) and (32) is a sub-model of the following regression model:

Y t = ΠX t−1 + ut,

where Π = αβ′ = Π(ϕ) is a smooth function of the vector of the parameters in ϕ. The sec-
ond derivatives of the log-likelihood with respect to vec(Π) are given by −T MXX ⊗ Ω−1,
see e.g., Johansen (2006, Equation (13)), where MXX = T−1 ∑T

t=1 X t−1X ′
t−1. Because the
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parameters in ϕ and in Ω are asymptotically independent, one finds that the Hessian with
respect to ϕ equals the following:

Hϕ =
∂2�(ϕ, Ω)

∂ϕ∂ϕ′ = −T J′
Π.ϕ

(
MXX ⊗ Ω−1

)
JΠ.ϕ, (33)

where

JΠ.ϕ =
∂ vec Π(ϕ)

∂ϕ′ .

In order to describe JΠ.ϕ in more detail observe that, in the present case, one has

vec Π(ϕ) = vec αβ′ = (β ⊗ In)vec α =
(

I(3n+1) ⊗ α
)

vec β′. Therefore, using (31) and
(32), one finds the following:

∂vec
(
αβ′)/∂ϕ′

α = (β ⊗ In)Hα,

∂vec
(
αβ′)/∂ϕ′

β =
(

I(3n+1) ⊗ α
)
K(3n+1),n Hβ.

where Kmn is a commutation matrix, which satisfies Kmn vec(M) = vec(M ′) when M is
m × n. Therefore

JΠ.ϕ = blkdiag
(
(β ⊗ In)Hα,

(
I(3n+1) ⊗ α

)
K(3n+1),nHβ

)
.

The variance–covariance matrix of ϕ̂ can be then estimated by the following:

Σ̂ϕ̂ = −Ĥϕ
−1

where Ĥϕ is obtained by plugging the ML estimates ϕ̂ and Ω̂ instead of ϕ and in Ω in (33).

4. Results

Our statistical analysis is based on two equations, headed to c1,t and c2,t, respectively
(see Section 2 for a definition of the indices). In this section, we will first discuss the
estimates of the reduced form models and then the corresponding estimates of the structural
form models.

4.1. Analysis of the Reduced Form—Comparing Bass, BF, BFF

As illustrated in the previous section, the two univariate Bass Equation (18) may
be seen as a restricted version of the bivariate BFF model (29), with four restrictions:
α11 = α22 = −1 and α12 = α21 = 0. Similarly, the univariate dynamic BF model (27)
may also be seen as a restricted version of the bivariate BFF model (29), with only two
restrictions: α12 = α21 = 0. In all cases, assuming that the errors in the two equations are
simultaneously correlated, i.e.,

Ωu =

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
,

efficient estimates of all models may be obtained by maximum likelihood, using the Hansen
(2003) algorithm as illustrated in Section 3.3.17 The results are shown in Table 4.
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Table 4. ML estimates of the reduced form parameters.

Model (18) Model (27) Model (29)
Estimate t-Ratio Estimate t-Ratio Estimate t-Ratio

APP

α̂1,1 −1 −0.435 −5.74 −0.508 −6.26
α̂1,2 0 0 0.715 2.81
β̂0,1 17.55 9.00 19.40 5.28 19.81 4.78
β̂1,1 0.0196 9.62 0.0183 4.76 0.0190 4.61
β̂2,1 −1.33×10−6 −3.22 −1.054×10−6 −1.35 −1.32×10−6 −1.60
σ̂1 10.40 8.42 8.15

MET

α̂2,1 0 0 0.0635 2.34
α̂2,2 −1 −0.492 −6.28 −0.547 −6.44
β̂0,2 5.90 8.28 6.27 5.05 6.74 4.65
β̂1,2 0.0205 5.77 0.0199 3.21 0.0187 2.73
β̂2,2 −2.06×10−5 −5.71 −2.07×10−5 −3.29 −1.97×10−5 −2.86
σ̂2 3.30 2.79 2.72

ρ̂ 0.416 0.140 0.161
log L −715.81 −682.06 −675.26

Table 5 reports some misspecification tests based on the residuals illustrated in
Figure 3.

The two rows, headed AC, in the table report the results of tests for auto correlation
of the residuals of the applied and methodological equation, respectively. Specifically,
we tested for serial correlation up to k = 20 lags using the Ljung-Box Q-statistic, whose
null hypothesis is that the errors are uncorrelated.18 The p-value is zero for the standard
Bass model (18): therefore, residuals serial correlation is a major problem for that model.
Conversely, in models (27) and (29), the white noise assumption is not rejected for the
methodological equation, while for the applied equation, there is a clear improvement over
model (18), but some autocorrelation seems to remain for both models, which suggests to
invest more on the dynamic specification, which is left for further research.

The four rows headed HSK in the table report the results of two different types of Breusch–
Pagan tests for heteroskedasticity for the applied and methodological equation, respectively.
In all cases, the null hypothesis is that the errors are homoskedastic, but we introduced two
different alternatives. In fact, as seen in Equation (22), Boswijk and Franses (2005) suggest that
the standard deviation should be proportional to cφ

i,t−1 (with φ = 1/2 or φ = 1); therefore,

we introduced the constant and c2φ
i,t−1 in the auxiliary regression, with two alternative

values for φ. For model (18), the null is rejected in most cases.19 Conversely, in spite of the
very convincing argument supporting heteroskedasticity made by the cited authors, we
did not find statistically significant evidence in this sense for this data set in (27) and (29);
therefore, for the analysis in this paper, we did not consider the heteroskedastic versions of
BF and BFF models.

The log-likelihood increases by 33.75 from model (18) to model (27): the LR test is
therefore χ2

2 = 67.50, and the p-value is essentially zero. According to this result, the
standard Bass model seems unable to capture the persistent swings clearly visible in
Figure 2 and in the first plot of Figure 3: notice in fact that both parameters α11 and α22
estimated in (27) are approximately −0.5 and statistically different from −1, which implies
that only half of the distance from the ideal Bass path is corrected within one quarter, giving
rise to persistent disequilibria. However, even model (27) is not satisfactory: in fact, the
log-likelihood of model (29) is significantly higher (the LR test is χ2

2 = 14.6, p-value 0.00111).
This result is interesting since it suggests the existence of Granger causality running from
the methodological research to applied research and/or vice-versa.
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Table 5. Residual based tests for autocorrelation and heteroskedasticity. AC: Ljung-Box Q-statistics
up to k = 20 lags (see footnote 25 for p). HSK: Breusch–Pagan test, including the constant and c2φ

1,t−1

(or c2φ
2,t−1) in the regression where the dependent variable is

û2
1,t

σ̂2
1

(or
û2

2,t
σ̂2

2
).

Model (18) Model (27) Model (29)
Test p-Value Test p-Value Test p-Value

AC χ2
k−p 247.3 0.000 32.64 0.013 31.74 0.016

APP HSK (φ = 1/2) χ2
1 3.96 0.047 0.88 0.348 2.79 0.095

HSK (φ = 1) χ2
1 3.86 0.047 0.33 0.566 1.27 0.260

AC χ2
k−p 101.1 0.000 27.48 0.051 26.31 0.069

MET HSK (φ = 1/2) χ2
1 1.41 0.235 1.77 0.184 2.96 0.085

HSK (φ = 1) χ2
1 6.30 0.012 0.91 0.340 1.46 0.226

Figure 3. Residuals of different models: Bass = model (18), BF = model (27), BFF = model (29). Thick
red line = “Applied” (left scale). Thin blue line = “Methodological” (right scale).

To shed some light on this, we observe that the estimates of α12 and α21 in (29) are
both positive and statistically significant, suggesting that an increase in the methodological
research leads to expect more applications in the future, and that an increase in applica-
tions stimulates further methodological research, with a continuous dialogue between the
economic problems and econometric methods, which is exactly in the spirit of KJ and SJ’s
main message to the profession.

To provide a visual illustration of the relevance of the dynamic interaction between
methodological and applied research in this field, we carry on a simulation exercise, similar
in spirit to impulse response analysis. Impulse response functions, being the reactions of
the variables to shocks entering the system, are useful for studying the interactions between
variables in a vector autoregressive model (Lütkepohl 2016). In a more general non-linear
setting, Potter (2000) and Koop et al. (1996) remark that nonlinear models produce impulse
responses that are history- and shock-dependent; to overcome this problem, they introduce
the notion of “generalized impulse response functions”, based on a stochastic simulation,
which can be applied in both the linear and non-linear case. We considered this tool, but
since the non-linearity is relatively mild in our case, we opted for a tailored solution that is
closer to the traditional deterministic impulse response analysis.
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We initialize Ci,0 = ci,0 = 0,20 and then we compute two alternative trajectories for
ci,t based on the estimated counterpart of (29). In the first dynamic simulation, ui,t is
set to zero for all i and t: this leads to the “unshocked” paths cU

i,t, corresponding to the
deterministic trajectory that would take place in the absence on any innovation, starting
from the assumed initial conditions. In the second dynamic simulation, we set uj,1 = σ̂j
in the j-th equation, whereas all other innovations (different equations and/or different
times) are set to zero so that the impulse corresponds to one standard deviation in just one
of the equations;21 this exercise leads to the shocked paths cS

j,i,t, where the first subscript, j,
indicates which equation has been shocked. The standardized response of the i-th equation
to an impulse on the j-th equation are then given by the difference of the two trajectories,
standardized by the standard deviation of the output variable as follows:

IRj,i,t =

(
cS

j,i,t − cU
i,t

)
σ̂i

j = 1, ..., n; i = 1, ..., n; t = 1, ...

The IRs therefore isolate that part of the trajectory cS
j,i,t, which can be attributed

to the shock. The first 20 IRs are illustrated in Figure 4. Notice that, by construction,
IRj,i,1 is equal to 1 for j = i, 0 otherwise. According to Figure 4, in the short run, the
(standardized) response of the methodological literature to a (standardized) impulse in the
applied literature appears qualitatively very similar to the (standardized) response of the
applied literature to a (standardized) impulse in the methodological literature.

Figure 4. Standardized impulse responses based on model (29). Initialization: Ci,0 = ci,0 = 0, i = 1, 2.

Some more insight on the relationship between methodological and applied research
can be obtained by analyzing the cumulative IRs. It is important to remark that, given the
mathematical nature of the model, the shocks do not have permanent effects. In fact, as
t goes to infinity, the cumulative citations Ci,t will eventually reach the saturation point
mi irrespective of the initial conditions and/or the shocks they undergo: this implies that
∑∞

t=1 cU
i,t = ∑∞

t=1 cS
j,i,t = mi − Ci,0 for any i, j and Ci,0, and therefore ∑∞

t=1 IRj,i,t = 0. As a
consequence, although the first IRs illustrated in Figure 4 are positive, at some point they
turn negative (although with a very small magnitude) so that, in the limit, the cumulative
sum is zero. This behavior is better illustrated through the cumulative IRs, illustrated in
Figure 5, for a much longer period (500 quarters).
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Figure 5. Cumulative standardized impulse responses based on model (29). Initialization:
Ci,0 = ci,0 = 0, i = 1, 2.

Figure 5 shows that an impulse equal to σ̂1 (i.e., 8.15 papers) in the applied literature
is strongly “self exciting”, giving rise to a very long sequence of positive IRs in the applied
literature itself, adding up to 10.5σ̂1 (about 85 papers) in the subsequent 150 quarters
(almost 40 years), before it starts fading away. Conversely, the cumulative impact on the
methodological literature of the same impulse is shorter living, and way less relevant (1.2σ̂2,
i.e., about 3 papers). On the other hand, an impulse equal to σ̂2 (i.e., 2.72 papers) in the
methodological literature is not so “self-exciting” (the peak of the cumulative IRs is only
3.6σ̂2—10 papers—about 50 quarters after the impulse), whereas the cumulative impact on
the applied literature seems very important (the peak is equal to 4.4σ̂1—35 papers—about
150 quarters after the impulse). This evidence seems to suggest that, although in the short
run, the cross fertilization is rather balanced, in the long run, the methodological literature
triggers the applications more than the other way around.22

Actually, the extremely long sequence of positive IR’s, well beyond the observed
period of 115 quarters, casts some doubt on the validity of the implicit assumption that the
impulses do not have a permanent effect. We think that a hint for future research arising
from the current study is to develop an alternative model where the saturation point mi is
not already set at the beginning of the process, but it is to some extent “path dependent”.
In fact, if an idea appears more successful than what was initially assumed (i.e., we observe
some unexpected citations), we should reconsider the expected total number of citations
in the long run, leading to an upward revision. Conversely, when an idea is suddenly
abandoned, possibly in favor of an alternative paradigm (i.e., we observe an unexpected
reduction in the number of citations), we should reasonably revise downwards the expected
total number of citations in the long run.

4.2. Analysis of the Structural Form

Table 6 reports the “structural” parameters m, p and q in the models (12), (19) and (28),
which are based on the ML estimates of (18), (27) and (29), respectively. The associated
standard errors are computed using the delta method, as illustrated in Sections 3.1–3.3. It is
important to remark that the standard errors reported for models (12) are not reliable: they
appear to be much lower than in the other two models, but the assumptions for applying
ML—in particular, the absence of serial correlation—are clearly invalid for that model as
illustrated in Table 5.
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Table 6. Estimates of the structural parameters of the Bass, BF and BFF models. The standard errors
of the t̂P’s measured in quarters.

Model (12) Model (19) Model (28)
Coefficient Estimate Std.err. Estimate Std.err. Estimate Std.err.

APP

m̂1 15,619.7 3289.6 18,332.5 9687.4 15,350.6 6396.2
p̂1 0.00112 1.98×10−4 0.00106 4.79×10−4 0.00129 4.65×10−4

q̂1 0.0207 0.00216 0.0193 0.00421 0.0203 0.00442
t̂P
1 2022:2 16.2 2024:3 42.1 2020:4 32.4̂̄cP
1 89 9.9 99 30.0 88 18.4̂̄CP
1 7386 1578.9 8664 4688.9 7188 3050.6

MET

m̂2 1229.3 61.3 1212.2 100.7 1227.7 119.7
p̂2 0.00480 5.38×10−4 0.00517 9.50×10−4 0.00549 4.91×10−4

q̂2 0.0253 0.00333 0.0251 0.00580 0.0242 0.00643
t̂P
2 2002:4 4.4 2002:1 7.2 2001:2 8.4̂̄cP
2 11 0.5 11 0.8 11 1.0̂̄CP
2 498 23.7 481 40.2 475 49.9

The timing of the citations peaks t̂P
1 and t̂P

2 , the associated peaks ̂̄cP
1 and ̂̄cP

2 , and the

corresponding cumulative number of citations at the peak ̂̄CP
1 and ̂̄CP

2 , are obtained by
plugging the estimated structural parameters in (9)–(11), and the associated standard errors
are computed using the delta method.23

According to the evidence provided in Table 6, the estimates of the structural parame-
ters are rather robust to the model used. Our comments are focused on the results based
on model (28), which is statistically preferable.

It is interesting, and not surprising, that the “innovation parameter” p is much higher
for the methodological literature, whereas the “imitation parameter” is quite similar in
the two strands of the literature: this makes imitation relatively more important than
innovation in the applied literature. As for the citation peaks, it seems that the peak in
the methodological literature (11 papers per quarter) was reached in 2001, whereas the
peak in the applied literature (88 papers per quarter) is expected in 2020, 12 quarters after
the end of the estimation sample (although the associated standard error is extremely
large—32 quarters). Based on the discussion of the properties of the estimates provided in
Boswijk and Franses (2005), the estimates of the methodological equation should, therefore,
be regarded as more reliable since the inflection point of the diffusion curve appears to
be within the sample; this is less so for the estimates of the applied equation, where the
estimated inflection point is outside the sample (of course we do not know the “true”
inflection point). Not surprisingly, the standard error of m̂1 is quite large (the coefficient
of variation σ̂m̂1 /m̂1 is about 42%), while the standard error of m̂2 is much smaller (the
coefficient of variation σ̂m̂2 /m̂2 is less than 10%).

Figure 6 illustrates the observed time series along with the estimated unconditional
expectation obtained by plugging the estimated structural parameters in Equation (8).
Strictly speaking, since at the end of the sample (2017:Q3) we observe C1,T = 5445.2
and C2,T = 1011.8, our point estimates would ideally imply that we should expect
m̂1 − C1,T = 9905 applied WoS papers and m̂2 − C2,T = 216 methodological WoS papers
citing KJ and SJ in the future. We think that this interpretation is hazardous, to say the least.
It is worth observing that the estimates of the structural parameters, especially m1 and
m2, are very unstable as observed among others in Chandrasekaran and Tellis (2018), and
they mainly seem to represent the history of the process in a descriptive sense rather than
being a reliable forecasting tool in an inferential sense. For example, if we re-estimate the
parameters based on the sub sample 1989:Q1-2005:Q4, so that the end of the sample occurs
right before the “second wind” clearly visible in the plot, we would obtain m̂1 = 2710.6
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(σ̂m̂1 = 142.5), m̂2 = 684.3 (σ̂m̂2 = 34.7), t̂P
1 =1999:Q1 and t̂P

2 =1997:Q4.24 Therefore, esti-
mating the same model 15 years ago, one would be convinced of the following: (i) that the
citations peak was already reached several years before (and then the estimates would be
regarded as reliable); (ii) that the potential for this literature was about one fifth of what it
appears now; and (iii) that by 2020, the interest in KJ and SJ work will have disappeared
(see Figure 7). However, as this Special Issue confirms, no prediction could have proved
more wrong!

Figure 6. Observed time series along with the estimated unconditional expectation based on
Equation (8). Left—applied index; right—methodological index.

Figure 7. Forecasting fallacy: observed time series along with the estimated unconditional expectation
based on (8), parameters re-estimated based on the trimmed sample 1898:Q1-2005:Q4. Left—applied
index; right—methodological index.

5. Conclusions and Suggestions for Further Research

Our main purpose in writing this paper was to contribute to the Festschrift in honor of
Katarina Juselius and Søren Johansen as a sign of gratitude for their being for us a constant
source of inspiration. We tried to find a way to show how profoundly they contributed to
the development of economic ideas, emphasizing one key aspect of their approach, namely,
the dialogue between empirical economics and econometric methodology. To this aim, we
have proposed an operational way to disentangle, as much as possible, their contribution
to applied and methodological econometric research, through the development of two
indices based on the Web of Science database. We hope that this can also be a contribution
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to bibliometric studies since a similar approach to assess in a quantitative way the impact
of new ideas on methodological and applied research, and on the interaction between them,
can be used for other areas. Ideally, similar analyses might be employed to investigate
even more general epistemological issues, such as the relationship between theoretical and
empirical research.

We think that the data we describe in Section 2 are very interesting per se. They show
that KJ and SJ’s influence on the literature is extremely important: their top 10 papers sum
up to about 10,500 WoS citations (more than 50,000 in GS) from about 6500 citing papers, an
average of more than 200 papers per year. Based on our indicators, 85% of the citing papers
are essentially applied, whereas 15% are methodological: we do not have a benchmark
for comparison, but we have the impression that the share of methodology is somewhat
larger than in the econometric literature in general. As of 2017, the number of applied
citing papers per quarter had not yet reached the peak (although a “false peak” seems to
have occurred around 2000); conversely, the peak in the methodological literature seems to
have been reached around 2001, although the shape of the trajectory is very flat after the
peak, similar to what Bjork et al. (2014) has identified in a minority of Nobel prize winners
and defined as “staying power”.

To model the data, we resorted to an innovative dynamic multivariate version—
proposed in Boswijk et al. (2009)—of the well-known Bass (1969) model. It was a pleasure
for us to observe and emphasize that this model resembles so closely the Vector ECM
model popularized by KJ and SJ; in particular, the bilinear nature of the model allows to
use the Hansen (2003) algorithm to maximize the likelihood, which generalizes Johansen’s
ML algorithm, adapting it to a rather general class of restrictions, which includes our case.

The estimated model conveys very interesting information. As seen in Formula (9),
the location of the citations peaks depends on the relative importance of the “innovation
parameter” p and the “imitation parameter” q. Our estimates suggest that the different loca-
tion of the peaks might be explained by the higher value of the parameter q2 with respect to
q1, whereas p1 and p2 are quite similar: using the standard terminology in the Bass model
literature, the difference in the parameters suggests that the methodological literature is
mainly driven by “innovators”, whereas “imitators” are relatively more important in the
applied literature.

Another interesting finding is that, in the literature referring to KJ and SJ, the “cross-
fertilization” between methodological and applied research is statistically significant and
bi-directional (although possibly more effective from methodology to applications than
the other way round). According to our impulse response analysis, rounding our figures,
8 unexpected applied papers in one quarter lead to predict that 3 methodological papers
will follow, whereas 3 unexpected methodological papers lead to predict that 40 applied
papers will follow (this is not so unbalanced as it seems at first sight since the scale of the
two strands of literature is different). These results testify that one of the most important
messages that Katarina Juselius and Søren Johansen have emphasized in their writings—
i.e., that the applications should pose challenging problems to the methodology and that
the methodology should sharpen the ability of applied researchers to ask meaningful
questions to the data—has become a common heritage in this literature.

As for the estimated dimension of KJ and SJ influence, as measured by the param-
eters m1 and m2 (often called “saturation point” or “ceiling”), a word of caution is in
order. Our estimates, m̂1 = 15,351 and m̂2 = 1228, imply that we should expect about
10,000 applied WoS papers and 200 methodological WoS papers citing KJ and SJ in the
future. We do not consider these figures very reliable. Indeed, early in the literature,
it was pointed out by Heeler and Hustad (1980) and others (e.g., Hyman 1988) that the
predicting ability of the Bass model depends on the generation of accurate estimates of m.
Srinivasan and Mason (1986) report problems with convergence when the data set does
not contain the peak time period (i.e., the inflection point of the curve). The parameter m is,
again, under attack in Van den Bulte and Lilien (1997): there is evidence of downward bias
in the estimation of the saturation point. Finally, in their review article Chandrasekaran
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and Tellis (2018), point out the overall poor forecasting ability, the unstable parameter
estimates and the difficulty to define a clear stopping rule for the time window regarding
data collection for the Bass model (since the data should, in theory, end when the entire
market has adopted). We add one more critique to the list: the parameter m, in the logic
of the Bass model, appears to be in the DNA of the process since the onset and to be
immutable over time. In all versions of the model that we have considered, the “shocks”
(i.e., the unexpected citing papers) have no permanent effect in the sense that they de-
termine, at most, a persistent (but transitory) departure from a path, which eventually
leads to m. In the spirit of the unit roots literature, so much inspired by the contribution of
Katarina Juselius and Søren Johansen, our suggestion for further methodological research
is to try and conceive a new model, where the shocks are allowed to have a permanent
effect on the “ceiling”. We think that this is absolutely needed in the applications, such
as the bibliometric ones, where the notion of “population at risk” or “potential” is not
obvious. However, also in marketing, or epidemiology, or in the analysis of technological
innovation, the final diffusion is likely to be influenced in a crucial way by events that are
largely unpredictable; therefore, pretending that the same differential equation—where m
is fixed since t = 0—drives the dynamics of the process along its entire history might not
be a realistic representation of the observed phenomena.
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Appendix A. Bass vs. Autoregressive Models

It is interesting to observe that (12) can be regarded as a univariate AR(1) model for Ct
with state dependent parameters. In fact, the model can be rewritten as the following:

ΔCt = μ + πtCt−1 + ut (A1)

with

μ = pm

πt = −p + q
(

1 − Ct−1

m

)
m can be seen as a steady state for Ct: in fact, if Ct−1 = m, then πt = −p, so that in the
absence of shocks (i.e., ut = 0), we have that ΔCt = pm − pm = 0. The state dependent
parameter πt controls the strength of the adjustment to the steady state.

• If q = 0, p > 0, and m > 0, then πt = −p and the model collapses into a standard
stationary AR(1) with unconditional expectation m.

• If q > p > 0, and m > 0, then π(0) > 0 so that initially the system behaves like an

explosive AR(1) with a positive drift mp. When Ct−1 = m
(

1 − p
q

)
, then πt = 0 so that

the system locally behaves like a random walk with drift. When Ct−1 > m
(

1 − p
q

)
,

then πt < 0 so that the system starts adjusting. An illustrative example, based on the
estimated parameters for the methodological index, is given in Figure A1.

91



Econometrics 2021, 9, 30

Figure A1. Illustration of πt as a function of Ct−1, with p = 0.00549, q = 0.0242, m = 1227.7 as in the
estimated equation for CM,t.

Similarly, the model (19) can be seen as a univariate AR(2) model for Ct with state
dependent parameters:

ΔCt = μ + πtCt−1 + γΔCt−1 + ut (A2)

with:

μ = −αmp,

πt = α

(
p − q

(
1 − Ct−1

m

))
,

γ = 1 + α,

so that when α = −1 (A2) collapses into (A1). We remark that as far as α is negative the sign
of πt is the same in both models, and depends only on the sign of Ct−1 − m

(
1 − p

q

)
. The

magnitude of πt instead is affected by α: everything else being fixed, when −1 < α < 0,
the process is less explosive at the beginning, and the strength of adjustment is weaker in
the end, as compared to the case α = −1.

Finally, the model (28) can be seen as a VAR(2) model for Ct = [C1,t, ..., Cn,t]
′ with

state-dependent parameters:

ΔCt = μ + αβ′
tCt−1 + ΓΔCt−1 + ut (A3)

where

Ct
n×1

=

⎡⎢⎣ C1,t
...

Cn,t

⎤⎥⎦, ut
n×1

=

⎡⎢⎣ u1,t
...

un,t

⎤⎥⎦, μ
n×1

= −

⎡⎢⎢⎣
∑n

j=1 α1j pjmj
...

∑n
j=1 αnj pjmj

⎤⎥⎥⎦
α

n×n
=

⎡⎢⎣ α11 · · · α1n
...

. . .
...

αn1 · · · αnn

⎤⎥⎦, βt
n×n

= diag
{

pi − qi

(
1 − Ci,t−1

mi

)}
, Γ = In + α.
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It is easily seen that, when α is diagonal, (A3) collapses into n seemingly unrelated
equations such as (A2), while when α = −In, (A3) collapses into n seemingly unrelated
equations such as (A1).

Appendix B. Sensitivity to ω

As discussed in Section 2, the parameter ω in (1) and (2) controls for the weight of
the “Mainly Applied” (MA) and “Mainly Methodological” (MM) papers on the aggregate
indices c1,t (applied) and c2,t (methodological). Meaningful values of ω are in the range
(0.5; 1): with ω = 0.5 the papers classified as MA and MM are essentially pooled together,
and allowed to contribute evenly to both indices. In the opposite polar case, ω = 1, MA (or
MM) is considered equivalent to PA (or PM). We observe that, in principle, instead of a
single weight ω, it would be possible to consider two different weights for MA and MM
papers, for example, ωA and ωM, defining the following:

c1,t = cPA,t + ωAcMA,t + (1 − ωM)cMM,t

c2,t = cPM,t + ωMcMM,t + (1 − ωA)cMA,t

We remark, however, that in our dataset, any value 0.5 < ωM < 1 would leave the
two indexes essentially unchanged since there are only 92 papers classified as MM in front
of 716 classified as PM and 4198 classified as PA; therefore, our choice to set ωM = ωA is
a minor problem. Conversely, in our dataset, the critical issue is ωA, mainly because of
its impact on c2,t: in fact, there are 1451 papers classified as MA and 716 classified as PM,
so that setting ωA = 0.5, the MA papers would be as influential as the PM papers in the
index c2,t. This argument induced us to set ωA = ωM = 0.85. With this choice, (1 − ωA) is
relatively close to 0 so that c2,t reflects mainly the 716 PM papers and, therefore, is a more
reliable measure of the methodological research. Notice that this choice has a minor impact
on the reliability of the applied index c1,t for two reasons: (i) the 4198 papers classified
as PA outnumber the 1451 MA papers, and (ii) the correlation between cPA,t and cMA,t
it quite high, 69.5% (see Figure 1) (conversely the correlation between cPM,t and cMA,t is
only 1.7%). Finally, notice that setting ωA = 0.85 would make it approximately equal to
nPA/(nPA + nPM) = 0.8545: in practice, this corresponds to the assumption that the share
of “applied research” of an MA paper is similar, on average, to the share of applied research
in the econometric literature referring to KJ and SJ papers in general. Let us now discuss
how a different choice of ω would affect our results.

As illustrated in Table A1, changing ω affects quite relevantly the magnitude of the
indices (especially c2,t), as well as the correlation among them. To explain the impact on
the magnitude, remember that, when ω = 1, the 1451 MA papers are treated de facto as
the “Purely Applied”(PA) ones, whereas when ω = 0.5, only half of them (725.5) is treated
as applied, while the other half is treated as methodological, and therefore, contribute
also to the methodological index c2,t.25 The impact on the correlation is instead explained
by the fact that the correlation between cPA,t and cMA,t it quite high (69.5%), whereas the
correlation between cPM,t and cMA,t is negligible (1.7%); see Figure 1.

Table A1. Sensitivity to ω: impact of ω on some characteristics of the composite citation indices.

ω = 0.5 ω = 0.85 ω = 1

C1,T 4969.5 5445.2 5649
C2,T 1487.5 1011.8 808

corr(c1,t, c2,t) 0.543 0.253 0.048

Given this impact of ω on the composite indices, it is interesting to analyze to which
extent the results of the econometric model depend on it. The analysis is limited to the
general model (29) since our analysis shows that it is preferable with respect to the restricted
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counterparts (27) and (18). In this appendix, we show that our results are essentially robust
to changes in ω.

Table A2 shows how the estimates of the reduced for changes when ω is changed.

Table A2. Sensitivity to ω: ML estimates of the reduced form parameters based on model (29).

ω = 0.5 ω = 0.85 ω = 1
Estimate t-Ratio Estimate t-Ratio Estimate t-Ratio

APP

α̂1,1 −0.620 −7.17 −0.508 −6.26 −0.459 −5.92
α̂1,2 0.782 4.00 0.715 2.81 0.624 2.33
β̂0,1 16.95 4.58 19.81 4.78 21.11 4.88
β̂1,1 0.0209 5.13 0.0190 4.61 0.0180 4.33
β̂2,1 −1.86×10−6 −2.06 −1.32×10−6 −1.60 −1.06×10−6 −1.33
σ̂1 7.46 8.15 8.62

MET

α̂2,1 0.0902 2.25 0.0635 2.34 0.0590 2.38
α̂2,2 −0.545 −6.12 −0.547 −6.44 −0.596 −7.04
β̂0,2 8.87 4.81 6.74 4.65 5.64 4.42
β̂1,2 0.0161 2.66 0.0187 2.73 0.0223 2.96
β̂2,2 −9.54×10−6 −2.23 −1.97×10−5 −2.86 −3.15×10−5 −3.39
σ̂2 3.46 2.72 2.71

ρ̂ 0.253 0.161 0.034

The sign and significance of the parameters are essentially the same irrespective of
ω. Interestingly, the difference in the correlation between the two indices induced by ω,
illustrated in Table A1, are reflected in different estimates of ρ, whereas the estimates of
α1,2 and α2,1 (i.e., the parameters controlling for the dynamic interaction among the two
processes) remain quite stable. Due to this, the (unreported) pattern of the standardized IRs
and cumulative IRs computed with ω = 0.5 and ω = 1 are very similar to those illustrated
in Figures 4 and 5 for ω = 0.85. Unreported results show that also the misspecification
tests are qualitatively unchanged for all ωs with respect to those reported in Table 5 for
model (29): homoskedasticity and uncorrelatedness appear acceptable for any value of ω.

Table A3 illustrate how the structural parameters change when ω is changed. The
influence on the m has an obvious interpretation: as ω increases, a larger share of the MA
papers is removed from the methodological index (so that m2 declines) and added to the
applied index (so that m1 increases). As for the ps and the qs, we observe that as ω increases,
p1 and q1 decrease, whereas p2 and q2 increase. As a consequence of these changes, the
timing of the peaks, obtained by formula (9), change: specifically, as ω increases, the peak
in the applied literature moves to the right, whereas the peak in the methodological peak
moves to the left. The distance between the peaks is 13 years with ω = 0.5, and about
24 years when ω = 1. This is not surprising: as illustrated in Figure 1, the dynamic behavior
of the MA paper resembles closely the PA papers, and therefore, when 50% of them are
considered methodological, c1,t and c2,t become more similar, and the two peaks become
closer (although they still remain quite far away from each other).

An interesting consequence of the fact that, increasing ω, the peak of the applied
literature moves ahead is that the quality of the structural parameters for the applied curve
(already quite poor with ω = 0.5) decreases considerably: when ω = 1, the standard error
associated to m̂1 is as large as 9516, and the standard error associated to the estimated
timing of the peak t̂P

1 turns out to be 42 quarters, more than 10 years. It is a well-known
fact in the literature that the estimates of the Bass model are quite poor if the sample period
does not include the inflection point, which is quite likely the case for the applied literature
if we trust the point estimates, and even more so when ω = 1.
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Table A3. Sensitivity to ω: ML estimates of the structural form parameters based on model (29). The
standard errors of the t̂P measured in quarters.

ω = 0.5 ω = 0.85 ω = 1
Coefficient Estimate Std.err. Estimate Std.err. Estimate Std.err.

APP

m̂1 11,994.6 3644.9 15,350.6 6396.2 18,058.0 9516.0
p̂1 0.00141 3.94×10−4 0.00129 4.65×10−4 0.00117 5.31×10−4

q̂1 0.0224 0.00425 0.0203 0.00442 0.0192 0.00456
tP
1 2018:1 22.6 2020:4 32.4 2023:2 42.4

cP
1 76 10.3 88 18.4 98 28.0

CP
1 5618 1719.8 7188 3050.6 8479 4578.2

MET

m2 2129.1 351.5 1227.7 119.7 907.1 62.3
p2 0.00416 8.77×10−4 0.00549 4.91×10−4 0.00622 0.00133
q2 0.0203 0.00604 0.0242 0.00643 0.0285 0.00682
tP
2 2005:1 11.7 2001:2 8.4 1999:4 7.2

cP
2 16 1.2 11 1.0 10 0.8

CP
2 846 122.6 475 49.9 355 34.2

Notes

1 Many thanks for the provision of the initial Web of Science data to Evi Sachini, Antonis Kardasis and Penny Nikolaidou of the
National Documentation Centre/N.H.R.F. based in Athens, Greece.

2 Around the same time Google Scholar (GS) reported more than 50,000 citations for the same 10 papers. We opted for WoS
instead of GS because, to avoid double counting, the analysis carried on in this paper is based on the citing papers instead of the
citations, and working out the citing papers from GS is not easy. Admittedly, one drawback with using WoS instead of GS is
that books cannot be considered; we think however that this would not substantially change the picture. In fact, according to
GS, the book Johansen (1995) would rank 4th in terms of citations, the book Juselius (2006) would rank 6th, and adding both
books the total citations count would be about 15% higher; however, since many papers citing one of the books will cite also
some of the older papers, the impact of the books on the citing papers is likely to be way less than 10%.

3 Among the “super-citing” papers, there are also 14 papers with six citations and 53 papers with five citations. We remark that
40 of the 6457 papers (i.e., 0.62%) are authored or coauthored by SJ and/or KJ: given the small share we did not correct for
self-citations.

4 An alternative way of measuring the influence of a paper could be based on counting the authors instead of the papers. We
could then consider the number of authors citing KJ or SJ in each quarter, or preferably the number of “new authors”, i.e., the
number of authors citing KJ or SJ for the first time in each quarter, who never cited them before (this would avoid double
counting, and would be a more precise measure of “contagion”). We do not explore this alternative in the present paper, leaving
it for future research.

5 Classifying an econometric paper as “methodological” or “applied” is clearly arbitrary to some extent. A general discussion,
although related to the ‘delineation of scientific areas’ may be found in Zitt (2006); he states that fields may be defined at various
levels (e.g., institutional setting of academic actors; shared topics and possibly shared journals; shared terminology; close
connections of collaboration or citation, etc.) and concludes that “. . . natural borders, generally speaking, are an illusion” (Zitt
2006, p. 6). In fact, a more scientific-bibliometric related methodological approach could be the analysis based on networks, as
for instance in Vieira and Teixeira (2010), although this is outside the scope of the present paper.

6 When unsure regarding the screening, we proceeded following Katsaliaki and Mustafee (2011, p. 1434): “The two authors
independently and critically reviewed all the abstracts of the (...) papers and read the full text when necessary.” Notice that
an alternative classification scheme could be based on the publishing journal since some journals are more oriented toward
applications, while others are more methodological. As discussed below, we believe that our approach provides a more accurate
measure.

7 The title of the MA paper by Baillie and Bollerslev is "Common stochastic trends in a system of exchange rates", while the title
of the PM paper by Gilbert is "Economic theory and econometric models"

8 Actually, at the individual level, the term “innovator” associated to a constant hazard is somewhat misleading, and not exactly
a synonym of “early adopter”. In fact, an individual with constant hazard rate might well be a laggard, especially if his/her
individual hazard rate is low. The parameter p is hardly interpretable in epidemiology, where the notion of “innovator” is
essentially limited to the “patient zero”.

9 We remark that that the solution is not unique. The formulae in (15) are the ones giving positive values of m, p and q with our
estimated β’s.
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10 Maintaining the assumption that ut is i.i.d. normal, an alternative estimation strategy could be based on Non Linear Least
Squares (NLLS). Estimates of m, p and q would be based on the following:

min
m,p,q

T

∑
t=2

(
ct − mp − (q − p)Ct−1 +

q
m

C2
t−1

)2
.

The advantage of NLLS is that it provides directly the estimates of the parameters of interest (m, p and q) and the
corresponding standard error, without having to resort to the delta method. The disadvantage is that convergence of the
numerical optimization routines is sometimes not easy: this is partly due to the strong collinearity, and partly to the fact that the
optimization problem has two solutions. In the following, we opt for OLS and the delta method.

11 We decided to adopt slightly different symbols with respect to BF. In particular our α has opposite sign with respect to theirs.
12 The parametrization (23) is also better suited than (24) for multivariate generalizations, as illustrated in the next subsection.
13 Actually, Boswijk et al. (2009) propose an heteroskedastic version of the model, where ut = diag

{
cφ

i,t−1

}
εt , with εt =

[ε1,t, ..., εn,t] ∼ iidNn(0, Ωε) and φ fixed to either 1/2 or 1. In this paper we only briefly discuss the heteroskedastic BFF model,
since in our application suitable heteroskedasticity tests seem to accept the hypothesis of homoskedasticity.

14 Precisely,

Hβ

(3n2+n)×3n
= diag{H i} , hβ

(3n2+n)×1

= diag{hi}1n,

with

H i
(3n+1)×3

=

[
un,i ⊗ [u3,2, u3,3] 03n,1

01,2 1

]
, hi

(3n+1)×1
=

[
un,i ⊗ u3,1

0

]
i = 1, ..., n.

15 A diagonal α corresponds to Hα = diag
{

un,i
}

. As already observed, in this case ML would not correspond to equation by
equation OLS, due to the correlation of the error terms. One might maximize the likelihood either by iterated SUR as illustrated
in Section 3.2, or equivalently using the algorithm illustrated here.

16 Minor modifications are needed if instead we assume heteroskedasticity of the type postulated in Boswijk et al. (2009), where

ut = W tεt, with W t = diag
{

cφ
i,t−1

}
(φ is assumed to be known) and εt ∼ iidN(0, Ωε). Notice that, premultiplying (30), left and

right, by W−1
t , using the properties of the vec operator, one obtains either the following:

W−1
t Y t =

[(
X ′

t−1 ⊗ W−1
t

)
(β ⊗ In)

]
vec(α) + ut

or the following:

W−1
t Y t =

[(
X ′

t−1 ⊗ W−1
t

)
(I3n+1 ⊗ α)

]
vec

(
β′)+ ut

The first equation allows to estimate α by GLS when β and Ω are known, while the second allows to estimate β by GLS
when α and Ω are known. A "switching" iterative algorithm similar to Hansen (2003) is therefore possible also in this case. Of
course, linear restrictions on vec(α) or vec(β) are easily dealt with also in this case.

17 Models (18) and (27) are also estimated using iterated SURE, obtaining exactly the same results.
18 We also considered different values of k, from 4 to 20, and the results remain essentially unchanged. Regarding the number

of degrees of freedom, as illustrated in Appendix A, the standard Bass model can be seen as an AR(1) with state dependent
parameters, while the BF and BFF models can be seen as AR(2): therefore we considered heuristically k − p degrees of freedom
in the Q test, with p = 1 for the standard Bass model and p = 2 for BF and BFF models.

19 Actually, the slope in the auxiliary regression is negative in some cases, which is exactly the opposite of BF intuition. We think
that the result might reflect the neglected autocorrelation rather than heteroskedasticity: the ample swings in the residuals
clearly visible in Figure 3 are misinterpreted by the test as heteroskedasticity.

20 Alternative initializations are possible: this point is further discussed in footnote 25.
21 For simplicity, we do not “orthogonalize” the shocks by assuming some direction for the simultaneous relationship: we believe

that this is justified in this case, given the modest correlation between the residuals (16.1%). As a robustness check we also tried
to orthogonalize in either direction, and to apply the “ordering invariant” method proposed in Pesaran and Shin (1998) but, as
expected given the low correlation, the results are essentially unchanged. For a discussion of the simultaneous correlation, see
also Appendix B.

22 It is important to remark that, given the nonlinear dynamics implied by (29), the impulse responses will change according
to the initial conditions. We also considered alternative initializations, starting in different points of the diffusion path: we
observed that when the impulse is given further ahead along the diffusion path, the shape of the responses changes in a rather
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intuitive way: the peak of the cumulative IRs occurs earlier, and the intensity becomes weaker. This can be explained in the
light of the discussion presented in Appendix A: in the initial stages of the process, when both C1,t and C2,t are close to zero
and much lower than m1 and m2, respectively, the processes behave as explosive AR(2), and therefore, the shocks are initially
amplified; however, as C1,t and C2,t grow, the processes become less and less explosive, until eventually they start adjusting
and the cumulative impact of the shock is driven down to zero. However, some characteristics of the cumulative IRs do not
change, even when the initial conditions are modified: the cumulative cross impact seems to be relatively stronger from the
methodological to the applied literature than vice versa.

23 Defining ψ = [tP, c̄P, C̄P]′, starting from (9)–(11), we have the following:

Jψ.θ =
∂ψ

∂θ′ =

⎡⎣ (p + q)2 0 0
0 4q 0
0 0 2q

⎤⎦−1⎡⎢⎣ 0 ln p − ln q − 1 − q
p ln p − ln q + 1 + p

q

(p + q)2 2m(p + q) m
q (p + q)(q − p)

q − p −m m p
q

⎤⎥⎦
The variance-covariance matrix for ψ̂ is then obtained as the following:

Σ̂ψ̂ = Ĵψ.θΣ̂θ̂ Ĵ′ψ.θ .

24 These estimates are based on model (27) since we could not achieve convergence in model (29). The estimates based on model
(18) and the same sample are almost identical.

25 Similarly, when ω = 1, the 92 MM papers are entirely treated as methodological, whereas, when ω = 0.5, only half of them (46)
are treated as methodological, while the other half is treated as applied. Given the small number of MM papers, their influence
on the indices is negligible, and that is why in our discussion we emphasize the role of the MA papers.
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Abstract: A multivariate CVAR(1) model for some observed variables and some unobserved variables
is analysed using its infinite order CVAR representation of the observations. Cointegration and
adjustment coefficients in the infinite order CVAR are found as functions of the parameters in the
CVAR(1) model. Conditions for weak exogeneity for the cointegrating vectors in the approximating
finite order CVAR are derived. The results are illustrated by two simple examples of relevance for
modelling causal graphs.
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1. Introduction

In a conceptual exploration of long-run causal order, Hoover (2018) applies the CVAR(1) model
for the processes Xt = (x1t, . . . , xpt)′ and Tt = (T1t, . . . , Tmt)′, to model a causal graph. The process
(X′

t; T′
t )

′ is a solution to the equations

ΔXt+1 = MXt + CTt + εt+1,
ΔTt+1 = ηt+1,

(1)

where the error terms εt are independent identically distributed (i.i.d.) Gaussian variables with mean
0 and variance Ωε = diag(ω11, . . . , ωpp) > 0, and are independent of the errors ηt, which are (i.i.d.)
Gaussian with mean 0 and variance Ωη .

Thus, the stochastic trends, Tt are nonstationary random walks and conditions will be given
below for Xt to be I(1), that is, nonstationary, but ΔXt stationary. This will imply that MXt + CTt is
stationary, so that Xt and Tt cointegrate.

The entry Mij 	= 0 means that xj causes xi, which is written xj → xi, and Cij 	= 0 means that
Tj → xi, and it is further assumed that Mii 	= 0. Note that the model assumes that there are no causal
links from Xt to Tt, so that Tt is strongly exogenous.

A simple example for three variables, x1, x2, x3, and a trend T, is the graph

T → x1 → x2 → x3,

where the matrices are given by

M =

⎛⎜⎝ ∗ 0 0
∗ ∗ 0
0 ∗ ∗

⎞⎟⎠ , C =

⎛⎜⎝ ∗
0
0

⎞⎟⎠
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where ∗ indicates a nonzero coefficient.
Provided that Ip + M has all eigenvalues in the open unit disk, it is seen that

MXt+1 + CTt+1 = (Ip + M)(MXt + CTt) + Mεt+1 + Cηt+1,

determines a stationary process defined for all t. We define a nonstationary solution to (1) for
t = 0, 1, . . . by

Xt = −M−1C
t

∑
i=1

ηi + M−1
∞

∑
i=0

(Ip + M)i(Mεt−i + Cηt−i) and Tt =
t

∑
i=1

ηi. (2)

Note that the starting values are

X0 = M−1
∞

∑
i=0

(Ip + M)i(Mε−i + Cη−i) and T0 = 0.

It is seen that ΔXt+1, ΔTt+1 and MXt + CTt are stationary processes for all t, and that (X′
t; T ′

t )
′ is

a solution to Equation (1). In the following, we assume that (X′
t; T′

t )
′ is defined by (2) for t = 0, 1, . . .

The paper by Hoover gives a detailed and general discussion of the problems of recovering
causal structures from nonstationary observations Xt, or subsets of Xt, when Tt is unobserved, that is,
Xt = (X′

1t; X′
2t)

′ where the observations X1t are p1-dimensional and the unobserved processes X2t and
Tt are p2- and m-dimensional respectively, p = p1 + p2. It is assumed that there are at least as many
observations as trends, that is p1 ≥ m.

Model (1) is therefore rewritten as

ΔX1,t+1 = M11X1t + M12X2t + C1Tt + ε1,t+1,
ΔX2,t+1 = M21X1t + M22X2t + C2Tt + ε2,t+1,
ΔTt+1 = ηt+1.

(3)

Note that there is now a causal link from the observed process X1t to the unobserved process X2t if
M21 	= 0.

It follows from (3) that X1t is I(1) and cointegrated with p1 − m cointegrating vectors β,
see Theorem 1. Therefore, ΔX1t has an infinite order autoregressive representation, see (Johansen and
Juselius 2014, Lemma 2), which is written as

ΔX1,t+1 = αβ′X1t +
∞

∑
i=1

ΓiΔX1,t+1−i + ν
β
t+1, (4)

where the operator norm ||Γi|| = λ1/2
max(Γ′

iΓi) is O(ρi) for some 0 < ρ < 1. The matrices α and β are

p1 × m of rank m, and ν
β
t+1 = ΔX1,t+1 − E(ΔX1,t+1|F β

t ), where F β
t = σ(ΔX1s, s ≤ t, β′X1t). Thus, X1t

is not measurable with respect to F β
t , but β′X1t is measurable with respect to F β

t . Here, the prediction
errors ν

β
t+1 are i.i.d. Np1(0, Σ), where Σ is calculated below. The representation of X1t, similar to (2), is

X1t = β⊥(α
′
⊥Γβ⊥)

−1α′
⊥

t

∑
i=1

ν
β
i +

∞

∑
i=0

Ciν
β
t−i, t = 0, 1, . . . (5)

where Γ = Ip1 − ∑∞
i=1 Γi and ||Ci|| = O(ρi). Here, β⊥ is a p1 × (p1 − m) matrix of full rank for which

β′β⊥ = 0, and similarly for α⊥. This shows that X1t is a cointegrated I(1) process, that is, X1t is
nonstationary, while β′X1t and ΔX1t are stationary.

A statistical analysis, including estimation of α, β, and Γ, can be conducted for the observations
X1t, t = 1, . . . T, using an approximating finite order CVAR, see Saikkonen (1992) and Saikkonen and
Lütkepohl (1996).
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Hoover (2018) investigates, in particular, whether weak exogeneity for β in the approximating
finite order CVAR, that is, a zero row in α, is a useful tool for finding the causal structure in the graph.

The present note solves the problem of finding expressions for the parameters α and β in the
CVAR(∞) model (4) for the observation X1t, as functions of the parameters in model (3), and finds
conditions on these for the presence of a zero row in α, and hence weak exogeneity for β in the
approximating finite order CVAR.

2. The Assumptions and Main Results

First, some definitions and assumptions are given, then the main results on α and β are presented
and proved in Theorems 1 and 2. These results rely on Theorem A1 on the solution of an algebraic
Riccati equation, which is given and proved in the Appendix A.

In the following, a k × k matrix is called stable, if all eigenvalues are contained in the open unit
disk. If A is a k1 × k2 matrix of rank k ≤ min(k1, k2), an orthogonal complement, A⊥, is defined as a
k1 × (k1 − k) matrix of rank k1 − k for which A′

⊥A = 0. If k1 = k, A⊥ = 0. Note that A⊥ is only defined
up to multiplication from the right by a (k1 − k)× (k1 − k) matrix of full rank. Throughout, Et(.) and
Vart(.) denote conditional expectation and variance given the sigma-field F0,t = σ{X1,s, 0 ≤ s ≤ t},
generated by the observations.

Assumption 1. In Equation (3), it is assumed that
(i) ε1t, ε2t, and ηt are mutually independent and i.i.d. Gaussian with mean zero and variances Ω1, Ω2,

and Ωη , where Ω1 and Ω2 are diagonal matrices,
(ii) Ip1 + M11, Ip2 + M22 and Ip + M are stable,
(iii) C1.2 = C1 − M12M−1

22 C2 has full rank m.
Let (X′

1t; X′
2t; T′

t )
′, 0 = 1, . . . , n, be the solution to (3) given in (2), such that ΔXt and MXt + CTt

are stationary.

Assumption 1(ii) on M11, M22 and M is taken from Hoover (2018) to ensure that, for instance, the
process Xt given by the equations Xt = (Ip + M)Xt−1 + input, is stationary if the input is stationary,
such that the nonstationarity of Xt in model (3) is created by the trends Tt, and not by the own dynamics
of Xt as given by M. It follows from this assumption that M is nonsingular, because Ip + M is stable,
and similarly for M11 and M22. Moreover M11.2 = M11 − M12M−1

22 M21 is nonsingular because

det M = det M22 det M11.2 	= 0.

The Main Results

The first result on β is a simple consequence of model (3).

Theorem 1. Assumption 1 implies that the cointegrating rank is r = p1 − m, and that the coefficients β and
β⊥ in the CVAR(∞) representation for X1t, see (4), are given for p1 > m as

β⊥ = M−1
11.2C1.2 and β = M′

11.2(C1.2)⊥. (6)

For p1 = m, β⊥ has rank p1, and there is no cointegration: α = β = 0.

Proof of Theorem of 1. From the model Equation (3), it follows, by eliminating X2t from the first two
equations, that

ΔX1,t+1 − M12M−1
22 ΔX2,t+1 = M11.2X1t + C1.2Tt + ε1t+1 − M12M−1

22 ε2,t+1.
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Solving for the nonstationary terms gives

M11.2X1t + C1.2Tt = ΔX1,t+1 − M12M−1
22 ΔX2,t+1 − ε1t+1, + M12M−1

22 ε2,t+1. (7)

Multiplying by β′M−1
11.2, it is seen that β′X1t is stationary, if β′M−1

11.2C1.2 = 0. By Assumption 1(i),
C1.2 has rank m, so that β has rank p1 − m, which proves (6).

The result for α is more involved and is given in Theorem 2. The proof is a further analysis
of (7) and involves first, the representation X1t in terms of a sum of prediction errors ν

β
t = ΔX1t −

E(ΔX1t|F β
t−1), see (5), and second, a representation of E(Tt|F0,t) = E(Tt|X10, . . . , X1t) as the (weighted)

sum of the prediction errors ν0t = ΔX1t − E(ΔX1t|F0,t−1). The second representation requires a result
from control theory on the solution of an algebraic Riccati equation, together with some results based
on the Kalman filter for the calculation of the conditional mean and variance of the unobserved
processes X2t, Tt given the observations X0s, 0 ≤ s ≤ t. These are collected as Theorem A1 in the
Appendix A.

For the discussion of these results, it is useful to reformulate (3) by defining the unobserved
variables and errors

T∗
t =

(
X2t
Tt

)
, η∗

t =

(
ε2t
ηt

)
, Ω∗ = Var(η∗

t ) =

(
Ω2 0
0 Ωη

)
(8)

and the matrices

Q∗ =

(
Ip2 + M22 C2

0 Im

)
, M∗

21 =

(
M21

0

)
, C∗ = (M12; C1). (9)

Then, (3) becomes

X1,t+1 = (Ip1 + M11)X1t + C∗T∗
t + ε1,t+1,

T∗
t+1 = M∗

21X1t + Q∗T∗
t + η∗

t+1.
(10)

One can then show, see Theorem A1, that based on properties of the Gaussian distribution,
a recursion can be found for the calculation of Vt = Vart(T∗

t ) and Et = Et(T∗
t ) = Et(T∗

t |F0t) and
Vt = Vart(T∗

t ) = Vart(T∗
t |F0t), using the matrices in (8) and (9), by the equations Some

Vt+1 = Q∗VtQ∗′ + Ω∗ − Q∗VtC∗′(C∗VtC∗′ + Ω1)
−1C∗VtQ∗′, (11)

Et+1 = M∗
21X1t + Q∗Et + Q∗VtC∗′(C∗VtC∗′ + Ω1)

−1ν0t+1. (12)

It then follows from results from control theory, that V = limt→∞ Vart(T∗
t ) exists and satisfies the

algebraic Riccati equation

V = Q∗VQ∗′ + Ω∗ − Q∗VC∗′(C∗VC∗′ + Ω1)
−1C∗VQ∗′. (13)

Moreover, the prediction errors ν0t = ΔX1t − E(ΔX1t|F0,t−1) are independent Np1(0, Σt) for

Σt = C∗VtC∗′ + Ω1, and the prediction errors ν
β
t = ΔX1t − E(ΔX1t|F β

t−1) are independent identically
distributed Np1(0, Σ) for Σ = C∗VC∗′ + Ω1. Finally, Et(Tt) has the representation in the prediction
errors, ν0i,

Et(Tt) = E0(T0) + (0; Im)
t

∑
i=1

ViC∗′Σ−1
i ν0i, (14)

where E0(T0) = E(T0|X10) = 0.
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Comparing the representation (5) for X1t and (14) for Et(Tt) gives a more precise relation between
the coefficients of the nonstationary terms in (7). The main result of the paper is to show how this
leads to expressions for the coefficients α and α⊥ as functions of the parameters in model (3).

Theorem 2. Assumption 1 implies, that the coefficients α and α⊥ in the CVAR(∞) representation of X1t are
given for p1 > m as

α⊥ = Σ−1(M12V2T + C1VTT), α = Σ(M12V2T + C1VTT)⊥, (15)

where

Σ = Var(νβ
t ) = C∗VC∗′ + Ω1 = (M12; C1)

(
V22 V2T
VT2 VTT

)
(M12; C1)

′ + Ω1. (16)

Proof of Theorem 2. The left hand side of (7) has two nonstationary terms. The observation X1t is
represented in (5) in terms of a random walk in the prediction errors ν

β
i , plus a stationary term, and Tt

is a random walk in ηi. Calculating the conditional expectation given the sigma-field F0,t, Tt is replaced
by Et(Tt), which in (14) is represented as a weighted sum of ν0i. Thus, the conditional expectation of
(7) gives

M11.2X1t + C1.2Et(Tt) = Et(ΔX1t+1 − M12M−1
22 ΔX2,t+1), (17)

where the right hand side is bounded in mean:

E|Et(ΔX1,t+1 − M12M−1
22 ΔX2,t+1)| ≤ c{E|ΔX1,t+1|+ |ΔX2,t+1|} ≤ c.

Setting t = [nu] and dividing by n1/2, it follows from (5) that

n−1/2X1[nu]
D→ β⊥(α

′
⊥Γβ⊥)

−1α′
⊥Wν(u), (18)

where Wν(u) is the Brownian motion generated by the i.i.d. prediction errors ν
β
t .

From (14), it can be proved that

n−1/2E[nu](T[nu]) = (0; Im)n−1/2
[nu]

∑
t=1

VtC∗′Σ−1
t ν0t

D→ (0; Im)VC∗′Σ−1Wν(u). (19)

This follows by replacing Vt, Σt by V, Σ, because for δ′
t = VtC∗′Σ−1

t − VC∗′Σ−1 → 0, it holds that

Var(n−1/2
[nu]

∑
t=1

δ′
tν0t) = n−1

[nu]

∑
t=1

δ′
tΣtδt → 0, n → ∞.

Next we can replace ν0t by ν
β
t as follows: For t = 0, 1, . . . the sum

αβ′X1t +
t

∑
i=1

ΓiΔX1,t+1−i = αβ′X1t + Γ1ΔX1t + · · ·+ ΓtΔX11,

is measurable with respect to both F β
t and F0t, such that

ν0,t+1 − ν
β
t+1 = −E(

∞

∑
i=t+1

ΓiΔX1,t+1−i|F0,t) +
∞

∑
i=t+1

ΓiΔX1,t+1−i.

Then

E|ν0,t+1 − ν
β
t+1| ≤ c

∞

∑
i=t+1

ρiE|ΔX1,t+1−i| = O(ρt),
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and therefore

E|n−1/2
[nu]

∑
i=1

(ν
β
t+1 − ν0,t+1)| ≤ n−1/2

[nu]

∑
i=1

E|νβ
t+1 − ν0,t+1| ≤ cn−1/2

[nu]

∑
i=1

ρi → 0, n → ∞,

which proves (19).
Finally, setting t = [nu] and normalizing (17) by n−1/2, it follows that in the limit

M11.2β⊥(α
′
⊥Γβ⊥)

−1α′
⊥Wν(u) + C1.2(0; Im)VC∗′Σ−1Wν(u) = 0 for u ∈ [0, 1].

This relation shows that the coefficient to Wν(u) is zero, so that α⊥ can be chosen as

α⊥ = Σ−1C∗V(0; Im)
′ = Σ−1(M12V2T + C1VTT)

and therefore α = Σ(M12V2T + C1VTT)⊥ which proves (15).

3. Two Examples of Simplifying Assumptions

It follows from Theorem 2 that in order to investigate a zero row in α, the matrix V is needed.
This is easy to calculate from the recursion (11), for a given value of the parameters, but the properties
of V are more difficult to evaluate. In general, α does not contain a zero row, but if M12V2T = 0,
the expressions for α and α⊥ simplify, so that simple conditions on M12 and C1 imply a zero row in
α and hence give weak exogeneity in the statistical analysis of the approximating finite order CVAR.
This extra condition, M12V2T = 0, implies that

Σ = (M12; C1)V(M12; C1)
′ + Ω1 = M12V22M′

12 + C1VTTC′
1 + Ω1,

and
(M12V2T + C1VTT)⊥ = (C1VTT)⊥ = C1⊥,

such that α simplifies to

α = (M12V22M′
12 + C1VTTC′

1 + Ω1)C1⊥ = (M12V22M′
12 + Ω1)C1⊥.

Thus, a condition for a zero row in α is

e′iα = e′i M12V22M′
12C1⊥ + ωie′iC1⊥ = 0 (20)

because Ω1 = diag(ω1, . . . , ωp1). This is simple to check by inspecting the matrices M12 and C1⊥ in
model (3). In the next section, two cases are given, where such a simple solution is available.

Case 1 (M12 = 0). If the unobserved process X2t does not cause the observation X1t, then M12 = 0. Therefore,
M12V2T = 0 and from (20) it follows that

e′iα = ωie′iC1⊥ = 0.

Thus, α has a zero row if C1⊥ has a zero row.
An example of M12 = 0 is the chain T → x1 → x2 → x3, where X1 = {x1, x2, x3} is observed and

X2 = 0, and hence M12 = 0 and C2 = 0. Then, because T → x1

C1 =

⎛⎜⎝ ∗
0
0

⎞⎟⎠ , C1⊥ =

⎛⎜⎝ 0 0
1 0
0 1

⎞⎟⎠ .
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Thus, the first row of C1⊥ is a zero row, such that x1 is weakly exogenous.

To formulate the next case, a definition of strong orthogonality of two matrices is introduced.

Definition 1. Let A be a k × k1 matrix and B a k × k2 matrix. Then, A and B are called strongly orthogonal if
A′DB = 0 for all diagonal matrices D, or equivalently if AjiBj� = 0 for all i, j, �.

Thus, if Aji 	= 0, we assume that row j of B is zero, and if Bj� 	= 0, row j of A is zero. A simple
example is

A =

⎛⎜⎝ ∗ ∗
0 ∗
0 0

⎞⎟⎠ , B =

⎛⎜⎝ 0
0
∗

⎞⎟⎠ .

Thus, the definition means that if two matrices are strongly orthogonal, it is due to the positions
of the zeros and not to linear combination of nonzero numbers being zero.

Thus, in particular if M12 and C1 are strongly orthogonal, and if T causes a variable in X1, then
X2 does not cause that variable. The expression for V simplifies in the following case.

Lemma 1. If C2 = 0, and M′
12Ω−1

1 C1 = 0, then Q∗ = blockdiag(Ip2 + M22; Im), and V2T = 0 such that
V = blockdiag(V22; VTT).

Proof of Lemma 1. We first prove that Vt is blockdiagonal for t = 0. From (2), it follows that(
X10

X20

)
= M−1

∞

∑
i=0

(Ip + M)i(Mε−i + Cη−i) and T0 = 0.

Thus, if Φ denotes the variance of (X′
10; X′

20)
′, then

V0 = Var

((
X20

T0

)
|X10

)
=

(
Φ22.1 0

0 0

)
,

and hence blockdiagonal. Assume, therefore, that Vt =blockdiag(Vt22; VtTT) and consider the
expression for Vt+1, see (11). In this expression, Q∗ is block diagonal (because C2 = 0) and Q∗VtQ∗′

and Ω∗ are block diagonal, and the same holds for Q∗V1/2
t . Thus, it is enough to show that

V1/2
t C∗′{C∗VtC∗′ + Ω1}−1C∗V1/2

t ,

is block diagonal. To simplify the notation, define the normalized matrices

M̌ = Ω−1/2
1 M12V1/2

t22 and Č = Ω−1/2
1 C1V1/2

tTT .

Then, by assumption,
M̌′Č = V1/2

t22 M′
12Ω−1

1 C1V1/2
tTT = 0,

so that, using Vt2T = 0,

V1/2
t C∗′(C∗VtC∗′ + Ω1)

−1C∗V1/2
t = (M̌, Č)′(M̌M̌′ + ČČ′ + Ip1)

−1(M̌, Č).

A direct calculation shows that

(M̌M̌′ + ČČ′ + Ip1)
−1 = Ip1 − M̌(Ip2 + M̌′M̌)−1M̌′ − Č(Ip2 + Č′Č)−1Č′,

and that
M̌′{Ip1 − M̌(Ip2 + M̌′M̌)−1M̌′ − Č(Ip2 + Č′Č)−1Č′}Č = 0
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such that (M̌, Č)′(M̌M̌′ + ČČ′ + Ip1)
−1(M̌, Č) is block diagonal.

Then, V1/2
t C∗′{C∗VtC∗′ + Ω1}−1C∗V1/2

t and hence Vt+1 are block diagonal. Taking the limit for
t → ∞, it is seen that also V is block diagonal.

Case 2 (C2 = 0, and M12 and C1 are strongly orthogonal). Because C2 = 0 and M′
21Ω−1

1 C1 = 0, Lemma 1
shows that V2T = 0, so that the condition M12V2T = 0 and (20) hold. Moreover, strong orthogonality also
implies that M′

12C1 = 0 such that M12 = C1⊥ξ for some ξ. Hence

e′iα = e′i M12V22M′
12C1⊥ + ωie′iC1⊥ = e′iC1⊥(ξV22M′

12C1⊥ + ωi Ip1−m), (21)

and therefore, a zero row in C1⊥ gives a zero row in α.
Consider again the chain T → x1 → x2 → x3, but assume now that x2 is not observed. Thus, X1 =

{x1, x3} and X2 = {x2}. Here, T causes x1, and x2 causes x3, so that

M12 =

(
0
∗

)
, C1 =

(
∗
0

)
, C2 = 0.

Note that M′
12DC1 = 0 for all diagonal D because T and X2 cause disjoint subsets of X1. This, together

with C2 = 0, implies that V is block diagonal and that (21) holds. Thus, xi is weakly exogenous, e′iα = 0, if

e′iC1⊥ = e′i

(
0
∗

)
= 0.

4. Conclusions

This paper investigates the problem of finding adjustment and cointegrating coefficients for the
infinite order CVAR representation of a partially observed simple CVAR(1) model. The main tools are
some classical results for the solution of the algebraic Riccati equation, and the results are exemplified
by an analysis of CVAR(1) models for causal graphs in two cases where simple conditions for weak
exogeneity are derived in terms of the parameters of the CVAR(1) model.
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Appendix A.

The next Theorem shows how the Kalman filter can be used to calculate Vart(T∗
t ) and Et(T∗

t )

using the same technique as for the common trends model and proves the existence of the limit of Vt.
The last result follows from the theory of the algebraic Riccati equation, see Lancaster and Rodman
(1995), in the following LR(1995).

Theorem A1. Let X1t and T∗
t be given by model (10) and let Assumption 1 be satisfied. Then, Vt = Vart(T∗

t )

and Et = Et(T∗
t ) are given recursively, using the starting values E0 and V0 by

Vt+1 = Q∗VtQ∗′ + Ω∗ − Q∗VtC∗′Σ−1
t C∗VtQ∗′, (A1)

Et+1 = M∗
21X1t + Q∗Et + Q∗VtC∗′Σ−1

t ν0,t+1, (A2)

where
Σt = C∗VtC∗′ + Ω1, (A3)

106



Econometrics 2019, 7, 2

and the prediction errors
ν0,t+1 = X1,t+1 − Et(X1,t+1) (A4)

are independent Np1(0, Σt).
The sequence Vt starting with V0, converges to a finite positive limit V, which satisfies the algebraic

Riccati equation,

V = Q∗VQ∗′ + Ω∗ − Q∗VC∗′Σ−1C∗VQ∗′, Σ = C∗VC∗′ + Ω1. (A5)

Furthermore,
Q∗ − Q∗VC∗′Σ−1C∗ (A6)

is stable, and Et(Tt) satisfies the equation

Et+1(Tt+1) = Et(Tt) + (0; Im)VtC∗′Σ−1
t ν0,t+1. (A7)

Proof of Theorem A1. The variance Vt = Vart(T∗
t ) can be calculated recursively, using the properties

of the Gaussian distribution, as

Vart+1(T∗
t+1) = Vart(T∗

t+1|X1,t+1) (A8)

= Vart(T∗
t+1)− Covt(T∗

t+1; X1,t+1)Vart(X1,t+1)
−1Covt(X1,t+1; T∗

t+1).

From the model Equation (10), it follows that

Vart(T∗
t+1) = Vart{M∗

21X1t + Q∗T∗
t + η∗

t+1} = Q∗Vart(T∗
t )Q

∗′ + Ω∗, (A9)

Covt(T∗
t+1; X1,t+1) = Covt{T∗

t+1; (Ip1 + M11)X1t + C∗T∗
t + ε1t+1} = Q∗Vart(T∗

t )C
∗′, (A10)

Vart(X1,t+1) = Vart{(Ip1 + M11)X1t + C∗T∗
t + ε1t+1} = C∗Vart(T∗

t )C
∗′ + Ω1. (A11)

Then, (A8)–(A11) give the recursion for Vt = Vart(T∗
t ) in (A1). Similarly, for the conditional mean,

it is seen that

Et+1(T∗
t+1) = Et(T∗

t+1|X1,t+1) = Et(T∗
t+1) + Covt(T∗

t+1; X1,t+1)Vart(X1,t+1)
−1ν0,t+1,

Et(T∗
t+1) = M∗

21X1t + Q∗Et(T∗
t ),

which implies (A2) with prediction error ν0,t+1 = ΔX1,t+1 − Et(ΔX1,t+1).
Note that (A1) is the usual recursion from the Kalman filter equations for the state space model

obtained from (10) for M∗
21 = 0, see Durbin and Koopman (2012). Note also, however, that (A2) is not

the usual recursion from the common trends model, because of the first term containing M∗
21. It is seen

from (A1) that if Vt converges to V, then V has to satisfy the algebraic Riccati equation (A5) and Σ is
given as indicated.

The result that Vt converges to a finite positive limit follows from LR (1995, Theorem 17.5.3),
where the assumptions, in the present notation, are

a.1 (Q∗; Ip2+m) is controllable,
a.2 (Q∗; Ip2+m) is stabilizable,
a.3 (C∗; Q∗) is detectable.
Before giving the proof, some definitions from control theory are given, which are needed for

checking the conditions of the results in LR(1995).
Let A be a k × k matrix and B be a k × k1 matrix.
d.1 The pair {A, B} is called controllable if

rank(B; AB; . . . ; Ak−1B) = k,
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LR(1995, (4.1.3)).
d.2 The pair {A; B} is stabilizable if there is a k1 × k matrix K, such that A + BK is stable LR(1995,

page 90, line 5-).
d.3 Finally {B; A} is detectable means that {A′; B′} is stabilizable, LR(1995, page 91 line 6-).
The first assumption, a.1, is easy to check: The pair (Q∗; Ip2+m) is controllable, see d.1, means that

rank(Ip2+m; Q∗ Ip2+m; . . . ; Q∗p2+m−1 Ip2+m) = p2 + m.

The second assumption, a.2, follows because controllability implies stabilizability, see LR (1995,
Theorem 4.4.2).

Finally, d.3 shows that (C∗; Q∗) detectable means (Q∗′; C∗′) stabilizable, and LR(1995, Theorem
4.5.6 (b)), see also Hautus (1969), shows that (Q∗′; C∗′) is stabilizable, if and only if

rank(Q∗′ − λIp2+m; C∗′) = rank

⎛⎜⎝ M12 C1

Ip2 + M22 − λIp2 C2

0 Im − λIm

⎞⎟⎠ = p2 + m for all |λ| ≥ 1.

For λ = 1, using C1.2 = C1 − M12M−1
22 C2 and Assumption 1, it follows that

rank(M(1)) = rank

(
M12 C1

M22 C2

)
= rank

(
0 C1.2

M22 C2

)
= rank(C1.2) + rank(M22) = m + p2.

For |λ| > 1, using Assumption 1(ii), it is seen that

rank(M(λ)) = rank(Ip2 + M22 − λIp2) + rank(Im − λIm) = p2 + m,

because λ is not an eigenvalue of the stable matrix Ip2 + M22, when |λ| > 1.
Thus, (Q∗′; C∗′) is stabilizable, and assumptions a.1, a.2, a.3 hold, such that and LR (1995, Theorem

17.5.3) applies. This proves that limit V = limt→∞ Vt exists and (A6) holds.
Multiplying (A2) by (0; Im), it is seen, using (0; Im)Q∗ = (0; Im), and (0; Im)M∗

21 = 0, that a
recursion for Et(Tt) is given by (A7).
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Abstract: Large-dimensional dynamic factor models and dynamic stochastic general equilibrium
models, both widely used in empirical macroeconomics, deal with singular stochastic vectors,
i.e., vectors of dimension r which are driven by a q-dimensional white noise, with q < r. The present
paper studies cointegration and error correction representations for an I(1) singular stochastic
vector yt. It is easily seen that yt is necessarily cointegrated with cointegrating rank c ≥ r − q.
Our contributions are: (i) we generalize Johansen’s proof of the Granger representation theorem to
I(1) singular vectors under the assumption that yt has rational spectral density; (ii) using recent results
on singular vectors by Anderson and Deistler, we prove that for generic values of the parameters
the autoregressive representation of yt has a finite-degree polynomial. The relationship between the
cointegration of the factors and the cointegration of the observable variables in a large-dimensional
factor model is also discussed.

Keywords: singular stochastic vectors; cointegration for singular vectors; Granger representation
theorem; large-dimensional dynamic factor models)

JEL Classification: C0; C01; E0

1. Introduction

An r-dimensional stochastic vector yt such that yt = A0ut + A1ut−1 + · · · , where the
matrices Aj are r × q and ut is a q-dimensional white noise, with q < r, is said to be
singular. Singular stochastic vectors have been systematically analyzed in a number of papers
starting with (Anderson and Deistler 2008a, 2008b). A motivation for studying the consequences of
singularity, as argued by these authors, is that the factors’ vector in large-dimensional dynamic
factor models (DFM), such as those introduced in Forni et al. (2000); Forni and Lippi (2001),
(Stock and Watson 2002a, 2002b), is typically singular. Singularity is also an important feature of
dynamic stochastic general equilibrium models (DSGE), see e.g., Sargent (1989), Canova (2007),
pp. 230–2. Singularity as it arises in DFMs is presented in some detail below.

DFMs are based on the idea that all the observed variables in an economic system are driven
by a few common (macroeconomic) shocks and by idiosyncratic components which may result from
measurement errors and sectoral or regional shocks. Formally, each variable in the n-dimensional
dataset xit, i = 1, 2, . . . , n, t = 1, 2, . . . , T, is decomposed into the sum of a common component χit,
and an idiosyncratic component εit: xit = χit + εit, where χit and εjs are orthogonal for all i, j, t, s. In the
standard version of the DFM the common components are linear combinations of an r-dimensional
vector of common factors Ft = (F1t F2t · · · Frt)′,

χit = λi1F1t + λi2F2t + · · ·+ λirFrt = λiFt. (1)
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Now suppose that the observable variables xit and the common factors Ft are I(1) and that

(1 − L)Ft = C(L)ut, (2)

where ut is a nonsingular q-dimensional white-noise vector1, the common shocks. A number of papers
analyzing macroeconomic databases find strong empirical support for the assumption that the vector
Ft is singular, i.e., that q < r. See, for US datasets, Giannone et al. (2005); Amengual and Watson
(2007); Forni and Gambetti (2010), Luciani (2015). For a Euro-area dataset, see Barigozzi et al. (2014).

Such results can be easily understood observing that usually the static Equation (1) is just a
convenient representation derived from a “primitive” set of dynamic equations linking the common
components χit to the common shocks ut. As a simple example, suppose that the variables xit are
driven by a common one-dimensional cyclical process ft, such that (1 − αL) ft = ut, where ut is scalar
white noise, and that the variables xit load ft dynamically:

xit = ai0 ft + ai1 ft−1 + εit. (3)

In this case we can set F1t = ft, F2t = ft−1 = F1,t−1, λi1 = ai0, λi2 = ai1, so that
Equations (1) and (2) take the form

xit = λi1F1t + λi2F2t + εit and

(
F1t
F2t

)
=

(
(1 − αL)−1

L(1 − αL)−1

)
ut,

respectively. Here r = 2 and q = 1 so that Ft is singular. For a general analysis of the relationship
between representation (1) and “deeper” dynamic representations like (3), see e.g., Forni et al. (2009);
Stock and Watson (2016).

Now suppose that the factors Ft have been estimated. Obtaining ut and the impulse-response
functions of the variables xit with respect to ut (or structural shocks obtained by a linear transformation
of ut) requires the estimation of a VAR for the singular I(1) vector Ft. On the other hand, the latter
is necessarily cointegrated with cointegration rank c at least equal to r − q (the rank of the spectral
density of (1 − L)Ft does not exceed q at all frequencies and, therefore, at frequency zero).

Singular vectors of factors in an I(1) DFM and I(1) singular vectors in DSGE models provide
strong motivation for studying singular I(1) vectors in a general time-series context. The main
contributions of the paper are:

(I) A generalization of Johansen’s proof of the Granger Representation Theorem (from MA to
AR), this is Proposition 2. Consider an I(1) singular vector yt, with dimension r, rank q < r,
and cointegrating rank c ≥ r − q. Assuming that (1 − L)yt has an ARMA structure, S(L)(1 −
L)yt = B(L)ut and that some simple additional conditions hold, yt has a representation as a
vector error correction mechanism (VECM) with c error correction terms:

A(L)yt = A∗(L)(1 − L)yt + α(β′yt−1 − w) = B(0)ut, (4)

where α and β are both r × c and full rank, β′yt − w is I(0), A(L) and A∗(L) are r × r rational
matrices in L. Under the additional assumption that unity is the only zero of B(L), i.e., if z 	= 1
then B(z) is full rank, A(L) and A∗(L) are finite-degree matrix polynomials.

(II) Assuming that the parameters of S(L) and B(L) may vary in an open subset of Rλ, see Section 3.2
for the definition of λ, in Proposition 3 we show that all the assumptions used to obtain (4),
and also the assumption that unity is the only possible zero of B(L), hold for generic values of

1 Usually orthonormality is assumed. This is convenient but not necessary in the present paper.
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the parameters. This implies that the matrices A(L) and A∗(L) are generically of finite degree,
which is obviously not the case for nonsingular vectors.2

The paper is organized as follows. Section 2 is preliminary. We firstly recall recent results
for stationary singular stochastic vectors with rational spectral density, see (Anderson and Deistler
2008a, 2008b). Secondly, we discuss cointegration and the cointegrating rank for I(1) singular
stochastic vectors.

In Section 3 we prove our main results. We also obtain the permanent-transitory shock
representation in the singular case: yt is driven by r − c permanent shocks, i.e., r minus the cointegrating
rank, the usual result. However, the number of transitory shocks is c − (r − q), not c as in the
nonsingular case.

Section 3 also contains an exercise carried out with simulated singular I(1) vectors. We compare
the results obtained by estimating an unrestricted VAR in the levels and a VECM. Though limited
to a simple example, the results confirm what has been found for nonsingular vectors, that under
cointegration the long-run features of impulse-response functions are better estimated using a VECM
rather than an unrestricted VAR in the levels (Phillips 1998).

In Section 4 we analyse cointegration of the observable variables xit in a DFM. Our results on
cointegration of the singular vector Ft have the implication that p-dimensional subvectors of the
n-dimensional common-component vector χt, with p > r − c, are cointegrated. As a consequence,
stationarity of the idiosyncratic components would imply that all p-dimensional subvectors of the
n-dimensional dataset xt are cointegrated if p > r − c. For example, if q = 3 and d = 1, then all
3-dimensional subvectors in the dataset are cointegrated, a kind of regularity that we do not observe
in actual large macroeconomic datasets. This suggests that an estimation strategy robust to the
assumption that the idiosyncratic components can be I(1) has to be preferred (for this aspect we refer
to Barigozzi et al. 2019). Section 5 concludes. Some proofs, a discussion of some non-uniqueness
problems arising with singularity and details on the simulations are collected in the Appendix.

2. Stationary and I(1) Singular Vectors

2.1. Stationary Singular Vectors

As in this paper we only consider representation issues it is convenient to assume that all stochastic
processes are defined for t ∈ Z. Accordingly, the lag operator L is defined as Lyt = yt−1 for t ∈ Z

(Bauer and Wagner (2012) also study I(1) and cointegrated processes for t ∈ Z).
We start by introducing results on singular vectors with an ARMA structure from (Anderson and

Deistler 2008a, 2008b). Some preliminary definitions are needed.

Definition 1. (Zeros and Poles)

(A) When considering matrices V(z) whose entries are rational functions of z ∈ C we always assume that
numerator and denominator of each entry have no common roots. If V(z) is an r × q matrix of rational functions,
we say that z∗ is a pole of V(z) if it is a pole of some entry of V(z).
(B) Suppose that V(z) is an r × q matrix whose entries are polynomial functions of z ∈ C, with q ≤ r.
We say that z∗ ∈ C is a zero of V(z) if rank(V(z∗)) < q, and that V(z) is zeroless if it has no zeros,
i.e., rank(V(z)) = q for all z ∈ C.

2 To our knowledge, the present paper is the first to study cointegration and error correction representations for I(1) singular
vectors, the factors of I(1) dynamic factor models in particular. An error correction model in the DFM framework is
studied in (Banerjee et al. 2014, 2017). However, their focus is on the relationship between the observable variables and
the factors. Their error correction term is a linear combination of the variables xit and the factors Ft, which is stationary
if the idiosyncratic components are stationary (so that the x’s and the factors are cointegrated). Because of this and other
differences their results are not directly comparable to those in the present paper.
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With a minor abuse of language, we may speak of zeros and poles of the corresponding matrix
V(L). When a r × r polynomial matrix S(L) has all its zeros outside the unit circle we say that S(L)
is stable.

All the stationary vector processes considered have an ARMA structure. Precisely,
the r-dimensional process yt has an ARMA structure with rank q, q ≤ r, if there exist

(i) a non-singular q-dimensional white-noise process ut,
(ii) an r × r stable polynomial matrix S(z), with S(0) = Ir,
(iii) an r × q matrix B(z) whose rank is q for all z with the exception of a finite subset of C, such that

yt = V(L)ut, (5)

where V(L) = S(L)−1B(L).

Suppose that yt has also the representation yt = S̃(L)−1B̃(L)ũt, where ũt is a q̃-dimensional
nonsingular white noise. Denoting by Σy(θ) the spectral density of yt,

Σy(θ) = (2π)−1V(e−iθ)ΣuV′(eiθ),

so that the rank of Σy(θ) is q for all θ, with the exception of a finite subset of [−π, π]. As the spectral
density is independent of the ARMA representation, q = q̃ and B̃(z) has rank q except for a finite
subset of C.

Remark 1. Let us recall that the equation

S(L)ζt = B(L)ut,

in the unknown vector process ζt, where S(L) is stable, has only one stationary solution, and this is yt =

S(L)−1B(L)ut. Thus the ARMA process yt can also be defined as the stationary solution of S(L)ζt = B(L)ut.

Definition 2. (Genericity) Suppose that a statement Q depends on p ∈ A, where A is an open subset of Rλ.
We say that Q holds generically in A, or that Q holds for generic values of p ∈ A, if the subset N of A where it
does not hold is nowhere dense in A, i.e., the closure of N in A has no internal points.

For example, assuming that p ∈ A = R, the statement “The roots of the polynomial x2 + px + 1
are distinct” holds generically in A.

Definition 3. (Rational reduced-rank family of filters) Assume that r > q and let G be a set of ordered
couples (S(L), B(L)), where:

(i) B(L) is an r × q polynomial matrix of degree s1 ≥ 0.
(ii) S(L) is an r × r polynomial matrix of degree s2 ≥ 0. S(0) = Ir.
(iii) Denoting by p the vector containing the λ = rq(s1 + 1) + r2s2 coefficients of the entries of B(L) and

S(L), we assume that p ∈ Π, where Π is an open subset of Rλ such that for p ∈ Π, (1) S(z) is stable,
(2) rank(B(z)) = q with the exception of a finite subset of C.

We say that G is a rational reduced-rank family of filters with parameter set Π.

The notation Sp(L), Bp(L), though more rigorous, would be heavy and not really necessary.
We use it only in Appendix A.1.

Proposition 1. Assume that r > q.

(I) Suppose that V(L) is an r × q matrix polynomial in L. If V(z) is zeroless then V(L) has an r × r
finite-degree stable left inverse, i.e., there exists a finite-degree polynomial r × r matrix W(L) such that:
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(a) W(0) = Ir, (b) det(W(z)) = 0 implies |z| > 1, (c) W(L)V(L) = V(0). Let yt be the stationary
solution of S(L)ζt = B(L)ut and suppose that B(L) is zeroless. Then yt has a finite vector autoregressive
representation (VAR) A(L)yt = B(0)ut, where A(L) = N(L)S(L) and N(L) is a finite-degree left
inverse of B(L).

(II) Assume that yt is the stationary solution of S(L)ζt = B(L)ut, where (S(L), B(L)) belongs to a rational
reduced-rank family of filters with parameter set Π. For generic values of the parameters in Π, B(L) is
zeroless so that yt has a finite VAR representation.

For statement (I) see Anderson and Deistler (2008a), Theorem 3. Statement (II) is a modified
version of their Theorem 2, see for a proof Forni et al. (2009), p. 1327.

2.2. Fundamentalness

Assume that the r-dimensional vector yt has an ARMA structure, rank q and the moving average
representation (5). If rank(B(z)) = q for |z| < 1, then ut belongs to the space spanned by yt−k,
with k ≥ 0, and representation (5), as well as ut, is called fundamental (for these definitions and results
see e.g., Rozanov (1967), pp. 43–7). Note that if (5) is fundamental rank(B(0)) = q. Note also that
when q = r, the condition that rank(B(z)) = q for |z| < 1 becomes det(B(z)) 	= 0 for |z| < 1.

Remark 2. Note that in Proposition 1, part (II), we do not assume that ut is fundamental for yt. However,
Proposition 1, (II), states that for generic values of p ∈ Π the matrix B(L) is zeroless and therefore ut is
fundamental for yt.

2.3. I(1) Singular Vectors

To analyze cointegration and the autoregressive representations of singular non-stationary vectors
let us first recall the definitions of I(0), I(1) and cointegrated vectors. This requires some preliminary
definitions and results.

We denote by L2(Ω, F , P) the space of the square-integrable functions on the probability space
(Ω, F , P). Let zt = (z1t z2t · · · zrt)′, zht ∈ L2(Ω, F , P), be an r-dimensional stochastic process and
consider the difference equation

(1 − L)ζt = zt, (6)

in the unknown r-dimensional process ζζζt. A solution of (6) is

ψ̃t =

⎧⎪⎪⎨⎪⎪⎩
z1 + z2 + · · ·+ zt, for t > 0

0, for t = 0

−(z0 + z−1 · · ·+ zt+1), for t < 0,

see e.g., Gregoir (1999), p. 439, Franchi and Paruolo (2019). All the solutions of (6) are ψt = ψ̃t + φt,
where φt = (φ1t φ2t · · · φrt)′, φht ∈ L2(Ω, F , P), is a solution of the homogeneous equation (1− L)ζt =

0, so that φt = K, for some r-dimensional stochastic vector K, for all t ∈ Z. We say that the process
φt = K is a constant stochastic process. Obviously a constant stochastic process φt = K is weakly
stationary. Its spectral measure has the jump ΣK at frequency zero. Thus φt has a spectral density (has
an absolutely continuous spectral measure) if and only if ΣK = 0, i.e., if and only if φt(ω) = k, where
k ∈ Rr, for ω almost everywhere in Ω.

Definition 4. (I(0), I(1) and Cointegrated vectors)

I(0). An r-dimensional ARMA yt with spectral density Σy(θ) is I(0) if Σy(0) 	= 0.
I(1). The r-dimensional vector stochastic process yt is I(1) if it is a solution (1 − L)ζt = zt where zt is an
r-dimensional I(0) process. The rank of yt is defined as the rank of zt.
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Cointegration. Assume that the r-dimensional stochastic vector yt is I(1) and denote by ΣΔy(θ) the
spectral density of (1 − L)yt. The vector yt is cointegrated with cointegrating rank c, with 0 < c < r,
if rank(ΣΣΣΔy(0)) = r − c.

If q is the rank of yt and r ≥ q, then c = r − q + d, where q > d > 0. Thus in the singular case,
r > q, yt is necessarily cointegrated with cointegrating rank at least equal to r − q.

If yt is I(1) and cointegrated with cointegrating rank c, there exist c linearly independent r × 1
vectors cj, j = 1, . . . , c, such that the spectral density of c′

j(1 − L)yt vanishes at frequency zero.
The vectors cj are called cointegrating vectors and the set cj, j = 1, . . . , c, a complete set of cointegrating
vectors. Of course a complete set of cointegrating vectors cj, j = 1, . . . , c, can be replaced by the set dj,
j = 1, . . . , c, where the vectors dj are c independent linear combinations of the vectors cj.

Lemma 1. (I) Assume that yt has an ARMA structure and has the rational representation (5): yt = V(L)ut.
Then yt is I(0) if and only if V(1) 	= 0.
(II) Assume (1 − L)yt has an ARMA structure and has the rational representation

(1 − L)yt = V(L)ut. (7)

The process yt is I(1) if and only if V(1) 	= 0.
(III) If yt is I(1), cointegrated and has representation (7), the cointegrating rank of yt is c if and only if the rank
of V(1) is r − c. Moreover c is a cointegrating vector for yt if and only if c′V(1) = 0.
(IV) Assume that yt is I(1). c is a cointegrating vector for yt if and only if a scalar stochastic variable
w ∈ L2(Ω, F , P) can be determined such that c′yt − w is stationary with an ARMA structure.

Proof. (I) is an immediate consequence of Σy(0) = (2π)−1V(1)ΓuV(1)′, where Γu is the nonsingular
covariance matrix of ut. (II) and (III) are obtained in the same way from ΣΔy(0) = (2π)−1V(1)ΓuV(1)′.
(IV) The process yt solves (6) with zt = V(L)ut, so that, defining

μt =

⎧⎪⎪⎨⎪⎪⎩
u1 + u2 + · · ·+ ut, for t > 0

0, for t = 0

−(u0 + u−1 · · ·+ ut+1), for t < 0,

(8)

we have

yt = V(L)μt + K =

[
V(1) + (1 − L)

V(L)− V(1)
1 − L

]
μt + K = V(1)μt + V∗(L)ut + K,

where (i) the entries of V∗(L) = (V(L)− V(1))/(1 − L) are rational functions of L with no poles of
modulus less or equal to unity, (ii) K is a constant r-dimensional stochastic process. We have:

c′yt = c′V(1)μt + c′V∗(L)ut + c′K. (9)

If c is a cointegrating vector of yt we have c′V(1) = 0, so that

c′yt = c′V∗(L)ut + c′K.

Setting w = c′K, the process c′yt − w = c′V∗(L)ut has the desired properties. Note that w has the
equivalent definition w = c′y0 − c′V∗(L)u0. Conversely, suppose that w is such that c′yt − w has an
ARMA structure. By (9),

c′yt − w = c′V(1)μt + c′V∗(L)ut + c′K − w,
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so that √
E(c′yt − w)2 +

√
E(c′V∗(L)ut)2 +

√
E(c′K − w)2 ≥

√
c′V(1)Σμt V

′(1)c.

The three terms on the left-hand side are finite and independent of t. As Σμt = |t|Σu and Σu is
positive definite, the right-hand side diverges for |t| → ∞ unless c′V(1) = 0.

Lemma 1 shows that our definitions of I(0) and I(1) processes are equivalent to
Definitions 3.2, and 3.3 in Johansen (1995), p. 35, with two minor differences: (i) our assumption
of rational spectral density, (ii) the time span of the stochastic processes is t = 0, 1, . . . in Johansen’s
book, t ∈ Z in the present paper. Also, under the assumption that (1 − L)yt has an ARMA structure,
our definition of cointegration is equivalent to that in Johansen (1995), p. 37.

3. Representation Theory for Singular I(1) Vectors

In Section 3.1 we prove our generalization to singular vectors of the Granger representation
theorem (from MA to AR). We closely follow the proof in Johansen (1995), Theorem 4.5, p. 55–57.
In Section 3.2 we show that, under a suitable parameterization, the matrix of the autoregressive
representation is generically of finite degree.

3.1. The Granger Representation Theorem (MA to AR)

Suppose that r ≥ q, c > 0 and r > c ≥ r − q. Let B(L) be an r × q polynomial matrix of degree
s1 ≥ 0 and S(L) an r × r polynomial matrix of degree s2 ≥ 0 with S(0) = Ir.

Assumption 1. S(L) is stable.

Assumption 2. If z∗ is a zero of B(z) (i.e. rank(B(z∗)) < q) then either z∗ = 1 or |z∗| > 1.

Assumption 2 implies that the rank of B(0) is q. The next is a stronger version of Assumption 2:

Assumption 3. If z∗ is a zero of B(z) then z∗ = 1.

Assumption 4. rank(B(1)) = r − c.

Under Assumption 1, let yt be a solution of the equation

(1 − L)ζt = S(L)−1B(L)ut. (10)

We have
yt = S(L)−1B(L)μt + K, (11)

where μt is defined in (8) and K is a constant stochastic process. By Assumption 4, S(1)−1B(1) 	= 0,
so that yt is I(1) with cointegrating rank c, see Lemma 1, (II) and (III).

Consider the finite Taylor expansion of B(z) around z = 1:

B(z) = B(1)− (1 − z)B′(1) + (1 − z)2B′′(1) + · · · .

Assumption 4 implies that
B(1) = ξη′,

where ξξξ is r × (r − c) of rank r − c, η is q × (r − c) of rank r − c, see Lancaster and Tismenetsky (1985,
p. 97, Proposition 3). The Taylor expansion above can be rewritten as

B(z) = ξηηη′ + (1 − z)B∗ + (1 − z)2E(z), (12)
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where B∗ = −B′(1) and E(z) is a polynomial matrix.
Let ξξξ⊥ be an r × c matrix whose columns are orthogonal to all columns of ξ: (i) the columns of

ξ⊥ are a complete set of cointegrating vectors for B(L)ut, (ii) the columns of the matrix S′(1)ξ⊥ are a
complete set of cointegrating vectors for yt. Regarding (i), using (11) and (12), we have

ξ′
⊥S(L)yt = ξ′

⊥B(L)μt + ξ′
⊥S(1)K = (ξ′

⊥B∗ + (1 − L)ξ′
⊥E(L))ut + ξ′

⊥S(1)K, (13)

so that ξ′
⊥S(L)yt − ξ′

⊥S(1)K has an ARMA structure. Regarding (ii), see the proof of Proposition 2.

Assumption 5. rank

[(
ξξξ ′
⊥B∗

ηηη′

)]
= rank

[(
ξξξ ′
⊥B∗

ξξξ ′ξξξηηη′

)]
= q.

Define S∗(L) = S(L)− S(1)
1 − L .

Assumption 6. ξξξ ′
⊥(B

∗ − S∗(1)S(1)−1ξη′) 	= 0.

Remark 3. Let yt be a solution of (10) so that (1 − L)yt is stationary and S(L)[(1 − L)yt] = B(L)ut.
Assumption 2, and therefore 3, implies that ut is fundamental for (1 − L)yt, see Section 2.2.

We are now ready for our main representation result.

Proposition 2. (I) Weak form. Suppose that Assumptions 1, 2, 4, 5 and 6 hold and let yt be a solution of the
difference Equation (10), so that yt = S(L)−1B(L)μt + K, with μt defined in (8) and K a constant stochastic
process. Set β = S(1)′ξ⊥. Then a c-dimensional stochastic vector w can be determined such that (i) β′yt − w

is I(0), (ii) yt has the error correction representation

A(L)yt = A∗(L)(1 − L)yt + α(β′yt−1 − w) = B(0)ut, (14)

where A(L) is a rational r × r matrix with no poles in or on the unit circle, A(1) = Ir, A∗(L) = (A(L)−
A(1)L)(1 − L)−1, α is r × c and full rank, αβ′ = A(1).
(II) Strong form. Under Assumptions 1, 3, 4, 5 and 6, statement (I) holds with an r × r stable, finite-degree
matrix polynomial A(L).

Proof. Multiply both sides of (1 − L)S(L)yt = B(L)ut by the r × r invertible matrix Ξ =

(
ξ′
⊥

ξ′

)
.

We obtain

(1 − L)ΞS(L)yt = ΞΞΞB(L)ut

=

{(
0c×q

ξ′ξη′

)
+ (1 − L)

(
ξ′
⊥B∗

ξ′B∗

)
+ (1 − L)2

(
ξ′
⊥E(L)

ξ′E(L)

)}
ut

=

(
(1 − L)Ic 0

0 Ir−c

){(
ξ′
⊥B∗

ξ′ξη′

)
+ (1 − L)

(
ξ′
⊥E(L)
ξ′B∗

)
+ (1 − L)2

(
0c×q

ξ′E(L)

)}
ut.

(15)

Taking the first c rows in (15),

(1 − L)ξ′
⊥S(L)yt = (1 − L)

(
ξ′
⊥B∗ + (1 − L)ξ′

⊥E(L)
)

ut.

This implies that
ξ′
⊥S(L)yt =

(
ξ′
⊥B∗ + (1 − L)ξ′

⊥E(L)
)

ut + w, (16)

116



Econometrics 2020, 8, 3

where w is a c-dimensional constant stochastic vector. Comparing with (13), w = ξ′
⊥S(1)K. On the

other hand,
ξ′
⊥S(1)yt − w = (ξ′

⊥S(L)yt − w)− (ξ′
⊥S(L)yt − ξ′

⊥S(1)yt)

= (ξ′
⊥S(L)yt − w)− ξ′

⊥S∗(L)(1 − L)yt

= (ξ′
⊥S(L)yt − w)− ξ′

⊥S∗(L)S(L)−1B(L)ut

=
{

ξ′
⊥(B

∗ − S∗(1)S(1)−1ξη′) + (1 − L)HHH(L)
}

ut,

(17)

where the last equality has been obtained using (16) and HHH(L) is a suitable polynomial matrix.
Thus β′yt − w = ξ′

⊥S(1)yt − w has an ARMA structure. Moreover, by Assumption 6, β′yt − w

is I(0).
Joining (16) with the last r − c rows of (15),(

Ic 0

0 (1 − L)Ir−c

)
ΞS(L)yt −

(
Ic

0(r−c)×c

)
w = M(L)ut, (18)

where

M(L) =

(
ξ′
⊥B∗

ξ′ξη′

)
+ (1 − L)

(
ξ′
⊥E(L)
ξ′B∗

)
+ (1 − L)2

(
0c×q

ξ′E(L)

)
. (19)

By (15) and (19),

B(L) = Ξ−1

(
(1 − L)Ic 0

0 Ir−c

)
M(L).3 (20)

By Assumption 5, M(z) has no zero at z = 1, see (19). On the other hand, (i) if z∗ is a zero of
M(z) then z∗ is a zero of B(z), (ii) if z∗ is a zero of B(z), z∗ 	= 1, then z∗ is a zero of M(z). Therefore,
Assumption 3 implies that M(z) is zeroless and viceversa. Under Assumption 2, the zeros of M(z) lie
outside the unit circle. In order to conclude the proof we need inverting M(L) in (18).
(I) Under Assumption 3, Proposition 1, part (I), states that there exists an r × r stable, finite-degree
polynomial matrix N(L) = Ir + N1L + · · · + NpLp, for some p, such that: (i) N(0) = Ir,
(ii) N(L)M(L) = M(0).
(II) Under Assumption 2, by a standard procedure we remove all the zeros of M(z) which lie outside
the unit circle4, then use Proposition 1, part (I), to left-invert the residual zeroless polynomial,
thus obtaining an r × r rational matrix N(L) such that (i) N(L) has no poles in or on the unit circle
(possible poles of N(L) are the zeros of M(L), which lie outside the unit circle), (ii) N(0) = Ir,
(iii) N(L)M(L) = M(0). See also Deistler et al. (2010).

Defining

A(L) = Ξ−1N(L)

(
Ic 0

0 (1 − L)Ir−c

)
ΞS(L) = Ξ−1N(L)

(
ξ′
⊥

(1 − L)ξ′

)
S(L)

and using M(0) = ΞB(0), we have

A(L)yt − Ξ−1N(1)

(
Ic

0(r−c)×c

)
w = B(0)ut,

3 In the square case, r = q, Assumption 3 holds if and only if M(z) is unimodular.
4 If z∗ is a zero of M(z), multiply M(z) by an invertible r × r matrix Qz∗ such that z∗ is a zero of, say, the first row of Qz∗ M(z).

Then multiply by the r × r diagonal matrix with (z − z∗)−1 in position (1, 1) and unity elsewhere on the main diagonal.
Iterating, all the zeros of M(z) are removed.
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with A(0) = Ir. Defining A∗(L) = (A(L)− A(1)L)(1 − L)−1,

A∗(L)(1 − L)yt + A(1)yt−1 − Ξ−1N(1)

(
Ic

0(r−c)×c

)
w = B(0)ut.

Defining

α = Ξ−1N(1)

(
Ic

0(r−c)×c

)
,

we see that A(1) = αααβ′ and

A∗(L)(1 − L)yt + α(β′yt−1 − w) = B(0)ut.

Some remarks are in order.

Remark 4. (I) Under our assumption of an ARMA structure, Assumption 1 corresponds to Definition 3.1
in Johansen’s book, see p. 34. Assumption 2 is Johansen’s Assumption 1 (see p. 14), adapted for singularity.
Assumption 3 has no counterpart in Johansen’s nonsingular framework. In Section 3.2 we show that under the
parameterization adopted in Definition 5, Assumption 3 holds generically.
(II) Simplifying the model by taking S(L) = Ir, Assumption 5 generalizes to the singular case Johansen’s
assumption that ξ′

⊥C∗ηηη⊥ is full rank (see Theorem 4.5, p. 55; C∗ corresponds to our B∗). For, assuming

that r = q, multiplying the matrix in Assumption 5 by the nonsingular matrix
(

η⊥ ηηη
)

, we obtain that
Assumption 5 holds if and only if ξ′

⊥B∗η⊥ is full rank. Assumption 5 is used in the proof of Proposition 2
to invert the matrix M(L), which remains on the right-hand side after the removal of the unit roots, see
Equation (18), which is the same rôle played by Johansen’s assumption in his proof.
(III) Under S(L) = Ir, assumption 6 simplifies to ξ′

⊥B∗ 	= 0. If d > 0 Assumption 6 is a consequence of
Assumption 5. For, if d > 0 then r − c = q − d < q. On the other hand, r − c is the number of rows of ηηη′,
so that Assumption 5 holds only if Assumption 6 holds. In particular, if r = q and c = d > 0, Assumption 6 is
redundant. However if r > q and d = 0, so that the rank of ηηη′ is q, then Assumption 5 holds even if ξξξ ′

⊥B∗ = 0.
Assumption 6 is necessary in Proposition 2 to prove that the error correction term is I(0), not only stationary.

Remark 5. Uniqueness issues arise with autoregressive representations of singular vectors. For example,
suppose that c = r − q > 0, so that d = 0. Representation (14) has an (r − q)-dimensional error correction
term β′yt − w. On the other hand, in this case B(1) has full rank q, so that Proposition 1 (I) applies and, in spite
of cointegration, yt has an autoregressive representation in differences

D(L)S(L)(1 − L)yt = B(0)ut.

In Appendix B.1 we sketch a proof of the statement that in general, yt has VECM representations with a
number of error correction terms ranging from d to c. However, as we show in Appendix B.2, different
autoregressive representations of yt produce the same impulse-response functions. Both in this and the companion
paper Barigozzi et al. (2019) the number of error correction terms in the error correction representation for
reduced-rank I(1) vectors is always the maximum c. It is worth reporting that, in our experiments with simulated
data, the best results in estimation of singular VECMs are obtained using c as the number of error correction
terms.

Remark 6. Assume for simplicity that S(L) = Ir. From equation (17):

et = β′yt − w = ξ′
⊥yt − w =

{
ξ′
⊥B∗ + (1 − L)HHH(L)

}
ut.
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If r = q, Assumption 5 implies that ξ′
⊥B∗ has rank c, so that no c-dimensional vector d 	= 0 can be determined

such that some of the coordinates of det is stationary but not I(0). Thus, according to the definition introduced
in Franchi and Paruolo (2019), p. 1181, the error term et is a “non-cointegrated I(0) process.” When r > q and
c ≤ q, i.e., r ≤ 2q − d, elementary examples can be produced in which et is an I(0) but not a non-cointegrated
I(0) process (one is given in Appendix A.2). Thus Assumption 6 only implies that et is I(0). Of course,
under c ≤ q, the assumption that ξξξ ′

⊥(B
∗ − S∗(1)S(1)−1ξη′) has rank c, an enhancement of Assumption 6,

implies that et is a non-cointegrated I(0) process. On the other hand, if c > q, i.e., r > 2q − d, et cannot be a
non-cointegrated I(0) process.

3.2. Generically, A(L) Is a Finite-Degree Polynomial

Suppose that the couple (S(L), B(L)) is parameterized as in Definition 3. It easy to see that B(1)
has generically rank q, so that generically the cointegrating rank of yt is r − q. In particular, if r = q
cointegration is non generic.

It is quite easy to see that this paradoxical result only depends on the choice of a parameter set
that is unfit to study cointegration. Our starting point here is that a specific value of c between r − q
and r − 1 has a motivation in economic theory or in statistical inference, and must be therefore built in
the parameter set. Thus in Definition 5 below the family of filters is redefined so that generically the
cointegrating rank is equal to a given c between r − q and r − 1.

Definition 5. (Rational reduced-rank family of filters with cointegrating rank c) Assume that r > q,
c > 0 and r > c ≥ r − q. Let G be a set of couples (S(L), B(L)), where:

(i) The matrix B(L) has the parameterization

B(L) = ξη′ + (1 − L)B∗ + (1 − L)2E(L),

where ξ and η are r × (r − c) and q × (r − c) respectively, B∗ is an r × q matrix and E(L) is an r × q
matrix polynomial of degree s1 ≥ 0.

(ii) S(L) is an r × r polynomial matrix of degree s2 ≥ 0. S(0) = Ir.
(iii) Denoting by p the vector containing the λ = (r − c)(r + q) + rq(s1 + 2) + r2s2 coefficients of the

matrices S(L), ξ, η, B∗ and E(L), we assume that p ∈ Π, where Π is an open subset of Rλ such
that for p ∈ Π: (1) S(z) is stable, (2) rank(B(z)) = q with the exception of a finite subset of C,
(3) rank(B(1)) = rank(ξη′) = r − c.

We say that G is a rational reduced-rank family of filters with cointegrating rank c.

Proposition 3. Assume that r > q. Let yt be a I(1) solution of Equation (10), where (S(L), B(L)) belongs
to a rational reduced-rank family of filters with cointegrating rank c. For generic values of the parameters
in Π, Assumptions 1, 3, 4, 5 and 6 hold. Thus the Strong Form of Proposition 2 holds and yt has an error
correction representation

A(L)yt = A∗(L)(1 − L)yt + α(β′yt−1 − w) = B(0)ut,

where A(L) is a finite-degree polynomial matrix.

Proof. Part (iii) of Definition 5 implies that Assumptions 1 and 4 hold for all p ∈ Π. The sets where
Assumptions 5 and 6 do not hold are the intersections of the open set Π with the algebraic varieties

(a) rank

[(
ξξξ ′
⊥B∗

ηηη′

)]
< q, (b) ξξξ ′

⊥(B
∗ − S∗(1)S(1)−1ξη′) = 0

(the variety described by (a) is obtained by equating to zero the determinant of all the q × q submatrices
of the r × q matrix between brackets). It is easy to see that the varieties (a) and (b) are not trivial,

119



Econometrics 2020, 8, 3

i.e., that their dimension is lower than λ. Thus Assumptions 5 and 6 hold generically. The same
result holds for Assumption 3. The points of Π where it is not fulfilled belong to a lower-dimensional
algebraic variety. This is proved in A.1, see in particular Lemma A4.

Remark 7. It is easy to see that, assuming that c ≤ q, rank(ξξξ ′
⊥(B

∗ − S∗(1)S(1)−1ξη′) = c holds generically
in Π. Thus, in that case, the error term βyt − w is generically a non-cointegrated I(0) process, see Remark 6.

Remark 8. A general comment on genericity results is in order. Theorems like Proposition 3 or Proposition 1,
part (II), show that the subset where some statement does not hold belong to some algebraic variety of lower
dimension (see the proof of Proposition 3 in particular), and is therefore negligible from a topological point of
view. This suggests the working hypothesis that such subset is negligible from an economic or statistical point of
view as well. If, for example, economic theory produces a singular vector yt with cointegrationg rank c, we may
find reasonable to conclude that yt has representation (14) with a finite autoregressive polynomial. However,
a greater degree of certainty is obtained by checking that the parameters of (S(L), B(L)), that are implicit in the
theory, do not necessarily lie in one of the three algebraic varieties described in the proof of Proposition 3.

Definition 5 does not assume that B(L) has no zeros inside the unit circle. Thus we have not
assumed that ut is fundamental for (1 − L)Ft, see Section 2.2. However, Proposition 3 shows that
for generic values of the parameters in Π, the assumptions of Proposition 2, strong form, hold,
Assumption 3 in particular, so that B(L) has no zeros of non-unit modulus and therefore inside the
unit circle. Thus:

Proposition 4. Assume that r > q. Let yt be a solution of Equation (10), where (S(L), B(L)) belongs to a
rational reduced-rank family of filters with cointegrating rank c. For generic values of the parameters in Π, ut is
fundamental for (1 − L)yt.

Remark 9. Note that Propositions 3 and 4 do not hold in the nonsingular case, where no genericity argument can
be used to rule out non-unit zeros of B(L), either inside or outside the unit circle. In particular, fundamentalness
of ut for (1 − L)yt is not generic if r = q.

3.3. Permanent and Transitory Shocks

Let η⊥ be a q × d matrix whose columns are independent and orthogonal to the columns of η,
and let

η = η(η′η)−1, η⊥ = η⊥(η
′
⊥η⊥)

−1.

Defining v1t = η′
⊥ut, and v2t = η′ut, we have

ut = η⊥v1t + ηv2t =
(

η⊥ η
)(v1t

v2t

)

We have

B(L)ut = [B(L) (η⊥ η)]

(
v1t
v2t

)
= (1 − L)G1(L)v1t + (ξ + (1 − L)G2(L)) v2t.

where G1(L) = (B∗ + (1 − L)E(L)) η⊥, and G2(L) = (B∗ + (1 − L)E(L)) η. All the solutions of the
difference equation (1 − L)yt = S(L)−1C(L)ut are

yt = S(L)−1 [G1(L)v1t + G2(L)v2t + Tt] + K, (21)
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where K is a constant stochastic process, and

Tt =

⎧⎪⎪⎨⎪⎪⎩
ξ(v21 + v22 + · · ·+ v2t), for t > 0

0, for t = 0

−ξ(v20 + v2,−1 + · · ·+ v2,t+1), for t < 0.

As ξ is full rank, we see that yt is driven by the q − d = r − c permanent shocks v2t, and by
the d temporary shocks v1t. In representation (21), the component Tt is the common-trend of
Stock and Watson (1988). Note that the number of permanent shocks is obtained as r minus the
cointegrating rank, as usual. However, the number of transitory shocks is only d = c − (r − q),
as though r − q transitory shocks had a zero coefficient.

3.4. VECMs and Unrestricted VARs in The Levels

Several papers have addressed the issue of whether and when an error correction model or an
unrestricted VAR in the levels should be used for estimation in the case of nonsingular cointegrated
vectors: Sims et al. (1990) have shown that the parameters of a cointegrated VAR are consistently
estimated using an unrestricted VAR in the levels; on the other hand, Phillips (1998) shows that if the
variables are cointegrated, the long-run features of the impulse-response functions are consistently
estimated only if the unit roots are explicitly taken into account, that is within a VECM specification.
The simulation exercise described below provides evidence in favour of the VECM specification in the
singular case.

(I) We generate yt using a specification of (14) with r = 4, q = 3, d = 2, so that c = r − q + d = 3.
The 4 × 4 matrix A(L) is of degree 2. The impulse-response functions are identified by assuming
that the upper 3 × 3 submatrix of B(0) is lower triangular (see Appendix C for details). We
replicate the generation of yt 1000 times for T = 100, 500, 1000, 5000.

(II) For each replication, we estimate a (misspecified) VAR in differences (DVAR), a VAR in the
levels (LVAR) and a VECM, as in Johansen (1988 1991), assuming known c, the degree of A(L)
and that of A∗(L). For the VAR in differences the impulse-response functions for (1 − L)yt are
cumulated to obtain impulse-response function for yt. The root mean square error between
estimated and actual impulse-response functions is computed for each replication using all 12
impulse-responses and averaged over all replications.

The results are shown in Table 1. We see that the RMSE of both the VECM and the LVAR decreases
as T increases. However, for all values of T, the RMSE of the VECM stabilizes as the lag increases,
whereas it deteriorates for the LVAR, in line with the claim that the long-run response of the variables
are better estimated with the VECM. The performance of the misspecified DVAR is uniformly poor
with the exception of lag zero.
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Table 1. Monte Carlo Simulations. VECM: r = 4, q = 3, c = 3.

Lags DVAR LVAR VECM Lags DVAR LVAR VECM

T = 100

0 0.06 0.05 0.05

T = 500

0 0.02 0.02 0.02
4 0.26 0.18 0.17 4 0.23 0.07 0.07

20 0.30 0.37 0.22 20 0.25 0.14 0.09
40 0.30 0.45 0.22 40 0.25 0.21 0.09
80 0.30 0.57 0.22 80 0.25 0.32 0.09

T = 1000

0 0.02 0.02 0.02

T = 5000

0 0.01 0.01 0.01
4 0.23 0.05 0.05 4 0.22 0.02 0.02

20 0.25 0.09 0.07 20 0.25 0.03 0.03
40 0.25 0.13 0.07 40 0.25 0.04 0.03
80 0.25 0.22 0.07 80 0.25 0.06 0.03

Root mean squared errors at different lags, when estimating the impulse-response functions of the simulated
variables yt to the shocks ut. Estimation is carried out using three different autoregressive representations: a VAR
for (1 − L)yt (DVAR), a VAR for yt (LVAR), and a VECM with c = r − q + d error terms (VECM). The results are
based on 1000 replications. For the data generating process see Appendix C. The RMSEs are obtained averaging
over all replications and all 4 × 3 responses.

4. Cointegration of the Observable Variables in a DFM

Consider again the factor model xit = χit + εit, rewritten here as

xt = χt + εt, χt = ΛFt, (22)

where Λ is n × r, with n > r. The relationship between cointegration of the factors Ft and cointegration
of the variables xit is now considered.

Let us recall that the the common factors Fjt are assumed to be orthogonal to the idiosyncratic
components εks for all i, j, t, s, i.e., Eχtε

′
s = 0n×n. for all t, s, see the Introduction. The other

assumptions on model (22) are asymptotic, see e.g., Forni et al. (2000); Forni and Lippi (2001);
(Stock and Watson 2002a, 2002b), and put no restriction on the matrix Λ and the vector εεεt for a
given finite n. In particular, the first r eigenvalues of the matrix ΛΛ′ must diverge as n → ∞, but this
has no implications on the rank of the matrix Λ corresponding to, say, n = 10. However, as we see in
Proposition 5 (iii), if the idiosyncratic components are I(0), then, independently of Λ, all p-dimensional
subvectors of xt are cointegrated for p > q − d, which is at odds with what is observed in the
macroeconomic datasets analyzed in the empirical Dynamic Factor Model literature. This motivates
assuming that εt is I(1). In that case, see Proposition 5 (i), cointegration of xt requires that both
the common and the idiosyncratic components are cointegrated. Some results are collected in the
statement below.

Proposition 5. Let x
(p)
t = χ

(p)
t + ε

(p)
t = Λ(p)Ft + ε

(p)
t be a p-dimensional subvector of xt, p ≤ n. Denote

by cp
χ and cp

ε the cointegrating rank of χ
(p)
t and ε

(p)
t respectively. Both range from p, stationarity, to 0,

no cointegration.

(i) x
(p)
t is cointegrated only if χ

(p)
t and ε

(p)
t are both cointegrated.

(ii) If p > q − d then χ
(p)
t is cointegrated. If p ≤ q − d and rank(Λ(p)) < p then χ

(p)
t is cointegrated.

(iii) Let Vχ ⊆ Rp and Vε ⊆ Rp be the cointegrating spaces of χ
(p)
t and ε

(p)
t respectively. The vector x

(p)
t is

cointegrated if and only if the intersection of Vχ and Vε contains non-zero vectors. In particular, (a) if
p > q − d and cε > q − d then x(p) is cointegrated, (b) if p > q − d and ε

(p)
t is stationary then x(p)

is cointegrated.

Proof. Because χit and εjs are orthogonal for all i, j, t, s, the spectral densities of (1 − L)x(p)
t , (1 − L)χχχ(p)

t ,

(1 − L)εεε(p)
t fulfill:

Σ
(p)
Δx (θ) = ΣΣΣ(p)

Δχ (θ) + Σ
(p)
Δε (θ) θ ∈ [−π, π]. (23)
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Now, (23) implies that

λp

(
Σ
(p)
Δx (0)

)
≥ λp

(
Σ
(p)
Δχ (0)

)
+ λ(p)

(
Σ
(p)
Δε (0)

)
, (24)

where λp(A) denotes the smallest eigenvalue of the hermitian matrix A; this is one of the Weyl’s
inequalities, see Franklin (2000), p. 157, Theorem 1. Because the spectral density matrices are
non-negative definite, the right hand side in (24) vanishes if and only if both terms on the right
hand side vanish, i.e., the spectral density of Δx

(p)
t is singular at zero if and only if the spectral densities

of Δχ
(p)
t and Δε

(p)
t are singular at zero. By definition 4, (i) is proved.

Without loss of generality we can assume that S(L) = Ir. By substituting (21) in (22), we obtain

xt = Λ [(G1(L)v1t + G2(L)v2t + Tt) + K] + εt, (25)

where on the right hand side the only non-stationary terms are Tt and possibly εt. By recalling
that Tt = ξ ∑t

s=1 v2s where ξ is of dimension r × (q − d) and rank q − d, and by defining Gt =

Λ[G1(L)v1t + G2(L)v2t + K] and Tt = ∑t
s=1 v2s, we can rewrite (25) as

xt = ΛξTt + Gt + εt.

For x
(p)
t :

x
(p)
t = χχχ

(p)
t + ε

(p)
t = Λ(p)ξTt + G(p)

t + ε
(p)
t ,

where Λ(p) and G(p)
t have an obvious definition. Of course cointegration of the common components

χχχ
(p)
t is equivalent to cointegration of Λ(p)ξTt, which in turn is equivalent to rank(Λ(p)ξ) < p. Statement

(ii) follows from
rank

(
Λ(p)ξ

)
≤ min

(
rank(Λ(p)), rank(ξ)

)
.

The first part of (iii) is obvious. Assume now that p > q − d. If cp
χ + cp

ε = dim(Vχ) + dim(Vε) =

p − (q − d) + cp
ε > p, i.e., if cp

ε > q − d, then the intersection between Vχ and Vε is non-trivial, so that
x
(p)
t is cointegrated.

5. Summary and Conclusions

The paper studies representation theory for singular I(1) stochastic vectors, the factors of an I(1)
Dynamic Factor Model in particular. Singular I(1) vectors are cointegrated, with a cointegrating rank
c equal to r − q, the dimension of yt minus its rank, plus d, with 0 ≤ d < q.

If (1 − L)yt has rational spectral density, under assumptions that generalize to the singular case
those in Johansen (1995), we show that yt has an error correction representation with c error terms,
thus generalizing the Granger representation theorem (from MA to AR) to the singular case. Important
consequences of singularity are that generically: (i) the autoregressive matrix polynomial of the error
correction representation is of finite degree, (ii) the white noise vector driving (1 − L)yt is fundamental.

We find that yt is driven by r − c permanent shocks and d = c − (r − q) transitory shocks, not c as
in the nonsingular case.

Using simulated data generated by a simple singular VECM, confirms previous results, obtained
for nonsingular vectors, showing that under cointegration the long-run features of impulse-response
functions are better estimated using a VECM rather than a VAR in the levels.

In Section 4 we argue that stationarity of the idiosyncratic components in a DFM produce an
amount of cointegration for the observable variables xit that is not observed in the datasets that are
standard in applied Dynamic Factor Model literature. Thus the idiosyncratic vector in those datasets is
likely to be I(1), so that an estimation strategy robust to the assumption that some of the idiosyncratic
variables εit are I(1) should be preferred.
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The results in this paper are the basis for estimation of I(1) Dynamic Factor Models with
cointegrated factors, which is developed in the companion paper (Barigozzi et al. 2019).
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Appendix A. Proofs

Appendix A.1. Assumption 3 Holds Generically

Proving that Assumption 3 holds generically is equivalent to proving that M(z) is generically
zeroless, see the argument below Equation (20).

We need some preliminary results. Lemma A1, though quite easy, is not completely standard
and is therefore carefully stated and proved below. Regarding notation, to avoid possible
misunderstandings, let us recall that vectors and matrices are always denoted by boldface symbols,
while light symbols denote scalars, see Lemmas A1 and A2 in particular.

Lemma A1. Let Aj, j = 1, . . . , s, be scalar polynomials defined on Rλ, let p ∈ Rλ and Q(p) be the statement

Aj(p) = 0, for j = 1, . . . , s,

for example the statement that all the q × q minors of M(1) vanish, i.e., that rank(M(1)) < q. Let Π be an
open subset of Rλ. If Q is false for one point p∗ ∈ Rλ, then Q is generically false in Π.

Proof. Let N be the closure in Π (in the topology of Π) of the subset of Π where Q is true. Suppose
that Q is not generically false in Π. Then the interior of N in Π, call it N◦, is not empty. As Π is open,
N◦ is open both in the topology of Π and of Rλ. On the other hand a polynomial function defined on
Rλ vanishes on an open set if and only if it vanishes on the whole Rλ, which contradicts the existence
of a point in Rλ where Q is false.

Lemma A2. Consider the scalar polynomials

A(z) = a0zn + a1zn−1 + · · ·+ an, B(z) = b0zm + b1zm−1 + · · ·+ am,

with a0 	= 0 and b0 	= 0, and let αi, i = 1, . . . , n and β j, j = 1, . . . , m, be the roots of A and B, respectively.
Then: (i)

am
0 bn

0 ∏
i,j
(αi − β j) = R(a0, a1, . . . , an; b0, b1, . . . , bm),

where R is a polynomial function which is called the resultant of A and B. (ii) The resultant vanishes if and
only if A and B have a common root. (iii) Suppose that the coefficients ai and bj are polynomial functions of
p ∈ Π, where Π is an open subset of Rλ. If there exists a point p∗ ∈ Rλ such that a0(p

∗) 	= 0, b0(p
∗) 	= 0,

and R(p∗) 	= 0, then generically in Π the polynomials A and B have no common roots.
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Proof. For (i) and (ii) see van der Waerden (1953, pp. 83-8). Statement (iii) is an obvious consequence
of (ii) and Lemma A1.

Lemma A3. Recall that a zero of M(z) is a complex number z∗ such that rank(M(z∗)) < q. If M(z) has two
q × q submatrices whose determinants have no common roots, then M(z) is zeroless.

Proof. If z∗ is a zero of M(z), then z∗ is a zero of all the q × q submatrices of M(z).

For the statement and proof of our last result it is convenient to make explicit the dependence
of the matrix M(z) and its submatrices on the vector p. Thus we use Mp(z), etc. The parameters
of the matrix S(L) play no role here. Hence, with no loss of generality, we assume s2 = 0, so that
λ = (r − c)(r + q) + rq(s1 + 2). Lemmas A2–A4 below imply that Assumption 3 holds generically in
Π.

Lemma A4. Let M
p
1 (z), M

p
2 (z), . . . be all the q × q submatrices of Mp(z) and let Lp

i be the leading coefficient
of det M

p
i (z) and Rp

ij is the resultant of det M
p
i (z) and det M

p
j (z). There exist i, j, p∗ ∈ Rλ such that

Lp∗
i Lp∗

j 	= 0

and
Rp∗

ij 	= 0.

Proof. Assume that r = q + 1. To each p ∈ Π there corresponds the matrix

Mp(z) =

(
ξ′
⊥B∗

ξ′ξη′

)
+ (1 − z)

(
ξ′
⊥E(z)
ξ′B∗

)
+ (1 − z)2

(
0c×q

ξ′E(z)

)
.

Of course, the definition of Mp(z) makes sense for all p ∈ Rλ, see Equation (19). Let M
p
1 (z)

and M
p
2 (z) be the matrices obtained from Mp(z) by removing the first and the last row respectively.

We have:
degree[det(Mp

1 (z))] ≤ (q − d)(s1 + 2) + d(s1 + 1) = d1,

degree[det(Mp
2 (z))] ≤ (q − d − 1)(s1 + 2) + (d + 1)(s1 + 1) = d2.

We will construct a point p∗ ∈ Rλ such that: (A) the coefficient of zd1 in det(Mp∗
1 (z)) and the

coefficient of zd2 in det(Mp∗
2 (z)) (the leading coefficients) do not vanish, (B) the resultant of det(Mp∗

1 (z))
and det(Mp∗

2 (z)) does not vanish.
Let us firstly define a family of matrices, denoted by M(z), obtained by specifying ηηη, ξ, ξ′

⊥, B∗

and E(z) in the following way:

η′ =
(

0(q−d)×d Iq−d

)
, ξ =

(
Iq−d

0c×(q−d)

)
, ξ′

⊥ =

(
K

H

)
,

B∗ =
(

H′ 0(q+1)×(q−d)

)
, E(z) =

⎛⎜⎝E1(z)
E2(z)
E3(z)

⎞⎟⎠ ,
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where:

K =
(

01×(q−d) 1 01×d

)
, H =

(
0d×(q+1−d) Id

)
,

E1(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
k1(z) h1(z) · · · 0

0(q−d)×d
. . . . . .

. . . hq−d−1(z)
0 · · · kq−d(z)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, E2(z) =

(
e(z) 01×(q−1)

)
,

E3(z) =

⎛⎜⎜⎝
f1(z) g1(z) · · · 0

. . . . . . 0d×(q−d−1)
0 · · · fd(z) gd(z)

⎞⎟⎟⎠ ,

the entries e, ki, hi, fi and gi being scalar polynomials of degree s1.
We denote by q1 the vector including the coefficients of the polynomials fi, i = 1, . . . , d and ki,

i = 1, . . . , (q − d), a total of q(s1 + 1) coefficients, by q2 the vector including the coefficients of the
polynomials e, gi, i = 1, . . . , d and hi, i = 1, . . . , (q − d − 1), a total of q(s1 + 1) coefficients, by q0 the
vector including the zeros and the ones in the definition of ξ, η, B∗, E, and define q = (q0 q1 q2),
which is a λ-dimensional parameter vector. We put no restriction on q1 and q2, so that both can take
any value in Rν, with ν = q(s1 + 1). Note that q does not necessarily belong to Π. We have:

Mq(z) =

⎛⎜⎝ 01×d 01×(q−d)
Id 0d×(q−d)

0(q−d)×d Iq−d

⎞⎟⎠+ (1 − z)

⎛⎜⎝ E2(z)
E3(z)

0(q−d)×q

⎞⎟⎠+ (1 − z)2

⎛⎜⎝ 01×q
0d×q
E1(z)

⎞⎟⎠ . (A1)

The matrix Mq(z) has zero entries except for the diagonal joining the positions (1, 1) and
(q, q), and the diagonal joining (2, 1) and (q + 1, q). The matrices M

q
1 (z) and M

q
2 (z) are upper- and

lower-triangular, respectively, and

det(Mq
1 (z)) = [1 + (1 − z) f1(z)] · · · [(1 + (1 − z) fd(z)]

× [1 + (1 − z)2k1(z)] · · · [1 + (1 − z)2kq−d(z)] = Lq
1,d1

zd1 + · · ·+ Lq
1,0

det(Mq
2 (z)) = (1 − z)2q−d−1e(z)[g1(z) · · · gd(z)][h1(z) · · · hq−d−1(z)] = Lq

2,d2
zd1 + · · ·+ Lq

2,0.

Note that det(Mq
1 (z)) does not depend on q2, while det(Mq

2 (z)) does not depend on q1. Thus we
use the notation δ

q1
1 (z) = det(Mq

1 (z)), δ
q2
2 (z) = det(Mq

2 (z)), M
q1
1,d1

= Lq
1,d1

, Mq2
2,d2

= Lq
2,d2

. Now:

(i) Let q∗
2 ∈ Rν be such that none of the leading coefficients of the polynomials e, gi and hi vanishes.

Of course Mq∗
2

2,d2
= d2 	= 0.

(ii) Let ž be a root of δ
q∗

2
2 (z). If ž = 1 then ž is not a root of δ

q1
1 (z) for all q1 ∈ Rν. Suppose that ž is a

root of gj(z), for some j. As the parameters of the polynomials fi and ki are free to vary in Rν,

then, generically in Rν, δ
q1
1 (ž) 	= 0. Iterating for all roots of δ

q∗
2

2 (z), generically in Rν, δ
q1
1 (z) and

δ
q∗

2
2 (z) have no roots in common. Moreover, generically in Rν, Mq1

1,d1
= d1 	= 0. Thus, there exists

q∗
1 such that (a) Mq∗

1
1,d1

= d1 	= 0, (b) δ
q∗

1
1 (z) and δ

q∗
2

2 (z) have no roots in common.
(iii) Now let p∗ = (q0 q∗

1 q∗
2), so that

det(Mp∗
1 (z)) = δ

q∗
1

1 (z)), det(Mp∗
2 (z)) = δ

q∗
2

2 (z).
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Using (i) and (ii), (A) the leading coefficients of det(Mp∗
1 (z)) and det(Mp∗

2 (z)) do not vanish,

(B) det(Mp∗
1 (z)) and det(Mp∗

2 (z)) have no root in common so that their resultant does not vanish.
This proves the proposition for r = q + 1.

Generalizing this result to r > q + 1 is easy. Let us define the family N(z) in the following way:
(a) specify η′, ξ, E1(z) and E3(z) as in the definition of M(z), (b) then let

K =
(

0(r−q)×(r−d−1)

(
01×(r−q−1)1

)′
0(r−q)×d

)
, H =

(
0d×(r−d) Id

)
,

ξ′
⊥ =

(
K

H

)
, D =

(
H′ Ir×(q−d)

)
, E2(z) =

(
0(r−q)×q(

e(z) 01×(q−1)

)) .

We have:

N(z) =

⎛⎜⎝0(r−q)×d 0(r−q)×(q−d)
Id 0d×(q−d)

0(q−d)×d Iq−d

⎞⎟⎠+ (1 − z)

⎛⎜⎝ E2(z)
E3(z)

0(q−d)×q

⎞⎟⎠+ (1 − z)2

⎛⎜⎝0(r−q)×q
0d×q
E1(z)

⎞⎟⎠ .

It is easy to see that the (q + 1)× q lower submatrix of N(z) is identical to the matrix Mq(z) in (A1).

Appendix A.2. if R > Q and C ≤ Q, Assumptions 5 and 6 Do Not Imply That et Is a Non-Cointegrated
I(0) Process.

Let r = 3, q = 2, S(L) = I3,

ξ =

⎛⎜⎝1
0
0

⎞⎟⎠ , η =

(
0
1

)
, ξ⊥ =

⎛⎜⎝0 0
1 0
0 1

⎞⎟⎠ , B∗ =

⎛⎜⎝a b
1 0
1 0

⎞⎟⎠ .

In this case c = 2 and d = 1, so that c = q (see Remark 6). We have

(
ξ′
⊥B∗

η′

)
=

⎛⎜⎝1 0
1 0
0 1

⎞⎟⎠ .

We see that Assumptions 5 and 6 hold. However, rank(ξ′
⊥B∗) = 1, so that et, though being I(0),

is not a non-cointegrated I(0) process. On the other hand, if the (3, 2) entry of B∗ is 1 instead of 0,
et is non-cointegrated.

Appendix B. Non Uniqueness

In Proposition 3 we prove that a singular I(1) vector with cointegrating rank c has a finite error
correction representation with c error terms. On the other hand, as we have seen in Remark 5, when
c = r − q the singular vector yt has also an autoregressive representation in the differences, i.e.,
a representation with zero error terms. In Appendix B.1 we give an example hinting that yt has error
correction representations with any number of error terms between d and c. However, in Appendix B.2
we show that all such representations produce the same impulse-response functions.

Appendix B.1. Alternative Representations with Different Numbers of Error Terms

Let S(L) = Ir and consider the following example, with r = 3, q = 2, c = 2, so that d = 1:
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ξ′ =
(

1 1 1
)

η′ =
(

1 2
)

ξ′
⊥ =

(
1 −1 0
0 1 −1

)
We have,

(1 − L)

(
ξ′
⊥

ξ′

)
yt =

⎛⎜⎝1 − L 0 0
0 1 − L 0
0 0 1

⎞⎟⎠
⎧⎪⎨⎪⎩
⎛⎜⎝b∗

11 − b∗
21 b∗

12 − b∗
22

b∗
21 − b∗

31 b∗
22 − b∗

32
3 6

⎞⎟⎠+ (1 − L)Ê(L)

⎫⎪⎬⎪⎭ut,

where (1 − L)Ê(L) gathers the second and third terms in M(L). If the assumptions of Proposition 2
hold, we obtain an error correction representation with error terms

ξ′
⊥yt =

(
y1t − y2t
y2t − y3t

)
.

However, we also have

(1 − L)

(
ξ′
⊥

ξ′

)
yt =

⎛⎜⎝1 − L 0 0
0 1 0
0 0 1

⎞⎟⎠
×

⎧⎪⎨⎪⎩
⎛⎜⎝ b∗

11 − b∗
21 b∗

12 − b∗
22

(1 − L)(b∗
21 − b∗

31) (1 − L)(b∗
22 − b∗

32)

3 6

⎞⎟⎠+ (1 − L)Ě(L)

⎫⎪⎬⎪⎭ut =

⎛⎜⎝1 − L 0 0
0 1 0
0 0 1

⎞⎟⎠ M̌(L)ut.

Under suitable assumptions on the coefficients b∗
ij and Ě(L), assuming in particular that the matrix(

b∗
11 − b∗

21 b∗
12 − b∗

22
3 6

)

is nonsingular, the matrix M̌(L) is zeroless and has therefore a finite-degree left inverse. Proceeding
as in Proposition 2, we obtain an alternative error correction representation with just one error term,
namely y1t − y2t.

This example should be sufficient to convey the idea that yt admits error correction representations
with a minimum d and a maximum c = r − q + d of error terms.

The problem of error correction representations, with different numbers of error terms, has been
recently addressed in Deistler and Wagner (2017). An implication of their main result (see Theorem 1,
p. 41) is that if yt has the error correction representation

Ã(L)yt = Ã∗(L)(1 − L)yt + Ã(1)yt−1 = B̃ũt,

and rank(Ã(1)) < c (the number of error terms is not the maximum), then Ã(L) and B̃ are not
left coprime.

The consequences of Deistler and Wagner’s paper have not yet been developed. In Propositions 2
and 3 we have only considered representations with c error terms. On non-uniqueness of autoregressive
representations for singular vectors with rational spectral density see also Chen et al. (2011);
Anderson et al. (2012); Forni et al. (2015).
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Appendix B.2. Uniqueness of Impulse-Response Functions

Suppose that the assumptions of Proposition 2, weak form, hold. Let yt be a solution of
Equation (10), so that

(1 − L)yt = S(L)−1B(L)ut, (A2)

and suppose that yt has the autoregressive representation

Ã(L)yt = B̃ũt, (A3)

where Ã(L) is a rational matrix with poles outside the unit circle, Ã(0) = Ir, ũt is a nonsingular
q-dimensional white noise, B̃ is a full rank r × q matrix5. We have

Ã(L)[(1 − L)yt] = (1 − L)B̃ũt. (A4)

The assumption that B̃ is full rank and the argument used e.g., in Brockwell and Davis (1991),
p. 111, Problem 3.8, imply that ũt is fundamental for (1 − L)yt. Thus ũt = Qut, where Q is a
nonsingular q × q matrix (see Rozanov (1967), p. 57), and B̃ũt = [B̃Q]ut.

On the other hand, from (A2) and (A4):

Ã(L)S(L)−1B(L)ut = (1 − L)[B̃Q]ut. (A5)

As ut is nonsingular, Ã(L)S(L)−1B(L) = (1 − L)[B̃Q]. Setting L = 0 we have B̃Q = B(0), so that
(A3) becomes

Ã(L)yt = B(0)ut (A6)

while (A5) becomes
Ã(L)S(L)−1B(L)ut = (1 − L)B(0)ut. (A7)

The impulse-response function of yt to ut resulting from (A6) is H(L)B(0), where H(L)Ã(L) = Ir.
Multiplying both sides of (A7) by H(L) we obtain

S(L)−1B(L) = (1 − L)H(L)B(0),

so that H(L)B(0) is obtained by cumulating S(L)−1B(L) and is therefore independent of Ã(L).

Appendix C. Data Generating Process for the Simulations

The simulation results of Section 3.4 are obtained using the following specification of (14):

A(L)yt = A∗(L)(1 − L)yt + αβ′yt−1 = C(0)ut = GHut,

where r = 4, q = 3, c = 3, the degree of A(L) is 2, so that the degree of A∗(L) is 1. A(L) is generated
using the factorization

A(L) = U(L)M(L)V(L),

where U(L) and V(L) are r × r matrix polynomials with all their roots outside the unit circle, and

M(L) =

(
(1 − L)Ir−c 0

0 Ic

)

5 Multiplying both sides of (A3) by (1 − L) and using (A2), we obtain Ã(L)S(L)−1B(L)ut = (1 − L)B̃ũt. Comparing the
spectral densities of right- and left-hand terms, it is easy to prove that ũt must be a q-dimensional, nonsingular white noise
and the rank of B̃ must be q.
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(see Watson 1994). To get a VAR(2) we set U(L) = Ir − U1L, and V(L) = Ir, and then, by rewriting
M(L) = Ir −M1L, we get A1 = M1 +U1, and A2 = −M1U1.

Regarding the generation of the data, the diagonal entries of the matrix U1 are drawn from a
uniform distribution between 0.5 and 0.8, while the extra–diagonal entries are drawn from a uniform
distribution between 0 and 0.3. U1 is then multiplied by a scalar so that its largest eigenvalue is 0.6.
The matrix G is generated as in Bai and Ng (2007): (1) G̃ is an r × r diagonal matrix of rank q where
g̃ii is drawn from the uniform distribution between 0.8 and 1.2, (2) Ǧ is obtained by orthogonalizing
an r × r uniform random matrix, (3) G is equal to the first q columns of the matrix ǦG̃1/2. Lastly,
the orthogonal matrix H is such that the upper 3 × 3 submatrix of GH is lower triangular. The results
are based on 1000 replications. The matrices U1, G and H are generated only once (the numerical
values are available on request) so that the set of impulse responses to be estimated is the same for all
replications, whereas the vector ut is redrawn from N (0, I4) at each replication.
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Abstract: We develop and discuss a parameterization of vector autoregressive moving average
processes with arbitrary unit roots and (co)integration orders. The detailed analysis of the topological
properties of the parameterization—based on the state space canonical form of Bauer and Wagner
(2012)—is an essential input for establishing statistical and numerical properties of pseudo maximum
likelihood estimators as well as, e.g., pseudo likelihood ratio tests based on them. The general results
are exemplified in detail for the empirically most relevant cases, the (multiple frequency or seasonal)
I(1) and the I(2) case. For these two cases we also discuss the modeling of deterministic components
in detail.

Keywords: canonical form; cointegration; hypothesis testing; parameterization; state space
representation; unit roots

1. Introduction

Since the seminal contribution of Clive W.J. Granger (1981) that introduced the concept of
cointegration, the modeling of multivariate (economic) time series with models and methods that
allow for unit roots and cointegration has become standard econometric practice with applications
ranging from macroeconomics to finance to climate science.

The most prominent (parametric) model class for cointegration analysis are vector autoregressive
(VAR) models, popularized by the important contributions of Søren Johansen and Katarina Juselius
and their co-authors, see, e.g., the monographs Johansen (1995) and Juselius (2006). The popularity of
VAR cointegration analysis stems not only from the (relative) simplicity of the model class, but also
from the fact that the VAR cointegration literature is very well-developed and provides a large battery
of tools for diagnostic testing, impulse response analysis, forecast error variance decompositions and
the like. All this makes VAR cointegration analysis to a certain extent the benchmark in the literature.1

The imposition of specific cointegration properties on an estimated VAR model becomes
increasingly complicated as one moves away from the I(1) case. As discussed in Section 2, e.g., in the

1 Please note that the original contribution to the estimation of cointegrating relationship has been least squares estimation
in a non- or semi-parametric regression setting, see, e.g., Engle and Granger (1987). A recent survey of regression-based
cointegration analysis is provided by Wagner (2018).
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I(2) case a triple of indices needs to be chosen (fixed or determined via testing) to describe the
cointegration properties. The imposition of cointegration properties in the estimation algorithm
then leads to “switching” type algorithms that come together with non-trivial parameterization
restrictions involving non-linear inter-relations, compare Paruolo (1996) or Paruolo (2000).2

Mathematically, these complications arise from the fact that the unit root and cointegration properties
are in the VAR setting related to rank restrictions on the autoregressive polynomial matrix and
its derivatives.

Restricting cointegration analysis to VAR processes may be too restrictive. First, it is well-known
since Zellner and Palm (1974) that VAR processes are not invariant with respect to marginalization,
i.e., subsets of the variables of a VAR process are in general vector autoregressive moving average
(VARMA) processes. Second, similar to the first argument, aggregation of VAR processes also
leads to VARMA processes, an issue relevant, e.g., in the context of temporal aggregation and in
mixed-frequency settings. Third, the linearized solutions to dynamic stochastic general equilibrium
(DSGE) models are typically VARMA rather than VAR processes, see, e.g., Campbell (1994).
Fourth, a VARMA model may be a more parsimonious description of the data generating process
(DGP) than a VAR model, with parsimony becoming more important with increasing dimension of
the process.3

If one accepts the above arguments as a motivation for considering VARMA processes in
cointegration analysis, it is convenient to move to the—essentially equivalent (see Hannan and
Deistler 1988, chps. 1 and 2)—state space framework. A key challenge when moving from VAR to
VARMA models—or state space models—is that identification becomes an important issue for the latter
model class, whereas unrestricted VAR models are (reduced-form) identified. In other words, there are
so-called equivalence classes of VARMA models that lead to the same dynamic behavior of the observed
process. As is well-known, to achieve identification, restrictions have to be placed on the coefficient
matrices in the VARMA case, e.g., zero or exclusion restrictions. A mapping attaching to every transfer
function, i.e, the function relating the error sequence to the observed process, a unique VARMA (or state
space) system from the corresponding class of observationally equivalent systems is called canonical
form. Since not all entries of the coefficient matrices in canonical form are free parameters, for statistical
analysis a so-called parameterization is required that maps the free parameters from coefficient matrices
in canonical form into a parameter vector. These issues, including the importance of the properties
such as continuity and differentiability of parameterizations, are discussed in detail in Hannan and
Deistler (1988, chp. 2) and, of course, are also relevant for our setting in this paper.

The convenience of the state space framework for unit root and cointegration analysis stems
from the fact that (static and dynamic) cointegration can be characterized by orthogonality constraints,
see Bauer and Wagner (2012), once an appropriate basis for the state vector, which is a (potentially
singular) VAR process of order one, is chosen. The integration properties are governed by the
eigenvalue structure of unit modulus eigenvalues of the system matrix in the state equation.
Eigenvalues of unit modulus and orthogonality constraints arguably are easier restrictions to deal
with or to implement than the interrelated rank restrictions considered in the VAR or VARMA setting.
The canonical form of Bauer and Wagner (2012) is designed for cointegration analysis by using a basis
of the state vector that puts the unit root and cointegration properties to the center and forefront.
Consequently, these results are key input for the present paper and are thus briefly reviewed in
Section 3.

2 The complexity of these inter-relations is probably well illustrated by the fact that only Jensen (2013) notes that “even though
the I(2) models are formulated as submodels of I(1) models, some I(1) models are in fact submodels of I(2) models”.

3 The literature often uses VAR models as approximations, based on the fact that VARMA processes often can be approximated
by VAR models with the order tending to infinity with the sample size at certain rates. This line of work goes back to Lewis
and Reinsel (1985) for stationary processes and was extended to (co)integrated processes by Saikkonen (1992), Saikkonen
and Luukkonen (1997) and Bauer and Wagner (2005). In addition to the issue of the existence and properties of a sequence
of VAR approximations, the question whether a VAR approximation is parsimonious remains.

134



Econometrics 2020, 8, 42

An important problem with respect to appropriately defining the “free parameters” in VARMA
models is the fact that no continuous parameterization of all VARMA or state space models of a
certain order n exists in the multivariate case (see Hazewinkel and Kalman 1976). This implies that
the model set, Mn say, has to be partitioned into subsets on which continuous parameterizations exist,
i.e., Mn =

⋃
Γ∈G MΓ for some multi-index Γ varying in an index set G. Based on the canonical form of

Bauer and Wagner (2012), the partitioning is according to systems—in addition to other restrictions
such as fixed order n—with fixed unit root properties, to be precise over systems with given state space
unit root structure. This has the advantage that, e.g., pseudo maximum likelihood (PML) estimation
can straightforwardly be performed over systems with fixed unit root properties without any further
ado, i.e., without having to consider (or ignore) rank restrictions on polynomial matrices. The definition
and detailed discussion of the properties of this parameterization is the first main result of the paper.

The second main set of results, provided in Section 4, is a detailed discussion of the relationships
between the different subsets of models MΓ for different indices Γ and the parameterization of
the respective model sets. Knowledge concerning these relations is important to understand the
asymptotic behavior of PML estimators and pseudo likelihood ratio tests based on them. In particular,
the structure of the closures of M, M say, of the considered model set M has to be understood,
since the difference M \ M cannot be avoided when maximizing the pseudo likelihood function4.
Additionally, the inclusion properties between different sets MΓ need to be understood, as this
knowledge is important for developing hypothesis tests, in particular for developing hypothesis tests
for the dimensions of cointegrating spaces. Hypotheses testing, with a focus on the MFI(1) and I(2)
cases, is discussed in Section 5, which shows how the parameterization results of the paper can be
used to formulate a large number of hypotheses on (static and polynomial) cointegrating relationships
as considered in the VAR cointegration literature. This discussion also includes commonly used
deterministic components such as intercept, seasonal dummies, and linear trend, as well as restrictions
on these components.

The paper is organized as follows: Section 2 briefly reviews VAR and VARMA models with
unit roots and cointegration and discusses some of the complications arising in the VARMA case in
addition to the complications arising due to the presence of unit roots and cointegration already in
the VAR case. Section 3 presents the canonical form and the parameterization based on it, with the
discussion starting with the multiple frequency I(1)—MFI(1)—and I(2) cases prior to a discussion of
the general case. This section also provides several important definitions like, e.g., of the state space
unit root structure. Section 4 contains a detailed discussion concerning the topological structure of
the model sets and Section 5 discusses testing of a large number of hypotheses on the cointegrating
spaces commonly tested in the cointegration literature. The discussion in Section 5 focuses on the
empirically most relevant MFI(1) and I(2) cases and includes the usual deterministic components
considered in the literature. Section 6 briefly summarizes and concludes the paper. All proofs are
relegated to the Appendices A and B.

Throughout we use the following notation: L denotes the lag operator, i.e., L({xt}t∈Z) :=
{xt−1}t∈Z, for brevity written as Lxt = xt−1. For a matrix γ ∈ Cs×r, γ′ ∈ Cr×s denotes its conjugate
transpose. For γ ∈ Cs×r with full column rank r < s, we define γ⊥ ∈ Cs×(s−r) of full column rank
such that γ′γ⊥ = 0. Ip denotes the p-dimensional identity matrix, 0m×n the m times n zero matrix.
For two matrices A ∈ Cm×n, B ∈ Ck×l , A ⊗ B ∈ Cmk×nl denotes the Kronecker product of A and B.
For a complex valued quantity x, R(x) denotes its real part, I(x) its imaginary part and x its complex
conjugate. For a set V, V denotes its closure.5 For two sets V and W, V \ W denotes the difference of V
and W, i.e., {v ∈ V : v /∈ W}. For a square matrix A we denote the spectral radius (i.e., the maximum
of the moduli of its eigenvalues) by λ|max|(A) and by det(A) its determinant.

4 Below we often use the term “likelihood” as short form of “likelihood function”.
5 We are confident that this dual usage of notation does not lead to confusion.
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2. Vector Autoregressive, Vector Autoregressive Moving Average Processes and Parameterizations

In this paper, we define VAR processes {yt}t∈Z, yt ∈ Rs, as solution of

a(L)yt = yt +
p

∑
j=1

ajyt−j = εt + Φdt, (1)

with a(L) := Is + ∑
p
j=1 ajLj, where aj ∈ Rs×s for j = 1, . . . , p, Φ ∈ Rs×m, ap 	= 0, a white

noise process {εt}t∈Z, εt ∈ Rs, with Σ := E(εtε
′
t) > 0 and a vector sequence {dt}t∈Z, dt ∈ Rm,

comprising deterministic components like, e.g., the intercept, seasonal dummies or a linear trend.
Furthermore, we impose the non-explosiveness condition det a(z) 	= 0 for all |z| < 1, with a(z) :=
Is + ∑

p
j=1 ajzj and z denoting a complex variable.6

Thus, for given autoregressive order p, with—as defining characteristic of the order—ap 	= 0,
the considered class of VAR models with specified deterministic components {dt}t∈Z is given by the set
of all polynomial matrices a(z) such that (i) the non-explosiveness condition holds, (ii) a(0) = Is and
(iii) ap 	= 0; together with the set of all matrices Φ ∈ Rs×m.

Equivalently, the model class can be characterized by a set of rational matrix functions
k(z) := a(z)−1, referred to as transfer functions, and the input-output description for the deterministic
variables, i.e.,

Vp,Φ := Vp ×R
s×m,

Vp :=

{
k(z) =

∞

∑
j=0

kjzj = a(z)−1 : a(z) = Is +
p

∑
j=1

ajzj, det a(z) 	= 0 for |z| < 1, ap 	= 0

}
.

The associated parameter space is Θp,Φ := Θp ×Rsm ⊂ Rs2 p+sm, where the parameters

θ := [θ′
a, θ′

Φ]
′ = [vec(a1)

′, . . . , vec(ap)
′, vec(Φ)′]′ (2)

are obtained from stacking the entries of the matrices aj and Φ, respectively.

Remark 1. In the above discussion the parameters, θΣ say, describing the variance covariance matrix Σ of
εt are not considered. These can be easily included, similarly to Φ by, e.g., parameterizing positive definite
symmetric s × s matrices via their lower triangular Cholesky factor. This leads to a parameter space Θp,Φ,Σ ⊂
Rs2 p+sm+ s(s+1)

2 . We omit θΣ for brevity, since typically no cross-parameter restrictions involving parameters
corresponding to Σ are considered, whereas as discussed in Section 5 parameter restrictions involving—in this
paper in the state space rather than the VAR setting—both elements of Θp and Φ, to, e.g., impose the absence of a
linear trend in the cointegrating space, are commonly considered in the cointegration literature.7 The estimator
of the variance covariance matrix Σ often equals the sample variance of suitable residuals ε̂t(θ) from (1), if there
are no cross-restrictions between θ and θΣ. This holds, e.g., for the Gaussian pseudo maximum likelihood
estimator. Thus, explicitly including θΣ and ΘΣ in the discussion would only overload notation without adding
any additional insights, given the simple nature of the parameterization of Σ.

6 Our definition of VAR processes differs to a certain extent from some widely used definitions in the literature. Given our
focus on unit root and cointegration analysis we, unlike Hannan and Deistler (1988), allow for determinantal roots at the
unit circle that, as is well known, lead to integrated processes. We also include deterministic components in our definition,
i.e., we allow for a special case of exogenous variables, compare also Remark 2 below. There is, however, also a large part of
the literature that refers to this setting simply as (cointegrated) vector autoregressive models, see, e.g., Johansen (1995) and
Juselius (2006).

7 Of course, the statistical properties of the parameter estimators depend in many ways on the deterministic components.
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Remark 2. Our consideration of deterministic components is a special case of including exogenous variables.
We include exogenous deterministic variables with a static input-output behavior governed solely by the matrix
Φ. More general exogenous variables that are dynamically related to the output {yt}t∈Z could be considered,
thereby considering so-called VARX models rather than VAR models, which would necessitate considering
in addition to the transfer function k(z) also a transfer function l(z), say, linking the exogenous variables
dynamically to the output.

For the VAR case, the fact that the mapping assigning a given transfer function k(z) ∈ Vp, to a
parameter vector θa ∈ Θp—the parameterization—is continuous with continuously differentiable
inverse is immediate.8 Homeomorphicity of a parameterization is important for the properties of
parameter estimators, e.g., the ordinary least squares (OLS) or Gaussian PML estimator, compare the
discussion in Hannan and Deistler (1988, Theorem 2.5.3 and Remark 1, p. 65).

For OLS estimation one typically considers the larger set VOLS
p without the non-explosiveness

condition and without the assumption ap 	= 0:

VOLS
p :=

{
k(z) =

∞

∑
j=0

kjzj = a(z)−1 : a(z) = Is +
p

∑
j=1

ajzj

}
.

Considering VOLS
p allows for unconstrained optimization. It is well-known that for {εt}t∈Z as

given above, the OLS estimator is consistent over the larger set VOLS
p , i.e., without imposing

non-explosiveness and also when specifying p too high. Alternatively, and closely related to OLS in the
VAR case, the pseudo likelihood can be maximized over Θp,Φ. With this approach, maxima respectively
suprema can occur at the boundary of the parameter space, i.e., maximization effectively has to consider
Θp,Φ. It is well-known that the PML estimator is consistent for the stable case (cf. Hannan and Deistler
1988, Theorem 4.2.1), but the maximization problem is complicated by the restrictions on the parameter
space stemming from the non-explosiveness condition. Avoiding these complications and asymptotic
equivalence of OLS and PML in the stable VAR case explains why VAR models are usually estimated
by OLS.9

To be more explicit, ignore deterministic components for a moment and consider the case where
the DGP is a stationary VAR process, i.e., a solution of (1) with a(z) satisfying the stability condition
det a(z) 	= 0 for |z| ≤ 1. Define the corresponding set of stable transfer functions by Vp,•:

Vp,• :=
{

a(z)−1 ∈ Vp : det a(z) 	= 0 for |z| ≤ 1, ap 	= 0
}

.

Clearly, Vp,• is an open subset of Vp. If the DGP is a stationary VAR process, the above-mentioned
consistency result of the OLS estimator over VOLS

p implies that the probability that the estimated
transfer function, k̂(z) = â(z)−1 say, is contained in Vp,• converges to one as the sample size
tends to infinity. Moreover, the asymptotic distribution of the estimated parameters is normal,
under appropriate assumptions on {εt}t∈Z.

The situation is a bit more involved if the transfer function of the DGP corresponds to a point in the
set Vp,• \ Vp,•, which contains systems with unit roots, i.e., determinantal roots of a(z) on the unit circle,
as well as lower order autoregressive systems—with these two cases non-disjoint. The stable lower
order case is relatively unproblematic from a statistical perspective. If, e.g., OLS estimation is performed
over VOLS

p , while the true model corresponds to an element in Vp∗ ,•, with p∗ < p, the OLS estimator is

8 The set Vp is endowed with the pointwise topology Tpt, defined in Section 3. For now, in the context of VAR models, it suffices
to know that convergence in pointwise topology is equivalent to convergence of the VAR coefficient matrices a1, . . . , ap in
the Frobenius norm.

9 Please note that in case of restricted estimation, i.e., zero restrictions or cross-equation restrictions, OLS is not asymptotically
equivalent to PML in general.
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still consistent, since Vp∗ ,• ⊂ VOLS
p . Furthermore, standard chi-squared pseudo likelihood ratio test

based inference still applies. The integrated case, for a precise definition see the discussion below
Definition 1, is a bit more difficult to deal with, as in this case not all parameters are asymptotically
normally distributed and nuisance parameters may be present. Consequently, parameterizations that
do not take the specific nature of unit root processes into account are not very useful for inference in
the unit root case, see, e.g., Sims et al. (1990, Theorem 1). Studying the unit root and cointegration
properties is facilitated by resorting to suitable parameterizations that “zoom in on the relevant
characteristics”.

In case that the only determinantal root of a(z) on the unit circle is at z = 1, the system corresponds
to a so-called I(d) process, with the integration order d > 0 made precise in Definition 1 below.
Consider first the I(1) case: As is well-known, the rank of the matrix a(1) equals the dimension
of the cointegrating space given in Definition 3 below—also referred to as the cointegrating rank.
Therefore, determination of the rank of this matrix is of key importance. With the parameterization
used so far, imposing a certain (maximal) rank on a(1) implies complicated restrictions on the matrices
aj, j = 1, . . . , p. This in turn renders the correspondingly restricted optimization unnecessarily
complicated and not conducive to develop tests for the cointegrating rank. It is more convenient to
consider the so-called vector error correction model (VECM) representation of autoregressive processes,
discussed in full detail in the monograph Johansen (1995). To this end let us first introduce the
differencing operator at frequency 0 ≤ ω ≤ π

Δω :=

{
Is − 2 cos(ω)L + L2 for 0 < ω < π

Is − cos(ω)L for ω ∈ {0, π} . (3)

For notational brevity, we omit the dependence on L in Δω(L), henceforth denoted as Δω. Using this
notation, the I(1) error correction representation is given by

Δ0yt = Πyt−1 +
p−1

∑
j=1

ΓjΔ0yt−j + εt + Φdt (4)

= αβ′yt−1 +
p−1

∑
j=1

ΓjΔ0yt−j + εt + Φdt,

with the matrix Π := −a(1) = −(Is + ∑
p
j=1 aj) of rank 0 ≤ r ≤ s factorized into the product of two

full rank matrices α, β ∈ Rs×r and Γj := ∑
p
m=j+1 am, j = 1, . . . , p − 1.

This constitutes a reparameterization, where k(z) ∈ Vp is now represented by the matrices
(α, β, Γ1, . . . , Γp−1) and a corresponding parameter vector θVECM

a ∈ ΘVECM
p,r . Please note that stacking the

entries of the matrices does not lead to a homeomorphic mapping from Vp to ΘVECM
p,s , since for 0 < r ≤ s

the matrices α and β are not identifiable from the product αβ′, since αβ′ = αMM−1β′ = α̃β̃′ for all
regular matrices M ∈ Rr×r. One way to obtain identifiability is to introduce the restriction β = [Ir, β∗′]′,
with β∗ ∈ R(s−r)×r and α ∈ Rs×r. With this additional restriction the parameter vector θVECM

a is given
by stacking the vectorized matrices α, β∗, Γ1, . . . , Γp−1, similarly to (2). Then ΘVECM

p,r,Φ = ΘVECM
p,r ×Rsm ⊂

Rps2−(s−r)2+sm. Note for completeness that the normalization of β = [Ir, β∗′]′ may necessitate a
re-ordering of the variables in {yt}t∈Z since—without potential reordering—this parameterization
implies a restriction of generality as, e.g., processes, where the first variable is integrated, but does not
cointegrate with the other variables, cannot be represented.

Define the following sets of transfer functions:

Vp,r :=
{

a(z)−1 ∈ Vp : det a(z) 	= 0 for {z : |z| = 1, z 	= 1}, rank(a(1)) ≤ r
}

,

VRRR
p,r :=

{
a(z)−1 ∈ VOLS

p : rank(a(1)) ≤ r
}

.
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The dimension of the parameter vector θVECM
a depends on the dimension of the cointegrating space,

thus the parameterization of k(z) ∈ Vp,r depends on r. The so-called reduced rank regression (RRR)
estimator, given by the maximizer of the pseudo likelihood over VRRR

p,r is consistent, see, e.g., Johansen
(1995, chp. 6). The RRR estimator uses an “implicit” normalization of β and thereby implicitly addresses
the mentioned identification problem. However, for testing hypotheses involving the free parameters in
α or β, typically the identifying assumption given above is used, as discussed in Johansen (1995, chp. 7).

Furthermore, since Vp,r ⊂ Vp,r∗ for r < r∗ ≤ s, with ΘVECM
p,r a lower dimensional subset of ΘVECM

p,r∗ ,
pseudo likelihood ratio testing can be used to sequentially test for the rank r, starting with the
hypothesis of a rank r = 0 against the alternative of a rank 0 < r ≤ s, and increasing the assumed rank
consecutively until the null hypothesis is not rejected.

Ensuring that {yt}t∈Z generated from (4) is indeed an I(1) process, requires on the one hand that
Π is of reduced rank, i.e., r < s and on the other that the matrix

α′
⊥Γβ⊥ := α′

⊥

(
Is −

p−1

∑
j=1

Γj

)
β⊥ (5)

has full rank. It is well-known that condition (5) is fulfilled on the complement of a “thin” algebraic
subset of VRRR

p,r , and is therefore, ignored in estimation, as it is “generically” fulfilled.10

The I(2) case is similar in structure to the I(1) case, but with two rank restrictions and one full rank
condition to exclude even higher integration orders. The corresponding VECM is given by

Δ2
0yt = αβ′yt−1 − ΓΔ0yt−1 +

p−2

∑
j=1

ΨjΔ2
0yt−j + εt, (6)

with α, β as defined in (4), Γ as defined in (5) and Ψj := − ∑
p−1
k=j+1 Γk, j = 1, . . . , p − 2. From (5) we

already know that reduced rank of

α′
⊥Γβ⊥ =: ξη′, (7)

with ξ, η ∈ R(s−r)×m, m < s − r is required for higher integration orders. The condition for the
corresponding solution process {yt}t∈Z to be an I(2) process is given by full rank of

ξ ′
⊥α′

⊥

(
Γβ(β′β)−1(α′α)−1α′Γ + Is −

p−2

∑
j=1

Ψj

)
β⊥η⊥,

which again is typically ignored in estimation, just like condition (5) in the I(1) case. Thus, I(2)
processes correspond to a “thin subset” of VRRR

p,r , which in turn constitutes a “thin subset” of VOLS
p .

The fact that integrated processes correspond to “thin sets” in VOLS
p implies that obtaining estimated

systems with specific integration and cointegration properties requires restricted estimation based on
parameterizations tailor made to highlight these properties.

Already for the I(2) case, formulating parameterizations that allow conveniently studying the
integration and cointegration properties is a quite challenging task. Johansen (1997) contains several
different (re-)parameterizations for the I(2) case and Paruolo (1996) defines “integration indices”,
r0, r1, r2 say, as the number of columns of the matrices β ∈ Rs×r0 , β1 := β⊥η ∈ Rs×r1 and β2 :=
β⊥η⊥ ∈ Rs×r2 . Clearly, the indices r0, r1, r2 are linked to the ranks of the above matrices Π and α′

⊥Γβ⊥,
as r0 = r and r1 = m and the columns of [β, β1, β2] form a basis of Rs, such that s = r0 + r1 + r2.

10 A similar property holds for VRRR
p,r being a “thin” subset of VOLS

p . This implies that the probability that the OLS estimator
calculated over VOLS

p corresponds to an element VRRR
p,r ⊂ VOLS

p is equal to zero in general.

139



Econometrics 2020, 8, 42

It holds that {β′
2yt}t∈Z is an I(2) process without cointegration and {β′

1yt}t∈Z is an I(1) process without
cointegration. The process {β′yt}t∈Z is typically I(1) and in this case cointegrates with {β′

2Δ0yt}t∈Z to
stationarity. Thus, there is a direct correspondence of these indices to the dimensions of the different
cointegrating spaces—both static and dynamic (with precise definitions given below in Definition 3).
11 Please note that again, as already before in the I(1) case, different values of the integration indices
r0, r1, r2, lead to parameter spaces of different dimensions. Furthermore, in these parameterizations
matrices describing different cointegrating spaces are (i) not identified and (ii) linked by restrictions,
compare the discussion in Paruolo (2000, sct. 2.2) and (7). These facts render the analysis of the
cointegration properties in I(2) VAR systems complicated. Also, in the I(2) VAR case usually some
forms of RRR estimators are considered over suitable subsets VRRR

p,r,m of VRRR
p,r , again based on implicit

normalizations. Inference, however, again requires one to consider parameterizations explicitly.
Estimation and inference issues are fundamentally more complex in the VARMA case than in

the VAR case. This stems from the fact that unrestricted estimation—unlike in the VAR case—is not
possible due to a lack of identification, as discussed below. This means that in the VARMA case
identification and parameterization issues need to be tackled as the first step, compare the discussion
in Hannan and Deistler (1988, chp. 2).

In this paper, we consider VARMA processes as solutions of the vector difference equation

yt +
p

∑
j=1

ajyt−j = εt +
q

∑
j=1

bjεt−j + Φdt,

with a(L) := Is + ∑
p
j=1 ajLj, where aj ∈ Rs×s for j = 1, . . . , p, ap 	= 0 and the non-explosiveness

condition det(a(z)) 	= 0 for |z| < 1. Similarly, b(L) := Is + ∑
q
j=1 bjLj, where bj ∈ Rs×s for j = 1, . . . , q,

bq 	= 0 and Φ ∈ Rs×m. The transfer function corresponding to a VARMA process is k(z) := a(z)−1b(z).
It is well-known that without further restrictions the VARMA realization (a(z), b(z)) of the transfer

function k(z) = a(z)−1b(z) is not identified, i.e., different pairs of polynomial matrices (a(z), b(z))
can realize the same transfer function k(z). It is clear that k(z) = a(z)−1m(z)−1m(z)b(z) = a(z)−1b(z)
for all non-singular polynomial matrices m(z). Thus, the mapping π attaching the transfer function
k(z) = a(z)−1b(z) to the pair of polynomial matrices (a(z), b(z)) is not injective.12

Consequently, we refer for given rational transfer function k(z) to the class {(a(z), b(z)) : k(z) =
a(z)−1b(z)} as a class of observationally equivalent VARMA realizations of k(z). To achieve identification
requires to define a canonical form, selecting one member of each class of observationally equivalent
VARMA realizations for a set of considered transfer functions. A first step towards a canonical
form is to only consider left coprime pairs (a(z), b(z)).13 However, left coprimeness is not sufficient
for identification and thus further restrictions are required, leading to parameter vectors of smaller
dimension than Rs2(p+q). A widely used canonical form is the (reverse) echelon canonical form,
see Hannan and Deistler (1988, Theorem 2.5.1, p. 59), based on (monic) normalizations of the diagonal
elements of a(z) and degree relationships between diagonal and off-diagonal elements as well as the
entries in b(z), which lead to zero restrictions. The (reverse) echelon canonical form in conjunction with
a transformation to an error correction model was used in VARMA cointegration analysis in the I(1)
case, e.g., in Poskitt (2006, Theorem 4.1), but, as for the VAR case, understanding the interdependencies
of rank conditions already becomes complicated once one moves to the I(2) case.

11 Below Example 3 we clarify how these indices are related to the state space unit root structure defined in Bauer and Wagner
(2012, Definition 2) and link these to the dimensions of the cointegrating spaces in Section 5.2.

12 Uniqueness of realizations in the VAR case stems from the normalization m(z)b(z) = Is, which reduces the class of
observationally equivalent VAR realizations of the same transfer function k(z) = a(z)−1b(z), with b(z) = Is, to a singleton.

13 The pair (a(z), b(z)) is left coprime if all its left divisors are unimodular matrices. Unimodular matrices are polynomial
matrices with constant non-zero determinant. Thus, pre-multiplication of, e.g., a(z) with a unimodular matrix u(z) does not
affect the determinantal roots that shape the dynamic behavior of the solutions of VAR models.

140



Econometrics 2020, 8, 42

In the VARMA case matters are further complicated by another well-known problem that makes
statistical analysis considerably more involved compared to the VAR case. Although there exists
a generalization of the autoregressive order to the VARMA case, such that any transfer function
corresponding to a VARMA system has an order n ∈ N (with the precise definition given in the next
section) it is known since Hazewinkel and Kalman (1976) that no continuous parameterization of all
rational transfer functions of order n exists if s > 1. Therefore, if one wants to keep the above-discussed
advantages that continuity of a parameterization provides, the set of transfer functions of order n,
henceforth referred to as Mn, has to be partitioned into sets on which continuous parameterizations
exist, i.e., Mn =

⋃
Γ∈G MΓ, for some index set G, as already mentioned in the introduction.14 For any

given partitioning of the set Mn it is important to understand the relationships between the different
subsets MΓ, as well as the closures of the pieces MΓ, since in case of misspecification of MΓ points
in MΓ \ MΓ cannot be avoided even asymptotically in, e.g., pseudo maximum likelihood estimation.
These are more complicated issues in the VARMA case than in the VAR case, see the discussion in
Hannan and Deistler (1988, Remark 1 after Theorem 2.5.3).

Based on these considerations, the following section provides and discusses a parameterization
that focuses on unit root and cointegration properties, resorting to the state space framework that—as
mentioned in the introduction—provides advantages for cointegration analysis. In particular, we derive
an almost everywhere homeomorphic parameterization, based on partitioning the set of all considered
transfer functions according to a multi-index Γ that contains, among other elements, the state space
unit root structure. This implies that certain cointegration properties are invariant for all systems
corresponding to a subset MΓ, i.e., the parameterization allows to directly impose cointegration
properties such as the “cointegration indices” of Paruolo (1996) mentioned before.

3. The Canonical Form and the Parameterization

As a first step we define the class of VARMA processes considered in this paper, using the
differencing operator defined in (3):

Definition 1. The s-dimensional real VARMA process {yt}t∈Z has unit root structure Ω :=
((ω1, h1), . . . , (ωl , hl)) with 0 ≤ ω1 < ω2 < · · · < ωl ≤ π, hk ∈ N, k = 1, . . . , l, l ≥ 1, if it is a
solution of the difference equation

ΔΩ(yt − Φdt) :=
l

∏
k=1

Δhk
ωk (yt − Φdt) = vt, (8)

where {dt}t∈Z is an m-dimensional deterministic sequence, Φ ∈ Rs×m and {vt}t∈Z is a linearly regular
stationary VARMA process, i.e., there exists a pair of left coprime matrix polynomials (a(z), b(z)), det a(z) 	= 0,
|z| ≤ 1 such that vt = a(L)−1b(L)(εt) =: c(L)(εt) for a white noise process {εt}t∈Z with E(εtε

′
t) = Σ > 0,

with furthermore c(z) 	= 0 for z = eiωk , k = 1, . . . , l.

• The process {yt}t∈Z is called unit root process with unit roots zk := eiωk for k = 1, . . . , l, the set
F(Ω) := {ω1, . . . , ωl} is the set of unit root frequencies and the integers hk, k = 1, . . . , l are the
integration orders.

• A unit root process with unit root structure ((0, d)), d ∈ N, is an I(d) process.
• A unit root process with unit root structure ((ω1, 1), . . . , (ωl , 1)) is an MFI(1), process.

A linearly regular stationary VARMA process has empty unit root structure Ω0 := {}.

14 When using the echelon canonical form, the partitioning is according to the so-called Kronecker indices related to a basis
selection for the row-space of the Hankel matrix corresponding to the transfer function k(z), see, e.g., Hannan and Deistler
(1988, chp. 2.4) for a precise definition.
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As discussed in Bauer and Wagner (2012) the state space framework is convenient for the analysis
of VARMA unit root processes. Detailed treatments of the state space framework are given in Hannan
and Deistler (1988) and—in the context of unit root processes—Bauer and Wagner (2012).

A state space representation of a unit root VARMA process is15

yt = Cxt + Φdt + εt,
xt+1 = Axt + Bεt,

(9)

for a white noise process {εt}t∈Z, εt ∈ Rs, a deterministic process {dt}t∈Z, dt ∈ Rm and the unobserved
state process {xt}t∈Z, xt ∈ Cn, A ∈ Cn×n, B ∈ Cn×s, C ∈ Cs×n and Φ ∈ Rs×m.

Remark 3. Bauer and Wagner (2012, Theorem 2) show that every real valued unit root VARMA process
{yt}t∈Z as given in (8) has a real valued state space representation with {xt}t∈Z real valued and real valued
system matrices (A, B, C). Considering complex valued state space representations in (9) is merely for algebraic
convenience, as in general some eigenvalues of A are complex valued. Note for completeness that Bauer and
Wagner (2012) contains a detailed discussion why considering the A-matrix in the canonical form in (up to
reordering) the Jordan normal form is useful for cointegration analysis. For the sake of brevity we abstain from
including this discussion again in the present paper. The key aspect of this construction is its usefulness for
cointegration analysis, which becomes visible in Remark 4, where the “simple” unit root properties of blocks of
the state vector are discussed.

The transfer function k(z) with real valued power series coefficients corresponding to a real
valued unit root process {yt}t∈Z as given in Definition 1 is given by the rational matrix function
k(z) = ΔΩ(z)−1a(z)−1b(z). The (possibly complex valued) matrix triple (A, B, C) realizes the transfer
function k(z) if and only if π(A, B, C) := Is + zC(In − zA)−1B = k(z). Please note that as for
VARMA realizations, for a transfer function k(z) there exist multiple state space realizations (A, B, C),
with possibly different state dimensions n. A state space system (A, B, C) is minimal if there exists no
state space system of lower state dimension realizing the same transfer function k(z). The order of the
transfer function k(z) is the state dimension of a minimal system (A, B, C) realizing k(z).

All minimal state space realizations of a transfer function k(z) only differ in the basis of the state
(cf. Hannan and Deistler 1988, Theorem 2.3.4), i.e., π(A, B, C) = π(Ã, B̃, C̃) for two minimal state space
systems (A, B, C) and (Ã, B̃, C̃) is equivalent to the existence of a regular matrix T ∈ Cn such that
A = TÃT−1, B = TB̃, C = C̃T−1. Thus, the matrices A and Ã are similar for all minimal realizations
of a transfer function k(z).

By imposing restrictions on the matrices of a minimal state space system (A, B, C) realizing k(z),
Bauer and Wagner (2012, Theorem 2) provide a canonical form, i.e., a mapping of the set Mn of transfer
functions with real valued power series coefficients defined below onto unique state space realizations
(A, B, C). The set Mn is defined as

Mn :=

{
k(z) = π(A, B, C)

∣∣∣ λ|max|(A) ≤ 1,
A ∈ Rn×n, B ∈ Rn×s, C ∈ Rs×n, (A, B, C) minimal

}
.

To describe the necessary restrictions of the canonical form the following definition is useful:

15 Here and below we will only consider state space systems in so-called innovation representation, with the same error in
both the output equation and the state equation. Since every state space system has an innovation representation this is no
restriction, compare Aoki (1990, chp. 7.1).
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Definition 2. A matrix B = [bi,j]i=1,...,c,j=1,...,s ∈ Cc×s is positive upper triangular (p.u.t.) if there exist
integers 1 ≤ j1 ≤ j2 ≤ · · · ≤ jc ≤ s, such that for ji ≤ s we have bi,j = 0, j < ji, ji < ji+1, bi,ji ∈ R+;
i.e., B is of the form

B =

⎡⎢⎢⎢⎣
0 · · · 0 b1,j1 ∗ . . . ∗
0 . . . 0 b2,j2 ∗

0 . . . 0 bc,jc ∗

⎤⎥⎥⎥⎦ ,

where the symbol ∗ indicates unrestricted complex-valued entries.

A unique state space realization of k(z) ∈ Mn is given as follows (cf. Bauer and Wagner 2012,
Theorem 2):

Theorem 1. For every transfer function k(z) ∈ Mn there exists a unique minimal (complex) state space
realization (A, B, C) such that

yt = Cxt,C + Φdt + εt,

xt+1,C = Axt,C + Bεt

with:

(i) A := diag(Au, A•) := diag(A1,C, . . . , Al,C, A•), Au ∈ Cnu×nu , A• ∈ Rn•×n• , where it holds for
k = 1, . . . , l that

– for 0 < ωk < π:

Ak,C :=

[
Jk 0
0 Jk

]
∈ C

2dk×2dk
,

– for ωk ∈ {0, π}:

Ak,C := Jk ∈ R
dk×dk

,

with

Jk :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zk Idk
1

[Idk
1
, 0dk

1×(dk
2−dk

1)
] 0 · · · 0

0dk
2×dk

1
zk Idk

2
[Idk

2
, 0dk

2×(dk
3−dk

2)
] 0

...

0 0 zk Idk
3

. . . 0
...

...
. . .

. . . [Idk
hk−1

, 0dk
hk−1×(dk

hk
−dk

hk−1)
]

0 0 · · · 0 zk Idk
hk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10)

where 0 < dk
1 ≤ dk

2 ≤ · · · ≤ dk
hk

.

(ii) B := [B′
u, B′

•]
′ := [B′

1,C, . . . , B′
l,C, B′

•]
′ and C := [Cu, C•] := [C1,C, . . . , Cl,C, C•] are partitioned

accordingly. It holds for k = 1, . . . , l that

– for 0 < ωk < π:

Bk,C :=

[
Bk
Bk

]
∈ C

2dk×s and Ck,C :=
[
Ck, Ck

]
∈ C

s×2dk
.
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– for ωk ∈ {0, π}:

Bk,C := Bk ∈ R
dk×s and Ck,C := Ck ∈ R

s×dk
.

(iii) Partitioning Bk,hk
in Bk = [B′

k,1, . . . , B′
k,hk

]′ as Bk,hk
= [B′

k,hk ,1, . . . , B′
k,hk ,hk

]′, with Bk,hk ,j ∈
C
(dk

j −dk
j−1)×s it holds that Bk,hk ,j is p.u.t. for dk

j > dk
j−1 for j = 1, . . . , hk and k = 1, . . . , l.

(iv) For k = 1, . . . , l define Ck = [Ck,1, Ck,2, . . . , Ck,hk
], Ck,j = [CG

k,j, CE
k,j], with CE

k,j ∈ C
s×(dk

j −dk
j−1) and

CG
k,j ∈ C

s×dk
j−1 for j = 1, . . . , hk, with dk

0 := 0. Furthermore, define CE
k := [CE

k,1, . . . , CE
k,hk

] ∈ C
s×dk

hk .

It holds that (CE
k )

′CE
k = Idk

hk
and (CG

k,j)
′CE

k,i = 0 for 1 ≤ i ≤ j for j = 2, . . . , hk and k = 1, . . . , l.

(v) λ|max|(A•) < 1 and the stable subsystem (A•, B•, C•) of state dimension n• = n − nu is in echelon
canonical form (cf. Hannan and Deistler 1988, Theorem 2.5.2).

Remark 4. As indicated in Remark 3 and discussed in detail in Bauer and Wagner (2012) considering complex
valued quantities is merely for algebraic convenience. For econometric analysis, interest is, of course, on real
valued quantities. These can be straightforwardly obtained from the representation given in Theorem 1 as follows.
First define a transformation matrix (and its inverse):

TR,d :=

[
Id ⊗

[
1
i

]
, Id ⊗

[
1
−i

]]
∈ C

2d×2d, T−1
R,d :=

1
2

[
Id ⊗

[
1, −i

]
Id ⊗

[
1, i

]] .

Starting from the complex valued canonical representation (A, B, C), a real valued canonical representation

yt = CRxt,R + Φdt + εt,

xt+1,R = ARxt,R + BRεt,

with real valued matrices (AR, BR, CR) follows from using the just defined transformation matrix. In particular
it holds that:

AR := diag(Au,R, A•) := diag(A1,R, . . . , Al,R, A•),

BR := [B′
u,R, B′

•]
′ := [B′

1,R, . . . , B′
l,R, B′

•]
′,

CR := [Cu,R, C•] := [C1,R, . . . , Cl,R, C•],

with

(
Ak,R, Bk,R, Ck,R

)
:=

⎧⎨⎩
(

T
R,dkAkT−1

R,dk , T
R,dkBk, CkT−1

R,dk

)
if 0 < ωk < π,(

Ak, Bk, Ck
)

if ωk ∈ {0, π}.

Before we turn to the real valued state process corresponding to the real valued canonical representation, we first
consider the complex valued state process {xt,C}t∈Z in more detail. This process is partitioned according to the
partitioning of the matrices Ck,C into xt,C := [x′

t,u, x′
t,•]

′ := [x′
t,1,C, . . . , x′

t,l,C, x′
t,•]

′, where

xt,k,C :=

{
[x′

t,k, x′
t,k]

′ if 0 < ωk < π,

xt,k if ωk ∈ {0, π},

with

xt+1,k = Jkxt,k + Bkεt, for k = 1, . . . , l.
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For k = 1, . . . , l the sub-vectors xt,k are further decomposed into xt,k := [(x1
t,k)

′, . . . , (xhk
t,k)

′]′, with xj
t,k ∈ C

dk
j

for j = 1, . . . , hk according to the partitioning Ck = [Ck,1, . . . , Ck,hk
].

The partitioning of the complex valued process {xt,C}t∈Z leads to an analogous partitioning of the real
valued state process {xt,R}t∈Z, xt,R := [x′

t,u,R, x′
t,•]

′ := [x′
t,1,R, . . . , x′

t,l,R, x′
t,•]

′, obtained from

xt,k,R :=

{
T
R,dk xt,k,C if 0 < ωk < π,

xt,k if ωk ∈ {0, π},

with the corresponding block of the state equation given by

xt+1,k,R = Ak,Rxt,k,R + Bk,Rεt.

For k = 1, . . . , l the sub-vectors xt,k,R are further decomposed into xt,k,R := [(x1
t,k,R)

′, . . . , (xhk
t,k,R)

′]′,

with xj
t,k,R ∈ R

2dk
j if 0 < ωk < π and xj

t,k,R ∈ R
dk

j if ωk ∈ {0, π} for j = 1, . . . , hk and Ck,R :=
[Ck,1,R, . . . , Ck,hk ,R] decomposed accordingly.

Bauer and Wagner (2012, Theorem 3, p. 1328) show that the processes {xj
t,k,R}t∈Z have unit root structure

((ωk, hk − j + 1)) for j = 1, . . . , hk and k = 1, . . . , l. Furthermore, for j = 1, . . . , hk and k = 1, . . . , l the
processes {xj

t,k,R}t∈Z are not cointegrated, as defined in Definition 3 below. For ωk = 0, the process {xj
t,k,R}t∈Z

is the dj
k-dimensional process of stochastic trends of order h1 − j + 1, while the 2dk

j components of {xj
t,k,R}t∈Z,

for 0 < ωk < π, and the dk
j components of {xj

t,l,R}t∈Z, for ωk = π, are referred to as stochastic cycles of order
hk − j + 1 at their corresponding frequencies ωk.

Remark 5. Parameterizing the stable part of the transfer function using the echelon canonical form is merely
one possible choice. Any other canonical form of the stable subsystem and suitable parameterization based on it
can be used instead for the stable subsystem.

Remark 6. Starting from a state space system (9) with matrices (A, B, C) in canonical form, a solution for
yt, t > 0 (with the solution for t < 0 obtained completely analogously)—for some x1 = [x′

1,u, x′
1,•]

′—is given by

yt =
t−1

∑
j=1

CuAj−1
u Buεt−j + CuAt−1

u x1,u +
t−1

∑
j=1

C•Aj−1
• B•εt−j + C•At−1

• x1,• + Φdt + εt.

Clearly, the term CuAt−1
u x1,u is stochastically singular and is effectively like a deterministic component,

which may lead to an identification problem with Φdt. If, the deterministic component Φdt is rich enough
to “absorb” CuAt−1

u x1,u, then one solution of the identification problem is to set x1,u = 0. Rich enough here
means, e.g., in the I(1) case with Au = I that dt contains an intercept. Analogously, in the MFI(1) case dt

has to contain seasonal dummy variables corresponding to all unit root frequencies. The term C•At−1
• x1,•

decays exponentially and, therefore, does not impact the asymptotic properties of any statistical procedure. It is,
therefore, inconsequential for statistical analysis but convenient (with respect to our definition of unit root
processes) to set x1,• = ∑∞

j=1 Aj−1
• B•ε1−j. This corresponds to the steady state or stationary solution of the

stable block of the state equation, and renders {xt,•}t∈N or, when the solution on Z is considered, {xt,•}t∈Z
stationary. Please note that these issues with respect to starting values, potential identification problems and
their impact or non-impact on statistical procedures also occur in the VAR setting.

Bauer and Wagner (2012, Theorem 2) show that minimality of the canonical state space realization
(A, B, C) implies full row rank of the p.u.t. blocks Bk,hk ,j of Bk,hk

. In addition to proposing the
canonical form, Bauer and Wagner (2012) also provide details how to transform any minimal state
space realization into canonical form: Given a minimal state space system (A, B, C) realizing the
transfer function k(z) ∈ Mn, the first step is to find a similarity transformation T such that Ã = TAT−1
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is of the form given in (10) by using an eigenvalue decomposition, compare Chatelin (1993). In the
second step the corresponding subsystem (Ã•, B̃•, C̃•) is transformed to echelon canonical form as
described in Hannan and Deistler (1988, chp. 2). These two transformations do not lead to a unique
realization, because the restrictions on A do not uniquely determine the unstable subsystem (Au, Bu, Cu).

For example, in the case Ω = ((ω1, h1)) = ((0, 1)), n• = 0, d1
1 < s, such that (Id1

1
, B1, C1) is

a corresponding state space system, the same transfer function k(z) = Is + zC1(1 − z)−1B1 = Is +

C1B1z(1 − z)−1 is realized also by all systems (Id1
1
, TB1, C1T−1), with some regular matrix T ∈ C

d1
1×d1

1 .
To find a unique realization the product C1B1 needs to be uniquely decomposed into factors C1 and B1.
This is achieved by performing a QR decomposition of C1B1 (without pivoting) that leads to C′

1C1 = I.
The additional restriction of B1 being a p.u.t. matrix of full row rank then leads to a unique factorization
of C1B1 into C1 and B1. In the general case with an arbitrary unit root structure Ω, similar arguments
lead to p.u.t. restrictions on sub-blocks Bk,hk ,j in Bu and orthogonality restrictions on sub-blocks of Cu.

The canonical form introduced in Theorem 1 was designed to be useful for cointegration analysis.
To see this, first requires a definition of static and polynomial cointegration (cf. Bauer and Wagner
2012, Definitions 3 and 4).

Definition 3.

(i) Let Ω̃ = ((ω̃1, h̃1), . . . , (ω̃l̃ , h̃l̃)) and Ω = ((ω1, h1), . . . , (ωl , hl)) be two unit root structures. Then Ω̃ �
Ω if

– F(Ω̃) ⊆ F(Ω).
– For all ω ∈ F(Ω̃) for k̃ and k such that ω̃k̃ = ωk = ω it holds that h̃k̃ ≤ hk.

Furthermore, Ω̃ ≺ Ω if Ω̃ � Ω and Ω̃ 	= Ω. For two unit root structures Ω̃ � Ω define the decrease
δk(Ω, Ω̃) of the integration order at frequency ωk, for k = 1, . . . , l, as

δk(Ω, Ω̃) :=

{
hk − h̃k̃ ∃k̃ : ω̃k̃ = ωk ∈ F(Ω̃),

hk ωk /∈ F(Ω̃)
.

(ii) An s-dimensional unit root process {yt}t∈Z with unit root structure Ω is cointegrated of order (Ω, Ω̃),
where Ω̃ ≺ Ω, if there exists a vector β ∈ Rs, β 	= 0, such that {β′yt}t∈Z has unit root structure Ω̃.
In this case the vector β is a cointegrating vector (CIV) of order (Ω, Ω̃).

(iii) All CIVs of order (Ω, Ω̃) span the (static) cointegrating space of order (Ω, Ω̃).16

(iv) An s-dimensional unit root process {yt}t∈Z with unit root structure Ω is polynomially cointegrated
of order (Ω, Ω̃), where Ω̃ ≺ Ω, if there exists a vector polynomial β(z) = ∑

q
m=0 βmzm, βm ∈ Rs, m =

0, . . . , q, βq 	= 0, for some integer 1 ≤ q < ∞ such that

– β(L)′({yt}t∈Z) has unit root structure Ω̃,
– maxk=1,...,l‖β(eiωk )‖δk(Ω, Ω̃) 	= 0.

In this case the vector polynomial β(z) is a polynomial cointegrating vector (PCIV) of order (Ω, Ω̃).
(v) All PCIVs of order (Ω, Ω̃) span the polynomial cointegrating space of order (Ω, Ω̃).

16 The definition of cointegrating spaces as linear subspaces allows to characterize them by a basis and implies a well-defined
dimension. These advantages, however, have the implication that the zero vector is an element of all cointegrating spaces,
despite not being a cointegrating vector in our definition, where the zero vector is excluded. This issue is well-known of
course in the cointegration literature.
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Remark 7.

(i) It is merely a matter of taste whether cointegrating spaces are defined in terms of their order (Ω, Ω̃) or
their decrease δ(Ω, Ω̃) := (δ1(Ω, Ω̃), . . . , δl(Ω, Ω̃)), with δk(Ω, Ω̃) as defined above. Specifying Ω and
δ(Ω, Ω̃) contains the same information as providing the order of (polynomial) cointegration.

(ii) Notwithstanding the fact that CIVs and PCIVs in general may lead to changes of the integration orders
at different unit root frequencies it may be of interest to “zoom in” on only one unit root frequency ωk,
thereby leaving the potential reductions of the integration orders at other unit root frequencies unspecified.
This allows to—entirely similarly as in Definition 3—define cointegrating and polynomial cointegrating
spaces of different orders at a single unit root frequency ωk. Analogously one can also define cointegrating
and polynomial cointegrating spaces of different orders for subsets of the frequencies in F(Ω).

(iii) In principle the polynomial cointegrating spaces defined so far are infinite-dimensional as the polynomial
degree is not bounded. However, since every polynomial vector β(z) can be written as β0(z)+ βΩ(z)ΔΩ(z),
where by definition {ΔΩyt}t∈Z has empty unit root structure, it suffices to consider PCIVs of polynomial
degree smaller than the polynomial degree of ΔΩ(z). This shows that it is sufficient to consider finite
dimensional polynomial cointegrating spaces. When considering, as in item (ii), (polynomial) cointegration
only for one unit root it similarly suffices to consider polynomials of maximal degree equal to hk − 1 for real
unit roots and 2hk − 1 for complex unit roots. Thus, in the I(2) case it suffices to consider polynomials of
degree one.

(iv) The argument about maximal relevant polynomial degrees given in item (iii) can be made more precise
and combined with the decrease in Ω achieved. Every polynomial vector β(z) can be written as β0(z) +
βωk ,δk (z)Δ

δk
ωk (z) for δk = 1, . . . , hk. By definition it holds that {Δδk

ωk yt}t∈Z has integration order hk − δk
at frequency ωk. Thus, it suffices to consider PCIVs of polynomial degree smaller than δk for ωk ∈ {0, π}
or 2δk for 0 < ωk < π when considering the polynomial cointegrating space at ωk with decrease δk. In the
MFI(1) case therefore, when considering only one unit root frequency, again only polynomials of degree one
need to be considered. This space is often referred to in the literature as dynamic cointegration space.

To illustrate the advantages of the canonical form for cointegration analysis consider

yt =
l

∑
k=1

hk

∑
j=1

Ck,j,Rxj
t,k,R + C•xt,• + Φdt + εt.

By Remark 4, the process {xj
t,k,R}t∈Z is not cointegrated. This implies that β ∈ Rs, β 	= 0,

reduces the integration order at unit root zk to hk − j if and only if β′[Ck,1,R, . . . , Ck,j,R] = 0 and
β′Ck,j+1,R 	= 0 or equivalently β′[Ck,1, . . . , Ck,j] = 0 and β′Ck,j+1 	= 0 (using the transformation to the
complex matrices of the canonical form, as discussed in Remark 4, and that β′[Ck, Ck] = 0 if and only if
β′Ck = 0). Thus, the CIVs are characterized by orthogonality to sub-blocks of Cu.

The real valued representation given in Remark 4 used in its partitioned form just above
immediately leads to necessary orthogonality constraint for polynomial cointegration of degree one:

β(L)′(yt) = β(L)′(Cu,Rxt,u,R + C•xt,• + Φdt + εt)

= β′
0Cu,Rxt,u,R + β′

1Cu,Rxt−1,u,R + β(L)′(C•xt,• + Φdt + εt)

= β′
0Cu,R(Au,Rxt−1,u,R + Bu,Rεt−1) + β′

1Cu,Rxt−1,u,R + β(L)′(C•xt,• + Φdt + εt)

= (β′
0Cu,RAu,R + β′

1Cu,R)xt−1,u,R + β′
0Cu,RBu,Rεt−1 + β(L)′(C•xt,• + Φdt + εt)

= (β′
0CuAu + β′

1Cu)xt−1,u + β′
0CuBuεt−1 + β(L)′(C•xt,• + Φdt + εt)

follows. Since all terms except the first are stationary or deterministic, a necessary condition for a

reduction of the unit root structure is the orthogonality of [ β′
0 β′

1 ]′ to sub-blocks of
[

Cu,RAu,R
Cu,R

]
or
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sub-blocks of the complex matrix
[

CuAu

Cu

]
. Please note, however, that this orthogonality condition

is not sufficient for [β′
0, β′

1]
′ to be a PCIV, because it does not imply maxk=1,...,l‖β(eiωk )‖δk(Ω, Ω̃) 	= 0.

For a detailed discussion of polynomial cointegration, when considering also higher polynomial
degrees, see Bauer and Wagner (2012, sct. 5).

The following examples illustrate cointegration analysis in the state space framework for the
empirically most relevant, i.e., the I(1), MFI(1) and I(2) cases.

Example 1 (Cointegration in the I(1) case). In the I(1) case, neglecting the stable subsystem and the
deterministic components for simplicity, it holds that

yt = C1xt,1 + εt, yt, εt ∈ R
s, xt,1 ∈ R

d1
1 , C1 ∈ R

s×d1
1 ,

xt+1,1 = xt,1 + B1εt, B1 ∈ R
d1

1×s.

The vector β ∈ Rs, β 	= 0, is a CIV of order ((0, 1), {}) if and only if β′C1 = 0.

Example 2 (Cointegration in the MFI(1) case with complex unit root zk). In the MFI(1) case with unit
root structure Ω = ((ωk, 1)) and complex unit root zk, neglecting the stable subsystem and the deterministic
components for simplicity, it holds that

yt = Ck,Rxt,k,R + εt

= [ Ck Ck ]

[
xt,k
xt,k

]
+ εt,

yt, εt ∈ R
s, xt,k,R ∈ R

2dk
1 , xt,k ∈ C

dk
1 , Ck,R ∈ R

s×2dk
1 , Ck ∈ C

s×dk
1 ,[

xt+1,k
xt+1,k

]
=

[
zk Idk

1
0

0 zk Idk
1

] [
xt,k
xt,k

]
+

[
Bk
Bk

]
εt, Bk ∈ C

dk
1×s.

The vector β ∈ Rs, β 	= 0, is a CIV of order (Ω, {}) if and only if

β′Ck = 0 (and thus β′Ck = 0).

The vector polynomial β(z) = β0 + β1z, with β0, β1 ∈ Rs, [β′
0, β′

1]
′ 	= 0, is a PCIV of order (Ω, {}) if and

only if

[β′
0, β′

1]

[
zkCk zkCk
Ck Ck

]
= 0, (11)

which is equivalent to

(zkβ′
0 + β′

1)Ck = 0.

The fact that the matrix in (11) has a block structure with two blocks of conjugate complex columns implies
some additional structure also on the space of PCIVs, here with polynomial degree one. More specifically it
holds that if β0 + β1z is a PCIV of order (Ω, {}), also −β1 + (β0 + 2 cos(ωk)β1)z is a PCIV of order (Ω, {}).
This follows from

(zk(−β1)
′ + (β0 + 2 cos(ωk)β1)

′)Ck = (β′
0 + (2R(zk)− zk)β′

1)Ck

= (β′
0 + zkβ′

1)Ck

= zk(zkβ′
0 + β′

1)Ck = 0.
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Thus, the space of PCIVs of degree (up to) one inherits some additional structure emanating from the occurrence
of complex eigenvalues in complex conjugate pairs.

Example 3 (Cointegration in the I(2) case). In the I(2) case, neglecting the stable subsystem and the
deterministic components for simplicity, it holds that

yt = CE
1,1xE

t,1 + CG
1,2xG

t,2 + CE
1,2xE

t,2 + εt,

yt, εt ∈ R
s, xE

t,1, xG
t,2 ∈ R

d1
1 , xE

t,2 ∈ R
d1

2−d1
1 , CE

1,1, CG
1,2 ∈ R

s×d1
1 , CE

1,2 ∈ R
s×(d1

2−d1
1),

xE
t+1,1 = xE

t,1 + xG
t,2 + B1,1εt,

xG
t+1,2 = xG

t,2 + B1,2,1εt,

xE
t+1,2 = xE

t,2 + B1,2,2εt, B1,1 ∈ R
d1

1×s, B1,2,1 ∈ R
d1

1×s, B1,2,2 ∈ R
(d1

2−d1
1)×s.

The vector β ∈ Rs, β 	= 0 is a CIV of order ((0, 2), (0, 1)) if and only if

β′CE
1,1 = 0 and β′[CG

1,2, CE
1,2] 	= 0.

The vector β ∈ Rs, β 	= 0, is a CIV of order ((0, 2), {}) if and only if

β′[CE
1,1, CG

1,2, CE
1,2] = 0.

The vector polynomial β(z) = β0 + β1z, with β0, β1 ∈ Rs is a PCIV of order ((0, 2), {}) if and only if

[β′
0, β′

1]

[
CE

1,1 CE
1,1 + CG

1,2 CE
1,2

CE
1,1 CG

1,2 CE
1,2

]
= 0 and β(1) = β0 + β1 	= 0.

The above orthogonality constraint indicates that the two cases CG
1,2 = 0 and CG

1,2 	= 0 have to be considered
separately for polynomial cointegration analysis. Consider first the case CG

1,2 = 0. In this case the orthogonality
constraints imply β′

0CE
1,1 = 0, β′

1CE
1,1 = 0 and (β0 + β1)

′CE
1,2 = 0. Thus, the vector β0 + β1 is a CIV of order

((0, 2), {}) and therefore β(z) = β0 + β1z is of “non-minimum” degree, one in this case rather than zero
(β0 + β1). For a formal definition of minimum degree PCIVs see Bauer and Wagner (2003, Definition 4). In case
CG

1,2 	= 0 there are PCIVs of degree one that are not simple transformations of static CIVs. Consider β(z) =
β0 + β1z = γ1(1 − z) + γ2 such that {γ′

1(yt − yt−1) + γ′
2yt}t∈Z is stationary. The integrated contribution

to {γ′
1(yt − yt−1)}t∈Z is given by γ′

1(1 − L)({CE
1,1xE

t,1}t∈Z) = {γ′
1CE

1,1xG
t−1,2 + γ′

1CE
1,1B1,1εt−1}t∈Z,

with γ′
1CE

1,1 	= 0. This term is eliminated by {γ′
2CG

1,2xG
t,2}t∈Z in {γ′

2yt}t∈Z, if γ′
1CE

1,1 + γ′
2CG

1,2 = 0, which is
only possible if CG

1,2 	= 0. Additionally, γ′
2[CE

1,1, CE
1,2] = 0 needs to hold, such that there is no further integrated

contribution to {γ′
2yt}t∈Z. Neither γ1 nor γ2 are CIVs since both violate the necessary conditions given in the

definition of CIVs, which implies that β(z) is indeed a “minimum degree” PCIV.

As was shown above, the unit root and cointegration properties of {yt}t∈Z depend on the
sub-blocks of Cu and the eigenvalue structure of Au. We, therefore, define the more encompassing
state space unit root structure containing information on the geometrical and algebraic multiplicities
of the eigenvalues of Au (cf. Bauer and Wagner 2012, Definition 2).

Definition 4. A unit root process {yt}t∈Z with a canonical state space representation as given in Theorem 1
has state space unit root structure

ΩS :=
(
(ω1, d1

1, . . . , d1
h1
), . . . , (ωl , dl

1, . . . , dl
hl
)
)

where 0 ≤ dk
1 ≤ dk

2 ≤ · · · ≤ dk
hk

≤ s for k = 1, . . . , l. For {yt}t∈Z with empty unit root structure ΩS := {}.
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Remark 8. The state space unit root structure ΩS contains information concerning the integration properties
of the process {yt}t∈Z, since the integers dk

j , k = 1, . . . , l, j = 1, . . . , hk describe (multiplied by two for
k such that 0 < ωk < π) the numbers of non-cointegrated stochastic trends or cycles of corresponding
integration orders, compare again Remark 4. As such, ΩS describes properties of the stochastic process
{yt}t∈Z—and, therefore, the state space unit root structure ΩS partitions unit root processes according to
these (co-)integration properties. These (co-)integration properties, however, are invariant to a chosen canonical
representation, or more generally invariant to whether a VARMA or state space representation is considered.
For all minimal state representations of a unit root process {yt}t∈Z these indices—being related to the Jordan
normal form—are invariant.

As mentioned in Section 2, Paruolo (1996, Definition 3) introduces integration indices at frequency
zero as a triple of integers (r0, r1, r2). These correspond to the numbers of columns of the matrices
β, β1, β2 in the error correction representation of I(2) VAR processes, see, e.g., Johansen (1997, sct. 3).
Here, r2 is the number of stochastic trends of order two, i.e., r2 = d1

1. Furthermore, r1 is the number
of stochastic trends of order one that do not cointegrate with β′

2Δ0{yt}t∈Z and hence r1 = d1
2 − d1

1.
Therefore, the integration indices at frequency zero are in one-one correspondence with the state
space unit root structure ΩS = ((0, d1

1, d1
2)) for I(2) processes and the dimension s = r0 + r1 + r2 of

the process.
The canonical form given in Theorem 1 imposes p.u.t. structures on sub-blocks of the matrix

Bu. The occurrence of these blocks—related to dk
j > dk

j−1—is determined by the state space unit root
structure ΩS. The number of free entries in these p.u.t.-blocks, however, is not determined by ΩS.
Consequently, we need structure indices p ∈ N

nu
0 indicating for each row the position of a potentially

restricted positive element, as formalized below:

Definition 5 (Structure indices). For the block Bu ∈ Cnu×s of the matrix B of a state space realization
(A, B, C) in canonical form, define the corresponding structure indices p ∈ N

nu
0 as

pi :=

{
0 if the i-th row of Bu is not part of a p.u.t. block,
j if the i-th row of Bu is part of a p.u.t. block and its j-th entry is restricted to be positive.

Remark 9. Since sub-blocks of Bu corresponding to complex unit roots are of the form Bk,C = [B′
k, B′

k]
′,

the entries restricted to be positive are located in the same columns and rows of both Bk and Bk.
Thus, the structure indices pi of the corresponding rows are identical for Bk and Bk. Therefore, it would
be possible to omit the parts of p corresponding to the blocks Bk. It is, however, as will be seen in Definition 9,
advantageous for the comparison of unit root structures and structure indices that p is a vector with nu entries.

Example 4. Consider the following state space system:

yt =
[
CE

1,1 CG
1,2 CE

1,2

]
xt + εt yt, εt ∈ R

2, xt ∈ R
3, CE

1,1, CG
1,2, CE

1,2 ∈ R
2×1 (12)

xt+1 =

⎡⎣1 1 0
0 1 0
0 0 1

⎤⎦ xt +

⎡⎣ B1,1
B1,2,1
B1,2,2

⎤⎦ εt, x0 = 0, B1,1, B1,2,1, B1,2,2 ∈ R
1×2.

In canonical form B1,2,1 and B1,2,2 are p.u.t. matrices and B1,1 is unrestricted. If, e.g., the second entry b1,2,1,2

of B1,2,1 and the first entry b1,2,2,1 of B1,2,2 are restricted to be positive, then

B =

⎡⎣ ∗ ∗
0 b1,2,1,2

b1,2,2,1 ∗

⎤⎦ ,

where the symbol ∗ denotes unrestricted entries. In this case p = [0, 2, 1]′.
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For given state space unit root structure ΩS the matrix Au is fully determined.
The parameterization of the set of feasible matrices Bu for given structure indices p and of the set of
stable subsystems (A•, B•, C•) for given Kronecker indices α• (cf. Hannan and Deistler 1988, chp. 2.)
is straightforward, since the entries in these matrices are either unrestricted, restricted to zero or
restricted to be positive. Matters are a bit more complicated for Cu. One possibility to parameterize
the set of possible matrices Cu for a given state space unit root structure ΩS is to use real and complex
valued Givens rotations (cf. Golub and van Loan 1996, chp. 5.1).

Definition 6 (Real Givens rotation). The real Givens rotation Rq,i,j(θ) ∈ Rq×q, θ ∈ [0, 2π) is defined as

Rq,i,j(θ) :=

⎡⎢⎢⎢⎢⎢⎣
Ii−1 0

cos(θ) 0 sin(θ)
0 Ij−1−i 0

− sin(θ) 0 cos(θ)
0 Iq−j

⎤⎥⎥⎥⎥⎥⎦ .

Remark 10. Givens rotations allow transforming any vector v = [v1, v2, ..., vq]′ ∈ Rq into a vector of the form
[ṽ1, 0, ..., 0]′ with ṽ1 ≥ 0. This is achieved by the following algorithm:

1. Set j = 1, v(1)1 = v1 and v(1) = v.

2. Represent [v(j)
1 , vq−j+1]

′ using polar coordinates as [v(j)
1 , vq−j+1]

′ = [rj cos(θq−j), rj sin(θq−j)]
′,

with rj ≥ 0 and θq−j ∈ [0, 2π). If rj = 0, set θq−j = 0 (cf. Otto 2011, chp. 1.5.3, p. 39).

Then R2,1,2(θq−j)[v
(j)
1 , vq−j+1]

′ = [v(j+1)
1 , 0]′ such that v(j+1) = Rq,1,q−j+1(θq−j)v(j) =

[v(j+1)
1 , v2, . . . , vq−j, 0, . . . , 0]′, with v(j+1)

1 ≥ 0.
3. If j = q − 1, stop. Else increment j by one (j → j + 1) and continue at step 2.

This algorithm determines a unique vector θ = [θ1, ..., θq−1]
′ for every vector v ∈ Rq.

Remark 11. The determinant of real Givens rotations is equal to one, i.e., det(Rs,i,j(θ)) = 1 for all s, i, j ∈ N

and all θ ∈ [0, 2π). Thus, it is not possible to factorize an orthonormal matrix Q with det(Q) = −1 into
a product of Givens rotations. This obvious fact has implications for the parameterization of C-matrices as is
detailed below.

Definition 7 (Complex Givens rotation). The complex Givens rotation Qq,i,j(ϕ) ∈ Cq×q, ϕ :=
[ϕ1, ϕ2]

′ ∈ ΘC := [0, π/2]× [0, 2π), is defined as

Qq,i,j(ϕ) :=

⎡⎢⎢⎢⎢⎢⎣
Ii−1 0

cos(ϕ1) 0 sin(ϕ1)eiϕ2

0 Ij−1−i 0
− sin(ϕ1)e−iϕ2 0 cos(ϕ1)

0 Iq−j

⎤⎥⎥⎥⎥⎥⎦ .

Remark 12. Complex Givens rotations allow transforming any vector v = [v1, v2, ..., vq]′ ∈ Cq into a vector
of the form [ṽ1, 0, ..., 0]′ with ṽ1 ∈ C. This is achieved by the following algorithm:

1. Set j = 1, v(1)1 = v1 and v(1) = v.

2. Represent [v(j)
1 , vq−j+1]

′ using polar coordinates as [v(j)
1 , vq−j+1]

′ = [aje
iϕa,j , bje

iϕb,j ]′, with aj, bj ≥ 0

and ϕa,j, ϕb,j ∈ [0, 2π). If v(j)
1 = 0, set ϕa,j = 0 and if vq−j+1 = 0, set ϕb,j = 0 (cf. Otto 2011,

chp. 8.1.3, p. 222).
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3. Set

ϕq−j,1 =

⎧⎪⎪⎨⎪⎪⎩
tan−1

( bj
aj

)
if aj > 0,

π/2 if aj = 0, bj > 0,

0 if aj = 0, bj = 0,

ϕq−j,2 = ϕa,j − ϕb,j mod 2π.

Then Q2,1,2(ϕq−j)[v
(j)
1 , vq−j+1]

′ = [v(j+1)
1 , 0]′ such that v(j+1) = Qq,1,q−j+1(θq−1)v(j) =

[v(j+1)
1 , v2, . . . , vq−j, 0]′, with v(j+1)

1 ∈ C.
4. If j = q − 1, stop. Else increment j by one (j → j + 1) and continue at step 2.

This algorithm determines a unique vector ϕ = [ϕ1,1, ϕ1,2, ..., ϕq−1,2]
′ for every vector v ∈ Cq.

To set the stage for the general case, we start the discussion of the parameterization of the set
of matrices (A, B, C) in canonical form with the MFI(1) and I(2) cases. These two cases display all
ingredients required later for the general case. The MFI(1) case illustrates the usage of either real or
complex Givens rotations, depending on whether the considered C-block corresponds to a real or
complex unit root. The I(2) case highlights recursive orthogonality constraints on the parameters of
the C-block, which are related to the polynomial cointegration properties (cf. Example 3).

3.1. The Parameterization in the MFI(1) Case

The state space unit root structure of an MFI(1) process is given by ΩS = ((ω1, d1
1), . . . , (ωl , dl

1)).
For the corresponding state space system (A, B, C) in canonical form, the sub-blocks of Au are equal
to Jk = zk Idk

1
, the sub-blocks Bk of Bu are p.u.t. and C′

kCk = Idk
1
, for k = 1, . . . , l.

Starting with the sub-blocks of Cu, it is convenient to separate the discussion of the
parameterization of Cu-blocks into the real case, where ωk ∈ {0, π} and Ck ∈ R

s×dk
1 , and the complex

case with 0 < ωk < π and Ck ∈ C
s×dk

1 . For the case of real unit roots the two cases dk
1 < s and dk

1 = s
have to be distinguished. For brevity of notation refer to the considered real block simply as C ∈ Rs×d.
Using this notation, the set of matrices to be parameterized is

Os,d := {C ∈ R
s×d|C′C = Id}.

The parameterization of Os,d is based on the combination of real Givens rotations, as given in
Definition 6, that allow transforming every matrix in Os,d to the form [Id, 0′

(s−d)×d]
′ for d < s. For d = s,

Givens rotations allow transforming every matrix C ∈ Os,s either to Is or I−s := diag(Is−1, −1),
since, compare Remark 11, for the transformed matrix C̃(s) it holds that det(C) = det(C̃(s)) ∈ {−1, 1}.
This is achieved with the following algorithm:

1. Set j = 1 and C(1) = C.

2. Transform the entries [cj,j, . . . , cj,d] in the j-th row of C(j), to [c̃j,j, 0, . . . , 0], c̃j,j ≥ 0. Since this is a
row vector, this is achieved by right-multiplication of C(j) with transposed Givens rotations and
the required parameters are obtained via the algorithm described in Remark 10. The first j − 1
entries of the j-th row remain unchanged. Denote the transformed matrix by C(j+1).

3. If j = d − 1 stop. Else increment j by one (j → j + 1) and continue at step 2.
4. Collect all parameters used for the Givens rotations in steps 1 to 3 in a parameter vector θR.

Steps 1–3 correspond to a QR decomposition of C′ = QC̃ ′, with an orthonormal matrix Q given
by the product of the Givens rotations. Please note that the first j − 1 entries of the j-th column of
C̃ = C(d) are equal to zero by construction.

5. Set j = 0 and C̃(0) = C̃.
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6. Collect the entries in column d − j of C̃(j) which have not been transformed to zero by previous
transformations into the vector [cd−j,d−j, cd+1,d−j, . . . , cs,d−j]

′. Using the algorithm described
in Remark 10 transform this vector to [c̃d−j,d−j, 0, . . . , 0]′ by left-multiplication of C̃(j) with
Givens rotations. Since Givens rotations are orthonormal, the transformed matrix C̃(j+1) is
still orthonormal implying for its entries c̃d−j,d−j = 1 and c̃i,d−j = 0 for all i < d − j. An exception
occurs if d = s. In this case cd−j,d−j ∈ {−1, 1} and no Givens rotations are defined.

7. If j = d − 1 stop. Else increment j by one (j → j + 1) and continue at step 6.
8. Collect all parameters used for the Givens rotations in steps 5 to 7 in a parameter vector θL.

The parameter vector θ = [θ′
L, θ′

R]
′, contains the angles of the employed Givens rotations and

provides one way of parameterizing Os,d. The following Lemma 1 demonstrates the usefulness
of this parameterization.

Lemma 1 (Properties of the parameterization of Os,d). Define for d ≤ s a mapping θ → CO(θ) from
ΘR

O := [0, 2π)d(s−d) × [0, 2π)d(d−1)/2 → Os,d by

CO(θ) :=

[
d

∏
i=1

s−d

∏
j=1

Rs,i,d+j(θL,(s−d)(i−1)+j)

]′ [
Id

0(s−d)×d

] [
d−1

∏
i=1

i

∏
j=1

Rd,d−i,d−i+j(θR,i(i−1)/2+j)

]

:= RL(θL)
′
[

Id
0(s−d)×d

]
RR(θR),

with θ := [θ′
L, θ′

R]
′, where θL := [θL,1, . . . , θL,d(s−d)]

′ and θR := [θR,1, . . . , θR,d(d−1)/2]
′. The following

properties hold:

(i) Os,d is closed and bounded.
(ii) The mapping CO(·) is infinitely often differentiable.

For d < s, it holds that

(iii) For every C ∈ Os,d there exists a vector θ ∈ ΘR
O such that

C = CO(θ) = RL(θL)
′
[

Id
0(s−d)×d

]
RR(θR).

The algorithm discussed above defines the inverse mapping C−1
O : Os,d → ΘR

O.
(iv) The inverse mapping C−1

O (·)—the parameterization of Os,d—is infinitely often differentiable on the
pre-image of the interior of ΘR

O. This is an open and dense subset of Os,d.

For d = s, it holds that

(v) Os,s is a disconnected space in Rs×s with two disjoint non-empty closed subsets O+
s,s := {C ∈ Rs×s|C′C =

Is, det(C) = 1} and O−
s,s := {C ∈ Rs×s|C′C = Is, det(C) = −1}.

(vi) For every C ∈ O+
s,s there exists a vector θ ∈ ΘR

O such that

C = CO(θ) = RL(θL)
′
[

Id

]
RR(θR) = RR(θR).

In this case, steps 1-4 of the algorithm discussed above define the inverse mapping C−1
O : O+

s,s → ΘR
O.

(vii) Define v := [π, . . . , π]′ ∈ Rs(s−1)/2. Then a parameterization of Os,s is given by

C±
O (C) =

{
v + C−1

O (C) if C ∈ O+
s,s

−(v + C−1
O (CI−s )) if C ∈ O−

s,s.
.
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The parameterization is infinitely often differentiable with infinitely often differentiable inverse on an open
and dense subset of Os,s.

Remark 13. The following arguments illustrate why C−1
O is not continuous on the pre-image of the boundary

of ΘR
O: Consider the unit sphere O3,1 = {C ∈ R3|C′C = ‖C‖2 = 1}. One way to parameterize the unit sphere

is to use degrees of longitude and latitude. Two types of discontinuities occur: After fixing the location of the zero
degree of longitude, i.e., the prime meridian, its anti-meridian is described by both 180◦W and 180◦E. Using the
half-open interval [0, 2π) in our parametrization causes a similar discontinuity. Second, the degree of longitude
is irrelevant at the north pole. As seen in Remark 10, with our parameterization a similar issue occurs when the
first two entries of C to be compared are both equal to zero. In this case the parameter of the Givens rotation is set
to zero, although every θ will produce the same result. Both discontinuities clearly occur on a thin subset of Os,d.

As in the parametrization of the VAR I(1)-case in the VECM framework, where the restriction β =

[Is−d, β∗]′ can only be imposed when the upper (s − d)× (s − d) block of the true β0 of the DGP is of full rank
(cf. Johansen 1995, chp. 5.2), the set where the discontinuities occur can effectively be changed by a permutation
of the components of the observed time series. This corresponds to redefining the locations of the prime meridian
and the poles.

Remark 14. Please note that the parameterization partitions the parameter vector θ into two parts θL ∈
[0, 2π)d(s−d) and θR ∈ [0, 2π)(d−1)d/2. Since changing the parameter values in θR does not change the column
space of CO(θ), which, as seen above, determines the cointegrating vectors, θL fully characterizes the (static)
cointegrating space. Please note that the dimension of θL is d(s − d) and thus coincides with the number of free
parameters in β in the VECM framework (cf. Johansen 1995, chp. 5.2).

Example 5. Consider the matrix

C =

⎡⎢⎣ 0 1√
2

−1√
2

1
2

1√
2

1
2

⎤⎥⎦
with d = 2 and s = 3. As discussed, the static cointegrating space is characterized by the left kernel of this
matrix. The left kernel of a matrix in R3×2 with full rank two is given by a one-dimensional space, with the
corresponding basis vector parameterized, when normalized to length one, by two free parameters. Thus, for the
characterization of the static cointegrating space two parameters are required, which exactly coincides with the
dimension of θL given in Remark 14. The parameters in θR correspond to the choice of a basis of the image of C.
Having fixed the two-dimensional subspace through θL, only one free parameter for the choice of an orthonormal
basis remains, which again coincides with the dimension given in Remark 14. To obtain the parameter vector,
the starting point is a QR decomposition of C′ = RR(θR)C̃′. In this example RR(θR) = R2,1,2(θR,1), with θR,1

to be determined. To find θR,1, solve [ 0 1√
2 ]R2,1,2(θR,1)

′ = [ r 0 ] for r ≥ 0 and θR,1 ∈ [0, 2π). In other

words, find r ≥ 0 and θR,1 ∈ [0, 2π) such that [ 0 1√
2 ] = r[ cos(θR,1) sin(θR,1) ], which leads to

r = 1√
2

, θR,1 = π
2 . Thus, the orthonormal matrix RR(θR) is equal to R2,1,2

(
π
2
)

and the transpose of the upper

triangular matrix C̃′ is equal to:

C̃ = C̃(0) = C · R2,1,2

(π

2

)′
=

⎡⎢⎣ 0 1√
2

−1√
2

1
2

1√
2

1
2

⎤⎥⎦ [ 0 −1
1 0

]
=

⎡⎢⎣
1√
2

0
1
2

1√
2

1
2 − 1√

2

⎤⎥⎦ .
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Second, transform the entries in the lower 1 × 2-sub-block of C̃(0) to zero, starting with the last column.
For this find θL,2 ∈ [0, 2π) such that R3,2,3(θL,2)[ 0 1√

2
− 1√

2 ]′ = [ 0 1 0 ]′, i.e., [ 1√
2

− 1√
2 ]′ =

r[ cos(θL,2) sin(θL,2) ]. This yields r = 1, θL,2 = 7π
4 . Next compute C̃(1) = R3,2,3(

7π
4 )C̃(0):

C̃(1) = R3,2,3

(
7π

4

)
· C · R2,1,2

(π

2

)′
=

⎡⎢⎣ 1 0 0
0 1√

2
−1√

2
0 1√

2
1√
2

⎤⎥⎦
⎡⎢⎣ 0 1√

2
−1√

2
1
2

1√
2

1
2

⎤⎥⎦ [ 0 −1
1 0

]
=

⎡⎢⎣
1√
2

0

0 1
1√
2

0

⎤⎥⎦ .

In the final step find θL,1 ∈ [0, 2π) such that R3,1,3(θL,1)[
1√
2

0 1√
2 ]′ = [ 1 0 0 ]′, i.e.,

[ 1√
2

1√
2 ]′ = r[ cos(θL,1) sin(θL,1) ]. The solution is r = 1, θL,1 = π

4 . Combining the transformations
leads to

R3,1,3

(π

4

)
· R3,2,3

(
7π

4

)
· C · R2,1,2

(π

2

)′
=⎡⎢⎣

1√
2

0 1√
2

0 1 0
−1√

2
0 1√

2

⎤⎥⎦
⎡⎢⎣ 1 0 0

0 1√
2

−1√
2

0 1√
2

1√
2

⎤⎥⎦
⎡⎢⎣ 0 1√

2
−1√

2
1
2

1√
2

1
2

⎤⎥⎦ [ 0 −1
1 0

]
=

⎡⎣ 1 0
0 1
0 0

⎤⎦ .

The parameter vector for this matrix is therefore θ = [θ′
L, θ′

R]
′ =

[[
π
4 , 7π

4
]

,
[

π
2
]]′ with θ = C−1

O (C).

In case of complex unit roots, referring for brevity again to the considered block Ck simply as
C ∈ Cs×d, the set of matrices to be parameterized is

Us,d := {C ∈ C
s×d|C′C = Id}.

The parameterization of this set is based on the combination of complex Givens rotations, as given
in Definition 7, which can be used to transform every matrix in Us,d to the form [Dd, 0′

(s−d)×d]
′ with a

diagonal matrix Dd whose diagonal elements are of unit modulus. This transformation is achieved
with the following algorithm:

1. Set j = 1 and C(1) = C.

2. Transform the entries [cj,j, . . . , cj,d] in the j-th row of C(j), to [c̃j,j, 0, . . . , 0]. Since this is a row vector,
this is achieved by right-multiplication of C with transposed Givens rotations and the required
parameters are obtained via the algorithm described in Remark 12. The first j − 1 entries of the
j-th row remain unchanged. Denote the transformed matrix by C(j+1).

3. If j = d − 1 stop. Else increment j by one (j → j + 1) and continue at step 2.
4. Collect all parameters used for the Givens rotations in steps 1 to 3 in a parameter vector ϕR.

Step 1–3 corresponds to a QR decomposition of C′ = QC̃ ′, with a unitary matrix Q given by
the product of the Givens rotations. Please note that the first j − 1 entries of the j-th column of
C̃ = C(d) are equal to zero by construction.

5. Set j = 0 and C̃(0) = C̃.

6. Collect the entries in column d − j of C̃(j) which have not been transformed to zero by previous
transformations into the vector [cd−j,d−j, cd+1,d−j, . . . , cs,d−j]

′. Using the algorithm described in
Remark 12 transform this vector to [c̃d−j,d−j, 0, . . . , 0]′ by left-multiplication of C̃(j) with Givens
rotations. Since Givens rotations are unitary, the transformed matrix C̃(j+1) is still unitary
implying for its entries |c̃d−j,d−j| = 1 and c̃i,d−j = 0 for all i < d − j. An exception occurs
if d = s. In this case |cd−j,d−j| = 1 and no Givens rotations are defined.

7. If j = d − 1 stop. Else increment j by one (j → j + 1) and continue at step 6.
8. Collect all parameters used for the Givens rotations in steps 5 to 7 in a parameter vector ϕL.
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9. Transform the diagonal entries of the transformed matrix C̃(d) = [Dd, 0′
(s−d)×d]

′ into polar
coordinates and collect the angles in a parameter vector ϕD.

The following lemma demonstrates the usefulness of this parameterization.

Lemma 2 (Properties of the parametrization of Us,d). Define for d ≤ s a mapping ϕ → CU(ϕ) from

ΘC
U := Θd(s−d)

C
× Θ(d−1)d/2

C
× [0, 2π)d → Us,d by

CU(ϕ) :=

[
d

∏
i=1

s−d

∏
j=1

Qs,i,d+j(ϕL,(s−d)(i−1)+j)

]′ [
Dd(ϕD)

0(s−d)×d

] [
d−1

∏
i=1

i

∏
j=1

Qd,d−i,d−i+j(ϕR,i(i−1)/2+j)

]

:= QL(ϕL)
′
[

Dd(ϕD)

0(s−d)×d

]
QR(ϕR),

with ϕ := [ϕ′
L,ϕ′

R,ϕ′
D]

′, where ϕL = [ϕL,1, . . . , ϕL,d(s−d)]
′, ϕR := [ϕR,1, . . . , ϕR,d(d−1)/2]

′ and ϕD :=
[ϕD,1, . . . , ϕD,d]

′ and where Dd(ϕD) = diag(eiϕD,1 , . . . , eiϕD,d). The following properties hold:

(i) Us,d is closed and bounded.
(ii) The mapping CU(ϕ) is infinitely often differentiable.
(iii) For every C ∈ Us,d a vector ϕ ∈ ΘC

U exists such that

C = CU(ϕ) = QL(ϕL)
′
[

Dd(ϕD)

0(s−d)×d

]
QR(ϕR).

The algorithm discussed above defines the inverse mapping C−1
U : Us,d → ΘR

U.
(iv) The inverse mapping C−1

U (·)—the parameterization of Us,d—is infinitely often differentiable on an open
and dense subset of Us,d.

Remark 15. Note the partitioning of the parameter vector ϕ into the parts ϕL,ϕD and ϕR. The component ϕL
fully characterizes the column space of CU(ϕ), i.e., ϕL determines the cointegrating spaces.

Example 6. Consider the matrix

C =

⎡⎣ 1−i
2

1−i
2

1+i
2

−1−i
2

0 0

⎤⎦ .

The starting point is again a QR decomposition of C′ = QR(ϕR)C̃
′ = Q2,1,2(ϕR,1)C̃′. To find a complex

Givens rotation such that [ 1−i
2

1−i
2 ]Q2,1,2(ϕR,1)

′ = [ reiϕa 0 ] with r > 0, transform the entries of
[ 1−i

2
1−i

2 ]′ into polar coordinates. The equation [ 1−i
2

1−i
2 ]′ = [ aeiϕa beiϕb ]′ has the solutions

a = b = 1√
2

and ϕa = ϕb = 7π
4 . Using the results of Remark 12, the parameters of the Givens rotation are

ϕR,1,1 = tan−1( b
a ) =

π
4 and ϕR,1,2 = ϕa − ϕb = 0. Right-multiplication of C with Q2,1,2

([
π
4 , 0

])′ leads to

C̃ = CQ2,1,2

([π

4
, 0
])′

= C

[ 1√
2

1√
2

−1√
2

1√
2

]′

=

⎡⎢⎣
1−i√

2
0

0 −1−i√
2

0 0

⎤⎥⎦ =

[
D2(ϕD)

01×2

]
.

Since the entries in the lower 1 × 2-sub-block of C̃ are already equal to zero, the remaining complex Givens
rotations are Q3,2,3([0, 0]) = Q3,1,3([0, 0]) = I3. Finally, the parameter values corresponding to the diagonal
matrix D2(ϕD) = diag(eiϕD,1 , eiϕD,2) = diag( 1−i√

2
, −1−i√

2
) are ϕD,1 = 3π

4 and ϕD,2 = 5π
4 .

The parameter vector for this matrix is therefore ϕ = [ϕ′
L,ϕ′

R,ϕ′
D]

′ =
[
[0, 0, 0, 0],

[
π
4 , 0

]
,
[ 3π

4 , 5π
4
]]′,

with ϕ = C−1
U (C).
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Components of the Parameter Vector

Based on the results of the preceding sections we can now describe the parameter vectors for the
general case. The dimensions of the parameter vectors of the respective blocks of the system matrices
(A, B, C) depend on the multi-index Γ, consisting of the state space unit root structure ΩS, the structure
indices p and the Kronecker indices α• for the stable subsystem. A parameterization of the set of
all systems in canonical form with given multi-index Γ for the MFI(1) case, therefore, combines the
following components:

• θB, f := [θ′
B, f ,1, ..., θ′

B, f ,l ]
′ ∈ ΘB, f = R

dB, f , with:

θB, f ,k :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[bk

1,pk
1+1

, bk
1,pk

1+2
, . . . , bk

1,s, bk
2,pk

2+1
, . . . , bk

dk
1,s
]′ for ωk ∈ {0, π},

[R(bk
1,pk

1+1
), I(bk

1,pk
1+1

), R(bk
1,pk

1+2
), . . . , I(bk

1,s), R(bk
2,pk

2+1
), . . . , I(bk

dk
1,s
)]′

for 0 < ωk < π,

for k = 1, . . . , l, with pk
j denoting the j-th entry of the structure indices p corresponding to Bk.

The vectors θB, f ,k contain the real and imaginary parts of free entries in Bk not restricted by the
p.u.t. structures.

• θB,p := [θ′
B,p,1, ..., θ′

B,p,l ]
′ ∈ ΘB,p = R

dB,p
+ : The vectors θB,p,k :=

[
bk

1,pk
1
, . . . , bk

dk
1,pk

dk
1

]′
contain the

entries in Bk restricted by the p.u.t. structures to be positive reals.
• θC,E := [θ′

C,E,1, ..., θ′
C,E,l ]

′ ∈ ΘC,E ⊂ RdC,E : The parameters for the matrices Ck as discussed in
Lemma 1 and Lemma 2.

• θ• ∈ Θ•,α ⊂ Rd• : The parameters for the stable subsystem in echelon canonical form for Kronecker
indices α•.

Example 7. Consider an MFI(1) process with ΩS = ((0, 2), (π
2 , 2)), p = [1, 3, 1, 2, 1, 2]′, n• = 0,

and system matrices

A = diag(1, 1, i, i, −i, −i),

B =

⎡⎢⎢⎢⎢⎢⎢⎣

1 −1 2
0 0 2
1 1 + i 1 − i
0 2 i
1 1 − i 1 + i
0 2 −i

⎤⎥⎥⎥⎥⎥⎥⎦ , C =

⎡⎢⎣ 0 1√
2

1−i
2

1−i
2

1+i
2

1+i
2

−1√
2

1
2

1+i
2

−1−i
2

1−i
2

−1+i
2

1√
2

1
2 0 0 0 0

⎤⎥⎦ ,

in canonical form. For this example it holds that θB, f = [[−1, 2], [1, 1, 1, −1, 0, 1]]′, θB,p = [[1, 2], [1, 2]] and

θC,E =

[[[
π

4
,

7π

4

]
,
[π

2

]]
,
[
[0, 0, 0, 0],

[π

4
, 0
]

,
[

3π

4
,

5π

4

]]]′
,

with parameter values corresponding to the C-blocks collected in θC,E considered in Examples 5 and 6.
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3.2. The Parameterization in the I(2) Case

The canonical form provided above for the general case has the following form for I(2) processes
with unit root structure Ωs = ((0, d1

1, d1
2)):

A =

⎡⎢⎢⎢⎢⎣
Id1

1
Id1

1
0 0

0 Id1
1

0 0

0 0 Id1
2−d1

1
0

0 0 0 A•

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
B1,1

B1,2,1

B1,2,2

B•

⎤⎥⎥⎥⎦ , C =
[

CE
1,1 CG

1,2 CE
1,2 C•

]
,

where 0 < d1
1 ≤ d1

2 ≤ s, B1,2,1 and B1,2,2 are p.u.t., CE
1,1 ∈ Os,d1

1
, CE

1,2 ∈ Os,d1
2−d1

1
, (CE

1,1)
′CE

1,2 = 0d1
1×d1

2
,

(CE
1,1)

′CG
1,2 = 0d1

1×d1
1
, (CE

1,2)
′CG

1,2 = 0(d1
2−d1

1)×d1
1

and (A•, B•, C•) is in echelon canonical form with
Kronecker indices α•. All matrices are real valued.

The parameterizations of the p.u.t. matrices B1,2,1 and B1,2,2 are as discussed above. The entries
of B1,1 are unrestricted and thus included in the parameter vector θB, f containing also the free entries
in B1,2,1 and B1,2,2. The subsystem (A•, B•, C•) is parameterized using the echelon canonical form.

The parameterization of CE
1,1 ∈ Os,d1

1
proceeds as in the MFI(1) case, using C−1

O (CE
1,1).

The parameterization of CE
1,2 has to take the restriction of orthogonality of CE

1,2 to CE
1,1 into account,

thus the set to be parameterized is given by

Os,d1
2−d1

1
(CE

1,1) := {CE
1,2 ∈ R

s×(d1
2−d1

1)|(CE
1,1)

′CE
1,2 = 0d1

1×(d1
2−d1

1)
, (CE

1,2)
′CE

1,2 = Id1
2−d1

1
}. (13)

The parameterization of this set again uses real Givens rotations. For C ∈ Os,d1
2−d1

1
(CE

1,1) it follows that

RL(θL)C = [0′
d1

1×(d1
2−d1

1)
, C̃ ′]′ for a matrix C̃ such that C̃ ′C̃ = Id1

2−d1
1

with RL(θL) corresponding to CE
1,1.

The matrix C̃ is parameterized as discussed in Lemma 1.

Corollary 1 (Properties of the parameterization of Os,d1
2−d1

1
(CE

1,1)). Define for d1
1 < d1

2 ≤ s a mapping

θ̃ → CO,d1
2−d1

1
(θ̃; CE

1,1) from ΘR

O,d1
2

:= [0, 2π)(d
1
2−d1

1)(s−d1
2) × [0, 2π)(d

1
2−d1

1)(d
1
2−d1

1−1)/2 → Os,d1
2−d1

1
(CE

1,1) by

CO,d1
2−d1

1
(θ̃; CE

1,1) := RL(θL)
′
[

0d1
1×(d1

2−d1
1)

CO(θ̃)

]
,

where θL denotes the parameter values corresponding to [θ′
L, θ′

R]
′ = C−1

O (CE
1,1) as defined in Lemma 1.

The following properties hold:

(i) Os,d1
2−d1

1
(CE

1,1) is closed and bounded.

(ii) The mapping CO,d1
2−d1

1
(θ̃; CE

1,1) is infinitely often differentiable.

For d1
2 < s, it holds

(iii) For every CE
1,2 ∈ Os,d1

2−d1
1
(CE

1,1) there exists a vector θ̃ = [θ̃
′
L, θ̃

′
R]

′ ∈ ΘR

O,d1
2−d1

1
such that

CE
1,2 = CO,d1

2−d1
1
(θ̃; CE

1,1) = RL(θL)
′

⎡⎢⎢⎣
0d1

1×(d1
2−d1

1)

RL(θ̃L)
′
[

Id1
2−d1

1

0(s−d1
2)×(d1

2−d1
1)

]
RR(θ̃R)

⎤⎥⎥⎦ .

The algorithm discussed above Lemma 1 defines the inverse mapping C−1
O,d1

2−d1
1
.

(iv) The inverse mapping C−1
O,d1

2−d1
1
(·; CE

1,1)—the parameterization of Os,d1
2−d1

1
(CE

1,1)—is infinitely often

differentiable on the pre-image of the interior of ΘR

O,d1
2−d1

1
. This is an open and dense subset of Os,d1

2−d1
1
(CE

1,1).
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For d1
2 = s, it holds that

(v) Os,s−d1
1
(CE

1,1) is a disconnected space with two disjoint non-empty closed subsets:

O+
s,s−d1

1
(CE

1,1) :=

{CE
1,2 ∈ R

s×(s−d1
1)|(CE

1,1)
′CE

1,2 = 0d1
1×(s−d1

1)
, (CE

1,2)
′CE

1,2 = Is−d1
1
, det([CE

1,1, CE
1,2]) = 1},

O−
s,s−d1

1
(CE

1,1) :=

{CE
1,2 ∈ R

s×(s−d1
1)|(CE

1,1)
′CE

1,2 = 0d1
1×(s−d1

1)
, (CE

1,2)
′CE

1,2 = Is−d1
1
, det([CE

1,1, CE
1,2]) = −1}.

(vi) For every O+
s,s−d1

1
(CE

1,1) there exists a vector θ̃ ∈ ΘR

O,d1
2−d1

1
such that

CE
1,2 = CO,s−d1

1
(θ̃; CE

1,1) = RR(θ̃R).

Steps 1–4 of the algorithm discussed above Lemma 1 define the inverse mapping C−1
O,s−d1

1
(·; CE

1,1) :

O+
s,s−d1

1
(CE

1,1) → ΘR

O,s−d1
1
.

(vii) Define v := [π, . . . , π]′ ∈ R
(s−d1

1)(s−d1
1−1)/2. Then a parameterization of Os,s−d1

1
(CE

1,1) is given by

C±
O,s−d1

1
(CE

1,2; CE
1,1) =

⎧⎨⎩v + C−1
O,s−d1

1
(CE

1,2; CE
1,1) if C ∈ O+

s,s−d1
1
(CE

1,1)

−(v + C−1
O,s−d1

1
(CE

1,2 I−
s−d1

1
; CE

1,1)) if C ∈ O−
s,s−d1

1
(CE

1,1).

The parameterization is infinitely often differentiable with infinitely often differentiable inverse on an open
and dense subset of Os,s.

The proof of Corollary 1 uses the same arguments as the proof of Lemma 1 and is, therefore,
omitted. It remains to provide a parameterization for CG

1,2 restricted to be orthogonal to both CE
1,1 and

CE
1,2. Thus, the set to be parametrized is given by

Os,G(CE
1,1, CE

1,2) := {CG
1,2 ∈ R

s×d1
1 |(CE

1,1)
′CG

1,2 = 0d1
1×d1

1
, (CE

1,2)
′CG

1,2 = 0(d1
2−d1

1)×d1
1
}.

The parameterization of Os,G(CE
1,1, CE

1,2) is straightforward: Left multiplication of CG
1,2 with RL(θL)

as defined in Lemma 1 and of the lower (s − d1
1) × d1

1- block with RL(θ̃L) as defined in Corollary 1
transforms the upper d1

2 × d1
1-block to zero and collects the free parameters in the lower (s − d1

2)×
d1

1-block. Clearly, this is a bijective and infinitely often differentiable mapping on Os,G(CE
1,1, CE

1,2) and
thus a useful parameterization, since the matrix CG

1,2 is only multiplied with two constant invertible
matrices. The entries of the matrix product are then collected in a parameter vector as shown in
Corollary 2.

Corollary 2 (Properties of the parameterization of Os,G(CE
1,1, CE

1,2)). Define for given matrices CE
1,1 ∈ Os,d1

1

and CE
1,2 ∈ Os,d1

2−d1
1
(CE

1,1) a mapping λ → CO,G(λ; CE
1,1, CE

1,2) from R
d1

1(s−d1
2) → Os,G(CE

1,1, CE
1,2) by

CO,G(λ; CE
1,1, CE

1,2) := RL(θL)
′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0d1
1×d1

1

RL(θ̃L)
′

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0(d1
2−d1

1)×1 · · · 0(d1
2−d1

1)×1

λ1 · · · λd1
1

λd1
1+1 . . . λ2d1

1
...

...
λd1

1(s−d1
2−1)+1 · · · λd1

1(s−d1
2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where θL denotes the parameter values corresponding to [θ′
L, θ′

R]
′ = C−1

O (CE
1,1) as defined in Lemma 1 and θ̃L

denotes the parameter values corresponding to [θ̃′
L, θ̃

′
R]

′ = C−1
O,d1

2−d1
1
(CE

1,2; CE
1,1) as defined in Corollary 1. The set

Os,G(CE
1,1, CE

1,2) is closed and both CO,G as well as C−1
O,G(·)—the parameterization of Os,G(CE

1,1, CE
1,2)—are

infinitely often differentiable.

Components of the Parameter Vector

In the I(2) case, the multi-index Γ contains the state space unit root structure ΩS = ((0, d1
1, d1

2)),

the structure indices p ∈ N
d1

1+d1
2

0 , encoding the p.u.t. structures of B1,2,1 and B1,2,2, and the Kronecker
indices α• for the stable subsystem. The parameterization of the set of all systems in canonical form
with given multi-index Γ for the I(2) case uses the following components:

• θB, f := θB, f ,1 ∈ ΘB, f = R
dB, f : The vector θB, f ,1 contains the free entries in B1 not restricted by the

p.u.t. structure, collected in the same order as for the matrices Bk in the MFI(1) case.

• θB,p := θB,p,1 ∈ ΘB,p = R
dB,p
+ : The vector θB,p,1 :=

[
b1

d1
1+1,p1

d1
1+1

, . . . , b1
d1

1+d1
2,p1

d1
1+d1

2

]′
contains the

entries in B1 restricted by the p.u.t. structures to be positive reals.
• θC,E := [θ′

C,E,1,1, θ′
C,E,1,2]

′ ∈ ΘC,E ⊂ RdC,E : The parameters for the matrices CE
1,1 as in the MFI(1)

case and CE
1,2 as discussed in Corollary 1.

• θC,G ∈ ΘC,G = RdC,G : The parameters for the matrix CG
1,2 as discussed in Corollary 2.

• θ• ∈ Θ•,α ⊂ Rd• : The parameters for the stable subsystem in echelon canonical form for Kronecker
indices α•.

Example 8. Consider an I(2) process with ΩS = ((0, 1, 2)), p = [0, 1, 1]′, n• = 0 and system matrices

A =

⎡⎣ 1 1 0
0 1 0
0 0 1

⎤⎦ , B =

⎡⎣ −1 2 −2
1 −1 3
2 0 1

⎤⎦ , C =

⎡⎢⎣ 0 −1 1√
2

−1√
2

1√
2

1
2

1√
2

1√
2

1
2

⎤⎥⎦ .

In this case, θB, f ,1 = [−1, 2, −2, −1, 3, 0, 1]′, θB,p,1 = [1, 2]′. It follows from

R3,1,2

(
7π

4

)
R3,1,3

(π

2

)
CE

1,1 = [ 1 0 0 ]′,

R3,1,2

(
7π

4

)
R3,1,3

(π

2

)
CE

1,2 =
[

0 1√
2

−1√
2

]′
and R2,1,2

(
7π

4

)[ 1√
2

−1√
2

]
=

[
1
0

]
,

R3,1,2

(
7π

4

)
R3,1,3

(π

2

)
CG

1,2 =
[

0 1 1
]′

and R2,1,2

(
7π

4

)[
1
1

]
=

[
0√
2

]
,

that θC,E = [θ′
C,E,1,1, θC,E,1,2]

′ =
[[

π
2 , 7π

4
]

,
[ 7π

4
]]′ and θC,G = [

√
2].

3.3. The Parameterization in the General Case

Inspecting the canonical form shows that all relevant building blocks are already present in the
MFI(1) and the I(2) cases and can be combined to deal with the general case: The entries in Bu are either
unrestricted or follow restrictions according to given structure indices p, and the parameter space is
chosen accordingly, as discussed for the MFI(1) and I(2) cases. The restrictions on the matrices Cu and
its blocks Ck require more sophisticated parameterizations of parts of unitary or orthonormal matrices
as well as of orthogonal complements. These are dealt with in Lemmas 1 and 2 and Corollaries 1 and 2
above. The extension of Corollaries 1 and 2 to complex matrices and to matrices which are orthogonal
to a larger number of blocks of Ck is straightforward.

160



Econometrics 2020, 8, 42

The following theorem characterizes the properties of parameterizations for sets MΓ of transfer
functions with (general) multi-index Γ and describes the relations between sets of transfer functions
and the corresponding sets ΔΓ of triples (A, B, C) of system matrices in canonical form, defined below.
Discussing the continuity and differentiability of mappings on sets of transfer functions and on sets of
matrix triples also requires the definition of a topology on both sets.

Definition 8.

(i) The set of transfer functions of order n, Mn, is endowed with the pointwise topology Tpt: First, identify
transfer functions with their impulse response sequences. Then, a sequence of transfer functions ki(z) =
Is + ∑∞

j=1 Kj,izj converges in Tpt to k0(z) = Is + ∑∞
j=1 Kj,0zj if and only if for every j ∈ N it holds that

Kj,i
i→∞→ Kj,0.

(ii) The set of all triples (A, B, C) in canonical form corresponding to transfer functions with
multi-index Γ is called ΔΓ. The set ΔΓ is endowed with the topology corresponding to the distance
d((A1, B1, C1), (A2, B2, C2)) := ‖A1 − A2‖Fr + ‖B1 − B2‖Fr + ‖C1 − C2‖Fr.

Please note that in the definition of the pointwise topology convergence does not need to be
uniform in j and moreover, the power series coefficients do not need to converge to zero for j → ∞
and hence the concept can also be used for unstable systems.

Theorem 2. The set Mn can be partitioned into pieces MΓ, where Γ := {ΩS, p, α•}, i.e.,

Mn =
⋃

Γ={ΩS ,p,α•}|nu(ΩS)+n•(α•)=n

MΓ,

where nu(ΩS) := ∑l
k=1 ∑hk

j=1 dk
j δk, with δk = 1 for ωk ∈ {0, π} and δk = 2 for 0 < ωk < π is the state

dimension of the unstable subsystem (Au, Bu, Cu) with state space unit root structure ΩS and n•(α•) :=
∑s

i=1 α•,i is the state dimension of the stable subsystem with Kronecker indices α• = (α•,1, . . . , α•,s), α•,i ∈ N0.
For every multi-index Γ there exists a parameter space ΘΓ ⊂ Rd(Γ) for some integer d(Γ), endowed with the
Euclidean norm, and a function φΓ : ΔΓ → ΘΓ, such that for every (A, B, C) ∈ ΔΓ the parameter vector
θ := φΓ(A, B, C) ∈ ΘΓ is composed of:

• The parameter vector θB, f = [θ′
B, f ,1, ..., θ′

B, f ,l ]
′ ∈ ΘB, f = R

dB, f , collecting the (real and imaginary parts
of) non-restricted entries in Bk, k = 1, . . . , l as described in the MFI(1) case.

• The parameter vector θB,p = [θ′
B,p,1, ..., θ′

B,p,l ]
′ ∈ ΘB,p = R

dB,p
+ , collecting the entries in Bk, k = 1, . . . , l,

restricted by the p.u.t. forms to be positive reals in a similar fashion as described for B1 in the I(2) case.
• The parameter vector θC,E = [θ′

C,E,1, ..., θ′
C,E,l ]

′ ∈ ΘC,E ⊂ RdC,E , θC,E,k = [θ′
C,E,k,1, . . . , θ′

C,E,k,hk
]′

collecting the parameters θC,E,k,j for all blocks CE
k,j, k = 1, . . . , l and j = 1, . . . , hk, obtained using Givens

rotations (see Lemmas 1 and 2 and Corollary 1 and its extension to complex matrices).
• The parameter vector θC,G = [θ′

C,G,1, ..., θ′
C,G,l ]

′ ∈ ΘC,G = RdC,G , θC,G,k = [θ′
C,G,k,2, . . . , θ′

C,G,k,hk
]′

collecting the parameters θC,G,k,j (real and imaginary parts for complex roots) for CG
k,j, k = 1, . . . , l and j =

2, . . . , hk, subject to the orthogonality restrictions (see Corollary 2 and its extension to complex matrices).
• The parameter vector θ• ∈ Θ• ⊂ Rd• collecting the free entries in echelon canonical form with Kronecker

indices α•.

(i) The mapping ψΓ : MΓ → ΔΓ that attaches a triple (A, B, C) in canonical form to a transfer function in
MΓ is continuous. It is the inverse (restricted to MΓ) of the Tpt-continuous function π : (A, B, C) �→
k(z) = Is + zC(In − zA)−1B.

(ii) Every parameter vector θ = [θ′
B, f , θ′

B,p, θ′
C,E, θ′

C,G, θ′
•]

′ ∈ ΘΓ ⊂ ΘB, f × ΘB,p × ΘC,E ×
ΘC,G × Θ• corresponds to a triple (A(θ), B(θ), C(θ)) ∈ ΔΓ and a transfer function k(z) =

π(A(θ), B(θ), C(θ)) ∈ MΓ. The mapping φ−1
Γ : θ → (A(θ), B(θ), C(θ)) is continuous on ΘΓ.
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(iii) For every multi-index Γ the set of points in ΔΓ, where the mapping φΓ is continuous, is open and dense
in ΔΓ.

As mentioned in Section 2, the parameterization of Φ is straightforward. The s × m entries of Φ
are collected in a parameter vector d. Thus, there is a one-to-one correspondence between state space
realizations (A, B, C, Φ) ∈ ΔΓ ×Rs×m and parameter vectors τ = [θ′, d′]′ ∈ ΘΓ ×Rsm. The same holds
true for parameters used for the symmetric, positive definite innovation matrix Σ ∈ Rs×s obtained,
e.g., from a lower triangular Cholesky factor of Σ.

4. The Topological Structure

The parameterization of Mn in Theorem 2 partitions Mn into subsets MΓ for a selection of
multi-indices Γ. To every multi-index Γ there exists a corresponding associated parameter set ΘΓ.
Thus, in practical applications, maximizing the pseudo likelihood requires choosing the multi-index Γ.
Maximizing the pseudo likelihood over the set MΓ effectively amounts to including also all elements
in the closure of MΓ, because of continuity of the parameterization. It is thus necessary to characterize
the closures of the sets MΓ.

Moreover, maximizing the pseudo likelihood function over all possible multi-indices is
time-consuming and not desirable. Fortunately, the results discussed below show that there exists
a generic multi-index Γg such that Mn ⊂ MΓg . This generic choice corresponds to the set of all
stable systems of order n corresponding to the generic neighborhood of the echelon canonical form.
This multi-index, therefore, is a natural starting point for estimation.

However, in particular for hypotheses testing, it will be necessary to maximize the pseudo
likelihood over sets of transfer functions of order n with specific state space unit root structure ΩS,
denoted as M(ΩS, n•) below, where n• denotes the dimension of the stable part of the state. We show
below that also in this case there exists a generic multi-index Γg(ΩS, n•) such that M(ΩS, n•) ⊂
MΓg(ΩS ,n•).

The main tool to obtain these results is investigating the properties of the mappings ψΓ, that map
transfer functions in MΓ to triples (A, B, C) ∈ ΔΓ, as well as analyzing the closures of the sets
ΔΓ. The relation between parameter vectors θ ∈ ΘΓ and triples of system matrices (A, B, C) ∈
ΔΓ is easier to understand than the relation between ΔΓ and MΓ, due to the results of Theorem 2.
Consequently, this section focuses on the relations between ΔΓ and MΓ —and their closures—for
different multi-indices Γ.

To define the closures we embed the sets ΔΓ of matrices in canonical form with multi-indices Γ
corresponding to transfer functions of order n into the space Δn of all conformable complex matrix
triples (A, B, C) with A ∈ Cn×n, where additionally λ|max|(A) ≤ 1. Since the elements of Δn are

matrix triples, this set is isomorphic to a subset of the finite dimensional space Cn2+2ns, equipped with
the Euclidean topology. Please note that Δn also contains non-minimal state space realizations,
corresponding to transfer functions of lower order.

Remark 16. In principle the set Δn also contains state space realizations of transfer functions k(z) = Is +

∑∞
j=1 Kjzj with complex valued coefficients Kj. Since the subset of Δn of state space systems realizing transfer

functions with real valued Kj is closed in Δn, realizations corresponding to transfer functions with coefficients
with non-zero imaginary part are irrelevant for the analysis of the closures of the sets ΔΓ.

After investigating the closure of ΔΓ in Δn, denoted by ΔΓ, we consider the set of corresponding
transfer functions π(ΔΓ). Since we effectively maximize the pseudo likelihood over ΔΓ, we have to
understand for which multi-indices Γ̃ the set π(ΔΓ̃) is a subset of π(ΔΓ). Moreover, we find a covering
of π(ΔΓ) ⊂ ⋃

i∈I MΓi . This restricts the set of multi-indices Γ that may occur as possible multi-indices
of the limit of a sequence in π(ΔΓ) and thus the set of transfer functions that can be obtained by
maximization of the pseudo likelihood.
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The sets MΓ, are embedded into the vector space M of all causal transfer functions k(z) =

Is + ∑∞
j=1 Kjzj. The vector space M is isomorphic to the infinite dimensional space Πj∈NR

s×s
j equipped

with the pointwise topology. Since, as mentioned above, maximization of the pseudo likelihood
function over MΓ effectively includes MΓ, it is important to determine for any given multi-index Γ,
the multi-indices Γ̃ for which the set MΓ̃ is a subset of MΓ. Please note that MΓ is not necessarily equal
to π(ΔΓ). The continuity of π, as shown in Theorem 2 (i), implies the following inclusions:

MΓ = π(ΔΓ) ⊂ π(ΔΓ) ⊂ MΓ.

In general all these inclusions are strict. For a discussion in case of stable transfer functions see Hannan
and Deistler (1988, Theorem 2.5.3).

We first define a partial ordering on the set of multi-indices Γ. Subsequently we examine the
closure ΔΓ in Δn and finally we examine the closures MΓ in M.

Definition 9.

(i) For two state space unit root structures ΩS and Ω̃S with corresponding matrices Au ∈ Cnu×nu and
Ãu ∈ Cñu×ñu in canonical form, it holds that Ω̃S ≤ ΩS if and only if there exists a permutation matrix S
such that

S AuS′ =

[
Ãu J̃12

0 J̃2

]
.

Moreover, Ω̃S < ΩS holds if additionally Ω̃S 	= ΩS.
(ii) For two state space unit root structures ΩS and Ω̃S and dimensions of the stable subsystems n•, ñ• ∈ N0

we define

(Ω̃S, ñ•) ≤ (ΩS, n•) if and only if Ω̃S ≤ ΩS, ñ• ≤ n•.

Strict inequality holds, if at least one of the two inequalities above holds strictly.
(iii) For two pairs (ΩS, p) and (Ω̃S, p̃) with corresponding matrices Au ∈ Cnu×nu and Ãu ∈ Cñu×ñu in

canonical form, it holds that (Ω̃S, p̃) ≤ (ΩS, p) if and only if there exists a permutation matrix S such that

S AuS′ =

[
Ãu J̃12

0 J̃2

]
, S p =

[
p1

p2

]
,

where p1 ∈ N
ñu
0 and p̃ restricts at least as many entries as p1, i.e., p̃i ≥ (p1)i holds for all i = 1, . . . , ñu.

Moreover, (Ω̃S, p̃) < (ΩS, p) holds if additionally (Ω̃S, p̃) 	= (ΩS, p).
(iv) Let α• = (α•,1, . . . , α•,s), α•,i ∈ N0 and α̃• = (α̃•,1, . . . , α̃•,s), α̃•,i ∈ N0. Then α̃• ≤ α• if and only if

α̃•,i ≤ α•,i, i = 1, . . . , s. Moreover, α̃• < α• holds, if at least one inequality is strict (compare Hannan and
Deistler 1988, sct. 2.5).

Finally, define

Γ̃ = (Ω̃S, p̃, α̃•) ≤ Γ = (ΩS, p, α•) if and only if (Ω̃S, p̃) ≤ (ΩS, p) and α̃• ≤ α•.

Strict inequality holds, if at least one of the inequalities above holds strictly.

Please note that (i) implies that Ω̃S only contains unit roots that are also contained in ΩS, with the
integration orders h̃k of the unit roots in Ω̃S smaller or equal to the integration orders of the respective
unit roots in ΩS. Thus, denoting the unit root structures corresponding to Ω̃S and ΩS by Ω̃ and Ω,
it follows that Ω̃S ≤ ΩS implies Ω̃ � Ω. The reverse does not hold as, e.g., for ΩS = ((0, 1, 1)) (where
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hence Ω = ((0, 2))) and Ω̃S = ((0, 2)) (with Ω̃ = ((0, 1))) it holds that Ω̃ ≺ Ω, but neither Ω̃S ≤ ΩS
nor ΩS ≤ Ω̃S holds as here

Au =

(
1 1
0 1

)
, Ãu =

(
1 0
0 1

)
.

This partial ordering is convenient for the characterization of the closure of ΔΓ.

4.1. The Closure of ΔΓ in Δn

Please note that the block-structure of A implies that every system in ΔΓ can be separated in
two subsystems (Au, Bu, Cu) and (A•, B•, C•). Define ΔΩS ,p := Δ(ΩS ,p,{}) as the set of all state space
realizations in canonical form corresponding to state space unit root structure ΩS, structure indices
p and n• = 0. Analogously define Δα• := Δ({},{},α•) as the set of all state space realizations in
canonical form with ΩS = {} and Kronecker indices α•. Examining ΔΩS ,p and Δα• separately simplifies
the analysis.

4.1.1. The Closure of ΔΩS ,p

The canonical form imposes a lot of structure, i.e., restrictions on the matrices A, B and C.
By definition ΔΩS ,p = ΔA

ΩS ,p × ΔB
ΩS ,p × ΔC

ΩS ,p and the closures of the three matrices can be analyzed

separately. ΔA
ΩS ,p and ΔC

ΩS ,p are very easy to investigate. The structure of A is fully determined

by ΩS and consequently ΔA
ΩS ,p consists of a single matrix A which immediately implies that

ΔA
ΩS ,p = ΔA

ΩS ,p. The matrix C, compare Theorem 1 is composed of blocks CE
k that are sub-blocks

of unitary (or orthonormal) matrices and blocks CG
k that have to fulfill (recursive) orthogonality

constraints. The corresponding sets were shown to be closed in Lemmas 1 and 2 and Corollaries 1 and
2. Thus, ΔC

ΩS ,p = ΔC
ΩS ,p.

It remains to discuss ΔB
ΩS ,p. The structure indices p defining the p.u.t. structures of the matrices

Bk restrict some entries to be positive. Combining all the parameters—unrestricted with complex
values parameterized by real and imaginary part and the positive entries—into a parameter vector
leads to an open sub-set of Rm for some m. For convergent sequences of systems with fixed ΩS and
p, limits of entries restricted to be positive may be zero. When this happens, two cases have to be
distinguished. First, all p.u.t. sub-matrices still have full row rank. In this case the limiting system,
(A0, B0, C0) say, is still minimal and can be transformed to a system in canonical form (Ã0, B̃0, C̃0) with
fewer unrestricted entries in B̃0.

Second, if at least one of the row ranks of the p.u.t. blocks decreases in the limit, the limiting
system is no longer minimal. Consequently, (Ω̃S, p̃) < (ΩS, p) in the limit.
To illustrate this point consider again Example 4 with Equation (12) rewritten as

xt+1,1 = xt,1 + xt,2 + B1,1εt, xt+1,2 = xt,2 + B1,2,1εt, xt+1,3 = xt,3 + B1,2,2εt.

If B1,2,1 = [0, b1,2,1,2] 	= 0 and B1,2,2 = [b1,2,2,1, b1,2,2,2] 	= 0, b1,2,2,1 > 0, it holds that {yt}t∈Z is an I(2)
process with state space unit root structure ΩS = ((0, 1, 2)).
Now consider a sequence of systems with all parameters except for b1,2,1,2 constant and b1,2,1,2 → 0.
The limiting system is then given by

yt = CE
1,1xt,1 + CG

1,2xt,2 + CE
1,2xt,3 + εt,⎡⎣xt+1,1

xt+1,2
xt+1,3

⎤⎦ =

⎡⎣1 1 0
0 1 0
0 0 1

⎤⎦⎡⎣xt,1
xt,2
xt,3

⎤⎦+

⎡⎣ b1,1,1 b1,1,2
0 0

b1,2,2,1 b1,2,2,2

⎤⎦ εt, x1,1 = x1,2 = x1,3 = 0.
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In the limiting system xt,2 = 0 is redundant and {yt}t∈Z is an I(1) process rather than an I(2) process.
Dropping xt,2 leads to a state space realisation of the limiting system {yt}t∈Z given by

yt = CE
1,1xt,1 + CE

1,2xt,3 + εt = C̃x̃t + εt, x̃t ∈ R
2,

x̃t+1 =

[
xt+1,1
xt+1,3

]
=

[
1 0
0 1

] [
xt,1
xt,3

]
+

[
b1,1,1 b1,1,2

b1,2,2,1 b1,2,2,2

]
εt = x̃t + B̃εt, x1,1 = x1,3 = 0.

In case B̃ has full rank, the above system is minimal. Since b1,2,2,1 > 0, the matrix B̃ needs to
be transformed into p.u.t. format. By definition all systems in the sequence, with b1,2,1,2 	= 0,
have structure indices p = [0, 2, 1]′ as discussed in Example 12. The limiting system—in case of
full rank of B̃—has indices p̃ = [1, 2]′. To relate to Definition 9 choose the permutation matrix

S =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ to arrive at

SAuS′ =

⎡⎣ 1 0 1
0 1 0
0 0 1

⎤⎦ =

[
I2 J̃12
0 J̃2

]
, Sp =

⎡⎣ 0
1
2

⎤⎦ =

⎡⎣ (p1)1
(p1)2

p2

⎤⎦ .

This shows that ( p̃)i > (p1)i, i = 1, 2 and thus the limiting system has a smaller multi-index Γ than the
systems of the sequence. In case B̃ has reduced rank equal to one a further reduction in the system
order to n = 1 along similar lines as discussed is possible, again leading to a limiting system with
smaller multi-index Γ.

The discussion shows that the closure of ΔB
ΩS ,p is related to lower order systems in the sense

of Definition 9. The precise statement is given in Theorem 3 after a discussion of the closure of the
stable subsystems.

4.1.2. The Closure of Δα•

Consider a convergent sequence of systems {(Aj, Bj, Cj)}j∈N in Δα• and denote the limiting
system by (A0, B0, C0). Clearly, λ|max|(A0) ≤ 1 holds true for the limit A0 of the sequence {Aj}j∈N
with λ|max|(Aj) < 1 for all j. Therefore, two cases have to be discussed for the limit:

• If λ|max|(A0) < 1, the potentially non-minimal limiting system (A0, B0, C0) corresponds to a
minimal state space realization with Kronecker indices smaller or equal to α• (cf. Hannan and
Deistler 1988, Theorem 2.5.3).

• If λ|max|(A0) = 1, the limiting matrix A0 is similar to a block matrix Ã = diag( J̃2, Ã•), where all
eigenvalues of J̃2 have unit modulus and λ|max|(Ã•) < 1.

The first case is well understood, compare Hannan and Deistler (1988, chp. 2), since the limit in this
case corresponds to a stable transfer function. In the second case the limiting system can be separated
into two subsystems ( J̃2, B̃u, C̃u) and (Ã•, B̃•, C̃•), according to the block diagonal structure of Ã.
The state space unit root structure of the limiting system (A0, B0, C0) depends on the multiplicities
of the eigenvalues of the matrix J̃2 and is greater (in the sense of Definition 9) than the empty state
space unit root structure. At the same time the Kronecker indices of the subsystem (Ã•, B̃•, C̃•) are
smaller than α•, compare again Hannan and Deistler (1988, chp. 2). Since the Kronecker indices impose
restrictions on some entries of the matrices Aj and thus also on A0, the block J̃2 and consequently also
the limiting state space unit root structure might be subject to further restrictions.

4.1.3. The Conformable Index Set and the Closure of ΔΓ

The previous subsection shows that the closure of ΔΓ does not only contain systems corresponding
to transfer functions with multi-index smaller or equal to Γ, but also systems that are related in a
different way that is formalized below.
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Definition 10 (Conformable index set). Given a multi-index Γ = (ΩS, p, α•), the set of conformable
multi-indices K(Γ) contains all multi-indices Γ̃ = (Ω̃S, p̃, α̃•), where:

• The pair (Ω̃S, p̃) with corresponding matrix Ãu in canonical form extends (ΩS, p) with corresponding
matrix Au in canonical form, i.e., there exists a permutation matrix S such that

S ÃuS′ =

[
Au 0
0 J̃2

]
and S p̃ =

[
p
p̃2

]
,

• α̃• ≤ α•.
• ñu + ñ• = nu + n•.

Please note that the definition implies Γ ∈ K(Γ). The importance of the set K(Γ) is clarified in the
following theorem:

Theorem 3. Transfer functions corresponding to state space realizations with multi-index Γ̃ ≤ Γ are contained
in the set π(ΔΓ). The set π(ΔΓ) is contained in the union of all sets MΓ̌ for Γ̌ ≤ Γ̃ with Γ̃ conformable to Γ, i.e.,⋃

Γ̃≤Γ

MΓ̃ ⊂ π(ΔΓ) ⊂
⋃

Γ̃∈K(Γ)

⋃
Γ̌≤Γ̃

MΓ̌.

Theorem 3 provides a characterization of the transfer functions corresponding to systems in
the closure of ΔΓ. The conformable set K(Γ) plays a key role here, since it characterizes the set of
all minimal systems that can be obtained as limits of convergent sequences from within the set ΔΓ.
Conformable indices extend the matrix Au corresponding to the unit root structure by the block J̃2.

The second inclusion in Theorem 3 is potentially strict, depending on the Kronecker indices α• in
Γ. Equality holds, e.g., in the following case:

Corollary 3. For every multi-index Γ with n• = 0 the set of conformable indices consists only of Γ,
which implies π(ΔΓ) =

⋃
Γ̃≤Γ MΓ̃.

4.2. The Closure of MΓ

It remains to investigate the closure of MΓ in M. Hannan and Deistler (1988, Theorem 2.6.5 (ii) and
Remark 3, p. 73) show that for any order n, there exist Kronecker indices α•,g = α•,g(n) corresponding
to the generic neighborhood Mα•,g for transfer functions of order n such that

M•,n :=
⋃

α•|n•(α•)=n

Mα• ⊂ Mα•,g ,

where Mα• := π(Δα•). Here M•,n denotes the set of all transfer functions of order n with state space
realizations (A, B, C) satisfying λ|max|(A) < 1. Every transfer function in M•,n can be approximated
by a sequence of transfer functions in Mα•,g .

It can be easily seen that a generic neighborhood also exists for systems with state space unit root
structure ΩS and without stable subsystem: Set the structure indices p to have a minimal number of
elements restricted in p.u.t. sub-blocks of Bu, i.e., for any block Bk,hk ,j ∈ C

nk,hk ,j×s, or Bk,hk ,j ∈ R
nk,hk ,j×s

in case of a real unit root, set the corresponding structure indices to p = [1, . . . , nk,hk ,j]. Any p.u.t.
matrix can be approximated by a matrix in this generic neighborhood with some positive entries
restricted by the p.u.t. structure tending to zero. Combining these results with Theorem 3 implies the
existence of a generic neighborhood for the canonical form considered in this paper:
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Theorem 4. Let M(ΩS, n•) be the set of all transfer functions k(z) ∈ Mnu(ΩS)+n• with state space unit root
structure ΩS. For every ΩS and n•, there exists a multi-index Γg := Γg(ΩS, n•) such that

M(ΩS, n•) ⊂ MΓg . (14)

Moreover, it holds that M(ΩS, n•) ⊂ Mα•,g(n) for every ΩS and n• satisfying nu(ΩS) + n• ≤ n.

Theorem 4 is the basis for choosing a generic multi-index Γ for maximizing the pseudo likelihood
function. For every ΩS and n• there exists a generic piece that—in its closure—contains all transfer
functions of order nu(ΩS) + n• and state space unit root structure ΩS: The set of transfer functions
corresponding to the multi-index with the largest possible structure indices p in the sense of
Definition 9 (iii) and generic Kronecker indices for the stable subsystem. Choosing these sets and their
corresponding parameter spaces as model sets is, therefore, the most convenient choice for numerical
maximization, if only ΩS and n• are known.

If, e.g., only an upper bound for the system order n is known and the goal is only to obtain
consistent estimators, using α•,g(n) is a feasible choice, since all transfer functions in the closure of
the set Mα•,g(n) can be approximated arbitrarily well, regardless of their potential state space unit
root structure ΩS, nu(ΩS) ≤ n. For testing hypotheses, however, it is important to understand the
topological relations between sets corresponding to different multi-indices Γ. In the following we focus
on the multi-indices Γg(ΩS, n•) for arbitrary ΩS and n•.

The closure of M(ΩS, n•) contains also transfer functions that have a different state space unit
root structure than ΩS. Considering convergent sequences of state space realizations (Aj, Bj, Cj)j∈N of
transfer functions in M(ΩS, n•), the state space unit root structure of (A0, B0, C0) := limj→∞(Aj, Bj, Cj)

may differ in three ways:

• For sequences (Aj, Bj, Cj)j∈N in canonical form rows of Bu,j can tend to zero, which reduces the
state space unit root structure as discussed in Section 4.1.1.

• Stable eigenvalues of Aj may converge to the unit circle, thereby extending the unit root structure.

• Off-diagonal entries of the sub-block Au,j of Aj = Tj AjT−1
j may be converging to zeros in the

sub-block Au,0 of the limit A0 = T0 A0T−1
0 in canonical form, resulting in a different attainable

state space unit root structure. Here Tj ∈ Cn×n for all j ∈ N are regular matrices transforming Aj
to canonical form and T0 ∈ Cn×n transforms A0 accordingly.

The first change of ΩS described above results in a transfer function with smaller state space unit root
structure according to Definition 9 (ii). The implications of the other two cases are summarized in the
following definition:

Definition 11 (Attainable unit root structures). For given n• and ΩS the set A(ΩS, n•) of attainable unit
root structures contains all pairs (Ω̃S, ñ•), where Ω̃S with corresponding matrix Ãu in canonical form extends
ΩS with corresponding matrix Au in canonical form, i.e., there exists a permutation matrix S such that

S ÃuS′ =

[
Ǎu J12

0 J2

]
,

where Ǎu can be obtained by replacing off-diagonal entries in Au by zeros and where ñ• := n• − dJ with dJ the
dimension of J2 ∈ C

dJ×dJ .

Remark 17. It is a direct consequence of the definition of A(ΩS, n•) that (Ω̃S, ñ•) ∈ A(ΩS, n•) implies
A(Ω̃S, ñ•) ⊂ A(ΩS, n•).

Theorem 5.

(i) MΓ is Tpt-open in MΓ (see Definition 8 for a definition of Tpt).
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(ii) For every generic multi-index Γg corresponding to ΩS and n• it holds that

π(ΔΓg) ⊂
⋃

Γ̃∈K(Γg)

⋃
Γ̌≤Γ̃

MΓ̌

⊂
⋃

(Ω̃S ,ñ•)∈A(ΩS ,n•)

⋃
(Ω̌S ,ň•)≤(Ω̃S ,ñ•)

M(Ω̌S, ň•) = MΓg .

Theorem 5 has important consequences for statistical analysis, e.g., PML estimation, since—as
stated several times already—maximizing the pseudo likelihood function over ΘΓ effectively amounts
to calculating the supremum over the larger set MΓ. Depending on the choice of Γ the following
asymptotic behavior may occur:

• If Γ is chosen correctly and the estimator of the transfer function is consistent, openness of MΓ in
its closure implies that the probability of the estimator being an interior point of MΓ tends to one
asymptotically. Since the mapping attaching the parameters to the transfer function is continuous
on an open and dense set, consistency in terms of transfer functions, therefore, implies generic
consistency of the parameter estimators.

• If the multi-index is incorrectly chosen to equal Γ, estimator consistency is still possible if the
true multi-index Γ0 < Γ, as in this case MΓ0 ⊂ MΓ. This is in some sense not too surprising and
something that is also well-known in the simpler VAR framework where consistency of OLS can
be established when the true autoregressive order is smaller than the order chosen for estimation.
Analogous to the lag number in the VAR case, thus, a necessary condition for consistency is to
choose the system order larger or equal to the true system order.

Finally, note that Theorem 5 also implies the following result relevant for the determination of the
unit root structure, further discussed in Sections 5.1.1 and 5.2.1:

Corollary 4. For every pair (Ω̃S, ñ•) ∈ A(ΩS, n•) it holds that

M(Ω̃S, ñ•) ⊂ M(ΩS, n•).

5. Testing Commonly Used Hypotheses in the MFI(1) and I(2) Cases

This section discusses a large number of hypotheses, respectively restrictions, on cointegrating
spaces, adjustment coefficients and deterministic components often tested in the empirical literature.
As with the VECM framework, as discussed for the I(2) case in Section 2, testing hypotheses on the
cointegrating spaces or adjustment coefficients may necessitate different reparameterizations.

5.1. The MFI(1) Case

The two by far most widely used cases of MFI(1) processes are I(1) processes and
seasonally (co-)integrated processes for quarterly data with state space unit root structure
((0, d1

1), (π/2, d2
1), (π, d3

1)). In general, assuming for notational simplicity ω1 = 0 and ωl = π, it holds
that for t > 0 and x1,u = 0 we have
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yt =
l

∑
k=1

Ck,Rxt,k,R + C•xt,• + Φdt + εt

= C1xt,1 +
l−1

∑
k=2

(Ckxt,k + Ckxt,k) + Cl x
j
t,l + C•xt,• + Φdt + εt

= C1B1

t−1

∑
j=1

εt−j + 2
l−1

∑
k=2

R
(

CkBk

t−1

∑
j=1

(zk)
j−1εt−j

)
+ ClBl

t−1

∑
j=1

(−1)j−1εt−j

+C•
t−1

∑
j=1

Aj−1
• B•εt−j + C•At−1

• x1,• + Φdt + εt

= C1B1

t−1

∑
j=1

εt−j + 2
l−1

∑
k=2

t−1

∑
j=1

(
R(CkBk)cos(ωk(j − 1)) + I(CkBk)sin(ωk(j − 1))

)
εt−j

+ClBl

t−1

∑
j=1

(−1)j−1εt−j + C•
t−1

∑
j=1

Aj−1
• B•εt−j + C•At−1

• x1,• + Φdt + εt.

The above equation provides an additive decomposition of {yt}t∈Z into stochastic trends and cycles,
the deterministic and stationary components. The stochastic cycles at frequency 0 < ωk < π are,
of course, given by the combination of sine and cosine terms. For the MFI(1) case this can also be seen
directly from considering the real valued canonical form discussed in Remark 4, with the matrices

Ak,R for k = 2, . . . , l − 1, given by Ak,R = Idk
1
⊗
(

cos(ωk) − sin(ωk)

sin(ωk) cos(ωk)

)
in this case.

The ranks of CkBk are equal to the integers dk
1 in ΩS = ((ω1, d1

1), . . . , (ωl , dl
1)). The number of

stochastic trends is equal to d1
1, the number of stochastic cycles at frequency ωk is equal to 2dk

1 for
k = 2, . . . , l − 1 and equal to dl

1 if k = l, as discussed in Section 3.
Moreover, in the MFI(1) case, dk

1 is linked to the complex cointegrating rank rk at frequency ωk,
defined in Johansen (1991) and Johansen and Schaumburg (1999) in the VECM case as the rank
of the matrix Πk := −a(zk). For VARMA processes with arbitrary integration orders the complex
cointegrating rank rk at frequency ωk is rk := rank(−k−1(zk)), where k(z) is the transfer function,
with rk = s − dk

1 in the MFI(1) case. Thus, in the MFI(1) case, determination of the state space unit root
structure corresponds to determination of the complex cointegrating ranks in the VECM case.

In the VECM setting, the matrix Πk is usually factorized into Πk = αkβ′
k, as presented for the

I(1) case in Section 2. For ωk = {0, π} the column space of βk gives the cointegrating space of the
process at frequency ωk. For 0 < ωk < π the relation between the column space of βk and the space of
CIVs and PCIVs at the corresponding frequency is more involved. The columns of βk are orthogonal
to the columns of Ck, the sub-block of C from a state space realization (A, B, C) in canonical form
corresponding to the VAR process. Analogously, the column space of the matrix αk, containing the
so-called adjustment coefficients, is orthogonal to the row space of the sub-block Bk of B.

Both integers dk
1 and rk are related to the dimensions of the static and dynamic cointegrating spaces

in the MFI(1) case: For ωk ∈ {0, π}, the cointegrating rank rk = s − dk
1 coincides with the dimension of

the static cointegrating space at frequency ωk. Furthermore, the dimension of the static cointegrating
space at frequency 0 < ωk < π is bounded from above by rk = s − dk

1, since it is spanned by at most
s − dk

1 vectors β ∈ Rs orthogonal to the complex valued matrix Ck. The dimension of the dynamic
cointegrating space at 0 < ωk < π is equal to 2rk = 2(s − dk

1). Identifying again β(z) = β0 + β1z with
the vector [β′

0, β′
1]

′, a basis of the dynamic cointegrating space at 0 < ωk < π is then given by the
column space of the product

169



Econometrics 2020, 8, 42

[
γ0 γ̃0

γ1 γ̃1

]
:=

[
Is 0s×s

− cos(ωk)Is sin(ωk)Is

] [
R(βk) I(βk)

−I(βk) R(βk)

]
,

with the columns of βk ∈ C
s×(s−dk

1) spanning the orthogonal complement of the column space of Ck,
i.e., βk is of full rank and β′

kCk = (R(βk)
′ − iI(βk)

′)Ck = 0. This holds true, since both factors are of
full rank and [γ′

0, γ′
1]

′ satisfies (zkγ′
0 + γ′

1)Ck = 0, which corresponds to the necessary condition given
in Example 2 for the columns of [γ′

0, γ′
1]

′ to be PCIVs. The latter implies (zkγ̃′
0 + γ̃′

1)Ck = 0 also for
[γ̃′

0, γ̃′
1]

′, highlighting again the additional structure of the cointegrating space emanating from the
complex conjugate pairs or eigenvalues (and matrices) as discussed in Example 2.

Please note that the relations between rk and dk
1 discussed above only hold in the MFI(1) and I(1)

special cases. For higher orders of integration no such simple relations exist.
In the MFI(1) setting the deterministic component typically includes a constant, seasonal dummies

and a linear trend. As discussed in Remark 6, a sufficiently rich set of deterministic components allows
to absorb non-zero initial values x1,u.

5.1.1. Testing Hypotheses on the State Space Unit Root Structure

Using the generic sets of transfer functions MΓg presented in Theorem 4, we can construct pseudo
likelihood ratio tests for different hypotheses H0 : (ΩS, n•) = (ΩS,0, n•,0) against chosen alternatives.
Note, however, that by the results of Theorem 5 the null hypothesis includes all pairs (ΩS, n•) ∈
A(ΩS,0, n•,0) as well as all pairs (ΩS, n•) that are smaller than a pair (Ω̃S, ñ•) ∈ A(ΩS,0, n•,0).

As common in the VECM setting, first consider hypotheses at a single frequency ωk. For an MFI(1)
process, the hypothesis of a state space unit root structure equal to ΩS,0 = ((ωk, dk

1,0)) corresponds
to the hypothesis of the (compex) cointegrating rank rk at frequency ωk being equal to r0 = s − dk

1,0.

Maximization of the pseudo likelihood function over the set M(((ωk, dk
1,0)), n − δkdk

1,0) – with a suitably
chosen order n—leads to estimates that may be arbitrary close to transfer functions with different state
space unit root structures ΩS. These include ΩS with additional unit root frequencies ωk̃, with the
integers dk̃

1 restricted only by the order n. Therefore, focusing on a single frequency ωk does not rule out
a more complicated true state space unit root structure. Assume n ≥ δks with δk = 1 for ωk ∈ {0, π}
and δk = 2 else. Corollary 4 shows that

M({}, n) ⊃ M(((ωk, 1)), n − δk) ⊃ · · · ⊃ M(((ωk, s)), n − sδk)

since, e.g., (((ωk, 1)), n − δk) ∈ A({}, n).
Analogously to the procedure of testing for the complex cointegrating rank rk in the VECM

setting, these inclusions can be employed to test for dk
1: Start with the hypothesis of dk

1 = s against the
alternative of 0 ≤ dk

1 < s and decrease the assumed dk
1 consecutively until the test does not reject the

null hypothesis.
Furthermore, one can formulate hypotheses on dk

1 jointly at different frequencies ωk.
Again, there exist inclusions based on the definition of the set of attainable state space unit root
structures and Corollary 4, which can be used to consecutively test hypotheses on ΩS.

5.1.2. Testing Hypotheses on CIVs and PCIVs

Johansen (1995) considers in the I(1) case three types of hypotheses on the cointegrating
space spanned by the columns of β that are each motivated by examples from economic research:
The different cases correspond to different types of hypotheses related to restrictions implied by
economic theory.

(i) H0 : β = Hϕ, β ∈ Rs×r, H ∈ Rs×t, ϕ ∈ Rt×r, r ≤ t < s: The cointegrating space is known to be a
subspace of the column space of H (which is of full column rank).
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(ii) H′
0 : β = [b, ϕ], β ∈ Rs×r, b ∈ Rs×t, ϕ ∈ Rs×r−t, 0 < t ≤ r: Some cointegrating relations are

known.
(iii) H

′′
0 : β = [H1 ϕ1, . . . , Hc ϕc], β ∈ Rs×r, Hj ∈ R

s×tj , ϕj ∈ R
tj×rj , rj ≤ tj ≤ s, for j = 1, . . . , c such

that ∑c
j=1 rj = r. Cointegrating relations are known to be in the column spaces of matrices Hk

(which are of full column rank).

As discussed in Example 1, cointegration at ωk = 0 occurs if and only if a vector β j satisfies β′
jC1 = 0.

In other words, the column space of C1 is the orthocomplement of the cointegrating space spanned by
the columns of β and hypotheses on β restrict entries of C1.

The first type of hypothesis, H0, implies that the column space of C1 is equal to the
orthocomplement of the column space of Hϕ. Assume w.l.o.g. H ∈ Os,t, ϕ⊥ ∈ Ot,t−r and H⊥ ∈ Os,s−t,
such that the columns of [Hϕ⊥, H⊥] form an orthonormal basis for the orthocomplement of the
cointegrating space. Consider now the mapping:

Cr
1(θ̌L, θR) :=

[
H · ŘL(θ̌L)

′
[

It−r

0r×(t−r)

]
, H⊥

]
· RR(θR), (15)

where ŘL(θ̌L) := ∏t−r
i=1 ∏r

j=1 Rt,i,t−r+j(θL,r(i−1)+j) ∈ Rt×t and RR(θR) ∈ R(s−r)×(s−r) as in Lemma 1.
From this one can derive a parameterization of the set of matrices Cr

1 corresponding to H0, analogously
to Lemma 1. The difference of the number of free parameters under the null hypothesis and under
the alternative is the difference between the number of free parameters in θL ∈ [0, 2π)r(s−r) and
θ̌L ∈ [0, 2π)r(t−r), implying a reduction of the number of free parameters of r(s − t) under the null
hypothesis. This necessarily coincides with the number of degrees of freedom of the corresponding
test statistic in the VECM setting (cf. Johansen 1995, Theorem 7.2).

The second type of hypothesis, H′
0, is also straightforwardly parameterized: In this case a subspace

of the cointegrating space is known and given by the column space of b ∈ Rs×t. Assume w.l.o.g.
b ∈ Os,t. The orthocomplement of β = [b, ϕ] is given by the set of matrices C1 satisfying the restriction
b′C1 = 0, i.e., the set Os,d1(b) defined in (13). The parameterization of this set has already been
discussed. The reduction of the number of free parameters under the null hypothesis is t(s − r) which
again coincides with the number of degrees of freedom of the corresponding test statistic in the VECM
setting (cf. Johansen 1995, Theorem 7.3).

Finally, the third type of hypothesis, H′′
0 , is the most difficult to parameterize in our setting. As an

illustrative example consider the case H
′′
0 : β = [H1 ϕ1, H2 ϕ2], β ∈ Rs×r, H1 ∈ Rs×t1 , H2 ∈ Rs×t2 , ϕ1 ∈

Rt1×r1 , ϕ2 ∈ Rt2×r2 , rj ≤ tj ≤ s and r1 + r2 = r. W.l.o.g. choose Hb ∈ Os,tb such that its columns span
the tb-dimensional intersection of the column spaces of H1 and H2 and choose H̃j ∈ Os,t̃j

(Hb), j = 1, 2

such that the columns of H̃j and Hb span the column space of Hj. Define H̃ := [H̃1, H̃2, Hb] ∈ Os,t̃,
with t̃ = t̃1 + t̃2 + tb. Let w.l.o.g. H̃⊥ ∈ Os,s−t̃(H̃) and define pj := min(rj, t̃j), qj := max(rj, t̃j) for
j = 1, 2 and pb = q1 − t̃1 + q2 − t̃2. A parameterization of βr ∈ Os,r satisfying the restrictions under
the null hypothesis can be derived from the following mapping:

βr(θH , θR,β) := H̃ · RH(θH)
′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ip1 0p1×p2 0p1×pb

0(q1−r1)×p1
0(q1−r1)×p2

0(q1−r1)×pb

0p2×p1 Ip2 0p2×pb

0(q2−r2)×p1
0(q2−r2)×p2

0(q2−r2)×pb

0pb×p1 0pb×p2 Ipb

0(t̃−q1−q2)×p1
0(t̃−q1−q2)×p2

0(t̃−q1−q2)×pb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
· RR(θR,β),

where RR(θR,β) ∈ Rr×r as in Lemma 1 and RH(θH) := RH
(
(θH1 , θH2 , θHb)

)
:=

RH1(θH1)RH2(θH2)RHb(θHb) ∈ Rt̃×t̃ is a product of Givens rotations corresponding to the entries
in the blocks highlighted by bold font. The three matrices are defined as follows:
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RH1(θH1) :=
p1

∏
i=1

t̃−q2−r1

∏
j=1

Rt,i,δH1 (j)+j(θH1,(t̃−q2−r1)(i−1)+j), δH1(j) :=

{
p1 if j ≤ q1 − r1

t̃1 + t̃2 + pb else,

RH2(θH2) :=
p2

∏
i=1

t̃−q1−r2

∏
j=1

Rt,p1+i,δH2 (j)+j(θH2,(t̃−q1−r2)(i−1)+j), δH2(j) :=

{
t̃1 + p2 if j ≤ q2 − r2

t̃1 + t̃2 + pb else,

RHb(θHb) :=
pb

∏
i=1

t̃−q1−q2

∏
j=1

Rt,p1+p2+i,t̃1+t̃2+pb+j(θHb ,(t̃−q1−q2)(i−1)+j).

Consequently, a parameterization of the orthocomplement of the cointegrating space is based on
the mapping:

Cr
1(θH , θR,C) :=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
H̃ · RH(θH)

′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0p1×(q1−r1)
0p1×(q2−r2)

0p1×(t̃−q1−q2)

Iq1−r1 0(q1−r1)×(q2−r2)
0(q1−r1)×(t̃−q1−q2)

0p2×(q1−r1)
0p2×(q2−r2)

0p2×(t̃−q1−q2)

0(q2−r2)×(q1−r1)
Iq2−r2 0(q2−r2)×(t̃−q1−q2)

0pb×(q1−r1)
0pb×(q2−r2)

0pb×(t̃−q1−q2)

0(t̃−q1−q2)×(q1−r1)
0(t̃−q1−q2)×(q2−r2)

It̃−q1−q2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, H̃⊥

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
· RR(θR,C),

where RH(θH) ∈ Rt̃×t̃ as above and RR(θR,C) ∈ R(s−r)×(s−r) as in Lemma 1. Please note that for all θH ,
θR,β and θR,C it holds that βr(θH , θR,β)

′Cr
1(θH , θR,C) = 0r×(s−r). The number of parameters restricted

under H′′
0 is equal to r1(q1 − r1) + r2(q2 − r2) + (r1 + r2)(t̃ − q1 − q2) + (s − r)(s − r + 1)/2, and thus,

through q1 and q2, depends on the dimension tb of the intersection of the columns spaces of H1 and H2.
The reduction of the number of free parameters matches the degrees of freedom of the test statistics in
Johansen (1995, Theorem 7.5), if β is identified, which is the case if r1 ≤ t̃1 and r2 ≤ t̃2.

Using the mapping βr(·) as a basis for a parameterization allows to introduce another type of
hypotheses of the form:

(iv) H
′′′
0 : β⊥ = C1 = [H1 ϕ1, . . . , Hc ϕc], β⊥ ∈ Rs×(s−r), Hj ∈ Os,tj , ϕj ∈ Otj ,rj , rj ≤ tj ≤ s,

for j = 1, . . . , c such that ∑c
j=1 rj = s − r. The ortho-complement of the cointegrating space

is contained in the column spaces of the (full rank) matrices Hk.

This type of hypothesis allows, e.g., to test for the presence of cross-unit cointegrating relations
(cf. Wagner and Hlouskova 2009, Definition 1) in, e.g., multi-country data sets.

Hypotheses on the cointegrating space at frequency ωk = π can be treated analogously to
hypotheses on the cointegrating space at frequency ωk = 0.

Testing hypotheses on cointegrating spaces at frequencies 0 < ωk < π has to be discussed in
more detail, as one also has to consider the space spanned by PCIVs, compare Example 2. There are
2(s − dk

1) linearly independent PCIVs of the form β(z) = β0 + β1z. Every PCIV corresponds to a vector
zkβ0 + β1 ∈ Cs orthogonal to Ck and consequently hypotheses on the space spanned by PCIVs can be
transformed to hypotheses on the complex column space of Ck ∈ C

s×dk
1 .

Consider, e.g., an extension of the first type of hypothesis of the form

Hk
0 :

[
γ0 γ̃0

γ1 γ̃1

]
=

[
Is 0s×s

− cos(ωk)Is sin(ωk)Is

] [
(H̃0φ̃0 − H̃1φ̃1) (H̃0φ̃1 + H̃1φ̃0)

−(H̃0φ̃1 + H̃1φ̃0) (H̃0φ̃0 − H̃1φ̃1)

]

=

[
Is 0s×s

− cos(ωk)Is sin(ωk)Is

] [
H̃0 H̃1

−H̃1 H̃0

] [
φ̃0 φ̃1

−φ̃1 φ̃0

]
,
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with H̃0, H̃1 ∈ Rs×t, φ̃0, φ̃1 ∈ Rt×r, r ≤ t < s, which implies that the column space of Ck is equal to the
orthocomplement of the column space of (H̃0 + iH̃1)(φ̃0 + iφ̃1). This general hypothesis encompasses,
e.g., the hypothesis [γ′

0, γ′
1]

′ = Hφ = [H′
0, H′

1]
′φ, with H ∈ R2s×t, H0, H1 ∈ Rs×t, φ ∈ Rt×r, by setting

φ̃0 := φ̃1 := φ̃, H̃0 := H0 and H̃1 := −(cos(ωk)H0 + H1)/ sin(ωk). The extension is tailored to
include the pairwise structure of PCIVs and to simplify transformation into hypotheses on the complex
matrix Ck used in the parameterization. The parameterization of the set of matrices corresponding
to Hk

0 is derived from a mapping of the form given in (15), with ŘL(θ̌L) and RR(θR) replaced by
Q̌L(ϕ̌L) := ∏t−r

i=1 ∏r
j=1 Qt,i,t−r+j(ϕL,r(i−1)+j) ∈ Rt×t and Dd(ϕD)QR(ϕR) as in Lemma 2.

Similarly, the three other types of hypotheses on the cointegrating spaces considered above can
be extended to hypotheses on the space of PCIVs in the MFI(1) case. They translate into hypotheses on
complex valued matrices βk orthogonal to Ck. To parameterize the set of matrices restricted according
to these null hypotheses, Lemma 2 is used. Thus, the restrictions implied by the extensions of all four
types of hypotheses to hypotheses on the dynamic cointegrating spaces at frequencies 0 < ωk < π for
MFI(1) processes can be implemented using Givens rotations.

A different case of interest is the hypothesis of at least m linearly independent CIVs bj ∈ Rs,
j = 1, . . . , m with 0 < m ≤ s − dk

1, i.e., an m-dimensional static cointegrating space at frequency
0 < ωk < π, which we discuss as another illustrative example to the procedure for the case of
cointegration at complex unit roots.

For the dynamic cointegrating space, this hypothesis implies the existence of 2m linearly
independent PCIVs of the form β1(z) = bj and β2(z) = bjz, j = 1, . . . , m. In light of the discussion
above the necessary condition for these two polynomials to be PCIVs is equivalent to b′

jCk = 0,
for j = 1, . . . , m. This restriction is similar to H′

0 discussed above, except for the fact that the
cointegrating vectors bj are not fully specified. This hypothesis is equivalent to the existence of an
m-dimensional real kernel of Ck. A suitable parameterization is derived from the following mapping

C(θb,ϕ) := RL(θb)

[
0m×dk

1

CU(ϕ)

]
,

where θb ∈ [0, 2π)m(s−m) and CU(ϕ) := CU(ϕL,ϕD,ϕR) ∈ Us−m,dk
1

as in Lemma 2. The difference in
the number of free parameters without restrictions and with restrictions is equal to m(s − m).

The hypotheses can also be tested jointly for the cointegrating spaces of several unit roots.

5.1.3. Testing Hypotheses on the Adjustment Coefficients

As in the case of hypotheses on the cointegrating spaces βk, hypotheses on the adjustment
coefficients αk are typically formulated as hypotheses on the column spaces of αk. We only focus on
hypotheses on the real valued α1 corresponding to frequency zero. Analogous hypotheses may be
considered for αk at frequencies ωk 	= 0, using the same ideas.

The first type of hypothesis on α1 is of the form Hα : α1 = Aψ, A ∈ Rs×t, ψ ∈ Rt×r and therefore,
can be rewritten as B1 Aψ = 0. W.l.o.g. let A ∈ Os,t and A⊥ ∈ Os,s−t. We deal with this type of
hypothesis as with H0 : β = Hϕ in the previous section by simply reversing the roles of C1 and
B1. We, therefore, consider the set of feasible matrices B′

1 as a subset in Os,s−r and use the mapping
B′

1(θ̌L, θR) = [AŘL(θ̌L)
′[It−r, 0r×(t−r)]

′, A⊥]RR(θR) to derive a parameterization, while C′
1 is restricted

to be a p.u.t. matrix and the set of feasible matrices C′
1 is parameterized accordingly.

As a second type of hypothesis Juselius (2006, sct. 11.9, p. 200) discusses H′
α : α1,⊥ = Hψ,

H ∈ Rs×t, ψ ∈ Rt×(s−r), linked to the absence of permanent effects of shocks H⊥εt on any of the
variables of the system. Assume w.l.o.g. H⊥ ∈ Os,s−t. Using the parameterization of Os−r(H⊥)
defined in (13) for the set of feasible matrices B′

1 and the parameterization of the set of p.u.t. matrices
for the set of feasible matrices C′

1, implements this restriction.
The restrictions on Hα reduce the number of free parameters by r(s − t) and the restrictions

implied by H′
α lead to a reduction by t(s − r) free parameters, compared to the unrestricted case,
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which matches in both cases the number of degrees of freedom of the corresponding test statistic in the
VECM framework.

5.1.4. Restrictions on the Deterministic Components

Including an unrestricted constant in the VECM equation Δ0yt = εt + Φ0 leads to a linear trend
in the solution process yt = ∑t

j=1(ε j + Φ0) + y1 = ∑t
j=1 ε j + y1 + Φ0t, for t > 1. If one restricts the

constant to Φ0 = αΦ̃0, Φ̃0 ∈ Rr in a general VECM equation as given in (4), with Π = αβ′ of rank r,
no summation to linear trends in the solution process occurs, while a constant non-zero mean is still
present in the cointegrating relations, i.e., the process {β′yt}t∈Z. Analogously an unrestricted linear
trend Φ1t in the VECM equation leads to a quadratic trend of the form Φ1t(t − 1)/2 in the solution
process, which is excluded by the restriction Φ1t = αΦ̃1t.

In the VECM framework, compare Johansen (1995, sct. 5.7, p. 81), five restrictions related to the
coefficients corresponding to the constant and the linear trend are commonly considered:

1. H(r) : Φdt = Φ1t + Φ0, i.e., unrestricted constant and linear trend,
2. H∗(r) : Φdt = αΦ̃1t + Φ0, i.e., unrestricted constant, linear trend restricted to

cointegrating relations,
3. H1(r) : Φdt = Φ0, i.e., unrestricted constant, no linear trend,
4. H∗

1 (r) : Φdt = αΦ̃0, i.e., constant restricted to cointegrating relations,
no linear trend,

5. H2(r) : Φdt = 0, i.e., no deterministic components present,

with Φ0, Φ1 ∈ Rs and Φ̃0, Φ̃1, ∈ Rr and the following consequences for the solution processes:
Under H(r) the solution process contains a quadratic trend in the direction of the common trends,
i.e., in {β′

⊥yt}t∈Z, and a linear trend in the direction of the cointegrating relations, i.e., in {β′yt}t∈Z.
Under H∗(r) the quadratic trend is not present. H1(r) features a linear trend only in the directions of
the common trends, H2(r) a constant only in these directions. Under H∗

1 (r) the constant is also present
in the directions of the cointegrating relations.

In the state space framework the deterministic components can be added in the output equation
yt = Cxt + Φdt + εt, compare (9). Consequently, the above considered hypotheses can be imposed by
formulating linear restrictions on Φ. These can be directly parameterized by including the following
deterministic components in the five considered cases:

1. H(r) : Φdt = C1Φ̃2t2 + Φ1t + Φ0,
2. H∗(r) : Φdt = Φ1t + Φ0,
3. H1(r) : Φdt = C1Φ̃1t + Φ0,
4. H∗

1 (r) : Φdt = Φ0,
5. H2(r) : Φdt = C1Φ̃0,

where Φ0, Φ1 ∈ Rs and Φ̃0, Φ̃1, Φ̃2 ∈ R
d1

1 . The component C1Φ̃0 captures the influence of the initial
value C1x1,1 in the output equation.

In the VECM framework for the seasonal MFI(1) case, with Πk = αkβ′
k of rank rk for 0 < ωk < π,

the deterministic component usually includes restricted seasonal dummies of the form αkΦ̃kzt
k +

αkΦ̃k(zk)t, Φ̃k ∈ Crk to avoid summation in the directions of the stochastic trends. The state space
framework allows to straightforwardly include seasonal dummies in the output equation in the form
of Φkzt

k + Φk(zk)t, Φk ∈ Cs. Again, it is of interest whether these components are unrestricted or

whether they take the form of CkΦ̃kzt
k + CkΦ̃k(zk)t, Φ̃k ∈ C

dk
1 , similarly allowing for a reinterpretation

of these components as influence of the initial values x1,k on the output.
Please note that Φkzt

k + Φk(zk)t is equivalently given by Φ̌k,1 sin(ωkt) + Φ̌k,2 cos(ωkt) using real
coefficients Φ̌k,1, Φ̌k,2 ∈ Rs and the desired restrictions can be implemented accordingly.
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5.2. The I(2) Case

The state space unit root structure of I(2) processes is of the form ΩS = ((0, d1
1, d1

2)), where the
integer d1

1 equals the dimension of xE
t,1, and d1

2 equals the dimension of [(xG
t,2)

′, (xE
t,2)

′]′. Recall that the
solution for t > 0 and x1,u = 0 of the system in canonical form in this setting is given by

yt = CE
1,1xE

t,1 + CG
1,2xG

t,2 + CE
1,2xE

t,2 + C•xt,• + Φdt + εt

= CE
1,1B1,2,1

t−1

∑
k=1

k

∑
j=1

εt−j + (CE
1,1B1,1 + CG

1,2B1,2,1 + CE
1,2B1,2,2)

t−1

∑
j=1

εt−j

+C•
t−1

∑
j=1

Aj−1
• B•εt−j + C•At−1

• x1,• + Φdt + εt.

For VAR processes integrated of order two the integers d1
1 and d1

2 of the corresponding state space unit
root structure are linked to the ranks of the matrices Π = αβ′ (denoted as r = r0) and α′

⊥Γβ⊥ = ξη′

(denoted as m = r1) in the VECM setting, as discussed in Section 2. It holds that r = s − d1
2 and

m = d1
2 − d1

1. The relation of the state space unit root structure to the cointegration indices r0, r1, r2 was
also discussed in Section 3.

Again, both the integers d1
1 and d1

2 and the ranks r and m, and consequently also the indices
r0, r1 and r2, are closely related to the dimensions of the spaces spanned by CIVs and PCIVs. In the I(2)
case the static cointegrating space of order ((0, 2), (0, 1)) is the orthocomplement of the column space
of CE

1,1 and thus of dimension s − d1
1. The dimension of the space spanned by CIVs of order ((0, 2), {})

is equal to s − d1
2 − rc,G, where rc,G denotes the rank of CG

1,2, since this space is the orthocomplement of
the column space of [CE

1,1, CG
1,2, CE

1,2]. The space spanned by the PCIVs β0 + β1z of order ((0, 2), {}) is of
dimension smaller or equal to 2s − d1

1 − d1
2, due to the orthogonality constraint on [β′

0, β′
1]

′ given in
Example 3.

Consider the matrices β,β1 and β2 as defined in Section 2. From a state space realization (A, B, C)
in canonical form corresponding to a VAR process it immediately follows that the columns of β2 span
the same space as the columns of the sub-block CE

1,1. The same relation holds true for β1 and the
sub-block CE

1,2. With respect to polynomial cointegration, Bauer and Wagner (2012) show that the rank
of CG

1,2 determines the number of minimum degree polynomial cointegrating relations, as discussed in
Example 3. If CG

1,2 = 0, then there exists no vector γ, such that {γ′yt}t∈Z is integrated and cointegrated
with {β′

2Δ0yt}t∈Z. In this case {β′yt}t∈Z is a stationary process.
The deterministic components included in the I(2) setting are typically a constant and a linear

trend. As in the MFI(1) case, identifiability problems occur, if we consider a non-zero initial state x1,u:
The solution to the state space equations for t > 0 and x1,u 	= 0 is given by:

yt =
t−1

∑
j=1

CAj−1Bεt−j + CE
1,1(xE

1,1 + xG
1,2(t − 1)) + CG

1,2xG
1,2 + CE

1,2xE
1,2 + C•At−1

• x1,• + Φdt + εt.

Hence, if Φdt = Φ0 + Φ1t, the output equation contains the terms CE
1,1xE

1,1 + CG
1,2xG

1,2 + CE
1,2xE

1,2 −
CE

1,1xG
1,2 +Φ0 and (CE

1,1xG
1,2 +Φ1)t. Again, this implies non-identifiability, which is resolved by assuming

x1,u = 0, compare Remark 6.

5.2.1. Testing Hypotheses on the State Space Unit Root Structure

To simplify notation we use

M(d1
1, d1

2) :=

⎧⎪⎪⎨⎪⎪⎩
M(((0, d1

1, d1
2)), n − d1

1 − d1
2) if d1

1 > 0,

M(((0, d1
2)), n − d1

2) if d1
1 = 0, d1

2 > 0,

M•,n if d1
1 = d1

2 = 0,
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with n ≥ d1
1 + d1

2. Here M(d1
1, d1

2) for d1
1 + d1

2 > 0 denotes the closure of the set of transfer functions of
order n that possess a state space unit root structure of either ΩS = ((0, d1

1, d1
2)) or ΩS = ((0, d1

2)) in
case of d1

1 = 0, while M(0, 0) denotes the closure of the set of all stable transfer functions of order n.
Considering the relations between the different sets of transfer functions given in Corollary 4

shows that the following relations hold (assuming s ≥ 4; the columns are arranged to include transfer
functions with the same dimension of Au):

M(0, 0) ⊃ M(0, 1) ⊃ M(1, 0)
∪

M(0, 2) ⊃ M(1, 1) ⊃ M(2, 0)
∪ ∪

M(0, 3) ⊃ M(1, 2)
∪

M(0, 4)

Please note that M(d1
1, d1

2) corresponds to Hs−d1
2,d1

2−d1
1

= Hr,r1 in Johansen (1995).
Therefore, the relationships between the subsets match the ones in Johansen (1995, Table 9.1) and the
ones found by Jensen (2013). The latter type of inclusions appear for instance for M(0, 2), containing
transfer functions corresponding to I(1) processes, which is a subset of the set M(1, 0) of transfer
functions corresponding to I(2) processes.

The same remarks as in the MFI(1) case also apply in the I(2) case: When testing for H0 : ΩS =

((0, d1
1,0, d1

2,0)), all attainable state space unit root structures A(((0, d1
1,0, d1

2,0))) have to be included in
the null hypothesis.

5.2.2. Testing Hypotheses on CIVs and PCIVs

Johansen (2006) discusses several types of hypotheses on the cointegrating spaces of different
orders. These deal with properties of β, joint properties of [β, β1] or the occurrence of non-trivial
polynomial cointegrating relations. Boswijk and Paruolo (2017), moreover, discuss testing hypotheses
on the loading matrices of common trends (corresponding in our setting to testing hypotheses on C1).

We commence with hypotheses of the form H0 : β = Kϕ and H′
0 : β = [b, ϕ] just as in the MFI(1)

case at unit root one, since hypotheses on β correspond to hypotheses on its orthocomplement spanned
by [CE

1,1, CE
1,2] in the VARMA framework:

Hypotheses of the form H0 : β = Kϕ, K ∈ Rs×t, ϕ ∈ Rt×r imply ϕ′K′[CE
1,1, CE

1,2] = 0. W.l.o.g. let
K ∈ Os,t and K⊥ ∈ Os,s−t. As in the parameterization under H0 in the MFI(1) case at unit root one,
compare (15), use the mapping

[CE,r
1,1 , CE,r

1,2 ](θ̌L, θR) :=

[
K · ŘL(θ̌L)

′
[

It−r

0r×(t−r)

]
, K⊥

]
· RR(θR),

to derive a parameterization of the set of feasible matrices [CE
1,1, CE

1,2], i.e., a joint parameterization of
both sets of matrices CE

1,1 and CE
1,2, where [CE

1,1, CE
1,2] ∈ Os,s−r.

Hypotheses of the form H′
0 : β = [b, ϕ], b ∈ Rs×t, ϕ ∈ Rs×(r−t), 0 < t ≤ r are equivalent

to b′[CE
1,1, CE

1,2] = 0. Assume w.l.o.g. b ∈ Os,t and parameterize the set of feasible matrices
CE

1,1 using Os,d1
1
(b) as defined in (13) and the set of feasible matrices CE

1,2 using Os,d1
2−d1

1
([b, CE

1,1]).

Alternatively, parameterize the set of feasible matrices jointly as elements [CE
1,1, CE

1,2] ∈ Os,s−r(b).
Applications using the VECM framework allow for testing hypotheses on [β, β1]. In the VARMA

framework, these correspond to hypotheses on the orthogonal complement of [β, β1], i.e., CE
1,1.

Implementation of different types of hypotheses on [β, β1] proceeds as for similar hypotheses on
β in the MFI(1) case at unit root one, replacing [CE

1,1, CE
1,2] by CE

1,1.
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The hypothesis of no minimum degree polynomial cointegrating relations implies the restriction
CG

1,2 = 0, compare Example 3. Therefore, we can test all hypotheses considered in Johansen (2006) also
in our more general setting.

5.2.3. Testing Hypotheses on the Adjustment Coefficients

Hypotheses on α and ξ as defined in (6) and (7) correspond to hypotheses on the spaces
spanned by the rows of B1,2,1 and B1,2,2. For VAR processes integrated of order two, the row
space of B1,2,1 is equal to the orthogonal complement of the column space of [α, α⊥ξ], while the
row space of B1,2 := [B′

1,2,1, B′
1,2,2]

′ is equal to the orthogonal complement of the column space of
α. The restrictions corresponding to hypotheses on α and ξ can be implemented analogously to the
restrictions corresponding to hypotheses on α1 in Section 5.1.3, reversing the roles of the relevant
sub-blocks in Bu and Cu accordingly.

5.2.4. Restrictions on the Deterministic Components

The I(2) case is, with respect to the modeling of deterministic components, less well
studied than the MFI(1) case. In most theory papers they are simply left out, with the notable
exception Rahbek et al. (1999), dealing with the inclusion of a constant term in the I(2)-VECM
representation. The main reason for this appears to be the way deterministic components in the defining
vector error correction representation translate into deterministic components in the corresponding
solution process. An unrestricted constant in the VECM for I(2) processes leads to a linear trend in
{β′

1yt}t∈Z and a quadratic trend in {β′
2yt}t∈Z, while an unrestricted linear trend results in quadratic

and cubic trends in the respective directions. Already in the I(1) case discussed above five different
cases—with respect to integration and asymptotic behavior of estimators and tests—need to be
considered separately. An all encompassing discussion of the restrictions on the coefficients of a
constant and a linear trend in the I(2) case requires the specification of even more cases. As an
alternative approach in the VECM framework, deterministic components could be dealt with by
replacing yt with yt − Φdt in the VECM equation. This has recently been considered in Johansen and
Nielsen (2018) and is analogous to our approach in the state space framework.

As before, in the MFI(1) or I(1) case, the analysis of (the impact of) deterministic components is
straightforward in the state space framework, which effectively stems from their additive inclusion
in the Granger-type representation, compare (9). Choose, e.g., Φdt = Φ0 + Φ1t, as in the I(1) case.
In analogy to Section 5.1.4, linear restrictions of deterministic components in relation to the static and
polynomial cointegrating spaces can be embedded in a parameterization. Focusing on Φ0, e.g., this is
achieved by

Φ0 = [CE
1,1, CE

1,2]φ0 + C̃1,2φ̃0 + C⊥φ̌0,

where the columns of C̃1,2 are a basis for the column space of CG
1,2, which does not necessarily have full

column rank, and the columns of C⊥ span the orthocomplement of the column space of [CE
1,1, CE

1,2, C̃1,2].
The matrix Φ1 can be decomposed analogously. The corresponding parametrization then allows
to consider different restricted versions of deterministic components and to study the asymptotic
behavior of estimators and tests for these cases.

6. Summary and Conclusions

Vector autoregressive moving average (VARMA) processes, which can be cast equivalently in the
state space framework, may be useful for empirical analysis compared to the more restrictive class of
vector autoregressive (VAR) processes for a variety of reasons. These include invariance with respect
to marginalization and aggregation, parsimony as well as the fact that the log-linearized solutions to
DSGE models are typically VARMA processes rather than VAR processes. To realize the potential of
these advantages necessitates, in our view, to develop cointegration analysis for VARMA processes to a
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similar extent as it is developed for VAR processes. The necessary first steps of this research agenda are
to develop a set of structure theoretical results that allow subsequently developing statistical inference
procedures. Bauer and Wagner (2012) provides the very first step of this agenda by providing a
canonical form for unit root processes in the state space framework, which is shown in that paper to be
very convenient for cointegration analysis.

Based on the earlier canonical form paper this paper derives a state space model parameterization
for VARMA processes with unit roots using the state space framework. The canonical form and a
fortiori the parameterization based on it are constructed to facilitate the investigation of the unit root
and (static and polynomial) cointegration properties of the considered process. Furthermore, the paper
shows that the framework allows to test a large variety of hypotheses on cointegrating ranks and
spaces, clearly a key aspect for the usefulness of any method to analyze cointegration. In addition to
providing general results, throughout the paper all results are discussed in detail for the multiple
frequency I(1) and I(2) cases, which cover the vast majority of applications.

Given the fact that (as shown in Hazewinkel and Kalman 1976) VARMA unit root processes cannot
be continuously parameterized, the set of all unit root processes (as defined in this paper) is partitioned
according to a multi-index Γ that includes the state space unit root structure. The parameterization is
shown to be a diffeomorphism on the interior of the considered sets. The topological relationships
between the sets forming the partitioning of all transfer functions considered are studied in great detail
for three reasons: First, pseudo maximum likelihood estimation effectively amounts to maximizing
the pseudo likelihood function over the closures of sets of transfer functions, MΓ in our notation.
Second, related to the first item, the relations between subsets of MΓ have to be understood in
detail as knowledge concerning these relations is required for developing (sequential) pseudo
likelihood-ratio tests for the numbers of stochastic trends or cycles. Third, of particular importance
for the implementation of, e.g., pseudo maximum likelihood estimators, we discuss the existence of
generic pieces.

In this respect we derive two results: First, for correctly specified state space unit root structure
and system order of the stable subsystem —and thus correctly specified system order—we explicitly
describe generic indices Γg(ΩS, n•) such that MΓg(ΩS ,n•) is open and dense in the set of all transfer
functions with state space unit root structure ΩS and system order of the stable subsystem n•.
This result forms the basis for establishing consistent estimators of the transfer functions—and via
continuity of the parameterization—of the parameter estimators when the state space unit root structure
and system order are known. Second, in case only an upper bound on the system order is known
(or specified), we show the existence of a generic multi-index Γα•,g(n) for which the set of corresponding
transfer functions MΓα•,g(n)

is open and dense in the set Mn of all non-explosive transfer functions
whose order (or McMillan degree) is bounded by n. This result is the basis for consistent estimation
(on an open and dense subset) when only an upper bound of the system order is known. In turn this
estimator is the starting point for determining ΩS, using the subset relationships alluded to above
in the second point. For the MFI(1) and I(2) cases we show in detail that similar subset relations
(concerning cointegrating ranks) as in the cointegrated VAR MFI(1) and I(2) cases hold, which suggests
constructing similar sequential test procedures for determining the cointegrating ranks as in the VAR
cointegration literature.

Section 5 is devoted to a detailed discussion of testing hypotheses on the cointegrating
spaces, again for both the MFI(1) and the I(2) case. In this section, particular emphasis is put on
modeling deterministic components. The discussion details how all usually formulated and tested
hypotheses concerning (static and polynomial) cointegrating vectors, potentially in combination with
(un-)restricted deterministic components, in the VAR framework can also be investigated in the state
space framework.

Altogether, the paper sets the stage to develop pseudo maximum likelihood estimators,
investigate their asymptotic properties (consistency and limiting distributions) and tests based on them
for determining cointegrating ranks that allow performing cointegration analysis for cointegrated
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VARMA processes. The detailed discussion of the MFI(1) and I(2) cases benefits the development of
statistical theory dealing with these cases undertaken in a series of companion papers.
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Appendix A. Proofs of the Results of Section 3

Appendix A.1. Proof of Lemma 1

(i) Let Cj be a sequence in Os,d converging to C0 for j → ∞. By continuity of matrix multiplication

C′
0C0 = ( lim

j→∞
Cj)

′ lim
j→∞

Cj = lim
j→∞

(C′
jCj) = Id.

Thus, C0 ∈ Os,d, which shows that Os,d is closed. By construction [C′C]i,i = ∑s
j=1 c2

j,i.
Since [C′C]i,i = 1 for all C ∈ Os,d and i = 1, . . . , d, the entries of C are bounded.

(ii) By definition CO(θ) is a product of matrices whose elements are either constant or infinitely
often differentiable functions of the elements of θ.

(iii) The algorithm discussed above Lemma 1 maps every C ∈ Os,d to [Id, 0′
s−d×d]

′. Since Rq,i,j(θ)
−1 =

Rq,i,j(θ)
′ for all q, i, j and θ, C can be obtained by multiplying [Id, 0′

s−d×d]
′ with the transposed

Givens rotations.
(iv) As discussed, C−1

O (·) is obtained from a repeated application of the algorithm described in
Remark 10. In each step two entries are transformed to polar coordinates. According to Amann
and Escher (2008, chp. 8, p. 204) the transformation to polar coordinates is infinitely often
differentiable with infinitely often differentiable inverse for θ > 0 (and hence r > 0), i.e., on the
interior of the interval [0, π). Thus, C−1

O is a concatenation of functions which are infinitely often
differentiable on the interior of ΘR

O and is thus infinitely often differentiable, if θj > 0 for all
components of θ.
Clearly, the interior of ΘR

O is open and dense in ΘR
O. By the definition of continuity the pre-image

of the interior of ΘR
O is open in Os,d. By (iii) there exists a θ0 for arbitrary C0 ∈ Os,d such that

CO(θ0) = C0. Since the interior of ΘR
O is dense in ΘR

O there exists a sequence θj in the interior
of ΘR

O such that θj → θ0. Then CO(θj) → C0 because of the continuity of CO. Since CO(θj) is a
sequence in the pre-image of the interior of ΘR

O, it follows that the pre-image of the interior of
ΘR

O is dense in Os,d.
(v) For any C ∈ Os,s it holds that 1 = det(C′C) = det(C)2 and det(C) ∈ R, which implies det(C) ∈

{−1, 1}. Since the determinant is a continuous function on square matrices, both sets O+
s,s and

O−
s,s are disjoint and closed.

(vi) The proof proceeds analogously to the proof of (iii).
(vii) A function defined on two disjoint subsets is infinitely often differentiable if and only if the

two functions restricted to the subsets are infinitely often differentiable. The same arguments
as used in (iv) together with the results in (ii) imply that C−1

O : O+
s,s → ΘR

O and C±
O (·)

∣∣
O+

s,s
are

infinitely often differentiable with infinitely often differentiable inverse on an open subset of
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O+
s,s. Clearly, the multiplication with I−s is infinitely often differentiable with infinitely often

differentiable inverse, which implies that C±
O (·)

∣∣
O−

s,s
is infinitely often differentiable with infinitely

often differentiable inverse on an open subset of O−
s,s, from which the result follows.

Appendix A.2. Proof of Lemma 2

(i) Let Cj be a sequence in Us,d converging to C0 for j → ∞. By continuity of matrix multiplication

C′
0C0 = ( lim

j→∞
Cj)

′ lim
j→∞

Cj = lim
j→∞

(C′
jCj) = Id.

Thus, C0 ∈ Us,d, which shows that Us,d is closed. By construction [C′C]i,i = ∑s
j=1 |cj,i|2.

Since [C′C]i,i = 1 for all C ∈ Us,d and i = 1, . . . , d, the entries of C are bounded.
(ii) By definition CU(ϕ) is a product of matrices whose elements are either constant or infinitely

often differentiable functions of the elements of ϕ.
(iii) The algorithm discussed above Lemma 2 maps every C ∈ Us,d to [Dd(ϕD), 0′

s−d×d]
′ with

Dd(ϕD) = diag(eiϕD,1 , . . . , eiϕD,d). Since Qq,i,j(ϕ)−1 = Qq,i,j(ϕ)′ for all q, i, j and ϕ, C can be
obtained by multiplying [Dd(ϕD), 0′

s−d×d]
′ with the transposed Givens rotations.

(iv) The algorithms in Remark 12 and above Lemma 2 describe C−1
U in detail. The determination of

an element of ϕL or ϕR uses the transformation of two complex numbers into polar coordinates in
step 2 of Remark 12, which according to Amann and Escher (2008, chp. 8, p. 204) is infinitely often
differentiable with infinitely often differentiable inverse except for non-negative reals, which
are the complement of an open and dense subset of the complex plane. Step 3 of Remark 12
uses the formulas ϕ1 = tan−1

(
b
a

)
, which is infinitely often differentiable for a > 0, and ϕ2 =

ϕa − ϕb mod 2π, which is infinitely often differentiable for ϕa 	= ϕb, which occurs on an open and
dense subset of [0, 2π)× [0, 2π). For the determination of an element of ϕD a complex number
of modulus one is transformed in polar coordinates which is infinitely often differentiable on
an open and dense subset of complex numbers of modulus one compare again Amann and
Escher (2008, chp. 8, p. 204). Thus, C−1

U is a concatenation of functions which are infinitely often
differentiable on open and dense subsets of their domain of definition and is thus infinitely often
differentiable on an open and dense subset of Us,d.

Appendix A.3. Proof of Theorem 2

(i) The multi-index Γ is unique for a transfer function k ∈ Mn, since it only contains information
encoded in the canonical form. Therefore, MΓ is well defined. Since conversely for every
transfer function k ∈ Mn a multi-index Γ can be found, MΓ constitutes a partitioning of Mn.
Furthermore, using the canonical form, it is straightforward to see that the mapping attaching
the triple (A, B, C) ∈ ΔΓ in canonical form to a transfer function k ∈ MΓ is homeomorphic
(bijective, continuous, with continuous inverse): Bijectivity is a consequence of the definition
of the canonical form. Tpt continuity of the transfer function as a function of the matrix triples
is obvious from the definition of Tpt. Continuity of the inverse can be shown by constructing
the canonical form starting with an overlapping echelon form (which is continuous according
to Hannan and Deistler 1988, chp. 2) and subsequently transforming the state basis to reach
the canonical form. This involves the calculation of a Jordan normal form with fixed structure.
This is an analytic mapping (cf. Chatelin 1993, Theorem 4.4.3). Finally, the restrictions on C and B
are imposed. For given multi-index Γ these transformations are continuous (as discussed above
they involve QR decompositions to obtain unitary block columns for the blocks of C, rotations to
p.u.t form with fixed structure for the blocks of B and transformations to echelon canonical form
for the stable part).

(ii) The construction of the triple (A(θ), B(θ), C(θ)) for given θ and Γ is straightforward: Au is
uniquely determined by Γ. Since θB,p contains the entries of Bu restricted to be positive and θB, f
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contains the free parameters of Bu, the mapping θB,p × θB, f → Bu is continuous. The mapping
θ• → (A•, B•, C•) is continuous (cf. Hannan and Deistler 1988, Theorem 2.5.3 (ii)). The mapping
θC,E × θC,G → Cu consists of iterated applications of CO, and CU (compare Lemmas 1 and 2)
which are differentiable and thus continuous and iterated applications of the extensions of the
mappings CO,d2−d1 and CO,G (compare Corollaries 1 and 2) to general unit root structures and to
complex matrices. The proof that these functions are differentiable is analogous to the proofs of
Lemma 1 and Lemma 2.

(iii) The definitions of θB, f and θB,p immediately imply that they depend continuously on Bu.
The parameter vector θ• depends continuously on (A•, B•, C•) (cf. Hannan and Deistler 1988,
Theorem 2.5.3 (ii)). The existence of an open and dense subset of matrices Cu such that the
mapping attaching parameters to the matrices is continuous follows from arguments contained
in the proofs of Lemmas 1 and 2.

Appendix B. Proofs of the Results of Section 4

Appendix B.1. Proof of Theorem 3

For the first inclusion the proof can be divided into two parts, discussing the stable and the
unstable subsystem separately. The result with regard to the stable subsystem is due to Hannan
and Deistler (1988, Theorem 2.5.3 (iv)). For the unstable subsystem (Ω̃S, p̃) ≤ (ΩS, p) implies the

existence of a matrix S as described in Definition 9. Partition S =

[
S1
S2

]
such that S1 p = p1 ≥ p̃.

Let k̃ be an arbitrary transfer function in MΓ̃ = π(ΔΓ̃) with corresponding state space realization
(Ã, B̃, C̃) ∈ ΔΓ̃. Then, we find matrices B1 and C1 such that for the state space realization given by

A = S
[

Ã J̃12
0 J̃2

]
S′, B = S

[
B̃
B1

]
and C =

[
C̃ C1

]
S′ it holds that (A, B, C) ∈ ΔΓ.

Then, (Aj, Bj, Cj) = (A, S diag(In1 , j−1 In2)S
′B, C) ∈ ΔΓ, where ni is the number of rows of Si for

i = 1, 2 converges for j → ∞ to
(
A, S

[
B̃
0

]
, C
)

∈ ΔΓ, which is observationally equivalent to

(Ã, B̃, C̃). Consequently, k̃ = π

(
A, S

[
B̃
0

]
, C
)

∈ π(ΔΓ).

To show the second inclusion, consider a sequence of systems (Aj, Bj, Cj) ∈ ΔΓ, j ∈ N converging
to (A0, B0, C0) ∈ ΔΓ. We need to show Γ̄ ∈ ⋃

Γ̃∈K(Γ){Γ̌ ≤ Γ̃}, where Γ̄ is the multi-index corresponding
to (A0, B0, C0).

For the stable system we can separate the subsystem (Aj,s, Bj,s, Cj,s) remaining stable in the
limit and the part with eigenvalues of Aj tending to the unit circle. As discussed in Section 4.1.2,
(Aj,s, Bj,s, Cj,s) converges to the stable subsystem (A0,•, B0,•, C0,•) whose Kronecker indices can only
be smaller than or equal to α• (cf. Hannan and Deistler 1988, Theorem 2.5.3).

The remaining subsystem consists of the unstable subsystem of (Aj, Bj, Cj) which converges to
(A0,u, B0,u, C0,u) and the second part of the stable subsystem containing all stable eigenvalues of Aj
converging to the unit circle. The limiting combined subsystem (A0,c, B0,c, C0,c) is such that A0,c is
block diagonal. If the limiting combined subsystem is minimal and B0,u has a structure corresponding
to p, this shows that the pair (Ω̄S, p̄) extends (ΩS, p) in accordance with the definition of K(Γ).

Since the limiting subsystem is not necessarily minimal and B0,u has not necessarily a structure
corresponding to p, eliminating coordinates of the state and adapting the corresponding structure
indices p may result in a pair (Ω̄S, p̄) that is smaller than the pair (Ω̃S, p̃) corresponding to an element
of K(Γ).

Appendix B.2. Proof of Theorem 4

The multi-index Γ contains three components: ΩS, p, α•. For given ΩS the selection of the
structures indices pmax introducing the fewest restrictions, such that in its boundary all possible p.u.t.
matrices occur, was discussed in Section 4.2. Choosing this maximal element pmax then implies that
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all systems of given state space unit root structure correspond to a multi-index that is smaller than
or equal to (ΩS, pmax, β•), where β• is a Kronecker index corresponding to state space dimension n•.
For the Kronecker indices of order n• it is known that there exists one index α•,g such that Mα•,g is
open and dense in Mn• . The set MΩS ,pmax,β• is, therefore, contained in MΩS ,pmax,α•,g which implies (14)
with Γg(ΩS, n•) := (ΩS, pmax, α•,g).

For the second claim choose an arbitrary state space realization (A, B, C) in canonical form such
that π(A, B, C) ∈ M(ΩS, n•) for arbitrary ΩS. Define the sequence (Aj, Bj, Cj)j∈N by Aj = (1 − j−1)A,
Bj = (1 − j−1)B, Cj = C. Then λ|max|(Aj) < 1 holds for all j, which implies π(Aj, Bj, Cj) ∈ MΓα•,g(n)

for
every n ≥ nu(Ωs) + n• and every j. The continuity of π implies π(A, B, C) = limj→∞π(Aj, Bj, Cj) ∈
MΓα•,g(n)

.

Appendix B.3. Proof of Theorem 5

(i) Assume that there exists a sequence ki ∈ MΓ converging to a transfer function k0 ∈ MΓ. For such
a sequence the size of the Jordan blocks for every unit root are identical from some i0 onwards
since eigenvalues depend continuously on the matrices (cf. Chatelin 1993): Thus, the stable part
of the transfer functions ki must converge to the stable part of the transfer function k0, since the
sum of the algebraic multiplicity of all eigenvalues inside the open unit disc cannot drop in the
limit. Since Vα (the set of all stable transfer functions with Kronecker index α) is open in Vα

according to Hannan and Deistler (1988, Theorem 2.5.3) this implies that the stable part of ki has
Kronecker index α• from some i0 onwards.

For the unstable part of the transfer function note that in MΓ for every unit root zj the rank of
(A − zj In)r is equal for every r. Thus, the maximum over MΓ cannot be larger due to lower
semi-continuity of the rank. It follows that for ki → k0 the ranks of (A − zj In)r for all |zj| = 1 and
for all r ∈ N0 are identical to the ranks corresponding to k0 from some point onwards showing
that ki has the same state space unit root structure as k0 from some i0 onwards. Finally, the p.u.t.
structure of sub-blocks of Bk clearly introduces an open set being defined via strict inequalities.
This shows that ki ∈ MΓ from some i0 onwards implying that MΓ is open in MΓ.

(ii) The first inclusion was shown in Theorem 3. Comparing Definitions 10 and 11 we see⋃
Γ̃∈K(Γg)

MΓ̃ ⊂ ⋃
(Ω̃S ,ñ•)∈A(ΩS ,n•) M(Ω̃S, ñ•). By the definition of the partial ordering (compare

Definition 9)
⋃

Γ̃≤Γg
MΓ̃ ⊂ ⋃

(Ω̃S ,ñ•)≤(ΩS ,n•) M(Ω̃S, ñ•) holds. Together these two statements
imply the second inclusion.⋃
(Ω̃S ,ñ•)∈A(ΩS ,n•)

⋃
(Ω̌S ,ň•)≤(Ω̃S ,ñ•) M(Ω̌S, ň•) ⊂ MΓg(Ωs ,n•) is a consequence of the following

two statements:

(a) If M(Ω̃S, ñ•) ⊂ M(ΩS, n•), then
⋃
(Ω̌S ,ň•)≤(Ω̃S ,ñ•) M(Ω̌S, ň•) ⊂ M(ΩS, n•).

(b) If (Ω̃S, ñ•) ∈ A(ΩS, n•), then M(Ω̃S, ñ•) ⊂ M(ΩS, n•).

For (a) note that for an arbitrary transfer function ǩ ∈ M(Ω̌S, ň•) with (Ω̌S, ň•) ≤ (Ω̃S, ñ•)
there is a multi-index Γ̌ such that ǩ ∈ MΓ̌. By the definition of the partial ordering (compare
Definition 9) we find a multi-index Γ̃ ≥ Γ̌ such that MΓ̃ ⊂ M(Ω̃S, ñ•). By Theorem 3 and the
continuity of π we have MΓ̌ ⊂ π(ΔΓ̃) ⊂ MΓ̃. Since M(Ω̃S, ñ•) ⊂ M(ΩS, n•) by assumption,
ǩ ∈ MΓ̃ ⊂ M(Ω̃S, ñ•) ⊂ M(ΩS, n•) which finishes the proof of (a).

With respect to (b) note that by Definition 11, A(ΩS, n•) contains transfer functions with two
types of state space unit root structures. First, Ãu corresponding to state space unit root Ω̃S may
be of the form

S ÃuS′ =

[
Au J12

0 J2

]
. (A1)
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Second, Ǎu corresponding to state space unit root Ω̌S may be of the form (A1) where off-diagonal
elements of Au are replaced by zero. To prove (b) we need to show that for both cases the
corresponding transfer function is contained in M(ΩS, n•).

We start by showing that in the second case the transfer function ǩ is contained in M(Ω̃S, ñ•),
where Ω̃S is the state space unit root structure corresponding to Ãu in (A1). For this, consider
the sequence

Aj =

[
1 j−1

0 1

]
, Bj =

[
B1

B2

]
, Cj =

[
C1 C2

]
.

Clearly, every system (Aj, Bj, Cj) corresponds to an I(2) process, while the limit for j → ∞
corresponds to an I(1) process. This shows that it is possible in the limit to trade one I(2)
component with two I(1) components leading to more transfer functions in the Tpt closure of
MΓg(ΩS ,n•) than only the ones included in π(ΔΓg(ΩS ,n•)), where the off-diagonal entry in Aj is
restricted to equal one and hence the corresponding sequence of systems in the canonical form
diverges to infinity. In a sense these systems correspond to “points at infinity”: For the example
given above we obtain the canonical form

Aj =

[
1 1
0 1

]
, Bj =

[
B1

B2/j

]
, Cj =

[
C1 jC2

]
.

Thus, the corresponding parameter vector for the entries in Bj,2 converges to zero and the ones
corresponding to Cj,2 to infinity.

Generalizing this argument shows that every transfer function corresponding to a pair (Ω̌S, ň•)
in A(Ω̃S, ñ•), where Ǎu can be obtained by replacing off-diagonal entries of Au with zero, can be
reached from within M(Ω̃S, ñ•).

To prove k̃ ∈ M(ΩS, n•) in the first case, where the state space unit root structure is extended as
visible in Equation (A1), consider the sequence:

Ãj =

[
1 1
0 1 − j−1

]
, B̃j =

[
B1

B2

]
, C̃j =

[
C1 C2

]
,

corresponding to the following system in canonical form (except that the stable subsystem is not
necessarily in echelon canonical form)

Ãj =

[
1 0
0 1 − j−1

]
, B̃j =

[
B1 + jB2

−jB2

]
, C̃j =

[
C1 C1 − C2/j

]
.

This sequence shows that there exists a sequence of transfer functions corresponding to I(1)
processes with one common trend that converge to a transfer function corresponding to an I(2)
system. Again, in the canonical form this cannot happen as there the (1, 2) entry of Ãj would be
restricted to be equal to zero. At the same time note that the dimension of the stable system is
reduced due to one component of the state changing from the stable to the unit root part.

Now for a unit root structure Ω̃S such that (Ω̃S, ñ•) ∈ A(ΩS, n•), satisfying

S ÃuS′ =

[
Au J12

0 J2

]
,
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the Jordan blocks corresponding to ΩS are sub-blocks of the ones corresponding to Ω̃S,
potentially involving a reordering of coordinates using the permutation matrix S. Taking as
the approximating sequence of transfer functions k̃j ∈ MΓg(ΩS ,n•) → k0 ∈ MΓg(Ω̃S ,ñ•) that have

the same structure Ω̃S but replacing J2 by j−1
j J2 leads to processes with state space unit root

structure ΩS.

For the stable part of k̃j we can separate the part containing poles tending to the unit circle
(contained in J2) and the remaining transfer function k̃j,s, which has Kronecker indices α̃ ≤ α•.
However, the results of Hannan and Deistler (1988, Theorem 2.5.3) then imply that the limit
remains in Mα• and hence allows for an approximating sequence in Mα• .

Both results combined constitute the whole set of attainable state space unit root structures in
Definition 11 and prove (b).

As follows from Corollary 4, M(ΩS, n•) = MΓg(ΩS ,n•). Thus, (b) implies⋃
(Ω̃S ,ñ•)∈A(ΩS ,n•) M(Ω̃S, ñ•) ⊂ MΓg(ΩS ,n•) and (a) adds the second union showing the

subset inclusion.
It remains to show equality for the last set inclusion. Thus, we need to show that for
kj ∈ MΓg(ΩS ,n•), kj → k0, it holds that k0 ∈ M(Ω̃S, ñ•), where (Ω̃S, ñ•) ≤ (Ω̌S, ň•) ∈ A(ΩS, n•).
To this end note that the rank of a matrix is a lower semi-continuous function such that for a
sequence of matrices Ej with limit E0, we have

rank( lim
j→∞

Ej) = rank(E0) ≤ lim inf
j→∞

rank(Ej).

Then, consider a sequence kj(z) ∈ MΓg(Ωs ,n•), j ∈ N. We can find a converging sequence of
systems (Aj, Bj, Cj) realizing kj(z). Therefore, choosing Ej = (Aj − zk In)r we obtain that

rank((A0 − zk In)
t) ≤ n −

t

∑
r=1

dk
j,hk−r+1,

since kj(z) ∈ MΓg(Ωs ,n•) implies that the number dk
j,hk−r+1 of the generalized eigenvalues at the

unit roots is governed by the entries of the state space unit root structure Ωs. This implies that
∑t

r=1 dk
j,hk−r+1 ≤ ∑t

r=1 dk
0,hk−r+1 for t = 1, 2, ..., n. Consequently, the limit has at least as many

chains of generalized eigenvalues of each maximal length as dictated by the state space unit root
structure ΩS for each unit root of the limiting system.
Rearranging the rows and columns of the Jordan normal form using a permutation matrix S it is
then obvious that either the limiting matrix A0 has additional eigenvalues, where thus

SA0S′ =

[
Aj J̃12

0 J̃2

]

must hold. Or upper diagonal entries in Aj must be changed from ones to zeros in order
to convert some of the chains to lower order. One example in this respect was given above:

For Aj =

[
1 1/j
0 1

]
the rank of (Aj − I2)

r is equal to 1 for r = 1 and 0 for r = 2. For the

limit we obtain A0 = I2 and hence the rank is zero for r = 1, 2. The corresponding indices
are d1

j,1 = 1, d1
j,2 = 1 for the approximating sequence and d1

0,1 = 0, d1
0,2 = 2 for the limit

respectively. Summing these indices starting from the last one, one obtains d1
j,2 = 1 ≤ d1

0,2 = 2

and d1
j,1 + d1

j,2 = 2 ≤ d1
0,1 + d1

0,2 = 2.
Hence the state space unit root structure corresponding to (A0, B0, C0) must be attainable
according to Definition 11. The number of stable state components must decrease accordingly.
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Finally, the limiting system (A0, B0, C0) is potentially not minimal. In this case the pair (Ω̃S, ñ•)
is reduced to a smaller one, concluding the proof.
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Abstract: This paper discusses the notion of cointegrating space for linear processes integrated of
any order. It first shows that the notions of (polynomial) cointegrating vectors and of root functions
coincide. Second, it discusses how the cointegrating space can be defined (i) as a vector space of
polynomial vectors over complex scalars, (ii) as a free module of polynomial vectors over scalar
polynomials, or finally (iii) as a vector space of rational vectors over rational scalars. Third, it shows
that a canonical set of root functions can be used as a basis of the various notions of cointegrating
space. Fourth, it reviews results on how to reduce polynomial bases to minimal order—i.e., minimal
bases. The application of these results to Vector AutoRegressive processes integrated of order 2 is
found to imply the separation of polynomial cointegrating vectors from non-polynomial ones.

Keywords: VAR; cointegration; I(d); vector spaces

1. Introduction

In their seminal paper, Engle and Granger (1987) introduced the notion of cointegration
and of cointegrating (CI) rank for processes integrated of order 1, or I(1). They did this in
the following way:1

DEFINITION: The components of the vector xt, are said to be co-integrated of
order d, b, denoted xt ∼ CI(d, b), if (i) all components of xt, are I(d); (ii) there
exists a vector β( 	= 0) so that zt = β′xt ∼ I(d − b), b > 0. The vector β is called
the co-integrating vector.
[...] If xt has p components, then there may be more than one co-integrating
vector β. It is clearly possible for several equilibrium relations to govern the
joint behavior of the variables. In what follows, it will be assumed that there
are exactly r linearly independent co-integrating vectors, with r ≤ p − 1, which
are gathered together into the p × r array β. By construction the rank of β will
be r which will be called the “co-integrating rank” of xt.

Engle and Granger (1987) did not define explicitly the notion of cointegrating space,
but just the cointegrating rank, which corresponds to its dimension; explicit mention of the
cointegrating space was first made in Johansen (1988).

The Granger representation theorem in Engle and Granger (1987) showed that the
cointegration matrix β needs to be orthogonal to the Moving Average (MA) impact matrix
of Δxt. More precisely, for Δxt = C(L)εt, the MA impact matrix C(1) has rank equal to
p − r and representation C(1) = β⊥a′, where β⊥ is a basis of the orthogonal complement
of the space spanned by the columns of β and a is full column rank.

Johansen (1991, 1992) stated the appropriate conditions under which the Granger
representation theorem holds for I(1) and I(2) Vector AutoRegressive processes (VAR)
A(L)xt = εt, where the AR impact matrix A(1) has rank equal to r < p and rank factoriza-
tion A(1) = −αβ′, with α and β of full column rank. He defined the cointegrating space as
the vector space generated by the column vectors β j in β over the field of real numbers R.
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Johansen (1991) noted that B = rowR(β′) is uniquely defined2 by the rank factoriza-
tion A(1) = −αβ′, but the choice of basis β′ is arbitrary, i.e., β′ is not identified. Hypotheses
that do not constrain B are hence untestable. He proposed likelihood ratio tests on B and
described asymptotic properties of a just-identified version of β′. Later Johansen (1995)
discussed the choice of basis β′ as an econometric identification problem of a system of
simultaneous equations (SSE) of cointegrating relations describing the long-run equilibria
in the process. He discussed identification using linear restrictions, along the lines of the
classical identification problem of SSE studied in econometrics since the early days of the
Cowles Commission.

The observation in Johansen (1988) that the cointegrating vectors formed a vector
space B was an important breakthrough. For instance, it addressed the question: ‘How
many cointegrating vectors should one estimate in a given system of dimension p?’. A
proper answer is in fact: A set of r linearly independent vectors, spanning the cointegrating
space B, i.e., a basis of B.

Similarly, when assuming that a set of p interest rates is described by an I(1) process,
the notion of cointegrating space B enables one to discuss questions like ‘How should one
test that all interest rates spreads are stationary?’. In fact, if all (p

2) = p(p − 1)/2 interest
rates differentials were stationary, then one should have cointegrating rank r = p − 1,
which gives a first testable hypothesis on the cointegrating rank. Moreover there is no need
to test all possible interest rates differentials to be stationary, but, if the cointegrating rank
has been found to be p − 1, one can test that the cointegrating space is spanned by any set
of linearly independent r contrasts between pairs of interest rates. If the cointegrating rank
is found to be 0 < r < p − 1, one may still want to test the restriction that the cointegrating
space B is a subspace of the linear space spanned by all contrasts.

These questions, and many more, found clear answers thanks to the introduction of
the notion of cointegrating space. The recognition that the set of cointegrating vectors
forms a vector space was then instrumental to represent any cointegrating vector as a linear
combination of the ones in a basis of the vector space.

The notion of cointegrating space, together with the complementary notion of at-
tractor space, has been recently discussed in the context of functional time series for infi-
nite dimensional Hilbert space valued AR processes with unit roots, see Beare et al. (2017),
Beare and Seo (2020), Franchi and Paruolo (2020), and for infinite dimensional Banach space
valued AR processes with unit roots, see Seo (2019).

For systems with variables integrated of order d, I(d), with d = 2, 3, . . .
Granger and Lee (1989) and Engle and Yoo (1991) introduced the related notions of multi-
cointegration and polynomial cointegration; see also Engsted and Johansen (2000). How-
ever, no proper discussion of cointegrating spaces or of their corresponding bases has been
proposed in the literature for higher order systems.

The present paper closes this gap, making use of classical concepts in local spectral
theory, see Gohberg et al. (1993). A central role is played by canonical system of root
functions, which have already been exploited in Franchi and Paruolo (2011, 2016) to
characterize the inversion of a matrix function, and used in Franchi and Paruolo (2019) to
derive the generalization of the Granger-Johansen representation theorem for I(d) processes.

In order to simplify exposition, this paper focuses on unit roots at a single point zω,
indexed by frequency ω. When ω /∈ {0, π}, the resulting matrices are complex-valued,
and the symbol F is taken to indicate C. For ω ∈ {0, π}, F is taken instead to indicate
R. Unit roots at distinct seasonal frequencies different from 0 have been considered e.g.,
in Hylleberg et al. (1990), Gregoir (1999), Johansen and Schaumburg (1998), Bauer and
Wagner (2012). Several of these papers paired frequencies ±ω when ω /∈ {0, π} to obtain
real coefficient matrices for Equilibrium Correction (EC) representations; in order to keep
exposition as simple as possible, this is not attempted in the present paper.

To the best of the authors’ knowledge, local spectral theory tools are employed here
for the first time to discuss the definition of cointegrating space for I(d) processes, d > 1,
and related bases. It is observed that several candidate cointegrating spaces exists, corre-
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sponding to different choices of the set of vectors and scalars. The sets of vectors are chosen
here to be either the set of polynomial vectors or the one of rational vectors, while the set of
scalars are taken to be (i) the field F = R,C, (ii) the ring of polynomials with coefficients in
F (denoted F[z]) or (iii) the field of rational function with coefficients in F (denoted F(z)).
The resulting spaces are either vector spaces, in cases (i) and (iii), or a free module in case
(ii). The relationship among their bases is discussed following Forney (1975), whose results
are used to derive a polynomial basis of minimal degree—i.e., a minimal basis.

The focus of this paper is on the parsimonious representation of the set of cointegrat-
ing vectors. As noted by a referee, the present results may find application also in the
parametrization and estimation of I(d) EC systems. This, however, is beyond the scope of
the present paper.

The rest of the paper is organised as follows. Section 2 provides the motivation for the
paper. Section 3 reports definitions of integration and cointegration in I(d) systems, where
the cointegrating vectors ζ(z)′ = ∑∞

j=0(z − zω)jζ ′
j are allowed to be vector functions; here

(z − zω) and its powers are associated with the difference operator and its powers. Section 4
defines root functions and canonical systems of root functions and Section 5 discusses
possible definitions of the cointegration space. Section 6 discusses how to derive bases
for the various notions of cointegrating space from VAR coefficients. Section 7 discusses
minimal bases using results in Forney (1975) and Section 8 applies these results in order
to obtain a minimal basis in the I(2) VAR case. Section 9 concludes; Appendix A reports
background results.

2. Motivation

This section motivates the study of the represention of cointegrating vectors in terms
of bases of suitable spaces, for systems integrated of order two, which are more formally
introduced in Section 3 below. Let xt be a p × 1 vector process, and let Δ = 1 − L and L be
the (0-frequency) difference and the lag operators. Assume that xt is integrated of order 2,
I(2), with Δjxt nonstationary for j < 2 and stationary for j ≥ 2.

Mosconi and Paruolo (2017) consider the identification problem for the following
cointegrating SSE with I(2) variables

ecmt = ξ(Δ)′xt, with ξ(Δ)′ :=

⎛⎝ β′ + υ′Δ
γ′Δ
β′Δ

⎞⎠ } r0
} r1
} r0

The first set of r0 polynomial vectors has coefficient β′ of order 0 (i.e., that multiplies Δ0) and
coefficient υ′ of order 1 (i.e., that multiplies Δ1). The last r0 + r1 polynomial vectors have 0
coefficients of order 0 and γ′ and β′ coefficients of order 1. They discussed identification of
the SSE with respect to transformations corresponding to pre-multiplication of ξ(Δ)′ (or
ecmt) by a block triangular, nonsingular matrix of the form

Q =

⎛⎝ Q00 Q0γ Q0β

0 Qγγ Qγβ

0 0 Q00

⎞⎠,

where Qab are blocks of real coefficients, a, b ∈ {0, γ, β}, with Q00 and Qγγ nonsingular
square matrices.

They show that Qξ(Δ)′ = ξ◦′(Δ) has the same structure as ξ(Δ)′ in terms of the
null coefficient of order 0 in the last r1 + r0 equations, as well as the same β block as the
coefficient of order 0 in the first r0 and as the coefficient of order 1 in the last r0 rows. More
precisely,

• β′ is replaced by β◦′ = Q00β′, a set of r0 linear combinations of β′,
• γ′Δ is replaced by a set of r1 linear combinations of γ′Δ and β′Δ,
• υ′Δ is replaced by a set of r0 linear combinations of υ′Δ, γ′Δ and β′Δ.
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Remark 1 (F-linear combinations). Note that the Q linear combinations have scalars taken from
F = R, and that any CI vectors can be obtained as linear combinations with coefficients in F of the
rows in ξ(Δ)′, called in the following ‘F-linear combinations’.

The main motivation to study the notion of cointegration space for I(d) processes
with d ≥ 2 comes from the following observation.

Remark 2 (F[Δ]-linear combinations). The set of CI vectors obtained as F-linear combinations
of the rows in ξ(Δ)′ can be also obtained by considering the alternative set of cointegrating vectors

ζ(Δ)′ :=
(

β′ + υ′Δ
γ′

) } r0
} r1

and choosing linear combinations with scalar in the set of polynomials F[Δ], where a(z) ∈ F[z] has
the form a(z) = ∑n

j=0 ajzj for some finite n.
To show that the set of F[Δ]-linear combinations of ζ(Δ)′ is the same as the set of F-linear

combinations of ξ(Δ)′, it is sufficient to show that the rows of ξ(Δ)′ can be obtained as F[Δ]-linear
combinations of the rows in ζ(Δ)′, possibly up to terms of the type c′Δ2 which generate stationary
processes by definition.

Note first that β′ + υ′Δ is common to ξ(Δ)′ and ζ(Δ)′. In order to obtain γ′Δ in ξ(Δ)′ from
ζ(Δ)′ one needs to select the scalar Δ from F[Δ] and multiply it by γ′. Similarly, in order to obtain
β′Δ in ξ(Δ)′ one only needs to select the scalar Δ ∈ F[Δ] and multiply it by β′ + υ′Δ to obtain
β′Δ + υ′Δ2. Because Δ2xt is stationary by the assumption that xt is I(2), the term υ′Δ2 can be
discarded, and this completes the argument.

The take-away from Remark 2 is that, if one allows the set of multiplicative scalars to
contain polynomials, i.e., if one moves from F-linear combinations to F[Δ]-linear combi-
nations, then one can reduce the number of rows needed to generate the set of CI vectors:
ξ(Δ)′ in fact has 2r0 + r1 rows, while the number of rows in ζ(Δ)′ is r0 + r1.

The previous discussion shows that the two sets, F and F[Δ], could be used as possible
set of scalars in taking linear combinations. The first one, F, is a field (i.e., a division ring),
the second one, F[Δ], is a ring but not a field because it lacks the multiplicative inverse.

Given that vector spaces require the set of scalars to be a field, one may also consider
another possible set of scalars, namely F(Δ), the set of rational functions of the type
a(Δ) = c(Δ)/d(Δ) with c(Δ), d(Δ) ∈ F[Δ], and d(Δ) not identically equal to 0, indicated
as d(Δ) 	≡ 0. This leads to consider three possible choices for the set of scalars: (i) The field
F, (ii) the ring F[Δ] and (iii) the field F(Δ). The rest of the paper discusses relative merits of
using any of them.

The above discussion focused on unit roots at z = 1, which are associated to the long
run behavior of the process. When data are observed every month or quarter, seasonal unit
roots, seasonal cointegration and seasonal error correction have been shown to be useful
notions, see Hylleberg et al. (1990). For instance, in the case of quarterly series, the relevant
seasonal unit roots are at z = −1 and at z ± i where i is the imaginary unit. These roots
are represented as zω = exp(iω) with 0 ≤ ω < 2π, where zω = 1, i, −1, −i correspond to
ω = 0, 1

2 π, π, 3
2 π.

Johansen and Schaumburg (1998) showed that the conditions under which a VAR
process allows for seasonal integration (and cointegration) of order 1 are of the same type
as for roots at z = 1, except that expansions of the VAR polynomial are performed around
each zω, see their Theorem 3. They also provided the corresponding EC form in their
Corollary 2; see also Bauer and Wagner (2012) and the discussion in Remark 9 below.

In general, the conditions for integration of any order d at a point zω on the unit circle
can be shown to be of the same type. This paper hence considers the generic case of a linear
process with a generic root on the unit circle zω = exp(iω), and discusses the notions of
cointegration, root functions and minimal bases in this general context. This allows to
show that the present results hold for generic frequency ω, 0 ≤ ω < 2π.
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Incidentally, the results presented below in Section 6 state the generalization of the
Granger and the Johansen Representation Theorems presented in Franchi and Paruolo (2019)
for a generic unit root zω = exp(iω) at any frequency ω.

3. Setup and Definitions

This section introduces notation and basic definitions of integrated and cointegrated
processes.

3.1. Linear Processes

Assume that {εt, t ∈ Z} is a p × 1 i.i.d. sequence, called a noise process,3 with
E(εt) = 0 and E(εtε

′
s) = Ω 1s=t where 1· is the indicator function, and define the linear

process ut = μt + C(L)εt, where μt is a nonstochastic p × 1 vector and C(z) = ∑∞
j=0 zjC◦

j is
a p × p matrix function, with coefficient matrices C◦

j ∈ Rp×p. Note that the matrices C◦
j are

defined by an expansion of C(z) around z = 0. The term μt is nonstochastic, i.e., E(μt) = μt,
and can contain deterministic terms. Because E(εt) = 0, one sees that E(ut) = μt, and
hence in the following ut is often written as ut = E(ut) + C(L)εt.

The matrix function C(z) = ∑∞
j=0 zjC◦

j is assumed to be finite when z is inside the open
disk D(0, 1 + η), η > 0, in C with center at 0 and radius 1 + η > 1, i.e., C(z) is assumed
analytic on D(0, 1 + η). Here and in the following | · | indicates the modulus and D(z�, ρ)
indicates the open disk D(z�, ρ) := {z ∈ C : |z − z�| < ρ} with center z� ∈ C and radius
ρ > 0. In this paper C(z) is assumed to be regular on D(0, 1 + η), i.e., C(z) can lose rank
only at a finite number of isolated points in D(0, 1 + η).

Because of analyticity of C(z), it can be expanded around any interior point of D(0, 1+ η).
In particular, define the point zω := eiω on the unit circle at frequency ω, ω ∈ [0, 2π), and
observe that it lies inside D(0, 1 + η) because η > 0. Hence one can expand C(z) as
C(z) = ∑∞

j=0(z − zω)jCj on D(zω, η), η > 0. Note that the matrices Cj are defined by an
expansion of C(z) around z = zω, but that the dependence of Cj on ω is not included in
the notation for simplicity. The analysis of the properties of C(z) is done locally around
z = zω on D(zω, η), η > 0.

Similarly to C(z), one can consider a scalar function of z, a(z) say, or a 1 × p vector
function b(z)′ taken to be analytic on D(zω , η), η > 0. This means that a(z) has representa-
tion a(z) = ∑∞

j=0(z − zω)jaj around zω and similarly for b(z)′. A special case is when a(z)

is a polynomial of degree k, a(z) = ∑k
j=0(z − zω)jaj, which corresponds to setting all aj = 0

for j > k. Another special case is given by rational functions a(z) = c(z)/d(z) with c(z)
and d(z) polynomials, where d(z) 	≡ 0 and zω is not a root of d(z). Similarly for b(z)′.

3.2. Integration

The following definition specifies the Iω(0) class of processes as a subset of all linear
processes built from the noise sequence εt, and introduces the notion of Iω(d) processes
using the difference operator at frequency ω, Δω := 1 − e−iω L = 1 − z−1

ω L. To simplify
notation, the dependence of Δω on the lag operator L is left implicit. Observe also that,
because zω = eiω 	= 0, z − zω in the analytic expansions can be expressed as (−zω)(1 −
z/zω), where (1 − z/zω) corresponds to the operator Δω.

Next, the definition of order of integration is introduced; this is defined as the differ-
ence between two nonnegative integer exponents d1 and d2 of Δω in the representation
that links the process xt with its driving linear process ut. This definition allows for the
possibility to have xt integrated of negative order.

Definition 1 (Integrated processes at frequency ω). Let C(z) be analytic on D(0, 1 + η),
η > 0, and let εt be a noise process. If {ut, t ∈ Z}, satisfies ut = E(ut) + C(L)εt, then ut is called
a linear process; if, in addition,

C(zω) 	= 0, zω = exp(iω), 0 ≤ ω < 2π, (1)
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then ut is said to be integrated of order zero at frequency ω, indicated ut ∼ Iω(0).
Let d1, d2 ∈ N0 = N ∪ 0 be finite non-negative integers; if {xt, t ∈ Z} satisfies Δd1

ω (xt −
E(xt)) = Δd2

ω (ut − E(ut)) where ut ∼ Iω(0), then xt is said to be integrated of order d := d1 − d2
at frequency ω, indicated xt ∼ Iω(d); in this case xt has representation

Δd1
ω (xt − E(xt)) = Δd2

ω C(L)εt, (2)

where C(z) is analytic on D(0, 1 + η), η > 0, and C(zω) 	= 0.

Remark 3 (Negative orders). When d1 < d2, the integration order d := d1 − d2 is negative.
Note also that Definition 1 avoids to define the operator Δ−1

ω ; see however Equations (5) and (6)
below.

Remark 4 (Mean-0 linear process). The linear process ut in Definition 1 can have any expectation
E(ut), which however, does not play any role in the definition of the xt process. Hence, one can
assume that E(ut) = 0 in Definition 1 without loss of generality.

Remark 5 (E(xt) in Definition 1). Assume xt = cos(2t) + exp(−3t) + C(L)εt with C(z)
analytic on D(0, 1 + η), η > 0, and C(zω) 	= 0, zω := eiω. Then E(xt) = cos(2t) + exp(−3t)
and Definition 1 implies that xt is Iω(0). This example shows that the presence of E(xt) in
Equation (2) allows to concentrate attention on the stochastic part of the process xt.

Remark 6 (Preference for low d1, d2). Assume for instance that (2) is satisfied for (d1, d2) =
(1, 0), and observe that this implies that (2) is satisfied for (d1, d2) = (1 + m, m) for any m ∈ N.
In the following, preference is given to the minimal pair (d1, d2) for which (2) is satisfied, i.e., to
(d1, d2) = (1, 0) in the example.

Leading cases are the ones where either d1 or d2 equals 0. Specifically, when 0 = d1 < d2,
d = d1 − d2 = −d2 is negative, and (2) reads

xt − E(xt) = Δd2
ω C(L)εt. (3)

When d1 ≥ d2 = 0 and hence d = d1 − d2 = d1 is nonnegative, (2) reads

Δd1
ω (xt − E(xt)) = C(L)εt. (4)

Remark 7 (Example of I0(−1)). As an example, consider the process xt = C(L)εt with C(L) =
1 − L. Setting ω = 0 one finds that Equation (2) is satisfied with d = −1, i.e., that the process
is I0(−1). Selecting any other frequency 0 < ω < 2π, one sees that Equation (2) is satisfied for
d = 0, i.e., that the order of integration is 0, i.e., Iω(0) for 0 < ω < 2π. This illustrates the fact
that a process may have different orders of integration at different frequencies.

Remark 8 (t ∈ Z versus t ∈ N0). Consider the process xt = c + ∑t
j=1 εt defined only for

t ∈ N0 = N∪ 0, which satisfies Δ0(xt − c) = εt for t ∈ N. Consider another process {x�t , t ∈ Z}
satisfying the same equation Δ0(x�t − c) = εt for t ∈ Z with xt = x�t for t ∈ N0. The process
{x�t , t ∈ Z} is I0(1) according to Definition 1, and it is suggested to extend this qualification to xt,
because it coincides with the x�t process on the non-negative integers, xt = x�t for t ∈ N0.

Remark 9 (One or more frequencies). Definition 1 of integration refers to a single frequency ω,
but it can be used to cover multiple frequencies. In fact, consider the ‘ARMA process with unit root
structure’, as defined in Bauer and Wagner (2012), i.e., a process xt satisfying D(L)xt = vt where
D(L) := ∏n

j=1 Δmi
ωj for a (finite) set of frequencies ω1, . . . , ωn, with vt a stationary ARMA process

vt = C(L)εt with C(exp(iωj)) 	= 0. They call {(ωj, mj), j = 1, . . . , n}, the ‘unit root structure’
of xt, see their Definition 2. This can be obtained using Definition 1 for each ωj in turn, noting that
vt being ARMA corresponds to a rational C(z), which is a special case of the definition above.
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Hylleberg et al. (1990), Gregoir (1999), Johansen and Schaumburg (1998), Bauer and Wagner (2012)
consider xt to be real-valued, which implies that integration frequencies ±ωj are ‘paired’, so that if
exp(iωj) is a unit root of the process, so is exp(−iωj); this implies that in this case one can pair
frequencies ±ωj with 0 < ωj < π and rearrange coefficients so as to obtain real coefficient matrices in
EC representations. This is not done in this paper for reasons of simplicity.

Remark 10 (Relation with other definitions). The definition of an Iω(0) (respectively an Iω(d))
process in the present Definition 1 coincides with Definition 3.2 (respectively Definition 3.3) in
Johansen (1996) when setting ω = 0 (respectively ω = 0 and d2 = 0). The present definition also
agrees with Definitions 2.1 and 2.2 of integration in Gregoir (1999), both for positive and negative
orders and any frequency ω. The definition also agrees with the one in Franchi and Paruolo (2019)
when applied to vector processes.

Remark 11 (Entries in C(z)). When ω differs from 0 or π, the point zω = eiω has a nonzero
complex part; hence the matrix C(zω) in (1) has complex entries and the coefficient matrices Cj in
the expansion C(z) = ∑∞

j=0(z − zω)jCj are complex even when the coefficients in the expansion
around z = 0 are real.

Following Gregoir (1999), the summation operator at frequency ω is defined as

Sωut := 1t>0

t

∑
j=1

uje−iω(t−j) − 1t<0

0

∑
j=t+1

uje−iω(t−j). (5)

Basic properties of the operator are proved in Gregoir (1999); these include

ΔωSωut = ut, SωΔωut = ut − u0e−iωt, (6)

where {ut, t ∈ Z} is any sequence over Z.

Remark 12 (Simplifications of Δω and initial values). Take d1 = d2 = 1 in (2), which in this
case reads Δωxt = Δωut with ut ∼ Iω(0). Applying the Sω operator on both sides one obtains
xt − x0e−iωt = ut − u0e−iωt.4 If one assigns the initial value of x0 equal to u0, one obtains xt = ut,
which corresponds to the cancellation of Δω from both sides of (2). The same reasoning applies for
generic d1, d2 > 0 to the cancellation of Δmin(d1,d2)

ω from both sides of (2). This shows that one can
simplify powers of Δω from both sides of (2) by properly assigning initial values; this cancellation
is always implicitly performed in the following, in line with preference for minimal values of d1, d2
as discussed in Remark 6.

3.3. Cointegration

Cointegration is the property of (possibly polynomial) linear combinations of xt to
have a lower order of integration with respect to the original order of integration of
xt at frequency ω. Specifically, consider a nonzero 1 × p row vector function ζ(z)′ =

∑∞
j=0 ζ ′

j(z − zω)j, analytic on a disk D(zω, η), η > 0. As in Engle and Granger (1987), the
idea is to call ζ(L)′ cointegrating if ζ(L)′xt has lower order of integration than xt, excluding
cases such as ζ(L)′ = Δωa′ where a′ by itself does not reduce the order of integration.

This leads to the following definition.

Definition 2 (Cointegrating vector at frequency ω). Let xt ∼ Iω(d) be as in Definition 1, i.e.,

Δd1
ω (xt − E(xt)) = Δd2

ω C(L)εt,

where d := d1 − d2, C(z) is analytic on D(0, 1 + η), η > 0, and C(zω) 	= 0, see (2); let also
ζ(z)′ = ∑∞

j=0(z − zω)jζ ′
j be a 1 × p row vector function, analytic on D(zω, η) with ζ(zω)′ =
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ζ ′
0 	= 0′. Then ζ(z)′ is called a cointegrating vector at frequency ω if ζ(L)′xt ∼ Iω(d − s) for

some s ∈ N, i.e.,
ζ(L)′Δd1

ω (xt − E(xt)) = Δd2+s
ω g(L)′εt, (7)

where g(z)′ is analytic on D(zω , η), η > 0, and g(zω)′ 	= 0′. Given Equation (2), Equation (7) is
equivalent to the condition

ζ(L)′C(L) = Δs
ωg(L)′, g(zω)

′ 	= 0′. (8)

The positive integer s ∈ N is called the order of the cointegrating vector ζ(z)′ of C(z) at zω. xt
is said to be cointegrated at frequency ω if any cointegrating vector ζ(z)′ = ∑∞

j=0(z − zω)jζ ′
j

can be replaced by ζ(zω)′ = ζ ′
0 without decreasing the order s in (8); otherwise xt is said to be

multicointegrated at frequency ω.

Remark 13 (C(z) has full rank on D(zω, η), η > 0, except at z = zω). Because cointegrating
vectors are by definition different from zero at zω, xt is cointegrated at frequency ω if and only if
C(zω) 	= 0 has reduced rank. Moreover, because C(z) is regular on D(0, 1 + η), the point zω is
isolated, i.e., C(z) has full rank on D(zω, η), η > 0, except at z = zω.

Remark 14 (Entries in cointegrating vectors). Similarly to Remark 11, the coefficient vectors ζ ′
j

in the expansion ζ(z)′ = ∑∞
j=0(z − zω)jζ ′

j are in general complex. Note that ζ(L)′ = Δωa′ does
not satisfy the definition because the requirement ζ(zω)′ = ζ ′

0 	= 0′ is not satisfied.

Remark 15 (d and s). Recall that d (the order of integration) is the difference between the exponents
of Δω on the l.h.s. and r.h.s. of (2). When pre-multiplied by ζ(L)′, the exponent on the r.h.s.
decreases by s and the difference of the exponents on the l.h.s. and r.h.s. of (7) becomes d − s.
Because ζ ′

0 	= 0′, this can only happen if ζ(L)′ factors Δs
ω from C(L), see (8). The condition

g(zω)′ 	= 0′ guarantees that no remaining additional power of Δω can be factored from C(L) using
ζ(L)′.

Remark 16 (Examples of cointegration vectors). Take ζ(L)′ = ζ ′
0 with ζ0 chosen in (col C(1))⊥,

and note that this implies s ≥ 1 in (7). This shows that the definition contains the I0(1) definition
of cointegrating vectors as a special case.

The usual definition of cointegration, see Definition 3.4 in Johansen (1996), considers
a p × 1 process xt ∼ I0(1) and defines xt cointegrated with cointegrating vector ζ 	= 0 if
ζ ′xt “can be made stationary by a suitable choice of initial distribution”. The following
proposition clarifies that his definition coincides with the one in this paper.

Proposition 1 (Relation with Definition 3.4 in Johansen (1996)). ζ ′ is a cointegrating vector
in the sense of Definition 3.4 in Johansen (1996) if and only if Definition 2 is satisfied with ω = 0
and ζ(z)′ = ζ ′, d = 1, s ∈ N.

Proof. For simplicity and without loss of generality, set E(xt) = 0 and omit the subscript
ω = 0. Assume Definition 2 is satisfied with ω = 0 and ζ(z)′ = ζ ′, d = 1, and s ∈ N, i.e.,

Δζ ′xt = Δsg(L)εt (9)

see Remark 12, and set vt := Δs−1g(L)εt. Applying S to both sides of Equation (9) one
finds ζ ′xt − ζ ′x0 = vt − v0. Note that vt is stationary for any s ∈ N, and hence the initial
values ζ ′x0 can be chosen equal to v0, so as to obtain ζ ′xt = vt, a stationary process.

Conversely, assume that ζ ′ is a cointegrating vector in the sense of Definition 3.4 in
Johansen (1996). Because xt ∼ I(1), one has Δxt = C(L)εt, see Definition 1, with C(z)
analytic on a disk D(0, 1 + η), η > 0, which admits expansion C(z) = C + C̃(z)(1 − z)
around 1, where C̃(z) is analytic on the same disc. A necessary and sufficient condition for
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cointegration in the sense of Definition 3.4 in Johansen (1996) is that ζ ′C = 0 as shown in
Johansen (1988) Equation (17); see also Engle and Granger (1987, p. 256).5 Hence one finds
ζ ′Δxt = Δg(L)′εt with g(z) := ζ ′C̃(z), which is analytic on D(0, 1 + η), η > 0, and hence
also on D(1, η), η > 0. By Corollary 1 below, one has that g(z)′ satisfies g(z)′ = Δmg̃(z)′

with finite m ∈ N0 and g̃(zω)′ 	= 0′. This shows that Definition 2 is satisfied with ζ(z)′ = ζ ′,
d = 1, and s = m + 1 ∈ N.

Remark 17 (ζ ′xt can have negative order of integration). Johansen (1996) makes the following
observation just after his Definition 3.4: “Note that ζ ′xt need not be I(0)”, which recognises that ζ ′xt
can have negative order of integration. This is indeed the case when to s = 2, 3, . . . in Definition 2,
because ζ ′xt ∼ I(1 − s).

Remark 18 (Relation to other definitions in the literature). The definition of cointegration in
Engle and Granger (1987) reported in the introduction is a special case of the present one with
ζ(z)′ = ζ ′

0 a constant vector and ω = 0, under the additional requirement that all variables are inte-
grated of the same order. For more details on this for the case ω = 0, see Franchi and Paruolo (2019).
When s > 1 and ω = 0, Definition 2 covers the definitions of multicointegration and polynomial
cointegration in Granger and Lee (1989), Engle and Yoo (1991), Johansen (1996). When s = 1
and ω = 2π j/n for j = 1, . . . , n where n is the number of seasons, the definition covers seasonal
cointegration in Hylleberg et al. (1990), Johansen and Schaumburg (1998).

Example 1 (I(1) VAR). Following Johansen (1988), consider A(L)xt = εt with A(z) = I −
∑k

j=1(1 − z)j Aj analytic on C. Assume also that det A(z) = 0 has only solutions outside D(0, 1 +
η), η > 0, or at z = 1, where ‘det’ indicates the determinant of a matrix. Here and in the following,
let a⊥ indicate a basis of the orthogonal complement of the linear space spanned by the columns
of the matrix a. Moreover Pa := a(a′a)−1a′ for a full-column-rank matrix a is the orthogonal
projection matrix onto col(a). Johansen (1991) (see his Equations (4.3) and (4.4) in Theorem 4.1)
showed that for xt to be I(1) at frequency ω = 0, a set of necessary and sufficient conditions are:

(i) A(1) = −α0β′
0 with α0, β0 full column rank matrices of dimension p × r0, r0 < p,

(ii) Pα0⊥ A1Pβ0⊥ = −α1β′
1 of maximal rank r1 = p − r0.

In this case xt satisfies (2) for d1 = 1, d2 = 0, and ζ(L)′ = ζ ′ taken to be any row vector in
B = rowF(β′

0) with F = R.

Example 2 (I(2) VAR). Following Johansen (1992), consider the same VAR process as in Example 1.
Johansen (1992) showed that for xt to be I(2) at frequency ω = 0, a set of necessary and sufficient
conditions are:

(i) A(1) = −α0β′
0 with α0, β0 full column rank matrices of dimension p × r0, r0 < p,

(ii) Pα0⊥ A1Pβ0⊥ = −α1β′
1 with α1, β1 full column rank matrices of dimension p × r1, r1 < p − r0,

(iii) P(α0,α1)⊥(A2 + A1 β̄0ᾱ′
0 A1)P(β0,β1)⊥ = −α2β′

2 of maximal rank r2 = p − r0 − r1.

In this case xt satisfies (2) for d1 = 2, d2 = 0, and ζ(L)′ = ζ ′
0 + Δζ ′

1 taken to be any row
vector obtained by linear combinations of the rows in β′

0 + (1 − L)ᾱ′
0 A1 and β′

1. The notion
of cointegrating space for I(2) processes is discussed in detail below, where ᾱ′

0 A1 is called the
‘multicointegrating coefficient’.

4. Root Functions, Cointegrating Vectors and Canonical Systems

This section introduces root functions and canonical systems of root functions, and
their connection to cointegrating vectors, as defined in Definition 2 above.

4.1. Root Functions

Let xt ∼ Iω(d) be cointegrated at frequency ω, i.e., see Definition 2,

Δd1
ω (xt − E(xt)) = Δd2

ω C(L)εt,
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where d := d1 − d2 and C(z) has full rank on D(zω, η), η > 0, except at z = zω, see
Remark 13.

The following definition of (left) root functions is taken from Gohberg et al. (1993);
this definition is given in a neighborhood of zω.

Definition 3 (Root function). A 1 × p row vector function ϕ(z)′ analytic on D(zω, η) is called
a root function of C(z) at zω if ϕ(zω)′ 	= 0′ and if

ϕ(z)′C(z) = (z − zω)
s ϕ̃(z)′, s ∈ N, ϕ̃(zω)

′ 	= 0′. (10)

The positive integer s is called the order of the root function ϕ(z)′ at zω.

Observe that ϕ̃(z)′ is 1 × p and analytic on D(zω, η), η > 0.

Remark 19 (Factoring the difference operator). Definition 3 characterizes roots functions by
their ability to factor powers of (z − zω) from C(z). Note that, because here zω = exp(iω) 	= 0,
one can write (z − zω) as (−zω)(1 − z/zω) where (1 − z/zω) corresponds to the difference
operator Δω and (−zω) can be absorbed in ϕ̃(z)′ without affecting its property that ϕ̃(zω)′ 	= 0′.

Remark 20 (Local analysis). Note first that C(z) cannot be identically 0 in Definition 3, because
C(z) is assumed to be regular. Next take for example the 2× 2 matrix C(z) = diag((1 − z), (1 + z))
which has full rank on C, except at the two points z0 = 1 and zπ = −1, where it has rank 1.

Take first the point at z0 = 1; in this case one could choose a disk D(1, η) with any η < 2,
on which C(z) is analytic and full rank except at z0 = 1. One can verify that a root function is
ϕ1(z)′ = (1, 0), which satisfies ϕ1(z)′C(z) = (1 − z)ϕ̃1(z)′ with ϕ̃1(z)′ = (1, 0). The same can
be repeated for the other point zπ = −1, choosing a different disk D(−1, η) with any η < 2, and a
root function equal to (0, 1).

The implication of this example is that one can have multiple separated points where C(z) has
reduced rank, and apply the above definition to each point separately, using a different disk D for
each point. In other words, the discussion of cointegration in this paper is local to a single unit root.

Remark 21 (Order). A root function factorises (z − zω)s from C(z), and s indicates the order.
The condition ϕ(zω)′ 	= 0′ guarantees that in the analytic expansion ϕ(z)′ = ∑∞

n=0(z − zω)n ϕ′
n,

the first term ϕ′
0 is not the null vector. Note that the condition ϕ̃(zω)′ 	= 0′ makes sure that one

cannot extract additional factors of (z − zω) from C(z) using ϕ(z)′.

It is immediate to see that a cointegrating vector is a root function of C(z) and vice
versa, as stated in the following theorem.

Theorem 1 (Cointegrating vectors and root functions). ζ(z)′ is a cointegrating vector at
frequency ω if and only if ζ(z)′ is a root function of C(z) at zω, and the order of the cointegrating
vector and of the root function coincide.

Proof. Observe that any root function satisfies Definition 2 of cointegrating vectors and
vice versa, including the definition of their order.

Results in Gohberg et al. (1993) shows that the order of a root functions is finite,
because it is bounded by the order of zω as a zero of det C(z), a result that is reported in
the next proposition.

Proposition 2 (Bound on the order of a root function). The order of a root function of C(z) at
zω is at most equal to the order of zω as a zero of det C(z), which is finite because C(z) is regular.

Proof. See Gohberg et al. (1993).
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Corollary 1 (Bound on the order of a cointegrating vector). The order of any cointegrating
vector at frequency ω is finite.

Proof. This follows from Proposition 2 because cointegrating vectors and root functions
coincide by Theorem 1.

4.2. Canonical Systems of Root Functions

Next, canonical systems of root functions for C(z) at zω are introduced, see
Gohberg et al. (1993). Choose a root function φ1(z)′ of highest order s1. Since the or-
ders of the root functions are bounded by Proposition 2, such a function exists. Next
proceed iteratively over j = 2, . . . , choosing the next root function φj(z)′ to be of the high-
est order sj such that φj(zω)′ is linearly independent from φ1(zω)′, . . . , φj−1(zω)′. Because
m := dim((col C(zω))⊥) < ∞, this process ends with m root functions φ1(z)′, . . . , φm(z)′.

Note that the columns in a := (φ1(zω), . . . , φm(zω)) span the finite dimensional space
(col C(zω))⊥, so that one can choose vectors (φm+1, . . . , φp) = a⊥ that span its orthogonal
complement. This construction leads to the following definition.

Definition 4 ((Extended) canonical system of root functions). Let φ1(z)′, . . . , φm(z)′ and
φ′

m+1, . . . , φ′
p be constructed as above; then

φ(z)′ =

⎛⎜⎝ φ1(z)′
...

φm(z)′

⎞⎟⎠ and
(

φ(z)′

a′
⊥

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1(z)′
...

φm(z)′

φ′
m+1
...

φ′
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

are called a canonical system of root functions (respectively an extended canonical system of root
functions) of C(z) at zω of orders (s1, s2, . . . , sm) (respectively (s1, s2, . . . , sm, sm+1, . . . , sp)) with
∞ > s1 ≥ s2 ≥ · · · ≥ sm > 0 = sm+1 = · · · = sp.

Such a canonical system of root functions is not unique. To see this, one can show that
the first row vector φ1(z)′ in (11) can be replaced by a combination of φ1(z)′ and φ2(z)′,
called φ�

1 (z)
′, and the canonical system of root functions containing φ�

1 (z)
′ would still

satisfy the definition. More specifically, define φ�
1 (z)

′ := φ1(z)′ + (z − zω)s1−s2 φ2(z)′ and
observe that, by Definition 3, φj(z)′C(z) = (z − zω)

sj φ̃j(z)′, with φ̃j(zω)′ 	= 0′, j = 1, 2.
Hence one has

φ�
1 (z)

′C(z) = (z − zω)
s1 φ̃′

1(z) + (z − zω)
s1−s2+s2 φ̃′

2(z) = (z − zω)
s1 φ̃�′(z)

where φ̃′�(z) := φ̃′
1(z) + φ̃′

2(z). Because φ̃j(zω)′ 	= 0′, j = 1, 2, one has φ̃′�(zω) 	= 0′ unless
φ̃1(zω)′ = −φ̃2(zω)′. However, this last case is ruled out because it would contradict the
fact that s1 is maximal. Hence φ̃′�(zω) 	= 0′. This shows that φ′�

1 (z) satisfies the definition
of root function of order s1, and hence it can replace φ′

1(z) in (11).
While a canonical system of root functions (and also an extended canonical system

of root functions) is not unique, the orders s1 ≥ s2 ≥ · · · ≥ sm > 0 = sm+1 = · · · = sp are
uniquely determined by C(z) at zω , see Lemma 1.1 in Gohberg et al. (1993); they are called
the partial multiplicities of C(z) at zω.

Finally, consider the local Smith factorization of C(z) at z = zω, see Gohberg et al. (1993),
i.e., the factorization

C(z) = E(z)M(z)H(z), (12)

where M(z) = diag((z − zω)sh)h=1,...,p is uniquely defined and contains the partial multi-
plicities s1 ≥ · · · ≥ sp of C(z) at z = zω ; the matrices E(z), H(z) are analytic and invertible

197



Econometrics 2021, 9, 31

in a neighbourhood of z = zω and are non-unique. M(z) is called the local Smith form of
C(z) at z = zω.6

Remark 22 (Extended canonical system of root functions in the I(1) VAR case). In the I(1)
VAR case, see Example 1, the orders of an extended canonical system of root functions of C(z) at 1
are (s1, . . . , sr0 , sr0+1, . . . , sp) = (1, . . . , 1, 0, . . . , 0) and a possible choice of an extended canonical
system of root functions corresponding to these unique orders is given by the p rows in (β0, β1)

′.

Remark 23 (Extended canonical system of root functions in the I(2) VAR case). In the I(2)
VAR case, see Example 2, the orders of an extended canonical system of root functions of C(z) at
0 are (s1, . . . , sr0 , sr0+1, . . . , sr0+r1 , sr0+r1+1, . . . , sp) = (2, . . . , 2, 1, . . . , 1, 0, . . . , 0) and a possible
choice of an extended canonical system of root functions corresponding to these unique orders is
given by the p rows in (β0 + (1 − z)(ᾱ′

0 A1)
′, β1, β2)

′.

5. Cointegrating Spaces

Let φ(z)′ be a canonical system of root functions of C(z) at zω, see Definition 4.
Appendix A.2 shows that rowG(φ(z)′) with G = F, F[z], F(z) are well defined sets of
(generalized) root functions. This section argues that one could take any of them as a
definition of ‘cointegrating space’ for multicointegrated systems. Note that

rowF(φ(z)′) ⊂ rowF[z](φ(z)
′) ⊂ rowF(z)(φ(z)

′),

so that the three definitions of cointegrating space are naturally nested. Remark that
rowF(φ(z)′) is a vector space over F, rowF[z](φ(z)′) is a free module over the ring F[z]
of polynomials in z (which contains rowF(φ(z)′)) and rowF(z)(φ(z)′) is a vector space
over the field F(z) of rationals functions of z ((which contains rowF[z](φ(z)′) and hence
rowF(φ(z)′)). Finally note the central role played by the canonical system of root functions
φ(z)′ as a basis for these different spaces, which differ for the set of scalars chosen in linear
combinations.

5.1. The Cointegrating Space rowF(φ(z)′) as a Vector Space over F

The cointegrating space rowF(φ(z)′), where F = R,C, is a vector space. In fact, the set
of all F-linear combination of φ(z)′ produces a vector space, because rowF(φ(z)′) is closed
under multiplication by a scalar in F by Proposition A1 and with respect to vector addition,
as a special case of Proposition A2.

In order to discuss the cointegrating spaces rowF[z](φ(z)′) and rowF(z)(φ(z)′), the
notion of generalized cointegrating vector is introduced, as the counterpart of the notion of
generalized root function, see Definition A1.

Definition 5 (Generalized cointegrating vector at frequency ω). Let n ∈ Z and ζ(z)′ be a
cointegrating vector at frequency ω and order s, see Definition 2; then

ξ(z)′ := (1 − z/zω)
nζ(z)′

is called a generalized cointegrating vector at frequency ω with order s and exponent n.

5.2. The Cointegrating Space rowF[z](φ(z)′) as a Free Module over F[z]

Consider next rowF[z](φ(z)′). F[z] is the polynomial ring formed as the set of polyno-
mials in z with coefficients in F. As it is well known, F[z] is a ring but not a field (division
ring), see e.g., Hungerford (1980), because polynomials, unlike rational functions, lack the
multiplication inverse. The following propositions summarizes that rowF[z](φ(z)′) is a free
module over the ring F[z] of polynomials.

Proposition 3 (rowF[z](φ(z)′) is a F[z]-module). Consider G = rowF[z](φ(z)′), where φ(z)′

is a canonical system of root functions of C(z) at zω with coefficients in F, and where F[z] is the
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ring of polynomials in z with coefficients in F; then G is closed with respect to the vector sum, and
it is closed under multiplication by a scalar polynomial in F[z]; hence G is a module over the ring
F[z] of polynomials.

Proof. By Propositions A1 and A2, G is closed under addition and under multiplication
by a scalar polynomial in F[z]. One needs to verify that, see e.g., Definition IV.1.1 in
Hungerford (1980), for ζ(z), ψ(z) ∈ G and 1, a(z), b(z) ∈ F[z]

a(z) · (ζ(z)′ + ψ(z)′) = a(z) · ζ(z)′ + a(z) · ψ(z)′

(a(z) + b(z)) · ζ(z)′ = a(z) · ζ(z)′ + b(z) · ζ(z)′ (13)

(a(z)b(z)) · ζ(z)′ = a(z) · (b(z) · ζ(z)′)

1 · ζ(z)′ = ζ(z)′,

where · indicates multiplication by a scalar. The distributive properties in (13) are seen to
be satisfied. This proves the statement.

5.3. The Cointegrating Space rowF(z)(φ(z)′) as a Vector Space over F(z)

Finally consider rowF(z)(φ(z)′). The set of scalars F(z) is the field of rational functions
in z with coefficients in F. As it is well known, F(z) is a field (division ring), see e.g.,
Hungerford (1980).

Remark 24 (Rational vectors without poles at zω). Take ζ(L)′ to be a rational vector, i.e., of the
form ζ(z)′ = 1

d(z) b(z)′ where d(z) is a monic polynomial and b(z)′ is a 1 × p vector polynomial,
with d(z) and b(z)′ relatively prime, see Example A1. If d(z) has no root equal to zω , then ζ(z)′ is
an analytic function on D(zω , η), η > 0, see Remark A1 and Lemma A1; hence a special case of an
analytic vector function ζ(z)′ is a rational vector with denominator d(z) without roots equal to zω .

Remark 25 (Rational vectors with poles at zω). If d(z) has one root equal to zω with multiplicity
m, then ζ(z)′ has a pole of order m, and it is not an analytic function on some D(zω, η), η > 0;
hence Definition 2 cannot be applied, because it requires ζ(z)′ to be analytic. However, one could
remove the pole of order m by defining ξ(z)′ := (1 − z/zω)mζ(z)′, and use Definition 2 on ξ(z)′,
which is analytic function, as done in Definition 5.

Remark 26 (Representation for generic rational vectors). In the following, when dealing with
rational vectors of the type ζ(z)′ = 1

d(z) b(z)′, it is sufficient to consider the case where d(z)
does not have a root at zω, thanks to Definition 5. In fact, let d(z) be decomposed as d(z) =
(1 − z/zω)md�(z) with d�(zω) 	= 0 and m ≥ 0; in this representation, zω is a root of d(z) if and
only if m > 0 and it is not a root if and only if m = 0. By Remark 24, ζ(z)′ is a (generalized)
cointegrating vector if and only if ξ(z)′ := (1 − z/zω)mζ(z)′ = 1

d�(z)
b(z)′ is a cointegrating

vector. Hence Definition 5 allows to concentrate on the case where the denominator has no root
at zω.

The following proposition summarizes that rowF(z)(φ(z)′) is a vector space over the
field F(z) of rational functions.

Proposition 4 (rowF(z)(φ(z)′) is a vector space over F(z)). Let H = rowF(z)(φ(z)′) where
φ(z)′ is a canonical system of root functions of C(z) at zω with coefficients in F, where F(z) is the
field of rational function in z with coefficients in F; then H is closed with respect to the vector sum,
and under multiplication by a scalar rational function in F(z), and H is a vectors space over the
field F(z) of rational functions.

Proof. H is closed with respect to multiplication by a rational function in F(z), see
Proposition A1, and with respect to vector addition, see Proposition A2. One can ver-
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ify for ζ(z), ψ(z) ∈ H and 1, a(z), b(z) ∈ F(z), that the distribution equalities in (13) are
satisfied. Because F(z) is a field, then H is a vector space over F(z).

6. The Local Rank Factorization

This section shows how to explicitly obtain a canonical system of root functions φ(z)′

or an extended canonical system of root functions (φ(z), a⊥)′ for a generic VAR process

A(L)xt = εt, A0 	= 0, det A0 = 0, (14)

with A(z) analytic for all z ∈ D(0, 1 + η), η > 0, having roots at z = zω = eiω and at z with
|z| > 1, see Remarks 1 and 2.

The derivation of the Granger representation theorem involves the inversion of the
matrix function

A(z) =
∞

∑
n=0

(z − zω)
n An, An ∈ C

p×p, A0 	= 0, det A0 = 0, (15)

in D(zω , η). This includes the case of matrix polynomials A(z), in which the degree of A(z)
is finite, k say, with An = 0 for n > k.7

The inversion of A(z) around the singular point z = zω yields an inverse with a pole
of some order d = 1, 2, . . . at z = zω; an explicit condition on the coefficients {An}∞

n=0 in
(15) for A(z)−1 to have a pole of given order d is described in Theorem 2 below; this is
indicated as the POLE(d) condition in the following. Under the POLE(d) condition, A(z)−1

has Laurent expansion around z = zω given by

A(z)−1 =: (z − zω)
−dC(z) =

∞

∑
n=0

(z − zω)
n−dCn, C0 	= 0, det C0 = 0. (16)

Note that C(zω) = C0 	= 0 and C(z) is expanded around z = zω. In the following, the
coefficients {Cn}∞

n=0 are called the Laurent coefficients. The first d of them, {Cn}d−1
n=0, make

up the principal part and characterize the singularity of A(z)−1 at z = zω.
The following result is taken from Franchi and Paruolo (2019) Theorem 3.3.8

Theorem 2 (POLE(d) condition). Consider A(z) defined in (15); let 0 < r0 := rank A0 < p,
rmax

0 := p and define α0, β0 by the rank factorization A0 = −α0β′
0. Moreover, for j = 1, 2, . . .

define αj, β j by the rank factorization

Paj⊥ Aj,1Pbj⊥ = −αjβ
′
j, aj := (α0, . . . , αj−1), bj := (β0, . . . , β j−1), (17)

where Px denotes the orthogonal projection onto the space spanned by the columns of x and

Ah+1,n :=
{

An for h = 0
Ah,n+1 + Ah,1 ∑h−1

i=0 β̄iᾱ
′
i Ai+1,n for h = 1, 2, . . .

, n = 0, 1, . . . . (18)

Finally, let

rj := rank(Paj⊥ Aj,1Pbj⊥), rmax
j := p −

j−1

∑
i=0

ri. (19)

Then, a necessary and sufficient condition for A(z) to have an inverse with pole of order d = 1, 2, . . .
at z = zω – called POLE(d) condition – is that{

rj < rmax
j (reduced rank condition) for j = 0, . . . , d − 1

rd = rmax
d (full rank condition) for j = d

.
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Observe that because rank Paj⊥ Aj,1Pbj⊥ = rank a′
j⊥Aj,1bj⊥, one has rj = rank a′

j⊥Aj,1bj⊥;
hence d = 1 if and only if

r1 = rmax
1 , where r1 = rank α′

0⊥A1β0⊥ and rmax
1 = p − r0.

This corresponds to the condition in Howlett (1982, Theorem 3) and to the I(1) condition
in Johansen (1991, Theorem 4.1). Similarly, one has d = 2 if and only if r1 < rmax

1 ,

r2 = rmax
2 , where r2 = rank a′

2⊥(A2 + A1 β̄0ᾱ′
0 A1)b2⊥ and rmax

2 = p − r0 − r1,

which corresponds to the I(2) condition in Johansen (1992, Theorem 3).
Theorem 2 is thus a generalization of the Johansen’s I(1) and I(2) conditions and

shows that, in order to have a pole of order d in the inverse, one needs d+ 1 rank conditions
on A(z): The first j = 0, . . . , d − 1 are reduced rank conditions, rj < rmax

j , that establish
that the order of the pole is greater than j; the last one is a full rank condition, rd = rmax

d ,
that establishes that the order of the pole is exactly equal to d. These requirements make up
the POLE(d) condition.

The following result is also taken from Franchi and Paruolo (2019).9

Theorem 3 (Local Smith factorization). Consider A(z) and the other related quantities defined
in Theorem 16; for j = 0, . . . , d, define the rj × p matrix functions γj(z)′ as follows

γ′
j,0 := β′

j, γ′
j,n := −ᾱ′

j Aj+1,n, n = 1, 2, . . . γj(z)′ :=
∞

∑
n=0

(z − zω)
nγ′

j,n, (20)

and define the p × p matrix functions Γ(z) and Λ(z) as follows

Γ(z) :=

⎛⎜⎝ γ0(z)′
...

γd(z)′

⎞⎟⎠, Λ(z) :=

⎛⎜⎝ (z − zω)0 Ir0
. . .

(z − zω)d Ird

⎞⎟⎠. (21)

Then Γ(z), Ξ(z) := A(z)Γ(z)−1Λ(z)−1 are analytic and invertible on D(zω , η), η > 0, and Λ(z)
is the local Smith form of A(z) at zω , A(z) = Ξ(z)Λ(z)Γ(z). Moreover one can choose the factors
E(z), M(z), H(z) for the local Smith factorization of C(z) defined in (16), see (12), as

E(z) = Γ(z)−1, M(z) = (z − zω)
dΛ(z)−1, H(z) = Ξ(z)−1.

Theorem 3 shows that the LRF fully characterizes the elements of the local Smith
factorization of C(z) at zω . In fact, the values of j with rj > 0 in the LRF provide the distinct
partial multiplicities of C(z) at zω and rj gives the number of partial multiplicities that are
equal to a given j; this characterizes the local Smith form Λ(z). Moreover, it also provides
the constructions of an extended canonical system of root functions.

Remark that the j-th block of rows in Γ(z)C(z) = (z − zω)dΛ(z)−1Ξ(z)−1 can be
written as

γj(z)′C(z) = (z − zω)
d−jγ̃j(z)′, j = 0, . . . , d, (22)

where γj(zω)′ = β′
j and γ̃j(zω)′ have full row rank; here γ̃j(z)′ denotes the corresponding

block of rows in Ξ(z)−1. This shows that γj(z)′ are rj root functions of order d − j of C(z).
The next result presents the Triangular representation as proved in Franchi and

Paruolo (2019, Corollary 4.6).
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Proposition 5 (Triangular representation). Let xt in (14) satisfy the POLE(d) condition on A(z)
and define

Γ◦(L) :=
(

φ(L)′

β′
d

)
,

φ(L)′ :=

⎛⎜⎜⎜⎜⎝
γ
(d−1)
0 (L)′

γ
(d−2)
1 (L)′

...
γ
(0)
d−1(L)′

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
β′

0 + ∑d−1
k=1(−zω)kγ′

0,kΔk
ω

β′
1 + ∑d−2

k=1(−zω)kγ′
1,kΔk

ω
...

β′
d−1

⎞⎟⎟⎟⎟⎠, (23)

where γ
(d−j−1)
j (z)′ = ∑

d−j−1
k=0 γ′

j,k(z − zω)k is the truncation of order d − j − 1 of the root
functions γj(z)′ in (20). Then xt is I(d) and it admits the Triangular Representation

Λ(L)Γ◦(L)xt ∼ I(0)

where no linear combination exists of the l.h.s. that is integrated of lower order.

Observe that the canonical system of root functions φ(z)′ in (23) is not unique and
not of minimal polynomial order, as discussed in the next section. The following example
applies the above concepts in the I(2) VAR case.

Example 3 (I(2) VAR example continued). Consider Example 2. Applying truncation to the rows
of (β′

0 + Δᾱ′
0 A1), see Propositions 5 and A3, one finds that the columns in β′

0 are root functions of
C(z) at ω = 0 of order at least min(2, 1) = 1. Consider now one row in (β′

0 +Δᾱ′
0 A1 +Δ2 A′) for

some matrix A; this root function is of order 2 by Remark 23, and its truncation to degree 1, i.e., to
the corresponding row of (β′

0 +Δᾱ′
0 A1) is still of order 2 by Propositions 5 and A3, Finally consider

one row in (β′
0 + ΔA′), which gives a root function of order at least 1; its truncation to a polynomial

of degree 0 gives the corresponding row of β′
0, which has order at least 1 by Propositions 5 and A3.

In fact the rows of β′
0 give root functions of order equal to 1 or to 2, when the corresponding entries

in ᾱ′
0 A1 in (β′

0 + Δᾱ′
0 A1) are equal to 0, as discussed below.

7. Minimal Bases

This section describes the algorithm of Forney (1975) to reduce the basis φ(z)′ to
minimal order, using the generic notation of b(z)′ in place of φ(z)′. The generic basis b(z)′

is assumed to be rational and of dimension r × p. This algorithm exploits the nesting
rowF(b(z)′) ⊂ rowF[z](b(z)′) ⊂ rowF(z)(b(z)′). In the following, the j-row of b(z)′ is
indicated as bj(z)′, which is the j-th element of the basis, j = 1, . . . , r. Various modifications
of the original basis b(0)(z)′ := b(z)′ are indicated as b(h)(z)′ for h = 1, 2, 3.

Definition 6 (Degree of b(z)′). If b(z)′ is a polynomial basis, the degree vj of its j-th row,
indicated as vj := deg bj(z)′, is defined as the maximum degree of its elements, and the degree v of
b(z)′ is defined as v := deg b(z)′ := ∑r

j=1 vj, i.e., the sum of the degrees of its rows.

The reduction algorithm proposed by Forney (1975, pp. 497–98) consists of the following
3 steps.

Step 1 If b(0)(z)′ is not polynomial, multiply each row by the least common denominator
of each row to obtain a polynomial basis b(1)(z)′.

Step 2 Reduce row orders in b(1)(z)′ by taking F[z]-linear combinations.
Step 3 Reduce b(2)(z)′ to a basis b(3)(z)′ with a full-row-rank high order coefficient matrix,

i.e., a “row proper” basis.

This procedure gives a final basis b(3)(z)′ which has lowest degree, see Forney (1975)
Section 3.
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Remark 27 (Spaces and algorithm). Step 1 works on rowF(z)(φ(z)′), Step 2 works on
rowF[z](φ(z)′), Step 3 uses F-linear combinations on Q(z)φ(z)′ with appropriate square polyno-
mial matrices Q(z).

7.1. Step 1

If b(0)(z)′ is polynomial, the algorithm sets b(1)(z)′ = b(0)(z)′; otherwise b(0)(z)′ is
rational, and its j-th row bj(z)′ has representation bj(z)′ = 1

aj(z)
cj(z)′, where cj(z)′ is a

polynomial row vector and aj(z) is a scalar polynomial, and cj(z) and aj(z) are relatively
prime. The first step consist in computing b(1)(z)′ = diag(a1(z), . . . , ar(z))b(0)(z)′, where
Q(z) := diag(a1(z), . . . , ar(z)) is a square polynomial matrix of dimension r.

7.2. Step 2

The second step reduces the degree of the rows in b(1)(z)′. This involves finding
specific points zh, h = 1, . . . , k, at which rank(b(1)(zh)

′) < r. To find them, one can calculate
the greatest common divisor �(z) of all r × r minors of b(1)(z)′. If �(z) = 1 this step is
complete, and the algorithm sets b(2)(z)′ = b(1)(z)′; otherwise one computes the zeros of
�(z), z1, . . . , zk say, where zh ∈ C, h = 1, . . . , k. The following substep is then applied to
each root zh sequentially, h = 1, . . . , k.

Denote by w(z)′ the current basis; this will be replaced by κ(z)′ at the end of this
substep. For h = 1, one has w(z)′ = b(1)(z)′. For z = zh, all minors of order r of w(zh)

′

vanish, which means that w(zh)
′ is singular, i.e., it has reduced rank and rank factorization

w(zh)
′ = ψa′, say, where ψ, a are full column rank. Let c′ := (c1, . . . , cp) be one row in ψ′

⊥.
Indicate by Ac := {i : ci 	= 0} the set of its non-zero coefficients, and let vi0 := maxi∈Ac{vi}
be the maximal degree of rows in w(z)′ with nonzero coefficient in c′.

This substep consists of replacing row i0 of w(z)′ with c′w(z)′/(z − zh), which is still
a polynomial vector. In fact c′w(zh)

′ = 0′, so that c′w(zh)
′ has representation c′w(zh)

′ =
(z − zh)τ(z)′ with τ(z)′ a polynomial vector, so that c′w(z)′/(z − zh) = τ(z)′. This defines
κ(z)′ in terms of w(z)′ as κ(z)′ = B(z)−1Qw(z)′ where Q is an r × r square matrix, equal
to Ir except for row i0, equal to c′, and where B(z) is a diagonal matrix equal to Ir except
for having z − zh in its i0-th position on the diagonal. Note that Q is nonsingular, because
ci0 	= 0. The same procedure is applied to each row c′ of ψ′

⊥.
This substep is repeated for all zj, j = 1, . . . , k. The condition on the minors in then

recalculated and the substep repeated for the new roots, until the greatest common divisor
�(z) of all r × r minors of κ(z)′ is 1. When this is the case, Step 2 sets b(2)(z)′ = κ(z)′.

7.3. Step 3

The last step operates on the high order coefficient matrix, repeating the follow-
ing substep. Let w(z)′ indicate b(2)(z)′ at the beginning of the substep, which will be
replaced by κ(z)′ at the end of it. Let vi be the order of the i-th row of w(z)′, indi-
cated as wi(z)′ = ∑vi

j=0(z − zω)jw′
ij. The high-order matrix is defined as the r × p matrix

w′
∗ := (w1v1 , . . . , wrvr )

′ composed of the coefficient matrix of the highest degree of (z − zω)
for each row of w(z)′.

A necessary and sufficient condition for w′
∗ to be of full rank is that the order of w(z)′

is equal to the maximum order of its r × r minors. If this is not the case, w′
∗ is singular, i.e.,

it has rank factorization w′
∗ = ψa′ with ψ and a of full column rank. Hence one can choose

a vector c′ := (c1, . . . , cp) as one row in ψ′
⊥ for which one has c′w′

∗ = 0′.
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As before, let Ac := {i : ci 	= 0} and define vi0 := maxi∈Ac{vi}. Let also ni := vi0 − vi,
note that ni ≥ 0 for i ∈ Ac and let Q(z) := diag((z − zω)n1 , . . . (z − zω)nr ). Row i0 in w(z)′

is replaced by

q(z)′ := c′Q(z)w(z)′ = ∑
i∈Ac

ci

vi

∑
j=0

(z − zω)
j+ni w′

i,j = ∑
i∈Ac

ci

vi0

∑
s=ni

(z − zω)
sw′

i,s−ni
(24)

=

vi0−1

∑
j=0

(z − zω)
jq′

j + (z − zω)
vi0 c′w′

∗ =

vi0−1

∑
j=0

(z − zω)
jq′

j, (25)

where s in the last expression in the first line is defined as j + ni and q′
j := ∑i∈Ac ciw′

i,ni+j.
The central expression in (24) shows that q(z)′ is polynomial because ni ≥ 0 in the

exponents of (z − zω). In order to see that the degree of q(z)′ is also lower than vi0 , one can
note that the the high order coefficient in (25), which correspond to s = vi0 in (24), equals
∑i∈Ac ciw′

i,vi
= c′w′

∗ = 0′. This implies that the order of q(z)′ is lower than vi0 , and that
replacing row i0 of w(z)′ with q(z)′ reduces the order of the vector.

This defines κ(z)′ in terms of w(z)′ as κ(z)′ = NQ(z)w(z)′ where N is an r × r square
matrix, equal to Ir except for row i0, equal to c′. Note that N is nonsingular, because ci0 	= 0.
This process is repeated for all the rows c′ in ψ′

⊥. Next set w(z)′ = κ(z)′ and repeat until the
high order coefficient matrix has full rank. When this is the case, Step 3 sets b(3)(z)′ = κ(z)′.

8. From a Canonical System of Root Functions to a Minimal Basis for I(2) VAR

This section applies the algorithm of Forney reviewed in Section 7 to φ(z)′ in (23)
to reduce the basis to minimal order in the I(2) VAR example at frequency ω = 0. This
application leads to the separation of the cases of

(i) non-polynomial cointegrating relations reducing the order of integration from 2 to 0;
(ii) polynomial cointegrating relations reducing the order of integration from 2 to 0.

The process of obtaining minimal bases does not lead to a unique choice of ba-
sis; this leaves open the choice of how to further restrict the basis to obtain uniqueness.
Forney (1975) obtains uniqueness requiring the minimal basis to be in upper echelon form.
Other sets of restrictions can also be considered. For the sake of brevity, the restrictions on
how to obtain a unique minimum basis are not further discussed here.

8.1. Step 1 in I(2) VAR

Consider the triangular representation of an I(2) system, see (23):

Γ◦(z) :=
(

φ(z)′

β′
2

)
, φ(z)′ :=

(
γ
(1)
0 (z)′

γ
(0)
1 (z)′

)
=

(
β′

0 + γ′
0,1(z − 1)
β′

1

)
, (26)

and apply the algorithm of Forney (1975) to b(0)(z)′ := φ(z)′. Because b(0)(z)′ is already
polynomial, one has b(1)(z)′ = b(0)(z)′ = φ(z)′.

8.2. Step 2 in I(2) VAR

Next consider Step 2, and set w(z)′ = b(1)(z)′. One wishes to find some zero zh and
some corresponding c′ so as have c′w(zh)

′ = 0′. Denoting u = zh − 1, one hence needs to
find the pair (u, c′) such that

c′
((

β′
0

β′
1

)
+

(
γ′

0,1
0

)
u
)
= 0, (27)
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where u is a scalar. Note that u = 0 is not a possible zero of (27), because w(zω) = (β0, β1)
′

is of full row rank, so that u 	= 0. Post-multiplying (27) by the square non-singular matrix
(β̄0, β̄1, β̄2) one finds

c′
((

Ir0 0 0
0 Ir1 0

)
+

(
γ′

0,1 β̄0 γ′
0,1 β̄1 γ′

0,1 β̄2
0 0 0

)
u
)
= 0. (28)

Hence, partitioning c′ as c′ = (ς′, θ′) where ς′ is 1 × r0, one finds that the second set of
equations gives θ′ = 0′ and the first one, substituting the expression of γ′

0,1 = −ᾱ′
0 A1 given

in Theorem 3, implies

ς′ᾱ′
0 A1 β̄0 = λς′, λ := u−1 	= 0, (29)

ς′ᾱ′
0 A1(β̄1, β̄2) = 0, (30)

where λ = u−1 	= 0 in (29); note also that u 	= 0 has been simplified in (30). This proves the
following proposition.

Proposition 6 (Step 2 condition in I(2)). A necessary and sufficient condition for Step 2 to be
non-empty is that (29), (30) hold simultaneously, i.e., that (λ, ς′) is a non-zero eigenvalue—left
eigenvector pair of ᾱ′

0 A1 β̄0, and the left eigenvector v′ is orthogonal to ᾱ′
0 A1(β̄1, β̄2). If this is the

case, for each pair (λ, ς′) one has

ς′ᾱ′
0 A1 = ς′ᾱ′

0 A1Pβ0 = λς′β′
0. (31)

Observe that from (27), using c′ = (ς′, θ′) and z − 1 = z − zh + u with u = zh − 1, one
finds

c′w(z)′ = ς′β′
0 − (z − zh + u)ς′ᾱ′

0 A1

= ς′(β′
0 − ᾱ′

0 A1u
)
− (z − zh)ς

′ᾱ′
0 A1 = −(z − zh)ς

′ᾱ′
0 A1, (32)

where the last equality follows from (31). This shows that under the necessary and sufficient
condition in Proposition 6, there is a linear combination c′ of w′(z) where one can factor
z − zh out of c′w′(z), which reduces the order from 1 to 0. Here c′w′(z), which has degree
equal to 1, is replaced by c′w′(z)/(z − zh) = −ς′ᾱ′

0 A1 = −λς′β′
0, which has degree 0. Note

that from (31) the new cointegrating relation is in the span of β′
0.

This can be done for all pairs (λ, ς′). Let (λj, ς′
j) be all the pairs (λ, ς′) satisfying the

assumptions of Proposition 6, j = 1, . . . , s, and let q′ := (λ1ς1, . . . , λkςs)′. Choose also a′ as
some matrix (r − s)× r matrix such that (q, a) is square and nonsingular; many matrices
satisfy this criterion, including q⊥. The output of Step 2 can be expressed as the following
choice of b(2)(z)′:

b(2)(z)′ =

⎛⎝ a′β′
0 − (z − 1)a′ᾱ′

0 A1
q′β′

0
β′

1

⎞⎠. (33)

Remark 28 (CI(2,2) cointegration). This step brings out from φ(z)′ some cointegrating relations
q′β′

0 that map the I(2) variables directly to I(0) without the help of first differences Δ.

8.3. Step 3 in I(2) VAR

Consider b(2)(z)′ in (33) and its high order coefficient matrix

w′
∗ =

⎛⎝ −a′ᾱ′
0 A1

q′β′
0

β′
1

⎞⎠.
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Step 3 requires to find a nonzero matrix c′ such that c′w′
∗ = 0′. Recall that (β̄0, β̄1, β̄2) is

square and nonsingular; hence c′w′
∗ = 0′ if and only if, partitioning c′ as c′ = (ζ ′, ρ′, τ′)

one has

0′ = c′w′
∗
(

β̄0, β̄1, β̄2
)
=
(
ζ ′, ρ′, τ′)⎛⎝ −a′ᾱ′

0 A1 β̄0 −a′ᾱ′
0 A1 β̄1 −a′ᾱ′

0 A1 β̄2
q′ 0 0
0 Ir1 0

⎞⎠.

This equality can be written as

ζ ′a′ᾱ′
0 A1(β̄0, β̄1) = (ρ′q′, τ′), (34)

ζ ′a′ᾱ′
0 A1 β̄2 = 0. (35)

Remark 29 (Further degree reductions). Equation (35) requires ζ ′ to be orthogonal to remaining
part of the multicointegrating coefficient a′ᾱ′

0 A1 in direction of β2. In addition ζ ′ also needs to
satisfy (34). For some configurations of dimensions, (34) could be solvable for (ρ′, τ′) in terms of
other quantities; in this case (34) would not impose further restrictions.

Let also ϑ′ be any complementary matrix such that (ζ, ϑ) is square and nonsingular;
one possible choice of ϑ is ζ⊥. The output of Step 3 can be expressed as the following choice
of b(3)(z)′ :

b(3)(z)′ =

⎛⎜⎜⎝
ϑ′a′(β′

0 − (z − 1)ᾱ′
0 A1)

ζ ′a′β′
0

q′β′
0

β′
1

⎞⎟⎟⎠. (36)

Remark 30 (Minimal basis). This step brings out from φ(z)′ some other cointegrating relations
ζ ′a′β′

0 that map the I(2) variables directly to I(0) without the help of first differences Δ. Equation (36)
shows how the canonical system of root functions can be reduced to minimal order.

Example 4 (Multicointegration coefficient in the span of β2). Consider the special case when
the multicointegrating coefficient ᾱ′

0 A1 satisfies ᾱ′
0 A1 = ᾱ′

0 A1Pβ2 , i.e., it has components only in
the direction of β2. This special case is relevant, because β′

2Δxt ∼ I(1) while β′
iΔxt ∼ I(d) with

d ≤ 0 for i = 0, 1.
One can see that in this case the conditions in Proposition 6 are not satisfied. In fact (29)

cannot hold, as ᾱ′
0 A1 β̄0 = 0. Step 2 is hence empty, and this implies that the rows including q′ are

missing and a = I in b(2)(z)′ in (33) and (36).
Applying Step 3, Equation (34) is always satisfied by the choice ρ′ = 0′, τ′ = 0′ because

ᾱ′
0 A1(β̄0, β̄1) = 0. Equation (35) then reads ζ ′ᾱ′

0 A1 β̄2 = 0, which is satisfied if and only if
δ := ᾱ′

0 A1 β̄2 has reduced rank. In this case, let the rank factorization be δ = ψη′, with ψ and η of
full column rank. One can then let ζ ′ = ψ′

⊥ and choose ϑ′ = ψ̄′, so that

b(3)(z)′ =

⎛⎝ ψ̄′β′
0 − (z − 1)η′

ζ ′β′
0

β′
1

⎞⎠. (37)

There are several examples of this separation in the I(2) VAR literature; for example Kongsted (2005)
discusses this when r0 > r2.

9. Conclusions

This paper discusses the notion of cointegrating space for general I(d) processes. The
notion of cointegrating space was formally introduced in the literature by Johansen (1988)
for the case of I(1) VAR system. The definition of the cointegrating space is simplest
in the I(1) case without multicointegration, because there is no need to consider vector
polynomials in the lag operator.
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Engle and Yoo (1991) introduced the notion of polynomial cointegrating vectors in
parallel with the related one of multicointegration in Granger and Lee (1989). However, the
literature has not yet discussed the notion of cointegrating space in the general polynomial
case; this paper fills this gap.

In this context, this paper recognises that cointegrating vectors are in general root
functions, which have been analysed at length in the mathematical and engineering litera-
ture, see e.g., Gohberg et al. (1993). This allows to characterise a number of properties of
cointegrating vectors.

Canonical systems of root functions are found to provide a basis of several notions of
cointegration space in the multicointegrated case. The extended local rank factorization
of Franchi and Paruolo (2016) can be used to explicitly derive a canonical system of root
functions. This result is constructive, as it gives an explicit way to derive such a basis from
the VAR polynomial.

The canonical system of root functions constructed in this way is not necessarily of
minimal polynomial degree, however. The three-step procedure of Forney (1975) to reduce
this basis to minimal-degree is reviewed and restated in terms of rank factorizations. The
application of this procedure to I(2) VAR systems is shown to separate the polynomial and
the non-polynomial cointegrating vectors.
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Appendix A

Appendix A.1. Scalar, Vector, Matrix Analytic Functions

Consider a rational functions a(z), defined as a(z) = c(z)/d(z) with c(z) and d(z)
polynomials, where d(z) 	≡ 0. One can ask when a(z) is analytic on D(zω, η), η > 0. The
following remark states that this is the case provided zω is not a root of d(z).

Remark A1 (Rational scalars can be analytic on D(zω , η)). Let a(z) be a rational function, i.e.,
a(z) = c(z)/d(z) with c(z) and d(z) polynomial; assume also in addition that d(z) has no root
equal to zω. Then a(z) is analytic on D(zω, η), for some η > 0. In fact, let q = deg d(z) be the
degree of d(z), and decompose d(z) = ∑

q
j=0 d◦

j zj as d(z) = d◦
q ∏n

j=1(z − uj)
kj , where uj are the

roots of d(z) with multiplicity kj, j = 1, . . . , n using the factor theorem for polynomials, see e.g.,
Barbeau (1989, p. 56). Then each term (z − uj)

−kj has an analytic representation on D(zω, η),
η > 0, see e.g., Lemma A1 below. Note that this generates an infinite tail in a(z), i.e., a(z) is not
polynomial in this case (unless q = 0).

Lemma A1 (The inverse of a polynomial is analytic away form its roots). Let u1, . . . , un ∈ C

be the distinct roots of a polynomial d(z) with multiplicities k1, . . . , kn, kj ∈ N, and let v ∈ C be
another point, distinct from uj; then one can pick some radius δ with 0 < δ < minj=1,...,n

∣∣uj − v
∣∣

such that d(z)−1 is analytic on z ∈ D(v, δ).

Proof. The polynomial d(z) can be decomposed as d(z) = a ∏n
j=1(z − uj)

kj . Next consider

each term in the product (z − uj)
kj and observe that z − uj = (z − v) − (uj − v) = (v −

uj)(1 − xj) where xj := (z − v)/(uj − v). Define 0 < δj <
∣∣uj − v

∣∣ and note that
∣∣xj

∣∣ < 1
for z ∈ D(v, δj), so that (1 − xj)

−1 = ∑∞
s=0 xs

j for z ∈ D(v, δj) and

(z − uj)
−kj =

(
v − uj

)kj

(
∞

∑
s=0

(
z − v
uj − v

)s)kj

z ∈ D(v, δj).
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Hence (z − uj)
−kj is analytic on z ∈ D(v, δj) for any j = 1, . . . , n, and as a consequence also

on z ∈ D(v, δ) with 0 < δ < minj=1,...,n
∣∣uj − v

∣∣. This implies that d(z)−1 = a−1 ∏n
j=1(z −

uj)
−kj is analytic on z ∈ D(v, δ).

Similarly, consider a 1 × p vector function ζ(z)′ with rational entries. The denominator
polynomials in all entries can be collected in a single one, the least common denominator,
and hence ζ(z)′ has representation ζ(z)′ = 1

d(z) b(z)′ where d(z) is a monic polynomial
and b(z)′ is a 1 × p vector polynomial, and d(z) and b(z)′ are relatively prime. The same
applies to p × p rational matrix functions C(z).

Example A1 (The least common denominator of bivariate rational vectors). The least
common denominator can be illustrated as follows. Take a 1 × 2 rational row vector a(z)′ =
(a1(z), a2(z)) = (c1(z)/d1(z), c2(z)/d2(z)), where ci(z), di(z) are (nonzero) polynomials i =
1, 2; then one can find a polynomial d(z) with lowest degree such that d(z) = h1(z)d1(z) =
h2(z)d2(z) where hi(z) are polynomials i = 1, 2; d(z) is the least common multiple of the denomi-
nators, i.e., the least common denominator, and one has

a(z)′ =
(

c1(z)
d1(z)

,
c2(z)
d2(z)

)
=

(
c1(z)h1(z)

d(z)
,

c2(z)h2(z)
d(z)

)
=:

1
d(z)

b(z)′

with b(z)′ := (b1(z), b2(z)) := (c1(z)h1(z), c2(z)h2(z)) where bj(z) := cj(z)hj(z) are still
polynomials, so that b(z)′ is a vector polynomial. The vector polynomial b(z)′ and the scalar
polynomial d(z) are relatively prime, because there is no scalar polynomial g(z) that divides both
d(z) and all the elements in b(z)′. The polynomials in b(z)′ and d(z) can still be divided by a scalar
in F, so d(z) can be assumed to be monic.

Remark A2 (Rational vector and matrices). The 1 × p analytic vector functions ζ(z)′ and
p × p analytic matrix functions C(z) can be generated as rational vectors or matrices, as long as
their denominator polynomial d(z) has no root equal to zω. When d(z) has one root equal to zω

with multiplicity m > 0, this implies that ζ(z)′ or C(z) have a pole of order m > 0 at zω, and
ζ(z)′ or C(z) are not analytic on a disk D(zω, η) centered around zω.

Appendix A.2. Spans of Canonical Systems of Root Functions

This section considers linear combinations of canonical system of root functions φ(z)′

with coefficients in F, F[z] and F(z). Attention is first given to multiplication of a root
function by a rational or polynomial scalar; next generic linear combinations of canonical
system of root functions in φ(z)′ are considered.

In order to discuss results, the notion of generalized root function is introduced first.

Definition A1 (Generalized root function). Let n ∈ Z and ζ(z)′ be a root function of C(z) at
zω and order s, see Definition 3; then

ξ(z)′ := (1 − z/zω)
nζ(z)′

is called a generalized root function of C(z) at zω with order s and exponent n.

Observe that this is in line with Definition 5 of generalized cointegrating vectors for
rational vectors. The reason for the introduction of the notion of generalized root function
is provided by the next proposition.

Proposition A1 (Multiplication by a scalar). Let ζ(z)′ be a 1 × p root function for C(z) of order
s on D(zω, η), η > 0. Then

(i) if a ∈ F, a 	= 0, then aζ(z)′ is a root function on D(zω, η) of order s;
(ii) if a(z) ∈ F[z], a(z) 	= 0, then a(z)ζ(z)′ is a generalized root function on D(zω , η) of order s

and exponent n ∈ N0 := N∪ 0;
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(iii) if a(z) ∈ F(z), a(z) 	= 0, then a(z)ζ(z)′ is a generalized root function on D(zω , η) of order s
and exponent n ∈ Z.

Proof. Consider first case (iii).
(iii). a(z) = a1(z)/a2(z) where ai(z) are relatively prime polynomials, i = 1, 2. If ai(z) has
root zω then it admits representation ai(z) = (1 − z/zω)ni a�

i (z) with ni ∈ N0 and a�
i (zω) 	=

0, i = 1, 2. Hence a(z) = a1(z)/a2(z) = (1 − z/zω)n1−n2 a�(z) where a�(z) := a�
1(z)/a�

2(z)
with a�(zω) 	= 0 and a(z)ζ(z)′ = (1 − z/zω)n1−n2 a�(z)ζ(z)′. The factor (1 − z/zω)n1−n2

has exponent n1 − n2, which can be positive, negative or 0; because ai(z) are relatively
prime polynomials, i = 1, 2, either n1 > 0 or n2 > 0 or n1 = n2 = 0. The factor a�(z)ζ(z)′

is a generalized root function of order s, because ζ(z)′ is a root function of order s and the
scalar factor a�(z) satisfies a�(zω) 	= 0, so that a�(zω)ζ(zω)′ 	= 0′. This shows that a(z)ζ(z)′

is a generalized root function of order s and exponent n = n1 − n2.
(ii). Set a2(z) = 1 in the proof of iii), and note that the exponent is n1, which is either 0 or
positive.
(i). Set a1(z) = a, a2(z) = 1 in the proof of iii), and note that the exponent is n1 = 0.

Remark A3 (A generalized root function is meromorphic). A generalized root function ξ(z)′

is analytic on D(zω, η) except for the possibility to have poles at the isolated point zω, i.e., it is a
meromorphic function on D(zω, η).

Remark A4 (A generalized root function can be analytic). When the exponent n of ξ(z)′ is
zero, the generalized root function ξ(z)′ coincides with the root function ζ(z)′. When the exponent
n of ξ(z)′ is positive, then the generalized root function ξ(z)′ has a zero at zω. In both cases ξ(z)′

is analytic. So a generalized root function can be analytic (with or without a zero at zω).

Remark A5 (Generalized root function and cointegration). Observe that Definition A1 implies
the following: given a meromorphic function ξ(z)′, check if it has a root or a pole at zω ; this function
is a generalized root functions if, after removing the pole or the zero at zω by multiplying it by
(1 − z/zω)−n where n is the order of the root or of the pole, the resulting function is a root function,
i.e., a cointegrating vector. This is in line with Definition 5.

Attention is now turned to linear combinations of a canonical system of root functions
φ(z)′. The scalars of the linear combination can be in F, F[z] or F(z). The main result in
Proposition A2 below is that F[z]-linear combinations of φ(z)′ generate a generalized root
function possibly with a zero at zω, while F(z)-linear combinations of φ(z)′ generate a
generalized root function possibly with a pole or a zero at zω.

In the following, let v′ = (v1, . . . , vm)′ ∈ Fm be a 1 × m vector with elements in
F. Let also Av be the set of non-zero entries in v, Av := {i : vi 	= 0}, with nv the
cardinality of Av and (i1, . . . , inv) the ordered set of indices in Av, i1 < · · · < inv , ij ∈ Av.
Similarly, let w(z)′ = (w1(z), . . . , wm(z))′ ∈ F[z]m be a 1 × m vector with polynomial
elements in wi(z) ∈ F[z] with (j1, . . . , jnw) its ordered set of indices of nonzero elements
in Aw := {i : wi(z) 	= 0}, and let finally u(z)′ = (u1(z), . . . , um(z))′ ∈ F(z)m be a 1 × m
vector with rational elements in ui(z) ∈ F(z) with (k1, . . . , knu) as its ordered set of indices
of nonzero elements in Au := {i : ui(z) 	= 0}.

Proposition A2 (Linear combinations). Let φ(z)′ = (φ1(z), . . . φm(z))′ be a canonical system
of root functions of C(z) on a disc D(zω, η), η > 0 with orders s1, . . . , sm; let also v′ ∈ Fm,
w(z)′ ∈ F[z]m and u(z)′ ∈ F(x)m be nonzero vectors; one has:

(i) v′φ(z)′ = ∑m
i=1 viφi(z)′ is a root function of order s = mini∈Av si;

(ii) w(z)′φ(z)′ = ∑m
j=1 wj(z)φj(z)′ is a generalized root function, with exponent q = minj∈Aw

(qj) ≥ 0 where qj is the order of zω as a zero of wj(z), and with order s := minj∈Aw(qj − q +
sj) > 0;
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(iii) u(z)′φ(z)′ = ∑m
k=1 uk(z)φk(z)′ is a generalized root function, possibly with a pole or a zero

at zω, with exponent q = mink∈Au(qk) ∈ Z where qk is the order of zω as a pole or as a zero
of uk(z), and with order s = mink∈Au(qk − q + sk) > 0.

Proof. (i). By definition φi(z)′ = ∑si
j=0(z − zω)jφ′

ij, analytic on D(zω , η) and φ′
ij ∈ Fp. One

finds ∑m
i=1 viφi(z)′ = ∑si

j=0(z − zω)j ϕ′
j with ϕ′

j := ∑m
i=1 viφ

′
ij ∈ Fp because F is a field, and

hence it is closed under multiplication. Hence v′φ(z)′ is a polynomial with coefficients
vectors in Fp, of the same form as each φi(z)′, and one finds that

v′φ(z)′C(z) =
m

∑
i=1

viφi(z)′C(z) = ∑
i∈Av

vi(z − zω)
si φ̃i(z)′ = (z − zω)

sφ̃(z)′ (A1)

where s := min{si1 , . . . , siv}, φ̃(z)′ := ∑nv
h=1(z − zω)sh−svih φ̃ih(z)

′ and φ̃ih(zω)′ 	= 0′. Note
that because v′ is a nonzero vector, the set Av is not empty. Next observe that φ̃(zω)′ 	= 0′

otherwise this would contradict the property of φih(z)
′ to be of maximal order and linearly

independent from the previous root function φi(z)′ for i < ih. This shows that v′φ(z)′ is a
root function of order s.
(ii). Consider w(z)′φ(z)′ = ∑m

i=1 wi(z)φi(z)′, where by Proposition A1. (i), one has
that wi(z)φi(z)′ is a generalized root function with representation wi(z)φi(z)′ = (1 −
z/zω)qi w�

i (z)φi(z)′ say, with qi ≥ 0 and w�
i (z)φi(z)′ a root function of order si. Let q :=

min(qj1 , . . . , qjw), and note that w(z)′φ(z)′ = (1 − z/zω)qζ(z)′ with ζ(z)′ := ∑nw
h=1(1 −

z/zω)
qjh

−qw�
jh
(z)φjh(z)

′. In order to show that ζ(zω)′ 	= 0′, let Bw be the set of indices
j ∈ Aw with qj = q, and observe that ζ(zω)′ = ∑j∈Bw w�

j (zω)φj(zω)′ where w�
j (zω) 	= 0 by

construction and φj(zω)′ 	= 0′ by the definition of root function. If ζ(zω)′ = 0′ this would
imply that there is a nonzero linear combination of φ(zω)′ equal to 0’, i.e., that φ(zω)′ is
not of full row rank, which contradicts the construction in Definition 4. This implies that
ζ(zω)′ 	= 0′, and that w(z)′φ(z)′ is a generalized root function of order q.

Next, because φj(z)′ is a root function of order sj one has

ζ(z)′C(z) =
nw

∑
h=1

(1 − z/zω)
qjh

−qw�
jh(z)φjh(z)

′C(z)

=
nw

∑
h=1

(1 − z/zω)
qjh

−q+sjh w�
jh(z)φ̃jh(z)

′ = (1 − z/zω)
s ζ̃(z)′

where ζ̃(z)′ := ∑nw
h=1(1 − z/zω)

qjh
−q+sjh

−sw�
jh
(z)φ̃jh(z)

′. Finally, in order to prove that the

order of the generalized root function is s, one needs to show that ζ̃(zω)′ 	= 0′. Let Cw be the
set of indices j ∈ Aw with qjh − q+ sjh = s, and observe that ζ̃(zω)′ := ∑j∈Cw w�

j (zω)φ̃j(zω)′

where w�
j (zω) 	= 0 and φj(zω)′ 	= 0′ as above. If ζ̃(zω)′ = 0′, then there exists a nonzero

linear combination of φ(zω)′ equal to 0′, which would imply the existence of a root func-
tion of higher order obtained by combination of the rows in φ(z)′ with index Cw, which
contradict the fact that the orders are chosen to be maximal. This implies that the order of
the generalized root function is equal to s.
(iii). The proof is the same as in ii). Note that here qi may be negative.

Remark A6 (Closure with respect to linear combinations). Proposition A2 shows that F[z]-
linear combinations and F(z)-linear combinations of a canonical systems of root functions φ(z)′

produce generalized root functions. Note that φ(z)′ is itself a set of generalized root functions
(with 0 exponent). Hence, in this sense, generalized root functions are closed under F[z]-linear
combinations and F(z)-linear combinations.
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Remark A7 (Spans). Indicate the set of G-linear combinations φ(z)′ as rowG(φ(z)′), where
G = F, F(z), F[z]. It is simple to observe that

rowF(φ(z)′) ⊂ rowF[z](φ(z)
′) ⊂ rowF(z)(φ(z)

′). (A2)

Remark A8 (Role of characteristics of canonical system of root functions). The proof of
Proposition A2 reveals that, in order to conclude that a F[z]- or F(z)-linear combination of φ(z)′ is
a generalized root function, the property that φ(zω)′ is of full row rank plays a crucial role. In fact,
when reaching the equality w(z)′φ(z)′ = (1 − z/zω)qζ(z)′ where q is the exponent of the linear
combination, one can show that ζ(zω)′ 	= 0′ by making use of this property only, without using the
maximal orders of the root functions in φ(z)′. This proves the following corollary.

Corollary A1 (Linear combinations of a set of root functions). Replace the canonical system of
root functions φ(z)′ in Proposition A2 with a set of m root functions ξ(z)′ for C(z) on D(zω, η),
η > 0 such that ξ(zω)′ is of full row rank; then the F[z]- or F(z)-linear combinations w(z)′ξ(z)′

and u(z)′ξ(z)′ are generalized root functions with the same exponents as in Proposition A2.

Appendix A.3. Truncations of Root Functions

This section discusses how the truncation of a root function still delivers a root function,
possibly of lower order. The main implication of this property is that one can take any
element in rowG(φ(z)′) for G = F, F[z], F(z) and obtain other root functions by truncation,
thus enlarging the set of root functions that can be generated from rowG(φ(z)′).

Let ζ(z)′ := ∑∞
j=0(z − zω)jζ ′

j be a 1 × p root function of order s of C(z) on D(zω, η),

η > 0, and indicate the truncation of ζ(z)′ to a polynomial of degree r as ζ(r)(z)′ :=
∑r

j=0(z − zω)jζ ′
j; the remainder ζ(z)′ − ζ(r)(z)′ = ∑∞

j=r+1(z − zω)jζ ′
j is called the tail of

ζ(z)′. The following proposition clarifies that one can modify the tail of a root function
without affecting its property to factor some power of (1 − z/zω) from C(z). One special
case is that one can delete the tail after the order s of the root function without changing its
order.

Proposition A3 (Truncations). Let ζ(z)′ := ∑∞
j=0(z − zω)jζ ′

j be a root function of order s for
C(z) = ∑∞

j=0(z − zω)jCj on D(zω, η), η > 0, ζ(zω)′ 	= 0′, and let ψ(z)′ := ∑∞
j=0(z − zω)jψ′

j
be a 1 × p vector function, analytic on D(zω, η); then

(i) for an integer � ≥ 1, the 1 × p row vector ξ(z)′ with

ξ(z)′ := ζ(z)′ + (z − zω)
�ψ(z)′ (A3)

is still a root function on D(zω, η) of order n ≥ min(�, s);
(ii) if one chooses � ≤ s, in the definition (A3) of ξ(z)′ with ψ(z)′ proportional to the tail of ζ(z)′, a

special case of i) is that the truncation of ζ(z)′ to the polynomial ζ(�)(z)′ := ∑�
j=0(z − zω)jζ ′

j
of order � is also a root function on D(zω, η) of order n ≥ �;

(iii) finally if ζ(z)′ := ∑∞
j=0(z − zω)jζ ′

j is a root function of order s in a canonical system of root

functions of C(z) at zω, then its truncation ζ(s−1)(z)′ := ∑s−1
j=0(z − zω)jζ ′

j to a polynomial
of degree s − 1 is still a root function of C(z) at zω on D(zω, η) of order s.

Proof. (i). By definition one has ζ(z)′C(z) = (z − zω)s ζ̃(z)′ with ζ̃(zω)′ = ∑s
h=0 ζ ′

hCs−h 	=
0′. Hence, setting q := min(�, s), one finds

ξ(z)′C(z) = ζ(z)′C(z) + (z − zω)
�ψ(z)′C(z) = (z − zω)

q ξ̃(z)′.

where ξ̃(z)′ = (z − zω)s−q ζ̃(z)′ + (z − zω)�−qψ(z)′C(z). If ξ̃(zω)′ 	= 0′, then ξ(z)′ is a root
function of order q. If, instead, ξ̃(zω)′ = 0′, then ξ(z)′ is a root function of order n greater
than q; in any case n ≥ q, with n finite by Proposition 2.
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(ii). Choose ψ(z)′ = (z − zω)−�(ζ(z)′ − ζ(�)(z)′) = ∑∞
j=�+1(z − zω)j−�ζ ′

j in (A3), so that

ξ(z)′ = ζ(�)(z)′. The statement follows from (i).
(iii). The coefficients ζ(z)′ and ζ(s−1)(z)′ generate the same coefficients Wh := ∑h

j=0 ζ ′
jCh−j

for h = 0, . . . , s − 1 in the convolution ζ(z)′C(z) = W(z) := ∑∞
h=0(z − zω)hWh, where

Wh = 0 for h = 0, . . . , s − 1 by definition of order s, see (8). This implies that ζ(s−1)(z)′ is
a root function at least of order s. However, because root functions in a canonical system
of root functions are chosen of maximal order, the order of ζ(s−1)(z)′ is equal to s. This
completes the proof.

Remark A9 (Truncated cointegrating vectors). Proposition A3. (ii) implies that truncating a
cointegrating vector to order � < s preserves the cointegrating property, but not necessarily the
order s.

Remark A10 (Cointegrating vectors in Iω(1) VAR can be chosen not to be polynomial).
Consider Example 1, where the orders of integration of (polynomial) linear combinations can be
either 1 or 0. In this case, root function are of order at most s = 1, and Proposition A3. (iii)
ensures that the root functions can be truncated to order s − 1 = 0, i.e., to non-polynomial linear
combinations.

Remark A11 (A generic Iω(1) process may have polynomial cointegration relations). Con-
sider now the generic case of an I(1) process. The orders of integration of (polynomial) linear
combinations can be 0, −1, −2, · · · − d say, with d > 0. In this case, root function are of order at
most s = 1, 2 . . . , d + 1, and Proposition A3. (iii) ensures that the root functions can be truncated
to order d. If d > 0 this may require polynomial linear combinations also in the Iω(1) case.

Remark A12 (Polynomial cointegration vectors in Iω(2) VAR can be chosen of order at most
1). Consider Example 2, where the orders of integration of (polynomial) linear combinations can
be either 2, 1 or 0. In this case, root function are of order at most s = 2, and Proposition A3. (iii)
ensures that the root functions can be truncated to order s − 1 = 1, i.e., to polynomial linear
combinations of order 1.

Remark A13 (Multicointegrated systems require polynomial cointegration relations). As
shown in the previous three remarks, in general, multicointegrated systems require to consider
polynomial linear combinations.

Notes

1 See Engle and Granger (1987, pp. 253–54). Here N in their notation is replaced by p and α with β for consistency with the rest of
the paper.

2 The following notation is employed: F = R,C indicates either the field of real numbers R or the field of complex numbers C
and if a matrix A = (a1, . . . , an) is written in terms of its columns, colF(A) indicates the column span of A with coefficients in F,
i.e., colF(A) := {v : v = ∑n

j=1 ciai, ci ∈ F} and rowF(A′) denotes the row span of A′ with coefficients in F, i.e., rowF(A′) := {v′ :
v′ = ∑n

j=1 cia′
i , ci ∈ F}, where A′ indicates the conjugate transpose of A. Hence v ∈ colF(A) if and only if v′ ∈ rowF(A′), i.e., the

spaces coincide but the former contains column vectors while the latter contains row vectors. Here the row form is employed.
3 εt could be taken to be non-autocorrelated instead of i.i.d. with no major changes in the results in the paper.
4 This result is usually stated as xt = ut − a0 where a0 := x0 − u0 is a generic constant, see e.g., Hannan and Deistler (1988)

Equation (1.2.15).
5 In fact, substituting C(z) = C + C̃(z)(1 − z), one finds ζ ′Δxt = ζ ′Cεt + ζ ′C̃(L)Δεt, and applying S to both sides gives ζ ′xt −

ζ ′x0 = ζ ′CSεt + ut − u0 where ut := ζ ′C̃(L)εt is stationary. The term Sεt is a bilateral random walk (Franchi and Paruolo 2019),
a nonstationary process, so that the l.h.s. can be made stationary if and only if the coefficient ζ ′C loading Sεt is 0.

6 Theorem 3 provides two constructions of the local Smith factorization.
7 In this case A(z) is analytic for all z ∈ C.
8 In the first sentence in Definition 3.1 of Franchi and Paruolo (2019) ‘rmax

0 := p − r0’ should read ‘rmax
0 := p’. The results of Franchi

and Paruolo (2019, Theorem 3.3) are applied setting F(z) there equal to A(z) here.
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9 The present statement follows by Franchi and Paruolo (2019, Theorem 3.5) with F(z) and Φ(z) there equal to A(z) and Ξ(z)−1

here.
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Abstract: The generalized method of moments (GMM) estimator of the reduced-rank regression
model is derived under the assumption of conditional homoscedasticity. It is shown that this GMM
estimator is algebraically identical to the maximum likelihood estimator under normality developed
by Johansen (1988). This includes the vector error correction model (VECM) of Engle and Granger.
It is also shown that GMM tests for reduced rank (cointegration) are algebraically similar to the
Gaussian likelihood ratio tests. This shows that normality is not necessary to motivate these estimators
and tests.

Keywords: GMM; VECM; reduced rank

JEL Classification: C3

1. Introduction

The vector error correction model (VECM) of Engle and Granger (1987) is one of the most widely
used time-series models in empirical practice. The predominant estimation method for the VECM is
the reduced-rank regression method introduced by Johansen (1988, 1991, 1995). Johansen’s estimation
method is widely used because it is straightforward, it is a natural extension of the VAR model
of Sims (1980), and it is computationally tractable.

Johansen motivated his estimator as the maximum likelihood estimator (MLE) of the VECM
under the assumption that the errors are i.i.d. normal. For many users, it is unclear whether the
estimator has a broader justification. In contrast, it is well known that least-squares estimation is both
maximum likelihood under normality and method of moments under uncorrelatedness.

This paper provides the missing link. It is shown that Johansen’s reduced-rank estimator is
algebraically identical to the generalized method of moments (GMM) estimator of the VECM, under the
imposition of conditional homoscedasticity. This GMM estimator only uses uncorrelatedness and
homoscedasticity. Thus Johansen’s reduced-rank estimator can be motivated under much broader
conditions than normality.

The asymptotic efficiency of the estimator in the GMM class relies on the assumption of
homoscedasticity (but not normality). When homoscedasticity fails, the reduced-rank estimator
loses asymptotic efficiency but retains its interpretation as a GMM estimator.

It is also shown that the GMM tests for reduced (cointegration) rank are nearly identical to
Johansen’s likelihood ratio tests. Thus the standard likelihood ratio tests for cointegration can be
interpreted more broadly as GMM tests.

This paper does not introduce new estimation nor inference methods. It merely points out
that the currently used methods have a broader interpretation than may have been understood.
The results leave open the possibility that new GMM methods that do not impose homoscedasticity
could be developed.

This connection is not new. In a different context, Adrian et al. (2015) derived the equivalence
of the likelihood and minimum-distance estimators of the reduced-rank model. The equivalence
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between the Limited Information Maximum Likelihood (LIML) estimator (which has a dual
relation with reduced-rank regression) and a minimum distance estimator was discovered
by Goldberger and Olkin (1971). Recently, Kolesár (2018) drew out connections between
likelihood-based and minimum-distance estimation of endogenous linear regression models.

This paper is organized as follows. Section 2 introduces reduced-rank regression models and
Johansen’s estimator. Section 3 presents the GMM and states the main theorems demonstrating
the equivalence of the GMM and MLE. Section 4 presents the derivation of the GMM estimator.
Section 5 contains two technical results relating generalized eigenvalue problems and the extrema of
quadratic forms.

2. Reduced-Rank Regression Models

The VECM for p variables of cointegrating rank r with k lags is

ΔXt = αβ′Xt−1 +
k−1

∑
i=1

ΓiΔXt−i + ΦDt + et, (1)

where Dt are the deterministic components. Observations are t = 1, ..., T. The matrices α and β are
p × r with r ≤ p. This is a famous workhorse model in applied time series, largely because of the
seminal work of Engle and Granger (1987).

The primary estimation method for the VECM is known as reduced-rank regression and was
developed by Johansen (1988, 1991, 1995). Algebraically, the VECM (1) is a special case of the
reduced-rank regression model:

Yt = αβ′Xt + ΨZt + et, (2)

where Yt is p × 1, Xt is m × 1, and Zt is q × 1. The coefficient matrix α is p × r and β is m × r with
r ≤ min(m, p). Johansen derived the MLE for model (2) under the assumption that et is i.i.d. N (0, Ω).
This immediately applies to the VECM (1) and is the primary application of reduced-rank regression
in econometrics.

Canonical correlations were introduced by Hotelling (1936), and reduced-rank regression was
introduced by Bartlett (1938). A complete theory was developed by Anderson and Rubin (1949, 1950)
and Anderson (1951). These authors developed the MLE for the model:

Yt = ΠXt + et, (3)

Γ′Π = 0, (4)

where Γ is p × (p − r) and is unknown. This is an alternative parameterization of (2) without the
covariates Zt. Anderson and Rubin (1949, 1950) considered the case p − r = 1 and primarily focused
on estimation of the vector Γ. Anderson (1951) considered the case p − r ≥ 1.

While the models (2) and (3)–(4) are equivalent and thus have the same MLE, the different
parameterizations led the authors to different derivations. Anderson and Rubin derived the estimator
of (3) and (4) by a tedious application of constrained optimization. (Specifically, they maximized the
likelihood of (3) imposing the constraint (4) using Lagrange multiplier methods. The solution turned
out to be tedious because (4) is a nonlinear function of the parameters Γ and Π.) The derivation is so
cumbersome that it is excluded from nearly all statistics and econometrics textbooks, despite the fact
that it is the source of the famous LIML estimator.

The elegant derivation used by Johansen (1988) is algebraically unrelated to that of Anderson-Rubin
and is based on applying a concentration argument to the product structure in (2). It is similar to the
derivation in Tso (1981), although the latter did not include the covariates Zt. Johansen’s derivation is
algebraically straightforward and thus is widely taught to students.

It is useful to briefly describe the likelihood problem. The log-likelihood for model (2) under the
assumption that et is i.i.d. N (0, Ω) is
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� (α, β, Ψ, Ω) = −T
2

log det Ω − 1
2

T

∑
t=1

(
Yt − αβ′Xt − ΨZt

)′ Ω−1 (Yt − αβ′Xt − ΨZt
)

. (5)

The MLE maximizes � (α, β, Ψ, Ω). Johansen’s solution is as follows. Define the projection matrix
MZ = IT − Z (Z′Z)−1 Z′ and the residual matrices Ỹ = MZY and X̃ = MZX. Consider the generalized
eigenvalue problem: ∣∣∣∣X̃′Ỹ

(
Ỹ′Ỹ

)−1
Ỹ′X̃ − X̃′X̃λ

∣∣∣∣ = 0. (6)

The solutions 1 > λ̂1 > · · · > λ̂p > 0 satisfy

X̃′Ỹ
(

Ỹ′Ỹ
)−1

Ỹ′X̃νi = X̃′X̃ν̂iλ̂i.

where (λ̂i, ν̂i) are known as the generalized eigenvalues and eigenvectors of X̃′Ỹ
(

Ỹ′Ỹ
)−1

Ỹ′X̃ with

respect to X̃′X̃. The normalization ν̂′
i X̃′X̃ν̂i = 1 is imposed.

Given the normalization β′X̃′X̃β = Ir, Johansen’s reduced-rank estimator for β is

β̂mle = [ν̂1, ..., ν̂r] .

The MLE α̂mle and Ψ̂mle are found by least-squares regression of Yt on β̂′
mleXt and Zt.

3. Generalized Method of Moments

Define Wt = (X′
t, Z′

t)
′. The GMM estimator of the reduced-rank regression model (2) is derived

under the standard orthogonality restriction:

E
(
Wte′t

)
= 0 (7)

plus the homoscedasticity condition:

E
(
ete′t ⊗ WtW ′

t
)
= Ω ⊗ Q, (8)

where Ω = E (ete′t) and Q = E (WtW ′
t ). These moment conditions are implied by the normal regression

model. (Equations (7) and (8) can be deduced from the first-order conditions for maximization of (5)).
Because (7) and (8) can be deduced from (5) but not vice versa, the moment condition model (7) and (8)
is considerably more general than the normal regression model (5).

The efficient GMM criterion (see Hansen 1982) takes the form

Jr(α, β, Ψ) = Tgr (α, β, Ψ)′ V̂−1gr (α, β, Ψ) ,

where

gr (α, β, Ψ) =
1
T

n

∑
t=1

((
Yt − αβ′Xt − ΨZt

)
⊗ Wt

)
, (9)

V̂ = Ω̂ ⊗ Q̂,

Ω̂ =
1
T

n

∑
t=1

êt ê′t, (10)

Q̂ =
1
T

n

∑
t=1

WtW ′
t ,

and êt are the least-squares residuals of the unconstrained model:
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êt = Yt − Π̂Xt − Ψ̂Zt.

The GMM estimator are the parameters that jointly minimize the criterion Jr (α, β, Ψ) subject to
the normalization β′X̃′X̃β = Ir:(

α̂gmm, β̂gmm, Ψ̂gmm

)
= argmin

β′X̃′X̃β=Ir

Jr (α, β, Ψ) .

The main contribution of the paper is the following surprising result.

Theorem 1.
(

α̂gmm, β̂gmm, Ψ̂gmm

)
=
(

α̂mle, β̂mle, Ψ̂mle

)
.

Theorem 2. Jr(α̂gmm, β̂gmm, Ψ̂gmm) = tr
(

Ω̂−1
(

Ỹ′Ỹ
))

− Tp − T ∑r
i=1

λ̂i
1−λ̂i

, where λ̂i are the eigenvalues
from (6).

Theorem 1 states that the GMM estimator is algebraically identical to the Gaussian maximum
likelihood estimator.

This shows that Johansen’s reduced-rank regression estimator is not tied to the normality
assumption. This is similar to the equivalence of least-squares as a method of moments estimator and
the Gaussian MLE in the regression context.

The key is the use of the homoscedastic weight matrix. This shows that the Johansen reduced-rank
estimator is an efficient GMM estimator under conditional homoscedasticity. When homoscedasticity
fails, the Johansen reduced-rank estimator continues to be a GMM estimator but is no longer the
efficient GMM estimator.

It is important to understand that Theorem 1 is different from the trivial statement that the MLE is
GMM applied to the first-order condition of the likelihood (e.g., Hall (2005), Section 3.8.1). Specifically,
if you take the derivatives of the Gaussian log-likelihood function (5) and treat these as moment
conditions and solve, this is a GMM estimator, and thus MLE can be interpreted as GMM. That is not
what Theorem 1 states.

GMM hypothesis tests can be constructed by the difference in the GMM criteria; tests for reduced
rank are considered, which in the context of VECM are tests for cointegration rank. The model

Yt = ΠXt + ΨZt + et

is taken and the following hypotheses on reduced rank are considered:

Hr : rank (Π) = r.

The GMM test statistic for Hr against Hr+1 is

Cr,r+1 = min
β′X̃′X̃β=Ir

Jr (α, β, Ψ)− min
β′X̃′X̃β=Ir+1

Jr+1 (α, β, Ψ) .

The GMM test statistic for Hr against Hp is

Cr,p = min
β′X̃′X̃β=Ir

Jr (α, β, Ψ)− min
β′X̃′X̃β=Ip

Jp (α, β, Ψ) .
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Theorem 3. The GMM test statistics for reduced rank are

Cr,r+1 = T

(
λ̂r+1

1 − λ̂r+1

)
,

Cr,p = T
p

∑
i=r+1

λ̂i

1 − λ̂i
,

where λ̂i are the eigenvalues from (6).

Here it is recalled in contrast that the likelihood ratio test statistics derived by Johansen are

LRr,r+1 = −T log
(

1 − λ̂r+1

)
,

LRr,p = −T
p

∑
i=r+1

log
(

1 − λ̂r+1

)
.

The GMM test statistic Cr,r+1 and the likelihood ratio (LR) statistic LRr,r+1 yield equivalent tests,
as they are monotonic functions of one another. (If the bootstrap is used to assess significance, the
two statistics will yield numerically identical p-values.) They are asymptotically identical under
standard approximations and in practice will be nearly identical, because the eigenvalues λ̂i tend to
be quite small in value (at least under the null hypothesis), so that − log (1 − λ) ≈ λ/(1 − λ) ≈ λ.
For p − (r + 1) > 1, the GMM test statistic Cr,p and the LR statistic LRr,p do not provide equivalent
tests (they cannot be written as monotonic functions of one another), but they are also asymptotically
equivalent and will be nearly identical in practice.

An interesting connection noted by a referee is that the statistic Cr,p was proposed by Pillai (1955)
and Muirhead (1982, Section 11.2.8).

4. Derivation of the GMM Estimator

It is convenient to rewrite the criterion in standard matrix notation, defining the matrices Y, X, Z,
and W by stacking the observations. Model (2) is

Y = Xβα′ + ZΨ′ + e.

The moment (9) is

gr (α, β, Ψ) =
1
T

vec
(
W ′ (Y − Xβα′ − ZΨ′)) .

Using the relation
tr (ABCD) = vec

(
D′)′ (C′ ⊗ A

)
vec (B) ,

the following is obtained:

Jr(α, β, G) = Tgr (α, β, Ψ)′
(

Ω̂−1 ⊗ Q̂−1
)

gr (α, β, Ψ)

= vec
(
W ′ (Y − Xβα′ − ZΨ′))′ (Ω̂−1 ⊗

(
W ′W

)−1
)

vec
(
W ′ (Y − Xβα′ − ZΨ′))

= tr
(

Ω̂−1 (Y − Xβα′ − ZΨ′)′ W
(
W ′W

)−1 W ′ (Y − Xβα′ − ZΨ′)) .

Following the concentration strategy used by Johansen, β is fixed and α and Ψ are concentrated out,
producing a concentrated criterion that is a function of β only. The system is linear in the regressors
Xβ and Z. Given the homoscedastic weight matrix, the GMM estimator of (α, Ψ) is multivariate
least-squares. Using the partialling out (residual regression) approach, the least-squares residual can
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be written as the residual from the regression of Ỹ on X̃β, where Ỹ = MZY and X̃ = MZX are the
residuals from regressions on Z. That is, the least-squares residual is

ê(β) = Ỹ − X̃β
(

β′X̃′X̃β
)−1

β′X̃′Ỹ

= Ỹ − X̃ββ′X̃′Ỹ,

where the second equality uses the normalization β′X̃′X̃β = Ir. Because the space spanned by
W = (X, Z) equals that spanned by (X̃, Z), the following can be written:

W
(
W ′W

)−1 W ′ = Z
(
Z′Z

)−1 Z′ + X̃
(

X̃′X̃
)−1

X̃′.

Because Z′ ê(β) = 0, then

W
(
W ′W

)−1 W ′ ê(β) = X̃
(

X̃′X̃
)−1

X̃′ ê(β)

= X̃
(

X̃′X̃
)−1

X̃′Ỹ − X̃ββ′X̃′Ỹ

and

ê(β)′W
(
W ′W

)−1 W ′ ê(β) = Ỹ′X̃
(

X̃′X̃
)−1

X̃′Ỹ − Ỹ′X̃ββ′X̃′Ỹ

= Ỹ′Ỹ − Ỹ′MX̃Ỹ − Ỹ′X̃ββ′X̃′Ỹ,

where
MX̃ = I − X̃

(
X̃′X̃

)−1
X̃′.

Using the partialling out (residual regression) approach, the variance estimator (10) can be
written as

Ω̂ =
1
T

Y′
(

I − W
(
W ′W

)−1 W ′
)

Y =
1
T

Ỹ′MX̃Ỹ.

Thus the concentrated GMM criterion is

J∗r (β) = tr
(

Ω̂−1 ê(β)′W
(
W ′W

)−1 W ′ ê(β)
)

= tr
(

Ω̂−1
(

Ỹ′Ỹ
))

− tr
(

Ω̂−1
(

Ỹ′MX̃Ỹ
))

− tr
(

Ω̂−1
(

Ỹ′X̃ββ′X̃′Ỹ
))

= tr
(

Ω̂−1
(

Ỹ′Ỹ
))

− Tp − T tr
(

β′X̃′Ỹ
(

Ỹ′MX̃Ỹ
)−1

Ỹ′X̃β

)
. (11)

The GMM estimator minimizes J∗r (β) or, equivalently, maximizes the third term in (11). This is
a generalized eigenvalue problem. Lemma 2 (in the next section) shows that the solution is
β̂gmm = [ν̃1, ..., ν̃r] as claimed.

Because the estimates α̂gmm and Ψ̂gmm are found by regression given β̂gmm, and because this is
equivalent with the MLE, it is also concluded that α̂gmm = α̂mle and Ψ̂gmm = Ψ̂mle. This completes the
proof of Theorem 1.

To establish Theorem 2, Lemma 2 also shows that the minimum of the criterion is

220



Econometrics 2018, 6, 26

Jr(α̂gmm, β̂gmm, Ψ̂gmm) = min
β′X̃′X̃β=Ir

Jr(α, β, G)

= min
β′X̃′X̃β=Ir

J∗r (β)

= tr
(

Ω̂−1
(

Ỹ′Ỹ
))

− Tp − T max
β′X̃′X̃β=Ir

tr
(

β′X̃′Ỹ
(

Ỹ′MX̃Ỹ
)−1

Ỹ′X̃β

)
= tr

(
Ω̂−1

(
Ỹ′Ỹ

))
− Tp − T

r

∑
i=1

λ̂i

1 − λ̂i
.

This establishes Theorem 2.

5. Extrema of Quadratic Forms

To establish Theorems 1 and 2, a simple extrema property is necessary. First, a simple property
that relates the maximization of quadratic forms to generalized eigenvalues and eigenvectors is given.
It is a slight extension of Theorem 11.13 of Magnus and Neudecker (1988).

Lemma 1. Suppose A and C are p × p real symmetric matrices with C > 0. Let λ1 > · · · > λp > 0 be the
generalized eigenvalues of A with respect to C and ν1, ..., νp be the associated eigenvectors. Then

max
β′Cβ=Ir

tr
(

β′Aβ
)
=

r

∑
i=1

λi

and
argmax
β′Cβ=Ir

tr
(

β′Aβ
)
= [ν1, ..., νr] .

Proof. Define γ = C1/2′β and A = C−1/2 AC−1/2′. The eigenvalues of A are equal to the generalized
eigenvalues λi of A with respect to C. The associated eigenvectors of A are C1/2′νi. Thus by
Theorem 11.13 of Magnus and Neudecker (1988),

max
β′Cβ=Ir

tr
(

β′Aβ
)
= max

γ′γ=Ir
tr
(
γ′Aγ

)
=

r

∑
i=1

λi

and

argmax
β′Cβ=Ir

tr
(

β′Aβ
)
= C−1/2′ argmax

γ′γ=Ir

tr
(
γ′Aγ

)
= C−1/2′C1/2′ [ν1, ..., νr]

= [ν1, ..., νr]

as claimed.

Lemma 2. Let MX = I − X (X′X)−1 X′. If X′X > 0 and Y′MXY > 0 then

max
β′X′Xβ=Ir

tr
(

β′X′Y(Y′MXY)−1Y′Xβ
)
=

r

∑
i=1

λi
1 − λi

and
argmax

β′X′Xβ=Ir

tr
(

β′X′Y(Y′MXY)−1Y′Xβ
)
= [ν1, ..., νr] ,

where 1 > λ1 > · · · > λp > 0 are the generalized eigenvalues of X′Y(Y′Y)−1Y′X with respect to X′X, and
ν1, ..., vp are the associated eigenvectors.
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Proof. By Lemma 1,

max
β′X′Xβ=Ir

tr
(

β′X′Y(Y′MXY)−1Y′Xβ
)
=

r

∑
i=1

λ̃i

and
argmax

β′X′Xβ=Ir

tr
(

β′X′Y(Y′MXY)−1Y′Xβ
)
= [ν̃1, ..., ν̃r] ,

where λ̃1 > · · · > λ̃p > 0 are the generalized eigenvalues of X′Y(Y′MXY)−1Y′X with respect to X′X
and ν̃1, ..., ν̃p are the associated eigenvectors. The proof is established by showing that λ̃i = λi/(1 − λi)

and ν̃i = νi.
Let (ν̃, λ̃) be a generalized eigenvector/eigenvalue pair of X′Y(Y′MXY)−1Y′X with respect to

X′X. The pair satisfies
X′Y

(
Y′MXY

)−1 Y′Xν̃ = X′Xν̃λ̃. (12)

By the Woodbury matrix identity (e.g., Magnus and Neudecker (1988), Equation (7)),

(
Y′MXY

)−1
=
(

Y′Y − Y′X
(
X′X

)−1 X′Y
)−1

=
(
Y′Y

)−1
+
(
Y′Y

)−1 Y′X
(

X′X − X′Y
(
Y′Y

)−1 Y′X
)−1

X′Y
(
Y′Y

)−1

=
(
Y′Y

)−1
+
(
Y′Y

)−1 Y′X
(
X′MYX

)−1 X′Y
(
Y′Y

)−1 ,

where MY = I − Y (Y′Y)−1 Y′. Thus

X′Y
(
Y′MXY

)−1 Y′X = X′Y
(
Y′Y

)−1 Y′X + X′Y
(
Y′Y

)−1 Y′X
(
X′MYX

)−1 X′Y
(
Y′Y

)−1 Y′X

= X′PYX + X′PYX
(
X′MYX

)−1 X′PYX

= X′X
(
X′MYX

)−1 X′PYX,

where PY = Y (Y′Y)−1 Y′ and the final equality uses X′PYX = X′X − X′MYX. Substituting into (12)
produces

X′X
(
X′MYX

)−1 X′PYXν̃ = X′Xν̃λ̃.

Multiplying both sides by (X′MYX) (X′X)−1, this implies

X′PYXν̃ = X′MYXν̃λ̃

= X′Xν̃λ̃ − X′PYXν̃λ̃.

By collecting terms,
X′PYXν̃(1 + λ̃) = X′Xν̃λ̃,

which implies

X′PYXν̃ = X′Xν̃
λ̃

(1 + λ̃)
.

This is an eigenvalue equation. It shows that λ̃/(1 + λ̃) = λ is a generalized eigenvalue and
ν̃ is the associated eigenvector of X′PYX with respect to X′X. Solving, λ̃ = λ/(1 − λ). This means
that the generalized eigenvalues of X′Y(Y′MXY)−1Y′X with respect to X′X are λi/(1 − λi) and νi.
Because λ/(1 − λ) is monotonically increasing on [0, 1) and λi < 1, it follows that the orderings of λi
and λ̃i are identical. Thus λ̃i = λi/(1 − λi) as claimed.
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Abstract: We consider cointegration tests in the situation where the cointegration rank is deficient.
This situation is of interest in finite sample analysis and in relation to recent work on identification
robust cointegration inference. We derive asymptotic theory for tests for cointegration rank and for
hypotheses on the cointegrating vectors. The limiting distributions are tabulated. An application to
US treasury yields series is given.
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1. Introduction

Determination of the cointegration rank is an important part of analyzing the cointegrated vector
autoregressive model in the framework of Johansen (1988, 1991, 1995), Johansen and Juselius (1990),
and Juselius (2006). We consider the rank deficient case where the cointegration rank of the data
generating process is smaller than the rank used in the statistical analysis. In that case, the data
generating process has more unit roots than the number of unit roots imposed in the statistical analysis
and the usual asymptotic theory fails. We provide asymptotic theory for cointegration rank tests and
tests on cointegration vectors along with simulated tables of the asymptotic distributions.

Cointegration analysis is conducted in three steps. First, the specification of the model is checked.
Second, the rank is determined using a sequential procedure using Dickey-Fuller type distributions.
Third, the cointegrating vectors are estimated and restrictions can be tested using standard inference.
Asymptotic theory shows that estimated rank is consistent in the sense that the probability that the
estimated rank is not equal to the true rank equals the size of tests, whereas the probability that the
estimated rank is too small vanishes, see Johansen (1992, 1995) and Paruolo (2001). Hence, the rank
deficiency problem does not arise in the asymptotic analysis.

In practice, rank deficiency matters in two ways. The asymptotic theory often suffers from
considerable finite sample distortion. Further, if an investigator wants to focus on the inference on
the cointegrating relations then problems can arise if the rank is taken as known when in fact it is
deficient. These problems mirror those of instrumental variable estimation with weak instruments,
see Mavroeidis et al. (2014).

When conducting inference on the cointegrating vector under near rank deficiency the parameters
are weakly identified. At the extreme when testing on the cointegrating vector in the case of a deficient
rank the model is mis-specified. This problem arises in cointegration as well as in instrumental
variable estimation. In both cases maximum likelihood is conducted using reduced rank regression.
The weak identification problem has attracted considerable attention in the instrumental variable
literature, see for instance Mavroeidis et al. (2014). Khalaf and Urga (2014) discussed the weak
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identification problem for cointegration, that is when testing for a known cointegrating vector in the
nearly rank deficient situation. These authors investigate various methods to adjust the asymptotic
distribution in the weak identification case. This includes a bounds-based critical value suggested by
Dufour (1997). This method requires knowledge of the asymptotic theory for the rank deficient case,
which we provide here.

The practical problem of ignoring rank deficiency is illustrated using yield curve data. The expectation
hypothesis is often interpreted as follows. Interest rates at different maturities are integrated series,
but cointegrate so that spreads are stationary. Spreads are often found to be non-stationary. Thus, it is
quite possible that a pair of interest rates do not cointegrate. An investigator may proceed by assuming
cointegration when there is none, so that the rank is deficient, and conduct inference on the coefficients
on the alleged cointegrating vector using standard inference. Our theory shows that the inference is
then severely distorted. When the rank is deficient or nearly deficient it is incorrect to use standard
inference on the cointegrating vectors. Nonetheless, applying standard inference in the particular
example leads to marginal rejection of the hypothesis. Applying the bounds test of Khalaf and Urga
(2014) shifts the distribution to the right and there is not much power to reject a hypothesis. If the rank
is deficient, which is possible in the example, the alleged cointegrating vector cannot be cointegrating.

Rank deficiency also matters when the rank is determined empirically. Different asymptotic
distributions arise in the standard case and when the rank is deficient. The asymptotic distribution
tends to give a very good approximation to the finite sample distribution when the rank is far from
being deficient, see for instance Nielsen (1997, 2004) When the parameters are in the vicinity of rank
deficiency the finite sample distribution tends to be a combination of the two asymptotic distributions.
When the parameters are not too close to the rank deficient case a Bartlett correction using a fixed
parameter second-order asymptotic expansion works very well, see Johansen (2000, 2002) Bootstrap
solutions have been discussed in simulation studies by Fachin (2000); Gredenhoff and Jacobson (2001);
Swensen (2004); Cavaliere et al. (2012). When the parameters are closer to rank deficient a local-to-unity
asymptotic expansion gives an improvement, see Nielsen (2004) for the cointegration case and Nielsen
(1999, 2001) for the corresponding instrumental variable case. A starting point for the finite sample
analysis is knowledge of the fixed-parameter first-order asymptotic theory across the parameter space,
including rank deficient cases.

We discuss the asymptotic theory for models without and with deterministic terms in Sections 2
and 3, respectively. The implications for finite sample analysis and the weakly identified case are
discussed in Section 4 along with an application to US treasury zero coupon yields. Section 5 concludes.
Proofs are given in an Appendix A.

2. The Model without Deterministic Terms

We consider the Gaussian cointegrated vector autoregressive model in the case with no deterministic
terms. The asymptotic theory for tests for reduced cointegration rank and for a known cointegrating
vector is derived when the rank is deficient. Finally, we analyze the case of near rank deficiency.

2.1. Model and Hypotheses

Consider a p-dimensional time series Xt for t = 1 − k, . . . , 0, 1, . . . T. The unrestricted vector
autoregressive model can be written as

ΔXt = ΠXt−1 +
k−1

∑
i=1

ΓiΔXt−i + εt for t = 1, . . . , T, (1)

where the innovations εt are independent normal Np(0, Ω)-distributed. The parameters Π, Γi, Ω are
freely varying p-dimensional square matrices so that Ω is symmetric, positive definite.
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The hypothesis of reduced cointegration rank is formulated as

Hz(r) : rank Π ≤ r, (2)

for some 0 ≤ r ≤ p. The interpretation of the hypotheses follows from the Granger-Johansen
representation presented in Section 2.2 below. The subscript z indicates that the model has a zero
deterministic component. The rank hypotheses are nested so that

Hz(0) ⊂ · · · ⊂ Hz(r) ⊂ · · · ⊂ Hz(p). (3)

The rank deficiency problem arises when testing the hypothesisHz(r) when in fact the sub-hypothesis
Hz(r − 1) is satisfied. The rank is determined to be r if the hypothesis Hz(r) cannot be rejected while the
sub-hypothesis Hz(r − 1) is rejected. As a short-hand we write H◦

z (r) = Hz(r)\Hz(r − 1) for this situation.
The rank can be determined along the procedure outlined in Johansen (1992, 1995) [Section 12.1] and
Paruolo (2001). In practice, these decisions are often marginal, hence the need to study the asymptotic
theory of test statistics in the rank deficient case.

The rank hypothesis can equivalently be written as

Hz(r) : Π = αβ′, (4)

where α and β are p × r matrices. The advantage of this formulation is that α and β vary in vector
spaces. The formulation does, however, allow rank deficiency where the rank of Π is smaller than
r. We follow Johansen (1991, Equation (2.2)) and refer to β as the cointegrating vectors. We find
the terminology useful, although it is ambiguous. Indeed, for a particular data generating process
where Π has rank less than r then the identity Π = αβ′ can be satisfied while columns of β may not
be row-eigenvectors of Π in which case β′Xt cannot be stationary. Even when Π has rank r then
β′Xt is only (approximately) stationary under the I(1) condition introduced below. However, from a
statistical viewpoint, the estimator of Π under the restriction of rank r will in a finite sample have rank
r with probability one. In practice our only knowledge of the rank arises from inference. Johansen’s
terminology appears to be focused on the statistical viewpoint which we will follow even when
studying the rank deficient cases.

The hypothesis of known cointegration vectors is

Hz,β(r) : Π = αb′, (5)

for some unknown matrix α and a known matrix b, both of dimension p × r, so that b has full column
rank. The standard analysis is concerned with the situation where α has full column rank, but in the
rank deficient case, it has reduced column rank, so that the hypothesis Hz(r − 1) is satisfied. When
referring to b as the cointegrating vectors, we, once again, follow the terminology of Johansen (1991,
Equation (3.1)) even though b′Xt cannot be stationary under rank deficiency.

2.2. Granger-Johansen Representation

The Granger-Johansen representation provides an interpretation of the cointegration model that
is useful in the asymptotic analysis. We work with the result stated by Johansen (1995, Theorem 4.2).
The theorem requires the following assumption.

I(1) Condition. Suppose rank Π = s where s ≤ p. Consider the characteristic roots satisfying 0 = det{A(z)}
where A(z) = (1 − z)Ip − Πz − ∑k−1

i=1 Γizi(1 − z). Suppose there are p − s unit roots, and that the remaining
roots are stationary roots, so satisfying |z| > 1.
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The Granger-Johansen theorem assumes that a process satisfying the model (1) so that rank Π =

r and we can write Π = αβ′ while the I(1) condition holds with s = r. The process then has the
representation

Xt = C
t

∑
i=1

εi + St + τ, (6)

where the impact matrix C for the random walk has rank p − r and satisfies β′C = 0 and Cα = 0,
the process St can be given a zero mean stationary initial distribution and τ depends on the initial
observations in such a way that β′τ = 0. In other words, the process Xt behaves like a random walk
with cointegrating relations β′Xt that can be given a stationary initial distribution.

2.3. Test Statistics

The likelihood ratio test statistic for the reduced rank hypothesis Hz(r) against the unrestricted
model Hz(p) is found by reduced rank regression, see Johansen (1995, Section 6). It can be described
as a two-step procedure. First, the differences ΔXt and the lagged levels Xt−1 are regressed on the
lagged differences ΔXt−i, i = 1, . . . , k − 1 giving residuals R0,t, R1,t. Secondly, the squared sample
correlations, 1 ≥ λ̂1 ≥ · · · ≥ λ̂p ≥ 0 say, of R0,t and R1,t are found, by computing product moments
Sij = T−1 ∑T

t=1 Ri,tR′
j,t and solving the eigenvalue problem 0 = det(λS11 − S10S−1

00 S01). The log
likelihood ratio test statistic for the rank hypothesis is then

LR{Hz(r) | Hz(p)} = −T
p

∑
j=r+1

log(1 − λ̂j). (7)

Under the hypothesis of known cointegration vectors, the likelihood is maximised by least squares
regression. The log likelihood ratio test statistic against the unrestricted model Hz(p) is therefore
given by

LR{Hz,β(r) | Hz(p)} = −T log
det{S00 − S01S−1

11 S10}
det{S00 − S01b(b′S11b)−1b′S10}

. (8)

The log likelihood ratio statistic for the hypothesis of known cointegrating vector against the rank
hypothesis is found by combining the statistics in (7) and (8), that is

LR{Hz,β(r) | Hz(r)} = LR{Hz,β(r) | Hz(p)} − LR{Hz(r) | Hz(p)}. (9)

The relationship will be useful in the asymptotic theory. For instance, Theorems 1 and 2 give the
asymptotic distributions of LR{Hz(r) | Hz(p)} and LR{Hz,β(r) | Hz(p)}, respectively. From this we
can derive an expression for the distribution of LR{Hz,β(r) | Hz(r)}. When it comes to tabulation we
will need to simulate all three distributions. This would be the case even if the former two statistics
were independent.

2.4. Asymptotic Theory for the Rank Test

In the asymptotic analysis it is possible to relax the assumption to the innovations. While the likelihood
is derived under the assumption of independent, identically Gaussian distributed innovations less is
needed for the asymptotic theory. Johansen (1995) assumes the innovations are independent, identically
distributed with mean zero and finite variance and uses linear process results from Phillips and Solo
(1992). This could be relaxed further to, for instance, a martingale difference assumption. However,
for expositional simplicity we follow Johansen’s argument and assumptions.
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Theorem 1. Consider the rank hypothesis Hz(r) : rank Π ≤ r. Suppose H◦
z (s) = Hz(s)\Hz(s − 1) holds for

some s ≤ r and that the I(1) condition holds for that s. Let Fu = Bu be a p − s-dimensional standard Brownian
motion on [0, 1]. Let 1 ≥ ρ1 ≥ · · · ≥ ρp−s ≥ 0 be the eigenvalues of the eigenvalue problem

0 = det
{

ρ
∫ 1

0
FuF′

udu −
∫ 1

0
Fu(dBu)

′
∫ 1

0
(dBu)F′

u

}
(10)

Then, for T → ∞,

LR{Hz(r) | Hz(p)} = −T
p

∑
j=r+1

log(1 − λ̂j)
D→

p−s

∑
j=r−s+1

ρj. (11)

In the standard non-deficient situation where r = s the result reduces to the result of
Johansen (1995, Theorem 6.1). The rank deficient case was also discussed by Johansen (1995, p. 158)
and Nielsen (2004, Theorem 6.1).

Table 1 reports the asymptotic distribution of the rank test reported in Theorem 1. The simulation
were done using Ox (Doornik 2007). The simulation design follows that of Johansen (1995, Section 15).
That is, the stochastic integrals in (10) were descretized with T = 1000 and zero initial observations
with one million repetitions. The table reports simulated quantiles and moments for r − s = 0, 1, 2
and p − r = 1, 2, 3, 4. However, the case of p − r = 1 and r − s = 0 are analytic values from
Nielsen (1997) and where the quantiles were provided by Karim Abadir using his results in
Abadir (1995). Bernstein (2014) reports values for higher dimensions. The 85% quantile has not
been computed analytically in this case.

Table 1. Quantiles, mean, and variance of LR{Hz(r)|Hz(p)}, where the data generating process has
rank s = rank Π ≤ r.

r − s p − r 50% 80% 85% 90% 95% 97.5% 99% Mean Var

0 1 0.60 1.88 — 2.98 4.13 5.32 6.94 1.14 2.22
2 5.48 8.48 9.31 10.44 12.30 14.07 16.34 6.09 10.61
3 14.39 18.94 20.13 21.70 24.22 26.54 29.37 15.02 25.13
4 27.29 33.35 34.88 36.91 40.04 42.93 46.45 27.93 45.66

1 1 0.36 1.13 1.38 1.74 2.35 2.98 3.81 0.67 0.70
2 4.27 6.25 6.78 7.50 8.65 9.76 11.14 4.61 4.66
3 11.92 15.20 16.04 17.14 18.88 20.50 22.48 12.31 13.22
4 23.47 28.09 29.25 30.76 33.10 35.21 37.83 23.89 26.96

2 1 0.30 0.97 1.18 1.48 1.98 2.47 3.11 0.56 0.48
2 3.93 5.57 6.01 6.59 7.51 8.38 9.46 4.18 3.24
3 11.04 13.82 14.53 15.46 16.91 18.24 19.87 11.34 9.63
4 21.84 25.83 26.82 28.11 30.09 31.91 34.13 22.18 20.21

The first panel of Table 1 reports the distribution for the standard case where s = r. This corresponds
to Table 15.1 of Johansen (1995). The second and third panel of Table 1 report the distribution
for the rank deficient case where s = r − 1 so r − s = 1 and where s = r − 2 so r − s = 2.
The first entry in panel 2 for s = r − 1 and p − r = 1, so r − s = 1, corresponds to Table 6 of
Nielsen (2004). It is seen that as the rank becomes more deficient the distribution shifts to the left. It should
be noted that if the rank is non deficient, but the I(1) condition is not satisfied then the distribution would
tend to shift to the right, see Nielsen (2004) for a discussion. The simulations reported in Table 8 of
that paper indicates that the distribution is between these extremes if the rank is deficient and the I(1)
condition fails.

The rank test statistic in (7) has been analyzed analytically for the canonical correlation problem
in cross-sectional models in Nielsen (1999, 2001) This test also corresponds to the test for relevance in
the instrument variable problem. In that case, analytic expressions are available when p = 2, r = 1
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and s = 0, 1. When s = 1 we have a χ2-distribution with mean 1 and variance 2. When s = 0 the
mean is 0.429 and the variance is 0.575 − (0.429)2 = 0.391, see Nielsen (1999). Thus, the impact of rank
deficiency is similar to what is seen in Table 1 for cointegration rank testing.

2.5. Asymptotic Theory for the Test on the Cointegrating Vectors

In the analysis of the test for known cointegrating vectors, we focus on the situation where the
data generating process has rank s = 0. In this situation the asymptotic distribution is relatively
simple to describe, because it does not depend on the value of the hypothesized cointegrating vectors b.
This is adequate for a discussion of aspects of situations considered in Khalaf and Urga (2014). If the
rank is non-zero but deficient so 0 < s < r, then the data generating process will have cointegrating
vectors β0 of dimension p × s and the asymptotic theory will depend on β0 and b. In practice, it is rare
to test for simple hypotheses when there is more than one hypothesized cointegrating vector, so we do
not pursue this complication.

The analysis of the test for known cointegrating vectors is somewhat different from the analysis
in Johansen (1995). His analysis is aimed at the situation where different restrictions are imposed
on the cointegrating vectors. The argument then involves an intriguing consistency proof for the
estimated cointegrating vectors. However, when testing the hypothesis of known cointegrating vectors
the likelihood is maximized by the least squares method and the consistency argument is not needed.
The asymptotic theory can then be described by the following result.

Theorem 2. Consider the hypothesis Hz,β(r) : Π = αb′, where α, b have dimension p × r and where α is
unknown and b is known with full column rank. Suppose Hz(0) is satisfied, so that α = 0 and s = 0, and that
the I(1) condition is satisfied with s = 0. Let Bu be a p-dimensional standard Brownian motion on [0, 1] with
components B1,u and B2,u of dimension r and p − r, respectively. Then, for T → ∞,

LR{Hz,β(r) | Hz(p)} D→ tr{
∫ 1

0
dBuB′

u(
∫ 1

0
BuB′

udu)−1
∫ 1

0
Bu(dBu)

′

−
∫ 1

0
dBuB′

1,u(
∫ 1

0
B1,uB′

1,udu)−1
∫ 1

0
B1,u(dBu)

′}. (12)

The convergence of the test statistic LR{Hz,β(r) | Hz(p)} holds jointly with the convergence for the rank
test statistic LR{Hz(r) | Hz(p)}, for s = 0, in Theorem 1. Thus, when s = 0 the formula (9) implies that the
limit distribution of the test statistic for known β within the model with rank of at most r can be found as the
difference of the two limiting variables.

Table 2 reports the asymptotic distribution of the test for known cointegrating vector in the
model where the rank is at most r. When s = r the asymptotic distribution is χ2 with r(p − r)
degrees of freedom, see Johansen (1995, Theorem 7.2.1). When s = 0 the asymptotic distribution
reported in Theorem 2 applies. The simulation design is as before. It is seen that in the rank deficient
case the distribution is shifted to the right. This matches the finite sample simulations reported by
Johansen (2000, Table 2).
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Table 2. Quantiles, mean, and variance of LR{Hz,β(r)|Hz(r)}, where the data generating process has
rank s = rank Π ≤ r.

p r s 50% 80% 85% 90% 95% 97.5% 99% Mean Var

2 1 1 0.45 1.64 2.07 2.71 3.84 5.02 6.63 1 2
0 2.62 5.44 6.22 7.30 9.05 10.75 12.96 3.31 8.71

3 2 2 1.39 3.22 3.79 4.61 5.99 7.38 9.21 2 4
0 5.80 9.42 10.40 11.71 13.82 15.77 18.27 6.42 15.53

3 1 1 1.39 3.22 3.79 4.61 5.99 7.38 9.21 2 4
0 6.79 10.58 11.57 12.89 15.02 17.00 19.49 7.33 17.52

Table 3 reports the simulated asymptotic distribution of the test for known cointegrating vector in
the model where the rank is unrestricted. The distribution is shifted to the right in the rank deficient
case. Note, that the table reports the distribution of the convolution of the statistics simulated in
Tables 1 and 2, see (9). Thus, up to a simulation error the expectations reported in Tables 1 and 2 add
up to the expectation reported in Table 3. In the full rank case r = s the statistics in Tables 1 and 2 are
independent, as proved below, so also the variances are additive.

Theorem 3. Consider the hypothesis H◦
z,β(r). Suppose H◦

z (r) = H◦
z (r)/H◦

z (r − 1) is satisfied and that the I(1)
condition holds with s = r. Then the rank test statistic LR{H◦

z (r)|H◦
z (p)} and the statistic LR{H◦

z,β(r)|H◦
z (r)}

for testing a simple hypothesis on the cointegrating vector are asymptotically independent.
The asymptotic distribution of the rank statistic LR{H◦

z (r)|H◦
z (p)} is given in Theorem 1, while the

statistic for the cointegrating vector LR{H◦
z,β(r)|H◦

z (r)} is asymptotically χ2{r(p − r)}.

Table 3. Quantiles, mean, and variance of LR{Hz,β(r)|Hz(p)}, where the data generating process has
rank s = rank Π ≤ r.

p r s 50% 80% 85% 90% 95% 97.5% 99% Mean Var

2 1 1 1.54 3.43 4.01 4.83 6.22 7.62 9.47 2.15 4.23
0 3.35 6.11 6.89 7.95 9.70 11.38 13.57 3.98 8.82

3 2 2 2.52 4.85 5.53 6.48 8.07 9.60 11.62 3.15 6.26
0 6.36 9.96 10.92 12.22 14.32 16.29 18.79 6.98 15.35

3 1 1 7.50 11.03 11.98 13.27 15.34 17.30 19.81 8.13 14.73
0 11.33 15.73 16.88 18.41 20.83 23.09 25.91 11.96 23.31

2.6. The Case of Nearly Deficient Rank

With the above results we have two extremes. First, the full rank case where standard results
apply, that is Johansen’s Dickey-Fuller type distribution for rank testing and χ2 inferences for testing
constraints on the cointegrating vectors. Second, the rank deficient case where new Dickey-Fuller
type distributions apply both for rank testing and for testing constraints on the cointegrating
vectors. In between these extremes we have the nearly rank deficient case corresponding to weak
identification in the instrumental variable literature. These nearly deficient cases can be analyzed using
local-to-unity parametrization. However, a full theory is notationally complicated as there will be many
nuisance parameters. We therefore consider a simple special case inspired by the power analysis of
Johansen (1995, Section 14) and distribution analysis of Nielsen (2004).

The main finding is that the appropriate local rate is T−1 as in power analysis for unit tests and
cointegration rank tests as opposed to T−1/2 for stationary models as in Andrews and Cheng (2012).
Consider a bivariate, first order, local-to-unity vector autoregressive model where

ΔXt =
1
T

(
b1 b2

0 0

)
Xt−1 + εt for t = 1, . . . , T, (13)
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where the innovations εt are independent normal N2(0, I2)-distributed where b1 	= 0.
We now have the following variant of the result for the rank test in Theorem 1.

Theorem 4 (Nielsen 2004, Theorem 6.2). Consider the data generating process (13). Let Bu be a bivariate
standard Brownian motion on [0, 1] and let Ju be the bivariate Ornstein-Uhlenbeck process given by

Ju =

(
b1 b2

0 0

)∫ u

0
Jsds + Bu.

Let 1 ≤ ρ1 ≤ ρ2 ≤ 0 be the eigenvalues of the eigenvalue problem

0 = det
{

ρ
∫ 1

0
Ju J′udu −

∫ 1

0
Ju(dBu)

′
∫ 1

0
(dBu)J′u

}
Then, for T → ∞,

LR{Hz(1) | Hz(2)} D→ ρ2.

The limit distribution is tabulated in Nielsen (2004, Table 8).

We now consider the test for known cointegrating vector, b = (b1, b2)
′. The result in Theorem 2 is

modified as follows.

Theorem 5. Consider the data generating process (13). Let Bu, Ju be defined as in Theorem 4 and let J1,u =

b′ Ju. Then

LR{Hz,β(1) | Hz(2)} D→ tr {
∫ 1

0
dBu J′u(

∫ 1

0
Ju J′udu)−1

∫ 1

0
Ju(dBu)

′

∫ 1

0
dBu J′1,u(

∫ 1

0
J1,u J′1,udu)−1

∫ 1

0
J1,u(dBu)

′}.

3. The Model with a Constant

We now consider the model augmented with a constant. In the cointegrated model the constant
is restricted to the cointegrating space. Thus, the cointegrating vectors consist of vectors relating
the dynamic variable extended by a further coordinate for the constant. There are now two rank
conditions; one related to the dynamic part of these extended cointegrating vectors and one relating
to the deterministic part of the cointegrating vectors. The condition to the cointegration rank in the
standard theory can therefore fail in two ways.

3.1. Model and Hypotheses

The unrestricted vector autoregressive model is

ΔXt = ΠXt−1 + μ +
k−1

∑
i=1

ΓiΔXt−i + εt for t = 1, . . . , T, (14)

where the innovations εt are independent normal Np(0, Ω)-distributed. The parameters are the
p-dimensional square matrices Π, Γi, Ω and the p-vector μ. They vary freely so that Ω is symmetric,
positive definite.

For the model with a constant there are two types of cointegration rank hypotheses:

Hc�(r) : rank Π ≤ r, (15)

Hc(r) : rank (Π, μ) ≤ r. (16)
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Their interpretations follow from the Granger-Johansen representation which is reviewed in
Section 3.2 below. In short, if there are no rank deficiencies the first hypothesis Hc� gives cointegrating
relations with a constant level and common trends with a linear trend. The second hypothesis Hc has a
constant level both for the cointegrating relations and the common trends. The hypotheses are nested
so that

Hc(0) ⊂ Hc�(0) ⊂ · · · ⊂ Hc�(r − 1) ⊂ Hc(r) ⊂ Hc�(r) ⊂ · · · ⊂ Hc(p) = Hc�(p). (17)

This nesting structure is considerably more complicated than the structure (3) for the model without
deterministic terms. A practical investigation may start in three different ways. First, the model (14)
is taken as the starting point. Both types of hypotheses come into play and the rank is determined as
outlined in Johansen (1995, Section 12). Secondly, if visual inspection of the data indicates that linear
trends are not present the hypotheses Hc� may be ignored. Thirdly, if visual inspection of the data indicates
that a linear trend could be present, the model (14) should be augmented with a linear trend term and we
move outside the present framework. Nielsen and Rahbek (2000) discuss the latter two possibilities. Here,
we are concerned with the first two possibilities.

The rank hypotheses can equivalently be formulated as

Hc�(r) : Π = αβ′, (18)

Hc(r) : (Π, μ) = α(β′, β′
c). (19)

The hypotheses of known cointegrating vectors are therefore

Hc�,β(r) : Π = αb′, (20)

Hc,β(r) : (Π, μ) = α(b′, b′
c). (21)

for a known (p × r)-matrix b with full column rank and, in the second case, also a known (1 × r)-matrix
bc so that b∗ = (b′, b′

c)
′ has full column rank.

3.2. Granger-Johansen Representation

We give a Granger-Johansen representation for each of the two reduced rank hypotheses.
Both results follow from Theorem 4.2 and Exercise 4.5 of Johansen (1995). First, consider the hypothesis
Hc�(r). Suppose that the sub-hypothesis Hc(r) does not hold and that the I(1) condition holds with s = r.
Thus, the (p × r)-matrices α, β have full column rank but α′

⊥μ 	= 0, so that the matrix Π∗ = (Π, μ) has
rank r + 1. Then, the Granger-Johansen representation is

Xt = C
t

∑
i=1

εi + St + τc + τ�t, (22)

where the impact matrix C has rank p − r and satisfies β′C = 0 and Cα = 0 while τ� = Cμ 	= 0. As a
consequence, the process has a linear trend, but the cointegrating relations β′Xt do not have a linear
trend, since β′C = 0.

Secondly, consider the hypothesis Hc(r). Suppose that the sub-hypothesis Hc�(r − 1) does not
hold and that the I(1) condition holds with s = r. Thus, the (p × r)-matrices α, β have full column
rank, and the {(p + 1)× r}-matrix β∗ = (β, β′

c)
′ has full column rank. Then, the Granger-Johansen

representation (22) holds with τ� = 0, while τc has the property that β′τc = −β′
c. In other words,

the process Xt behaves like a random walk where β′Xt has an invariant distribution with a non-zero
mean, while β′Xt + β′

c has a zero mean invariant distribution.
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3.3. Test Statistics

The test statistics are variations of those for the model without deterministic terms. The differences
relate to the formation of the residuals R0,t and R1,t

First, consider the reduced rank hypothesis Hc�(r) and the corresponding hypothesis Hc�,β(r) of
known cointegrating vectors. The residuals R0,t and R1,t are formed by regressing the differences ΔXt

and the lagged levels Xt−1 on an intercept and the lagged differences ΔXt−i, i = 1, . . . , k − 1. In the
second step, compute the canonical correlations 1 ≥ λ̂1 ≥ · · · ≥ λ̂p ≥ 0 of R0,t and R1,t. The rank test
statistic LR{Hc�(r)|Hc�(p)} then has the form (7). The test statistic for known cointegrating vectors
LR{Hc�,β(r)|Hc�(p)} has the form (8), using the same residuals R0,t and R1,t, and the hypothesized
cointegrating vectors b.

Secondly, consider the reduced rank hypothesis Hc(r) and the corresponding hypothesis Hc,β(r)
of known cointegrating vectors. The residuals R0,t and R1,t are formed by regressing the differences
ΔXt and the vector formed by stacking the lagged levels and an intercept X∗

t−1 = (X′
t−1, 1)′ on the

lagged differences ΔXt−i, i = 1, . . . , k − 1. In the second step, compute the canonical correlation of
these R0,t and R1,t. The rank test statistic LR{Hc(r)|Hc(p)} then has the form (7). The test statistic for
known cointegrating vectors LR{Hc,β(r)|Hc(p)} has the form (8), using the same residuals R0,t and
R1,t, and the hypothesized cointegrating vectors b∗ = (b′, b′

c)
′.

3.4. Asymptotic Theory for the Rank Tests

There are now four situations to consider. Indeed, the nesting structure in (17) shows that
each of the two rank hypotheses Hc�(r) and Hc(r) can be rank deficient in two ways when either of
H◦

c�(s) = Hc�(s)/Hc(s) or H◦
c (s) = Hc(s)/Hc�(s − 1) holds. In three cases the limiting distribution is of

the same form as in Theorem 1, albeit with a different limiting random function Fu. In the fourth case
the limiting distribution has nuisance parameters. The nuisance parameter case arises when testing
Hc(r) with a data generating process satisfying H◦

c�(s) = Hc�(s)/Hc(s). This is the case that can often
be ruled out through visual inspection of the data as mentioned in Section 3.1.

We start with the test for the hypothesis Hc�(r) in the rank deficient case where
H◦

c�(s) = Hc�(s)/Hc(s) holds for s < r. Johansen (1995) discusses the possibility H◦
c (r). The asymptotic

theory is as follows.

Theorem 6. Consider the rank hypothesis Hc�(r) : rank Π ≤ r. Suppose H◦
c�(s) = Hc�(s)\Hc(s) holds for

some s ≤ r, so that rank Π = s and rank (Π, μ) = s + 1 and that the I(1) condition is satisfied for that s.
Let Bu be a (p − s)-dimensional standard Brownian motion on [0, 1]. Define a (p − s)-dimensional vector Fu

with coordinates

Fi,u =

{
Bi,u − Bi for i = 1, . . . , p − s − 1
u − 1/2 for i = p − s

Then LR{Hc�(r) | Hc�(p)} converges as in (11) using the present F.

Table 4 reports the simulated asymptotic distribution of the rank test reported in Theorem 6.
The first panel gives the standard case where s = r and corresponds to Johansen (1995, Table 15.3).
For p − r = 1 the asymptotic distribution is actually χ2 and the numbers are the standard numerically
calculated ones rather than simulated ones. The second and the third panel report the distribution for
the rank deficient case H◦

c�(s) where Hc�(s) holds, but Hc(s) fails. The distribution is shifted to the left
when r − s > 0 as in Table 1.
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Table 4. Quantiles, mean, and variance of LR{Hc�(r)|Hc�(p)}, where the data generating process
satisfies H◦

c�(s) = Hc�(s)\Hc(s) with s ≤ r.

r − s p − r 50% 80% 85% 90% 95% 97.5% 99% Mean Var

0 1 0.45 1.64 2.07 2.71 3.84 5.02 6.63 1 2
2 7.61 11.09 12.04 13.30 15.35 17.27 19.74 8.24 14.29
3 18.66 23.72 25.03 26.76 29.47 31.95 34.99 19.29 31.38
4 33.52 40.07 41.71 43.86 47.22 50.21 53.94 34.15 53.86

1 1 0.38 1.33 1.66 2.13 2.93 3.72 4.74 0.79 1.08
2 6.01 8.34 8.96 9.78 11.10 12.34 13.87 6.37 6.53
3 15.49 19.14 20.08 21.30 23.21 24.99 27.14 15.88 16.73
4 28.82 33.82 35.07 36.70 39.20 41.50 44.27 29.24 31.96

2 1 0.34 1.19 1.47 1.87 2.55 3.19 4.00 0.69 0.79
2 5.43 7.34 7.84 8.51 9.57 10.56 11.81 5.70 4.46
3 14.17 17.26 18.04 19.05 20.64 22.09 23.86 14.48 12.00
4 26.62 30.92 31.98 33.38 35.52 37.46 39.79 26.95 23.82

The second case is the test for the same hypothesis Hc�(r) in the rank deficient case where
H◦

c (s) = Hc(s)/Hc�(s − 1) holds for s ≤ r.

Theorem 7. Consider the rank hypothesis Hc�(r) : rank Π ≤ r. Suppose H◦
c (s) = Hc(s)\Hc�(s − 1) holds

for some s ≤ r, so that rank Π = rank Π∗ = s and that the I(1) condition is satisfied for that s. Let Bu be
a (p − s)-dimensional standard Brownian motion on [0, 1]. Define a (p − s)-dimensional vector Fu as the
de-meaned Brownian motion

Fu = Bu − B = Bu −
∫ 1

0
Bvdv.

Then LR{Hc�(r) | Hc�(p)} converges as in (11) using the present F.

Table 5 reports the simulated asymptotic distribution of the rank test reported in Theorem 7.
The first panel where s = r and corresponds to Table A.2 of Johansen and Juselius (1990). It is shifted to
the right when compared to the first panel of Table 4. The second and the third panel of Table 5 report
the distribution for the rank deficient case H◦

c (s) for s < r. In those case the distribution is shifted to
the left relative to the first panel as in Tables 1 and 4.

Table 5. Quantiles, mean, and variance of LR{Hc�(r)|Hc�(p)}, where the data generating process
satisfies H◦

c (s) = Hc(s)\Hc�(s − 1) with s ≤ r.

r − s p − r 50% 80% 85% 90% 95% 97.5% 99% Mean Var

0 1 2.45 4.90 5.60 6.56 8.15 9.72 11.71 3.04 6.95
2 9.39 13.36 14.41 15.80 18.03 20.14 22.80 10.03 18.66
3 20.30 25.70 27.09 28.89 31.75 34.37 37.61 20.95 35.73
4 35.19 42.01 43.71 45.94 49.38 52.52 56.31 35.84 58.26

1 1 1.51 3.12 3.55 4.12 5.04 5.92 7.03 1.87 2.72
2 7.21 9.95 10.66 11.61 13.09 14.47 16.21 7.60 8.95
3 16.78 20.75 21.75 23.08 25.13 26.98 29.32 17.20 19.57
4 30.25 35.49 36.81 38.51 41.15 43.56 46.46 30.69 35.22

2 1 1.16 2.54 2.89 3.36 4.09 4.76 5.62 1.48 1.81
2 6.38 8.66 9.25 10.03 11.26 12.40 13.80 6.69 6.23
3 15.27 18.64 19.49 20.61 22.35 23.94 25.88 15.61 14.27
4 28.00 32.45 33.58 35.05 37.32 39.37 41.85 28.26 26.55

In the third case we consider the test for the hypothesis Hc(r) in the rank deficient case where
H◦

c (s) = Hc(s)/Hc�(s − 1) holds for s < r.
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Theorem 8. Consider the rank hypothesis Hc(r) : rank Π ≤ r. Suppose H◦
c (s) = Hc(s)\Hc�(s − 1) holds

for some s ≤ r so that rank Π = rank (Π, μ) = s and that the I(1) condition is satisfied for that s. Let Bu be a
(p − s)-dimensional standard Brownian motion on [0, 1]. Define a (p − s + 1)-dimensional vector Fu given as

Fu =

(
Bu

1

)
. (23)

Then LR{Hc(r) | Hc(p)} converges as in (11) using the present F.

Table 6 reports the simulated asymptotic distribution of the rank test reported in Theorem 8.
The first panel gives the standard case where s = r and corresponds to Johansen (1995, Table 15.2).
The second and the third panel report the distribution for the rank deficient case H◦

c (s) for s < r.
Once again, the distribution shifts to the left in the rank deficient case.

Table 6. Quantiles, mean, and variance of LR{Hc(r)|Hc(p)}, where the data generating process satisfies
H◦

c (s) = Hc(s)\Hc�(s − 1) with s ≤ r.

r − s p − r 50% 80% 85% 90% 95% 97.5% 99% Mean Var

0 1 3.44 5.86 6.56 7.52 9.13 10.69 12.74 4.04 6.89
2 11.40 15.43 16.49 17.91 20.18 22.33 25.03 12.02 19.50
3 23.31 28.86 30.28 32.15 35.06 37.74 41.04 23.95 38.13
4 39.20 46.23 47.99 50.28 53.82 57.05 61.01 39.84 62.48

1 1 2.74 4.27 4.70 5.27 6.21 7.10 8.25 3.05 2.75
2 9.47 12.30 13.04 14.01 15.54 16.96 18.74 9.84 9.81
3 20.04 24.19 25.25 26.63 28.76 30.71 33.13 20.45 21.78
4 34.51 40.03 41.40 43.17 45.93 48.43 51.41 34.95 39.09

2 1 2.62 3.89 4.22 4.68 5.41 6.10 6.96 2.84 1.87
2 8.86 11.26 11.87 12.67 13.93 15.10 16.54 9.14 7.06
3 18.77 22.37 23.27 24.43 26.23 27.88 29.91 19.09 16.34
4 32.40 37.23 38.43 39.98 42.35 44.52 47.08 32.76 30.09

The final case is the test for the hypothesis Hc(r) in the rank deficient case where H◦
c�(s) =

Hc�(s − 1)/Hc(s − 1) for s < r. In this case the limiting distribution has nuisance parameters. We do
not give the result here, since it is complicated to state and it does not seem particularly useful in
practice. Indeed in practical work, this type of data generating process can often be ruled through
visual data inspection as discussed in Section 3.1. Furthermore, it would be hard to deal with the
nuisance parameters in applications.

It is worth noting that the proof in this final case would be somewhat different from the proof
of Theorems 1, 6–8. They are all proved by modifying the argument of Johansen (1995, Sections 10
and 11). However, in the final case, a cointegration vector with random coefficients arise. Therefore,
the analysis is best carried out in terms of the dual eigenvalue problem 0 = det(λS00 − S01S−1

11 S10) as
opposed to the standard eigenvalue problem 0 = det(λS11 − S10S−1

00 S01).

3.5. Asymptotic Theory for the Test on the Cointegrating Vectors

We now consider the tests on the cointegrating vectors in the rank deficient case when a constant
is present in the model. There is now a wide range of possible limit distributions. Only a few of these
will be discussed.

The unrestricted model is Hc(r) where the constant is restricted to the cointegrating space. Thus,
in the full rank case the Granger-Johansen representation (22) has a zero linear slope τ� = 0 and level
satisfying β′τc = −βc.

Consider now the hypothesis of a known cointegrating vector, (21). It is now important whether
the hypothesized level for the cointegrating vector, bc is zero or not. If bc 	= 0 then a nuisance parameter
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depending on b, bc would appear in the limit distributions in the rank deficient case. If bc = 0 then the
limit distributions are simpler. Fortunately, the zero level case is the most natural hypothesis in most
applications. The asymptotic theory for the test statistic is described in the following theorems.

Theorem 9. Consider the hypothesis Hc,β(r) : (Π, μ) = αb∗′ where b∗ = (b′, b′
c)

′. Here, α, b have dimension
p × r while b′

c is an r-vector, where α is unknown and b∗ is known and b has full column rank. Suppose
Hz(0) is satisfied so that Π = 0, μ = 0, and s = 0 and that the I(1) condition is satisfied. Let B be a
p-dimensional standard Brownian motion on [0, 1], where the first r components are denoted B1. Define the
(p − s + 1)-dimensional process Fu = (B′

u, 1) as in (23). Then it holds, for T → ∞, that

LR{Hz,β(r) | Hz(p)} D→ tr{
∫ 1

0
dBuF′

u(
∫ 1

0
FuF′

udu)−1
∫ 1

0
Fu(dBu)

′

−
∫ 1

0
dBuB′

1,u(
∫ 1

0
B1,uB′

1,udu)−1
∫ 1

0
B1,u(dBu)

′}. (24)

The convergence of the test statistic LR{Hc,β(r) | Hc(p)} holds jointly with the convergence for the rank
test statistic LR{Hc(r) | Hc(p)}, for s = 0, in Theorem 8. Thus, when s = 0 a formula of the type (9) implies
that the limit distribution of the test statistic for known β within the model with rank of at most r satisfies can be
found as the difference of the two limiting variables.

Table 7 reports the asymptotic distribution of the test for known cointegrating vector in the model
where the rank is at most r. When s = r, the asymptotic distribution is χ2 with r(p + 1 − r) degrees of
freedom, see Johansen and Juselius (1990, p. 193–194), Johansen et al. (2000, Lemma A.5). When s = 0
the distribution is simulated according to Theorem 9. It is shifted to the right relative to the case s = r.

Table 8 reports the simulated asymptotic distribution of the test for known cointegrating vector in
the model where the rank is unrestricted. The distribution is shifted to the right in the rank deficient
case. As in the zero level case, the expectations reported in Tables 6 and 7 add up to the expectation
reported in Table 8. In the full rank case s = r the statistics in Tables 6 and 7 are independent, as proved
below, so the variances are additive.

Theorem 10. Consider the hypothesis H◦
c,β(r). Suppose H◦

c (r) = H◦
c (r)/H◦

c�(r − 1) is satisfied and that
the I(1) condition holds with s = r. Then the rank test statistic LR{H◦

c (r)|H◦
c (p)} and the statistic

LR{H◦
c,β(r)|H◦

c (r)} for testing a simple hypothesis on the cointegrating vector are asymptotically independent.
The asymptotic distribution of the rank statistic LR{H◦

c (r)|H◦
c (p)} is given in Theorem 1, while the statistic for

the cointegrating vector LR{H◦
c,β(r)|H◦

c (r)} is asymptotically χ2{r(p + 1 − r)}.

Table 7. Quantiles, mean, and variance of LR{Hc,β(r)|Hc(r)}, where the data generating process
satisfies H◦

c,β(s).

p r s 50% 80% 85% 90% 95% 97.5% 99% Mean Var

2 1 1 1.39 3.22 3.79 4.61 5.99 7.38 9.21 2 4
0 6.34 9.84 10.78 12.02 14.05 15.96 18.41 6.87 15.09

3 2 2 3.36 5.99 6.75 7.78 9.49 11.14 13.28 4 8
0 12.45 17.48 18.79 20.53 23.26 25.76 28.91 13.12 30.71

3 1 1 2.37 4.64 5.32 6.25 7.82 9.35 11.35 3 6
0 10.60 14.82 15.92 17.36 19.66 21.79 24.48 11.07 22.93
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Table 8. Quantiles, mean, and variance of LR{Hc,β(r)|Hc(p)}, where the data generating process
satisfies H◦

c,β(s).

p r s 50% 80% 85% 90% 95% 97.5% 99% Mean Var

2 1 1 5.44 8.50 9.34 10.50 12.38 14.17 16.50 6.07 10.98
0 9.32 13.37 14.44 15.88 18.18 20.31 22.98 9.94 19.72

3 2 2 7.44 11.02 11.99 13.29 15.37 17.37 19.88 8.09 15.09
0 15.37 20.48 21.80 23.54 26.26 28.78 31.88 15.99 32.22

3 1 1 14.46 19.08 20.28 21.88 24.39 26.74 29.64 15.10 25.77
0 20.35 25.89 27.31 29.15 32.04 34.72 38.02 20.96 38.07

4. Applications of Results

We discuss how our results apply to the finite sample theory and to identification robust inference.
An application to US treasury yields is given.

4.1. Finite Sample Theory

The finite sample distribution of cointegration rank tests have been studied in various ways. When
there are no nuisance parameters, the asymptotic distributions generally give good approximations.
An example is the test for a unit root in a first order autoregression, where the finite sample distribution
and the asymptotic distribution are nearly indistinguishable for T = 8 observations, see Nielsen (1997).
A Bartlett correction improves the asymptotic distribution further. Once there are nuisance parameters
the situation is different. Under the rank hypothesis the asymptotic distribution differs if there are
additional unit roots. This arises either with rank deficiency like here where the distributions tend to be
shifted to the left and when there are double roots as in I(2) systems where the distributions are shifted
to the right. Nielsen (2004) analyzed this through simulation and suggested to apply local-to-unity
approximation that would average between the different asymptotic distributions. A similar idea
was implemented analytically for canonical correlation models in Nielsen (1999). In a follow-up
paper, Nielsen (2001) analyzed the effects of plugging parameter estimates into such corrections.
Johansen (2002) suggested a Bartlett correction for such models. This works quite well when the
nuisance parameters are such that they are far from giving additional unit roots. The issue is that the
Bartlett correction asymptotes to infinity when there are additional unit roots. More recently, bootstrap
methods have been explored by Swensen (2004) and by Cavaliere et al. (2012).

Johansen (2000) derives a Bartlett-type correction for the tests on the cointegrating relations.
In Table 2 he considers the finite sample properties of a test comparing the test statistic
LR{Hz,β(1)|LR{Hz(1)} with the asymptotic χ2-approximation. Null rejection frequencies are
simulated for dimensions p = 2, 5, a variety of parameter values, and a finite sample size T. In all the
reported simulations the data generating process has rank of unity. The table shows that null rejection
frequency can be very much larger for a nominal 5% test when the rank is nearly deficient.

Theorem 2 sheds some light on the behaviour of the test as the rank approaches deficiency.
The Theorem shows that the test statistic converges for all deficient ranks. Table 2 indicates that the
distribution shifts to the right in the rank deficient case. Thus, we should expect that null rejection
frequency increases as the rank approaches deficiency, but it should be bounded away from unity.

4.2. Identification Robust Inference

Khalaf and Urga (2014) were concerned with tests on cointegation vectors in situations where
the cointegration rank is nearly deficient. Their results can be developed a little further using the
present results.
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The notation in Khalaf and Urga (2014) differs slightly from the present notation. The hypothesis
of known cointegration vectors is stated as β0 = (Ir, b′

0)
′ for some known b0, corresponding to the

present hypotheses Hz,β(r) and Hc�,β(r). The test statistics are

LR(b0) = LR{Hm,β(r)|Hm(p)}, (25)

LRC(b0) = LR{Hm,β(r)|Hm(r)}, (26)

for m = z, c�. Moreover they consider the hypothesis Hm,Π(r), say, of a known impact matrix Π of
rank r. This is tested through the statistic

LR∗ = LR{Hm,Π(r)|Hm(p)}. (27)

When the rank is not deficient the test statistic LRC(b0) is asymptotically χ2
r(p−r), see Johansen

(1995, Section 7). The test statistic LR(b0) has a Dickey-Fuller type distribution as derived in
Theorem 2 for the case without deterministic terms, contradicting the χ2 asymptotics suggested by
Khalaf and Urga (2014, Section 4). Table 2 indicates that this distribution is close to, but different from,
a χ2

p(p−r)-distribution when p = 2, 3 and p − r = 1. When p = 3 and r = 1, the limiting distribution

is further from a χ2
p(p−r)-distribution. Likewise, the statistic LR∗ converges to a Dickey-Fuller-type

distribution. This can be proved through a modification of the proof of Theorem 2.
Khalaf and Urga’s Theorem 1 is concerned with bounding the distribution of the likelihood ratio

statistic for the hypothesis Π = ab′, where a, b are known p × r-matrices so that b has rank r, against
the alternative where Π is unrestricted. The idea of their Theorem is to come up with a bound to the
critical value when a, b may have deficient rank s ≤ r. Unfortunately, their theorem evolves around
the incorrect χ2 distribution although unit root testing is implicitly involved. We therefore reformulate
the result in terms of the limiting distributions derived herein.

We consider the test statistic LR(b0) = LR{Hz,β(1)|Hz(1)} when the rank of Π is nearly deficient.
Suppose the rank is nearly deficient in the sense that Π ≈ T−1M for some matrix M along the lines
of the theory in Section 2.6. Then, intuitively, the limiting distribution will be a combination of those
arising when the true rank is 0 and when it is 1. The asymptotic theory developed here gives the
relevant bounds. In the case of the zero level model the Theorems 1 and 2 imply the following
pointwise result.

Theorem 11. Let θ denote the parameters of the model (1). Consider the parameter space Θz where the
hypothesis Hz,β(1) : Π = αb′ holds. Here α, b are both of dimension p × 1. Here α is unknown, while b is
known and has full column rank. Suppose the data generating process satisfies the I(1) condition with s ≤ 1.
Let qz,s be the asymptotic (1 − ψ) quantile of LR{Hz,β(1)|Hz(1)} when the data generating process satisfies
H◦

z,β(s) for s = 0, 1. Let qz,∗ = maxs=0,1 qz,s. Then it holds for all θ ∈ Θz that

lim
T→∞

P[LR{Hz,β(1)|Hz(1)} ≥ qz,∗] ≤ ψ. (28)

The simulated values in Table 2 show that for ψ = 5% then

qz,∗ = max(qz,0, qz,1) =

{
max(9.05, 3.84) = 9.05 for p = 2,
max(13.82, 5.99) = 13.82 for p = 3.

(29)

The interpretation is as follows. Suppose the hypothesis Hz(1) has not been rejected, but it is
unclear whether the rank could be nearly deficient. Then the hypothesis of a known β0 is rejected if
the statistic LR{Hz,β(1)|Hz(1)} is larger than qz,∗.
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The bound for qz,∗ seems very extreme. Khalaf and Urga therefore suggest to use the alternative
statistic LR{Hz,β(1)|Hz(p)}. Theorem 11 could be modified to cover this statistic. The simulations in
Table 3 indicate that we would then use bounds

q̃z,∗ = max(q̃z,0, q̃z,1) =

{
max(9.70, 6.22) = 9.70 for p = 2,
max(20.83, 15.34) = 20.83 for p = 3.

(30)

We can establish a similar result for the constant level model using Theorems 8 and 9. However,
it is necessary to exclude the possibility of a linear trends in the rank deficient model as this would
give a very complicated result.

Theorem 12. Let θ denote the parameters of the model (14). Consider the parameter space Θc where the
hypothesis Hc,β(1) : (Π, μ) = α(b′, b′

c) holds. Here α, b are both of dimension p × 1, while bc is a scalar.
Further b, bc are known and b 	= 0. Suppose the data generating process satisfies the I(1) condition with s = 0
or s = 1. Let qc,s be the asymptotic (1 − ψ) quantile of LR{Hc,β(1)|Hc(1)} when the data generating process
satisfies H◦

c,β(s) for s = 0, 1. Let qc,∗ = maxs=0,1 qc,s. Then it holds for all θ ∈ Θ1 that

lim
T→∞

P[LR{Hc,β(1)|Hc(1)} ≥ qc,∗] ≤ ψ. (31)

The simulated values in Table 7 show that for ψ = 5% then

qc,∗ = max(qz,0, qz,1) =

{
max(14.05, 5.99) = 14.05 for p = 2,
max(19.66, 7.82) = 19.66 for p = 3.

(32)

If the alternative is taken as Hc(p) instead of Hc(1) the bounds are modified as

q̃c,∗ = max(q̃c,0, q̃c,1) =

{
max(18.18, 12.38) = 18.18 for p = 2,
max(32.04, 24.39) = 32.04 for p = 3.

(33)

The bounds (32), (33) for the constant level model appear further apart than the corresponding
bounds (29), (30) for the zero level model. So in the constant level case there is perhaps less reason to
use the test against the unrestricted model.

4.3. Empirical Illustration

The identification robust inference can be illustrated using a series of monthly US treasury
zero-coupon yields over the period 1987:8 to 2000:12. The data are taken from Giese (2008) and runs
from the start of Alan Greenspan’s chairmanship of the Fed and finishes before the burst of the dotcom
bubble. Giese considers 5 maturities (1, 3, 18, 48, 120 months), but here we only consider 2 maturities
(12, 24 months). The empirical analysis uses OxMetrics, see Doornik and Hendry (2013).

Figure 1 shows the data in levels and differences along with the spread. The spread does not appear
to have much of a mean reverting behaviour. It is not crossing the long-run average for periods of up
to 4 years. This point towards a random walk behaviour which contradicts the expectations hypothesis
in line with Giese’s analysis. She finds two common trends among five maturities. The two common
trends can be interpreted as short-run and long-run forces driving the yield curve. The cointegrating
relations match an extended expectations hypothesis where spreads are not cointegrated but two
spreads cointegrate. This is sometimes called butterfly spreads and gives a more flexible match to
the yield curve. This is in line with earlier empirical work. Hall et al. (1992), among others, found
only one common trend when looking at short-term maturities, while Shea (1992); Zhang (1993) and
Carstensen (2003) found more than one common trend when including longer maturities.

240



Econometrics 2019, 7, 6

b12 b24 

1990 1995 2000

5.0

7.5

10.0 (a) zero coupon yields in levels

b12 b24 

Δb12 Δb24 

1990 1995 2000

-1

0

1 (b) zero coupon yields in differences

Δb12 Δb24 

s 

1990 1995 2000

0.0

0.5

1.0
(c) yield spread

s 

Figure 1. Zero coupon yields in (a) levels; (b) differences; and (c) spread.

A vector autoregression of the form (14) with an intercept, k = 4 lags as well as a dummy variable
for 1987:10 was fitted to the data. This has the form

ΔXt = ΠXt−1 + μ +
3

∑
i=1

ΓiΔXt−i + Φ1(t=1987:10) + εt for t = 1, . . . , T,

where Xt is the bivariate vector of the 12 and 24 month zero-coupon yields and periods t = 1 and
t = T correspond to 1987:8 and 2000:12 giving T = 161.

Table 9 reports specification test statistics with p-values in square brackets. The tests do not
provide evidence against the initial model. They are the autocorrelation test of Godfrey (1978)
the cumulant based normality test, see Doornik and Hansen (2008), and the ARCH test of Engle
(1982). For the validity of applying the autoreregressive and normality tests for non-stationarity
autoregressions, see Engler and Nielsen (2009), Kilian and Demiroglu (2000), and Nielsen (2006).

The dummy variable matches the policy intervention after the stock market crash on 19 October
1987. Empirically, the dummy variable can be justified in two ways. First, the plot of yield differences
in Figure 1b indicate a sharp drop in yields at that point. Secondly, the robustified least squares
algorithm analyzed in Johansen and Nielsen (2016) could be employed for each of the two equations
in the model. The algorithm uses a cut-off for outliers in the residuals that is controlled in terms of the
gauge, which is the frequency of falsely detected outliers that can be tolerated. The gauge is chosen
small in line with recommendations of Hendry and Doornik (2014, Section 7.6), see also Johansen and
Nielsen (2016). Thus, we choose a cut-off of 3.02 corresponding to a gauge of 0.25%. When running the
autoregressive distributed lag models without outliers, only 1987:10 has an absolute residual exceeding
the cut-off. Next, when re-running the model including a dummy for 1987:10, no further residuals
exceed the cut-off. This is a fixed point for the algorithm. The detection of outliers may have some
impact on specification tests, estimation, and inference. Johansen and Nielsen (2009, 2016) analyze the
impact on estimation when the data generating process has no outliers. They find that outlier detection
only gives a modest efficiency loss compared to standard least squares when the cut-off is as large
as chosen here. Berenguer-Rico and Nielsen (2017) find a considerable impact on the normality test
employed above. At present, there is no theory for these algorithms for data generating processes with
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outliers, albeit some results are available for cointegration analysis with known break date, including
the broken trend analysis of Johansen et al. (2000) and the structural change model of Hansen (2003).

Table 9. Specification tests for the unrestricted vector autoregression.

Test b12,t b24,t Test System

χ2
normality (2) 3.8

[0.15]
4.1
[0.13]

χ2
normality (4) 4.3

[0.36]
Far,1−7 (7, 144) 1.7

[0.11]
1.0
[0.45]

Far,1−7 (28, 272) 1.2
[0.24]

Farch,1−7 (7, 147) 1.8
[0.09]

1.0
[0.41]

Table 10 reports cointegration rank tests. The fifth column shows conventional p-values based
on Tables 4 and 6 for s = r corresponding to Johansen (1995, Tables 15.2, 15.3). The sixth column
shows p-values based on Tables 5 and 6 assuming data have been generating by a model satisfying
Hc(0) = Hz(0). In both cases the p-values are approximated by fitting a Gamma distribution to the
reported mean and variance, see Nielsen (1997); Doornik (1998) for details. As expected, the latter
p-values tend to be higher than the former. Overall this provide overwhelming evidence in favour of a
pure random walk model in line with Giese (2008).

Table 10. Cointegration rank tests.

Hypothesis r Likelihood LR p-Value
s = r Hc(0)

Hc�(2) = Hc(2) 2 134.63
Hc�(1) 1 133.71 1.8 0.18 0.39
Hc(1) 1 133.71 1.8 0.80 0.75
Hc�(0) 0 129.70 9.8 0.30 0.46
Hc(0) 0 129.21 10.8 0.57 0.57

If we have a strong belief in the expectation hypothesis we would, perhaps, ignore the rank tests
and seek to test the expectations hypothesis directly. If we maintain the model Hc(1), we could have to
contemplate that the cointegration vectors could be nearly unidentified. A mild form of the expectation
hypothesis is that the spread is zero mean stationary. Thus, we test the restriction b∗ = (1, −1, 0).
The likelihood ratio statistic is 4.0. Assuming the data generating process satisfies either H◦

c (0) or H◦
c (1),

but not by H◦
c�(0), we can apply the Khalaf-Urga (2014)-type bound test established in Theorem 12.

The 95% bound in (32) is 14.05 so the hypothesis cannot be rejected based on this test. This contrasts
with the above rank tests which gave strong evidence against the expectations hypothesis. The results
reconcile if the bounds test does not have much power in the weakly identified case. Indeed, this
seems to be the case when looking at Table 3, ρ = 0.99-panels in Khalaf and Urga (2014), corresponding
to near rank deficiency or weak identification. Thus, assuming the rank is one when in fact the
data generating process appears to be nearly rank deficient seems to reduce power for tests on the
cointegrating vector. That is, when the alleged cointegrating vector is not cointegrating it would be
useful to be able to falsify the economic hypothesis. The above mentioned simulations indicate that
this is not the case.

5. Conclusions

We have derived asymptotic theory for cointegration rank tests and tests on cointegrating vectors
in the rank deficient case. The asymptotic distributions have been simulated and tabulated. The results
shed some light on the finite sample theory for cointegration analysis. They can be used to improve
the theory on identification robust inference developed by Khalaf and Urga (2014). This was applied
to two US treasury yield series.
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It appears that large distortions arise when applying standard cointegration inference in the
situation where the rank is deficient or nearly deficient. The rank hypothesis gives an inequality for the
rank, that is rank Π ≤ r. This includes cases where the rank is r and where it is less than r. Thus, the
parameter space for the model where rank Π ≤ r therefore has a lower dimensional subset where the
rank is deficient. Inferential procedures for rank determination are consistent but do leave a positive
probability of deciding for a deficient rank in finite samples. In practice, it is therefore possible to end
up in a situation of rank deficiency or near deficiency. When proceeding to testing restrictions on the
cointegrating vectors, the model is therefore mis-specified or nearly mis-specified.

The asymptotic analysis of the test distributions gives the following results. When testing
for cointegration rank, the distribution shifts to the left when the rank is deficient. When testing
for restrictions on the cointegrating vector, the distribution shifts to the right when the rank is
deficient. When the rank is nearly deficient the distribution will tend to shift in similar directions. As a
consequence, a test for cointegration restrictions using conventional critical has a size control problem
previously observed by Johansen (2000). One can instead apply identification robust tests as suggested
by Khalaf and Urga (2014), but our impression is that while these tests are better behaved in terms of
size, they have modest power to reject incorrect restrictions.

Our recommendation is to test for rank before testing restrictions on cointegrating vectors in line
with Johansen’s framework. If the conclusion from the rank determination is ambiguous it is best to
proceed with caution and possibly explore different choices for rank. This is a common theme in the
applied work of Juselius.
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Appendix A. Proofs

Processes are considered on the space of right continuous processes with left limits, D[0, 1].
A discrete time process Xt for t = 1, . . . , T is embedded in D[0, 1] through Xinteger(Tu) for 0 ≤ u ≤ 1.
For processes Yt, Zt for t = 1, . . . , T the residuals from regressing Yt on Zt are denoted (Yt | Zt) =

Yt − ∑T
s=1 YsZ′

s(∑
T
s=1 ZsZ′

s)
−1Zt.

Proof of Theorem 1. This follows the outline of the proof in Johansen (1995, §10, 11). Let Π = α0β′
0

for p × s-matrices α0, β0 with full column rank. Let Γ = Ip − ∑k−1
i=1 Γi. Under the I(1) condition the

Granger-Johansen representation (6) holds with rank s and Johansen’s Lemma 10.1 stands with r
replaced by s. His Lemmas 10.2, 10.3 hold with BT = β0⊥(β′

0⊥β0⊥)−1 so that, on D[0, 1],

T−1/2B′
TXinteger(Tu) = B′

TCT−1/2
integer(Tu)

∑
t=1

εt + oP(1). (A1)

For later use we will note that the Brownian motion B can be chosen as follows. For any orthogonal
square matrix M̃ so M̃′M̃ = Ip−s choose the (p − s)-dimensional standard Brownian motion B so that

T−1/2M̃′(α′
0⊥Ωα0⊥)

−1/2α′
0⊥Γβ0⊥(β′

0⊥β0⊥)
−1β′

0⊥X[Tu]
D→ Bu (A2)

on D[0, 1].
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Proof of Theorem 2. Introduce the notation Ω̂U = S00 − S01S−1
11 S10 for the unrestricted variance

estimator and Ω̂R = S00 − S01b(b′S11b)−1b′S10 for the restricted variance estimator. Then the likelihood
ratio test statistic satisfies

LR{Hz,β(r) | Hz(p)} = −T log
det(Ω̂U)

det(Ω̂R)
= T log det{Ip + Ω̂−1

U (Ω̂R − Ω̂U)}.

If it is shown that Ω̂U is consistent and T(Ω̂R − Ω̂U) converges in distribution then

LR{Hz,β(r) | Hz(p)} = tr{Ω−1T(Ω̂R − Ω̂U)}+ oP(1), (A3)

following Johansen (1995, p. 224). The consistency of the unrestricted variance estimator Ω̂U follows
from Johansen (1995, Lemma 10.3) used with r = s = 0 and BT = Ip.

Consider T(Ω̂R − Ω̂U). Note first that the data generating process has cointegration rank s = 0.
Thus α0, β0 are empty matrices so that their complements can be chosen as the identity matrix. The I(1)
condition then implies that Γ = Ip − ∑k−1

i=1 Γi is invertible. The asymptotic convergence in (A2) then
reduces to

T−1/2M̃′Ω−1/2ΓXinteger(Tu) = T−1/2M̃′Ω−1/2
integer(Tu)

∑
t=1

εt + oP(1)
D→ Bu, (A4)

where B is a standard Brownian motion of dimension p and for any orthonormal M̃ so that M̃′M̃ = Ip.
In particular, we will choose M̃ so

M̃ =

[
{b′Γ−1Ω(Γ′)−1b}−1/2b′Γ−1Ω1/2

(b′
⊥Γ′Ω−1Γb⊥)−1/2b′

⊥Γ′Ω−1/2

]
. (A5)

Let B1,u, B2,u be the first r and the last p − r coordinates of Bu, respectively. Then we get

{b′Γ−1Ω(Γ′)−1b}−1/2b′Xinteger(Tu)
D→ B1,u.

The variance estimators are Ω̂R = Sεε − Sε1b(b′S11b)−1b′S1ε and Ω̂U = Sεε − Sε1S−1
11 S1ε.

In particular, the difference of the variance estimators is

T(Ω̂R − Ω̂U) = T{Sε1M(M′S11M)−1M′S1ε − Sε1bm(m′b′S11bm)−1mb′S1ε}, (A6)

for any invertible matrices M, m and in particular for M′ = M̃′Ω−1/2Γ and m = {b′Γ−1Ω(Γ′)−1b}−1/2.
In light of the identity M̃′M̃ = Ip, the random walk convergence in (A4), the rules for the trace and
the notation v = mb write

tr{Ω−1T(Ω̂R − Ω̂U)} = tr{M̃′Ω−1/2T(Ω̂R − Ω̂U)Ω−1/2M̃}
= tr [M̃′Ω−1/2T{Sε1M(M′S11M)−1M′S1ε − Sε1v(v′S11v)−1v′S1ε}Ω−1/2M̃ ].

Then the product moment convergence results in Johansen (1995, Lemma 10.3) imply

tr{Ω−1T(Ω̂R − Ω̂U)} D→ tr{
∫ 1

0
dBuB′

u(
∫ 1

0
BuB′

udu)−1
∫ 1

0
Bu(dBu)

′

−
∫ 1

0
dBuB′

1,u(
∫ 1

0
B1,uB′

1,udu)−1
∫ 1

0
B1,u(dBu)

′}.
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This is also the limit of the likelihood ratio test statistic due to (A3). The convergence holds jointly
with the convergence of the likelihood ratio test statistic for rank in Theorem 1 since the orthogonal
matrix M̃ in (A2) can be chosen freely.

Proof of Theorem 3. We need a number of results from Johansen (1995). Let B, V be independent
standard Brownian motions. His Theorem 11.1 shows

LR{Hz(r)|Hz(p)} D→ tr {
∫ 1

0
dBuB′

u(
∫ 1

0
BuB′

udu)−1
∫ 1

0
BudB′

u}, (A7)

while his Lemma 13.8 shows

LR{Hz,β(r)|Hz(r)} D→ tr {
∫ 1

0
dVuB′

u(
∫ 1

0
BuB′

udu)−1
∫ 1

0
BudV′

u}. (A8)

Johansen does not explicitly argue that the convergence results hold jointly. This can be done by
going into the proofs of the results, find the asymptotic expansions of the test statistic, and express them
in terms of random walks that converge to the processes B, V when normalized by T1/2. The asymptotic
distribution in (A8) is mixed Gaussian since B, V are independent. Thus, by conditioning on B we see
that LR{Hz,β(r)|Hz(r)} is asymptotically χ2 and hence independent of B. In turn the two test statistics
are asymptotically independent.

Proof of Theorem 5. We follow Stockmarr and Jacobsen (1994) or Johansen (1995, Theorem 14.1,
Lemma 14.3) and find that T−1/2Xinteger(Tu) converges to Ju as a process on D[0, 1] while

(S00, S1ε, S11/T) converges in distribution to (I2,
∫ 1

0 JudB′
u,
∫ 1

0 Ju J′udu).
Now, proceed as in the proof of Theorem 2. It has to be argued that Ω̂U converges in probability

to I2 and that T(Ω̂R − Ω̂U) has the limit distribution postulated in the Theorem. The convergence of
the Ω̂U follows from the listed properties of the product moment matrices. For T(Ω̂R − Ω̂U) we have
as in Equation (A6) that

T(Ω̂R − Ω̂U) = T{Sε1(S11)
−1S1ε − Sε1b(b′S11b)−1b′S1ε}.

Again, we can apply the listed properties of the product moment matrices.

Proof of Theorem 6. Similar to the proof of Theorem 1, the relevant Granger-Johansen representation
is (22) with rank s. Use Johansen’s Lemmas 10.2, 10.3 with BT = {γ(γ′γ)−1, T−1/2τ�(τ

′
�τ�)

−1}, where
τ� = Cμ, while γ ∈ span(β0⊥) so that γ′τ� = 0 and the expansion (A1) is replaced by

T−1/2B′
TXinteger(Tu) =

{
(γ′γ)−1γ′CT−1/2 ∑

integer(Tu)
t=1 εt

u

}
+ oP(1) (A9)

on D[0, 1]. Thus, ΔXt has a non-zero level, but this is eliminated by regression on the intercept.

Proof of Theorem 7. Similar to the proof of Theorem 1. Use the Granger-Johansen representation (22)
with rank s and τ� = Cμ = 0, and Johansen’s Lemmas 10.2, 10.3 with BT = β0⊥(β′

0⊥β0⊥)−1 so that
T−1/2B′

TXinteger(Tu) has expansion (A1).

Proof of Theorem 8. Similar to the proof of Theorem 1. Use the Granger-Johansen representation (22)
with rank s, and τ�. Use Johansen’s Lemmas 10.2, 10.3 with Xt, BT and the expansion (A1)
replaced by, respectively, X∗

t = (X′
t, 1)′, the block diagonal matrix B∗

T = diag (BT , T1/2) where
BT = β0⊥(β′

0⊥β0⊥)−1, and

T−1/2B∗′
T X∗

integer(Tu) =

(
B′

TCT−1/2 ∑
integer(Tu)
t=1 εt

1

)
+ oP(1) (A10)

on D[0, 1].
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Proof of Theorem 9. The proof of Theorem 2 is modified noting that R1,t is the (p+ 1)-vector (Xt−1, 1)′

corrected for lagged differences instead of Xt−1 corrected for lagged differences. Choose M̃ as in (A5).
Replace (A4) by (

T−1/2M̃′Ω−1/2Γ 0
0 1

)(
Xinteger(Tu)

1

)
D→ Fu. (A11)

The difference of variance estimators in (A6) is now

T(Ω̂R − Ω̂U) = T{Sε1M(M′S11M)−1M′S1ε − Sε1b∗(b∗′S11b∗)−1b∗′S1ε}, (A12)

where the invertible (p + 1)-dimensional matrix M now is chosen as

M =

⎧⎪⎨⎪⎩
b′Γ−1Ω(Γ′)−1b 0 0

0 b′
⊥Γ′Ω−1Γb⊥ 0

0 0 1

⎫⎪⎬⎪⎭
−1/2 ⎛⎜⎝ b′ b′

c
b′
⊥Γ′Ω−1Γ 0

0 1

⎞⎟⎠ (A13)

Viewed as a (3 × 2)-block matrix, the two upper left equals the previous M. Since the random
walk dominates a constant it holds that(

T−1/2 Ip 0
0 1

)
M

(
Xinteger(Tu)

1

)
D→ Fu. (A14)

Moreover, the first r coordinates of MR1,t are proportional to b∗′R1,t. Thus the argument can be
completed as in the proof of Theorem 2.

Proof of Theorem 10. The proof of Theorem 3 has to be modified to allow for a constant term
in the cointegrating vector. The arguments leading to asymptotic results for the test statistics are
sketched in Johansen and Juselius (1990) and, with more details, in Johansen et al. (2000, Theorem 3.1,
Lemma A.5).

Proof of Theorem 11. Write

LR{Hz,β(1)|Hz(1)} = LR{Hz(1)|Hz(p)} − LR{Hz,β(1)|Hz(p)}. (A15)

When s = 0 Theorems 1 and 2 give expansions for the right hand expressions of (A15) and in turn
for the desired test statistic on the left hand of (A15). This implies an asymptotic distribution with
asymptotic (1 − ψ) quantile qz,0, say. When s = 1 Theorem 3 in a similar way gives an asymptotic
(1 − ψ) quantile qz,1. Thus, with qz,∗ = maxs=0,1 qz,s we get limT→∞ P[LR{Hz,β(1)|Hz(1)} ≥ qz,∗] ≤ ψ,
both with s = 0 and when s = 1.

Proof of Theorem 12. Similar to the proof of Theorem 11, applying Theorems 8–10 instead
Theorems 1–3.
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Abstract: This paper proposes a class of partial cointegrated models allowing for structural breaks in
the deterministic terms. Moving-average representations of the models are given. It is then shown
that, under the assumption of martingale difference innovations, the limit distributions of partial
quasi-likelihood ratio tests for cointegrating rank have a close connection to those for standard full
models. This connection facilitates a response surface analysis that is required to extract critical
information about moments from large-scale simulation studies. An empirical illustration of the
proposed methodology is also provided.

Keywords: partial cointegrated vector autoregressive models; structural breaks; deterministic terms;
weak exogeneity; cointegrating rank; response surface

JEL Classification: C12; C32; C50

1. Introduction

Partial cointegration models with structural shifts in level or linear trends are quite common in
practice; however, no formal analysis is available for these models. The likelihood analysis of the partial
models with such breaks is based on reduced rank regression, just like standard full cointegrated
vector autoregressive models introduced by Johansen (1988, 1995). The main difference lies in the fact
that likelihood-based tests for cointegrating rank in the partial models involve a set of new asymptotic
distributions which reflect the combination of weakly exogenous regressors and broken deterministic
terms. We generalise the standard assumption of normal innovations (Johansen 1995) to a flexible class
of heterogeneous martingale difference innovations. We then derive the asymptotic distributions of
the test statistics in question and provide a simulated responsed surface of the asymptotic distribution.

The presented models combine two widely used extensions of Johansen’s original model. The first
extension was a partial cointegrated system investigated by Harbo et al. (1998), referred to as HJNR
henceforth, see also Pesaran et al. (2000). This partial system is a conditional vector autoregressive
model for a vector of variables, Yt, given another vector of variables, Zt, as well as lags of both
variables. They also presented simulated tables for asymptotic rank test distributions based on the
partial system. Boswijk (1995) and Ericsson and MacKinnon (2002) explored the use of conditional
autoregressive models. Recently, Cavaliere et al. (2018) considered information criteria based on the
HNJR test statistics. The second extension was a full cointegrated system with structural breaks in
a constant level or linear trend, a model explored by Johansen et al. (2000), referred to as JMN hereafter.
This full model is a multivariate extension of model C of Perron (1989), where both level and linear
trend slope change at the time of the break, as opposed to his models A and B, in which only one of the
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two is changing. Deterministic breaks in cointegrated systems have also been explored by Inoue (1999)
and Hendry and Massmann (2007).

Each of the two extensions above has proved to be useful in empirical applications; furthermore,
subsequent practical work has shown that we frequently require both of the two extensions
simultaneously. As an example, Bårdsen et al. (2005) built a large scale model of the Norwegian
economy by combining a number of smaller partial cointegration models. Each of these sub-systems
is regarded as a partial model subject to structural shifts, and these types of models are useful in
a practical sense for empirical macroeconomic research. As it stands, however, the exact asymptotic
properties of likelihood-based test statistics derived from the partial models with structural breaks
are unknown, so that a formal econometric study based on these models is unfeasible. This paper,
therefore, conducts both analytical and simulation-based investigations into the unknown asymptotic
properties so that researchers can perform a formal analysis using the partial models with structural
breaks. Another example of these partial models is a trade model for the UK by Schreiber (2015),
which we are going to use as an empirical illustration later in this paper.

This paper shows that the asymptotic distributions of the proposed likelihood-based test statistics
are dependent on information about the dimension of the variables Yt and Zt, cointegrating rank,
the number of breaks and their locations, but the distributions themselves are free of any unknown
parameters. Hence, the limit distributions can be simulated given the above information, as in a manner
similar to Johansen (1995, §15), HJNR or MacKinnon et al. (1999). The Granger–Johansen representation
for the full model in JMN is also reexamined as a basis for the required asymptotic study, and this
reexamination can be viewed as a useful clarification of roles of a set of starting values in the workings
of the system. It should be noted that a condition for weak exogeneity reviewed in Section 2 is assumed
to be satisfied when exploring the properties of the test statistics; the violation of this condition can give
rise to a class of limit results that are unfavourable in applications, as discussed by Johansen (1992a).
This assumption is testable by following an ex-post testing procedure suggested by Johansen (1992a)
and others. We demonstrate this procedure in the empirical illustration in Section 5.

In deriving the asymptotic distributions of the test statistics, the assumption of normal innovations
in Johansen (1995), HJNR and JMN, is relaxed to the assumption of martingale difference innovations,
with a view to widening the scope of applications of the proposed models. This means we have to
be careful in developing asymptotic arguments required for the quasi-likelihood ratio test statistics.
We use martingale limit results of Anderson and Kunitomo (1992) and Brown (1971) for approximately
stationary components and for non-stationary components, respectively.

Furthermore, it is shown that the derived asymptotic distributions can be approximated by
gamma distributions, a class of common statistical distributions identifiable only by the first two
moments; the validity of this gamma-distribution approximation method in various other existing
models was documented by Nielsen (1997), Doornik (1998) and JMN. The study utilises the fact that
mean and variance of the limit distributions for the proposed partial models are expressible in terms of
the mean and variance for full models and certain covariance terms. As a result, it is feasible to apply
the gamma approximation method to simulation results based on the fullmodels, in order to obtain
precise limit quantiles of the test statistics for the proposed partial models. Hence, we are justified in
conducting comprehensive simulations in the full-model framework, the results of which are applied
in a response surface analysis combined with the gamma approximation method. The outcomes of the
response surface analysis are tabulated in two tables, the accuracy of which is verified by moving back
to the partial-model framework. The tables allow researchers to conduct formal applied studies with
the proposed partial models. A brief empirical study is also provided.

Overall, this paper adds to the literature on time series econometrics and applied macroeconomics.
As a result, the partial cointegrated models will be recognised as more flexible and practical devices
for modelling and analysing non-stationary time series data containing structural breaks. For I(2)
models, Paruolo and Rahbek (1999) proposed partial analysis while Kurita et al. (2011) introduced
a model with deterministic shifts. In future work, it may be of interest to combine those ideas as well.
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The rest of this paper consists of five sections. Section 2 introduces partial cointegrated models
subject to deterministic breaks and their moving-average representations. Section 3 derives partial
quasi likelihood-based tests for cointegrating rank allowing for the breaks, and explores the limit
distributions of the test statistics. In this section, a response surface analysis is performed by using
simulated distributions and then the results of the analysis are summarised as a set of statistical tables.
An empirical illustration of the proposed methodology is provided in Section 5. Finally, Section 6 gives
concluding remarks. This study used Ox (Doornik 2013) and PcGive (Doornik and Hendry 2013) to
conduct the simulations and the empirical study, respectively.

2. Models and Representations

We introduce partial cointegrated vector autoregressive models with deterministic breaks.
Section 2.1 reviews the existing models known, while Sections 2.2–2.4 provide details of the
proposed models.

2.1. Previous Models

The cointegrated vector autoregressive model was proposed by Johansen (1988, 1995). Suppose that we
observe a p-variate vector time series Xt integrated of order 1, denoted as I(1) hereafter. In the presence
of two lags, a constant and restricted linear trend, the model equation for Xt

ΔXt = (Π, Π�)

(
Xt−1

t

)
+ ΓΔXt−1 + μ + εt for t = 3, . . . , T, (1)

with index � for the linear trend model and the associated cointegrating rank hypothesis, for r ≤ p,

rank (Π, Π�) ≤ r so that (Π, Π�) = α(β′, γ). (2)

Here, the initial values X1 and X2 are fixed while p-vector innovations ε3, . . . , εT are distributed
as independent normal, denoted by Np(0, Ω). The parameters in Equation (1) are all variation free,
defined as α, β ∈ Rp×r, γ ∈ Rr, μ ∈ Rp and Γ, Ω ∈ Rp×p and with Ω being positive definite. This model
is interpreted in terms of its Granger–Johansen representation. The likelihood function is maximised
through reduced rank regression of ΔXt on the vector of Xt−1, 1 corrected for ΔXt−1. The cointegrating
rank r can be determined through a sequence of rank test statistics, which have Dickey–Fuller type
limit distributions depending on the number of common trends, p − r in this case, and with a linear
trend adjustment. Once the rank is determined, asymptotic inference for the cointegrating vectors β

and the adjustment vectors α can be based on χ2 distributions.
The partial model is derived from the model given by Equation (1), which is referred to as the full

model henceforth. This allows exogenous regressors that are not necessarily analysed in the model
equation. With a view to setting up the partial model, let us introduce an integer m satisfying
0 ≤ r ≤ m < p, so that we can decompose Xt into an m-vector Yt and a vector Zt of dimension p − m.
Decompose the parameters and error terms of Equation (1) conformably so that, for instance,

Π =

(
Πy

Πz

)
, Γ =

(
Γy

Γz

)
, μ =

(
μy

μz

)
, εt =

(
εy,t

εz,t

)
and Ω =

(
Ωyy Ωyz

Ωzy Ωzz

)
.

We also define the population regression coefficient ω = ΩyzΩ−1
zz , which leads to a class of

conditional coefficients Πy·z = Πy − ωΠz, Γy·z = Γy − ωΓz and μy·z = μy − ωμz. The partial or
conditional model for Yt given Zt is then presented as

ΔYt = ωΔZt + (Πy·z, Πy·z,�)

(
Xt−1

t

)
+ Γy·zΔXt−1 + μy·z + εy·z,t, (3)
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where the conditional innovation sequence εy·z,t = εy,t − ωεz,t is Nm(0, Ωyy·z) distributed, so εy·z,t is
independent of Zt and the overall past series, while its variance is

Ωyy·z = Ωyy − ΩyzΩ−1
zz Ωzy. (4)

The cointegration rank hypothesis is, for r ≤ m,

rank (Πy·z, Πy·z,�) ≤ r so that (Πy·z, Πy·z,�) = αy·z(β′, γ), (5)

where αy·z = αy − ωαz. The marginal model for Zt is simply given as

ΔZt = αz(β′, γ)

(
Xt−1

t

)
+ ΓzΔXt−1 + μz + εz,t. (6)

Due to the conditioning of Yt on Zt, the innovations εy·z,t and εz,t are independent. Even so,
the cointegrating relationships β′Xt−1 + γt form cross equation restrictions, so that maximum
likelihood estimation involves a joint analysis of (3) and (6). The rank can be determined from a partial
analysis using information criteria albeit without size control as argued by Cavaliere et al. (2018).

Weak exogeneity arises when αz = 0. In this case, the partial model and the marginal model
are unrelated and Zt is weakly exogenous for a class of parameters of interest, αy, β and γ, in the
sense of Engle et al. (1983). See also Johansen (1992a, 1992b, 1995, §8) and HJNR. Maximum likelihood
estimation can be performed by analysing the two models separately, i.e., the partial model is estimated
by reduced rank regression while the marginal model is by least squares regression. The maintained
assumption is that the joint vector Xt has r cointegrating relations and hence p − r common trends,
with the cointegrating relations being in the partial model for Yt. A notable feature of the setup is that
it is left unspecified whether or not Zt is cointegrated. In a one-lag model Zt will not be cointegrated,
but with further lags Zt could be cointegrated since the short-run dynamics are determined by both α

and Γ; see HJNR (p. 390) for an example of these models. HJNR explored an asymptotic theory for
likelihood-based rank testing in the partial model (3). The asymptotic distribution of HJNR’s rank
test statistic is of the Dickey–Fuller type, now depending on both m − r and p − r, which are the
dimensions of common trends for Yt and Xt, respectively. Seo (1998) suggested a class of cointegrated
models where a stationary regressor, ΔZt is included in a cointegration model. This corresponds to a
models of the type (3), but where Xt−1 is replaced by only Yt−1. In general, this results in an inference
that depends on nuisance parameters. Rahbek and Mosconi (1999) noticed that, if the stationary
regressor ΔZt is cumulated and entered in the cointegrating vector Xt−1 as in (3), then the asymptotic
distributions of HJNR would apply.

Structural breaks in deterministic terms were included in the full system model by JMN. The idea is
to consider, say, two sub-samples starting at time T0 and T1, respectively, for 0 = T0 < T1 < T2 = T.
The dynamic parameters in the model are the same for both sub-samples, while the parameters for
deterministic terms can differ. In the model with lag-length k = 2, the observations Tj−1 + 1, Tj−2 + 2
for j = 1, 2 are held back as initial observations. Thus, the transition from one regime to the next is not
modelled. Recently, Harvey and Thiele (2017) used a similar idea in a structural time series model.

2.2. The Partial Model with Structural Breaks

We are in a position to introduce a new model, a partial cointegrated model allowing for structural
breaks in its deterministic terms.

We start by defining the timing of the sub-samples. Suppose we have T observations. We extend
the partial model to the one with a pre-specified number of sub-sample periods, q say, and k lags.
Following JMN, we introduce the sub-sample structure 0 = T0 < T1 < · · · < Tq = T. The model will
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have k lags. Thus, for each sub-sample j, the effective range is Tj−1 + k < t ≤ Tj. In summary, we have
data for 0 < t ≤ T, while the effective sample is the collection of effective sub-samples, that is,

Tj−1 + k < t ≤ Tj where 1 ≤ j ≤ q. (7)

The model has dynamic parameters that are common across the sub-sample periods, whereas the
parameters for deterministic terms vary. This gives, for each effective sub-sample j as defined above:

ΔYt = ωΔZt + αy(β′, γj)

(
Xt−1

t

)
+

k−1

∑
i=1

Γy·z,iΔXt−i + μy·z,j + εy·z,t, (8)

where γj ∈ Rr, μj = (μ′
y,j, μ′

z,j)
′ ∈ Rp and μy·z,j = μy,j − ωμz,j for j = 1, . . . , q, along with

Γi = (Γ′
y,i, Γ′

z,i)
′ ∈ Rp×p and Γy·z,i = Γy,i − ωΓz,i for i = 1, . . . , k − 1, and all the other parameters

were defined in the previous sub-section. Note that the parameters for deterministic terms depend on j,
indicating the presence of parameter shifts according to regime changes. A class of initial observations
XTj−1+1, . . . , XTj−1+k plays the dual role of capturing the transition from the previous regime, j − 1 and
of serving as the initial observations for the regime j. In some applications, the transition between the
regimes may be longer than k observations, in which case more observations could be classified as
initial observations. The marginal model for Zt under αz = 0 is

ΔZt =
k−1

∑
i=1

ΓzΔXt−i + μz,j + εz,t. (9)

We can form a full model equation as in Equation (1) for each sub-sample period. This is the
model of JMN with weak exogeneity imposed. This model will be presented in the next sub-section.

The partial model can be formulated as a single equation for the full sample period in terms of
the following notation. Following JMN, we define impulse dummy variables as

Dj,t =

{
1 for t = Tj−1,
0 otherwise,

for j = 1, . . . , q and t = 1, . . . , T,

so that Dj,t−i = 1 if t = Tj−1 + i, and also define indicators for the effective samples as

Ej,t =

Tj−Tj−1

∑
i=k+1

Dj,t−i =

{
1 for Tj−1 + k < t ≤ Tj,
0 otherwise,

and Et =
(
E1,t, . . . , Eq,t

)′ .

The whole-sample model equation then has the form, with X�
t−1 = (X′

t−1, tE′
t)

′, where the index �

indicates the model with a linear trend, for t = k + 1, . . . , T,

ΔYt = ωΔZt + αy(Πy, Πy,�)X�
t−1 +

k−1

∑
i=1

Γy·z,iΔXt−i + μy·zEt +
k

∑
i=1

q

∑
j=2

ϕj,iDj,t−i + εy·z,t, (10)

with cointegration rank hypothesis, for r ≤ m,

H�(r) : rank (Πy, Πy,�) ≤ r so that (Πy, Πy,�) =
(

β′, γ
)

. (11)

Here, ϕj,i ∈ Rm represents a class of parameters for Dj,t−i for i = 1, . . . , k and j = 2, . . . , q,
while the parameters γ and μy·z are now redefined in a manner allowing for breaks as

γ = (γ1, . . . , γq) ∈ Rr×q and μy·z = (μy·z,1, . . . , μy·z,q) ∈ Rm×q,
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which are used in the rest of this study. Equation (8), or its whole-sample form (10), is referred to as
the partial model with a broken linear trend term.

2.3. Representations

Various properties of the proposed partial model (8) will be analysed using the Granger–Johansen
representation of an I(1) process, which is formulated based on the full model for Xt; thus,
the representation is the same as that in JMN (Theorem 2.1). In JMN, each sub-sample period is analysed
conditionally on its initial observations. As a result, the representation for each sub-sample period is
the same as that in Johansen (1995, Theorem 4.2). The initial values for each sub-sample can be large
and thus be influential even in the asymptotic context, but, when following the underlying argument
of JMN, one can see that such initial values do not play critical roles in the required asymptotic analysis.
Following Kurita and Nielsen (2009), we show this in two steps: first, we analyse a homogeneous
equation, and then consider the roles of deterministic terms by moving to a non-homogeneous equation.
For further details, see the proof of Theorem 1 below.

For each sub-sample, the full model for Xt is defined as a joint system of (8) and (9) through:

ΔXt = α(β′, γj)

(
Xt−1

t

)
+

k−1

∑
i=1

ΓiΔXt−i + μj + εt, (12)

while the corresponding homogeneous equation is

ΔX̃t = αβ′X̃t−1 +
k−1

∑
i=1

ΓiΔX̃t−i + εt, (13)

where X̃t denotes a p-variate mean-zero vector time series. We then set up a companion vector based
on (13) and analyse a companion form of this equation. Several choices are conceivable with respect to
a companion form for (13) and we use the choice that appears, for instance, in Hansen (2005). For the
purpose of studying details of the representation, the parameters need to satisfy Assumption 1 below.
This is applicable to both (12) and (13). Some additional notation is required. When β has full column
rank r, let β⊥ denote a p × (p − r) dimensional orthogonal complement, so that (β, β⊥) is invertible
and β′

⊥β = 0 and introduce the normalization β = β(β′β)−1. The same notation applies to α.

Assumption 1. Assume that the roots of the characteristic polynomial,

A(z) = (1 − z)Ip − αβ′z −
k−1

∑
i=1

Γi(1 − z)zi,

are outside the complex unit circle or at unity; furthermore, assume that the matrices α and β have full column
rank r and that the square matrix α′

⊥Ψβ⊥ has full rank p − r, where Ψ = Ip − ∑k−1
i=1 Γi.

Given Assumption 1, we can define C = β⊥(α′
⊥Ψβ⊥)−1α′

⊥ This is often referred to as the impact
matrix in cointegration literature; see Paruolo (1997) for inference on this matrix.

We are approaching the stage where the Granger–Johansen representation for each sub-sample
period is presented. For the homogeneous Equation (13), let us define

α =

⎛⎜⎜⎜⎜⎜⎜⎝
α Γ1 · · · Γk−1
0 Ip 0
...

. . .
...
0

0 · · · 0 Ip

⎞⎟⎟⎟⎟⎟⎟⎠ , Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ip 0 · · · 0

Ip −Ip
...

0
. . .

... 0
0 · · · 0 Ip −Ip

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (14)
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as well as

β′ =

(
β′ 0
0 Ip(k−1)

)
Λ, X̃t−1 =

⎛⎜⎝ Xt−1
...

Xt−k

⎞⎟⎠ , (15)

and ι = (Ip, 0, . . . , 0)′ together with r = r + p (k − 1) . The representation is then given in the theorem
below, the proof of which is provided in Appendix B.

Theorem 1. Suppose that Assumption 1 is fulfilled. Then, an r-variate process β′X̃t derived from ation (13)
satisfies, on the effective sample Tj−1 + k < t ≤ Tj for 1 ≤ j ≤ q,

β′X̃t = (Ir + β′α)β′X̃t−1 + β′ιεt with |eigen(Ir + β′α)| < 1, (16)

which is a stable first-order vector autoregression. The solution to (13) is given as

X̃t = C
t

∑
s=Tj−1+k+1

εs + {(I − CΨ)β̄, CΥ}β′X̃t − C(Ψ, Υ)ΛX̃Tj−1+k, (17)

where Υ = (Υ1, . . . Υk−1) with Υi = −Γi − · · · − Γk−1. Thus, the variable Xt in (12) satisfies

Xt = C
t

∑
s=Tj−1+k+1

εs + (I − CΨ)β̄β′X̃t − C
k−1

∑
i=1

Γi

i−1

∑
�=0

ΔX̃t−�

− CΨX̃Tj−1+k + C
k−1

∑
i=1

Γi

i−1

∑
�=0

ΔX̃Tj−1+k−� + τc,j + τ�,jt, (18)

for X̃t = Xt − τc,j − τ�,jt with the parameters τc,j and τ�,j satisfying

Ψτl,j = αβ′(τc,j − τ�,j) + μj and β′τ�,j + γj = 0.

Note that the initial observations for the j-th sub-sample in (18) are expressed in terms of
linear combinations of the mean-zero values X̃Tj−1+1, . . . , X̃Tj−1+k, so that we can in general argue
that the the starting values for each sub-sample period do not play critical roles in asymptotic
analysis. This property was not explicitly examined in JMN. Thus, Theorem 1 can be seen as a
useful clarification of roles of the initial values in the full cointegrated model subject to deterministic
breaks. The Granger–Johansen representation is utilised in proofs of asymptotic theorems in Section 3.

As an alternative to the above sub-sample representation, one can derive a joint representation
for the whole sample. For this purpose, we need a full system equation for Xt over the entire sample
period. This equation is derived from a combination of (12) over j = 1, . . . , q augmented with dummies
Dj,t−i and Ej,t, as in (10); that is,

ΔXt = α
(

β′, γ
)

X�
t−1 +

k−1

∑
i=1

ΓiΔXt−i + μEt +
k

∑
i=1

q

∑
j=2

κj,iDj,t−i + εt, (19)

where κj,i ∈ Rp for i = 1, . . . , k and j = 2, . . . , q, and μ = (μ1, . . . , μq) ∈ Rp×q; see Equation (2.6) in
JMN. We then replace the innovations εt with εD

t = εt + αγtEt + μEt + ∑k
i=1 ∑

q
j=2 κj,iDj,t−i to reach a

whole-sample representation such as

Xt ≈ C
t

∑
s=k+1

εD
s + C1(L)εD

t + A for k < t ≤ T, (20)
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where C1(L)εD
t denotes a moving-average process whose coefficients decrease exponentially fast,

and A depends on initial observations X1, . . . , Xk, satisfying β′A = 0. This is an approximation,
since the precise formulation of the moving-average component requires introduction of an infinite past,
while the model is formulated as conditional on the initial observations. As before the deterministic
parts of the common trends C ∑T

s=k+1 εD
s will be piecewise constant since Cα = 0, so that each constant

fails to cumulate to a linear trend. A similar approach was adopted in I(2) cointegration analysis by
Kurita et al. (2011). The representation (20) is clear and concise, but the transition from one regime
to another is considered to be explicitly autoregressive, which may leave less flexibility to represent
regime transitions of some persistent and messy nature. For the asymptotic study conducted below,
we follow JMN by using the sub-sample representation (18).

2.4. The Partial Model with Shifts in The Level

In some applications, it suffices to exclude the broken linear trends and just include shifts in the
constant term. By restricting the broken constant term within the cointegrating space, Equation (10) is
reduced to, with Xc

t−1 = (X′
t−1, E′

t)
′ and index c for model with breaks in the constant level,

ΔYt = ωΔZt + (Πy, Πy,c)Xc
t−1 +

k−1

∑
i=1

Γy·z,iΔXt−i +
k

∑
i=1

q

∑
j=2

ϕj,iDj,t−i + εy·z,t (21)

and cointegration rank hypothesis, for r ≤ m,

Hc(r) : rank (Πy, Πy,c) ≤ r or that (Πy, Πy,c) = αy
(

β′, γ
)

. (22)

The Granger–Johansen representation has the same form as (18) but is subject to

β′τc,j + γ′
j = 0 and τ�,j = 0.

3. Testing for Cointegrating Rank in the Partial Models

This section addresses the issue of testing for cointegrating rank in the suggested partial models
with deterministic shifts. Section 3.1 introduces a partial likelihood ratio test for the choice of rank
based on the broken linear-trend model and Section 3.2 derives its limit distribution. Section 3.3 then
turns to the broken constant model and examines the test statistic based upon it. Finally, Section 4
derives a class of approximations to the limit distributions by means of computer simulations and
response surface regression.

3.1. Rank Test Statistic

For each sub-sample period, the partial model (10) is seen as equivalent to that in HJNR, given
the presence of structural breaks in its deterministic terms. We derive the log partial likelihood
ratio test statistic for the cointegration rank hypothesis H�(r) defined in (11). This likelihood is
analysed by reduced rank regression in a manner similar to the original cointegration model in
Johansen (1988, 1995). We show that the reduced rank regression can be done in three, numerically
equivalent ways.

The first approach is based on a full-sample reduced rank regression. Regress each of the vectors
ΔYt and X�

t−1 = (X′
t−1, tE′

t)
′ on a vector Ht consisting of the variables ΔZt, the lagged differences

ΔXt−1, . . . , ΔXt−k+1, the intercepts Et and the impulse dummies Dj,t−i for i = 1, . . . , k and j = 2, . . . , q,
so that Ht has dimension pk − m + q + k(q − 1). This gives residuals R0,t and R1,t:(

R0,t
R1,t

)
=

(
ΔYt

X�
t−1

)
−

T

∑
s=k+1

(
ΔYs

X�
s−1

)
H′

s

(
T

∑
s=k+1

Hs H′
s

)−1

Ht for k < t ≤ T.
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The second approach is viewed as a sub-sample approach. We note that the impulse dummies
result in a perfect fit for each transitional period in between two connecting regimes; thus, R0,t and R1,t
are zero for all transitional periods. We can, therefore, compute the residuals R0,t and R1,t by analysing
the effective sub-sample periods only; see also Doornik et al. (1998, §12.2). For this purpose, let us form
regressors Pt from the variables ΔZt, the lagged differences ΔXt−1, . . . , ΔXt−k+1 and the intercepts Et,
so that Pt is a vector of dimension pk − m + q. The residuals R0,t and R1,t then satisfy

(
R0,t
R1,t

)
=

(
ΔYt

X�
t−1

)
−

q

∑
j=1

Tj

∑
s=Tj−1+k+1

(
ΔYs

X�
s−1

)
P′

s

⎛⎝ q

∑
j=1

Tj

∑
s=Tj−1+k+1

PsP′
s

⎞⎠−1

Pt,

for Tj−1 + k < t ≤ Tj with 1 ≤ j ≤ q, while R0,t and R1,t are zero, otherwise.
The third approach is recognised as a two-step approach, in which we first demean the observed

time series and then partial out influences from the lagged differences. In the first step, we analyse
two vectors ΔYt and X�

t−1, along with a vector Vt consisting of the variables ΔZt and the lagged
differences ΔXt−1, . . . , ΔXt−k+1. These three vectors are demeaned within each sub-sample period,
yielding Z0,t, Z1,t and Z2,t defined as⎛⎜⎝ Z0,t

Z1,t
Z2,t

⎞⎟⎠ =

⎛⎜⎝ ΔYt

X�
t−1
Vt

⎞⎟⎠− 1
Tj − Tj−1 + k

Tj

∑
s=Tj−1+k+1

⎛⎜⎝ ΔYs

X�
s−1
Vs

⎞⎟⎠ , (23)

for 1 ≤ j ≤ q and Tj−1 + k < t ≤ Tj and zero otherwise. In the second step, we compute

(
R0,t
R1,t

)
=

(
Z0,t
Z1,t

)
−

T

∑
s=k+1

(
Z0,s
Z1,s

)
Z′

2,s

(
T

∑
s=k+1

Z2,sZ′
2,s

)−1

Z2,t.

Since Z0,t, Z1,t are zero within the transitional periods, so are the residuals R0,t, R1,t.
With the residuals R0,t and R1,t in hand, we can compute the product moments(

S00 S01

S10 S11

)
=

1
T − k

T

∑
t=k+1

(
R0,t
R1,t

)(
R0,t
R1,t

)′
, (24)

and a set of squared canonical correlations 1 ≥ λ̂1 ≥ · · · ≥ λ̂m ≥ 0 by solving the eigenvalue problem

0 = det(λS11 − S10S−1
00 S01).

Hence, the log partial likelihood ratio (PLR) test statistic for the null hypothesis of cointegrating
rank r, H�(r), against the hypothesis H�(m) is

PLR{H�(r)|H�(m)} = −(T − k)
m

∑
i=r+1

log(1 − λ̂i). (25)

3.2. Asymptotic Distribution of the Test Statistic

We derive the asymptotic distribution of the rank test statistic in a setting where the relative
break points satisfy Tj/T → vj for j = 0, . . . , q while T goes to infinity. The relative break points satisfy
0 = v0 < v1 < · · · < vq = 1. Indeed, with int(x) denoting the integer part of x, then the q-vector
Eint(Tu) on u ∈ [0, 1] has the limit

eu =
{

1(v0<u<v1)
, . . . , 1(vq−1<u<vq)

}′
. (26)
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In the standard framework developed by Johansen (1995), the innovation sequence εt is
assumed to be independent and identically Gaussian distributed, and this assumption was adopted
by HJNR and JMN as reviewed in Section 2.1 above. We relax this normality assumption to a
martingale difference assumption. If the innovations εt are not normal, the model equations lead
to a quasi-likelihood function rather than a likelihood function. Weak exogeneity is preserved as it
is a property of the likelihood rather than the distribution of the innovations as such. The partial
innovation εy·z,t = εy,t − ωεz,t and the marginal innovation εz,t are uncorrelated, but they will not be
independent in general when moving away from the normality assumption. We can no longer appeal
to the conditional-distribution argument, as implied in Equation (3). Thus, the conditional-distribution
argument is replaced with a regression argument, see Appendix C.2. The martingale difference
assumption is summarised as Assumption 2 below.

Assumption 2. Assume that εt is a martingale difference sequence with respect to a filtration Ft such that
E(εt|Ft−1) = 0 almost surely (a.s.). Let Ω be a positive definite matrix. Suppose that
(i) E(εtε

′
t) = Ω;

(ii) T−1 ∑T
t=1 E(εtε

′
t|Ft−1)

P→ Ω;
(iii) either of the following boundedness conditions

(a) supt∈N E{ε′tεt1(ε′tεt>a)|Ft−1} P→ 0 as a → ∞;
(b) supt∈N E|εt|4 < ∞.

The boundedness conditions in part (iii) are not nested. Part (a) can be satisfied without the
existence of fourth moments as in part (b). Conversely, bounded fourth moments in part (b) do not
necessarily imply part (a); see Remark A1 in Appendix C.1.

Under Assumption 2, we are able to apply the results of Brown (1971) to analyse the random
walk components of the process. For this, we require a Lindeberg condition, which is established in
Lemma A1 in Appendix C.1 under Assumption 2. Brown’s result is for univariate martingale difference
sequences and requires that the ratio of the sum of conditional variances to that of unconditional
variances should converge to unity. For the multivariate case, we can apply the Cramér–Wold
device and form linear combinations of the present multivariate martingale differences. Using parts
(i), (ii) we can then show that Brown’s ratios converge to unity.

Under Assumption 2, we can also analyse the (approximately) stationary components of the
process. Under part (iii.a), we can apply the results of Anderson and Kunitomo (1992), which exploit
a truncation argument. Under part (iii.b) we can apply the same ideas as in Anderson and Kunitomo
(1992) but without the truncation argument.

Cointegration models with heteroscedasticity have previously been analysed by for instance
Cavaliere et al. (2010) and Boswijk et al. (2016). The former paper is concerned with rank testing
in a full system. For the analysis of the (approximately) stationary components, it relies on
Hannan and Heyde (1972) who require an almost sure version of Assumption 2(ii). The latter paper
is concerned with testing on the cointegrating vectors in a full system with an elaborate, deterministic
structure for the variances of the innovations.

Before proceeding to the main results, we present a set of stronger assumptions requiring constant
conditional variance, see Assumption 3 and Lemma 1 below. These assumptions were used by
Lai and Wei (1982, 1985) as well as Chan and Wei (1988). They have two advantages. First, they are
easier to check for practitioners than the convergence results in Assumption 2. Second, the assumptions
could be used to derive a variety of almost sure convergence results, as explored by Lai and Wei
(1982, 1985) and Nielsen (2005), although we will not exploit those properties here.

Assumption 3. Assume that εt is a martingale difference sequence with respect to a filtration Ft such that
E(εt|Ft−1) = 0 a.s. and
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(i) Var(εt|Ft−1) = Ω a.s., where Ω is positive definite;
(ii) supt∈N E(|εt|2+ξ |Ft−1) < ∞ a.s. for some ξ > 0.

Lemma 1. Assumption 3 implies Assumption 2.

We can now present the limit distribution of the PLR statistic (25), noting that, formally, it is a

a log partial quasi-likelihood ratio test statistic under Assumption 3. For this purpose, let D→ signify
weak convergence, while let Bu represent a (p − r)-dimensional standard Brownian motion process on
u ∈ [0, 1] and let B(m−r)

u be the first m − r coordinates of Bu. The limit distribution is given in the next
theorem, which is proved in Appendix C.3.

Theorem 2. Suppose that Assumptions 1 and 2 are satisfied along with αz = 0, so that Zt is weakly exogenous
with respect to αy, β and γ. As T → ∞, with relative break points satisfying Tj/T → vj for 0 = v0 < v1 <

· · · < vq = 1, the PLR test statistic (25) under H� (r) satisfies

PLR{H�(r)|H�(m)} D→ DF�(m − r, p − r; v), (27)

where, with eu defined in (26),

DF�(m − r, p − r; v) = tr

{∫ 1

0
dB(m−r)

u G′
u

(∫ 1

0
GuG′

udu
)−1 ∫ 1

0
GudB(m−r)′

u

}
,

Gu =

(
Bu

ueu

)
−
∫ 1

0

(
Bs

ses

)
es

′ds
(∫ 1

0
ese′sds

)−1

eu.

Note that, when p = m, the result in Theorem 2 corresponds to Theorem 3.1 in JMN. A direct
simulation of (27) is rather laborious. By exploiting some analytic properties of the distributions, we are
able to simplify this simulation task. The next Theorem 3 describes these properties by linking the
moments of the limit distribution in Theorem 2 to those for the full model. Theorem 3 provides a basis
for simulation in Section 4. The proof of this theorem, given in Appendix C.3, is based on a slight
modification of results in Doornik (1998, §9); see also Boswijk and Doornik (2005).

Theorem 3. Let Bi,u be the i-th coordinate of the Brownian motion Bu. Let

Ti =
∫ 1

0
dBi,uG′

u

(∫ 1

0
GuG′

udu
)−1 ∫ 1

0
GudB′

i,u for i = 1, . . . , p − r.

Then, T1, . . . ,Tp−r are identically distributed and any pairs Tj,Tk are also identically distributed.
Moreover, the limiting statistic (26) satisfies DF�(m − r, p − r; v) = ∑m−r

i=1 Ti with expectation and variance
given by

E{DF�(m − r, p − r; v)} =

(
m − r
p − r

)
E

(
p−r

∑
i=1

Ti

)
,

Var{DF�(m − r, p − r; v)} =

(
m − r
p − r

)
Var

(
p−r

∑
i=1

Ti

)
− (m − r)(p − m)Cov(T1,T2).

Since the above Theorem 3 links the moments of the statistics for partial systems and for a full
system, we can now proceed by simulating distributions for full systems only. JMN simulated response
surfaces for the mean and variance of ∑

p−r
i=1 Ti. As we will also need a response surface for Cov(T1,T2),

we have to redo their simulation exercise. For this purpose, we quote a result from JMN.
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Theorem 4 (JMN, Theorem 3.2). Let B[1], . . . , B[q] be independent (p − r)-dimensional standard Brownian
motions and define

Jj =

{∫ 1

0
(u|1)2 du

}−1/2 ∫ 1

0
(u|1)

{
dB[j](m−r)

u

}
,

Kj =
∫ 1

0

(
B[j]

u

∣∣∣ u, 1
) {

dB[j](m−r)
u

}′
,

Lj =
∫ 1

0

(
B[j]

u

∣∣∣ u, 1
) (

B[j]
u

∣∣∣ u, 1
)′

du.

Then, the limiting variable (26) for a full sample with p = m satisfies

DF�(p − r, p − r; v) = tr

⎡⎣( q

∑
j=1

KjΔvj

)′ { q

∑
j=1

Lj
(
Δvj

)2
}−1 ( q

∑
j=1

KjΔvj

)⎤⎦+
q

∑
j=1

J′j Jj,

where Δvj = vj − vj−1. Here, the two summands are independent and ∑
q
j=1 J′j Jj is distributed as χ2{q (m − r)}.

Moreover, let J[i]j and K[i]
j denote the ith coordinate of Jj and Kj so that

Ti =

(
q

∑
j=1

K[i]
j Δvj

)′ { q

∑
j=1

Lj
(
Δvj

)2
}−1 ( q

∑
j=1

K[i]
j Δvj

)
+

q

∑
j=1

(J[i]j )2.

As in JMN, we note that Theorem 4 implies a simple relation between the limiting statistics for
models with q and with q − 1 sub-sample periods that is

lim
Δvq→0

DF�(p − r, p − r; v1, . . . vq−1, vq) = DF�(p − r, p − r; v1, . . . vq−1) + J′q Jq, (28)

where DF�(p − r, p − r; v1, . . . vq−1) and J′q Jq are independent and J′q Jq is χ2(p − r).

3.3. Asymptotic Distribution for the Broken Constant Case

The model investigated previously has a broken linear trend. A variant of this model is free of
such a linear trend but with a broken constant; see Equation (21). Equation (8) then reduces to

ΔYt = ωΔZt + αy(β′, γj)

(
Xt−1

1

)
+

k−1

∑
i=1

Γy·z,iΔXt−i + εy·z,t.

As before, the partial quasi-likelihood is maximized by reduced rank regression. We follow the
third approach (23) in Section 3.1, in which the broken linear trend is now replaced with the broken
constant, so that we consider the vectors ΔYt and X�

t−1 = (X′
t−1, E′

t)
′, together with the vector Vt

composed of the variables ΔZt and the lagged differences ΔXt−1, . . . , ΔXt−k+1. Equation (23) then
reduces to ⎛⎜⎝ Z0,t

Z1,t
Z2,t

⎞⎟⎠ =

⎛⎜⎝ ΔYt

X�
t−1
Vt

⎞⎟⎠ .

The limit distribution of the log partial quasi-likelihood ratio test statistic for cointegrating rank r,
denoted by PLR{Hc(r)|Hc(m)}, is given in Theorem 5 below. Its proof is based on a set of modifications
of the proofs for the limit theorems in the previous sub-sections.
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Theorem 5. Suppose that Assumptions 1 and 2 are satisfied along with αz = 0, so that Zt is weakly exogenous
with respect to αy, β and γ. As T → ∞, with relative break points satisfying Tj/T → vj for 0 = v0 < v1 <

· · · < vq = 1, the PLR test statistic (25) under Hc (r) satisfies

PLR{Hc(r)|Hc(m)} D→ DFc(m − r, p − r; v),

where DFc is defined as in Theorem 2 with the difference that

Gu =

(
Bu

eu

)
.

The results in Theorems 3 and 4 also apply with the present choice of Gu.

4. Approximations of the Asymptotic Distributions

The limit distributions of the cointegrating rank test statistics are non-standard, as shown in the
previous sub-sections; however, given the existing results in the literature, the distributions can be
closely approximated by a gamma distribution identified by the first two moments. We first derive
this approximation and then show how to implement the approximation.

4.1. Derivation of Response Surface

The literature shows that the asymptotic distributions for cointegration rank testing are nearly
gamma distributed. The approximating gamma distribution can be captured either through the mean
and variance of the asymptotic distribution or through the associated shape and scale parameters.
The quality of the gamma-distribution approximation method has been documented in several papers.
Using analytic methodology, Nielsen (1997) showed a very good agreement between limit distributions
and approximate gamma distributions in tests for unit roots. Doornik (1998) then conducted detailed
simulation studies to demonstrate a similar agreement for standard full-system cointegration rank
test statistics; see also Doornik (2003) for various tables of asymptotic quantiles produced by the
gamma-distribution approximations. JMN also employed this method.

In order to apply the gamma approximation method, we first define parameters for shape and
scale. By Theorem 3, the partial system statistic satisfies DF�(m − r, p − r; v) = ∑m−r

i=1 Ti, where the
statistics Ti are identically distributed and also the pairs Ti, Tj are identically distributed. Thus, we get

E(
m−r

∑
i=1

Ti) = (m − r)E(T1),

Var(
m−r

∑
i=1

Ti) = (m − r)Var(T1) + (m − r)(m − r − 1)Cov(T1,T2).

Solve for E(T1) and Var(T1) when m = p and insert above to get

E(
m−r

∑
i=1

Ti) =
m − r
p − r

E(
p−r

∑
i=1

Ti), (29)

Var(
m−r

∑
i=1

Ti) =
m − r
p − r

Var(
p−r

∑
i=1

Ti)− (m − r)(p − m)Cov(T1,T2). (30)

Thus, it suffices to approximate the moments of the full sample distributions through simulation.
Numerically, it appears that better approximations arise when approximating shape and scale
parameters instead of mean and variance. We therefore write
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Var(
p−r

∑
i=1

Ti) = δ2
p−rλp−r, E(

p−r

∑
i=1

Ti) = δp−rλp−r. (31)

From this, we get the shape and scale parameters as

1
λp−r

=
Var(∑

p−r
i=1 Ti)

{E(∑p−r
i=1 Ti)}2

, δp−r =
Var(∑

p−r
i=1 Ti)

E(∑
p−r
i=1 Ti)

.

Hence, we simulated λp−r, δp−r and Cov(T1,T2) and constructed response surfaces to
approximate the distribution of DF�(m − r, p − r; v). Following JMN and Doornik (1998), we applied a
variety of data generating processes and present the results using response surface analysis.

The quantities λp−r, δp−r and Cov(T1,T2) were simulated for a set of given p − r, T and relative
break points. Following JMN, we chose q = 3 as the maximum number of sub-samples, with a and b
representing the smallest and the second smallest of relative sample lengths, respectively. For example,
if q = 2 along with v1 ≤ 1 − v1, we then have a = 0 and b = v1. The grid points a and b were selected
in the same way as those for Figure 1 in JMN e.g., (a, b) = (0, 0), (0, 0.05), (0, 0.1), · · · , so that they
were subject to the constraints of a ≤ b and b ≤ (1 − a − b) and the total number of their combinations
was 20, along with the selection of non-stationary components p − r = 1, . . . , 8. For the overall sample
sizes or Ts, JMN used 10 integers derived from 500/i for i = 1, . . . , 10, but we quadrupled them in
order to improve approximations to the underlying limit distributions of the response variables. Thus,
we obtained a new set of 10 sample sizes, Ts, ranging from 200 to 2000. For log λp−r and log δp−r,
this simulation design led to 1600 (= 20 × 8 × 10) cases, while the number of cases was reduced to
1400 for Cov(T1,T2) as a result of missing values corresponding to p − r = 1.

The computational algorithm used in our study was based on Theorem 4. These asymptotic
results justify simulating three sets of T-step random walks for broken linear-trend and constant cases
and scaling them according to the pre-specified relative sample lengths. The number of simulation
replications N was set at 100,000.

For the response surface analysis, we used log λp−r, log δp−r and Cov(T1,T2) as the response
variables, instead of the logged means and variance as in JMN. It turns out that the use of these response
variables (log λp−r, in particular) mitigates the residual heteroscedasticity problem, hence resulting
in a reduction of the number of indicator variables required for p − r = 2 and p − r = 1. Note that
Cov(T1,T2) needs to be included in the set of response variables in any response surface study, in order
to make use of Equation (30). In addition, note that taking the log of Cov(T1,T2) is not permissible,
since covariance is not always positive.

Compared to JMN, we increased the maximum number of observations from T = 500 to T = 2000.
It was found that the large-sample (T ≥ 1000) approximates of the mean and variance in small
dimensions (p − r ≤ 3) tend to be rather different from those when T is small. This finding is consistent
with Doornik (1998), who introduced a set of indicator variables being assigned 1 for p − r = 2 and
p − r = 1 and assigned 0 otherwise; these indicators put residual heteroscedasticity under control even
in the presence of influential values for p − r = 2 and p − r = 1.

We regressed each of the three response variables, log λp−r, log δp−r and Cov(T1,T2) on a set
of regressors formed from a, b, p − r and T. Our baseline function form was a modified version of
Equation (3.11) in JMN. In the context of the present paper, the equation in JMN is expressed as

y =
2

∑
m=0

(
φm +

4

∑
i=1

ϕimzi +
4

∑
i=1

∑
j≥i

ψijmzizj +
4

∑
i=1

∑
j≥i

∑
k≥j

ωijkmzizjzk

)
dm,

where y is either log λp−r, log δp−r or Cov(T1,T2), while z1 = p − r, z2 = a, z3 = b, z4 = T−1 and
dm = (p − r)−m. Following Doornik (1998), we also added to this equation a set of indicator variables
as explanatory variables, each of which is 1 for a selected value of dimension p − r and is 0 otherwise.
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Performing a series of regression analyses and carefully removing insignificant explanatory variables
by utilising the Autometrics option available in PcGive (Doornik and Hendry 2013), we arrived at
parsimonious response–surface functions for log λp−r, log δp−r and Cov(T1,T2); these functions are
henceforth denoted f z

p−r (p − r, a, b, T) with z taking values λ, δ and cov, respectively.
Tables A1 and A2 in Appendix A record the rounded coefficients for a, b, p − r and their variants

in the response surface regression for the broken linear trend case and the broken constant case,
respectively. The inverse of the observation number, T−1, and its variants such as T−2, also play
critical roles in the response surface regression, but all of them are irrelevant asymptotically and thus
disregarded when calculating the limit approximates based on these tables.

It should also be noted that a response–surface regression analysis of Cov(T1,T2) was technically
difficult in terms of residual diagnostic tests. Doornik (1998) used the average of estimates for
Cov(T1,T2) when performing a response surface analysis for partial systems with no break. We adhered
to the regression approach, rather than simply taking the average of the covariance estimates,
by assigning importance to various significant influences of a, b and p − r on the behaviour of
Cov(T1,T2). This regression analysis indeed bore fruit and clarified the highly complex structure of
the dependence of Cov(T1,T2) on a, b, p − r and its variants, as shown in the third column of each
of Tables A1 and A2. These findings about Cov(T1,T2) are not known in the literature, thus giving
added value to the response surface study conducted in this paper, although the impact of variation in
Cov(T1,T2) on the approximate shape and scale parameters may not always be large.

Tables 1 and 2 display a set of examples demonstrating the accuracy of the response surface
regression results. A class of approximately 95% limit quantiles is presented in each of the tables for
various combinations of a, b, p − r and m − r, when either broken-linear-trend or broken-constant
specifications are adopted in analysis. Approximate quantiles in the fifth column (q95) in Tables 1 and 2
are derived from Tables A1 and A2, respectively; that is, they are from the full-system-based response
surface analysis, combined with the mappings (29), (30) and (31). By contrast, approximate quantiles
recorded in the sixth column (q∗

95) of each table, except those for a = b = 0, were obtained directly
from auxiliary response surface regressions based on partial-system simulations with the same Ts
and N as above. Each of these auxiliary regression equations employed a simulated 95% quantile as a
response variable and involved a constant, T−1 and its powers if necessary, as explanatory variables.
The regression equations vary in specification for the purpose of capturing the underlying smooth
response surfaces of various simulated quantiles; the graph of each regression’s actual and fitted
values was checked to ensure the capturing of the underlying smoothness. Estimated constants in
these regression equations are recorded in the columns for q∗

95 as approximate 95% limit quantiles.
The limit quantiles in q∗

95 for a = b = 0 (that is, no break cases) were taken from Doornik (2003).
Tables 1 and 2 show that the quantiles in q95 almost coincide with those in q∗

95 regardless of
specifications of the deterministic terms; see the seventh column of each table for

∣∣q95/q∗
95 − 1

∣∣, a series
of absolute relative errors, all of which are very small. This correspondence can be seen as strong
evidence supporting the validity of the proposed approximation method based on the full model.
Furthermore, the eighth column of each table records a class of discrepancies in approximate p-values,
defined as Δpapp = g

(
q95) (q95 − q∗

95
)
, in which g (·) represents a gamma density function calculated

from simulated mean and variance. Most of the discrepancies are very small, and even the largest
one is around 0.02 when p − r is relatively large, for which we should recall that a large value of p − r
could give rise to various other distortion issues in practice. The overall evidence allows us to argue
that the approximate quantiles work as useful critical values in applications from a practical viewpoint.
The Supplementary Materials includes an Ox code for simulating asymptic distribution. This can be
used if further precision is needed.

As a caveat in relation to large values for p − r, let us recall that our response surface regression
was conducted by using a class of realistic number of non-stationary variables, p − r = 1, . . . , 8,
which suffice in most applied research. Thus, an empirical study using a partial system of large
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dimension may require careful examinations of the underlying cointegrating rank, in addition to the
application of the proposed PLR tests to the data under study, as discussed by Juselius (2006, §8).

Table 1. A comparative analysis of 95% limit quantiles: broken linear-trend models.

p − r m − r a b q95 q∗95 |q95/q∗95 − 1| Δpapp

2 1 0.0 0.0 15.45 15.33 0.0078 0.0058
2 1 0.0 0.3 21.25 21.25 0.0000 0.0000
2 1 0.1 0.4 25.63 25.76 0.0050 −0.0065
2 1 0.2 0.3 27.23 27.11 0.0044 0.0055
2 1 0.3 0.3 27.74 27.62 0.0043 0.0056
4 3 0.0 0.0 50.29 50.08 0.0042 0.0100
4 3 0.0 0.3 65.09 64.97 0.0018 0.0057
4 3 0.1 0.4 77.01 76.84 0.0022 0.0082
4 3 0.2 0.3 80.25 80.11 0.0017 0.0068
4 3 0.3 0.3 81.92 81.84 0.0010 0.0039
5 3 0.0 0.0 57.35 57.32 0.0005 0.0015
5 3 0.0 0.3 72.27 72.03 0.0033 0.0112
5 3 0.1 0.4 84.00 83.98 0.0002 0.0010
5 3 0.2 0.3 87.23 87.10 0.0015 0.0063
5 3 0.3 0.3 88.44 88.47 0.0003 −0.0015
7 4 0.0 0.0 91.64 91.79 0.0016 −0.0077
7 4 0.0 0.3 110.97 110.81 0.0014 0.0076
7 4 0.1 0.4 126.33 126.34 0.0001 −0.0005
7 4 0.2 0.3 130.53 130.07 0.0035 0.0215
7 4 0.3 0.3 131.26 131.45 0.0014 −0.0097

Notes. q95 denotes 95% limit quantiles approximated from the full systems, while q∗
95 denotes those calculated

directly from the partial systems. Δpapp represents discrepancies in approximate p-values.

Table 2. A comparative analysis of 95% limit quantiles: broken constant models.

p − r m − r a b q95 q∗95 |q95/q∗95 − 1| Δpapp

2 1 0.0 0.0 12.21 12.28 0.0057 −0.0036
2 1 0.0 0.3 15.51 15.55 0.0026 −0.0020
2 1 0.1 0.4 18.24 18.35 0.0060 −0.0055
2 1 0.2 0.3 18.71 18.75 0.0021 −0.0020
2 1 0.3 0.3 18.81 18.87 0.0032 −0.0030
4 3 0.0 0.0 42.76 42.60 0.0038 0.0077
4 3 0.0 0.3 50.66 50.71 0.0010 −0.0024
4 3 0.1 0.4 57.40 57.67 0.0047 −0.0141
4 3 0.2 0.3 58.63 58.69 0.0010 −0.0029
4 3 0.3 0.3 58.83 58.90 0.0012 −0.0035
5 3 0.0 0.0 50.06 49.96 0.0020 0.0049
5 3 0.0 0.3 57.88 57.73 0.0026 0.0073
5 3 0.1 0.4 64.64 64.73 0.0014 −0.0046
5 3 0.2 0.3 65.66 65.50 0.0024 0.0078
5 3 0.3 0.3 65.62 65.66 0.0006 −0.0020
7 4 0.0 0.0 82.47 82.35 0.0015 0.0059
7 4 0.0 0.3 92.22 92.26 0.0004 −0.0020
7 4 0.1 0.4 101.46 101.56 0.0010 −0.0050
7 4 0.2 0.3 102.01 102.04 0.0003 −0.0015
7 4 0.3 0.3 101.81 102.16 0.0034 −0.0182

Notes. q95 denotes 95% limit quantiles approximated from the full systems, while q∗
95 denotes those calculated

directly from the partial systems. Δpapp represents discrepancies in approximate p-values.

4.2. Implementation of Response Surface

The response surface in Tables A1 and A2 are used as follows. The response surface is aimed at
the situation with two breaks. However, Theorem 4 shows that with a simple correction the response
surface can also be used with a single break or no break.
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In the case of q = 3 sample periods and thus 2 breaks at T1, T2, where 0 < T1 < T2 < T, we let a, b
be the smallest and second-smallest relative sub-sample length. Thus, if v1 = T1/T, v2 = (T2 − T1)/T,
v3 = (T − T2)/T so that v1 + v2 + v3 = 1. We choose a = min(v1, v2, v3) and b = median(v1, v2, v3).

In the case of q = 2 sample periods and thus 1 break at T1, where 0 < T1 <, then v1 = T1/T,
v2 = (T − T1)/T, so that v1 + v2 = 1. We let a = 0 and b = min(v1, v2).

In the case of q = 1 sample period and thus no break, let a = b = 0. Theorem 4 and (28) show that
the mean and variance for the cases where q < 3 can be found from those for q = 3 by choosing a, b as
indicated and subtracting (3 − q)(p − r) and 2(3 − q)(p − r), respectively.

Given the choices of p − r, m − r, a and b, compute the approximations to

f λ
p−r = log λp−r, f δ

p−r = log δp−r, cp−r = Cov(T1,T2). (32)

Table A1 is used for the case with a broken linear trend while Table A2 is used for the case with a
broken constant. This is then inserted in (31), which in turn is inserted into (29), (30), while correcting
for the number of breaks, that is,

E(
m−r

∑
i=1

Ti) =
m − r
p − r

exp ( f δ
p−r + f λ

p−r)− (3 − q)(m − r), (33)

Var(
m−r

∑
i=1

Ti) =
m − r
p − r

exp (2 f δ
p−r + f λ

p−r)− (m − r)(p − m)cp−r − 2(3 − q)(m − r). (34)

Finally, we approximate the quantile of interest or the p-value of the observed PLR statistic using
a gamma distribution with mean and variance matching (33) and (34). Equivalently, one can specify
the shape and scale of the gamma distribution as mean2/variance and variance/mean.

A spreadsheet for implementing the response surfaces in Tables A1 and A2 is available in the
Supplementary Materials. This also includes an Ox program for simulating the asymptotic distributions
and calculating p-values of observed test statistics for specifications outside the range covered by
Tables A1 and A2, for instance when the number of structural breaks is greater than 2 or q > 3.

5. Empirical Illustration

As empirical illustration, we analyse a set of quarterly time series data from Schreiber (2015),
who attained an econometric system for the exchange rate and bilateral trade between the UK and
Germany. She decomposed the UK-Germany economic system into two blocks, a foreign exchange
block and bilateral trade block, in order to obtain a data-congruent representation useful for forecasting
and policy analysis. Various econometric studies were conducted by Schreiber (2015), and one of them
was the analysis of a partial model for the bilateral trade block with a structural break. The methodology
developed in the above sections enables us to conduct formal tests for cointegrating rank that underlies
such a partial system subject to a break. This partial system analysis may also be encouraged in terms
of local power advantage of partial-system-based tests over those based on a full system under weak
exogeneity, as demonstrated by Doornik et al. (1998) as well as Kurita (2011).

Figure 1 presents an overview of the quarterly data spanning the sample period of the first quarter
in 1991—the second quarter in 2014, denoted as 1991.1–2014.2 hereafter. The variable tbt is the trade
balance between the UK and Germany, i.e., the difference between the log of exports of UK goods
to Germany and the log of imports of German goods to the UK; dulct represents the unit labour cost
differential between the two countries; yt and y∗

t denote the logs of the UK and German gross domestic
products, respectively; pppt represents the terms of trade in logarithm. See Schreiber (2015) for further
details of the data. The figure indicates the presence of a structural break around 2008–2009 attributable
to a global economic recession over this period.
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Figure 1. Data. (a) tbt is the trade balance between the UK and Germany; (b) dulct is the unit labour
cost differential between the UK and Germany; (c) yt and y∗

t are the logs of the UK and German gross
domestic products, respectively; (d) pppt is the terms of trade.

In this empirical illustration, we analyse the data using a bivariate partial autoregressive model
for tbt and dulct, with yt, y∗

t and pppt assumed to be weakly exogenous for the class of parameters of
interest such as cointegrating vectors; that is, p = 5 and m = 2. This assumption is based on Schreiber’s
study, suggesting that modelling the bilateral trade block centering on tbt and dulct appears to be
conformable to the underlying data structure. The lag-length k = 2 is selected for our bivariate partial
autoregressive model.

With regard to the issue on a structural break, we adopt a broken trend specification; that is,
the presence of a shift in the restricted trend as well as the unrestricted constant. The second sub-sample
period starts in 2008.3, corresponding to the observation point in Tq−1 for q = 2, which results in the
selection of relative break points a = 0 and b = 0.255. According to (10), our bivariate model with
k = 2 requires a set of two impulse dummy variables for the initial values of the second sub-sample
periods. In addition, a pair of impulse dummy variables, Dp1998(1) and Dp2006(2), is employed in
our model to capture outliers in the data, as in Schreiber (2015); the former variable is 1 in 1998.1 and
zero otherwise for an outlier due to the Asian financial crisis, while the latter is 1 in 2006.2 and zero
otherwise, corresponding to an outlier attributable to an increase in oil prices.

A set of residual diagnostic tests for the partial system is reported in Table 3. Most of the test
statistics are given in the form Fj(d f 1, d f 2), which denotes an approximate F test (with relevant
degrees of freedom d f 1 and d f 2) against the alternative hypothesis j. The alternative hypotheses are
specified as: 5th-order serial correlation (FAR5, Godfrey 1978), 4th-order autoregressive conditional
heteroscedasticity (FARCH4, Engle 1982), heteroscedasticity (FHET , White 1980). Chi-squared tests for
normality (χ2

ND, Doornik and Hansen 2008) are also recorded in the table. We also note the following
caveats based on recent advances in the field of mis-specification tests: Nielsen (2006) demonstrated
that FAR5 is a valid test in the presence of unit roots; Berenguer-Rico and Wilms (2018) showed that
FHET is valid after eliminating outliers from the observations, while χ2

ND is not necessarily valid after
the removal of outliers, which was demonstrated by Berenguer-Rico and Nielsen (2017). In any case,
no evidence is found in Table 3, suggesting significant mis-specification problems. We can thus judge
this partial system is formulated sufficiently well to be subjected to PLR tests for cointegrating rank.
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Table 3. Diagnostic test statistics for the estimated partial system.

Single-Eq. Tests tbt dulct Vector Tests

FAR5(5,66) 0.946[0.457] 0.777[0.570] FAR5(20,120) 0.542[0.943]
FARCH4(4,84) 0.469[0.758] 0.511[0.728] FHET(93,162) 0.838[0.825]
FHET(31,56) 0.726[0.831] 1.016[0.468] χ2

ND(4) 2.233[0.693]
χ2

ND(2) 1.341[0.512] 0.426[0.808]

Notes. Figures in square brackets are p-values.

Table 4 presents a class of PLR test statistics for the determination of cointegrating rank, along with
the corresponding p-values and approximate 95% limit quantiles calculated from the response surface
outcomes in the previous section. We used Table A1 in Appendix A to calculate approximates to
log δp−r, log λp−r and Cov(T1,T2), and then applied them to the mappings (29) and (30) adjusted for
extraχ2 terms, so that the gamma-distribution approximation method yielded the p-values. Table 4
shows that, at the 5% level, the null hypothesis r = 0 is rejected while the hypothesis r ≤ 1 fails to be
rejected. Hence, this formal analysis enables us to reach the conclusion of r = 1, which supports the
informal analysis of Schreiber (2015).

Table 4. Testing for cointegrating rank.

r = 0 r ≤ 1

PLR{H�(r) |H�(2) } 56.610[0.014]∗ 21.964[0.148]
95% limit quantiles 50.864 26.334

Notes. Figures in square brackets are p-values. ∗ denotes significance at the 5% level.

The estimated cointegrating relationship under some additional restrictions is

tb = 0.259
(0.121)

dulct − 0.726
(0.3)

pppt + 2.34
(0.323)

(y∗
t − yt)− 0.019

(0.004)
t1(≥2009:1) + υt, (35)

where a figure in brackets under each coefficient is a standard error and υt is a stationary error.
The signs of the coefficients in (35) are the same as those in Schreiber (2015)’s cointegrating equation
except for y∗

t . The German income y∗
t was insignificant in her cointegrating relationship and thus

removed from it, while, in (35), y∗
t plays a significant role, along with yt. As a result of checking a set

of unrestricted estimates for the cointegrating vector, we have arrived at Equation (35), where the
coefficients of yt and y∗

t are restricted to add to zero, while a zero-restriction is placed on the coefficient
for t1(≤2008:2); that is, a linear trend is present only in the second sub-sample period. The PLR test
statistic for these restrictions is 3.571[0.168], in which the figure in square brackets is a p-value according
to χ2(2). Thus, the hypothesis of the overall restrictions cannot be rejected at the 5% level.

There are several interesting aspects of Equation (35) that are worth discussing here. The real
income difference between Germany and the UK, y∗

t − yt, has a positive coefficient, implying that
a spread in the income difference leads to an improvement in the UK trade balance with Germany.
This finding is interpretable in the context of an income effect from each of the two countries.
The coefficient for the terms of trade, pppt, should also be noted. It is negative, thus indicating
a relative price effect on the trade balance in a theory-consistent manner; that is, a decrease in exports
prices relative to import prices leads to trade balance improvement, so that the well-known elasticity
approach to trade balance appears to be empirically valid for the two countries. Furthermore, the linear
trend t is significant solely in the second sub-sample period, suggesting long-lasting influences of the
global recession on the two countries’ trade balance and other economic variables.

Finally, we will check that the three variables, yt, y∗
t and pppt, are indeed weakly exogenous for

the class of parameters of interest. We follow the testing procedure suggested by Johansen (1992a),
Boswijk (1992) and HJNR. First, the restricted cointegrating combination is added as a regressor to
a marginal system (9) for Zt = (yt, y∗

t , pppt)
′. Second, a standard regression analysis is performed to
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test for the significance of the cointegrating combination in each equation. Table 5 reports a class of
LR test statistics for the exclusion of the empirical cointegrating linkage from each equation in the
marginal system. Judging from the reported p-values according to χ2(1), none of the test statistics
indicate evidence against the assumption of weak exogeneity; thus, the preceding partial-system
analysis of cointegrating rank has been justified.

Table 5. Checking weak exogeneity.

yt y∗
t pppt

0.004[0.951] 1.183[0.277] 1.954[0.162]

Notes. Figures in square brackets are p-values.

6. Conclusions

This study has explored partial cointegrated vector autoregressive models subject to structural
breaks in deterministic terms, a linear trend and constant. The Granger–Johansen representation of the
full model in JMN has been reexamined, leading to a useful clarification of roles of the initial values in
asymptotic analysis. A class of log likelihood ratio test statistics for cointegrating rank has then been
introduced in the proposed partial-model framework. We have investigated asymptotic theory under
a general class of innovation distributions allowing martingale difference sequences with conditional
heteroscedasticity. The derived limit distributions of the statistics are closely related to those for the
full models investigated by JMN. This relationship allows us to perform a response surface analysis in
a simplified full-system framework, instead of relying on laborious partial-system-based simulations.
The outcomes of the analysis are summarised as a set of two statistical tables providing valuable
information for inference on the underlying cointegrating rank. Lastly, an empirical analysis of real-life
data from the UK and Germany has demonstrated the practicality of these tables in applied economic
research. As a result of this study, the partial cointegrated models have become more flexible and
reliable devices for modelling time series data subject to various structural breaks.

Recently, bootstrap methods have been proposed for cointegration rank testing in full systems
(Cavaliere et al. 2012). It would be interesting to extend those to partial systems with or without breaks.
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Appendix A. Tables for Response Surfaces

Table A1. Response surfaces for broken trend models.

log λp−r log δp−r Cov(T1,T2)

const. 4.14 const. 0.5987 const. −1.298
(p − r)−1 −6.301 p − r −0.0538 1(2) 0.03616
(p − r)−2 5.8842 a −1.039 1(4) −0.027
(p − r)−3 −2.32576 b −0.39 (p − r)−3 −2.022
p − r 0.17 (p − r)2 0.00686 a −8.689
a 2.6165 a2 5.547 b 2.225
b 2.5245 ab 2.331 a2 59.77
(p − r)a −0.0572 b2 1.841 ab 24.31
(p − r)b −0.0971 (p − r)3 −0.00033 b2 −5.156
a2 −7.550 a3 −10.42 a3 −133.5
ab −5.323 ab2 −4.325 ab2 −59.05
b2 −7.412 b3 −2.553 a(p − r)−1 −29.55
(p − r)3 −0.000124 a(p − r)−1 9.905 b(p − r)−1 −66.58
(p − r)ab 0.161 b(p − r)−1 1.862 b2(p − r)−1 255.3
(p − r)b2 0.179 a2(p − r)−1 −61.09 a3(p − r)−1 280.5
a3 10.40 ab(p − r)−1 −17.09 ab2(p − r)−1 155.3
ab2 6.096 b2(p − r)−1 −11.48 b3(p − r)−1 −240
b3 5.851 a3(p − r)−1 117.68 a(p − r)−2 21.32
a(p − r)−1 −8.860 ab2(p − r)−1 35.19 b(p − r)−2 71.68
b(p − r)−1 −4.948 b3(p − r)−1 18.6 b2(p − r)−2 −305.7
a2(p − r)−1 46.15 a(p − r)−2 −8.836 a2b(p − r)−2 −321.1
ab(p − r)−1 31.85 b(p − r)−2 1.033 b3(p − r)−2 332.1
b2(p − r)−1 26.12 a2(p − r)−2 66.94 (p − r)1(3) 0.038

a3(p − r)−1 −86.58 ab(p − r)−2 10.84 b21(3) −0.184
ab2(p − r)−1 −50.50 a3(p − r)−2 −140.88
b3(p − r)−1 −28.78 ab2(p − r)−2 −30.16
a(p − r)−2 5.296 b3(p − r)−2 −10.05
b(p − r)−2 2.386 a1(1) 2.107
a2(p − r)−2 −29.03 b1(1) −1.029
ab(p − r)−2 −19.46 a21(1) −20.63
b2(p − r)−2 −13.42 b21(1) 3.511
a3(p − r)−2 62.00 a31(1) 45.85
a2b(p − r)−2 −5.880 ab21(1) 4.267
ab2(p − r)−2 34.59 (p − r)b21(2) 0.062
b3(p − r)−2 15.93

Note: 1(x) is 1 when p − r = x and zero otherwise.
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Table A2. Response surfaces for broken constant models.

log λp−r log δp−r Cov(T1,T2)

const. 4.95486 const. 0.4472 const. −1.531
(p − r)−1 −9.263 (p − r)−2 1.17564 (p − r)−1 0.9029
(p − r)−2 9.162 (p − r)−3 −1.5294 a 4.164
(p − r)−3 −3.662 b 0.8286 (p − r)2 0.01579
a 3.05 (p − r)b −0.0646 (p − r)b 0.3388
b 0.3315 ab 1.75 ab −27.16
(p − r)2 0.01738 (p − r)b2 0.04051 b2 −14.15
(p − r)a −0.128 a3 −2.084 (p − r)3 −0.0013
a2 −14.61 ab2 −3.698 (p − r)2b −0.0167
ab −4.14 b3 −0.788 a3 −19.65
b2 −2.419 a(p − r)−1 −4.819 a2b 14.03
(p − r)3 −0.00084 b(p − r)−1 −3.897 ab2 42.2
(p − r)a2 0.3264 a2(p − r)−1 30.49 b3 17.43
(p − r)ab 0.1302 ab(p − r)−1 −5.108 a(p − r)−1 −77.72
(p − r)b2 0.0266 b2(p − r)−1 2.273 b(p − r)−1 −20.52
a3 21.56 a3(p − r)−1 −40.9 a2(p − r)−1 278.7
ab2 5.56 ab2(p − r)−1 13.37 ab(p − r)−1 313.6
b3 3.03 a(p − r)−2 16 b2(p − r)−1 169.1
a(p − r)−1 −5.742 b(p − r)−2 3.795 a3(p − r)−1 −461.7
b(p − r)−1 3.339 a2(p − r)−2 −110.5 ab2(p − r)−1 −562.9
a2(p − r)−1 44.2 a3(p − r)−2 184.8 b3(p − r)−1 −221.2
ab(p − r)−1 9.66 ab2(p − r)−2 −4.478 a(p − r)−2 81.64
b2(p − r)−1 −4.44 (p − r)1(1) 0.5014 a2(p − r)−2 −315

a3(p − r)−1 −81.67 a1(1) −9.833 ab(p − r)−2 −384.8
ab2(p − r)−1 −15.2 a21(1) 73.02 b2(p − r)−2 −114.6
a(p − r)−2 2.41 b21(1) −5.835 a3(p − r)−2 804
b(p − r)−2 −3.44 a31(1) −130.2 a2b(p − r)−2 −290
a2(p − r)−2 −24.23 b31(1) 4.743 ab2(p − r)−2 860.7
b2(p − r)−2 9.6 (p − r)2a1(2) −0.2472 b3(p − r)−2 205.2
a3(p − r)−2 47.34 (p − r)2b1(2) 0.06919 b21(2) 0.18
b3(p − r)−2 −7.22 (p − r)a21(2) 3.765 (p − r)31(2) −0.00017

(p − r)b21(2) −0.884 (p − r)a1(3) 1.337
a31(2) −14.06 (p − r)b1(3) −0.0215
b31(2) 1.944 (p − r)2a1(3) −0.408

Note: 1(x) is 1 when p − r = x and zero otherwise.

Appendix B. Proof of the Granger–Johansen Representation

This section provides a proof of Theorem 1, in which the Granger–Johansen representation of the
full model with deterministic breaks is presented.

Proof of Theorem 1. The companion form of the homogenous Equation (13) is

ΔX̃t−1 = αβ′X̃t−1 + ιεt,

on the effective sample, see (7). As shown by Hansen (2005, Lemma A.1), rank(α′
⊥Ψβ⊥) = p − r stated

in Assumption 1 implies that the above homogenous equation is an I(1) system satisfying

β′X̃t = (Ir + β′α)β′X̃t−1 + β′ιεt with |eigen(Ir + β′α)| < 1,

which is a stable equation (Lai and Wei 1985).
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We then follow Kurita and Nielsen (2009) in the analysis of non-stationary components. Start by
the homogenous Equation (13) for 1 ≤ j ≤ q and Tj−1 + k < t ≤ Tj:

ΔX̃t = αβ′X̃t−1 +
k−1

∑
i=1

ΓiΔX̃t−i + εt.

Pre-multiplying the above equation by α′
⊥ and replacing ΔX̃t−i = ΔX̃t − ∑i−1

�=0 Δ2X̃t−�, we collect
repeated terms ΔX̃t on the left-hand side to find

α′
⊥ΨΔX̃t = −α′

⊥
k−1

∑
i=1

Γi

i−1

∑
�=0

Δ2X̃t−� + α′
⊥εt,

by recalling Ψ = Ip − ∑k−1
i=1 Γi. Summing α′

⊥ΨΔX̃s over s = Tj−1 + k + 1, . . . , t yields

α′
⊥ΨX̃t = α′

⊥
t

∑
s=Tj−1
+k+1

εs − α′
⊥

k−1

∑
i=1

Γi

i−1

∑
�=0

ΔX̃t−� − α′
⊥ΨX̃Tj−1+k + α′

⊥
k−1

∑
i=1

Γi

i−1

∑
�=0

ΔX̃Tj−1+k−�.

Apply the orthogonal projection identity α′
⊥ΨX̃t = α′

⊥Ψβ⊥ β̄′
⊥X̃t + α′

⊥Ψβ̄β′X̃t to the left-hand
side and then pre-multiply both sides by β⊥(α′

⊥Ψβ⊥)−1 to find the C matrix. Shifting CΨβ̄β′X̃t to the
right hand side, we arrive at

β⊥ β̄′
⊥X̃t = C ∑t

s=Tj−1+k+1 εs − CΨβ̄β′X̃t − C ∑k−1
i=1 Γi ∑i−1

�=0 ΔX̃t−�

−CΨX̃Tj−1+k + C ∑k−1
i=1 Γi ∑i−1

�=0 ΔX̃Tj−1+k−�.

Adding β̄β′X̃t on both sides results in

X̃t = C ∑t
s=Tj−1+k+1 εs + (I − CΨ)β̄β′X̃t − C ∑k−1

i=1 Γi ∑i−1
�=0 ΔX̃t−�

−CΨX̃Tj−1+k + C ∑k−1
i=1 Γi ∑i−1

�=0 ΔX̃Tj−1+k−�.
(A1)

Using the notation Υi = −Γi − · · · − Γk−1 for 1 ≤ i ≤ k − 1 as well as the matrix Λ defined in (14)
leads to the first desired result (17).

Next, we move on to the non-homogenous formulation (12), in which μj and γj are distinct from
zero. Replace Xt in (12) with X̃t + τc,j + τl,jt and refer to the proof of Theorem 2.1 in JMN to find

Ψτl,j = αβ′(τc,j − τl,j) + μj and β′τl,j + γ′
j = 0. (A2)

Applying (A2) to (12) recovers the homogenous Equation (13), so the above results derived for (13)
are all applicable to (12) under (A2). Substituting X̃t = Xt − τc,j − τl,jt into (A1) yields the desired
representation (18).

Appendix C. Proofs of Asymptotic Results

In this section, we present a high-level assumption which overrides Assumptions 2 and 3 in
the subsequent arguments. We then provide some specific lemmas required for proofs of the limit
theorems in Section 3. Finally, we proceed to the proofs of Theorems 2 and 3.

We introduce some notation. For a vector v, let the outer product be v⊗2 = vv′. For a matrix m,
the spectral norm is ||m||2 = max eigen(m′m). Note that ||m||2 ≤ tr(m′m).

Appendix C.1. A High Level Assumption

In order to give proofs of the theorems introduced in this paper, we need a Law of Large Numbers
for the approximately stationary components of the full model, while we require a Functional Central
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Limit Theorem and a convergence to a stochastic integral for the non-stationary components of the full
model. We formulate these as a the following high level assumption and then prove that it is satisfied
under Assumptions 1 and 2.

Assumption A1. Let εt be a p-dimensional random variables and suppose that Assumption 1 is satisfied.
Let X̃t satisfy the homogenous Equation (13) and define Ut−1 as

Ut−1 =

⎛⎜⎜⎜⎜⎝
β′X̃t−1

ΔX̃t−1
...

ΔX̃t−k+1

⎞⎟⎟⎟⎟⎠ .

Suppose that

T−1/2 max
1≤t≤T

|Ut| = oP(1) (A3)

and

T−1
T

∑
t=1

⎛⎜⎝ εt

Ut−1

1

⎞⎟⎠
⊗2

P→

⎛⎜⎝ Ω 0 0
0 Σu 0
0 0 1

⎞⎟⎠ , (A4)

where Ω and Σu are positive definite matrices. Furthermore, let Wu be a p-dimensional Brownian motion with
variance Ω. Suppose that, for 0 ≤ u ≤ 1,

T−1/2
int(Tu)

∑
t=1

εt
D→ Wu, (A5)

as a process on (D[0, 1])p endowed with the Skorokhod metric with common distortion. Finally,

T−1
T

∑
t=1

t−1

∑
s=1

εsε′t
D→

∫ 1

0
WudW ′

u. (A6)

The next result explores the conditions of Brown (1971). Subsequently, we use this to show that
Assumptions 1 and 2 imply Assumption A1.

Lemma A1. Suppose Assumption 2 is satisfied. Then,

(a) T−1 ∑T
t=1 εtε

′
t

P→ Ω;

(b) T−1 ∑T
t=1 E{ε′tεt1(ε′tεt>δT)|Ft−1} P→ 0 for all δ > 0;

(c) T−1 ∑T
t=1 E{ε′tεt1(ε′tεt>δT)} → 0 for all δ > 0;

(d) max1≤t≤T |ε2
t |/T P→ 0.

Proof of Lemma A1. (b, c) Brown (1971, Lemma 2) shows that the conditional Lindeberg condition (b)
and the marginal Lindeberg condition (c) are equivalent under Assumption 2(i, ii).

First, suppose Assumption 2(iii.a), so that supt∈N E{ε′tεt1(ε′tεt>a)|Ft−1} = oP(1) as a → ∞. Thus,
∀ξ > 0, ∃a0 and ∀a ≥ a0, it follows that

P[supt∈N E{ε′tεt1(ε′tεt>a)|Ft−1} > ξ] < ξ.
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Thus, given δ > 0 and for ∀T > a0/δ, we find

E{ε′tεt1(ε′tεt>δT)|Ft−1} ≤ E{ε′tεt1(ε′tεt>a0)
|Ft−1} < ξ,

so that the conditional Lindeberg condition (b) follows.
Second, suppose Assumption 2(iii.b), so that supt∈N E|εt|4 < ∞. Chebychev’s inequality gives

E{1(ε′tεt>δT)} = P(ε′tεt > δT) ≤ 1
δ2T2E|εt|4.

Next, by the Cauchy–Schwarz inequality and Assumption 2(iii.b), we get

E{ε′tεt1(ε′tεt>δT)} ≤ [E|εt|4E{1(ε′tεt>δT)}]1/2 ≤ δ−1T−1E|εt|4 ≤ δ−1T−1 sup
t∈N

E|εt|4 ≤ δ−1T−1C.

Hence, T−1 ∑T
t=1 E{ε′tεt1(ε′tεt>δT)} ≤ δ−1T−1C → 0 so that the marginal Lindeberg condition

(c) holds.

(a) We define U2
T = T−1 ∑T

t=1 εtε
′
t and V2

T = T−1 ∑T
t=1 E(εtε

′
t|Ft−1) and show that ||U2

T −V2
T || P→ 0.

Since U2
T − V2

T is symmetric, the spectral norm equals the spectral radius, thus it suffices to show
that v′(U2

T − V2
T)v vanishes for any linear combination v. In turn, it suffices to consider univariate

martingale difference sequences εt.
First, suppose Assumption 2(iii.a) holds, so that supt∈N E{ε2

t 1(ε2
t>a)|Ft−1} = oP(1) as a → ∞.

We follow an argument inspired by Anderson and Kunitomo (1992, Theorem 2). Hall and Heyde

(1980, Theorem 2.23) show that U2
T − V2

T
P→ 0 whenever the Lindeberg condition in part (b) holds and

supT∈N P(V2
T > λ) → 0 as λ → ∞. To prove the tightness condition, note that

V2
T = T−1

T

∑
t=1

E{ε2
t 1(ε2

t ≤λ)|Ft−1}+ E{ε2
t 1(ε2

t>λ)|Ft−1} ≤ λ + sup
t∈N

E{ε2
t 1(ε2

t>λ)|Ft−1}.

Thus, to analyse the tightness probability bound,

P(V2
T > 2λ) ≤ P[λ + sup

t∈N
E{ε2

t 1(ε2
t>λ)|Ft−1} > 2λ] = P[sup

t∈N
E{ε2

t 1(ε2
t>λ)|Ft−1} > λ].

This bound is uniform in T so that supT∈N P(V2
T > λ) ≤ P[supt∈N E{ε2

t 1(ε2
t>λ)|Ft−1} > λ],

which vanishes by Assumption 2(iii.a).
Second, suppose Assumption 2(iii.b) holds, so that supt∈N Eε4

t < C < ∞. Let mt = ε2
t −E(ε2

t |Ft−1).
The Chebychev inequality and the uncorrelatedness of martingale differences gives

P = P(|T−1
T

∑
t=1

mt| > ε) ≤ 1
ε2E|T

−1
T

∑
t=1

mt|2 =
1

T2ε2E
T

∑
t=1

m2
t .

Jensen’s inequality shows E{E(ε2
t |Ft−1)}2 ≤ E{E(ε4

t |Ft−1)} = Eε4
t . Thus, the inequality

(a + b)2 ≤ 2(a2 + b2) shows that Em2
t ≤ 2[Eε4

t + E{E(ε2
t |Ft−1)}2] ≤ 4Eε4

t ≤ 4C < ∞. Thus,
P ≤ (Tε2)−14C → 0.

(d) We show PT = P(max1≤t≤T |εt|2 > δT) → 0 for all δ > 0. Note that PT =
⋃T

t=1 P(|εt|2 > δT).
Boole’s inequality gives PT ≤ ∑T

t=1 P(|εt|2 > δT) = ∑T
t=1 E1(|εt |2>δT). On the set (|εt|2 > δT), we get

the further bound PT ≤ δ−1T−1 ∑T
t=1 E|εt|21(|εt |2>δT), which vanishes by part (c).

We then prove that Assumption A1 is satisfied under Assumptions 1 and 2.

Lemma A2. Suppose that Xt and εt satisfy Assumptions 1 and 2, respectively, while X̃t solves the homogenous
Equation (13). Then, Assumption A1 is satisfied.
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Proof of Lemma A2. Note that the process Ut equals β′X̃t, which is studied in Theorem 1. It satisfies
Equation (16), which is of the form Ut = ΦUt−1 + Fεt with Φ = (Ir + β′α) for r = r + p (k − 1) and
F = β′ι, where Φ has spectral radius less than unity as verified in Theorem 1.

For (A3), we apply Anderson and Kunitomo (1992, Lemma 1). This requires that max1≤t≤T |εt|2 =

oP(T), which is proved in Lemma A1 using Assumption 2.
For (A4), use Assumption 2(iii.a). We apply Lemma 2 in Anderson and Kunitomo (1992)

to show the convergence of the product moment matrix, which requires Assumption 2(ii, iii.a).
Assumption 2 states that Ω is a positive definite matrix, which results in the positive definiteness of Σu

by Anderson and Kunitomo (1992, Lemma 3).
For (A4) using Assumption 2(iii.b). We follow Anderson and Kunitomo (1992, Lemma 2) but avoid

their truncation argument. We first argue that ∑T
t=1 Ut−1Fε′t = oP(T). Since Ut−1Fε′t is a martingale

difference sequence with second moments due to Assumption 2(ii) and the spectral norm is bounded
by the trace, we obtain

E = E||
T

∑
t=1

Ut−1Fεt||2 ≤ Etr
T

∑
s=1

T

∑
t=1

Ut−1Fε′tεsF′U ′
s−1 = Etr

T

∑
t=1

Ut−1Fε′tεtF′U ′
t−1.

Applying iterated expectations and using that max1≤t≤T E|εt|2 is bounded by Assumption 2(iii.b)
gives E ≤ C ∑T

t=1 E|Ut−1|2. Noting that Ut = ∑t−1
j=0 ΦjFεt−j + ΦtU0 and using that εt is a martingale

difference array, we arrive at

EU ′
t−1Ut−1 = E

t−2

∑
j=0

ε′t−1−jF
′(Φj)′ΦjFεt−1−j =

t−2

∑
j=0

tr{F′(Φj)′ΦjF}E|εt−1−j|2.

Using that max1≤t≤T E|εt|2 is bounded and Φ has spectral radius less than unity,

E|Ut−1|2 ≤
∞

∑
j=0

tr{F′(Φj)′ΦjF} max
1≤t≤T

E|εt|2 ≤ C.

As a consequence E = O(T) and, by the Markov inequality, ∑T
t=1 Ut−1Fε′t = oP(T). Next, we

show T−1 ∑T
t=1 Ut−1U ′

t−1 → ΣU in probability. Since Ut−1 = ΦUt−2 + Fεt−1, then

T−1
T

∑
t=1

Ut−1U ′
t−1 = ΦT−1

T

∑
t=1

Ut−2U ′
t−2Φ′ + T−1

T

∑
t=1

Fεt−1ε′t−1F′

+ΦT−1
T

∑
t=1

Ut−2ε′t−1F′ + T−1
T

∑
t=1

Fεt−1U ′
t−2Φ′.

Here, the second term converges to FΩF′ by Assumption 2(i) while the last two terms vanish.
Since max1≤t≤T |Ut| = oP(T1/2), we therefore get

T−1
T

∑
t=1

Ut−1U ′
t−1 = ΦT−1

T

∑
t=1

Ut−1U ′
t−1Φ′ + FΩF′ + oP(1).

This is a linear equation in T−1 ∑T
t=1 Ut−1U ′

t−1 so that T−1 ∑T
t=1 Ut−1U ′

t−1 → ΣU in probability
where ΣU solves ΣU = ΦΣUΦ′ + FΩF′. Anderson and Kunitomo (1992, Lemma 3) show invertibility
of ΣU .

For (A5), the Functional Central Limit Theorem follows from the univariate result of
Brown (1971, Theorem 3), equipped with Cramér–Wold device, see Billingsley (1968, Theorem 7.7).
Brown’s result applies under Assumption 2(i, ii) and either of the Lindeberg condition established
in Lemma A1(b, c) under Assumption 2. When using Brown’s result, it is convenient to define the
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univariate variables St = ∑t
s=1 εs and s2

t = ∑t
s=1 Eε2

s . Brown is concerned with the continuously
embedded random walk through the points (s2

t /s2
T), (St/sT), while we are concerned with the right

continuous random walk that is constant (St/T1/2) on the half-open intervals [t/T1/2, (t + 1)/T1/2).
The two embeddings reconcile since s2

t /s2
T = tσ2 for some constant σ2 by Assumption 2(i) and since

max1≤t≤T |ε|/T1/2 vanishes by Lemma A1(d) under Assumption 2.
For (A6), the convergence to a stochastic integral for the univariate case is based on the results of

Jakubowski et al. (1989), which was referred to by Kurtz and Protter (1996), while the convergence
to a stochastic integral for the multivariate case is based on the results of Kurtz and Protter (1991).
For the univariate case, Kurtz and Protter (1996, Theorem 7.1) show that we need to check that the
martingale array MT

t = T−1/2 ∑t
s=1 εs is uniformly tight, as required by Jakubowski et al. (1989) or,

equivalently, it has uniformly controlled variations. We use Kurtz and Protter (1991, Theorem 2.2),
which applies to the multivariate case; see also Hansen (1992, Theorem 2.1). Choose δ = ∞ so that
MT,δ

t = MT
t in Kurtz and Protter’s notation. For each α > 0, T ≥ 1, choose stopping times τT,α = ∞ so

that P(τT,α ≤ α) = 0 ≤ 1/α. Then, we obtain a quadratic variation processes

[MT,δ]t∧τT,α = T−1
t∧τT,α

∑
s=1

εsε′s ≤ T−1
T

∑
t=1

εtε
′
t = [MT,δ]T ,

so that E[MT,δ]t∧τT,α ≤ E[MT,δ]T . From Assumption 2(i), it follows that E[MT,δ]T → Ω. Consequently,
we have supT ||E[MT,δ]T || < ∞. In turn, supT ||E[MT,δ]t∧τT,α || < ∞ for each t, so that MT

t has uniformly
controlled variations.

Proof of Lemma 1. Assumption 3 has E(εtε
′
t|Ft−1) = Ω a.s., so that T−1 ∑T

t=1 E(εtε
′
t|Ft−1) = Ω a.s.

follows and Assumption 2(ii) holds. Taking iterated expectations, we obtain E(εtε
′
t) = Ω, which leads

to T−1 ∑T
t=1 E(εtε

′
t) = Ω and thus Assumption 2(i) is satisfied. Lastly, we show that Assumption 2(iii.a)

is implied by Assumption 3(ii). Using Hölder’s inequality, we find, for η = ξ/2 > 0,

E{ε′tεt1(ε′tεt>a)|Ft−1} ≤ [E(|εt|2+2η |Ft−1)]
1/(1+η)[E{1(1+η)/η

(ε′tεt>a) |Ft−1}]η/(1+η),

in which we note the equality 1(1+η)/η

(ε′tεt>a) = 1(ε′tεt>a). Hence, writing the expectation of the indicator as
a probability, and also using Markov’s inequality, we arrive at

E{1(1+η)/η

(ε′tεt>a) |Ft−1} = P(ε′tεt > a|Ft−1) ≤ 1
a1+η

E{(ε′tεt)
1+η |Ft−1}.

In combination, we obtain E{ε′tεt1(ε′tεt>a)|Ft−1} ≤ a−ηE(|εt|2+2η |Ft−1), which vanishes as a → ∞
uniformly in t, since the E(|εt|2+2η |Ft−1) is uniformly bounded by assumption.

Remark A1. We give an example of a martingale difference sequence (εt, Ft) satisfying supt∈N E|εt|4 <

∞ but violating Assumption 2(iii.a), i.e., supt∈N E{|εt|21(|εt |2>a)|Ft−1} → 0 in probability, which is
from Anderson and Kunitomo (1992). Consider the probability space {(0, 1], F ,P}, where F is the Borel
field on (0, 1] and P is the uniform distribution. Consider also a dyadic sequence with indices n = 1, 2, . . . and
kn = 1, . . . , 2n, so that t = ∑n−1

j=1 2j + kn, and define

εt(ω) = εnkn(ω) =

⎧⎪⎨⎪⎩
n if 2kn − 1 < 2n+1ω ≤ 2kn,
−n if 2kn − 2 < 2n+1ω ≤ 2kn − 1,
0 otherwise.

⎫⎪⎬⎪⎭ .

We note that Eεt = 0 while Eε4
t = n4/2n is uniformly bounded in n. The natural filtration of εt is

then given by the σ-fields F0 = σ{[0, 1]}, F1 = σ{(0, 1
4 ], (

1
4 , 1

2 ], F0}, F2 = σ{( 1
2 , 3

4 ], (
3
4 , 1], F1}, F3 =
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σ{(0, 1
8 ], (

1
8 , 1

4 ], F2} and so on. We find that E(εt|Ft−1) = 0 while [supt∈N E{|εt|21(|εt |2>a)|Ft−1}](ω) = ∞
for all a and all ω, so that the random variables supt∈N E{|εt|21(|εt |2>a)|Ft−1} cannot vanish in probability.

Appendix C.2. Several Lemmas for the Partial Systems

The asymptotic properties of the product moment matrices,Sij for i, j = 0, 1 defined in (24),
are investigated so as to adapt Lemmas 10.1 and 10.3 of Johansen (1995) to the present model. We do
this by combining various ideas and techniques from HJNR, JMN and Kurita and Nielsen (2009).
These papers assume normal innovations, which we have generalised as Assumptions 2 and 3 in our
study. This means that we have to be careful when defining the limits of product moments of various
non-integrated components. This issue is addressed in the following lemma:

Lemma A3. Suppose that Assumptions 1 and A1 are satisfied. Let

Vt =

⎛⎜⎝ εt

ΔXt

β′Xt−1 + γjt

⎞⎟⎠ , Qt =

⎛⎜⎝ ΔXt−1
...

ΔXt−k+1

⎞⎟⎠ and Qt =

(
Qt

1

)
.

Let vj = Tj/T be relative break points for j = 0, . . . , q and define the sample product moment matrix of Vt

corrected for Qt and a constant as

MVV ·Q,1 =
q

∑
j=1

1
T

Tj

∑
t=Tj−1+k

⎧⎪⎨⎪⎩Vt −
Tj

∑
s=Tj−1+k

VtQ
′
s

⎛⎝ Tj

∑
s=Tj−1+k

Q⊗2
s

⎞⎠−1

Qt

⎫⎪⎬⎪⎭
⊗2

.

Then, as T → ∞ with fixed relative break points vj, we get that MVV ·Q,1 converges in probability to a
positive definite matrix with the structure⎛⎜⎝ Ω Ω 0

Ω Σxx Σxβ

0 Σβx Σββ

⎞⎟⎠ , (A7)

where Σxβ = αΣββ and Σxx = αΣβx + Ω hold.

Proof of Lemma A3. We start with the homogenous Equation (16). For 1 ≤ j ≤ q and Tj−1 + k < t ≤ Tj,
this equation can always be solved as

β′X̃t =

t−Tj−1−k

∑
s=1

(Ir + β′α)t−Tj−1−k−sβ′ιεTj−1+k+s + (Ir + β′α)t−Tj−1−kβ′X̃Tj−1+k,

and, in the first sub-sample period or j = 1, the initial value β′X̃T0+k = β′X̃k can be treated as fixed, so
that the process β′X̃t for T0 + k < t ≤ T1 becomes uniformly bounded in probability by noting that it
equals Ut in Assumption A1. Similarly, by iterating over all the other start-up values, the process β′X̃t

for Tj−1 + k < t ≤ Tj and j = 2, . . . , q is also uniformly bounded in probability. Since the number of
breaks is finite, β′X̃t is uniformly bounded in probability jointly for 1 ≤ j ≤ q.

Next, the Granger–Johansen representation (18) implies that, for 1 ≤ j ≤ q and Tj−1 + k < t ≤ Tj,

ΔXt = Cεt + ΔUt + τ�,j and β′Xt + γjt = β′Ut + β′τc,j,
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where

Ut = (I − CΨ)β̄β′X̃t − C
k−1

∑
i=1

Γi

i−1

∑
�=0

ΔX̃t−�.

Since β′X̃t is uniformly bounded in probability, it follows that Ut is also uniformly bounded in
probability. Note that Ut is identical throughout all sub-sample periods. The intercepts τ�,j and β′τc,j
are eliminated from ΔXt and β′Xt + γjt respectively, when demeaning them within each sub-sample
period. Consequently, we can apply the Law of Large Numbers (A4) in Assumption A1 to

1
Tj − Tj−1 − k

Tj

∑
t=Tj−1+k

⎧⎨⎩
(

Vt

Qt

)
− 1

Tj − Tj−1 − k

Tj

∑
s=Tj−1+k

(
Vs

Qs

)⎫⎬⎭
⊗2

, (A8)

which, for 1 ≤ j ≤ q, converges in probability to a positive definite matrix denoted as⎛⎜⎜⎜⎜⎜⎝
N(j)

εε N(j)
εx N(j)

εβ N(j)
εq

N(j)
xε N(j)

xx N(j)
xβ N(j)

xq

N(j)
βε N(j)

βx N(j)
ββ N(j)

βq

N(j)
qε N(j)

qx N(j)
qβ N(j)

qq

⎞⎟⎟⎟⎟⎟⎠ ,

for N(j)
εε = Ω by Assumption A1. Since both Xt−1 and Qt consist of the past values of εt, it follows

from (A4) that N(j)
εβ = 0 and N(j)

εq = 0 hold. Note that the model equation is

εt = ΔXt − α(β′Xt−1 + γjt)− ΓQt + μj, (A9)

for Γ = (Γ1, . . . , Γk−1). We can derive three properties from this equation. First, we post-multiply (A9)
by ε′t and then exploit N(j)

εβ = 0 and N(j)
εq = 0 to find Ω = N(j)

εε = N(j)
xε − 0 − 0 = N(j)

xε , which is the first
property. The next one is

(N(j)
xβ , N(j)

xq )

⎛⎝ N(j)
ββ N(j)

βq

N(j)
qβ N(j)

qq

⎞⎠−1

= (α, Γ), (A10)

where the left-hand side is the limit of the sample regression coefficient for ΔXt regressed on
β′Xt−1 + γjt, Qt and an intercept. This property is demonstrated by substituting εt + α(β′Xt−1 +

γjt) + ΓQt − μj from (A9) into ΔXt; we then arrive at the limit result

(N(j)
xβ , N(j)

xq ) = (N(j)
εβ , N(j)

εq ) + (α, Γ)

⎛⎝ N(j)
ββ N(j)

βq

N(j)
qβ N(j)

qq

⎞⎠ ,

from which (A10) follows by noting that N(j)
εβ = 0 and N(j)

εq = 0. The third property is

Ω = N(j)
xx − (α, Γ)

⎛⎝ N(j)
ββ N(j)

βq

N(j)
qβ N(j)

qq

⎞⎠(
α′

Γ′

)
. (A11)

The left-hand side of (A11) is the limit of the sample product moment of εt regressed on
β′Xt−1 + γjt, Qt and an intercept, due to N(j)

εβ = 0 and N(j)
εq = 0. The right-hand side of (A11)

is the limit of the sample product moment of ΔXt regressed on β′Xt−1 + γjt, Qt and an intercept,
where we have exploited the identity (A10).

277



Econometrics 2019, 7, 42

Now, we return to (A8) and partial out Qt to obtain

1
Tj − Tj−1 − k

Tj

∑
t=Tj−1+k

⎧⎪⎨⎪⎩Vt −
Tj

∑
s=Tj−1+k

VsQ′
s

⎛⎝ Tj

∑
s=Tj−1+k

Q⊗2
s

⎞⎠−1

Qt

⎫⎪⎬⎪⎭
⊗2

P→

⎛⎜⎜⎝
N(j)

εε N(j)
εx N(j)

εβ

N(j)
xε N(j)

xx N(j)
xβ

N(j)
βε N(j)

βx N(j)
ββ

⎞⎟⎟⎠−

⎛⎜⎜⎝
N(j)

εq

N(j)
xq

N(j)
βq

⎞⎟⎟⎠(
N(j)

qq

)−1 (
N(j)

qε , N(j)
qx , N(j)

qβ

)
, (A12)

for which we have that N(j)
εε = N(j)

εx = Ω while N(j)
εβ = 0 and N(j)

εq = 0. Thus, (A12) is reduced to⎛⎜⎜⎝
Ω Ω 0

Ω Σ(j)
xx Σ(j)

xβ

0 Σ(j)
βx Σ(j)

ββ

⎞⎟⎟⎠ ,

where ⎛⎝ Σ(j)
xx Σ(j)

xβ

Σ(j)
βx Σ(j)

ββ

⎞⎠ =

⎛⎝ N(j)
xx N(j)

xβ

N(j)
βx N(j)

ββ

⎞⎠−
(

N(j)
xq

N(j)
βq

)(
N(j)

qq

)−1 (
N(j)

qx , N(j)
qβ

)
.

Furthermore, noting ∑
q
j=1 Δvj = 1 and ∑

q
j=1(Δvj)Ω = Ω, we define

Σik =
q

∑
j=1

(Δvj)Σ
(j)
ik and Nlm =

q

∑
j=1

ΔvjN
(j)
lm , (A13)

for i, k = x, β and l, m = q, x, β. The use of Slutsky’s theorem then leads to (A7).
It is left to show that Σxβ = αΣββ and Σxx = αΣβx + Ω. For the first expression, we apply the

identities in (A13) to (A10) so as to obtain

(Nxβ, Nxq) = (α, Γ)

(
Nββ Nβq
Nqβ Nqq

)
. (A14)

Taking partitioned inversion in (A14) results in α = Nxβ·qN−1
ββ·q = ΣxβΣ−1

ββ . For the second
expression, we apply the identities in (A13) to (A11) to find

Ω = Nxx − (α, Γ)

(
Nββ Nβq
Nqβ Nqq

)(
α′

Γ′

)
. (A15)

Inserting (A14) into (A15) and taking its partitioned inversion, we arrive at

Ω = Nxx − (Nxβ, Nxq)

(
Nββ Nβq
Nqβ Nqq

)−1 (
Nβx
Nqx

)
= Nxx·q − Nxβ·qN−1

ββ·qNβx·q = Σxx − αΣβx,

by noting from (A14) that Nxβ·qN−1
ββ·q = α holds.

Recalling the decomposition ΔXt = (ΔY′
t , ΔZ′

t)
′, we find the following equivalence in the

lower-right submatrix of (A7) in Lemma A3:
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(
Σxx Σxβ

Σβx Σββ

)
=

⎛⎜⎝ Σyy Σyz Σyβ

Σzy Σzz Σzβ

Σβy Σβz Σββ

⎞⎟⎠ = Σ.

Under the normality assumption for εt as in HJNR, we could form the conditional variance of
the two elements ΔYt and β′Xt−1 + tγj given the element ΔZt. Moving away from normality under
Assumptions 2 and 3, we need to consider instead the limit of a product moment matrix consisting of
linear combinations of these elements, defined in the following manner:(

Σyy·z Σyβ·z
Σβy·z Σββ·z

)
= A′ΣA =

(
Σyy Σyβ

Σβy Σββ

)
−
(

Σyz

Σβz

)
Σ−1

zz
(
Σzy, Σzβ

)
, (A16)

which appears in (A17) in Lemma A6, and where

A′ =

(
I −ΣyzΣ−1

zz 0
0 −ΣβzΣ−1

zz I

)
.

Let us recall the weak exogeneity condition αz = 0, which implies

α =

(
αy

0

)
and α⊥ =

(
αy⊥ 0

0 Ip−m

)
.

Finally, recall from (4) that the limit variance of innovations in the partial equation equals
Ωyy·z = Ωyy − ΩyzΩ−1

zz Ωzy under Assumption A1. Within each sub-sample period, the setup here is
identical to that of HJNR. We therefore obtain the following equation, which adapts Equation (10).6 in
Johansen (1995, Lemma 10.1).

Lemma A4 (HJNR, Lemma 4). Suppose that Assumptions 1 and A1 are satisfied under αz = 0. Then,

αy⊥(α
′
y⊥Ωyy·zαy⊥)

−1α′
y⊥ = Σ−1

yy·z − Σ−1
yy·zΣyβ·z(Σβy·zΣ−1

yy·zΣyβ·z)
−1Σβy·zΣ−1

yy·z.

We now explore the limit of the common trends within each sub-sample period. Define

B∗′
T =

(
α′
⊥Γ 0
0 T−1/2

)(
Ip −τ�,j
0 1

)
and X∗

t =

(
Xt−1

t

)
,

and the next lemma is a combination of Lemma A.1 in JMN and Lemma 5 in HJNR.

Lemma A5. Suppose that Assumptions 1 and A1 are satisfied. Consider the (p − r + 1)-dimensional process
T−1/2B∗′

T X∗
int(Tu) on D[0, 1] endowed with the Skorokhod metric with common distortion across the dimensions.

Let Wu be a (p − r)-dimensional Brownian motion with variance Ω for 0 ≤ u ≤ 1. For υj−1 ≤ u < υj and
1 ≤ j ≤ q, the process X∗

int(Tu) satisfies

T−1/2B∗′
T (X∗

int(Tu) − X∗
int(Tυj−1)

)
D→
{

α′
⊥(Wu − Wυj−1)

u − υj−1

}
.

The convergence holds jointly for 1 ≤ j ≤ q and 0 ≤ u ≤ 1.

Proof of Lemma A5. The Granger–Johansen representation (18) implies that, for 1 ≤ j ≤ q and
Tj−1 + k < t ≤ Tj,
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T−1/2α′
⊥Γ(Xt − τ�,jt) ≈ T−1/2α′

⊥Γ(C
t

∑
s=Tj−1+k+1

εs + Ut + τc,j).

Since α′
⊥ΓC = α′

⊥ has full row rank and Ut is bounded in probability as shown in the proof
of Lemma A3, the random walk component α′

⊥ ∑t
s=Tj−1+k+1 εs dominates α′

⊥ΓUt. The initial value
τc,j could be large when j > 1, but it is eliminated when taking differences X∗

int(Tu) − X∗
int(Tυj−1)

.

Thus, the first element of T−1/2B∗′
T (X∗

int(Tu) − X∗
int(Tυj−1)

) converges to α′
⊥(Wu − Wυj−1) by the

Functional Central Limit Theorem (A5) in Assumption A1. The second element also converges
as desired since T−1int(Tu) converges to u. As the number of breaks is finite, the convergence holds
jointly for 1 ≤ j ≤ q.

Decompose Wu =
(
W ′

1u, W ′
2u
)′, in which the dimensions of W1u and W2u are m and p − m,

respectively. Let us recall the notation X�
t−1 = (X′

t−1, tE′
t)

′, which was used in reduced rank regression
in Section 3.1. The next lemma establishes the asymptotic theory for the product moment matrices Sij
for i, j = 0, 1 defined in (24).

Lemma A6. Suppose that Assumptions 1 and A1 are satisfied under αz = 0. Define β� = (β′, γ)′,
τ� = (τ�,1, . . . , τ�,q) ∈ Rp×q and

B�′
T =

(
α′
⊥Γ 0
0 T−1/2 Iq

)(
Ip −τ�
0 Iq

)
.

It then follows that (
S00 S01β�

β�′S10 β�′S11β�

)
P→

(
Σyy·z Σyβ·z
Σβy·z Σββ·z

)
, (A17)

T−1B�′
T S11B�

T
D→

∫ 1

0
FuF′

udu, (A18)

B�′
T

(
S10 − S11β�α′

y

)
D→

∫ 1

0
Fud (W1u − ωW2u) , (A19)

B�′
T S11β� = OP(1), (A20)

where

Fu =

(
α′
⊥Wu

ueu

)
−
∫ 1

0

(
α′
⊥Ws

ses

)
es

′ds
(∫ 1

0
ese′sds

)−1

eu.

Proof of Lemma A6. Recall the decomposition ΔXt = (ΔY′
t , ΔZ′

t)
′.

For (A17), we start with the left-hand side of (A12) and further partial out ΔZt from the process,
to which we then apply the Law of Large Numbers (A4) in Assumption A1. Follow the proof of
Lemma A3 afterwards, supplemented with the definition of the limit expression (A16), in order to
verify (A17).

For (A18), use Lemma A5, the continuous mapping theorem and Johansen (1995, Lemma 10.3).
For (A19), we note B�′

T

(
S10 − S11β�α′

y

)
= B�′

T S1ε. The Law of Large Numbers (A4) in

Assumption A1 implies B�′
T S1ε = B�′

T (T − k)−1 ∑T
t=k+1 Z1,t−1ε′y·z,t + oP(1), in which Z1,t is the

demeaned version of X�
t as defined in (23). By (A3) and the Granger–Johansen representation in

Theorem 1, we can replace B�′
T Z1,t with the demeaned version of (∑t

s=k+1 ε′sα⊥, tE′
t). The stochastic

integral (A6) in Assumption A1 then gives (A19).
For (A20), we follow the strategy used for (A19); see also Johansen (1995, Lemma 10.3).
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Appendix C.3. Proofs of the Theorems in Section 3

Proof of Theorem 2. Follow the proof of Theorem 11.1 in Johansen (1995) by using Lemmas A4 and A6
given above instead of his Lemmas 10.1 and 10.3, and also utilise invariance properties with respect to
non-singular linear transformations as in the proof of Theorem 1 in HJNR.

Proof of Theorem 3. The proof presented here is based on Doornik (1998, §9). The asymptotic
distribution of the LR test statistic in the partial model in Theorem 2 is rewritten as

tr
{∫ 1

0 dB(m−r)
u G′

u

(∫ 1
0 GuG′

udu
)−1 ∫ 1

0 GudB(m−r)′
u

}
= ∑m−r

i=1

∫ 1
0 dBi,uG′

u

(∫ 1
0 GuG′

udu
)−1 ∫ 1

0 GudB′
i,u = ∑m−r

i=1 Ti.

The process Ti for i = 1, . . . , m − r is a function of Bi,u and Gu, both of which are functions of the
(p − r)-dimensional standard Brownian motion Bu. Inspection of these functions shows that they are
invariant to the relabelling of the coordinates of Bu, so that T1, . . . ,Tm−r are identically distributed and
any pairs Tj,Tk are also identically distributed. Hence,

E

(
m−r

∑
i=1

Ti

)
=

m−r

∑
i=1

E (Ti) = (m − r)E (T1) ,

Var

(
m−r

∑
i=1

Ti

)
=

m−r

∑
j=1

m−r

∑
k=1

Var
(
Tj,Tk

)
=

m−r

∑
j=1

Var
(
Tj
)
+

m−r

∑
j 	=k

Var
(
Tj,Tk

)
= (m − r)Var (T1) + (m − r)(m − r − 1)Cov(T1,T2).

In order to relate the moments of the limit distributions of the LR test statistics in the partial and
full models, we evaluate the above expressions for m − r in general and for m − r = p − r. For the
means of the limit distributions, we find

E

(
m−r

∑
i=1

Ti

)
= (m − r)E (T1) and E

(
p−r

∑
i=1

Ti

)
= (p − r)E (T1) .

Solving both equations for E (T1) and equating the resulting expressions yield

E

(
m−r

∑
i=1

Ti

)
=

(
m − r
p − r

)
E

(
p−r

∑
i=1

Ti

)
.

For their variances, we obtain a set of equations similarly, which are solved for Var (T1) to find
the desired expression.
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Abstract: In this paper the theory on the estimation of vector autoregressive (VAR) models for I(2)
processes is extended to the case of long VAR approximation of more general processes. Hereby the
order of the autoregression is allowed to tend to infinity at a certain rate depending on the sample
size. We deal with unrestricted OLS estimators (in the model formulated in levels as well as in vector
error correction form) as well as with two stage estimation (2SI2) in the vector error correction model
(VECM) formulation. Our main results are analogous to the I(1) case: We show that the long VAR
approximation leads to consistent estimates of the long and short run dynamics. Furthermore, tests
on the autoregressive coefficients follow standard asymptotics. The pseudo likelihood ratio tests
on the cointegrating ranks (using the Gaussian likelihood) used in the 2SI2 algorithm show under
the null hypothesis the same distributions as in the case of data generating processes following
finite order VARs. The same holds true for the asymptotic distribution of the long run dynamics
both in the unrestricted VECM estimation and the reduced rank regression in the 2SI2 algorithm.
Building on these results we show that if the data is generated by an invertible VARMA process,
the VAR approximation can be used in order to derive a consistent initial estimator for subsequent
pseudo likelihood optimization in the VARMA model.

Keywords: vector autoregressions; vector error correction model; integrated processes of order two

1. Introduction

Many macroeconomic variables have been found to exhibit trend-like behaviour that can be
modelled by using vector autoregressions (VARs). Katarina Juselius (2006) states that empirical
modelling led to the development of I(1) and I(2) models since certain features of the datasets
considered required including first and second differences in order to obtain stationary time series.
Additionally cointegrating relations were found in the corresponding analyses. Similar findings have
reoccurred numerous times in the literature for example related to money demand Johansen (1992b);
Juselius (1994), inflation Banerjee et al. (2001); Georgoutsos and Kouretas (2004), interest rates and real
exchange rates Johansen et al. (2007); Juselius and Assenmacher (2017); Juselius and Stillwagon (2018);
Stillwagon (2018) to mention only a few sources.

The predominant methodological approach to model integration and cointegration in the I(1) and
the I(2) case in the vector autoregressive (VAR) framework has been established mainly by Søren Johansen
and Katarina Juselius together with a number of coauthors (see the lists of references in Johansen (1995);
Juselius (2006) for details) building on vector error correction models (see Engle and Granger (1987) for
early comments on the history of using error correction models for co-integrated processes). Extending
the main ideas for cointegration modeling for the I(1) setting Johansen (1997) see, e.g., Johansen (1992a)
suggested a representation for the I(2) case. Johansen (1997) established asymptotic distributions for
the suggested two step I(2) estimator (2SI2) as an approximation to pseudo maximum likelihood
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estimation involving numerical optimization. Asymptotics for the corresponding likelihood ratio tests
has been developed in Paruolo (1994, 1996), its asymptotic equivalence to pseudo likelihood (using
the Gaussian distribution) optimization (and hence in a certain sense statistical efficiency) is shown in
Paruolo (2000). However, Nielsen and Rahbek (2007) shows that in finite samples the likelihood ratio test
has size advantages. The testing of restrictions on the parameters has been investigated by Boswijk and
Doornik (2004); Boswijk and Paruolo (2017); Johansen and Lütkepohl (2005). Due to the implicit vector
error correction (VECM) modeling, deterministic terms in the VECM produce complex deterministic
terms in the solutions processes. In the I(2) context Nielsen and Rahbek (2007); Paruolo (1994, 2006);
Rahbek et al. (1999); Kurita et al. (2011) discuss the impacts of deterministic terms.

As the VECM representation includes the representation of reduced rank matrices by a
product of two matrices, identification conditions are of particular importance, see Juselius (2006);
Mosconi and Paruolo (2013, 2017). In this context also weak exogeneity has been studied Kurita (2012);
Paruolo and Rahbek (1999).

The main idea underlying the VECM approach for estimating VAR models in the I(2) context is to
reparameterize the problem such that integration and cointegration properties relate to the rank of
two matrices. Assuming the data generating process to be a VAR of known finite order, the rank of
matrices can be tested using (pseudo) likelihood ratio tests.

Sometimes the assumption of known order is not justified. For example it is known that a subset
of variables that are generated using a finite order VAR cannot be described by a finite order VAR,
but instead requires a vector autoregressive moving average (VARMA) model. However, the class of
VARs provides flexibility in the sense that a VAR of infinite order can represent a large set of linear
dynamical systems including all invertible VARMA systems. For stationary processes Berk (1974)
and Lewis and Reinsel (1985) show that by letting the order of the VAR tend to infinity at a suitable
function of the sample size, consistent estimation of the underlying transfer function can be achieved
for data generating processes that can be described by a VAR(∞) subject to mild assumptions on the
summability of the VAR coefficients. Additionally Lewis and Reinsel (1985) also establishes asymptotic
normality (in a very specific sense) of linear combinations of the estimated autoregressive coefficients.
Hannan and Deistler (1988) make the concepts operational by showing that in the case of a VARMA
process generating the dataset the required rate of letting the order tend to infinity can be estimated
using BIC model selection.

In the case of I(1) processes the estimation theory for long VAR approximations to VARMA
processes has been extended based on the techniques in the stationary case of Lewis and Reinsel in a
series of papers by Saikkonen and coauthors Saikkonen (1991, 1992); Lütkepohl and Saikkonen (1997);
Saikkonen and Lütkepohl (1996); Saikkonen and Luukkonen (1997). Additionally also the Johansen
framework of rank restricted estimation in the VECM model has been extended to the long VAR
approximations by Saikkonen and Luukkonen (1997). Bauer and Wagner (2004) provide extensions to
the multi frequency I(1) case where unit roots may occur at the seasonal frequencies.

For the I(2) case no such extensions are currently known. This is the research gap this paper tries
to fill: First we establish consistency and asymptotic normality of estimated autoregressive coefficients
(in the sense of Lewis and Reinsel) for unrestricted ordinary least squares (OLS) estimation in the
VECM representation. This can be used in order to derive Wald type tests of linear restrictions on
the autoregressive parameters. Secondly, we extend the rank restricted regression techniques in the
I(2) case to the long VAR approximations showing that the asymptotics (for estimated cointegrating
relations, likelihood ratio tests and the two step estimation procedures) are identical in the case of
long VAR approximations and VARs of finite known order. Third, we show that if the data generating
process is an invertible VARMA process the long VAR system estimator can be used in order to obtain
consistent initial estimators for subsequent pseudo likelihood maximization in the VARMA model
class. In all results we limit ourselves to the case of no deterministic terms being included in the VECM
representation. The inclusion of deterministic terms requires changing the test distribution, compare
the theory contained for example in Rahbek et al. (1999).
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The paper is organized as follows: In the next section the data generating process and the main
assumptions are described. Section 3 then provides the results for the unrestricted estimation. Section 4
deals with rank restricted regression in the 2SI2 procedure, while Section 5 investigates the initial guess
in the VARMA setting for subsequent pseudo likelihood maximization. Finally Section 6 concludes
the paper. Proofs are relegated to an appendix.

Throughout the paper we will use the notation introduced by Johansen (1997): For a matrix
C ∈ Rp×s, s < p, of full column rank we use the notation C̄ = C(C′C)−1. Furthermore, C⊥ denotes a
full column rank matrix of dimension p × (p − s) such that C′

⊥C = 0. Whenever this notation is used
the particular choice of C⊥ is not of importance. For a matrix C = (Ci,j) ∈ Rp×s we let ‖C‖ denote the

Frobenius norm ‖C‖ =
√

∑
p
i=1 ∑s

j=1 C2
i,j.

2. Data Generating Process and Assumptions

In this paper we use the following assumptions on the data generating process:

Assumption 1 (DGP). The process (yt)t∈Z, yt ∈ Rp, is generated from the difference equation for t ∈ Z:

Δ2yt = αβ′yt−1 + ΓΔyt−1 +
∞

∑
j=1

ΠjΔ2yt−j + εt (1)

where α, β ∈ Rp×r, 0 ≤ r < p are full column rank matrices, Δ = (1 − L) with L denoting the backward shift
operator such that L(yt)t∈Z = (yt−1)t∈Z. The matrix function A(z) = (1 − z)2 Ip − αβ′z − Γz(1 − z) −
∑∞

j=1 Πj(1 − z)2zj fulfills the special marginal stability condition that

|A(z)| = 0 implies that |z| > 1 or z = 1. (2)

Furthermore, there exists a real δ > 0 such that the power series defining A(z) converges absolutely for
|z| < 1 + δ. Define β2 = β⊥η⊥, α2 = α⊥ζ⊥ where α′

⊥Γβ⊥ = ζη′, η, ζ ∈ R(p−r)×s are of full column rank
s < p − r. Then it is assumed that the matrix

α′
2(Ip + Γβ̄ᾱ′Γ −

∞

∑
j=1

Πj)β2 (3)

is nonsingular.
Furthermore, the process (εt)t∈Z denotes independent identically distributed (iid) white noise with mean

zero and variance Σε > 0.

It is well known that the conditions (2) and (3) are necessary and sufficient for the existence of
solutions to the difference equation that are I(2) processes, see for example Johansen (1992a). Moreover,
note that the assumption of absolute convergence of A(z) for |z| < 1 + δ implies that ∑∞

j=0 jk‖Πj‖ < ∞
for every k ∈ N. In particular ∑∞

j=0 j2‖Πj‖ < ∞ follows as will be used frequently below.
Every vector autoregressive function A(z) corresponding to the autoregression A(L)yt = εt,

that fulfills Assumption 1, allows a representation as A(z) = (1 − z)2 Ip − αβ′z − Γz(1 − z) −
∑∞

j=1 Πj(1 − z)2zj = g̃(z)B̃(z), B̃(z) = (1 − z)2 Ip − Π̃z − Γ̃z(1 − z), g̃(z) = Ip + ∑∞
j=1 Gjzj. This can be

seen as follows:
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εt = A(L)yt = (A(1)− Ȧ(1)Δ + A∗(L)Δ2)yt = (A(1)− Ȧ(1)Δ + A∗(L)Δ2)BB′yt

=
(
[−α, 0, 0] + [α, 0, 0]Δ − ΓBΔ + A∗(L)BΔ2

)
B′yt

=
(
[−α, −Γβ1, −Γβ2] + [α − Γβ, A∗

1(L), A∗
2(L)]Δ +

[
A∗

0(L), 0, 0
]

Δ2
)⎛⎜⎝ β′

β′
1Δ

β′
2Δ

⎞⎟⎠ yt

=
(
[−α, −Γβ1, −Γβ2 + αᾱ′Γβ2] + [α − Γβ, A∗

1(L), Ã∗
2(L)]Δ +

[
A∗

0(L), 0, −A∗
0(L)ᾱ′Γβ2

]
Δ2
)⎛⎜⎝β′ + ᾱ′Γβ2β′

2Δ
β′

1Δ
β′

2Δ

⎞⎟⎠ yt

=
(
[−α, −Γβ1, Ã∗

2(L)] + [α − Γβ, A∗
1(L), −A∗

0(L)ᾱ′Γβ2]Δ +
[

A∗
0(L), 0, 0

]
Δ2
)⎛⎜⎝β′ + ᾱ′Γβ2β′

2Δ
β′

1Δ
β′

2Δ2

⎞⎟⎠ yt

= g(L)B(L)yt

where B = [β, β1, β2], β1 = β⊥η, is without restriction of generality assumed to be an orthonormal
matrix, A∗(L)B = [A∗

0(L), A∗
1(L), A∗

2(L)], A(1) = −αβ′, Ȧ(1) = −αβ′ + Γ and where we use that

Γβ2 − αᾱ′Γβ2 = (Ip − αᾱ′)Γβ2 = ᾱ⊥α′
⊥Γβ⊥η⊥ = 0.

Here

B(L) =

⎛⎜⎝β′ + ᾱ′Γβ2β′
2Δ

β′
1Δ

β′
2Δ2

⎞⎟⎠ .

In this representation
g(1) =

[
−α, −Γβ1, Ã∗

2(1)
]

is nonsingular due to assumption (3). Furthermore, g(z) = ∑∞
j=0 Gjzj is a transfer function with

∑∞
j=0 ‖Gj‖j2 < ∞ since ∑∞

j=1 ‖Πj‖j2 < ∞ and thus the same holds for the power series coefficients
A∗(L). Since |B(z)| 	= 0, z 	= 1 it follows that |g(z)| 	= 0, |z| ≤ 1. Therefore

B(L)yt = ut, g(L)ut = εt (4)

is a VAR process. Note, however, that g(0) = G0 	= Ip in general. This constitutes a triangular
representation of the process denoting y1,t = β′yt ∈ Rp1 , y2,t = β′

1yt ∈ Rp2 , y3,t = β′
2yt ∈ Rp3 such that

y1,t = −ᾱ′Γβ2Δy3,t + u1,t = AΔy3,t + u1,t A : p1 × p3

Δy2,t = u2,t,

Δ2y3,t = u3,t

where ut = [u′
1,t, u′

2,t, u′
3,t]

′ has a VAR(∞) representation. Furthermore, defining

B̃(L) = B

⎛⎜⎝Ip1 0 −ᾱ′Γβ2

0 Ip2 0
0 0 Ip3

⎞⎟⎠ B(L) = Δ2 Ip + ββ′L + (ββ′ + βᾱ′Γβ2β′
2 + β1β′

1)LΔ,

g̃(L) = g(L)

⎛⎜⎝B

⎛⎜⎝Ip1 0 −ᾱ′Γβ2

0 Ip2 0
0 0 Ip3

⎞⎟⎠
⎞⎟⎠

−1

we obtain A(L) = g(L)B(L) = g̃(L)B̃(L) such that

B̃(L)yt = Δ2yt + Π̃yt−1 + Γ̃Δyt−1 = vt, g̃(L)vt = εt
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is another representation of the process (yt)t∈Z with B̃(0) = Ip. It follows that the triangular
representation can be seen as a special case where one has partial information on the matrices β, β1, β2.
For estimation the VECM representation is approximated using a finite order h:

Δ2yt = Φyt−1 + ΨΔyt−1 +
h−2

∑
j=1

ΠjΔ2yt−j + et

where et = εt + e1t, e1t = ∑∞
j=h−1 ΠjΔ2yt−j. As in the VECM representation the dimensions of β, β1, β2

are linked to the rank of the matrices Φ and α′
⊥Ψβ⊥. Restricting these matrices to be of particular rank

is simpler than imposing the equivalent restrictions in the VAR(h) representation directly.
In the following we will first investigate the unrestricted ordinary least squares estimator in

the VECM representation without taking rank restrictions into account. In the second step the 2SI2
procedure as presented in Paruolo (2000) for imposing the two rank restrictions in two steps is
investigated.

For both procedures the selection of the order h is of importance. In this respect the following
assumption will be used:

Assumption 2 (Lag order h). The order h is chosen subject to the following restrictions:

1. h = o(T1/5).
2. T1/2 ∑∞

j=h+1 ‖Πj‖ → 0 as T, h → ∞.

This condition defines an upper bound for the order which is usually directly assured during
order selection using for example information criteria. The upper bound is smaller than the usual rate
T1/3 for technical reasons. The stronger bound is not needed for all results. However, the implications
for practical applications are minor as for example in the range 1 ≤ T ≤ 950 we have 2.5T1/5 > T1/3.
The second condition of Assumption 2 implies a lower bound for the increase of h as a function of
the sample size. Clearly ∑∞

j=h+1 ‖Πj‖ → 0 for h → ∞. The bound implies that for h = h(T) this

convergence needs to be fast enough such that T1/2 ∑∞
j=h(T)+1 ‖Πj‖ still converges to zero. The lower

bound depends on the underlying true parameters. For invertible VARMA processes – which can be
seen as the leading case – ‖Πj‖ ≤ Cρ

j
0 for some 0 ≤ ρ0 < 1. Hannan and Deistler (1988) show that

for an invertible stationary VARMA process the lower bound (in this case proportional to log T) can
be achieved asymptotically by using BIC as the order selection procedure. Thus in this case also the
stronger condition (h = o(T1/5)) is satisfied. Bauer and Wagner (2004) extend this result to the multi
frequency I(1) setting. For the I(2) case no analogous result is known, although the developments of
Bauer and Wagner (2004) suggest that a similar result holds also there. This is left for future research.

Therefore the difference between the ’usual’ rates and the ones assumed above are deemed to be
of minor practical consequences. Thus we are not explicit in the main text as to which results hold true
under the less restrictive set of results and which do not. In the appendix, we will comment on this
point, however.

3. Unrestricted Estimation

In this section the results of Lewis and Reinsel (1985) and Saikkonen and Lütkepohl (1996) are
extended to the I(2) case. To simplify notation define 〈at, bt〉 = ∑T

t=h+1 atb′
t for sequences at, bt, t =

1, . . . , T.1 Then the unrestricted least squares estimator in the finite VECM model uses the regressor
vector Zt,h = [y′

t−1, Δy′
t−1, Δ2y′

t−1, . . . , Δ2y′
t−h+2]

′ ∈ Rph. The corresponding ordinary least squares
estimator is given as

1 Here somewhat sloppily we use the same symbols for processes and their realizations.
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[
Φ̂, Ψ̂, Π̂1, . . . , Π̂h−2

]
=
[
〈Δ2yt, yt−1〉, 〈Δ2yt, Δyt−1〉, 〈Δ2yt, Δ2yt−1〉, . . . , 〈Δ2yt, Δ2yt−h+2〉

]
〈Zt,h, Zt,h〉−1

= 〈Δ2yt, Zt,h〉〈Zt,h, Zt,h〉−1.

The noise covariance is estimated from the residuals as usual as

Σ̂ε = N−1〈êt, êt〉, êt = Δ2yt − Φ̂yt−1 − Ψ̂Δyt−1 −
h−2

∑
j=1

Π̂jΔ2yt−j (5)

where N = T − h denotes the effective sample size.

3.1. Estimation in the Triangular VECM Representation

As typical for the cointegration framework, analysis is easier in the triangular representation
which separates stationary components from I(1) and I(2) processes: Let yt = [y′

1,t, y′
2,t, y′

3,t]
′ ∈ Rp

where yi,t ∈ Rpi is such that

y1,t = AΔy3,t + u1,t,

Δy2,t = u2,t,

Δ2y3,t = u3,t

where ut = [u′
1,t, u′

2,t, u′
3,t]

′ has a VAR(∞) representation g(L)ut = εt where

g(0) =

⎛⎜⎝ I 0 A
0 I 0
0 0 I

⎞⎟⎠ .

Note, however, that using the triangular representation implies that the matrix B(L) is known up
the value of the matrix A. For applications this is the case only seldom.

Thus letting g(z) = g(1) + g∗(z)Δ we obtain

εt = g(L)

⎛⎜⎝y1,t − AΔy3,t
Δy2,t
Δ2y3,t

⎞⎟⎠ = g(L)

⎛⎜⎝Δ2y1,t + Δy1,t−1 + y1,t−1 − AΔ2y3,t − AΔy3,t−1

Δ2y2,t + Δy2,t−1

Δ2y3,t

⎞⎟⎠
= g(L)

⎛⎜⎝ I 0 −A
0 I 0
0 0 I

⎞⎟⎠Δ2yt + g(L)

⎛⎜⎝y1,t−1

0
0

⎞⎟⎠+ g(L)

⎛⎜⎝Δy1,t−1 − AΔy3,t−1

Δy2,t−1

0

⎞⎟⎠
= g̃(L)Δ2yt + [g(1) + g∗(L)Δ]

⎛⎜⎝y1,t−1

0
0

⎞⎟⎠+ g(1)

⎛⎜⎝Δy1,t−1 − AΔy3,t−1

Δy2,t−1

0

⎞⎟⎠
= π(L)Δ2yt + g(1)

⎛⎜⎝y1,t−1

0
0

⎞⎟⎠+
[
G1 + G∗

1 G2 −G1 A
]⎛⎜⎝Δy1,t−1

Δy2,t−1

Δy3,t−1

⎞⎟⎠
= π(L)Δ2yt +

[
G1 0 0

]
yt−1 +

[
G1 + G∗

1 G2 −G1 A
]

Δyt−1

with π(L) = Ip − ∑∞
j=1 ΠjLj leads to the corresponding VECM representation:

Δ2yt = Φyt−1 + ΨΔyt−1 +
∞

∑
j=1

ΠjΔ2yt−j + εt.
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Here G := g(1) = ∑∞
j=0 Gj = [G1, G2, G3], where Gi is p × pi for i = 1, 2, 3: Similarly, G∗ := g∗(1) =

− ∑∞
j=0 jGj = [G∗

1 , G∗
2 , G∗

3 ], where G∗
i is p × pi for i = 1, 2, 3. The sums exists since ∑∞

j=1 ‖Gj‖j2 < ∞ by
assumption. Similarly, we partition Φ, Ψ and Πj into [Φ1, Φ2, Φ3], [Ψ1, Ψ2, Ψ3] and [Πj1, Πj2, Πj3],
respectively. The analogous partitioning is used for estimates.

Then Φ = −[G1, 0, 0], Ψ = [−G∗
1 − G1, −G2, G1 A]. Therefore Ψ3 = −Φ1 A. Note that

in this notation the I(2) components on the right hand side are yt−1,3, the I(1) components are
yt−1,1, yt−1,2, Δyt−1,3, where yt−1,1 − AΔyt−1,3 is stationary. Thus in order to separate regressors of
different integration orders in the proof (as is usually done in the literature) we use a transformation
using the unknown matrix A such that the regressor yt−1,1 is replaced by yt−1,1 − AΔyt−1,3. Consequently
the estimate Ψ̂3 of Ψ3 is replaced by the estimate Θ̂ = Ψ̂3 + Φ̂1 A of Θ = Ψ3 + Φ1 A = 0.

Based on the estimates Ψ̂ and Φ̂ then A can be estimated as

Â = −(Φ̂′
1Σ̂−1

ε Φ̂1)
−1Φ̂′

1Σ̂−1
ε Ψ̂3. (6)

Here the insertion of Σ̂−1
ε appears somewhat arbitrary. A motivation for this choice in the I(1) case

can be found in Saikkonen (1992) equation (12). However, any other positive definite matrix could be
used as well. Currently there is no knowledge on the optimality of the choice suggested above.

In the asymptotic distribution of the estimation error Brownian motions occur relating to the
process (ut)t∈Z: Under Assumption 1 we have

1√
T

!rT"
∑
t=1

ut ⇒ B(r) = [B1(r)′, Bc(r)′]′ = [B1(r)′, B2(r)′, B3(r)]′

where B(r), 0 ≤ r ≤ 1, denotes a Brownian motion with corresponding variance

Ω =

[
Ω11 Ω1c

Ωc1 Ωcc

]
=

⎡⎢⎣ Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33

⎤⎥⎦ = g(1)−1 Σε (g(1)′)−1,

where B1.c(r) = B1(r)− Ω1cΩ−1
cc Bc(r) is a p1-dimensional Brownian motion, which is independent of

Bc(r), with covariance
Ω1.c = Ω11 − Ω1cΩ−1

cc Ωc1.

An estimator of Ω1.c is given by2

Ω̂1.c = (Φ̂′
1Σ̂−1

ε Φ̂1)
−1. (7)

With these definitions we can state our first result of the paper (which is proved in Appendix B):

Theorem 1. Under Assumptions 1 and 2 for the triangular VECM representation we have:
(A) Consistency:

(i) Φ̂
p−→ Φ ; (ii) Σ̂ε

p−→ Σε ; (iii) Ω̂1.c
p−→ Ω1.c; (iv) Ψ̂

p−→ Ψ; (v) Θ̂
p−→ 0; (vi) Â

p−→ A .

(B) Asymptotic distribution of coefficients to nonstationary regressors: Under Assumptions 1 and 2 we have
(N = T − h):

(i)[NΦ̂2, NΘ̂, N2Φ̂3]
d→ g(1)

∫ 1

0
dBF′

(∫ 1

0
FF′

)−1

, (ii) N(Â − A)
d→
∫ 1

0
dB1.cL′

(∫ 1

0
LL′

)−1
(8)

2 Note that α = [Ip1 , 0]′, and thus Ω1.c = ([Ω−1]11)
−1 = (α′Ω−1α)−1 =

(
α′g(1)′Σ−1

ε g(1)α
)−1

= (Φ′
1Σ−1

ε Φ1)
−1.
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where F(u) =

[
Bc(u)∫ u

0 B3(v)dv

]
, Fa(u) =

[
B2(u)∫ u

0 B3(v)dv

]
and L(u) = B3(u)−

∫ 1
0 B3F′

a(
∫ 1

0 FaF′
a)

−1Fa(u).

(C) Asymptotic distribution of coefficients to stationary regressors: Let Lh be a sequence of (p2(h − 2) +
p(2p1 + p2)) × J matrices such that L′

h(Γ
−1
ECM ⊗ Σε)Lh → M > 0 where ΓECM = E(XtX′

t) with Xt :=[
u′

1,t−1, Δy′
1,t−1, Δy′

2,t−1, Δ2y′
t−1, . . . , Δ2y′

t−h+2
]′.

Let
Π =

[
Φ1 Ψ1 Ψ2 Π1 . . . Πh−2

]
.

Then
N

1
2 L′

hvec(Π̂ − Π)
d→ N(0, M).

(D) Asymptotic distribution on Wald type tests: Finally letting

Γ̂ECM = N−1(〈X̃t, X̃t〉 − 〈X̃t, Δy3,t−1〉〈Δy3,t−1, Δy3,t−1〉−1〈Δy3,t−1, X̃t〉)

where X̃t =
[
y′

1,t−1, Δy′
1,t−1, Δy′

2,t−1, Δ2y′
t−1, . . . , Δ2y′

t−h+2
]′, the Wald test for the null hypothesis H0 :

L′
hvec(Π) = lh is given by

λ̂Wald = N
(

L′
hvec(Π̂)− lh

)′
(L′

h(Γ̂
−1
ECM ⊗ Σ̂ε)Lh)

−1 (L′
hvec(Π̂)− lh

)
.

Then if Lh is such that L′
h(Γ

−1
ECM ⊗ Σε)Lh → M > 0, under the null hypothesis λ̂Wald

d→ χ2(J).

The theorem provides the asymptotic distributions of the OLS estimates in the triangular system.
Note that in this somewhat special case the properties of the regressor components (stationary or not)
are known such that for each entry the convergence speed is known. Correspondingly the definition
of the regressor vector X̃t involves only lags of yt but omits all nonstationary regressors except the
ones cointegrated with Δy3,t−1.

The assumptions on Lh are more restrictive than needed. Lewis and Reinsel (1985) and Saikkonen
and Lütkepohl (1996) only require that Lh has full column rank when deriving the normalized
convergence to normal distribution with unit variance as the limit for

N
1
2 (L′

h(Γ
−1
ECM ⊗ Σε)Lh)

−1/2L′
hvec(Π̂ − Π).

Similar arguments could be used here.

3.2. Estimation in the General VECM Representation

The previous section dealt with the special case that a triangular representation is used and hence
knowledge on the matrices [β, β1, β2] is given. This section provides a result for the general case, which,
however, is limited to the coefficients to the stationary components. Since a general process generated
according to Assumption 1 can be rewritten into a triangular representation using the knowledge
of [β, β1, β2], some asymptotic properties of the unrestricted OLS estimators can be derived from
Theorem 1 for the general case (which is proved in Appendix C):

Theorem 2. Let the regressor vector Zt,h = [y′
t−1, Δy′

t−1, Δ2y′
t−1, . . . , Δ2y′

t−h+2] and define

Λ =
[

Φ Ψ Π1 . . . Πh−2

]
, Λ̃ = 〈Δ2yt, Zt,h〉〈Zt,h, Zt,h〉−1, Γ̃ECM = N−1〈Zt,h, Zt,h〉.

Then under Assumptions 1 and 2 it follows that Λ̃ − Λ = oP(1).
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Furthermore, let Lh ∈ Rp2(h+2)×J be such that L′
h(Γ̃

−1
ECM ⊗ Σε)Lh → M > 0. Then

N
1
2 L′

hvec(Λ̃ − Λ)
d→ N(0, M).

Beside consistency the theorem implies that linear combination of OLS estimators show
asymptotic normality and hence standard inference, if the asymptotic variance is nonsingular. One
application of such results consists in the so called ’surplus lag’ formulation in the context of Granger
causality testing, see Bauer and Maynard (2012); Dolado and Lütkepohl (1996).

Finally note that this section does not contain results with regard to the cointegrating rank or the
cointegrating space. The theorem above merely allows to test coefficients corresponding to stationary
regressors. Therefore the usage is limited to somewhat special situations like the surplus-lag causality
tests. However, it is also relevant for impulse response analysis, compare Inoue and Kilian (2020).

4. Rank Restricted Regression

The previous sections show that for the estimators discussed in that sections full inference on all
coefficients is only possible when information on the matrices β, β1 and β2 exists. The dimensions of
the matrices relate to the ranks of the matrices Φ = αβ′ and, conditional on this, to the rank of ᾱ′

⊥Ψβ̄⊥.
The two rank restrictions make estimation and specification more complex than in the I(1) case.

Johansen (1995) provides the two-step approach 2SI2 that can be used for estimation and
specification of the two integer valued parameters p1 and p2. Paruolo and Rahbek (1999) extend
the 2SI2 procedure suggested in section 8 of Johansen (1997). Paruolo (2000) shows that this 2SI2
procedure achieves the same asymptotic distribution as pseudo maximum likelihood estimation which
could be performed subsequent to 2SI2 estimation. This makes the procedure attractive from a practical
point of view. In this section we show that these approaches extend naturally to the long VAR case.
The main focus here lies on the derivation of the asymptotic properties of the rank tests.

Recall the long VAR approximation given as

Δ2yt = Φyt−1 + ΨΔyt−1 +
h−2

∑
j=1

ΠjΔ2yt−j + et (9)

where Φ = αβ′ has reduced rank r < p and ᾱ′
⊥Ψβ̄⊥ = ζη′ has reduced rank s < p − r. In this notation

the 2SI2 procedure works as follows: In the first step the rank constraint on ᾱ′
⊥Ψβ̄⊥ is neglected

estimating α and β by using reduced-rank regression (RRR). Then in the second step the reduced rank
of ᾱ′

⊥Ψβ̄⊥ is imposed using RRR in a transformed equation.
In more detail using the Johansen notation we denote with R0t, R1t and R2t the residuals of

regressing Δ2yt, Δyt−1 and yt−1 on Δ2yt−1, . . . , Δ2yt−h+2, respectively; then we can rewrite (9) as

R0t = αβ′R2t + ΨR1t + ẽt. (10)

Concentrating out R1t and denoting the residuals as R0.1t and R2.1t we obtain with Sij.1 =

〈Rit, Rjt〉 − 〈Rit, R1t〉〈R1t, R1t〉−1〈R1t, Rjt〉 the solution to the RRR problem from solving the eigenvalue
problem

|λS22.1 − S20.1S−1
00.1S02.1| = 0, (11)

with solutions 1 > λ̂1≥ . . . ≥λ̂p > 0 ordered with decreasing size and corresponding vectors
V = (v1, . . . , vp). Then as usual the trace statistic of testing the model Hr with rank(Φ) ≤ r, r < p,
in the model Hp with rank(Φ) ≤ p, is given as

Qr = −2 log Q
(

Hr|Hp
)
= −T

p

∑
i=r+1

log(1 − λ̂i). (12)
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The optimizers for α, β are given by

β̂ = (v1, . . . , vr), α̂ = S02.1 β̂, Σ̂ε = S00.1 − α̂α̂′. (13)

In the second step, given α and β known, we can obtain by multiplying (10) by ᾱ′
⊥ that

ᾱ′
⊥R0t = ᾱ′

⊥Ψ(β̄⊥β′
⊥ + β̄β′)R1t + ᾱ′

⊥ ẽt = ζη′(β′
⊥R1t) + C(β′R1t) + ᾱ′

⊥ ẽt. (14)

Note that β′R1t is stationary. Thus concentrating out C and denoting the residuals as Rᾱ⊥ .β,t and
Rβ⊥ .β,t, respectively, we can define Sab.β := 〈Ra.β,t, Rb.β,t〉, for a, b = ᾱ⊥ or β⊥. Then the likelihood ratio
test of the model Hr,s with rank(ζη′) ≤ s, s < p − r in the model H0

r with rank(ᾱ′
⊥Ψβ̄⊥) = p − r is

given by

Qr,s = −2 log Q
(

Hr,s|H0
r
)
= −T

p−r

∑
i=s+1

log(1 − ρ̂i). (15)

where 1 > ρ̂1≥ . . . ≥ρ̂p−r > 0 are the solutions of the eigenvalue problem

|ρSβ⊥β⊥ .β − Sβ⊥ ᾱ⊥ .βS−1
ᾱ⊥ ᾱ⊥ .βSᾱ⊥β⊥ .β| = 0, (16)

and the corresponding eigenvectors are W = (w1, . . . , wp−r). Estimators of ζ and η are given by

η̂ = (w1, . . . , ws), ζ̂ = Sᾱ⊥β⊥ .β η̂. (17)

For the 2SI2 procedure in this second step the first step estimates α̂ and β̂ are used in place of
the unknown true quantities. Then we obtain the following analogon to the results in the finite order
VAR framework (the proof is given in Appendix D):

Theorem 3. Let the data be generated according to Assumption 1 and let the VAR order fulfill Assumption 2.
Then the following asymptotic results hold:
(A) The asymptotic distribution of the likelihood ratio statistic Qr under the null hypothesis Hr is given by

Qr
d−→ tr

{∫ 1

0
dW†F′

†

(∫ 1

0
F†F′

†du
)−1 ∫ 1

0
F†dW ′

†

}
. (18)

where W† = (α′
⊥Σεα⊥)−1/2α′

⊥W, Fa(u) =

[
B2(u)∫ u

0 B3(v)dv

]
and F†(u) = Fa(u) −∫ 1

0 FaB′
3(
∫ 1

0 B3B′
3)

−1B3(u). This is identical to the distribution achieved in the finite VAR case.
(B) The asymptotic distribution of the likelihood ratio statistic Qr,s under the null hypothesis Hr,s is given by

Qr,s
d−→ tr

{∫ 1

0
dW ′

2B′
3

(∫ 1

0
B3B′

3du
)−1 ∫ 1

0
B3dW ′

2

}
. (19)

where W2(u) = (α′
2Σεα2)

−1/2α′
2W(u).

(C) The asymptotic distribution of the test statistic Sr,s = Qr + Qr,s under the null hypothesis Hr,s is given by

Sr,s
d−→ tr

{∫ 1
0 dW†F′

†

(∫ 1
0 F†F′

†du
)−1 ∫ 1

0 F†dW ′
†

}
+ tr

{∫ 1
0 dW2B′

3

(∫ 1
0 B3B′

3du
)−1 ∫ 1

0 B3dW ′
2

}
. (20)

(D) Using suitable normalizations all estimators are consistent: α̂(c′αα̂)−1 p→ α, β̂(c′ββ̂)−1 p→ β, ζ̂(c′ζ ζ̂)−1 p→
ζ, η̂(c′ηη̂)−1 p→ η, Ψ̂

p→ Ψ, Π̂j
p→ Πj where for example c′αα = Ir.

(E) The asymptotic distributions of the coefficients to the nonstationary regressors are identical to the ones in the
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finite order VAR case stated in Paruolo (2000). The asymptotic distribution of the coefficients Π̂j are identical to
the ones in Theorem 1.

The main message of the theorem is that the 2SI2 procedure shows the same asymptotic properties
including the rank tests as in the finite order VAR case. As usual also restricting the coefficients for the
non-stationary regressors does not influence the asymptotics for the coefficients corresponding to the
stationary regressors.

Note that Paruolo (2000) shows that in the finite VAR case 2SI2 estimates have the same asymptotic
distribution as pseudo maximum likelihood (pML) estimates maximizing the Gaussian likelihood.
The first order conditions for the pML estimates of the coefficients to the non-stationary regressors
provided in the first display on p. 548 in Paruolo (2000) depend on the data only via the matrices
Sij defined above. These matrices depend on the lag length of the VECM only via the concentration
step. The proof of our Theorem 3 shows that these terms have the same asymptotic distributions
for the finite order VAR and the long VAR. Theorem 4.3 of Paruolo (2000) shows that the asymptotic
distribution of the coefficients due to stationary regressors does not depend on the distribution
of the coefficients corresponding to the non-stationary regressors as long as they are estimated
super-consistently. Thus our results imply that also in the long VAR case the asymptotic distribution
of all estimates for the 2SI2 and the pML approach is identical.

5. Initial Guess for VARMA Estimation

One usage of long VAR approximations is as preliminary estimate for VARMA model estimation.
Hannan and Kavalieris (1986) provide properties of such an approach in the stationary case,
Lütkepohl and Claessen (1997) extend the procedure to the I(1) case. Here we extend this idea to
the I(2) case.

The goal is to provide a consistent initial guess for the estimation of a VARMA model for I(2)
processes. In this respect we assume the following data generating process:

Assumption 3 (VARMA dgp). The process (yt)t∈Z is generated as the solution to the state space equations

yt = Cxt + εt, xt+1 = Axt + Bεt (21)

where (εt)t∈Z denotes white noise subject to the same assumptions as in Assumption 1.
Here xt ∈ Rn is the unobserved state process. The system (A, B, C) is assumed to be minimal and in the

canonical form of Bauer and Wagner (2012), that is

A =

⎡⎢⎢⎢⎣
Ic Ic 0 0
0 Ic 0 0
0 0 Id 0
0 0 0 A•

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
B1

B2

B3

B•

⎤⎥⎥⎥⎦ , C =
[
C1 C2 C3 C•

]
,

where |λmax(A•)| < 1 (the matrix A• is stable), C′
1C1 = Ic, C′

3C3 = Id, C′
1C3 = 0, C′

1C2 = 0, C′
2C3 = 0.

Furthermore, the system is strictly minimum-phase, that is ρ0 = |λmax(A − BC)| < 1. Finally the matrix
Ā = A − BC is nonsingular.

At time t = 0 the state x0 = [x′
0,u, x′

•]
′, x0,u ∈ R2c+d, is such that x0,u is deterministic and x0,• =

∑∞
j=1 Aj−1

• B•ε−j denotes the stationary solution to the stable part of the system.

In this situation it follows that (yt)t∈Z is an I(2) process in the definition of Bauer and Wagner (2012),
that is its second difference is a stationary VARMA process. The integers c and d are connected to
the integers p1, p2, p3 via c = p3, d = p2 such that p1 = p − c − d. It can furthermore be shown that a
process generated using Assumption 3 possesses a VAR(h) approximation:
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yt +
h

∑
j=1

Ajyt−j = εt + C(A − BC)hxt−h

where Aj = −C(A − BC)j−1B, ‖Aj‖ ≤ μρj (0 ≤ ρ0 < ρ < 1) converges to zero exponentially fast for
j → ∞ due to the strict minimum-phase condition. Letting h → ∞ then implies the existence of a
VAR(∞) representation. It follows that for such systems A(z) converges absolutely for |z| < ρ−1 where
1 < ρ−1.

From the autoregressive representation the VECM representation can be obtained:

a(z) = Ip +
∞

∑
j=1

Ajzj = Ip −
∞

∑
j=1

CĀj−1Bzj = (1 − z)2 Ip − Φz − Ψz(1 − z)− (1 − z)2
∞

∑
j=1

Πjzj

where Ā = A − BC such that

Δ2yt = Φyt−1 + ΨΔyt−1 +
∞

∑
j=1

ΠjΔ2yt−j + εt.

A comparison of power series coefficients provides the identities:

Φ = −Ip + C(I − Ā)−1B,

Ψ = −Ip − C(I − Ā)−2 ĀB,

Πj = [CĀ2(I − Ā)−2]Āj−1B = DĀj−1B, j = 1, 2, . . .

It follows that the coefficients Πj, j = 1, 2, . . . form the impulse response of a rational transfer
function of order smaller or equal to n. If Ā is nonsingular then the order equals n and the system
(Ā, B, D) is minimal. Furthermore, it follows that for arbitrary Φ and Ψ the transfer function

a(z) = (1 − z)2 Ip − Φz − Ψz(1 − z)− (1 − z)2zD(I − zĀ)−1B

is a rational transfer function with the additional property that

a(1) = −Φ = −αβ′, ᾱ′
⊥ ȧ(1)β̄⊥ = ᾱ′

⊥(−Φ + Ψ)β̄⊥ = −ᾱ′
⊥C(I − Ā)−2Bβ̄⊥ = ζη′.

Consequently Φ and Ψ determine the integration properties of processes generated using a(z).
Conversely whenever the constraints

−Ip + C(I − Ā)−1B = αβ′, −ᾱ′
⊥C(I − Ā)−2Bβ̄⊥ = ζη′

hold the corresponding triple (A, B, C) corresponds to an I(2) process (if the eigenvalues of A are in
the closed unit disc). Defining C∗ = ᾱ′C, C† = ᾱ′

⊥C we obtain

− ᾱ′ + C∗(I − Ā)−1B = β′, −ᾱ′
⊥ + C†(I − Ā)−1B = 0, −C†(I − Ā)−2Bβ̄⊥ = ζη′. (22)

The third equation does not have a solution for fixed Bβ̄⊥, ζ, η, if the row space of Bβ̄⊥ does
not contain the space spanned by the rows of η′. In this case row-wise projection of η′ onto the
space spanned by the rows of Bβ̄⊥ allows for (not necessarily unique) solutions in C†. In the limit no
projection is needed. Consequently for large enough T the projected matrix will have full row rank.
The second equation then determines ᾱ⊥ which in turn determines ᾱ up to the choice of the basis such
that ᾱ′ = TC ᾱo

′ for some full row rank matrix ᾱo
′ ∈ Rr×p, ᾱo

′ᾱ⊥ = 0. The first equation then can be
rewritten as
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[TC, C∗]

[
−ᾱo

′

(I − Ā)−1B

]
︸ ︷︷ ︸

R1

= β′.

The second equation shows that the row space of (I − Ā)−1B contains the row space of ᾱ′
⊥. Thus

the matrix R1 has full row rank. It follows that this equation has solutions.
Having obtained a solution for C∗, C†, ᾱ, ᾱ⊥ then C is obtained from

C =
[
α α⊥

] [C∗
C†

]
.

A unique solution then can be obtained from adding the restrictions Πj = C(I − Ā)−2 Āj+1B, j =
1, 2, . . . , 2n which for the estimates are to be solved in a least squares sense among all solutions to
equations (22).

It then follows that for the true matrices Φ, Ψ, Πj the only solution for given Ā, B consists in
the corresponding true C. These facts therefore can be used in order to develop an initial guess for
subsequent pseudo likelihood maximization using the parameterization of I(2) processes in state space
representation: Given the integer valued parameters n, c and d:

1. Obtain a long VAR approximation Φ̂, Ψ̂, Π̂j, j = 1, 2, . . ., including Φ̂ = α̂β̂′ and ζ̂ η̂′ = ̂̄α⊥
′Ψ̂ ̂̄β⊥

using the 2SI2 approach.
2. Choose the integer f ≥ n. Use the algorithm described in Appendix F to obtain estimates

( ˆ̄A, B̂, D̂) realizing the impulse response Π̂j, j = 1, . . . , 2 f from the Hankel matrix with f block
columns and f block rows.

3. Project rows of η̂′ onto the space spanned by the rows of B̂ ̂̄β⊥ to obtain η̃′.
4. Obtain a unique solution Ĉ solving (22) such that the matrices Π̃j = Ĉ(I − ˆ̄A)−2 ˆ̄Aj+1B̂, j =

1, 2, . . . , 2n have minimal Euclidean distance to Π̂j, j = 1, 2, . . . , 2n.

5. Transform the corresponding system ( ˆ̄A + B̂Ĉ, B̂, Ĉ) to the canonical form of Bauer and Wagner
(2012) to obtain the estimate (Ã, B̃, C̃).

The algorithm obtains a minimal state space system of order n in the canonical form for I(2)
processes given in Bauer and Wagner (2012) and hence can be used as an initial guess for subsequent
pseudo-likelihood optimization in the set Mn(r, s) of all order n rational transfer functions corresponding
to I(2) processes with state space unit root structure ((0, (c, c + d))).

Theorem 4 (Consistent initial guess). Let (yt)t∈Z denote a process generated using the system (A0, B0, C0)

according to Assumption 3 and let the system (Ã, B̃, C̃) be estimated based on the long VAR approximation
with lag order chosen according to Assumption 2. Then (Ã, B̃, C̃) is a weakly consistent estimator of the data
generating system (A0, B0, C0) in the sense that C̃Ãj B̃

p→ C0 Aj
0B0, j = 0, 1, . . . and hence the corresponding

transfer functions converge in pointwise topology.

The proof of this theorem can be found in Appendix E.

6. Conclusions

In this paper the theory on long VAR approximation of general linear dynamical processes is
extended to the case of I(2) processes. We find that we need slightly narrower upper and lower bounds
in the approximations. The tighter bounds are not needed for all results and appear not very restrictive
for applications.

The main results are completely analogous to the I(1) case: The asymptotics in many respects is
identical to the finite order VAR case. Asymptotic distributions for the coefficients to non- stationary
variables are the same as in the finite order VAR case. This holds true both for unrestricted OLS
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estimates as well as the 2SI2 approach in the Johansen framework. Tests on cointegrating ranks show
identical asymptotic distributions under the null as in the finite order VAR case and hence do not
require other tables. In this respect the main conclusion is that the usual procedure of estimating the
lag order in the first step and then applying the Johansen procedure for estimated lag order is justified
also for processes generated from a VAR(∞) that is approximated with a choice of the lag order lying
within the prescribed bounds.

Additionally in the VARMA case the long VAR approximation can be used in order to derive
consistent initial guesses that can be used in subsequent pseudo likelihood estimation.

Thus the paper provides both a full extension of results that have been achieved in the I(1) case as
well as a useful starting point for subsequent VARMA modeling which might be preferable in situations
which require a high VAR order or show a large number of variables to be modeled, a situation where
VARMA models can be more parsimonious than VAR models.
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Appendix A. Preliminaries

The theory in this paper follows closely the arguments in Lewis and Reinsel (1985) and its
extension to the I(1) case in Saikkonen and Lütkepohl (1996). To this end consider the finite order
VECM approximation:

Δ2yt = Φyt−1 + ΨΔyt−1 +
h

∑
j=1

ΠjΔ2yt−j + et. (A1)

The properties of the various estimators heavily use the following rewriting of the approximation
using the triangular representation of yt:

Δ2yt = [Φ1, Φ2, Φ3]

⎡⎢⎣AΔy3,t−1 + u1,t−1

y2,t−1

y3,t−1

⎤⎥⎦+ [Ψ1, Ψ2, Ψ3]

⎡⎢⎣Au3,t−1 + Δu1,t−1

u2,t−1

Δy3,t−1

⎤⎥⎦
+

h

∑
j=1

[Πj,1, Πj,2, Πj,3]

⎡⎢⎣AΔu3,t−j + Δ2u1,t−j
Δu2,t−j
u3,t−j

⎤⎥⎦+ et

= Φ2y2,t−1 + Φ3y3,t−1 + ΘΔy3,t−1 +
h

∑
j=1

Ξjut−j + [Ξh+1,1, Ξh+1,2]

[
u1,t−h−1
u2,t−h−1

]
+ Ξh+2,1ũ1,t−h−2 + et,

(A2)

where ũ1,t−h−2 := u1,t−h−2 − Au3,t−h−1 and Φ2 = Φ3 = 0 , Θ = Φ1 A + Ψ3 = 0 , and

Ξ1 = [Φ1 + Ψ1 + Π1,1 , Ψ2 + Π1,2 , (Ψ1 + Π1,1)A + Π1,3 ],
Ξ2 = [−Ψ1 + Π2,1 − 2Π1,1 , Π2,2 − Π1,2 , (Π2,1 − Π1,1)A + Π2,3],
Ξj = [Πj,1 − 2Πj−1,1 + Πj−2,1 , Πj,2 − Πj−1,2 , (Πj,1 − Πj−1,1)A + Πj,3], j = 3, . . . , h,
Ξh+1,1 = −2Πh,1 + Πh−1,1 , Ξh+1,2 = −Πh,2 , Ξh+2,1 = Πh,1.
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Furthermore, we can see that ∑h+2
j=1 Ξj,1 = Φ1, ∑h+1

j=1 Ξj,2 = Ψ2, and ∑h
j=1 Ξj,3 = Ψ1 A + ∑h

j=1 Πj,3.

Finally Ψ1 = − ∑h+2
j=2 (j − 1)Ξj,1.

Note that in the reparametrization (A2), the I(1) components, yc,t := (y′
2,t, Δy′

3,t)
′, as well as the

I(2) components, y3,t−1, are isolated from the stationary ones, ut−j, and have coefficients equal to zero,
which facilitates the derivation of the asymptotic properties.

In the reparameterized setting define 3 Ξ := [Ξ1, . . . , Ξh, Ξh+1,1, Ξh+1,2, Ξh+2,1], p × (ph + 2p1 + p2),
Ut := [u′

t−1, . . . , u′
t−h, u′

1,t−h−1, u′
2,t−h−1, ũ′

1,t−h−2]
′, (ph + 2p1 + p2)× 1,

Λ := [Ξ, Φ2, Θ, Φ3] = [Ξ, 0], p × p(h + 2),
Wt := [U′

t , y′
c,t−1, y′

3,t−1]
′, p(h + 2)× 1.

we have
Δ2yt = ΛWt + et, (A3)

and correspondingly,
Δ2yt = Λ̂Wt + ẽt

where
Λ̂ = [Ξ̂, Φ̂2, Θ̂, Φ̂3] = 〈Δ2yt, Wt〉〈Wt, Wt〉−1

is the OLS estimator of Λ. Here 〈Xt, Zt〉 := ∑T
t=h+3 XtZ′

t.
Note that Wt and the regressors in (A1) are in one-one correspondence. In the original Equation (A1)

beside the nonstationary regressors yc,t−1 and y3,t−1 the regressor vector

X̃t = [y′
1,t−1, Δy′

1,t−1, u′
2,t−1, Δ2y′

t−1, . . . , Δ2y′
t−h]

′ ∈ R
2p1+p2+ph

occurs which cointegrates with Δy3,t−1 such that

Xt = X̃t − [A′, 0]′Δy3,t−1 = ThUt (A4)

is stationary. Here the nonsingular matrix Th ∈ R(ph+2p1+p2)×(ph+2p1+p2) is defined as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ip1
Ip1 A −Ip1

Ip2
Ip1 A −2Ip1 −A Ip1

Ip2 −Ip2
Ip3

Ip1 A −2Ip1 −A Ip1
Ip2 −Ip2

Ip3

. . .
. . .

. . .

Ip1 A −2Ip1 −A Ip1
Ip2 −Ip2

Ip3
Ip1 A −2Ip1 Ip1

Ip2 −Ip2
Ip3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Let Π := [Φ1, Ψ1, Ψ2, : Π1 : Π2 : . . . : Πh], so that we have

Ξ = ΠTh. (A5)

It can be verified that Th is invertible. The asymptotic properties of Λ̂ − Λ are clarified in the
next lemma:

Lemma A1. Under the assumptions of Theorem 1 using N = T − h − 2 as the effective sample size

3 In this appendix processes whose dimension depends on the choice of h are denoted using upper case letters neglecting the
dependence on h in the notation otherwise for simplicity.
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N
1
2 (Ξ̂ − Ξ) = N

1
2 〈εt, Ut〉(EUtU′

t)
−1 + oP(h

1
2 ),

[NΦ̂2, NΘ̂, N2Φ̂3] ⇒ g(1)
[ ∫ 1

0 dBB′
c

∫ 1
0 dBH′

3

] [ ∫ 1
0 BcB′

c
∫ 1

0 BcH′
3∫ 1

0 H3B′
c

∫ 1
0 H3H′

3

]−1

where H3(u) =
∫ u

0 B3(s)ds.

Proof. The proof essentially shows that the coefficients corresponding to the stationary regressors
and the ones corresponding to the integrated regressors asymptotically can be dealt with separately.
Let DT := diag[N− 1

2 Iph+2p1+p2 , N−1 Ip2+p3 , N−2 Ip3 ]. Note that N
1
2 (Ξ̂ − Ξ), N[Φ̂2, Θ̂], and N2Φ̂3 are

the 1st, 2nd and 3rd column blocks of (Λ̂ − Λ)D−1
T , respectively. Moreover, we have

(Λ̂ − Λ)D−1
T = 〈et, Wt〉DT (DT〈Wt, Wt〉DT)

−1 .

Let R̂ := DT〈Wt, Wt〉DT , and define R := diag [Γu, R2] , where Γu = E[UtU′
t ] , and

R2 :=

[
N−2〈yc,t−1, yc,t−1〉 N−3〈yc,t−1, y3,t−1〉
N−3〈y3,t−1, yc,t−1〉 N−4〈y3,t−1, y3,t−1〉

]
.

Note that each block of the matrix R2 is of order Op(1), and moreover, both R2 and its limit are
almost surely invertible, as there is no cointegration between yc,t−1 and y3,t−1 (see Lemma 3.1.1 in
Chan and Wei (1988), and Sims et al. (1990)). Note that

(Λ̂ − Λ)D−1
T − 〈εt, Wt〉DT R−1 = 〈e1t, Wt〉DT R−1︸ ︷︷ ︸

=:E1

+ 〈e1t, Wt〉DT(R̂−1 − R−1)︸ ︷︷ ︸
=:E2

+ 〈εt, Wt〉DT(R̂−1 − R−1)︸ ︷︷ ︸
=:E3

.

Here 〈εt, Wt〉DT R−1 has the limits stated in the lemma since:

N−1〈εt, yc,t−1〉 ⇒ g(1)
∫ 1

0
dBB′

c, N−2〈εt, y3,t−1〉 ⇒ g(1)
∫ 1

0
dBH′

3,[
N−2〈yc,t−1, yc,t−1〉 N−3〈yc,t−1, y3,t−1〉
N−3〈y3,t−1, yc,t−1〉 N−4〈y3,t−1, y3,t−1〉

]
⇒

[∫ 1
0 BcB′

c
∫ 1

0 BcH′
3∫ 1

0 H3B′
c

∫ 1
0 H3H′

3

]
.

The lemma therefore holds, if E1 = [oP(h1/2), oP(1), oP(1)], E2 = oP(1), E3 = oP(1) can be shown
(where the blocks in E1 correspond to the partitioning of Wt into stationary, I(1) and I(2) components).
For this it is sufficient to show:

(I) ‖R̂−1 − R−1‖1 = OP(h/N
1
2 )

(II) ‖〈e1t, Wt〉DT‖ = oP(h1/2) where N−1〈e1t, yc,t−1〉 = oP(1) and N−2〈e1t, y3,t−1〉 = oP(1)
(III) ‖〈εt, Wt〉DT‖ = OP(h1/2).

Here ‖.‖1 denotes the spectral norm of a matrix while ‖.‖ denotes the Frobenius norm.
(I) To see ‖R̂−1 − R−1‖1 = Op(h/N

1
2 ), according to Lewis and Reinsel (1985), it is sufficient to show

‖R̂ − R‖1 = Op(h/N
1
2 ), ‖R−1‖1 = Op(1). Note that

R̂ − R =

⎡⎢⎣N−1〈Ut, Ut〉 − Γu N− 3
2 〈Ut, yc,t−1〉 N− 5

2 〈Ut, y3,t−1〉
N− 3

2 〈yc,t−1, Ut〉 0 0
N− 5

2 〈y3,t−1, Ut〉 0 0

⎤⎥⎦ =:

⎡⎢⎣ Q̂ P̂12 P̂13

P̂21 0 0
P̂31 0 0

⎤⎥⎦ ,

then we have E‖R̂ − R‖2
1 ≤ E‖R̂ − R‖2 = E‖Q̂‖2 + 2(E‖P̂12‖2 +E‖P̂13‖2).
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Now let Uo
t := [u′

t−1, . . . , u′
t−h−2]

′, then there exists a transformation Tu of full row rank, such
that Ut = TuUo

t , where Tu is a (ph + 2p1 + p2)× p(h + 2) matrix:

Ut︷ ︸︸ ︷⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ut−1
...

ut−h
u1,t−h−1
u2,t−h−1
ũ1,t−h−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(ph+2p1+p2)×1

=

Tu︷ ︸︸ ︷⎡⎢⎢⎢⎢⎢⎣
Iph+p1+p2 0 0 0

0 −A Ip1 0

⎤⎥⎥⎥⎥⎥⎦
(ph+2p1+p2)×p(h+2)

Uo
t︷ ︸︸ ︷⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ut−1
...

ut−h
u1,t−h−1
u2,t−h−1
u3,t−h−1
u1,t−h−2
u2,t−h−2
u3,t−h−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
p(h+2)×1

.

Then, we have Q̂ = TuQ̂oTu′
, where Q̂o = 1

N 〈Uo
t , Uo

t 〉 − E[Uo
t Uo′

t ]; moreover, P̂1i = TuP̂o
1i for

i = 2, 3, where P̂o
12 = N− 3

2 〈Uo
t , yc,t−1〉, P̂o

13 = N− 5
2 〈Uo

t , y3,t−1〉. Since ‖Tu‖1 = O(1), Q̂ and P̂1i have the
same rate of convergence as Q̂o and P̂o

1i, respectively. From Saikkonen (1991) Lemma A.2. we know
E‖Q̂o‖2 = O(h2/N) and E‖P̂o

12‖2 = O(h/N) by direct calculation.
For P̂o

13 note that

E‖y3,t−1‖2 = E

∥∥∥ t−1

∑
j=1

j

∑
i=1

u3,i

∥∥∥2
= E

∥∥∥ t−1

∑
i=1

i u3,t−1−i

∥∥∥2
= O(t3).

Then analogous calculation as for P̂o
12 show that E‖P̂o

13‖2 = O(h/N). Concluding we obtain

E‖R̂ − R‖2
1 = O(h2/N) such that ‖R̂ − R‖1 = OP(h/N

1
2 ).

To show ‖R−1‖1 = OP(1) note that R−1 = diag{Γ−1
u , R−1

2 } where ‖Γ−1
u ‖1 = O(1)

(see Lewis and Reinsel (1985), p. 397) and ‖R−1
2 ‖1 = OP(1), since R2 is a.s. invertible and converges

in distribution to an almost surely nonsingular random matrix.
(II) With respect to ‖〈e1t, Wt〉DT‖ = oP(h1/2) note that

‖〈e1t, Wt〉DT‖ ≤
∥∥∥N− 1

2 〈e1t, Ut〉
∥∥∥+ ∥∥∥N−1〈e1t, yc,t−1〉

∥∥∥+ ∥∥∥N−2〈e1t, y3,t−1〉
∥∥∥ .

From Saikkonen (1991) Lemma A.5 we have
∥∥∥N− 1

2 〈e1t, Ut〉
∥∥∥ = oP(h

1
2 ), and

∥∥∥N−1〈e1t, yc,t−1〉
∥∥∥ =

oP(1). Then E‖y3,t−1‖2 = O(t3) and E‖e1t‖2 = o(N−1) imply

E

∥∥∥N−2〈e1t, y3,t−1〉
∥∥∥ ≤ N−2

T

∑
t=h+3

(
E‖e1t‖2

E‖y3,t−1‖2
) 1

2
= o(N−2NN−1/2N3/2) = o(1).

(III) To show ‖〈εt, Wt〉DT‖ = OP(h1/2) note that N− 1
2 〈εt, Ut〉 = OP(h1/2), N−1〈εt, yc,t−1〉 = OP(1)

according to (A.7) of Saikkonen (1992). Moreover N−2 ∑T
t=h+3 εty′

3,t−1 ⇒ g(1)
∫ 1

0 dBH′
3 implies

N−2〈εt, y3,t−1〉 = OP(1).

Note that for the lemma to hold we only need h3/N → 0 and N1/2 ∑∞
j=h+1 ‖Πj‖ = o(1).

Appendix B. Proof of Theorem 1

Appendix B.1. (A) Consistency

(i) Lemma A1 implies Φ̂2 → 0 = Φ2, Φ̂3 → 0 = Φ3. Furthermore, the reparameterization implies
Φ1 = ∑h+2

j=1 Ξj1 and thus Φ̂1 = ∑h+2
j=1 Ξ̂j,1 leading to
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‖Φ̂1 − Φ1‖ ≤ ‖
h+2

∑
j=1

Ξ̂j,1 −
h+2

∑
j=1

Ξj,1‖

≤
h+2

∑
j=1

‖Ξ̂j,1 − Ξj,1‖ ≤ ‖Ξ̂ − Ξ‖ = OP(h3/2/N1/2)

where the last inequality holds due to 〈εt, ut−j〉 = OP(N1/2) in combination with Lemma A1.
(ii) Note that

Σ̂ε = N−1〈Δ2yt − Λ̂Wt, Δ2yt − Λ̂Wt〉 = N−1〈et + (Λ − Λ̂)Wt, et + (Λ − Λ̂)Wt〉.

Now
〈(Λ − Λ̂)Wt, (Λ − Λ̂)Wt〉 = (Λ − Λ̂)D−1

T DT〈Wt, Wt〉DT D−1
T (Λ − Λ̂)′

where R̂ = DT〈Wt, Wt〉DT such that ‖R̂‖1 = OP(1) and ‖(Λ − Λ̂)D−1
T ‖ = OP(h1/2). Consequently

N−1〈(Λ − Λ̂)Wt, (Λ − Λ̂)Wt〉 = OP(h/N) → 0.

Next, from the definition of et, we can show that

N−1〈εt + e1t, εt + e1t〉 = N−1〈εt, εt〉+ oP(1) = Σε + oP(1),

where the last equality follows the law of large numbers and the first equality is implied by the fact
that ‖e1t‖2 = oP(T−1) and ‖εt‖2 = OP(1).
(iii) From (i) and (ii), Ω̂1.c = (Φ̂′

1Σ̂−1
ε Φ̂1)

−1 = (Φ′
1Σ−1

ε Φ1)
−1 + oP(1) = Ω1.c + oP(1) directly follows.

(iv) With respect to Ψ̂ recall that

Ψ1 = −
h+2

∑
j=2

(j − 1)Ξj,1, Ψ2 =
h+1

∑
j=1

Ξj,2.

Then Lemma A1 shows that each entry of Ξ̂ − Ξ is of order OP(h1/2/N1/2). Then

‖Ψ̂1 − Ψ1‖ ≤
h+2

∑
j=2

(j − 1)‖Ξ̂j,1 − Ξj,1‖ = OP(
h+2

∑
j=2

(j − 1)h1/2/N1/2) = OP(h5/2/N1/2)

which converges to zero for h5/T → 0. Similarly Ψ̂2 − Ψ2 = OP(h3/2/N1/2).
For Ψ̂3 note that Θ = Φ1 A+Ψ3. Thus Ψ̂3 = Θ̂ − Φ̂1 A such that Ψ̂3 → Ψ3 from (i) and Lemma A1.

(v) is contained in Lemma A1.
(vi) From (6), and the definition Ω̂1.c = (Φ̂′

1Σ̂−1
ε Φ̂1)

−1, we have

Â − A = −(Φ̂′
1Σ̂−1

ε Φ̂1)
−1Φ̂′

1Σ̂−1
ε Ψ̂3 − A

= − Ω̂1.c Φ̂′
1Σ̂−1

ε Ψ̂3 − Ω̂1.cΩ̂−1
1.c A = −Ω̂1.cΦ̂′

1Σ̂−1
ε Ψ̂3 − Ω̂1.c Φ̂′

1Σ̂−1
ε Φ̂1 A

= −Ω̂1.cΦ̂′
1Σ̂−1

ε (Ψ̂3 + Φ̂1 A) = −Ω̂1.cΦ̂′
1Σ̂−1

ε Θ̂.

Then (i-iii, v) show the result.

Appendix B.2. (B) Asymptotic Distribution of Coefficients to Nonstationary Regressors

(i) The distribution of the coefficients due to the nonstationary components is contained in Lemma A1.
(ii) With respect to the cointegrating relation note that from the proof of Theorem 1 we have

N(Â − A) = −NΩ̂1.cΦ̂′
1Σ̂−1

ε Θ̂ = −Ω1.cΦ′
1Σ−1

ε · NΘ̂ + oP(1).
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Note that NΘ̂ = [NΦ̂2, NΘ̂, N2Φ̂3]η, where η = [0p3×p2 , Ip3 , 0p3×p3 ]
′. Then by Lemma A1,

we have

N(Â − A) ⇒ −Ω1.cΦ′
1Σ−1

ε · g(1)
∫ 1

0
dBF′

(∫ 1

0
FF′

)−1

η = −Ω1.cΦ′
1Σ−1

ε · g(1)
∫ 1

0
dBL′

(∫ 1

0
LL′

)−1

.

Note that Φ1 = g(1)α, and by definition Ω =

[
Ω11 Ω1c
Ωc1 Ωcc

]
= g(1)−1 Σε g(1)′−1, we have

−Ω1.cΦ′
1Σ−1

ε g(1)B = −Ω1.cα′g(1)′Σ−1
ε g(1) B = −Ω1.c [Ip1 0] Ω−1B

= Ω1.c [(Ω−1)11 (Ω−1)1c] B = Ω1.c [ Ω−1
1.c − Ω−1

1.c Ω1cΩ−1
cc ] B

= [Ip1 − Ω1cΩ−1
cc ]

[
B1

Bc

]
= B1 − Ω1cΩ−1

cc Bc = B1.c.

Therefore, we have

N(Â − A) ⇒
∫ 1

0
dB1.cL′

(∫ 1

0
LL′

)−1

.

Appendix B.3. (C) Asymptotic Distribution of Coefficients to Stationary Regressors

Since the regressor vector Ut is stationary, the asymptotic distribution of N1/2L′
hvec(Ξ̂ − Ξ)

follows from Lewis and Reinsel (1985) in combination with uniform boundedness of the maximal
and the minimal eigenvalue of Γu = EUtU′

t , see above. Analogously the result for the coefficients
corresponding to the regressor vector Xt are shown as Xt = ThUt for nonsingular matrix Th.

Appendix B.4. (D) Asymptotic Distribution of Wald Type Tests

For the Wald test in addition to (C) note that the variance ΓECM is replaced by an estimate
Γ̂ECM. For

L′
h(Γ

−1
ECM ⊗ Σε)Lh − L′

h(Γ̂
−1
ECM ⊗ Σ̂ε)Lh

note that Σ̂ε − Σε = oP(1) due to (A) (ii). The regressor vectors X̃t and Xt differ only in the first block
where y1,t−1 = u1,t−1 + AΔy3,t−1 replaces u1,t−1. Regressing out Δy3,t−1 eliminates this difference.
Then ‖Γ̂ECM − ΓECM‖1 = OP(h/N1/2) according to (Saikkonen and Lütkepohl 1996, p. 835, l. 3).
There also invertibility of ΓECM is shown. Using Lemma A.2 of Saikkonen and Lütkepohl (1996) this
implies ‖Γ̂−1

ECM − Γ−1
ECM‖1 = OP(h/N1/2).

The rest then follows as the proof of Theorem 4 in Saikkonen and Lütkepohl (1996).

Appendix C. Proof of Theorem 2

Consistency follows directly from Theorem 1 as the general representation can be transformed
into a triangular representation using the matrix B = [β, β1, β2], see (4).

With respect to the asymptotic distribution following the proof of Theorem 1 there exists a
nonsingular transformation matrix Sh such that Wt = ShZt,h. From ‖R̂−1 − R−1‖ = OP(h/N1/2) it
follows that

(N−1〈Wt, Wt〉)−1 =

[
(Γu)−1 0

0 0

]
+ oP(h/N1/2).

Therefore it follows that the blocks corresponding to the nonstationary regressors do not contribute
to the asymptotic distribution. Then standard arguments for the stationary part of the regressor vector
can be used.
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Appendix D. Proofs for Theorem 3

The proof combines the ideas of Saikkonen and Luukkonen (1997) (in the following S&L) with the
asymptotics of 2SI2 of Paruolo (2000) (in the following P). In the proof we will work without restriction
of generality with the triangular representation.

The key to the asymptotic properties of the estimators obtained from the 2SI2 algorithm lies
in the results of P Lemma A.4 and Lemma A.5 in the appendix. These lemmas deal with the
limits of various moment matrices of the form N−a〈Rit, Rjt〉 corrected for the stationary components
Δ2yt−j, j = 1, . . . , h − 2. The correction involves a regressor vector growing in dimension with sample
size. This is dealt with in S&L.

In this respect let St = [Δ2y′
t−1, . . . , Δ2y′

t−h+2]
′ which according to (A4) is a linear function of

Ut such that St = TsUt. The definition of Ut implies Q̂ = N−1〈Ut, Ut〉 − EUtU′
t = OP(h/N1/2).

On p. 543 in P the matrices Σij, i, j ∈ {Y, U, 0} are defined as limits of second moment matrices. Here
′U′ refers to β′

1Δyt−1 = u2,t−1 in the triangular representation, ′Y′ refers to β′yt−1 + δβ′
2Δyt−1 =

y1,t−1 − AΔy3,t−1 = u1,t−1 and ′0′ refers to Δ2yt. These are all stationary processes and linear functions
of ut, ut−1, ut−2. Additional to St also β′Δyt−1 = Δu1,t−1 + Au3,t−1 is corrected for in the second stage.

The arguments on p. 114 and 115 of S&L deal with terms of the form

N−1〈u1,t−1, u1,t−1〉 − N−1〈u1,t−1, St〉〈St, St〉−1〈St, u1,t−1〉.

Analogous arguments to S&L(A.12) show that this equals (up to terms of order oP(1))

C11 = Eu1,t−1u′
1,t−1 −Eu1,t−1S′

t(EStS′
t)

−1
EStu′

1,t−1.

S&L state that this is bounded from above and bounded away from zero. The second claim actually is
wrong. If (u1,t)t∈Z is univariate white noise with unit variance then C11 = 1

h is achieved by predicting
u1,t−1 by

h

∑
j=1

h − j
h

Δu1,t−j = u1,t−1 − 1
h

h

∑
j=1

u1,t−j

including integration of the regressors in the form of the summation. This does not change the
remaining arguments in S&L, it only implies that the separation of the eigenvalues corresponding to
the stationary regressors and the ones corresponding to the non-stationary ones is weaker.

In the current case one can show that for

N−1〈u1,t−1, u1,t−1〉 − N−1〈u1,t−1, St〉〈St, St〉−1〈St, u1,t−1〉

where St contains Δu1,t−1 and Δ2u1,t−j, j = 1, . . . , h for the corresponding limit C11 the lower bound
hC11 ≥ cI holds for some 0 < c. The order of the lower bound is achieved by including a double
integration of the regressors. For

N−1〈Δu1,t−1, Δut,t−1〉 − N−1〈Δu1,t−1, St〉〈St, St〉−1〈St, Δu1,t−1〉 = CΔΔ + op(1)

we have h3CΔΔ ≥ cI. Here the arguments from above can be applied to the process (Δut)t∈Z. For a
differenced process the smallest eigenvalue of the matrix

EδUtδU′
t , δU′

t = [Δu′
t, Δu′

t−1, . . . , Δu′
t−h]

is of order h−2, compare Theorem 2 of Palma and Bondon (2003).
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Since N−1〈St, yc,t−1〉 = OP(h1/2) and N−2〈St, y3,t−1〉 = OP(h1/2) it follows that

N−1(〈u1,t−1, yc,t−1〉 − 〈u1,t−1, St〉〈St, St〉−1〈St, yc,t−1〉) = OP(h1/2),

N−2(〈yc,t−1, yc,t−1〉 − 〈yc,t−1, St〉〈St, St〉−1〈St, yc,t−1〉) = N−2〈yc,t−1, yc,t−1〉+ oP((h/N)1/2)

as well as

N−2(〈u1,t−1, y3,t−1〉 − 〈u1,t−1, St〉〈St, St〉−1〈St, y3,t−1〉) = OP(h1/2),

N−3(〈yc,t−1, y3,t−1〉 − 〈yc,t−1, St〉〈St, St〉−1〈St, y3,t−1〉) = N−3〈yc,t−1, y3,t−1〉+ oP((h/N)1/2),

N−4(〈y3,t−1, y3,t−1〉 − 〈y3,t−1, St〉〈St, St〉−1〈St, y3,t−1〉) = N−4〈y3,t−1, y3,t−1〉+ oP((h/N)1/2).

Therefore the limits of the moment matrices Mij are not affected by the correction using stationary
terms even if h → ∞ except for the terms involving the orders OP(h1/2). For all stationary terms we
find convergence to the corresponding limits denoted Σij in P.

The first step in the 2SI2 procedure then uses RRR in the equation

Δ2yt = ΨΔyt−1 + αβ′yt−1 + ΠSt + et.

Then R0t denotes Δ2yt corrected for St, R1,t denotes Δyt−1 corrected for St and R2,t denotes yt−1

corrected for St. Lemma A.4 of P derives the limits of different directions of Mij.k defined as

Mij.k = Mij − Mik M−1
kk Mkj, Mij = N−1〈Ri,t, Rj,t〉

where i, j ∈ {0, 1, 2, ε, β}. Here Rε,t equals et correct for St and Rβ,t = β′R1,t. Further P uses the notation
AT = [β̄1, T−1 β̄2] and β̄2,T = β̄2. Here and below we assume without restriction of generality that
[β, β1, β2] is an orthonormal matrix. Consequently β̄ = β, β̄1 = β1, β̄2 = β2. Then the results above
imply all results of Lemma A.4. of P except that now A′

T M20.1 = OP(h1/2).
In particular we obtain the following limits:

A′
T M2ε.1

d→
∫ 1

0 F†(dW)′ , A′
T M22.1 AT

d→
∫ 1

0 F†F′
†,

β′
2M1ε.β

d→
∫ 1

0 B3(dW)′ , T−1β′
2M11.ββ2

d→
∫ 1

0 B3B′
3,

β′
2M1ε.b

d→
∫ 1

0 L(dW)′ , T−1β′
2M11.bβ2

d→
∫ 1

0 LL′.

Here W = g(1)B denotes the Brownian motion corresponding to (εt)t∈Z, F† denotes the Brownian
motion corresponding to R2t (equaling yt−1 corrected for St) corrected for R1t (Δyt−1 whose only
nonstationary component equals Δy3,t−1 with corresponding Brownian motion B3). Thus we obtain
the following definitions (where L is as in Theorem 1):

Fa(u) =

[
B2(u)∫ u

0 B3(v)dv

]
, F†(u) = Fa(u)−

∫ 1

0
FaB′

3(
∫ 1

0
B3B′

3)
−1B3(u),

L(u) = B3(u)−
∫ 1

0
B3F′

a(
∫ 1

0
FaF′

a)
−1Fa(u).

The above arguments show that in the current setting Ut−1 = u2,t−1 and Yt−1 = u1,t−1 are
contained in the space spanned by St for h → ∞. Therefore Σij = 0 for i, j ∈ {U, Y}. The subscript ’b’
refers to correcting for β′

⊥R2t used in the second stage of 2SI2.
Let Σ̃YY denote the limit of h〈Yt−1, Yt−1〉 and analogously define Σ̃YU , Σ̃UU , Σ̃0Y and Σ̃0U . For the

latter two note that Σ̃0Y denotes the limit of

h〈Δ2yt, Yt−1〉 = hα〈Yt−1, Yt−1〉+ h〈ζUt−1, Yt−1〉+ h〈ζ2β′Δyt−1, Yt−1〉+ hΠ〈St, Yt−1〉+ h〈et, Yt−1〉
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corrected for St and β′Δyt−1. Since Yt−1 is stationary the last term is of order OP((h3/N)1/2) = oP(1).
Therefore it follows that Σ̃0Y = αΣ̃YY + ζΣ̃UY. Then the results of Lemma A.5 of P hold where in (A.11)
and (A.14) Σij can be replaced by Σ̃ij.

The asymptotic analysis below will heavily use the Johansen approach of investigating the
solutions to eigenvalue problems in order to maximize the pseudo-likelihood corresponding to the
reduced rank regression problem. In order to use the corresponding local analysis one has to first
clarify consistency for the various estimators as well as rates of convergence.

The main tool in this respect is Theorem A.1 of Johansen (1997) which establishes in the I(2) setting
for the regression yt = θ′Zt + εt (Zt being composed of stationary, I(1) and I(2) components) where
DT〈Zt, Zt〉DT = OP(1) and DT〈Zt, εt〉 = oP(1) that D−1

T (θ̂ − θ) = oP(1) where θ̂ denotes the pseudo
likelihood estimator over some closed parameter set Θ.

It is straightforward to see that analogous results hold in the present setting when first
concentrating out the stationary components: Consider yt = θ′

1zt + θ′
2Zt + et. Then θ̂2(θ1) is obtained

from the concentration step and the pseudo likelihood involves 〈Rt,y − θ′
1Rt,z, Rt,y − θ′

1Rt,z〉 where again
the processes Rt,y and Rt,z denote the processes yt and zt with the corresponding stationary regressors
Zt regressed out. These concentrated quantities now can be used in the proof of Theorem A.1 of
Johansen (1997) essentially without changes to show consistency for θ̂1. Consistency of θ̂2(θ̂1) then
follows from the unrestricted estimation as contained in Theorem 2. As shown above the rates of
convergence as well as the limits are unchanged for the coefficients corresponding to the non-stationary
components of the regressors for the long VAR case compared to the finite VAR case.

Note that these results hold for general closed parameter space Θ, thus including the unrestricted
as well as the rank-reduced problem. This shows that we can always reduce the asymptotic analysis of
the eigenvalue problems to a neighborhood of the true value as is done in P.

The first step in the proof of Theorem 4.1. of P consists in the investigation of the solutions to the

equation (β̃ = βH + β1H1 + β2H2, letting B′
T =

⎡⎢⎣ β′

T−1/2β′
1

T−3/2β′
2

⎤⎥⎦)

B′
T M22.1BT

⎡⎢⎣ H
T1/2H1

T3/2H2

⎤⎥⎦Λ = B′
T M20.1M−1

00.1M02.1BT

⎡⎢⎣ H
T1/2H1

T3/2H2

⎤⎥⎦ . (A6)

Now Lemma A.4 implies that the matrix B′
T M22.1BT on the left hand side converges to

diag(ΣYY.U ,
∫ 1

0 F†F′
†). B′

T M20.1 =

[
ΣY0.U

0

]
+ OP(h1/2T−1/2), M00.1 = Σ00.U + OP(T−1/2). Multiplying

the equation by h2 we obtain the limiting eigenvalue problem

[
Σ̃YY.U OP(T−1/2h3/2)

OP(T−1/2h3/2) h
∫ 1

0 F†F′
†

] ⎡⎢⎣ H
T1/2H1

T3/2H2

⎤⎥⎦ hΛ =

[
Σ̃Y0.UΣ−1

00.UΣ̃0Y.U OP(T−1/2h5/2)

OP(T−1/2h5/2) OP(T−1h3)

] ⎡⎢⎣ H
T1/2H1

T3/2H2

⎤⎥⎦ .

equation
Therefore asymptotically the first p − r eigenvalues of hΛ are positive, the remaining ones

tending to zero. Likewise the eigenvectors converge at the same speed as the matrices. Thus H1 =

OP(h5/2/T), H2 = OP(h5/2/T2) from which

β′M22.1βHΛH−1 = β′M20.1M−1
00.1M02.1β + OP(h4/T)

and thus using (A.11)

HΛH−1 = Σ̃−1
YY.UΣ̃Y0.UΣ−1

00.UΣ̃0Y.U/h + OP(hT−1/2) = α′Σ−1
00.UαΣ̃YY.U/h + OP(hT−1/2)
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follows. Then as in P we have4

M22.1 β̃ = M20.1(Σ−1
00.UΣ̃0Y.U(hHΛH−1)−1 + OP(hT−1/2)) = M22.1β + M2ε.1Σ−1

ε α(α′Σ−1
ε α)−1 + a1

where a1 = M20.1OP(h2T−1/2) = oP(1) and β̃ = β̃H−1. Then the remaining arguments on p. 546 of P
show that the asymptotic distribution of (Tβ1, T2β2)

′(β̃ − β) is identical for the long VAR case as in
the finite VAR case.

From these arguments the distribution of the likelihood ratio test of Hr versus Hp can be shown:
Define S1(λ) := λM22.1 − M20.1M−1

00.1M02.1 , AT := (β1, T−1β2) and B̃T := (β, AT) = (β, β1, T−1β2).
Note that B̃T is of full rank, (11) is equivalent to |B̃′

TS1(λ)B̃T | = 0; that is,∣∣∣∣∣∣∣
⎛⎜⎝ β′

β′
1

T−1β′
2

⎞⎟⎠ S1(λ)(β, β1, T−1β2)

∣∣∣∣∣∣∣ = |β′S1(λ)β| ·
∣∣∣A′

T

(
S1(λ)− S1(λ)β (β′S1(λ)β)−1 β′S1(λ)

)
AT

∣∣∣ = 0. (A7)

Let δ1 = Tλ, so that for every δ1 we have that λ → 0, as T → ∞. By the above arguments we
have that

h2 ∣∣β′S1(λ)β
∣∣ = ∣∣∣∣δ1

h2

T
β′M22.1β − h2β′M20.1M−1

00.1M02.1β

∣∣∣∣ p−→
∣∣∣−Σ̃Y0.UΣ−1

00.UΣ̃0Y.U

∣∣∣ 	= 0,

which has no zero root. Moreover, we have

hA′
TS1(λ)β = hλA′

T M22.1β − hA′
T M20.1M−1

00.1M02.1β = −A′
T M20.1Σ−1

00.UΣ̃0Y.U + oP(1),

which yields that

∣∣∣A′
T

(
S1(λ)− S1(λ)β (β′S1(λ)β)−1 β′S1(λ)

)
AT

∣∣∣
=

∣∣∣∣(δ1
1
T

A′
T M22.1 AT − A′

T M20.1M−1
00.1M02.1 AT

)
− A′

TS1(λ)β
(

β′S1(λ)β
)−1

β′S1(λ)AT

∣∣∣∣
=

∣∣∣∣(δ1
1
T

A′
T M22.1 AT

)
− A′

T M20.1

(
M−1

00.1 − Σ−1
00.UΣ̃0Y.U

(
Σ̃Y0.UΣ−1

00.UΣ̃0Y.U

)−1
Σ̃Y0.UΣ−1

00.U + oP(1)
)

M02.1 AT

∣∣∣∣
=

∣∣∣∣(δ1
1
T

A′
T M22.1 AT

)
− A′

T M20.1

(
Σ−1

00.U − Σ−1
00.Uα

(
αΣ−1

ε α
)−1

α′Σ−1
00.U + oP(1)

)
M02.1 AT

∣∣∣∣
d−→
∣∣∣∣δ1

∫ 1

0
F†F′

† −
∫ 1

0
F†dW ′α⊥(α

′
⊥Σεα⊥)

−1α′
⊥

∫ 1

0
dWF′

†

∣∣∣∣ = ∣∣∣∣δ1

∫ 1

0
F†F′

† − (
∫ 1

0
F†dW ′

†)(
∫ 1

0
dW†F′

†)

∣∣∣∣
where W† = (α′

⊥Σεα⊥)−1/2α′
⊥W. Thus, the smallest (p − r) solutions of (11) converge in distribution

to the solutions of
∣∣∣δ1

∫ 1
0 F†F′

† − (
∫ 1

0 F†dW ′
†)(

∫ 1
0 dW†F′

†)
∣∣∣ = 0, which implies that the test statistic Qr

has the following limiting distribution,

Qr =
p

∑
i=r+1

δ1,i + oP(1)
d−→ tr

(
(
∫ 1

0
dW†F′

†)

(∫ 1

0
F†F′

†

)−1

(
∫ 1

0
F†dW ′

†)

)
.

For the second stage the arguments are very similar. The eigenvalue problem solved here is
the following:

β̃
′
⊥M11.β̃ β̃⊥η̃Y = β̃

′
⊥M1α̃⊥ .β̃ M−1

α̃⊥ α̃⊥ .β̃
Mα̃⊥1.β̃ β̃⊥η̃.

4 Contrary to the usual Johansen notation we use Σε as the noise covariance and Ω as the variance of the Brownian motion
corresponding to (ut)t∈Z. Thus some of the formulas in this part show ’unusual’ form.
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This formula uses α̃⊥, the ortho-complement of

α̃ = M02.1 β̃(β̃′M22.1 β̃)−1

From the above results noting that hβ̃′M22.1 β̃ → Σ̃YY.U and hM02.1 β̃ → αΣ̃YY.U according to
Lemma A.4 we have α̃ → α. Considering the order of convergence we obtain α̃ − α = OP(hT−1/2).
As in P this implies α̃⊥ − α⊥ = OP(hT−1/2). Using β̃ − β = OP(h5/2/T) from stage 1 one observes
that in the eigenvalue problem estimates can be replaced by true quantities introducing an error of
order oP(hT−1/2):

β
′
⊥M11.ββ̃1Y = β

′
⊥M1α⊥ .β M−1

α⊥α⊥ .β Mα⊥1.ββ̃1 + oP(hT−1/2).

Then as in P consider β̃1 = βH + β1H1 + β2H2, reusing the symbols H, H1, H2 here for β̃1 in
place of β̃ as before. Identical arguments as around (A6) show that H1 = OP(1) and H2 = OP(h2/T).
Then combining the arguments around (A6) with the developments in P, p. 546 and 547 we obtain
(A.21) of P:

β
′
⊥M11.β(β̃

1
− β1) = β

′
⊥M1ε.βα⊥Σ−1

α⊥α⊥ζ(ζ ′Σ−1
α⊥α⊥ζ)−1 + oP(1).

The rest of the proof of (4.3a) and (4.3b) of P follows as in P.
With respect to the second likelihood ratio test consider

S̃2(ρ) = ρβ̃
′
⊥M11.β̃ β̃⊥ − β̃

′
⊥M1α̃⊥ .β̃ M−1

α̃⊥ α̃⊥ .β̃
Mα̃⊥1.β̃ β̃⊥.

The results above imply that S̃2(ρ) has uniformly in |ρ| < C (for every 0 < C < ∞) distance to
S2(ρ) of order OP(hT−1/2) where

S2(ρ) = ρβ
′
⊥M11.ββ⊥ − β

′
⊥M1α⊥ .β M−1

α⊥α⊥ .β Mα⊥1.ββ⊥.

Note that since (η, η⊥) is of full rank, (16) is equivalent to∣∣∣∣∣
(

η′

η′
⊥

)
S2(ρ)(η, η⊥)

∣∣∣∣∣ = ∣∣η′S2(ρ)η
∣∣ · ∣∣∣η′

⊥
(

S2(ρ)− S2(ρ)η (η′S2(ρ)η)
−1 η′S2(ρ)

)
η⊥

∣∣∣ = 0. (A8)

Let δ2 = Tρ, so that ρ → 0, as T → ∞. As above it can be seen that

h2
∣∣∣η′S2(

δ2
T )η

∣∣∣ = h2
∣∣∣ δ2

T β′
1M11.ββ1 − β′

1M1ᾱ⊥ .β M−1
ᾱ⊥ ᾱ⊥ .β Mᾱ⊥1.ββ1

∣∣∣ p−→
∣∣−Σ̃U0α⊥(α′

⊥Σ00α⊥)−1α′
⊥Σ̃0U

∣∣ 	= 0.

This shows that the s larger roots of S2(ρ) tend to zero slower than O(1/T). Moreover, we have

hη′
⊥S2(

δ2
T )η = h

(
δ2
T β′

2M11.β β1 − β′
2M1ᾱ⊥ .β M−1

ᾱ⊥ ᾱ⊥ .β Mᾱ⊥1.ββ1

)
= −β′

2M1ᾱ⊥ .β(α
′
⊥Σ00α⊥)−1α′

⊥Σ̃0U + oP(1),

which yields that (using PM := (α′
⊥Σ00α⊥)−1α′

⊥Σ̃0U(Σ̃U0α⊥(α′
⊥Σ00α⊥)−1α′

⊥Σ̃0U)
−1Σ̃U0α⊥(α′

⊥Σ00α⊥)−1)∣∣∣∣η′
⊥
(

S2(
δ2

T
)− S2(

δ2

T
)η (η′S2(

δ2

T
)η)−1 η′S2(

δ2

T
)
)

η⊥

∣∣∣∣
=

∣∣∣∣∣
(

δ2
1
T

β′
2M11.ββ2 − β′

2M1ᾱ⊥ .β M−1
ᾱ⊥ ᾱ⊥ .β Mᾱ⊥1.ββ2

)
− hη′

⊥S2(
δ2

T
)η

(
h2η′S2(

δ2

T
)η

)−1
hη′S1(

δ2

T
)η⊥

∣∣∣∣∣
=

∣∣∣∣(δ2
1
T

β′
2M11.ββ2 − β′

2M1α⊥ .β(α⊥
′Σ00α⊥)

−1Mα⊥1.ββ2

)
+ β′

2M1α⊥ .βPM Mα⊥1.ββ2

∣∣∣∣+ oP(1)

d−→
∣∣∣∣δ2

∫ 1

0
B3B′

3 −
∫ 1

0
B3dW ′ α2(α

′
2Σεα2)

−1α′
2

∫ 1

0
dWB′

3

∣∣∣∣ = ∣∣∣∣δ2

∫ 1

0
B3B′

3 − (
∫ 1

0
B3dW ′

2)(
∫ 1

0
dW2B′

3)

∣∣∣∣
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using the results of Lemma A.5 of P. and (A.18) of Paruolo (1996) as an expression for

(α′
⊥Σ00α⊥)

−1 − PM

where W2 = (α′
2Σεα2)

−1/2α′
2W.

Thus, the smallest (p − r − s) solutions of (16) converge in distribution to the solutions of∣∣∣∣δ2

∫ 1

0
B3B′

3 − (
∫ 1

0
B3dW ′

2)(
∫ 1

0
dW2B′

3)

∣∣∣∣ = 0,

which shows that the test statistic Qr,s has the following limiting distribution,

Qr,s =
p−r

∑
i=s+1

δ2,i + oP(1)
d−→ tr

(∫ 1

0
dW2B′

3

(∫ 1

0
B3B′

3

)−1 ∫ 1

0
B3dW ′

2

)
.

It follows also that the sum Sr,s = Qs + Qr,s converges in distribution showing (C).
The rest of the proof of relations (4.3a, b) of P follow exactly as in P. In P (4.4) the order of

convergence is replaced by oP(T−1), in (4.5) the error term can be shown to be oP(T−1/2) and in (4.6)
instead of the term OP(T−2) we achieve oP(1).

These terms show consistency for β̃, η̃. Using the results of Lemma A.4 of P then consistency for
α̃, ζ̃ follow.

Following the proof of Theorem 4.2. on pp. 548+549 of P we can show consistency for ψ̃ of P.
The only changes refer to the orders of convergence where our setting introduces orders of h into
the arguments. Jointly this proves consistency of Ψ̃ and Γ̃. Consistency for the coefficients to the
stationary terms Δ2yt−j follows as usual from the consistency of the estimates for the coefficients to
non-stationary regressors. This completes the proof of (D).

With respect to (E) note that the results above show that the asymptotics for the two eigenvalue
problems to be solved converge to the same quantities as in the finite VAR case. This shows that the
results of P in this respect hold also in the case of long VARs.

Finally for the matrices Πj note that Theorem 4.3. of P shows that the asymptotic distribution for
all quantities corresponding to stationary regressors are identical for every super-consistent estimator
for the coefficients to the non-stationary components.

Appendix E. Proof of Theorem 4

From Theorem 3 it follows that Φ̂ = α̂β̂′ → Φ, Ψ̂ → Ψ, Π̂j → Πj, j = 1, 2, . . . , 2 f − 1. Therefore the
Hankel matrix of impulse response coefficients Π̂j converges to the Hankel matrix corresponding to the
Π′

js. As (Ā, B) is controllable, (A, B, C) is minimal and Ā is nonsingular according to the assumptions,
this Hankel matrix has rank n. This implies that the stochastic realisation algorithm of Appendix F
provides consistent estimates ( ˆ̄A, B̂, D̂) → (Ā, B, D). This implies

â(z) = (1 − z)2 Ip − Φ̂z − Ψ̂z(1 − z)− (1 − z)2zD̂(In − z ˆ̄A)−1B̂ → a(z).

For details see Appendix F.
â(z) does not necessarily correspond to a rational transfer function of order n. It does so, however,

if the additional restrictions (22) hold. Step 3 and 4 of the proposed algorithm achieve this. Here step 3
ascertains that solutions to the third equation exist. The second equation explicitly provides a solution
ᾱ⊥ for given C†. This solution not necessarily is of full row rank. As in the limit this is the case, it
also holds for large enough T. The first equation always admits solutions. Thus for large enough T
the set of all solutions is defined by polynomial restrictions. Adding the least squares distance to the
estimated impulse response sequence then leads to a quadratic problem under non-linear differentiable
constraints, which in the limit has a unique solution. Thus the solution is unique for large enough T.
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Consistency of the estimates in combination with continuity of the solution of step 4 implies
consistency for the system ( ˆ̄A, B̂, Ĉ). This implies consistency for the inverse system (Â, B̂, Ĉ) in the
sense of converging impulse response coefficients and hence consistency for the transfer function
estimator in the pointwise topology. The fulfillment of restrictions (22) ensures the structure of the
corresponding matrix Â according to state space unit root structure ((0, (c, c + d))).

Appendix F. Stochastic Realization Using Overlapping Echelon Forms

This section describes the approximate realization of the first f coefficients Gj, j = 1, . . . , 2 f of an
impulse response sequence using a rational transfer function of order n where f ≥ n. More details can
be found in Section 2.6. of Hannan and Deistler (1988).

Define the Hankel matrix

H f , f =

⎡⎢⎢⎢⎢⎢⎢⎣
G1 G2 G3 . . . Gf
G2 G3 . . .
G3 . . .
...

...
Gf Gf+1 . . . G2 f−1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(1, 1)
h(1, 2)

...
h(1, p)
h(2, 1)

...
h( f , p)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here h(i, j) denotes the j-th row in the i-th block row. Let α = (n1, . . . , np) define a nice selection of
rows5 of H such that Hα ∈ Rn× f p, the submatrix of H containing the rows h(i, j), i ≤ nj, is of full row
rank. If the impulse response corresponds to a transfer function of order at least n there exists such a
nice selection α. Finally let Hα+1 ∈ Rn× f p denote the matrix Hα shifted down one block row (that is in
each row where Hα contains h(i, j), Hα+1 contains h(i + 1, j)).

Then it is derived in Hannan and Deistler (1988), Theorem 2.6.2. that if Gj corresponds to a
transfer function k(z) = ∑∞

j=1 Gjz−j of order exactly n such that the corresponding Hα is formed using
a nice selection, then a system (A, B, C) can be defined using the following formulas

AHα = Hα+1, B = Hα

[
Ip

0

]
, CHα =

[
G1 G2 . . . Gf

]
(A9)

such that Gj = CAj−1B, j = 1, 2, . . ..
If the order of the transfer function is larger than n, then the equations for A and C can be solved

using least squares. If a sequence of impulse responses Ĝj → Gj, j = 1, . . . , 2 f − 1, and the limit Gj
corresponds to a transfer function where the rank of Hα equals n, it is obvious that the resulting
systems (Â, B̂, Ĉ) → (A, B, C) since in this case the least squares solution depends continuously on the
matrix H.
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Abstract: We propose and study the stochastic stationary root model. The model resembles the
cointegrated VAR model but is novel in that: (i) the stationary relations follow a random coefficient
autoregressive process, i.e., exhibhits heavy-tailed dynamics, and (ii) the system is observed with
measurement error. Unlike the cointegrated VAR model, estimation and inference for the SSR model
is complicated by a lack of closed-form expressions for the likelihood function and its derivatives.
To overcome this, we introduce particle filter-based approximations of the log-likelihood function,
sample score, and observed Information matrix. These enable us to approximate the ML estimator
via stochastic approximation and to conduct inference via the approximated observed Information
matrix. We conjecture the asymptotic properties of the ML estimator and conduct a simulation study
to investigate the validity of the conjecture. Model diagnostics to assess model fit are considered.
Finally, we present an empirical application to the 10-year government bond rates in Germany and
Greece during the period from January 1999 to February 2018.

Keywords: cointegration; particle filtering; random coefficient autoregressive model; state space
model; stochastic approximation

JEL Classification: C15; C32; C51; C58

1. Introduction

In this paper, we introduce the multivariate stochastic stationary root (SSR) model. The SSR
model is a nonlinear state space model, which resembles the Granger-Johansen representation of the
cointegrated vector autoregressive (CVAR) model, see inter alia Johansen (1996) and Juselius (2007). The
SSR model decomposes a p–dimensional observation vector into r stationary components and p − r
nonstationary components, which is similar to the CVAR model. However, the roots of the stationary
components are allowed to be stochastic; hence the name ‘stochastic stationary root’. The stationary
and nonstationary dynamics of the model are observed with measurement error, which in this model
prohibits close-form expressions for e.g., the log-likelihood, sample score and observed Information
matrix. Likelihood-based estimation and inference therefore calls for non-standard methods.

Although the SSR model resembles the CVAR model, it is differentiated by its ability to
characterize heavy-tailed dynamics in the stationary component. Heavy-tailed dynamics, and other
types of nonlinear dependencies, are not amenable to analysis with the CVAR model, which
has prompted work into nonlinear alternatives, see inter alia Bohn Nielsen and Rahbek (2014),
Kristensen and Rahbek (2013), Kristensen and Rahbek (2010), and Bec et al. (2008). Similarly,
cointegration in the state space setting has been considered in term of the common stochastic
trend (CST) model by Chang et al. (2009) as well as the CVAR model with measurement
errors by Bohn Nielsen (2016). Additionally, the SSR model is also related to the stochastic
unit root literature, see inter alia Granger and Swanson (1997), Leybourne and McCabe (1996),
Lieberman and Phillips (2014), Lieberman and Phillips (2017), McCabe and Tremayne (1995),
and McCabe and Smith (1998). Relevant empirical applications where the SSR model could potentially
provide a better fit than the CVAR model include, but are not limited to, (i) log-prices of assets
that exhibit random walk behavior in the levels and heavy-tailed error-correcting dynamics in the
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no-arbitrage relations, and (ii) interest rates for which the riskless rate exhibits random walk-type
dynamics and the risk premia undergo periods of high levels and high volatility.

The stationary and nonstationary components of the SSR model are treated as unobserved
processes, and consequently need to be integrated out in order to compute the log-likelihood function
and its derivatives. Due to the nonlinearity of the model, this cannot be accomplished analytically.
We appeal to the incomplete data framework and the simulation-based approach known as particle
filtering to approximate the log-likelihood function, sample score and observed Information matrix.
See inter alia Gordon et al. (1993), Doucet et al. (2001), Cappé et al. (2005), and Creal (2012) for an
overview of the particle filtering literature. Moreover, we rely on stochastic approximation methods to
obtain the maximum likelihood (ML) estimator, see Poyiadjis et al. (2011). Summarizing, the main
contributions of this paper are to

i introduce and study the SSR model, and
ii propose a method for approximate frequentist estimation and inference.

It is beyond the scope of this paper to provide a complete proof of the asymptotic properties
of the ML estimator. The study of the asymptotic properties of the ML estimator in general state
space models, such as the SSR model, is an emerging area of research. Most existing results rely on
compactness of the state space, which excludes the SSR model and is generally restrictive. For results
in this direction, see e.g., Olsson and Rydén (2008) who derive consistency and asymptotic normality
for the ML estimator by discretizing the parameter space. Douc et al. (2011) have shown consistency
of the ML estimator without assuming compactness, but the regularity conditions are nonetheless
too restrictive to encompass the SSR model. Instead of providing a complete proof of the asymptotic
properties of the ML estimator, we conjecture the asymptotic properties of the derivatives of the
log-likelihood function. We base the conjecture on known properties of models that are closely related
to the SSR model, and corroborate it by a simulation study. Given the conjecture holds, it allows
us to establish the asymptotic properties of the ML estimator. We leave proving the conjecture for
future work, and focus in this paper on developing methods for approximate frequentist estimation
and inference.

The rest of the paper is organized as follows. We introduce the SSR model in Section 2, and study
some properties of the process in Section 3. In Section 4 we introduce likelihood-based estimation
and inference for the unknown model parameter. In Section 5 we introduce the incomplete data
framework. In Section 6 we introduce the particle filter-based approximations to the log-likelihood
function, sample score and Information matrix. In Section 7 we propose how to approximate the ML
estimator and classic standard errors. In Section 8 we consider model diagnostics. In Section 9 we
conduct a simulation study of the asymptotic distribution of the ML estimator. In Section 10 we apply
the SSR model to monthly observations of 10-year government bond rates in Germany and Greece
from January 1999 to February 2018. We conclude in Section 11. All proofs have been relegated to
Appendix B, while Appendix A contains various auxiliary results.

Notation-wise, we adopt the convention that the ‘blackboard bold’ typeface, e.g., E, denotes
operators, and the ‘calligraphy’ typeface, e.g., X , denotes sets. We thus let R and N denote the
real and natural numbers, respectively. For any matrix A, we denote by |A| the determinant,
by ‖A‖ =

√
tr(A′A) the Euclidean norm, and by ρ(A) the spectral radius. For some positive

definite matrix A, we let A1/2 denote the lower triangular Cholesky decomposition. For some
function f : Rdz �→ Rd f , let ∂ f (z)/∂z denote the derivative of f (z) with respect to z. For some
stochastic variable z ∈ Rdz with Gaussian distribution with mean μ and covariance Σ, let N(z; μ, Σ)
denote the Gaussian probability density function evaluated at z. We let p(z) denote the probability
density of stochastic variable z ∈ Rdz with respect to the dz–dimensional Lebesgue measure m,
while p(dz) = p(z)dm denotes the corresponding probability measure. Additionally, the letter ‘p’
is generic notation for probability density functions and measures induced by the model defined in
(1)–(3) below. The ‘bold’ typeface, e.g., p, is generic notation for analytically intractable quantities,
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in the sense of having no closed-form expression. Finally, we denote a sequence of n ∈ N+ real
dz–dimensional vectors by z1:n

..= [ z′
1 . . . z′

n ]′ ∈ Rn×dz .

2. The Model

The structure of the SSR model is similar to the Granger-Johansen representation of the CVAR
model, cf. Johansen (1996, chp. 4), but departs from it in two respects. First, the stationary component
is a random coefficient autoregressive process, cf. e.g., Feigin and Tweedie (1985), rather than an
autoregressive process. Second, the stationary and nonstationary components are observed with
measurement error. This makes the SSR model is a state space model, whereas the CVAR model is
observation-driven. In addition to resembling the CVAR model, the SSR model constitutes an extension
of the CST model, cf. Chang et al. (2009). However, while the CST model is a linear Gaussian state
space model, the SSR model is a nonlinear Gaussian state space model as it allows the stationary
component to be a random coefficient autoregressive process.

Formally, we consider the observable p-dimensional discrete time vector process yt,
for t = 1, 2, . . . , T given by,

yt = C(y0) + B
t

∑
i=1

ηi + Aξt + ut (1)

ξt = μ + Φtξt−1 + νt , (2)

for fixed initial values y0 and ξ0, and with ut, Φt and [η′
t , ν′

t ]
′ mutually independent. We define

εt
..= ∑t

i=1 ηi with ε0 = 0p−r. The sequences ε1:T and ξ1:T are unobserved and take values εt ∈ Rp−r

and ξt ∈ Rr for 0 < r < p. Additionally, the matrices are of dimensions A ∈ Rp×r and B ∈ Rp×p−r,
with [A B] ∈ Rp×p and invertible. Let the random coefficient, Φt, be i.i.d. Gaussian,

vec(Φt) ∼ N(vec(Φ), ΩΦ) . (3)

with ΩΦ a positive definite covariance matrix. Let the observation error be i.i.d. Gaussian, such that
ut ∼ N(0, Ωu) with Ωu a positive definite matrix, and let the innovations ηt and νt be jointly Gaussian
such that ηt ∼ N(0, Ωη) and νt ∼ N(0, Ων) with cross-covariance Cov [ηt, νt] = Ωη, ν, such that the
joint covariance matrix,

Λ ..=

[
Ωη Ωη, ν

Ω′
η, ν Ων

]
, (4)

is positive definite. Let all the introduced matrices be of appropriate dimensions and full rank.
Furthermore, we introduce the orthogonal complements to A and B, which we denote b ∈ Rp×r

and a ∈ Rp×p−r, such that b′B = 0 and a′A = 0 with b and a of full column rank. Finally, we let
C(y0) ..= B(a′B)−1a′y0.

Define the parameter vectors,

ω ..=
[

vec(B)′ vec(A)′ vech(Ωu)′
]′

(5)

λ ..=
[

μ′ vec(Φ)′ vech(ΩΦ)
′ vech(Λ)′

]′
, (6)

which contain the parameters governing the observations yt, and unobserved components εt and ξt,
respectively. The parameter vectors take values in ω ∈ Θω and λ ∈ Θλ, respectively. Additionally,
we define the full parameter vector as

θ ..=
[

ω′ λ′
]′

∈ Θω × Θλ =.. Θ . (7)

which indexes the model, and we refer to Θ as the parameter space. Note that ω and λ in θ are
variation free in the sense of Engle et al. (1983). The parameter space is a subset of the dθ-dimensional
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Euclidean space Θ ⊆ Rdθ , where dθ denotes the number of elements in θ. In the case where no
restrictions are imposed on θ, the dimension dθ increases rapidly in r due to the 1

2 (r
2 + 1)r2 parameters

in ΩΦ. We suggest restricting the off-diagonal elements of ΩΦ to zero to avoid over-parameterization.
The number of parameters is then dθ = 2p2 + p + 2r2 + r when the model is otherwise unrestricted.

The log-likelihood function for any parameter vector θ ∈ Θ, fixed initial values y0 ∈ Rp, ε0 = 0p−r

and ξ0 ∈ Rr, and observation sequence y1:T ∈ Rp×T is given by,

�T(θ) ..= log pθ(ε0, ξ0, y0:T) . (8)

The sample score is given by the first derivative of (8),

ST(θ) ..=
∂

∂θ
�T(θ) , (9)

and the observed Information matrix is given by minus the second derivative of (8),

IT(θ) ..= − ∂2

∂θ∂θ′ �T(θ) . (10)

Due to the nonlinear dynamics of the unobserved process (2), the log-likelihood function (8)
and its derivatives (9)–(10) do not have closed-form solutions. In the following, we suppress the
dependence on the initial values ε0, ξ0 and y0, but note they remain fixed.

3. Properties of the Process

In this section we consider some properties of the process defined by Equations (1)–(3) for a given
parameter value θ ∈ Θ. Specifically, we study the nonstationary and stationary components, including
conditions on the parameter θ that ensure strict stationarity of the stationary component. Additionally,
we decompose the observation yt into nonstationary and stationary directions.

3.1. The Unobserved Components

The first component of the model, εt, is a random walk (RW) in p − r dimensions, equivalently
expressed as an autoregressive process with a unit root. That is, for t = 1, . . . , T,

εt = εt−1 + ηt , (11)

with ε0 = 0p−r. The process (11) admits the transition density pλ(εt | εt−1) with respect to the
p − r–dimensional Lebesgue measure; however, it does not have a stationary distribution. This type of
process has been studied extensively, see e.g., Dickey and Fuller (1979). In summary, the RW process is
linear and Gaussian, but nonstationary.

The second unobserved component of the model, ξt, is a random coefficient autoregressive (RCAR)
process of lag order one in r dimensions. The RCAR process (2)–(3) is observationally equivalent to a
double autoregressive (DAR) process with one lag, cf. Ling (2007), which we formalize in Lemma 1.

Lemma 1. For θ ∈ Θ, the random coefficient autoregressive process (2)–(3) with k = 1 has the following double
autoregressive process representation, t = 1, 2, . . . , T

ξt = μ + Φξt−1 + Ω1/2
ν,t zt (12)

Ων,t = Ων +
(
ξ ′

t−1 ⊗ Ir
)

ΩΦ
(
ξ ′

t−1 ⊗ Ir
)′ , (13)

for ξ0 fixed, zt ∼ N(0, Ir), cross-covariance Cov [ηt, zt] = Ωη ν, and with the joint innovation process [η′
t, z′

t]
′

independent and identically distributed.
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The DAR representation in Lemma 1 of the RCAR process in (2)–(3) characterizes the process
dynamics in terms of the conditional mean and variance. The conditional mean Eλ [ξt | ξt−1] is
autoregressive. However, the conditional variance Varλ [ξt | ξt−1] depends positively on the lagged
level ‘squared’. The conditional variance is heteroskedastic, but not in the well-known ARCH sense
of e.g., Engle (1982); rather, the lagged level of the process ξt−1 enters the variance, not the lagged
innovation νt−1. To illustrate the point, we consider for a moment the conditional variance in the
univariate case r = 1, which is given by ω2

ν, t = ω2
ν + ω2

φξ2
t−1. Here we see that a relatively large

(in absolute terms) lagged level |ξt−1| will result in a relatively large volatility ων, t in the present
period, and vice versa.

We make the following assumption on the random coefficients (3) in order to ensure strict
stationarity of the RCAR process (2)–(3).

Assumption 1. Assume that the top Lyapunov exponent is strictly negative,

γ ..= lim
n→∞

1
n
Eλ

[
log

∥∥∥∥∥ n

∏
t=1

Φt

∥∥∥∥∥
]
< 0 . (14)

Remark 1. The top Lyapunov exponent (14) is intractable but can be approximated to arbitrary precision via
simulation, cf. inter alia Ling (2007) and Francq and Zakoian (2010). The following approximation converges
almost surely

γ̂n
..=

1
n

log

∥∥∥∥∥ n

∏
t=1

Φt

∥∥∥∥∥ a.s.→ γ , (15)

as n → ∞. In turn, γ̂n can be computed efficiently via the QR-decomposition, cf. Dieci and Van Vleck (1995).

Assumption 1 ensures that the RCAR process can be characterized as a geometrically ergodic
Markov chain, cf. Meyn and Tweedie (2005). This is formalized in the following theorem.

Theorem 1 (Feigin and Tweedie (1985), Theorem 3). Under Assumption 1, the process {ξt}t=0, 1, ... is
geometrically ergodic. In particular, the initial value ξ0 can be given an initial distribution pθ(ξ0) such that
{ξt}t=0, 1, ... is stationary and geometrically ergodic with some fractional moment.

Remark 2. The stationary component, ξt, exhibits heavy-tailed behavior since it satisfies a stochastic recurrence
equation. Pedersen and Wintenberger (2018) have recently considered the tail properties of processes of the
form (2) for a more general specification of the random coefficient, Φt, that includes BEKK-ARCH and DAR-type
processes as special cases. It should be possible to show that the stationary distribution of ξt as defined in (2)–(3)
also has power-law tails under suitable conditions.

The RCAR process (2)–(3) admits the transition density pλ(ξt | ξt−1) with respect to the
r-dimensional Lebesgue measure. Moreover, the process has the stationary distribution pθ(ξt) under
Assumption 1. In summary, the RCAR process is Gaussian and strictly stationary, but nonlinear.

3.2. The Observed Process

The observations {yt}t=1, 2, ... are conditionally independent given the sequence of unobserved
components {εt, ξt}t=1, 2, .... Thus, the dynamics of the observed process are determined by the
dynamics of the unobserved components.

We use the orthogonal complements b′ and a′ of the loading matrices B and A, respectively,
and the skew-projection identity of Johansen (1996) to decompose the observation vector yt as follows,

yt = Baa′yt + Abb′yt , (16)
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where we define Ba
..= B(a′B)−1 and Ab

..= A(b′A)−1. Here a′B and b′A are invertible thanks to our
assumption that [A B] is square and invertible. By premultiplying yt by a′ we eliminate the stationary
directions, while leaving the nonstationary directions,

a′yt = a′C(y0) + a′Bεt + a′ut . (17)

What is left after the linear transformation (17) is a random walk with Gaussian measurement
error. Similarly, premultiplying yt by b′ eliminates the nonstationary directions while the stationary
directions remain,

b′yt = b′Aξt + b′ut . (18)

The process given by (18) is a stationary random coefficient autoregressive process with Gaussian
measurement error.

The decomposition of the observation process (16) allows for a cointegration interpretation
of the SSR model. The p observed variables in yt share p − r common stochastic trends (17) with
loading matrix Ba, while the r linear combinations (18) are stationary and load into the levels with
the matrix Ab. The observed process admits the conditional density pθ(yt | y1:t−1) with respect to
the p–dimensional Lebesgue measure; however, this density does not have a closed-form expression.
Moreover, the observed process does not have a stationary distribution.

4. Likelihood-Based Estimation and Inference

In this section, we introduce the ML estimator and consider its asymptotic properties. We wish
to conduct estimation and inference based on the true, but intractable, model likelihood. Due to the
intractability of the likelihood, we can neither compute the ML estimator via numerical optimization
of (8), nor compute classic standard errors via the observed Information matrix (10). We refer to
the ML estimator as being ‘doubly intractable’, with reference to the concept from the literature in
Bayesian statistics on models with intractable likelihoods, see e.g., Murray et al. (2006). It is beyond
the scope of this paper to derive a full asymptotic theory for the SSR model. Instead, we conjecture the
limiting properties of the likelihood function (8) and its derivatives (9)–(10). We obtain the asymptotic
properties for the ML estimator based on the conjecture.

We recall preliminarily that the ML estimator is defined as the parameter vector θ ∈ Θ that
maximizes the log-likelihood function (8),

θ̂T
..= arg sup

θ∈Θ
�T (θ) , (19)

noting that the ML estimator (19) is a function of the observation sequence y1:T . We denote by θ∗ ∈ Θ
the true parameter value for the data generating process (1)–(3). In the following, we make the below
conjecture on the asymptotic properties of (8)–(10). Note that, having assumed that B∗ is known, the
score, information, and likelihood in the conjecture refer to the unknown parameters only; that is, all
elements in θ excluding vec(B).

Conjecture 1. If Assumption 1 holds, B∗ is known, and θ∗ ∈ Θ ⊆ Rdθ , then the log-likelihood function
�T(·) : Rdθ �→ R is three times continuously differentiable in θ, and

1. 1√
T

ST(θ
∗) D→ N(0, ΩS) as T → ∞, with ΩS > 0,

2. 1
T IT(θ

∗) P→ ΩI as T → ∞, with ΩI > 0, and
3. maxh,i,j=1, ..., dθ

supθ∈N (θ∗) |∂3�T(θ)/∂θh∂θi∂θj| ≤ cT,

where N (θ∗) is a neighborhood of θ∗ and 0 ≤ cT
P→ c, 0 < c < ∞, as T → ∞.
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Remark 3. Theorem 3 in Bohn Nielsen and Rahbek (2014) shows that Conjecture 1 holds in the case of the
strictly stationary bivariate double autoregressive model with BEKK-type time-varying covariance. With B∗

known, the SSR model corresponds closely to this model plus Gaussian measurement errors.

It should be noted that we propose Conjecture 1 despite lack of finite moments of the RCAR
process, cf. Theorem 1. This is in line with the results of inter alia Bohn Nielsen and Rahbek (2014) for
the bivariate DAR model, and Ling (2004, 2007) for the univariate DAR model.

The result in Theorem 2 below states that if Conjecture 1 holds true, then the ML estimator (19) is
unique,

√
T–consistent and asymptotically Gaussian. The result follows from applying Lemma 1 in

Jensen and Rahbek (2004), the conditions of which correspond to (1.)–(3.) of Conjecture 1.

Theorem 2 (Jensen and Rahbek (2004), Lemma 1). If Conjecture 1 holds, then there exists a fixed open
neighborhood U (θ∗) ⊆ N (θ∗) of the true parameter θ∗, which is an interior point of Θ, such that with
probability tending to one as T → ∞, there exists a minimum point θ̂T in U (θ∗) and �T(θ) is convex in U (θ∗).
In particular, θ̂T is unique and satisfies the score equation

ST(θ̂T) = 0 . (20)

Additionally, the ML estimator is consistent θ̂T → θ∗, and asymptotically Gaussian,

√
T(θ̂T − θ∗) D→ N(0, Ω−1

I ΩSΩ−1
I ) , T → ∞ . (21)

Proof. Conjecture 1 satisfies the Cramer-type conditions of Lemma 1 in Jensen and Rahbek (2004),
which provides the result.

We assume that the true value of B is known, because Chang et al. (2009) showed that the ML
estimator of the loading matrix B exhibits T-convergence and is asymptotically mixed Gaussian in the
CST model. The CST model corresponds to the SSR model with p − r = 1, but without the stationary
components, i.e., A = 0p×r for any p. We find it reasonable to believe that this result carries over to the
SSR model. Moreover, fixing B is conceptually similar to classic cointegration analysis with known
cointegrating vectors, which is an accepted starting point for new methodological developments,
see e.g., Bec and Rahbek (2004). In applications we often have a predefined set of cointegrating vectors
that we are interested in. In the context of the SSR model, the cointegrating vectors correspond to the
rows of the orthogonal complement b′. As an example, for the empirical illustration in Section 10 we
consider an interest rate spread in a bivariate system with one common stochastic trend, i.e., p = 2
and p − r = 1. The spread implies b′ = [ 1 −1 ], which in turn corresponds to the loading matrix
B = [ 1 1 ]′ when normalizing on the first element.

The Fisher Information matrix, ΩI , is consistently estimated by the (scaled) observed Information
matrix evaluated at θ̂T , cf. Conjecture 1.(3.). Moreover, the asymptotic variance of the score, ΩS,
is equal to the Fisher Information matrix when the model is well-specified; the information matrix
equality holds, cf. e.g., Hamilton (1994, sct. 14.4). In this case, the asymptotic variance of the ML
estimator (19) is simply the inverse Fisher Information matrix. Thus, we can use classic standard errors,
that are based on the observed Information matrix (10), to conduct inference on the ML estimates.

5. The Incomplete Data Framework

In this section, we appeal to the incomplete data framework of Dempster et al. (1977) to deal
with the unobserved components of the SSR model. We first formulate the state space representation
of the model in (1)–(3) and its associated optimal filtering problem. Secondly, we formulate the
intractable sample score (9) and observed information matrix (10) in terms of the optimal filtering
problem. In Section 6 we introduce a particle filter algorithm with which we can approximate the
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optimal filtering problem. This enables approximation of the intractable sample score and observed
information matrix via the particle filter algorithm.

5.1. The State Space Form and the Optimal Filtering Problem

Preliminarily, we collect the unobserved components in the vector xt
..= [ ε′t ξ ′

t ]′, which we
refer to as the state vector. The unobserved components are Markov, see (11)–(13), and the observation
depends only on the contemporary values of the unobserved components. Thus, the SSR model in
(1)–(3) has the dependency structure of a state space model. Formally, for t = 1, . . . , T, the SSR model
in (1)–(3) has the following state space representation,

yt = C(y0) + Πxt + Ω1/2
u ut (22)

xt = α + Γxt−1 + Λ1/2
t vt , (23)

with y0 and x0 fixed, ut ∼ N(0, Ip) and vt ∼ N(0, Ip), and ut and vt mutually independent.
We define accordingly,

Π ..=

[
B′

A′

]′
, α ..=

[
0
μ

]
, Γ ..=

[
Ip−r 0

0 Φ

]
and Λt

..=

[
Ωη Ωη, ν

Ω′
η, ν Ων, t

]
, (24)

and recall that Ων, t is defined in Lemma (1). We refer to (22) as the observation equation, and to (23)
as the transition equation. It is easy to verify that the state space representation in (22) and (23) is
observationally equivalent to the SSR model as presented in (1)–(3). The observation and transition
equations admit the densities with respect to the p-dimensional Lebesgue measure,

pω (yt | xt) = N(yt; C(y0) + Πxt, Ωu) (25)

pλ (xt | xt−1) = N(xt; α + Γxt−1, Λt) , (26)

respectively. We refer to (25) as the observation density and to (26) as the transition density. As mentioned
previously, we suppress the dependence on the initial observation y0.

One approach to conducting inference on the unobserved components, i.e., the state vector xt,
is the optimal filtering problem, cf. Anderson and Moore (1979). The optimal filtering problem refers
to the general problem of computing the conditional expectation of some sequence of unobserved
states given some sequence of observations. In the following, we consider the specific instance of
the optimal filtering problem known as the smoothing problem. Formally, the smoothing problem is a
conditional expectation of the form,

Eθ [γt(x1:t) | y1:t] =
∫

γt(x1:t)pθ (x1:t | y1:t) dx1:t , (27)

for any function γt(x1:t) ∈ L1 [Rt p, pθ (x1:t | y1:t)
]

and point in time t ∈ {1, . . . , T}. We refer to the
function γt(x1:t) as the test function and to the density pθ (x1:t | y1:t) as the smoothing density. The test
function may be time-varying, but of known form for a fixed observation sequence y1:T . The smoothing
density in (27) can be expressed as the recursion of the lagged smoothing density,

pθ (x1:t | y1:t) =
pω (yt | xt) pλ (xt | xt−1)

pθ (yt | y1:t−1)
pθ (x1:t−1 | y1:t−1) , (28)
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initialized with pθ (x1 | x0, y0, y1). The normalizing constant in (28) is the likelihood contribution,
which is given by the integral,

pθ (yt | y1:t−1) =
∫

pω (yt | xt) pλ (xt | xt−1) pθ (x1:t−1 | y1:t−1) dx1:t . (29)

We note the smoothing density recursion (28) is intractable due to the intractability of the
likelihood contribution (29). In the following, we will use the smoothing problem (27) to address
computation of the sample score (9) and observed Information matrix (10).

5.2. The Sample Score and Observed Information as Smoothing Problems

The incomplete data framework is closely associated with the classic expectation maximization
(EM) algorithm, introduced in Dempster et al. (1977). The EM algorithm is a common approach to
maximizing the log-likelihood function (8) to obtain the ML estimator (19) for models with unobserved
variables. When the EM algorithm is applicable, it is also possible to evaluate the sample score (9)
and observed Information matrix (10). For the SSR model, however, the EM algorithm does not apply
directly, yet we may use the incomplete data framework to reformulate the sample score and observed
Information in terms of intractable smoothing problems of the form (27).

A central concept of the EM algorithm is the auxiliary function called the intermediate quantity,
which is defined as,

QT (θ | ϑ) ..=
∫

log pθ (y1:T , x1:T) pϑ (x1:T | y1:T) dx1:T

= �T(θ)− HT(θ | ϑ) , (30)

where

HT(θ | ϑ) ..= −
∫

log pθ(x1:T | y1:T)pϑ(x1:T | y1:T)dx1:T , (31)

for any parameter values θ, ϑ ∈ Θ. We refer to log pθ (y1:T , x1:T) as the complete data log-likelihood.
By the state space model structure (22)–(23) and variation freeness of θ defined in (7), we have that the
complete data log-likelihood is given by,

log pθ (y1:T , x1:T) =
T

∑
t=1

[log pω (yt | xt) + log pλ (xt | xt−1)] . (32)

The intermediate quantity (30) is sometimes also called the expected log-likelihood, since it
is interpretable as the conditional expectation of the complete data log-likelihood (32) given the
observations y1:T . We note the term separating the log-likelihood (8) and the intermediate quantity (30)
is the entropy of the smoothing density (28) with parameters ϑ and θ, defined in (31).

We are interested in the intermediate quantity (30) because it provides a convenient way to derive
the sample score and observed Information matrix in terms of the derivatives of the complete data
log-likelihood (32). The first and second derivatives of the complete data log-likelihood function in (32)
are the sum of the first and second order derivatives of the observation and transition log-densities
with respect to ω and λ, respectively. These can be computed by either analytical or numerical
differentiation of (32). For ϑ ∈ Θ, we define the derivatives of (32) in terms of the functions,

UT (x1:T ; ϑ) ..=
∂

∂θ
log pθ (y1:T , x1:T)

∣∣
θ=ϑ

=
T

∑
t=1

ut (xt, xt−1; ϑ) (33)

VT (x1:T ; ϑ) ..=
∂2

∂θ∂θ′ log pθ (y1:T , x1:T)
∣∣
θ=ϑ

=
T

∑
t=1

vt (xt, xt−1; ϑ) , (34)
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where, taking advantage of the variation freeness of the model parameter, θ, we define the summands
of (33) and (34), respectively, as

ut (xt, xt−1; ϑ) ..=

[
∂

∂ω log pω (yt | xt)
∂

∂λ log pλ (xt | xt−1)

] ∣∣∣∣
θ=ϑ

, (35)

and

vt (xt, xt−1; ϑ) ..=

[
∂2

∂ω∂ω′ log pω (yt | xt) 0dω×dλ

0dλ×dω
∂2

∂λ∂λ′ log pλ (xt | xt−1)

] ∣∣∣∣
θ=ϑ

, (36)

We note that the functions (35) and (36) should not be confused with the measurement error in (22)
and innovations in (23), respectively.

If the first and second order derivatives of the complete data log-likelihood in (33) and (34),
respectively, are integrable with respect to the smoothing density (28), then we may appeal to Fisher’s
and Louis’ identities (defined below) to express the sample score (9) and observed Information
matrix (10) in terms of smoothing problems of the form (27).

Conjecture 2. For any θ ∈ Θ and observation sequence y1:T ∈ Rp×T, it holds that UT(x1:T ; θ) ∈
L2[Rp×T , pθ(x1:T | y1:T)] and VT(x1:T ; θ) ∈ L1[Rp×T , pθ(x1:T | y1:T)].

For the same reasons we conjectured the asymptotic properties of the true log-likelihood function,
sample score, observed information matrix, we conjecture integrability of the derivatives of the
complete data log-likelihood (33) and (34).

Fisher’s identity, cf. Dempster et al. (1977), states the first derivative of the intermediate
quantity (30) is equivalent to the sample score (9). Similarly, Louis’ identity of Louis (1982) establishes
a relation between the first and second derivatives of the intermediate quantity (30) and the observed
Information matrix (10).

Lemma 2 (Fisher’s and Louis’ identities, cf. Cappé et al. (2005), Proposition 10.1.6). If Conjecture 2 holds
and θ ∈ Θ, then the sample score (9) is equivalently given by

ST (θ) =
∫

UT(x1:T ; θ)pθ (x1:T | y1:T) dx1:T , (37)

and the observed Information (10) is equivalently given by

IT (θ) = ST (θ) ST (θ)′ − GT(θ)− KT(θ) , (38)

where

GT(θ) ..=
∫

VT(x1:T ; θ)pθ (x1:T | y1:T) dx1:T (39)

KT(θ) ..=
∫

UT(x1:T ; θ)UT(x1:T ; θ)′pθ (x1:T | y1:T) dx1:T , (40)

and the functions UT(x1:T ; θ) and VT(x1:T ; θ) are defined in (33) and (34), respectively.

Although Lemma 2 shows the sample score (9) and observed Information (10) can be restated
as smoothing problems of the form (27), we still cannot obtain closed-form expressions due to the
intractability of the optimal filtering problem, cf. Section 5.1. In the next section, we introduce a particle
filter algorithm that can approximate smoothing problems for appropriately chosen test functions,
such as the functions UT(x1:T ; θ) and VT(x1:T ; θ) under Conjecture 2.
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6. Particle Filter-Based Approximations

In this section, we introduce a particle filter algorithm that produces pointwise approximations
to the true but intractable log-likelihood function (8), sample score (9), and observed Information
matrix (10) for any parameter θ ∈ Θ and fixed observation sequence y1:T ∈ Rp×T . In Section 7, we show
how to apply the particle filter-based approximations introduced in this section to approximate the
true, intractable ML estimator and classic standard errors, which we introduced in Section 4.

6.1. Particle Filtering

A particle filter is a simulation-based algorithm that produces approximations to smoothing
problems of the form (27) for state space models. We introduce here a standard particle filter,
which produces empirical measures that recursively approximate the smoothing density (28) for
each time point in the observed sample t ∈ {1, . . . , T}. The empirical measures consist of point
masses, which we refer to as particles, and we use these for Monte Carlo integration in order to
approximate the smoothing problem (27). Additionally, the particle filter produces a point-wise
approximation of the log-likelihood function as a by-product. For an introduction to particle filtering
in the context of economics and finance see Creal (2012).

The particle filter algorithm relies on an importance density, denoted qθ (x1:t | y1:t), that has the
same support and recursive structure as the smoothing density (28). Formally, for t = 1, . . . , T,
we define the importance density as,

qθ (x1:t | y1:t) ..= qθ (xt | xt−1, yt) qθ (x1:t−1 | y1:t−1) , (41)

initialized by qθ (x1 | x0, y0, y1). We note the importance density (41) is defined recursively by
qθ (xt | xt−1, yt), which we refer to as the importance transition density.

Assuming the smoothing density (28) is absolutely continuous with respect to the importance
density (41), we can write the former as a the product of the importance density and a weight function,

pθ (x1:t | y1:t) = w̄t (x1:t) qθ (x1:t | y1:t) , w̄t (x1:t) ..=
pθ (x1:t | y1:t)

qθ (x1:t | y1:t)
. (42)

We refer to the weight function w̄t (x1:t) as the normalized importance weight. We note that (42)
constitutes a change of measure from the smoothing density to the importance density, and the
normalized importance weight is a Radon-Nikodym derivative between the two densities.

Substituting the recursive expressions for the smoothing density (28) and importance density (41)
into the expression for the normalized importance weight in (42), we obtain a recursive expression for
the normalized importance weight,

w̄t (x1:t) =
w̃t (xt−1:t)

pθ (yt | y1:t−1)
w̄t−1 (x1:t−1) , (43)

where we define

w̃t (xt−1:t) ..=
pω (yt | xt) pλ (xt | xt−1)

qθ (xt | xt−1, yt)
. (44)

We refer to (44) as the incremental importance weights. The recursion for the normalized importance
weight (43) is normalized by the likelihood contribution (29) and is therefore also intractable.

For particle filtering in general, the importance transition density is subject to choice under mild
regularity conditions, cf. e.g., Assumption 9.4.1 in Cappé et al. (2005). We let the importance transition
density be the corresponding model density; formally,

qθ (xt | xt−1, yt) ..= pθ (xt | xt−1, yt) . (45)
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We refer to (45) as the locally optimal transition density. This choice of importance
transition density is optimal in the sense that it is conditional on the the contemporary
observation yt, cf. Doucet et al. (2000). This is sometimes also referred to as ‘fully adapted’,
cf. e.g., Pitt and Shephard (1999b). If we instead let the importance transition density be the model
transition density (26), we omit the information about xt that is contained in yt. The locally optimal
transition density is not necessarily available in closed-form for nonlinear state space models. It is,
however, available for the SSR model and we present it in Lemma 3.

Lemma 3. For θ ∈ Θ, the locally optimal transition density has the closed-form expression

pθ (xt | xt−1, yt) = N(xt; μx
t|t, Σx

t|t) , (46)

where the conditional mean and variance are given by,

μx
t|t = μx

t|t−1 + Σx
t|t−1Π′

[
Σy

t|t−1

]−1 (
yt − μ

y
t|t−1

)
(47)

Σx
t|t = Σx

t|t−1 − Σx
t|t−1Π′

[
Σy

t|t−1

]−1
ΠΣx

t|t−1 , (48)

with

μ
y
t|t−1 = C(y0) + Πμx

t|t−1 (49)

Σy
t|t−1 = ΠΣx

t|t−1Π′ + Ωu (50)

μx
t|t−1 = α + Γxt−1 (51)

Σx
t|t−1 = Λt , (52)

and the state space form definitions given in (24).

Remark 4. The locally optimal transition density (46) is related to the Kalman (1960) filter, which solves the
optimal filtering problem analytically for linear and Gausian models. Equations (49)–(52) correspond the Kalman
filter for a known value of xt−1. Related methods for efficient particle filtering include the mixture Kalman filter
and Rao-Blackwellisation, cf. Chen and Liu (2000) and Andrieu and Doucet (2002).

It is straightforward to use the general expression for the incremental importance weight in (44)
to show that letting the importance transition density be the locally optimal transition density, i.e., (45),
results in the following specific expression for incremental importance weights,

w̃t(xt−1) = pθ (yt | xt−1) . (53)

We refer to the density in (53) as the predictive observation density. It has a closed-form expression
that follows from the closed-form expression of the locally optimal transition density in Lemma 3.

Corollary 1. For θ ∈ Θ, the predictive observation density has the closed-form expression

pθ (yt | xt−1) = N(yt; μ
y
t|t−1, Σy

t|t−1) , (54)

recalling the definitions in (49)–(52).

Proof. Contained in the proof of Lemma 3.

Remark 5. The choice of importance transition density (45) is locally optimal in the sense that the conditional
variance of the incremental importance weights (53) given xt−1 is zero, cf. Doucet et al. (2000).
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The particle filter, presented in Algorithm 1 below, produces weighted particle samples
approximately distributed as the smoothing density (28) at each point in time t = 1, . . . , T.
The algorithm consists of iterating over three steps. At point t in time, the first step is to sample
N particles, denoted {x̃(i)1:t}N

i=1, from the importance density (41) given the particle sample from t − 1.
This is called the propagation step. Step two consists of computing self-normalized importance weights,
denoted {w̄(i)

t }N
i=1, that approximate the normalized importance weights (43). This is the weighting step.

The third step is to sample N particle indices, denoted {I(i)}N
i=1, with replacement. We sample index j

with probability w̄(j)
t for j ∈ {1, . . . , N}. We retain the number of particles indicated by the resulting

sample of particle indices, denoted {x(i)1:t}N
i=1, and let the importance weights be uniform. This is the

resampling step. After resampling, we store the particle samples and proceed to t + 1.
For a fixed parameter value θ ∈ Θ and observation sequence y1:T ∈ Rp×T , we run the locally

optimal particle filter for the SSR model as specified in Algorithm 1 below.

Algorithm 1: Locally Optimal Particle Filter.

Given a parameter θ ∈ Θ, initialize by setting x(i)0
..= x0 and w̄(i)

0
..= 1/N for i = 1, . . . , N. For

t = 0, 1, . . . , T:

1. Sample particles {x̃(i)t }N
i=1 with distribution

x̃(i)t ∼ pθ(xt | x(i)t−1, yt), (55)

and set x̃(i)1:t
..= [ x(i)1:t−1 x̃(i)t ] for i = 1, 2, . . . , N.

2. Calculate the unnormalized importance weights, {w(i)
t }N

i=1,

w(i)
t = pθ(yt | x̃(i)t−1,t)w̄

(i)
t−1 , (56)

for i = 1, . . . , N. Then compute the normalized importance weights

w̄(i)
t =

w(i)
t

WN
t

, WN
t

..=
N

∑
i=1

w(i)
t , (57)

for i = 1, . . . , N.
3. Sample N particle indices {I(i)}N

i=1, I(i) ∈ {1, . . . , N}, with probabilities

Pr(I(i) = j | F̃t, y1:t) = w̄(j)
t , j ∈ {1, . . . , N} (58)

for i = 1, . . . , N. Set the resampled particles x(i)1:t
..= x̃(I(i))

1:t , and the normalized importance

weights w̄(i)
t

..= 1/N for i = 1, . . . , N.

Remark 6. The resampling method applied in step (3.) of Algorithm 1 is known as multinomial resampling.
Alternative methods that are guaranteed to produce lower Monte Carlo variance exists, cf. Douc et al. (2005).
We consider multinomial resampling for its analytical tractability, and recommend applying one of the more
efficient alternatives in practice.

Remark 7. The notation x(i)1:t is ambiguous due to the resampling step of Algorithm 1, since the elements of the

ith particle path at time t − 1, denoted x(i)1:t−1, are not necessarily the same as the first t − 1 elements of the ith

particle path at time t, denoted x(i)1:t . By convention, x(i)1:t always refers to the particle chain after resampling at
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time t (similarly x̃(i)1:t refers to the chain before resampling). We refer to elements k to l of the ith particle chain

after resampling at time t as x(i)l:k, t.

The particle filter in Algorithm 1 produces two particle samples at each point in time, t. The first
set, {x̃(i)1:t}N

i=1, is produced at the propagation step (1.) and is associated with importance weights in

the weighting step (2.), {w̄(i)
t }N

i=1. The second set, {x(i)1:t}N
i=1, is produced at the resampling step (3.).

Both sets are approximately drawn from the smoothing density (28). We note the resampling step
introduces additional sampling error, cf. Chopin (2004), so we calculate approximations using the
weighted sample unless otherwise specified.

The particle filter iterates over over the propagation, weighting and resampling steps throughout
the sequence, t = 1, . . . , T, after which the algorithm terminates. We note the two sets of particles
produced during each iteration are themselves random variables measurable with respect to the
sub-σ-algebras F̃t and Ft, defined next.

Definition 1. Define the sub-σ-algebras F̃t
..= Ft−1 ∪ σ(x̃(1)t , . . . , x̃(N)

t ), Ft
..= F̃t ∪ σ(x(1)t , . . . , x(N)

t )

for t = 1, . . . , T, initialized by F0
..= ∅.

At each point in time, we associate an empirical measure with the weighted particle sample
generated by the propagation (1.) and reweighting (2.) steps in Algorithm 1. Formally, for t =

1, 2, . . . , T, we define the empirical measure,

p̃N
θ (dx1:t | y1:t) ..=

N

∑
i=1

w̄(i)
t δ

x̃(i)1:t
(dx1:t) , (59)

where δx′(dx) denotes the point measure at x′ ∈ Rp with respect to dx. The weighted particles
that constitute the empirical measure (59) are approximately distributed according to the smoothing
density (28). We emphasize the weighted particles are not independent draws from (28), because
the resampling step introduces dependence between the particles at each iteration of the algorithm.
We use the empirical measure (59) to define a particle filter-based approximation of the intractable
smoothing problem in (27),

Ẽ
N
θ [γt(x1:t) | y1:t] ..=

∫
γt(x1:t) p̃N

θ (dx1:t | y1:t) =
N

∑
i=1

w̄(i)
t γt(x̃(i)1:t) , (60)

for any point in time t ∈ {1, . . . , T}. Due to dependence between the weighted particles, we cannot
establish the asymptotic properties of the approximation (60) based on the law of large numbers and
central limit theorem for independent random variables. For appropriately chosen test functions
γt(x1:t), the approximation (60) is both consistent and asymptotically Gaussian as the number of
particles tends to infinity, N → ∞, cf. Theorem 9.4.5 in Cappé et al. (2005).

The particle filter in Algorithm 1 also produces an approximation of the log-likelihood function (8)
evaluated at the parameter value θ and the observation sequence y1:T ,

�̃N
T (θ) ..=

T

∑
t=1

log WN
t . (61)

We note that the approximate log-likelihood function (61) consists of the logarithm of the product
of normalizing constants produced by Algorithm 1. The approximate log-likelihood (61) is consistent
in the sense that it converges in probability to the true log-likelihood function, as the number of
particles tends to infinity, see Lemma 4.
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Lemma 4. For the model (1)–(3) and θ ∈ Θ, the approximate log-likelihood function (61) produced by
Algorithm 1 is a consistent estimator of the true log-likelihood (8),

�̃N
T (θ)

P→ �T(θ) , (62)

as N → ∞.

In addition to producing an approximation of the intractable log-likelihood function (8), we apply
the approximation (60) of the intractable smoothing problem in (27) to produce approximations of the
sample score and observed Information matrix via Fisher’s and Louis’ identities in Lemma 2.

6.2. The Approximate Sample Score and Observed Information Matrix

We showed in Section 5 that the sample score and observed Information matrix can be expressed
in terms of smoothing problems of the form (27). Appealing to Fisher’s identity (37) in Lemma 2, and to
the approximation of the smoothing problem (60), we define the particle filter-based approximate
sample score as,

S̃N
T (θ) ..=

N

∑
i=1

UT(x̃(i)1:T ; θ)w̄(i)
T , (63)

for any parameter θ ∈ Θ, with the function UT(x1:T ; θ) as defined in (33). If Conjecture 2 holds,
then the approximate sample score in (63) is both consistent and asymptotically normal.

Lemma 5. If Conjecture 2 holds and θ ∈ Θ, then the approximate sample score (63) is asymptotically normal,

√
N
{

S̃N
T (θ)− ST(θ)

}
D→ N(0, S̃T [UT(x1:T ; θ)]) , (64)

as N → ∞. An intractable expression for the asymptotic covariance matrix S̃T [UT(x1:T ; θ)] is given in
Lemma A.5 by setting t = T and γT(x1:T) = UT(x1:T ; θ).

Similarly, by appealing to Louis’ identity (38) in Lemma 2, and to the approximation of the
smoothing problem (60), we define the particle filter-based approximate observed Information
matrix as,

ĨN
T (θ) ..= S̃N

T (θ)S̃N
T (θ)′ − G̃N

T (θ)− K̃N
T (θ) , (65)

for any parameter θ ∈ Θ, where we define the approximations to (39) and (40) as

G̃N
T (θ) ..=

N

∑
i=1

VT(x̃(i)1:T ; θ)w̄(i)
T (66)

K̃N
T (θ) ..=

N

∑
i=1

UT(x̃(i)1:T ; θ)UT(x̃(i)1:T ; θ)′w̄(i)
T , (67)

and the functions UT(x1:T ; θ) and VT(x1:T ; θ) are defined in (33) and (34), respectively. If Conjecture 2
holds, then the approximate observed Information in (65) is consistent, stated in the following lemma.

Lemma 6. If Conjecture 2 holds and θ ∈ Θ, then the approximate observed Information matrix (65)
is consistent,

ĨN
T (θ)

P→ IT(θ) (68)
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as N → ∞.

Both the approximate sample score (63) and observed Information matrix (65) are biased for
finite N. This is a general issue related to the particle filter-based approximation of the smoothing
problem (60). At each iteration, the particle filter in Algorithm 1 relies on an approximation of
the normalized constant, i.e., likelihood contribution. This induces a finite-sample bias in (60) that
gradually disappears as the number of particles N tends to infinity and is negligible for large enough N,
cf. e.g., Robert and Casella (2010, sct. 3.3.2).

The particle filter-based approximation of the sample score (63) and observed Information
matrix (65) correspond to a batch version of Algorithm A in Poyiadjis et al. (2011), which is of
computational cost O(N), but exhibits quadratically increasing variance of the approximate sample
score as a function of the sample size T. We note that Poyiadjis et al. (2011) also suggest an alternative
algorithm, that exhibits linearly increasing variance as a function of T, but at the computational cost
O(N2). For smaller sample sizes, such as monthly observations as usually encountered in economics,
we have found that the O(N) algorithm is adequate.

7. Particle Filter-Based Estimation and Inference

In this section, we show how the approximate sample score (63) and observed Information matrix
(65) can be used to perform parameter estimation and inference. We apply a stochastic approximation
method based on the approximate sample score to approximate the ML estimator (19). This has recently
been suggested in Poyiadjis et al. (2011). We then use the approximate observed Information matrix to
obtain approximate standard errors for the approximate ML estimates. Although these quantities are
‘approximate’, we note that they can be made arbitrarily precise by increasing the number of particles,
N, at the expense of increased computational effort.

Recall from Section 4 that the ML estimator (19) is doubly intractable. Consequently, we cannot
apply gradient-based optimization algorithms to maximize the log-likelihood function (8). Originally
proposed in Robbins and Monro (1951), stochastic approximation methods are conceptually similar to
gradient-based optimization methods, but rely on noisy rather than exact evaluations of the sample
score to optimize the objective function. The basic idea is that appropriately decreasing the step sizes
provides an averaging of the random errors induced by the noisy evaluations of the sample score.
For a book-length treatment of stochastic approximation, we refer to Kushner and Yin (2003).

The stochastic approximation algorithm proposed in Poyiadjis et al. (2011, sct. 3.1) consists
of a recursion that is conceptually similar to the steepest descent method, cf. e.g.,
Nocedal and Wright (2006, chp. 3). Prior to executing the algorithm, we choose a fixed initial
parameter value θ0 ∈ Θ, a sequence of particle counts {Nj}∞

j=1, a sequence of step sizes {γj}∞
j=1,

and a sequence of weight matrices {Bj}∞
j=1. The particle counts must be monotonically increasing

positive integers, the step sizes must be strictly positive, non-summable but square summable,

∞

∑
j=1

γj = ∞ and
∞

∑
j=1

γ2
i < ∞ , (69)

and the weight matrices must be positive definite. Having chosen the initial parameter, particle counts,
step sizes, and weight matrices, we run the recursion,

θj+1 = θj + γjBjS̃
Nj
T (θj) , (70)

for j = 0, 1, . . . , K. Here K has to be sufficiently large in the sense that the sequence of parameter values
generated by the recursion (70) has stabilized in a neighborhood of the true ML estimate. Additionally,
if the particle count Nj is large enough, the approximation error affecting the stochastic approximation
recursion (70) will be approximately normal, cf. Lemma 5. In this case large disturbances will be rare,
such that the parameter sequence {θj}K

j=1 is likely to stabilize without exhibiting large jumps.
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We denote by {x̃(i)1:T, j, w̄(i)
t, j}

Nj
i=1 the particle paths produced by the particle filter in Algorithm 1 at

iteration j of the stochastic approximation recursion (70). The iteration index j is notationally identical
to time index of the particle path, cf. Remark 7. Although this is abuse of notation, it is clear from the
context whether we refer to the parameter iteration or particle path time index. The parameter θj+1
produced by iteration j of (70) is a random variable that is measurable with respect to the sub-σ-algebra
Gj, defined next.

Definition 2. Let FT, j
..= σ(x(1)1:T, j, . . . , x

(Nj)

1:T, j) denote the sub-σ-algebra in Definition 1 generated with the
parameter value θj, and define the sub-σ-algebras Gj

..= Gj−1 ∪ FT, j for j = 1, . . ., initialized by G0
..= FT, 0.

One of the main benefits of the stochastic approximation method is that the method is known to
stabilize for a wide variety of initial values, sample counts, step sizes, and weight matrices. In practice,
all of these choices affect the number of iterations needed to bring the parameter sequence into the
neighborhood of the true ML estimator. The choice of step sizes is particularly important, since large
step sizes generally speed up the convergence, but fail to dampen the approximation-induced noise.
Small step sizes reduce the noise, but cause slow convergence. The particle count has a similar effect,
since a low number of particles will result in a computationally cheap but noisy approximation of
the sample score, while a large number of particles reduces the noise but increases the computational
cost. Heuristically, it is appropriate to use a combination of large step sizes and small particle counts
until the parameter sequence has reached a neighborhood of the ML estimator, and then switch to a
combination of smaller step sizes and larger particle counts to reduce the noise. The intuition is that,
while far away from the ML estimator, a relatively noisy approximation of the sample score will still
on average lead the algorithm in the right direction.

The presence of noise in the sample score is not an impediment when applying stochastic
approximation, since the use of decreasing step sizes provides an averaging of the errors. However,
the finite sample bias of the particle filter-based approximate sample score, cf. Section 6.2, poses a
problem since its effect is not mitigated by decreasing the step sizes. Bias reduction is possible by
increasing the particle count Nj together with the iteration number j.

The stochastic approximation method is presented in Algorithm 2 below.1

Algorithm 2: Stochastic Approximation.
Choose the initial parameter θ0 ∈ Θ, the particle counts {Nj}∞

j=1, the step sizes {γj}∞
j=1 and

weighting matrices {Bj}∞
j=1. For j = 0, 1, . . . , K:

1. Run Algorithm 1 for θj to generate Nj weighted particle paths, denoted {x(i)1:T, j, w̄(i)
t, j}

Nj
i=1.

2. Compute the approximate sample score (63), denoted

S̃
Nj
T (θj) =

Nj

∑
i=1

UT(x(i)1:T, j; θj)w̄
(i)
t, j . (71)

3. With step size γj, ascend along the direction Bj,

θj+1 = θj + γjBjS̃
Nj
T (θj) . (72)

1 We use the Choleski factorization to ensure positive definiteness of the covariance matrices Ωu, Λ and ΩΦ. Thus, we estimate
the parameters B, A, Ωu = CuC′

u, μ, Φ, ΩΦ = CΦC′
Φ and Λ = CΛC′

Λ using Algorithm 2 and transform the covariances to
the original parametrization. We obtain standard errors via the δ-method.
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Polyak (1990) and Polyak and Juditsky (1992) showed that if the step sizes {γj}∞
j=1 satisfy the

summability conditions (69) and tend to zero slower than j−1, then the average of the last j − K0

iterations converges at an optimal rate. Here K0 < K denotes the iteration number at which the
averaging begins; implicitly, we discard the initial K0 iterations. We define the approximate ML
estimator as,

θ̃T
..=

1
K − K0

K

∑
j=K0

θj , (73)

suppressing the dependence on the particle count. Establishing convergence of the approximate ML
estimator (73) to the true ML estimator (19) is outside the scope of this paper. However, if (73) converges
in probability to (19) for any fixed T, then (73) inherits the consistency property, cf. Theorem 2, of the
true ML estimator.

Convergence of the particle filter-based stochastic approximation method proposed in
Poyiadjis et al. (2011) has, to the author’s knowledge, not been studied yet. The finite-sample bias
of the approximate sample score (63) presents the primary obstacle to establishing convergence
results. Intuition suggests that increasing the number of particles Nj with the iteration number j
solves the problem. However, convergence of such schemes has not been carefully established,
cf. Douc et al. (2014, sct. 12.1.2). Poyiadjis et al. (2011) report stabilization of the particle filter-based
stochastic approximation method with constant particle count. In Section 10, we report similar
stabilization with increasing particle counts.

If the model is correctly specified, we would conduct inference on the ML estimator via the
observed Information matrix, cf. Section 4. Analogously, since the approximate observed Information
matrix (65) converges in probability to the true observed Information matrix (10), we can conduct
inference for the approximate ML estimator (73) via the approximate observed Information matrix
(65), the same way we would conduct inference given the true observed Information matrix (10).

8. Model Diagnostics

In this section, we introduce a method to conduct model diagnostics, such that we may assess
whether the SSR model is well-specified for a given parameter θ and observation sequence y1:T . Recall
that the disturbances ut, ηt and νt are normally distributed and serially independent with mean zero
and unit variances. Because the components εt and ξt are hidden to us, we cannot directly compute the
residuals corresponding to the disturbances. Instead, we introduce the normalized one-step prediction
errors, cf. Durbin and Koopman (2012, sct. 2.12), that can be approximated via particle filtering.
This approach to model diagnostics for state space models has also previously been considered in
Pitt and Shephard (1999a).

We define the normalized one-step prediction errors as,

et
..= Varθ [yt | y1:t−1]

−1/2 (yt −Eθ [yt | y1:t−1]) , (74)

for t = 1, . . . , T. For a well-specified model, the sequence of normalized one-step prediction errors
should be serially independent with mean zero with unit variance. Any deviation from these
characteristics are indicative of model misspecification.

The conditional mean and variance in (74) can be stated in terms of smoothing problems, where
the test functions are the conditional mean and variance of the predictive observation density,

Eθ [yt | y1:t−1] = Eθ [Eθ [yt | xt−1] | y1:t−1] , (75)

Varθ [yt | y1:t−1] = Eθ [Varθ [yt | xt−1] | y1:t−1] +Varθ [Eθ [yt | xt−1] | y1:t−1] . (76)

330



Econometrics 2018, 6, 39

We note that the conditional mean and variance of the predictive observation density are given in
Lemma 3. Using the locally optimal particle filter in Algorithm 1, we define approximations to (75)
and (76) as

Ẽ
N
θ [yt | y1:t−1] ..=

N

∑
i=1

μ̃
y,(i)
t|t−1w̄(i)

t−1 (77)

Ṽar
N
θ [yt | y1:t−1] ..=

N

∑
i=1

Σ̃y,(i)
t|t−1w̄(i)

t−1 +
N

∑
i=1

(μ̃
y,(i)
t|t−1)(μ̃

y,(i)
t|t−1)

′w̄(i)
t−1 − Ẽ

N
θ [yt | y1:t−1] Ẽ

N
θ [yt | y1:t−1]

′ , (78)

respectively, where we have defined the conditional moments given each individual particle as,

μ̃
y,(i)
t|t−1

..= Eθ [yt | x̃(i)t−1] (79)

Σ̃y,(i)
t|t−1

..= Varθ [yt | x̃(i)t−1] , (80)

for i = 1, . . . , N. Finally, we use the approximations (77) and (78) to define the approximate normalized
likelihood contributions as follows,

ẽN
t

..= Ṽar
N
θ [yt | y1:t−1]

−1/2
(

yt − Ẽ
N
θ [yt | y1:t−1]

)
, (81)

for t = 1, . . . , T. Thus, by applying the particle filter in Algorithm 1, we obtain the sequence of
approximate normalized one-step prediction errors ẽ1:T via (77)–(81). For N sufficiently large, we can
use the sequence ẽ1:T to test whether the true sequence of normalized one-step prediction errors e1:T is
serially independent with mean zero and unit variance. For common tests for serial dependence and
ARCH effects see e.g., Doornik and Hendry (2013, sct. 11.9.2–3).

9. Simulation Study

In this section, we conduct a simulation study of the asymptotic properties of the ML estimator,
stated in Theorem 2. We limit our treatment to B, A, Φ and ΩΦ, leaving aside the remaining parameters
Ωu, μ, Ωη , Ων and Ωη, ν. Recall, the loading matrix for the stationary components A is conjectured to
be asymptotically normal, while the loading matrix of the nonstationary components B is kept fixed.
Due to the results of Chang et al. (2009), we expect the asymptotic distribution of B to be mixed normal,
and we tentatively investigate this. Moreover, we consider the case where Φt is a stochastic unit root.
A deterministic unit root is associated with the Dickey-Fuller distribution, cf. Dickey and Fuller (1979),
while a stochastic unit root has been shown to be asymptotically normal, see e.g., Ling (2007) and
Bohn Nielsen and Rahbek (2014).

Recall, Theorem 2 is based on the conjectured properties of the true, intractable log-likelihood
function and its derivatives, cf. Conjecture 1. The aim is to substantiate this conjecture by obtaining
the distribution of the approximate ML estimator based on simulated data sets. Usually, the number
of realizations in a simulation study of this type is in excess of 1000 and the sample length in
excess of 2500 observations. Due to the computational intensity of the particle filter-based stochastic
approximation method in Algorithm 2, we limit ourselves to 250 realizations and 500 observations.

We let each of the simulated data sets be a bivariate p = 2 series of length T = 500 observations
with r = 1 stationary component and p − r = 1 nonstationary component. We use the parameter

B =

[
1
1

]
, A =

[
0
1

]
, Ωu =

[
2.52 0

0 2.52

]
, (82)

μ = 0 , φ = 1 , ω2
φ = 0.252 , ω2

η = 152 , ωη, ν = 0 , and ω2
ν = 2.52 , (83)

to generate the simulated data sets. We note the parameter values (83) result in a top Lyapunov
coefficient of γn = −0.035, computed via (15) with n = 106, such that the RCAR process {ξt}t=0, 1, ... is
strictly stationary.
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Having simulated 250 series with the data generating process given by (1)–(3) and (83), we apply
Algorithm 2 with K = 600 iterations to obtain the approximate ML estimate for the parameter in
question, e.g., φ, keeping all other parameters fixed at the true values in (83). We initialize the algorithm
at the true parameter value, and initiate Polyak averaging at iteration K0 = 100.2 Moreover, we let the
particle count increase as

Nj = 50 + !1/20j" , (84)

where !·" denotes the largest integer that is smaller than the argument. We let the step size sequence
to decrease as

γj = 100(j + 500)−2/3 , (85)

and set the weight matrix to

Bj = T−1diag
(
[ 10−5 1 1 1 1 10−2 1 1 1 10−3 ]

)
, (86)

for j = 1, 2, . . . , K. Note the particle count (84) tends to infinity as j → ∞, eliminating the finite-sample
bias of (63)–(65), the step sizes satisfy (69), and the weight matrix is constant.3

The results from the simulation experiment are presented in Figure 1. Despite the relatively low
number of realizations and observations, Figure 1 is instructive of the asymptotic distributions of
A1, φ and ω2

φ, cf. Panels (a), (c) and (d). These all appear to be normal. Recall, Theorem 2 does not
state the asymptotic distribution of the ML estimator for B2, and from Panel (b) it does not appear
to be normal. Rather, the realizations in Panel (b) are consistent with mixed normality, as we would
expect from the closely-related CST model, cf. Chang et al. (2009). To investigate further, one could
to simulate the t-ratios of B2, which should be standard normal. This involves the approximation of
the observed Information matrix for each realization, which further increases the computational cost.
For this reason, and because we consider B fixed, we do not pursue this further here.

2 Because we initialize at the true parameter value, the parameter sequences stabilize within the first 100 realizations. Using
K = 600 iterations is sufficient to reduce the impact of the approximation error.

3 The choice of weight matrix is based on hand-tuning the convergence speed of Algorithm 2 by running a small number of
trial-and-error runs with N = 50 particles and constant step size γ = 1.
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(a) Realizations of A1. (b) Realizations of B2.

(c) Realizations of φ. (d) Realizations of ω2
φ

Figure 1. Simulation study with 250 realizations of the approximate MLE for A1, B2, φ, and ω2
φ.

In summary, the findings of the simulation study tentatively support the conjecture made in
Section 4. Namely, the ML estimator for A, Φ and ΩΦ is asymptotically normal. The ML estimator for
B2 appears to be consistent with mixed normality. We have not investigated the remaining parameters.

10. An Illustration

In this section, we illustrate the use of the SSR model by applying it to the monthly 10-year
government bond rates for Germany and Greece from January 1999 to February 2018.4 We denote the
German and Greek bond rates yGE and yGR, respectively, and measure these in basis points per year.
The sample begins at the introduction of the euro area and ends at present day. During this period,
the rates initially exhibit convergence towards a common ‘euro area rate’, until interrupted by the euro
area crisis beginning in 2009 and culminating in 2011. The rates, the spread and the changes in the
spread are illustrated in Figure 2 below. Because the spread is up to 75 times larger during the second
half of the sample than during the first half, we split the display of the sample into the first and second
half, respectively.

Panels (a) and (b) in Figure 2 show the bond rates, Panels (c) and (d) show the spread, and
Panels (e) and (f) show the changes in the spread in the two periods. We note two features of the
observations. First, Panel (a) suggests the rates can be characterized by a shared common stochastic
trend, since these tend to move in tandem. Second, Panels (d) and (f) suggest the spread can be
characterized by a RCAR process, since the changes in the spread, cf. Panel (f), are clearly positively
associated with the level of the spread itself, cf. Panel (d).

4 Obtained via a Bloomberg LP Terminal using the ticker codes ‘GDBR10 Index’ and ‘GGGB10YR Index’.
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(a) yGE
t and yGR

t for January 1999 to July 2008. (b) yGE
t and yGR

t for August 2008 to February 2018.

(c) yGR
t -yGE

t for January 1999 to July 2008. (d) yGR
t -yGE

t for August 2008 to February 2018.

(e) ΔyGR
t -ΔyGE

t for January 1999 to July 2008. (f) ΔyGR
t -ΔyGE

t for August 2008 to February 2018.

Figure 2. German and Greek 10-year government bond rates, spread and changes in the spread.
Monthly observations in basis points from January 1999 to February 2018.

We define the observation vector as yt
..= [ yGE

t yGR
t ]′. We condition on the observation for

January 1999, which we denote y0, such that the effective sample spans t = 1, . . . , 229. From visual
inspection of Figure 2, our working assumption is that the spread yGR

t − yGE
t is strictly stationary,

while the rates yt share a common stochastic trend. With a p = 2 dimensional system, we thus have
r = 1 stationary component and p − r = 1 nonstationary component. Moreover, we fix B = [ 1 1 ]′,
such that the orthogonal complement b = [ −1 1 ]′ produces the spread. To ensure the model is
just-identified, we normalize on the second element of A, such that A2 = 1.

We apply the particle filter-based stochastic approximation method in Algorithm 2 to obtain the
approximate ML estimate of the model parameter θ. For this illustration, we run the algorithm for
K = 10, 000 iterations. We let the particle count increase as (84), the step size sequence decrease as (85),
and the weighting matrix as (86). We initiate Polyak averaging at iteration K0 = 5000.
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(a) Parameter sequence, {ωj}K
j=1.

(b) Parameter sequence, {λj}K
j=1.

(c) Simulated log-likelihood sequence, {�̃j}K
j=1.

Figure 3. Parameter and log-likelihood sequences from stochastic approximation with K = 10, 000
iterations. We also show a moving average of lag order 500 for the log-likelihood sequence. To avoid
large differences in the scales of the displayed sequences, we have scaled the sequences for A1, ω2

η ,
ωη, ν, ων, and ωφ by 100, 1/300, 1/50, 1/50, and 2 respectively.

Figure 3 shows the results of running the particle filter-based stochastic approximation method.
Panel (a) displays the iterations for the parameters in the observation Equation (22), Panel (b) displays
the iterations for the parameters in the transition Equation (23), and Panel (c) displays the sequence of
realized approximate log-likelihoods together with a moving average of lag order 500. The algorithm
has been implemented in the Ox 7 programming language, cf. Doornik (2012), using analytical
derivatives of the complete data log-likelihood (32) for the evaluation of the function (33). The elements
of the parameter sequence shown in Panels (a) and (b) have stabilized after the initial 7500 iterations.
At the 10, 000th iteration, the particle count has increased to 550, the step size decreased to 0.2085,
and the sequences have stabilized. By inspection of the sequence of the approximate log-likelihood in
Panel (c), we see that the value has also stabilized after approximately 7500 iterations.
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The estimation results are presented in Table 1, together with approximate classic standard errors.5

Before considering inference, we assess the model fit. We compute the normalized one-step prediction
errors ẽN

1:T via (81) using N = 1000 particles. Table 2 presents univariate tests for autocorrelation
(AR) of order one and two, autoregressive conditional heteroskedasticity (ARCH) of order one, and a
multivariate test for AR of order one and two, cf. Doornik and Hendry (2013, sct. 11.9.2–3). We cannot
reject the null hypothesis of no-AR of order one and two in the univariate as well as multivariate tests
at a 5% critical level. Nor can we reject the null hypothesis of no-ARCH for the residuals at a 5% critical
level. However, we note the test for the German rate is close to, but below, our chosen critical level.
This could suggest unmodeled heteroskedasticity in the German bond rate. In conclusion, the overall
specification of the model is acceptable. Moreover, computing the top Lyapunov coefficient via (15)
with n = 105 produces a coefficient of γ̂n = −0.007, which indicates the stationary direction is strictly
stationary for θ̃T .

Table 1. Approximate ML estimate, θ̃T .

Parameter Estimate Std.err. Parameter Estimate Std.err.

B1 +1.0000 + – μ +0.3449 +0.5526

B2 +1.0000 + – φ +1.0085 +0.0152

A1 −0.0154 +3.4 × 10−5 ω2
φ +0.0306 +0.0031

A2 +1.0000 + – ω2
η +360.1600 +33.6250

ω2
u 11 +2.1063 +0.1974 ωη, ν −22.2400 +0.8119

ωu 12 +3.5924 +0.3435 ω2
ν +1.7880 +2.0728

ω2
u 22 +6.6327 +0.6214

Note: The approximate log-likelihood is �̃T = −2094.1. The approximate ML estimate has been obtained
by running Algorithm 2 for K = 10, 000 iterations with the particle count increasing to N = 550 particles,
as described in the main text. The standard errors are based on the inverse of the approximate observed
Information matrix computed with N = 1000 particles.

Table 2. Model diagnostics.

Univariate tests for AR 1-2: ẽt, 1 F(2, 227) = 1.4523 p = 0.2362
ẽt, 2 F(2, 227) = 1.2086 p = 0.3005

Multivariate test for AR 1-2: F(8, 448) = 1.6084 p = 0.1200

Univariate tests for ARCH: ẽt, 1 F(1, 227) = 4.7008 p = 0.0312
ẽt, 2 F(1, 227) = 0.58861 p = 0.4438

Note: The approximate normalized one-step prediction errors ẽ1:T have been computed with N =
1000 particles for the approximate ML estimate θ̃T , cf. Table 1.

The model is reasonably well-specified, and we therefore proceed to use the approximate classic
standard errors to conduct inference on the approximate ML estimates. First, we note the standard
error of the estimate of A1 is extremely small. Since the test for no-ARCH for the residuals associated
with the German rate is rejected at the 5% critical level, this could affect the approximate classic
standard errors.6 Nevertheless, it is economically plausible that the stationary component also loads
into the German rate, given that a large increase in the Greek rate would in this case coincide with
a small drop in the German rate, which is consistent with risk-averse investors seeking safer assets
in times of uncertainty, such as the euro area crisis. Second, we cannot reject the null hypothesis that
H0 : φ = 1 at a 5% critical level with p = 0.577. Third, the estimate of ω2

φ is significantly different from

5 The difference between computing the classic standard errors with N = 1000 and N = 10, 000 particles is negligible.
6 Particle filter-based approximate robust standard errors have been suggested in Doucet and Shephard (2012), but we do not

pursue this idea further in the present context.
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zero at any commonly used critical level. However, the constant term μ is not significantly different
from zero with p = 0.533. Fourth, the measurement errors are highly positively correlated with
coefficient 0.961, and the innovations of the unobserved components are highly negatively correlated
with coefficient −0.876. The results in Table 1 suggest the level of the stationary direction is a stochastic
unit root process without a constant term. An approximate likelihood ratio test for the joint null
hypothesis H0 : φ = 1, μ = 0 fails to reject the null at a 5% critical level with p = 0.374.

Based on the estimates in Table 1, we use the orthogonal complements b and a to compute
the changes of the nonstationary and stationary components, given by b′Δyt and a′Δyt, respectively.
These are illustrated in Figure 4. First, we note the magnitude of the changes in Panels (a) and (b)
of Figure 4 are slightly larger during the second half of the sample than during the first (standard
deviations 18.01 and 20.16, respectively). Otherwise, the series in Panels (a) and (b) in Figure 4 are
consistent with a homoskedastic random walk plus measurement error, cf. (17). The magnitude of
the changes in Panels (c) and (d) of Figure 4 is positively associated with the level, just as observed in
Figure 2. This is consistent with a random coefficient autoregressive process plus measurement error,
cf. (18).

(a) b′Δyt for January 1999 to July 2008. (b) b′Δyt for August 2008 to February 2018.

(c) a′Δyt for January 1999 to July 2008. (d) a′Δyt for August 2008 to February 2018.

Figure 4. Changes in the nonstationary b′yt and stationary a′yt components.

Summarizing, the empirical illustration suggests that the SSR model successfully characterizes
the 10-year government bond rates for Germany and Greece during the period from January 1999 to
February 2018. During this sample, the spread exhibits bubble-like behavior, which is captured by
the random coefficient autoregressive dynamics of the stationary component. Additionally, the levels
exhibit a shared common stochastic trend, which is captured by the random walk dynamics of the
nonstationary component.

11. Conclusions

In this paper, we have proposed and studied the stochastic stationary root model, which is a
multivariate nonlinear state space model. We introduced particle filter-based approximations of the
intractable log-likelihood function, sample score and observed Information matrix. In turn, we used
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these to approximate the ML estimator via stochastic approximation, and showed how to perform
inference via the approximate observed Information matrix. We considered model diagnostics to assess
the model fit. Additionally, we conducted a simulation study to investigate the asymptotic properties of
the ML estimator. Finally, we presented an empirical application to the 10-year government bond rates
in Germany and Greece in the period from January 1999 to February 2018 to illustrate the usefulness
of the SSR model.

Acknowledgments: The author gratefully acknowledges comments by two anonymous referees that have led to
substantial improvements of the paper. The author also thanks the editors, Rocco Mosconi and Paolo Paruolo,
for constructive feedback, and the assistant editor, Lu Liao, for assisting in the publication process. Finally,
the author would like to thank Anders Rahbek, Michael Pitt, Siem Jan Koopman, Heino Bohn Nielsen,
Katarina Juselius, Søren Johansen, Simon Hetland, Gareth Roberts, Adam Johansen, Axel Finke, and Anthony Lee
for helpful comments and dicsussions. Part of the work was undertaken while the author was a PhD student at the
Department of Economics at the University of Copenhagen and part of the work was undertaken while the author
was a CRiSM Research Fellow at the Department of Statistics at the University of Warwick. While at the University
of Warwick, funding from the 36 Engineering and Physical Sciences Research Council (EPSRC) is gratefully
acknowledged (Grant EP /D002060/1). All errors and omissions are the sole responsibility of the author.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Auxiliary Results

Lemma A.1. For the SSR model (1)–(3) with θ ∈ Θ, it holds that

i
∫

pω(yt | xt)pλ(xt | xt−1)dxt > 0 for all xt−1 ∈ Rp, and
ii sup

xt∈Rp
pω(yt | xt) < ∞,

for any t ∈ {1, . . . , T}.

Proof of Lemma A.1. By Corollary 1 we have that
∫

pω(yt | xt)pλ(xt | xt−1)dxt = pθ(yt | xt−1) is
Gaussian, and therefore strictly positive for all xt−1 ∈ Rp and θ ∈ Θ, which yields part (i). Moreover,
because the observation density (25) is Gaussian with constant and non-singular covariance matrix,
we obtain part (ii).

Lemma A.2. For the SSR model (1)–(3) with θ ∈ Θ, the model likelihood pθ(y1:T) is strictly positive and finite,

0 < pθ(y1:T) < ∞ . (A1)

Proof of Lemma A.2. Preliminarily, we observe the likelihood in (A1) can equivalently be written in
terms of the complete data likelihood pθ(y1:T , x1:T),

pθ(y1:T) =
∫

pθ(y1:T , x1:T)dx1:T , (A2)

which, by the state space structure of the model, cf. (25)–(26), is equivalently

pθ(y1:T) =
∫ T

∏
t=1

pω(yt | xt)pλ(xt | xt−1)dx1:T . (A3)

By Lemma A.1.(i) and (A3), we have that the likelihood in (A1) is strictly positive, since

∫ T

∏
t=1

pω(yt | xt)pλ(xt | xt−1)dx1:T > 0 . (A4)
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Moreover, by Lemma A.1.(ii), the likelihood in (A1) is also finite, since

∫ T

∏
t=1

pω(yt | xt)pλ(xt | xt−1)dx1:T

≤
T

∏
t=1

sup
xt∈Rp

pω(yt | xt)
∫ T

∏
t=1

pλ(xt | xt−1)dx1:T (A5)

=
T

∏
t=1

sup
xt∈Rp

pω(yt | xt) < ∞ ,

which completes the proof of Lemma A.2.

Lemma A.3. For the model (1)–(3) with θ ∈ Θ, it holds that

i pω(yt | xt)pλ(xt | xt−1) � pθ(xt | xt−1, yt) for all xt−1 ∈ Rp,

ii sup
xt−1, xt∈Rp×Rp

pω(yt |xt)pλ(xt |xt−1)
pθ(xt |xt−1, yt)

> 0, and

iii pθ(xt | xt−1, yt) > 0 for all xt−1 ∈ Rp,

for t ∈ {1, . . . , T}

Proof of Lemma A.3. We preliminarily note that the locally optimal transition density (46) can be
written as

pθ(xt | xt−1, yt) =
pω(yt | xt)pλ(xt | xt−1)

pθ(yt | xt−1)
, (A6)

where the predictive observation density is given by the integral,

pθ(yt | xt−1) =
∫

pω(yt | xt)pλ(xt | xt−1)dxt . (A7)

By (A6) and the definition of absolute continuity, part (i) states that for every Borel-measurable set
A ∈ B(Rp), it holds that

∫
A

pω(yt | xt)pλ(xt | xt−1)

pθ(yt | xt−1)
dxt = 0 =⇒

∫
A

pω(yt | xt)pλ(xt | xt−1)dxt = 0 . (A8)

By (A7) and Lemma A.1.(i), we know the predictive observation density is strictly positive
pθ(yt | xt−1) > 0 for all xt−1 ∈ Rp and θ ∈ Θ. Therefore (A8) is true for all xt−1 ∈ Rp and θ ∈ Θ,
and part (i) holds.

To show part (ii), we first use (A6) to write

pω(yt | xt)pλ(xt | xt−1)

pθ(xt | xt−1, yt)
= pθ(yt | xt−1) , (A9)

where, by Corollary 1, we have that pθ(yt | xt−1) is Gaussian and therefore strictly positive for all
xt, xt−1 ∈ Rp × Rp and θ ∈ Θ, and part (ii) holds.

Part (iii) follows from pθ(xt | xt−1, yt) being Gaussian, cf. Lemma 3, and therefore strictly positive
for all xt−1 ∈ Rp. Thus, part (iii) holds.

Lemma A.4. If θ ∈ Θ and γt(x1:t) ∈ L1[Rtp, pθ(x1:t | y1:t)], then it holds that the approximation (60)
is consistent,

Ẽ
N
θ [γt(x1:t) | y1:t]

P→ Eθ [γt(x1:t) | y1:t] , (A10)
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for any t ∈ {1, . . . , T}, as N → ∞.

Proof of Lemma A.4. We apply Theorem 9.4.5.(i) in Cappé et al. (2005) by verifying its conditions,
i.e., Assumptions 9.4.1–3. We note the theorem is stated for scalar test functions, but generalizes to
higher-dimensional test functions. Assumptions 9.4.1–2 is hold by Lemma A.1, while Assumption 9.4.3
holds by Lemma A.3. Thus, the conditions for Theorem 9.4.5.(i) in Cappé et al. (2005) are satisfied,
which completes the proof of Lemma A.4.

Lemma A.5. If θ ∈ Θ and γt(x1:t) ∈ L2[Rtp, pθ(x1:t | y1:t)], then it holds that the approximation (60) is
consistent and asymptotically normal,

√
N
{
Ẽ

N
θ [γt(x1:t) | y1:t]−Eθ [γt(x1:t) | y1:t]

}
D→ N(0, S̃t[γt(x1:t)]) , (A11)

for any t ∈ {1, . . . , T}, as N → ∞. Initialized by S̃0
..= 0, the asymptotic covariance matrix S̃t[γt(x1:t)] is

given by

S̃t[γt(x1:t)] = S̃t−1

[
Eq,t

[
(γt(x1:t)−Eθ [γt(x1:t) | y1:t])

w̃t(xt−1:t)

pθ (yt | y1:t−1)
| x1:t−1

]]
+Varθ

[
Eq,t

[
(γt(x1:t)−Eθ [γt(x1:t) | y1:t])

w̃t(x1:t)

pθ (yt | y1:t−1)
| x1:t−1

]
| y1:t−1

]
(A12)

+Eθ

[
Varq,t

[
(γt(x1:t)−Eθ [γt(x1:t) | y1:t])

w̃t(x1:t)

pθ (yt | y1:t−1)
| x1:t−1

]
| y1:t−1

]
,

where, for any appropriately integrable function γ(x1:t), we define the operators

Eq,t [γ (x1:t) | x1:t−1]
..=

∫
γ (x1:t) qθ (xt | f1:x−1, y1:t−1) dx1:t (A13)

Varq,t [γ(x1:t) | x1:t−1]
..= Eq,t

[
γ (x1:t) γ (x1:t)

′ | x1:t−1

]
−Eq,t [γ (x1:t) | x1:t−1]Eq,t [γ (x1:t) | x1:t−1]

′ , (A14)

omitting dependence on θ.

Proof of Lemma A.5. We apply Theorem 9.4.5.(ii) in Cappé et al. (2005) by verifying its conditions,
i.e., Assumptions 9.4.1–3. Similar to the proof of Lemma A.4, we note the theorem is stated for scalar
test functions, but generalizes to higher-dimensional test functions. Assumptions 9.4.1–2 is hold by
Lemma A.1, while Assumption 9.4.3 holds by Lemma A.3. Thus, the conditions for Theorem 9.4.5.(ii)
in Cappé et al. (2005) are satisfied, which completes the proof of Lemma A.5.

Appendix B. Main Results

Proof of Lemma 1. We compute conditional mean and variance of ξt in Equation (2). First the mean

Eλ [ξt | ξt−1] = Eλ [μ + Φtξt−1 + νt | ξt−1]

= μ + Φξt−1 , (A15)

and then the variance

Varλ [ξt | ξt−1] = Varλ [μ + Φtξt−1 + νt | ξt−1]

= Varλ

[
μ +

(
ξ ′

t−1 ⊗ Ir
)

vec(Φt) + νt | ξt−1
]

=
(
ξ ′

t−1 ⊗ Ir
)
Varλ [vec(Φt)]

(
ξ ′

t−1 ⊗ Ir
)′
+Varλ [νt]

=
(
ξ ′

t−1 ⊗ Ir
)

ΩΦ
(
ξ ′

t−1 ⊗ Ir
)′
+ Ων .

(A16)
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Since the conditional distribution of ξt given ξt−1 is Gaussian, it is completely characterized by its first
and second conditional moments. Thus, we obtain equations (12)–(13), which completes the proof of
Lemma 1.

Proof of Lemma 2. The result is an application of the Fisher’s and Louis’ identities to the SSR model.
We use Proposition 10.1.6 in Cappé et al. (2005), by verifying the conditions.

First, we verify that Assumption 10.1.3 in Cappé et al. (2005) holds. We have that Θ is an open
subset of Rdθ , which satisfies Assumption 10.1.3.(i). Assumption 10.1.3.(ii) is satisfied via Lemma A.2.
Assumption 10.1.3.(iii) is encompassed by condition (b) of Proposition 10.1.6 in Cappé et al. (2005),
shown below. Thus, Assumption 10.1.3 in Cappé et al. (2005) holds.

Second, we verify conditions (a) and (b) of Proposition 10.1.6 in Cappé et al. (2005). Condition (a)
holds by Conjecture 1. For condition (b), we begin with the third and last part, which states that

∂

∂θ

∫
log pθ(y1:t, x1:T)pϑ(x1:T | y1:T)dx1:T =

∫
∂

∂θ
log pθ(y1:t, x1:T)pϑ(x1:T | y1:T)dx1:T . (A17)

For θ, ϑ ∈ Θ, the complete data log-likelihood (32) is log-Gaussian and therefore continuous with
respect to θ, and (A17) holds.

The second part of condition (b) states that for θ ∈ Θ,∫
‖UT(x1:T ; θ)‖ pθ(x1:T | y1:T)dx1:T < ∞ (A18)∫
‖VT(x1:T ; θ)‖ pθ(x1:T | y1:T)dx1:T < ∞ , (A19)

which is holds by Conjecture 2.
The first part of condition (b) states that for θ, ϑ ∈ Θ, the entropy function in (31) is

twice-differentiable with respect to θ for fixed ϑ and y1:T . Using (A17) and that the complete data
log-likelihood (32) is twice-differentiable with respect to θ, we have that (31) is also twice-differentiable
with respect to θ. Thus, Proposition 10.1.6 in Cappé et al. (2005) applies for the SSR model, which
completes the proof of Lemma 2.

Proof of Lemma 3. Define the conditional moments of the locally optimal transition density (46),

μx
t|t

..= Eθ [xt | xt−1, yt] and Σx
t|t

..= Varθ [xt | xt−1, yt] . (A20)

Applying the Gaussian projection, we can write these as

μx
t|t = Eλ [xt | xt−1] +Covθ [xt, yt | xt−1]Varθ [yt | xt−1]

−1 (yt−1 −Eθ [yt | xt−1])

= μx
t|t−1 + Σx

t|t−1Π′
[
Σy

t|t−1

]−1 (
yt − μ

y
t|t−1

) (A21)

Σx
t|t = Varλ [xt | xt−1] +Covθ [xt, yt | xt−1]Π′ Varθ [yt | xt−1]

−1 ΠCovθ [yt, xt | xt−1]

= Σx
t|t−1 − Σx

t|t−1Π′
[
Σy

t|t−1

]−1
ΠΣx

t|t−1 ,
(A22)

where we have used that,

Covθ [xt, yt | xt−1] = Covθ [xt, C(y0) + Πxt | xt−1 | xt−1] = Σx
t|t−1Π′ . (A23)

We define the conditional moments of the predictive observation density,

μ
y
t|t−1

..= Eθ [yt | xt−1] = Eθ [C(y0) + Πxt | xt−1] = C(y0) + Πμx
t|t−1 (A24)

Σy
t|t−1

..= Varθ [yt | xt−1] = Varθ [C(y0) + Πxt | xt−1] = ΠΣx
t|t−1Π′ + Ωu , (A25)
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where we have used (22). Similarly, we define the conditional moments of the transition density,

μx
t|t−1

..= Eλ [xt | xt−1] = α + Πxt−1 (A26)

Σx
t|t−1

..= Varλ [xt | xt−1] = Λt , (A27)

where we have used (23), which concludes the proof of Lemma 3.

Proof of Lemma 4. Lemma A.4 establishes that Theorem 9.4.5 in Cappé et al. (2005) holds. It is a
corollary to Theorem 9.4.5 in Cappé et al. (2005) that

L̃N
T (θ) ..=

T

∏
t=1

WN
t

P→ pθ(y1:T) =.. LT(θ) , (A28)

as N → ∞. By continuity of the logarithm, the continuous mapping theorem and the definitions (8)
and (61), we therefore have that,

�̃N
T (θ) = log L̃N

T (θ)
P→ log LT(θ) = �T(θ) , (A29)

as N → ∞, which completes the proof of Lemma A.4.

Proof of Lemma 5. We apply Lemma A.5 for t = T setting the test function to γT(x1:T) ..= UT(x1:T ; θ),
cf. (33). By Conjecture 2 we have that UT(x1:T ; θ) ∈ L2[Rp×T , pθ(x1:T | y1:T)], which satisfies the
condition, and Lemma A.5 applies.

Proof of Lemma 6. We apply Lemma A.4 to the functions UT(x1:T ; θ), VT(x1:T ; θ) and the outer
product UT(x1:T ; θ)UT(x1:T ; θ)′ for θ ∈ Θ. First, Conjecture 2 implies that UT(x1:T ; θ) ∈
L1[Rp×T , pθ(x1:T | y1:T)], such that by setting the test function to γT(x1:T) ..= UT(x1:T ; θ), Lemma A.4
gives us that,

Ẽ
N
θ [UT(x1:T ; θ) | y1:t]

P→ Eθ [UT(x1:T ; θ) | y1:t] , (A30)

as N → ∞. Second, Conjecture 2 states VT(x1:T ; θ) ∈ L1[Rp×T , pθ(x1:T | y1:T)], such that by setting
the test function to γT(x1:T) ..= VT(x1:T ; θ), Lemma A.4 gives us that,

Ẽ
N
θ [VT(x1:T ; θ) | y1:t]

P→ Eθ [VT(x1:T ; θ) | y1:t] , (A31)

as N → ∞. Third, we note that by the Cauchy-Schwarz inequality it holds that,

‖UT(x1:T ; θ)UT(x1:T ; θ)′‖ ≤ ‖UT(x1:T ; θ)‖‖UT(x1:T ; θ)′‖ = ‖UT(x1:T ; θ)‖2 , (A32)

such that, by Conjecture 2, we have that
∫

‖UT(x1:T ; θ)UT(x1:T ; θ)′‖pθ(x1:T | y1:T)dx1:T ≤
∫

‖UT(x1:T ; θ)‖2 pθ(x1:T | y1:T)dx1:T < ∞ . (A33)

Thus, by setting the test function to γT
..= UT(x1:T ; θ)UT(x1:T ; θ)′, Lemma A.4 gives us that,

Ẽ
N
θ [UT(x1:T ; θ)UT(x1:T ; θ)′ | y1:t]

P→ Eθ

[
UT(x1:T ; θ)UT(x1:T ; θ)′ | y1:t

]
, (A34)
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as N → ∞. Now, by (37), (39), (40), (63), (66), and (67), we have that (A30)–(A34) correspond to,

S̃N
T (θ)

P→ ST(θ) (A35)

G̃N
T (θ)

P→ GT(θ) (A36)

K̃N
T (θ)

P→ KT(θ) , (A37)

as N → ∞, respectively, such that we get by the continuous mapping theorem that,

ĨN
T (θ) = S̃N

T (θ)S̃N
T (θ)′ − G̃N

T (θ)− K̃N
T (θ)

P→ ST(θ)ST(θ)
′ − KT(θ)− GT(θ) = IT(θ) , (A38)

as N → ∞, which completes the proof of Lemma 6.
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Abstract: The prototypical Lee–Carter mortality model is characterized by a single common time
factor that loads differently across age groups. In this paper, we propose a parametric factor model
for the term structure of mortality where multiple factors are designed to influence the age groups
differently via parametric loading functions. We identify four different factors: a factor common
for all age groups, factors for infant and adult mortality, and a factor for the “accident hump”
that primarily affects mortality of relatively young adults and late teenagers. Since the factors are
identified via restrictions on the loading functions, the factors are not designed to be orthogonal
but can be dependent and can possibly cointegrate when the factors have unit roots. We suggest
two estimation procedures similar to the estimation of the dynamic Nelson–Siegel term structure
model. First, a two-step nonlinear least squares procedure based on cross-section regressions together
with a separate model to estimate the dynamics of the factors. Second, we suggest a fully specified
model estimated by maximum likelihood via the Kalman filter recursions after the model is put on
state space form. We demonstrate the methodology for US and French mortality data. We find that
the model provides a good fit of the relevant factors and, in a forecast comparison with a range of
benchmark models, it is found that, especially for longer horizons, variants of the parametric factor
model have excellent forecast performance.

Keywords: mortality forecasting; term structure of mortality; factor modelling; cointegration

JEL Classification: C1; C22; J10; J11; G22

1. Introduction

The Lee and Carter (1992) (LC) model has become a benchmark model when estimating and
forecasting improvements in age-specific death rates and the calculation of life expectancy. The model
is basically a one-factor model that allows for a single common time trend with age-specific loadings.
The model has been extended in many different ways. For instance, Booth et al. (2002) and Renshaw
and Haberman (2003) extend the model with a second common time trend with age-specific loadings.
Hyndman and Ullah (2007) developed a functional data approach in which the data are smoothed
across age prior to modelling using penalized regression splines and principal component analysis.
We will refer to these models as nonparametric factor models. De Jong and Tickle (2006) use the state
space framework to establish smoothness in the LC model using b-splines.

Typically, the estimation of factors is implemented nonparametrically via either singular value
decomposition or principal component analysis. For models with multiple factors, these are identified
via orthogonalization. Subsequently, the factors are modelled as individual time series models which
can be used for forecast projections.

The LC model and its extensions are basically statistical models that summarize the variability of
the measured age-specific death rates over time in a parsimonious way. No structure is imposed in the
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model specification. However, in the demographics literature on mortality laws, it is well established
that age groups are exposed rather differently to death risk and it seems reasonable to believe that
separate time factors may affect different age groups rather than assuming a single common factor as
in the basic LC model.

Mortality laws for death rates observed at a given time have been suggested by amongst others
Gompertz (1825); Makeham (1860); and Heligman and Pollard (1980); Tabeau et al. (2001) provide a
review. These laws refer to separate mortality characteristics for different age groups such as infants,
youths, adults, and the elderly. When accounting for the dynamic development of mortality over
time, it seems natural to consider a factor model that accounts for these mortality laws. In this
paper, we assume the presence of multiple factors and impose structure on the loadings via specific
functional forms. The approach is similar to McNown and Rogers (1989). However, their model is
both heavily over parametrized in terms of latent time-varying parameters and does not fully exploit
the information contained in the factor dynamics of the model.

The idea is similar to e.g., the dynamic Nelson–Siegel model for the term structure of interest
rates—see Diebold and Li (2006). Diebold and Li suggest a factor model with parametrized factor
loadings which identify level, slope, and curvature of the yield curve, associated with the long, short,
and medium term yields. In the context of the term structure of mortality, we define loading functions
that identify the factors that drive infant, adult, and ‘accident hump’ (youth) mortality, respectively,
plus a common factor uniformly affecting all age groups. We will generally refer to this class of factor
models as parametric factor models (PFM). It follows from this approach that, opposed to traditional
factor analysis, the factors to be extracted will not necessarily be independent. In fact, the factors may
potentially cointegrate when these are found to have unit roots.

We consider estimation of the model parameters and the factors by cross-section regressions over
age groups for each period of time. These estimations are conducted over a grid of tuning parameters
that define the shape of the loading functions. Next, a least squares criterion is used to determine the
desired tuning parameters and the corresponding factor elements. This approach is similar to the first
step of the cross section projection procedure suggested in Diebold and Li (2006). After the factors have
been extracted, the second step implies the estimation of a time series model for the factors. This can
be done in different ways. For instance, univariate as well as multivariate models for the factors can
be formulated and with the possibility of stationary as well as non-stationary factors that potentially
cointegrate. The final time series specification of the factor dynamics is an empirical question and
separate time series models are considered for this purpose.

We also consider a fully parametrized model specification formulated as a state space model.
By use of the Kalman filter recursions, the model parameters and the factors can be estimated by full
maximum likelihood. This approach is similar to that of Diebold et al. (2006) for the term structure of
interest rates.

The proposed model for women and men is estimated using French and US data for the sample
period 1950–2014. The estimated functional forms appear to be rather similar across countries with the
duration of the accident hump being longer for men than for women. The shape of the four factors
also generally appear similar across countries but with differences across genders. In terms of model
fit compared with the LC model, it appears that our model is doing especially well for explaining the
age-specific death rates around the age groups defining the ‘accident hump’.

We also evaluate the out of sample performance of the model where the predicted mortality rates
are summarized in a loss function defined by the life expectancy. Specifically, we apply the model
confidence set procedure of Hansen et al. (2011) to evaluate the relative forecast performance on the
horizons of 1, 10, and 20 years ahead using a number of benchmark models. We find that, particularly
for long horizon forecasts, our model tends to be in the set of best predicting models.

In Section 2, we briefly describe the LC model and provide a detailed description of the mortality
data and set up a number of stylized facts of the mortality curve in Section 3. Section 4 introduces the
PFM and its interpretation. Section 5 discusses estimation of the PFM and in Section 6 we present the
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empirical analysis, including the estimation results, the model fit, and the factor dynamics. Section 7
examines the relative out-of-sample forecast performance. Section 8 provides conclusions.

2. The Lee–Carter Model

The observed data of the analysis are the age specific death rates mx,t for age groups x = 0, 1, . . . , N
at year t = t0, . . . , T, broadly defined as the number of deaths at age x in year t divided by the
Exposure-to-Risk, which is the average population aged x in year t. The data used is obtained from the
Human Mortality Database (2016).

The Lee and Carter (1992) (LC) model describes the (log) age-specific death rates by:

ln mx,t = αx + βxκt + εx,t, (1)

where αx captures the average death rate for each age x. κt is a common time varying factor capturing
the general trend in death rates over time t. βx is the factor loading capturing the effect of the factor
κt on each age group x and εx,t is the age and time specific error term. The LC model is basically a
one-factor model that allows a common time trend to have age-specific loadings with respect to the
development of the age-specific log death rates. Lee and Carter (1992) obtain identification using the
normalizations ∑N

x=0 βx = 1 and ∑T
t=t0

κt = 0. The constraints imply that αx measures the age specific
time-average of the log death rates, ln mx,t.1 To estimate βx and κt, the singular value decomposition is
applied to the matrix (A)xt = ln mxt − αx for all x, t. Lee and Carter (1992) find that κt can be modelled
as a random walk with drift, although they allow for other specifications as well. The LC model is
designed to maximize the in-sample fit by fitting a general factor model structure to the death rates.
Note that the LC model does not impose any particular structure on the age-specific graduation of
mortality, which essentially is data driven. However, it imposes a rigid structure on the improvements
of the age-specific death rates over time by requiring these to be proportional and governed by the
single factor κt.

3. Stylized Facts of the Mortality Curve

A good mortality model should desirably account for both the age (cross section) dimension
of mortality as well as its development over time, i.e., the time dimension. Here, we describe some
stylized facts of the (log) death rates to be modelled. For illustration, we use data for France and USA
available from the Human Mortality Database (2016).2

The age dimension: To illustrate the age dimension properties, which a good mortality model
should be able to capture, we show the log mortality on 10 year intervals from 1950 to 2010 for men
and women in Figure 1a–d for the US and France. The mortality curve shows a similar shape over the
ages, but the level of mortality tends to decline over time; the shape is very similar across both genders
and countries. The infant mortality is seen to decline rapidly during early childhood. In the late teens,
the mortality rate experiences a rapid increase often termed the ‘accident hump’, which appears either
as a distinct hump or as a flattening out of the death rates; see Heligman and Pollard (1980). After the
accident hump, the mortality rates are gradually increasing with age (log-linearly). Thus, for a model
to produce realistic results, these three facts should hold for each year. The three properties could also
be interpreted in terms of biological reasonableness as described by Cairns et al. (2006), which rules
out patterns that are biologically unreasonable such as a decreasing mortality curve for the older as
well as the crossing over of age-specific mortality rates.

1 Following Nielsen and Nielsen (2014), the choice of restrictions is of no importance for the resulting forecasts. Other
normalizations could be considered; however, this gives an intuitive interpretation of αx .

2 We restrict the data to 1950 and onwards as this removes outliers, and we avoid structural changes in the exposure;
see Lee and Miller (2001) and Booth et al. (2002). To avoid uncertainty about the death rates, due to a few observations, we
further restrict the ages to cover the ages 0 to 95 as is standard in the mortality forecasting literature.
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(a) Men, France (b) Women, France

(c) Men, USA (d) Women, USA

Figure 1. The log age-specific death rates for the years 1950, 1960, 1970, 1980, 1990, 2000, and 2010 for
men and women in France and the USA.

The time dimension: When investigating the time dynamics in the development of the log
age-specific death rates, the review paper by Wong-Fupuy and Haberman (2004, p. 56) notes that
“There is a broad consensus across the resulting projections: (1) an approximately log-linear relationship
between mortality rates and time, (2) decreasing improvements according to age". The first point helps to
explain the success of the LC model where the common time-varying factor is found to evolve almost
linearly in most applications—see, e.g., Lee and Miller (2001) and Callot et al. (2016). The log-linear
development of death rates over time is illustrated in Figure 2a–d. The second observation of decreasing
improvements in mortality with respect to age can be described by the so called compensation effect of
mortality—see, e.g., Gavrilov and Gavrilova (1979, 1991).3 In Figure 2a–d, this effect is seen by a slope
of the log mortality-time plot that decreases with age.

Several studies find that a unit root is present in the individual age-specific death rates—see, for
instance, Lazar and Denuit (2009). In addition, it is common that the time-factor of the LC model is
modelled as a random walk with drift. Basically, this means that all death rates are governed by the
same stochastic time trend component and hence for a system of N + 1 age groups, all death rates
cointegrate pairwisely and a total of N cointegrating relations exists among all age-specific death rates.

3 This is also called the Strehler-Mildvan correlation due to Strehler and Mildvan (1960).
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(a) Men, France (b) Women, France

(c) Men, USA (d) Women, USA

Figure 2. The log age-specific death rates for a range of ages for French and American men and women
from 1950–2014.

To examine this feature of the LC model, we have conducted cointegration tests of all the pairwise
combinations of log mortality across age groups. Note that, due to the dimension of the data, a full
cointegration analysis cannot be conducted for the full data set. Figure 3a,d report a heatmap of
the p-values from Johansen’s trace test, Johansen (1991), of the null hypothesis of zero cointegrating
relations against one cointegrating relation for all combinations of the log age-specific death rates.
As seen, we cannot reject the null of no cointegration for most of the death rate pairs, especially for
US data. It is apparent that most of the cointegrating relations found are between the adjacent ages,
i.e., along the diagonal line. For both countries, we find clear rejection of no cointegration amongst
the youngest ages, but not for newborns. For France, rejection of no cointegration among the oldest
ages is found to a larger degree. Furthermore, it is found that around the accident hump and for the
infants we cannot reject the null for relatively adjacent ages. Thus, overall the figures clearly show that
the assumption of the LC model of N cointegrating relations is not consistent with the mortality data.
We note that this is also consistent with Lazar and Denuit (2009) who found multiple stochastic trends
when investigating cointegration across seven age groups of five-year age intervals. The stochastic
trends driving mortality over time are generally different across the age groups. The model we are
subsequently going to propose will not have the restrictive feature of the LC model, since different
factors are constructed to affect separate age groups.

In summary, we observe seven stylized facts for the term structure of mortality that a good
mortality model should be able to reproduce: (1) declining mortality for infants, (2) increasing mortality
around the accident hump, (3) log-linearly increasing mortality with age for adults, (4) a log-linear
relationship between the death rates and time, (5) the log age-specific death rates are integrated of
order one around a linear trend, (6) decreasing improvements in mortality with age, and (7) multiple
stochastic trends characterize the development of log mortality over time for the different age groups.
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(a) Men, France (b) Women, France

(c) Men, USA (d) Women, USA
Figure 3. p-Values from Johansen’s Trace test are shown for all pairwise combinations of the (log)
age-specific death rates for French and US men and women over the period 1950–2014. The test is
performed with a restricted time trend in the cointegrating relation and 1 lag in the VAR specification.
The p-Values are obtained via the gamma approximation following Doornik (1998, 1999) and shown
for significance levels between 0 and 0.10.

4. The Parametric Factor Model for the Term Structure of Mortality

The model we propose assumes that mortality is driven by multiple factors and we impose
structure on the factor loadings capturing the regularities discussed in the previous section.

The PFM reads as follows:

ln mx,t = κ0,t + κ1,te−λ1x + κ2,te−λ2(ln(x)−ln(k))2
+ κ3,t

( x
N

)λ3
+ εx,t. (2)
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The model has four factors κi,t, i = 0, 1, 2, 3 with loading functions that are designed to capture
distinct age groups. The shape of the loading functions are governed by the constant parameters
λ1, λ2, λ3 and k which are assumed positive. N is the maximum age used for the analysis, which is set
to 95 due to data quality, as described in Section 3. κ0,t is a factor that is common to all age groups.
The factor κ1,t captures child mortality, κ2,t, the accident hump, and finally, κ3,t is a factor that tends
to increase mortality with age. Note that the common factor has the constant loading one for all age
groups. The loading for infant mortality declines rapidly with age. The loading for the accident hump
is approximately bell-shaped around age k, which is estimated to be the age at which the accident
hump equals one—see Figure 4a,b below. Finally, the loading for the adult factor grows almost linearly
with age when λ3 is close to one. The error term εx,t is assumed to be IID normally distributed as
N(0, σ2) for all ages and years.4 The loading functions estimated for France and the US are shown in
Figure 4a,b; the estimation procedure will be discussed in the next section. Even though it may be
claimed that the functional forms of the loading functions are arbitrary, they are designed such that the
mortality laws and stylized facts, described in Section 3, are captured through the model specification.

The level and infant terms κ0,t and κ1,te−λ1x, respectively, are used in many models using the
age-specific graduation of mortality, see e.g., Siler (1979) and Rogers and Little (1994). The accident
hump loading e−λ2(ln(x)−ln(k))2

is taken from Heligman and Pollard (1980). The adult factor can be seen
as a generalization of the Gompertz model, inspired by the Box and Cox (1964) power formulation.
That is, the loading function captures the Gompertz specification if λ3 = 1.

It is clear that the single factors κi,t are only identified when λi is non-zero. If some λi is zero,
it means that the associated factor is absent and can be left out from the analysis. Identification of
factors when λi are non-zero is a result of imposing a particular functional form on the loadings.
Hence, the identification issue of the Lee–Carter model is absent in the present model. See Nielsen and
Nielsen (2014) about a general discussion of identification in mortality models.

(a) Loadings, France.

Figure 4. Cont.

4 This is similar to Lee and Carter (1992) who assumed a homoskedastic error term for the LC model. The i.i.d.
homoscedasticity assumption is necessary for the analysis of the present paper, but the assumption may be critical in certain
cases—see, e.g., Doz et al. (2011).
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(b) Loadings, USA.
Figure 4. Plot of the estimated loading functions for the years 1950–2014 for men and women in France
and USA. The loading functions correspond to the level, infant, accident hump, and adult age groups,
respectively. The loadings are estimated following the two-step procedure described in Section 5.

5. Estimation Procedure for the Parametric Factor Model

We consider two estimation procedures for estimating the PFM, the two-step procedure of
Diebold and Li (2006) and exact maximum likelihood estimation using the Kalman Filter recursions of
the model written on state-space form similar to Diebold et al. (2006). Alternatively, one could use
maximum likelihood estimation following Brouhns et al. (2002) assuming a Poisson distribution for
the death counts.

5.1. The Two-Step Estimation Procedure

The two-step procedure considers first to estimate the model parameters and the factors of the
model and, second, estimating a time series model of the extracted factors with the primary purpose
of forecasting. Regarding the first step, McNown and Rogers (1989) propose to estimate the factors by
nonlinear least squares for each point in time, hence giving a time series of the factors. This allows not
only the factors but also the model (loading) parameters to be time-varying. McNown and Rogers
(1992) fix the parameters of the model a priori and estimate the factors in a sequence of cross-section
regressions. The latter procedure is also the one adopted by Diebold and Li (2006) when estimating
the dynamic Nelson–Siegel model for the term structure of interest rates, where the different loadings
refer to the level, slope, and curvature of the yield curve.

We suggest modifying McNown and Rogers (1992) and Diebold and Li (2006) by considering
cross-sectional regressions at each time t for a fine grid of the model parameters and select the
preferred model by minimizing the conditional sum of squares function. Hence, for a given set of
loading parameters, the factors can simply be estimated by using ordinary least squares for each year.
This can also be implemented by a nonlinear least squares optimization algorithm. Here, we use the
limited memory BFGS procedure (“L-BFGS-B”) developed by Byrd et al. (1995) and implemented
via the R package ‘Optim’ (R Core Team 2015). This step provides estimates of the four factors of
the model. Note that, as opposed to traditional factor models, generally the estimated factors will
not be orthogonal and in fact are most likely to be dependent. In the second step of the two-step
procedure, time-series models are fitted to the factors. This step is only needed when the model is used
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for predictions as we shall see in Section 7. These can be univariate time series models such as ARIMA
model specifications, possibly with drifts or trends, or the factors can be modelled as stationary or
nonstationary VAR models which potentially can allow for cointegration amongst the factors. It is an
empirical question to properly select a time series model in the second step.

5.2. One-Step Estimation

The parametric factor model in Equation (2) can be formulated on state-space form and estimated
by maximum likelihood by use of the Kalman Filter, see e.g., Durbin and Koopman (2012). This
estimation procedure improves on the two-step estimation procedure by allowing joint estimation of
the latent factors and their transition dynamics as well as the unknown parameters assuming Gaussian
errors. Estimating the system jointly delivers the appropriate likelihood quantities, unlike the two-step
approach, which ignores the uncertainty and estimation errors from the first step. We conjecture that
standard inference results hold for the Gaussian Maximum Likelihood approach, although we do not
provide a formal proof for this; see also Koopman et al. (2010).

The measurement equation of the state space model can be written as:

ln mt = Λκt + εt,

where

ln mt =

⎛⎜⎜⎜⎝
ln m0,t
ln m1,t

...
ln mN,t

⎞⎟⎟⎟⎠ , εt =

⎛⎜⎜⎜⎝
ε0,t
ε1,t

...
εN,t

⎞⎟⎟⎟⎠ , κt =

⎛⎜⎜⎝
κ0,t
κ1,t
κ2,t
κ3,t

⎞⎟⎟⎠
and

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 e−λ1·0 e−λ2(ln(0)−ln(k))2
(

0
N

)λ3

1 e−λ1·1 e−λ2(ln(1)−ln(k))2
(

1
N

)λ3

...
...

...
...

1 e−λ1·N e−λ2(ln(N)−ln(k))2
(

N
N

)λ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As in Section 4, the vector error term εt is assumed to be normally distributed as N(0, Iσ2), where
I is the identity matrix.

The transition equation of the state space model should be formulated to capture the dynamics
of the factors. For instance, if we assume that the factors are governed by a VAR(1) process in first
differences, the transition equation can be specified as:(

κt

Δκt+1

)
=

[
I4 I4

0 Φ

](
κt−1

Δκt

)
+

(
0
c

)
+

(
0
vt

)
,

where vt is multivariate normal distributed as N(0, Σ) and c is a four-dimensional vector constant.
In the case where the factors cointegrate with r cointegrating relations, the transition dynamics

can be written as: (
κt

Δκt+1

)
=

[
I4 I4

αγ′ αγ′

](
κt−1

Δκt

)
+

(
0
c

)
+

(
0
vt

)
,

where vt is multivariate normal distributed as N(0, Σ). Both α and γ are 4 × r matrices. The second
row gives the desired VECM specification for the transition dynamics:

Δκt+1 = αγ′κt + c + vt. (3)
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Note that the constant c is treated as a state parameter vector within the Kalman filter. Estimation
of the parameters ψ = [λ1, λ2, λ3, k, σ, Σ, Φ (or α, γ), c] is achieved via numerical optimization of the
prediction error decomposition of the likelihood function:

L (ψ) = − NT
2

ln 2π − 1
2

T

∑
t=1

ln |Ft| −
1
2

T

∑
t=1

v′
tF

−1
t vt, (4)

where vt is the one step (innovation) prediction error of the measurements equation and Ft is the
innovation covariance matrix of the measurement equation. The numerical optimization is performed
via the low-memory BFGS procedure “L-BFGS-B” from Byrd et al. (1995) in the R package Optim
(R Core Team 2015).

6. Empirical Analysis

6.1. Estimates Using the Two-Step Procedure

Figure 4a,b in Section 4 display the estimated shape of the loading functions for French and US
men and women based on the two-step procedure. Table 1 reports the estimated shape parameters
and their standard errors. Note that all parameters are significantly different from zero and hence the
factors are identified. The estimated parameters are similar across countries. However, the loading
functions for the adult curvature are more convex for women than for men. Similarly, the shape and
location of the accident hump vary across genders with men suffering from the accident hump longer
than for women.

Table 1. Estimated loading function parameters and standard errors from the first step in the two-step
procedure for French and US men and women. The standard errors are calculated using the inverse
Fisher information criterion.

Men

λ1 λ2 λ3 k σ2

Fr

Estimate 0.553 11.981 1.093 20.308 0.020
Std. Err 0.013 0.024 0.004 0.002 0.018

U
S Estimate 0.624 10.813 1.103 20.016 0.017

Std. Err 0.013 0.020 0.003 0.002 0.018

Women

Fr

Estimate 0.649 18.092 1.453 19.492 0.023
Std. Err 0.013 0.060 0.003 0.005 0.018

U
S Estimate 0.607 19.029 1.295 18.675 0.013

Std. Err 0.010 0.042 0.003 0.004 0.018

The estimated factors are shown in Figure 5a–d for France and Figure 6a–d for the US.
A number of insights follow from these figures. The factor governing the common mortality level

decreases almost linearly and thus capturing a common decline in mortality across all age groups;
this applies for both genders and countries. The infant factor for both men and women decline over
the period showing that the infants have seen larger improvements in mortality reduction compared
to the general level captured by the first factor. Moreover, it can be seen that the decline for the infant
factor stagnates around 1995 for all populations considered. Hence, after 1995, the development in
mortality for infants has generally followed the common rate.

The accident hump factor shows an increase in size from 1950 to about 1990 followed by stagnation
for all but US men. Regarding the development of the adult factor, Figures 5d and 6d exhibit an upward
slope over the sample period and hence reduce the mortality improvements for the relevant age group.
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Thus, slower improvements in mortality with age are captured by the model, in line with the stylized
facts previously reported.

(a) The level factors (b) The infant factors

(c) The accident hump factors (d) The adult mortality factors

Figure 5. The factors κi,t, i = 0, 1, 2, 3 estimated by the two-step procedure for France using data from
1950–2014. The plots are showing the level factor, infant factor, accident hump factor, and adult factor
for both genders, respectively.

(a) The level factors (b) The infant factors

(c) The accident hump factors (d) The adult mortality factors

Figure 6. The factors κi,t, i = 0, 1, 2, 3 estimated by the two-step procedure for USA using data from
1950–2014. The plots are showing the level factor, infant factor, accident hump factor, and adult factor
for both genders, respectively.
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6.2. Cointegrating Analysis of the Factors

In order to use the estimated model for forecast projections, we need to examine the time series
features of the estimated factors κi,t, i = 0, 1, 2, 3. By using a range of unit root tests, we find strong
empirical support for the presence of unit roots, possibly with a drift, in all of the factors considered
across both countries and gender. Given this observation, it is not surprising that the age-specific
log death rates individually appear to have similar time series characteristics. The one-factor model
of Lee and Carter (1992) also typically model the factor as a random walk with drift. From visual
inspection of the factors in Figures 5 and 6, it is evident that the various factors tend to co-move across
gender and thus the factors are likely to cointegrate. Accounting for cointegration amongst the factors
will potentially lead to superior forecasts.

We have conducted cointegration analysis using the Johansen (1988) trace test for different subsets
of factors. In Table 2, we report the test results for each country and for each gender using all four
factors. In Table 3, we examine tests for each country using all eight factors for both men and women,
and, finally, Table 4 displays the tests for men and women, respectively, by merging the factors
across countries.

The results are rather different for the USA and France as can be seen from Table 2. For both
genders, the US factors are found not to cointegrate and hence these factors are driven by four separate
common stochastic trends. On the other hand, the factors for French men and women appear to
cointegrate with two or three cointegrating vectors and thus the factors for each gender appear to
be driven by a single or possibly two common stochastic trends. This finding is also in line with the
heat maps reported in Figure 3 showing that, for France, the pairwise log mortality rates appear more
cointegrated compared to the USA.

Table 2. Test for cointegration rank amongst factors for US and French men and women.

USA

Men Women

Rank Trace-Test p-Value Trace-Test p-Value

0 52.240 [0.323] 47.939 [0.512]
1 27.748 [0.641] 30.689 [0.468]
2 13.926 [0.668] 15.243 [0.562]
3 1.1522 [0.992] 3.0677 [0.858]

France

0 106.790 [0.000] ** 108.730 [0.000] **
1 56.044 [0.001] ** 47.599 [0.014] *
2 28.089 [0.024] * 24.893 [0.064]
3 3.642 [[0.788] 9.2236 [0.171]

Note: The Johansen trace test is calculated with a trend restricted to the cointegration space.
The number of lags in the VAR is 1 for all cases. “**” and “*” signify significance at the 1% and 5%
level, respectively.

In Table 3, the set of variables in the VAR model is expanded to include both men and women for
each country. In this case, the eight factors for the US data are driven by four common stochastic trends.
It is tempting to believe that the factors cointegrate across genders, however, a formal statistical test
rejects this hypothesis. For the French data, the eight factors have six to seven cointegrating vectors and
thus have one or two common stochastic trends. Again, a formal test rejects that the factors cointegrate
pairwisely across genders.

Finally, Table 4 shows that, when pooling the US and French data for men and women, respectively,
both the male and female factors are likely to be driven by six factors and thus have two cointegrating
relations. Hence, cross-country similarities exist across countries for both genders but only to a
limited extent.
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These findings demonstrate that different time series specifications should be considered when
modelling the factors with the purpose of forecasting. For the US, it seems appropriate to specify a
VAR in first differences with a vector of unrestricted constants to capture the drift of the single series.
It could also be considered to base predictions on an expanded (cointegrated) VAR model including
factors for both genders. For France, a cointegrated VAR with cointegration rank two or three seems
appropriate. An expanded cointegrated VAR with eight factors and six to seven cointegrating vectors
is also possible. When modelling the factors as univariate time series models, a random walk with
drift specification is appropriate, but, since the cross dependence of factors is neglected in this case,
it is likely that inferior forecasts will result.

Table 3. Test for cointegration rank amongst factors for men and women for USA and France.

USA France

Men and Women Men and Women

Rank Trace-Test p-Value Trace-Test p-Value

0 286.700 [0.000] ** 287.730 [0.000] **
1 194.530 [0.000] ** 215.400 [0.000] **
2 139.460 [0.001] ** 158.870 [0.000] **
3 89.751 [0.041] * 116.050 [0.000] **
4 52.267 [0.321] 76.354 [0.002] **
5 34.795 [0.257] 47.410 [0.015] *
6 19.806 [0.240] 24.016 [0.082]
7 7.897 [0.268] 8.524 [0.218]

Note: The Johansen trace test is calculated with a trend restricted to the cointegration space.
The number of lags in the VAR is 1 for all cases. “**” and “*” signify significance at the 1% and 5%
level, respectively.

Table 4. Test for cointegration rank amongst factors for US and French men and women.

Men Women

USA and France USA and France

Rank Trace-Test p-Value Trace-Test p-Value

0 225.130 [0.000] ** 221.980 [0.000] **
1 158.190 [0.016] * 152.790 [0.036] *
2 111.620 [0.113] 107.810 [0.178]
3 75.429 [0.311] 70.517 [0.490]
4 47.924 [0.513] 44.325 [0.679]
5 27.275 [0.668] 27.285 [0.667]
6 11.364 [0.850] 13.676 [0.688]
7 3.867 [0.759] 3.686 [0.783]

Note: The Johansen trace test is calculated with a trend restricted to the cointegration space.
The number of lags in the VAR is 1 for all cases. “**” and “*” signify significance at the 1% and 5%
level, respectively.

6.3. Estimates Using the One-Step Procedure

We now consider the one-step estimation of the model employing maximum likelihood estimation
via the Kalman Filter recursions with the model specified on state space form. This method theoretically
improves the efficiency as it avoids the issue from the two-step estimator of ignoring the estimation
error from the first step in the second step. The estimation for US is based on the assumption of a
VAR(1) in first differences for the transition dynamics and for France it is based on the cointegrated
VAR model with two cointegrating relations. These specifications of the transient dynamics are chosen
in accordance with the results reported in Section 6.2. Table 5 reports the estimated shape parameters
and their standard errors. It is seen that the loading parameters and the variance are very similar
to those obtained from the two-step procedure. Furthermore, the standard errors of the estimated
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shape parameters are found to be very close to those of the two-step method (sometimes smaller).
This indicates that small efficiency gains can be obtained by using the one-step procedure.

Table 5. Estimated loading function parameters and standard errors from the one-step procedure
for French and US men and women. For US, the VAR(1) model in first difference is assumed for
the transition dynamics and, for France, a VECM with two cointegrating relations is assumed. The
standard errors are calculated using the inverse Fisher information criterion.

Men

λ1 λ2 λ3 k σ2

Fr

Estimate 0.556 12.151 1.094 20.324 0.021
Std. Err 0.013 0.020 0.004 0.002 0.010

U
S Estimate 0.624 10.809 1.103 20.014 0.018

Std. Err 0.013 0.020 0.003 0.002 0.019

Women

Fr

Estimate 0.648 18.711 1.453 19.450 0.024
Std. Err 0.013 0.048 0.003 0.004 0.018

U
S Estimate 0.608 18.930 1.295 18.703 0.013

Std. Err 0.010 0.043 0.003 0.004 0.005

Figure 7 shows the estimated factors (or states) for the one-step state space estimation procedure
for US based on the VAR(1) specification in differences. The factor estimates for the VECM specification
for France are shown in Figure 8.

When comparing the estimated factors with those obtained in the first step of the two-step
approach, the results appear similar. However, the factors from the one-step estimation show a
smoother development because the one-step procedure directly accounts for the transition dynamics
in the estimation.

(a) The level factors (b) The infant factors

(c) The accident hump factors (d) The adult mortality factors

Figure 7. The factors κi,t, i = 0, 1, 2, 3 estimated by the one-step procedure for USA from 1950–2014
and assuming a VAR(1) model for the first difference of the factors, for both genders.
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(a) The level factors (b) The infant factors

(c) The accident hump factors (d) The adult mortality factors

Figure 8. The factors κi,t, i = 0, 1, 2, 3 are estimated by the one-step procedure for France using data
from 1950–2014 and assuming a VECM specification for the factors, for both genders.

6.4. Model Fit

We now compare the PFM with the LC model in terms of in-sample fit.
As the PFM does not include a constant for each age-specific death rate, we are interested in

whether the model can capture the mean by relatively few parameters. As seen in Figure 9a–d,
the model captures the mean well for all populations. Note that, by construction, αx in the LC model is
equal to the mean of the age specific log death rates, which corresponds to the data mean levels in
the figures.

To further quantify the model fit, we calculate a pseudo R2 for each age group by running a
regression of the age-specific death rates on a constant and the fitted values.5 The pseudo R2’s shown in
Figure 10a–d display that both the LC and the PFM fit the observed data well. However, the PFM tends
to perform better around the accident hump, where the LC model is found to have poor performance.

Next, we investigate how each of the factors contribute to the explanatory power of the model by
calculating the partial correlation between the log mortality and a particular factor after adjusting for
the influence of the fit obtained from the remaining factors. This adjustment is necessary because the
factors are non-orthogonal. Figure 11a–d display the partial correlations in excess of a 65% threshold
for all ages to identify where the different factors improve the fit.

It is seen that the infant mortality factor significantly improves the fit for infants as desired.
The level factor substantially improves the performance for most ages, and the accident hump factor
primarily affects the mortality in the years around the accident hump. Finally, the adult factor primarily
improves the fit for the adult ages as desired, but its partial explanatory power is of a smaller magnitude
compared with the other factors, mainly because the adult factor is highly correlated with the factor
common to all age groups.

5 This corresponds to the partial correlation squared between the fitted and observed values.
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(a) Men, France (b) Women, France

(c) Men, USA (d) Women, USA

Figure 9. The mean of the data and the mean of the parametric factor model estimated using the
two-step procedure for both men and women, for France and USA. The estimation period is 1950–2014.

(a) Men, France (b) Women, France

(c) Men, USA (d) Women, USA

Figure 10. The pseudo R2 (within) for the PFM and the LC model for all ages estimated using the
two-step procedure. The R2 is shown for both men and women in France and the USA, respectively.
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(a) Men, France (b) Women, France

(c) Men, USA (d) Women, USA
Figure 11. The partial R2 for the infant, level, accident hump, and adult factor estimated using the
two-step procedure for the years 1950–2014. The relative improvements from each of the factors are
shown in excess of a 65% threshold. This is shown for both genders for France and the US, respectively.

7. Forecast Evaluation

In this section, we investigate the forecast performance of the PFM and compare with relevant
benchmark models. For forecast evaluation and comparison, we use the Model Confidence Set (MCS)
approach developed in Hansen et al. (2011).6

The MCS procedure is a test for predictive ability across a number of competing models, which
sequentially removes the model that performs significantly worse than the remaining models left
in the model confidence set. The procedure delineates the set of best performing models at a given
confidence level among which we cannot say that any of the other models perform statistically better.

Hence, the MCS does not necessarily pick out a single best model but rather delineates a set of
best models as the available information might not be able to discriminate between these models. The
MCS procedure returns p-values, p̂i, for each model i considered, and, from this, the MCS can be
determined. The MCS procedure returns a p-value of 1 to the best performing model.7

To reduce the dimension of the forecast evaluation, we calculate the (period) life expectancy at
birth which aggregates the forecasted age-specific death rates into a single measure. The (period) life

6 The MCS approach is implemented via the Ox-package Mulcom 3.0 by Hansen and Lunde (2014) in Oxmetrics 7, see
Doornik (2013).

7 For the case with only two models the forecast performance could be tested via the Diebold and Mariano (1995) test, which
only allows for pairwise comparisons, whereas the MCS procedure allows for joint multiple model evaluation.
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expectancy is calculated by using the standard assumption of a constant chance of death within each
age interval as in Brouhns et al. (2002)8:

ē↑0(t) =
1 − exp (−m0,t)

m0,t
+

N

∑
k=1

(
k−1

∏
j=0

exp
(
−mj,t

)) 1 − exp (−mk,t)

mk,t
, (5)

where mj,t signifies the age-specific death rates and ē↑0(t) is the (period) life expectancy at birth.
To show the robustness of the proposed model at producing reliable forecasts, we consider data

for men and women for the USA and France in the forecast evaluation. The forecasts are constructed
by recursively estimating each model from 1950 onwards until year t = 1970, 1971, . . . and forecasting
1, 10, and 20 years ahead. This gives 43, 34, and 24 forecasts of the age-specific death rates for each
model, respectively. The forecast performance is evaluated using the mean squared error of the life
expectancy as the loss function. For implementation, we use the block bootstrap with a block length
equal to the longest significant lag length from fitting an AR model and a confidence level of 5%—see
Hansen et al. (2011) for details.

As benchmark models, we use (1) a random walk with drift (RWD) specification for each (log)
age specific death rate, (2) the Lee and Carter (1992) model with a single factor, (3) and the functional
data approach (FDA) of Hyndman and Ullah (2007). Based on the analysis in Sections 5 and 6, we
consider two dynamic specifications of the factor structure, a VECM (with two cointegrating relations)
and a VAR(1) in first differences of the factors. For comparisons, we use both specifications for each
country and gender estimated by the two-step procedure. For the one-step procedure, we consider
estimation assuming the VECM structure for France and the VAR(1) structure in first differences for
the US as found to be appropriate in Section 6. Using the two-step procedure, we further compare a
VAR(1) model in levels and univariate ARIMA models in the dynamic specification.9 Based on the
finding of unit roots and trending behaviour for each of the factors, we decide to use a random walk
with drift specification as ARIMA model specification.10 For the LC model, we use a random walk
with drift specification for the single factor κt. The FDA model of Hyndman and Ullah (2007) can be
considered an extension of the LC model by using K factors and smoothing across the death rates.11

The results are reported in Table 6 for France and in Table 7 for the USA.

8 Note that we here use the period life expectancy (within year t), whereas the formula in Brouhns et al. (2002) computes the
cohort life expectancy.

9 These specifications have often been used in studies applying graduation laws of mortality—see Booth and Tickle (2008);
McNown and Rogers (1989, 1992).

10 In preliminary experiments, we also found this specification to give a better forecast performance compared with using
other ARIMA models.

11 The factors are estimated using weighted principal components in the R package Demography—see Hyndman and Ullah
(2007) and Hyndman et al. (2014) for further details. All other models are estimated using own codes and the packages
’tsDyn’, ’VARS’, and ’Forecast’ in R (R Core Team 2015) by Pfaff (2008); Stigler (2010) and Hyndman (2015).
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Table 6. Forecasting life expectancy 1, 10, and 20 years ahead with mean-squared error criterion for
US men and women evaluated using the Model Confidence Set. The mean squared error along with
p-values for the estimated model confidence set for life expectancy. The models included in the set of
best models are marked in boldface. The first five rows show the results for the parametric factor model
assuming different specifications for the factor dynamics, whereas the last three rows show results for
the benchmark models. The VAR1 in levels and ARIMA specifications are used for comparison.

France
Men Women

1 Year 10 Year 20 Year 1 Year 10 Year 20 Year

MSE Pval MSE Pval MSE Pval MSE Pval MSE Pval MSE Pval

PF
M

VAR1 0.098 0.000 2.493 0.022 13.480 0.000 0.164 0.000 1.719 0.000 7.529 0.000
Arima 0.103 0.001 0.967 1.000 4.147 1.000 0.071 0.002 0.144 0.233 0.370 0.920
ΔVAR1 0.095 0.006 0.985 0.931 4.611 0.146 0.086 0.001 0.157 0.013 0.444 0.415
VECM2 0.095 0.002 0.986 0.931 4.511 0.087 0.082 0.000 0.138 0.233 0.439 0.484
VECM2SS 0.234 0.000 1.331 0.284 4.393 0.712 0.359 0.000 0.741 0.005 1.041 0.036

RWD 0.032 0.611 1.135 0.284 5.439 0.000 0.032 1.000 0.103 1.000 0.367 1.000
LC 0.099 0.000 1.479 0.001 6.367 0.000 0.119 0.001 0.229 0.050 0.460 0.329
FDA 0.030 1.000 1.085 0.875 5.436 0.002 0.037 0.301 0.410 0.134 1.581 0.329

Table 7. Forecasting life expectancy 1, 10, and 20 years ahead with mean-squared error criterion for US
men and women evaluated using the Model Confidence Set. Mean squared error along with p-values
for the estimated model confidence set for life expectancy. The models included in the set of best
models are marked in boldface.The first five rows show the results for the parametric factor model
assuming different specifications for the factor dynamics, whereas the last three rows show results for
the benchmark models. The VAR1 in levels and ARIMA specifications are used for comparison.

USA
Men Women

1 Year 10 Year 20 Year 1 Year 10 Year 20 Year

MSE Pval MSE Pval MSE Pval MSE Pval MSE Pval MSE Pval

PF
M

VAR1 0.113 0.011 1.607 0.018 5.915 0.004 0.069 0.004 1.514 0.157 11.630 0.024
Arima 0.112 0.013 0.787 1.000 2.493 1.000 0.054 0.011 0.519 0.225 1.378 0.017
ΔVAR1 0.110 0.010 0.897 0.140 3.094 0.038 0.057 0.011 0.562 0.005 1.369 0.002
VECM2 0.127 0.013 1.081 0.104 2.765 0.455 0.052 0.011 0.329 1.000 0.593 1.000
ΔVAR1SS 0.117 0.013 1.244 0.024 3.662 0.006 0.084 0.001 0.575 0.124 1.316 0.024

RWD 0.035 1.000 1.240 0.104 4.016 0.000 0.023 1.000 0.435 0.225 1.243 0.011
LC 0.138 0.013 1.771 0.018 5.375 0.001 0.080 0.006 0.682 0.069 1.790 0.003
FDA 0.044 0.154 1.577 0.104 4.824 0.006 0.026 0.032 0.495 0.225 1.441 0.024

France, men. For French men, the MCS using a 1-year forecast horizon includes the RWD and
FDA specifications. However, when expanding the forecast horizon, the MCS now includes three
variants of the PFM and, in fact, for a twenty-year forecast horizon, the MCS excludes the RWD and
FDA specifications. It is interesting to observe that, in this forecast competition, the LC model is never
included in the MCS. The same applies for the PFM model specification where the factors are modelled
as a VAR(1) in levels. This is not surprising because all the factors were found to have unit roots.

USA, men. The pattern observed for French men generally applies for US men as well. However,
for the 20-year horizon, only two of the PFM models are included in the MCS.

France, women. For French women and a forecasting horizon of one year, the results are rather
similar to those of French men and in particular the RWD specification and the FDA model are the
ones included in the MCS. For a 10-year horizon, the MCS also includes a single PFM specification
and, for a 20-year horizon, only the PFM with a VAR(1) in levels is not included in the MCS.

USA, women. For US women, the RWD model is always in the MCS. For a 10-year horizon,
the results are similar to French women and, for a 20-year horizon, the MCS is slightly smaller
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than for French women and includes in particular the two PFM specifications the FDA and the
RWD specifications.

In summary, the PFM class of models appears to perform especially well for longer forecast
horizons and in most cases performs better than the LC model. An explanation for this result could be
the structural features of the PFM class of models compared to the LC model. For longer horizons,
the structural restrictions on the loadings account for different factors affecting the separate age groups.
The structure implied by the PFM specification ensures a realistic shape of the mortality curve, which
cannot be captured by a single factor LC model. Another conclusion is that, in situations where
competing models are performing well, especially for longer horizons, the different PFM models also
perform well. On the other hand, in situations where competing models are not performing so well,
the PFM models are included in the MCS as seen especially for men.

8. Conclusions

We have suggested a multi-factor model for the term structure of mortality. The factors are
identified after restrictions on the loading functions in such a way that different age groups and their
factor dynamics can be addressed separately. Thus, rather than having a single factor governing all age
groups as for the LC model, different factors (or trends) play a role in the way that mortality across age
groups develop. In particular, we consider separate factors driving infant mortality, the accident hump
mortality, mortality for the elderly in addition to a common factor affecting all age groups. We have
suggested two estimation methods that are similar to estimation of term structure models considered
in other contexts. In an application, we apply the methodology to mortality data for the US and France
for each gender. The models are shown to provide a good fit and, for certain age groups, provides
a much better fit compared to the LC model. In a forecast comparison across a range of competing
models, the new class of models that we consider in the paper are shown to perform well, especially
over longer forecast horizons.
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In the long run, we are all dead.

John Maynard Keynes

In the long run, we are simply in another short run.

variously attributed

Contrary to Keynes’ famous dictum in the long run we are all dead,

the long run is with us every day of our lives

Walt Rostow

1. The Problem of Causal Order in the CVAR

Katarina Juselius and Søren Johansen’s most famous contributions to econometrics, studied in
detail and applied in his monograph (Johansen 1995) and in her textbook (Juselius 2006), and, jointly
and singly, in a large number of journal articles, concern the cointegrated vector autoregression (CVAR).
The CVAR focuses special attention on the nonstationary components and the long-run properties of
the time series. The questions we address in this paper are how the long-run properties of the CVAR
can be given a structural interpretation and how that interpretation might support inference of the
long-run causal structure from the observable characteristics of the nonstationary data.
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There are two significant traditions in time-series econometrics.1 The Cowles Commission in
the 1940s and 1950s pioneered structural econometrics that conceived of the econometric problem
as one of articulating and measuring economic mechanisms (Koopmans 1950; Hood and Koopmans
1953; see Morgan 1990 for a history). The articulation of mechanisms was generally referred to as the
“identification problem.” The major resource for securing identification was a priori economic theory.
Early on, structural and causal articulation were regarded as synonymous, although subsequently
causal language fell from favor (Hoover 2004). In his contribution to the 1953 Cowles volume, Simon
(1953) drew on the language of experiments (actual or metaphorical) to suggest that an identified
system of dynamic equations provided a map of the space of interventions in the economy.2 Simon
demonstrated an isomorphism between a structurally identified model and a causally well-ordered
model in a system with no stochastic variables.

A second econometric tradition, grounded more in time-series statistics, focused on process rather
than structure (e.g., see Wold 1960; Granger 1969). Granger defined causality in terms of incremental
predictability. Sims (1972) introduced Granger causality into empirical macroeconomics. Frequently
thereafter, an equivocation between Granger’s notion of causality and structural notions became
commonplace. Granger himself was aware that Granger causality did not address the questions of
control and counterfactual policy analysis that motivated structural understandings of causality, such
as those of Simon and the Cowles Commission (Granger 1969, 1995; also White and Lu 2010, p. 194).
While both the structural and the process approaches to econometrics have a concept of causation,
those concepts are distinct. They may, nonetheless, be mutually informative. White and Lu (2010) and
White and Pettenuzzo (2014), for instance, analyze the conditions under which Granger causality can
provide information relevant to assessing structural causality (see also Hoover 2001, pp. 150–55).

The vector autoregression (VAR) arises out of the process tradition. Building on earlier criticisms
of Liu (1960) and others, Sims (1980) introduced the VAR into macroeconometrics as part of a critical
response to the Cowles Commission approach. Sims (1980, p. 1), attacked the structural interpretation
of econometric models for using “incredible” identifying restrictions. Initially, he offered the VAR—a
system of reduced-form equations in which all variables are endogenous—as a workable alternative to
identified structural models.

There is a tendency to treat process accounts of causality as essentially atheoretical and data
driven and to treat structural accounts as necessarily relying on a priori theory. These connections are
more accidents of the history of econometrics than essential. In the case of the VAR, it rapidly became
clear that reduced-form VARs were inadequate to the needs of counterfactual policy analysis—perhaps
the most important use of macroeconometric models (Cooley and LeRoy 1985; Sims 1982, 1986).
The structural VAR (SVAR), which imposes a causal order on the contemporaneous relationships
among the endogenous variables, was seen to provide the minimum restrictions needed to identify
independent shocks, which were taken to be the drivers of a dynamic system, and policy analysis was
largely reduced to working out the impulse responses to those shocks (see Duarte and Hoover 2012;
Hoover and Jordá 2001).

While the problem that had motivated Sims in the first place, the incredibility of the identifying
restrictions, had been minimized in the SVAR, it was not eliminated; and the question, how we are to
know the correct contemporaneous causal order, remains an open one. In truth, economic theory rarely
provides a clear or decisive answer. In practice in most, though not all cases, SVARs were identified by
assuming certain triangular causal orderings of the contemporaneous variables. Since all such causal
orders are just identified, they have the same likelihood function, and, thus, there is no empirical basis
for choosing among them, so long as “empirical” is restricted to likelihood information. At this point,
SVAR practitioners typically claim that it is necessary to invoke prior information from economic

1 For discussions of various approaches to causality in macroeconomics and macroeconometrics, see (Hoover 2001, 2008, 2012).
2 See (Hoover 2001, chp. 3). In appealing to an experimental metaphor, Simon followed in the footsteps of Haavelmo (1944), a

foundational figure for Cowles Commission econometrics (see Hoover and Juselius 2015; Hoover 2014).
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theory or practical institutional knowledge or common sense to pick among the equivalent causal
orders. In fact, however, empirical evidence can be brought to bear on the choice. When the underlying
data-generating processes (DGPs) are casually ordered in such a way that an empirically valid model
of it would be over-identified, information about conditional dependence and independence among
the variables in some cases will provide information that can be used to distinguish among possible
causal orders. This approach has been developed with great sophistication (mainly for non-time-series
data) in the so-called graphical-causal-modeling or Bayes-net literature (Spirtes et al. 2000; Pearl 2009).3

Swanson and Granger (1997) first applied a simple graphical causal search algorithm to the problem
of determining the contemporaneous causal structure of an SVAR. Subsequently, more sophisticated
algorithms have been applied and shown to be effective in a wide range of circumstances (Demiralp
and Hoover 2003; Demiralp et al. 2008; and references therein).

Meanwhile, time-series econometrics discovered the importance of nonstationary processes and
the concept of cointegration (Engle and Granger 1987). In light of these developments, the SVAR
was reformulated into the CVAR. Throughout the paper, we will consider cases in which we, in fact,
know the true DGP, but observe only some part of it. To be clear, our operating assumption is that a
complex data-generating process governs the behavior of the economy; and the aim of structural causal
modeling is to uncover a (partial) representation of the true DGP that is adequate to pragmatically
required levels of detail and precision to support inter alia prediction and counterfactual analysis.4 A
key question will be how much information about the DGP can be recovered from the observables.

Our interest is in long-run identification; so, we will restrict our attention to CVARs, taken to be a
reduced form of a part of the economy’s unobserved DGP, of the form:

ΔXt = ΠXt−1 + Et = αβ
′
Xt−1 + Et, (1)

where X = [x1, x2, . . . xp]′ is a vector of variables integrated of degree one (notated I(1)), Π is a p × p
matrices of parameters; E = [ε1, ε2, . . . εp]′ is p-element vector of normal residuals distributed Et ~ N(0,
Ω); and t subscripts indicate time. The residuals contain both unobserved causes, which we shall call
“shocks,” and various sorts of error. The matrix Ω is assumed to be diagonal. This assumption could
be justified by economic theory or could result from orthogonalizing the residuals by multiplying
through by a matrix that reflects the appropriate contemporaneous causal ordering in the manner that
Choleski matrices are frequently used in the SVAR literature, a transformation that would affect the
interpretation of the Xt’s.

If the variables in X are cointegrated (i.e., if a linear combination of nonstationary variables is itself
stationary), then Π has reduced rank (r) and may be written as Π = αβ′, where α and β are p × r
matrices. Such a CVAR is said to have r cointegrating relations and q = p−r common trends. The rows of β′
contain the cointegrating vectors; while the α matrix contains adjustment parameters. In general, the
αβ′ decomposition in not unique, since α and β may take different values, so long as Π = αβ′ and still
remain consistent with the observations modeled in Equation (1) (Johansen 1995, p. 71; Juselius 2006,
p. 216). Most of the focus in identifying the CVAR has been placed on identifying the cointegrating
vectors of the β′ on the basis of prior economic theory.

The goal of this paper is to provide a coherent account of the causal order of a CVAR and to make
some preliminary suggestions about how the methods of graphical causal search in conjunction with
cointegration analysis could aid in the empirical discovery of its long run, as they have already aided
in the discovery of the contemporaneous causal structure.

3 “Graphical” (or “graph-theoretic”) causal modeling should be the preferred term, as the search methods do not require a
Bayesian approach to statistics. For compact treatments of the approach and the basic algorithms, see Cooper (1999) and
Demiralp and Hoover (2003).

4 On the general methodology of modeling in relation to the CVAR see Hoover et al. (2008) and Hoover and Juselius (2015).
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2. Graph-Theoretic Causal Order

Where other investigators have mainly focused on the cointegrating relationships encapsulated in
β′, we shift the focus to the closely related question of how trends are transmitted among the variables.
Ours will be a preliminary investigation and will be restricted to cases in which all variables are I(1)
and DGPs that can be adequately represented in a structural model that can be understood as a causally
ordered consistent with a directed acyclical graph.

2.1. Graphs and Causal Structure

Several econometricians have given structural accounts of long-run behavior in the CVAR. They
have focused mainly on the use of theory to provide the necessary identification (Davidson and
Hall l991; Pesaran and Shin 2002; Pesaran and Smith 1998; Pagan and Pesaran 2008). In contrast to
economists’ frequent reliance on a priori theory, in the case of stationary data, considerable headway
has been made (mostly, but not entirely, outside of economics) in developing graphical causal search
algorithms that can narrow the class of admissible identifications—sometimes to a unique scheme
(Spirtes et al. 2000; Pearl 2009). As a preliminary to examining how some of these ideas might be
extended to the nonstationary case, it will be helpful to review selectively some aspects of graphical
causal analysis.

In Simon (1953) account, a structural model is a system of equations representing mechanisms in
the world.5 Although the account can be generalized considerably (see Hoover 1990; 2001, chp. 3),
it will do for our purposes to restrict our attention to linear equations and to treat each equation as the
representation of the causal mechanism determining its left-hand-side variable (the effect) in terms of
right-hand-side variables (the direct causes). The coefficients on the right-hand-side variables are taken
to define the space of interventions in the causal model. Thus, an intervention, for example, to a policy
rule might change the numerical value of one of the coefficients in the equation representing the rule.
In a well-defined structure, the coefficients could be intervened upon independently of each other.

We analyze a restricted version of the structural approach to causality, in that it does not deal
with nonlinearities, such as cross-equation restrictions, that might arise in economic optimization
problems or from systemic restrictions, such as may be generated under rational expectations. In part
this is a pragmatic choice to deal with the easier case first; in part, it is to maintain tighter contact
with the existing graph-theoretic causal search literature; and, in part, it arises from a yet-untested
conjecture that considerable empirical progress can be made with respect to long-run cause in a simple
framework. The structural approach can nonetheless be further generalized; see, for example, (Hoover
1990, appendix; 2001, especially chp. 3) and White and Chalak (2009).

Graph-theoretic causal analysis represents structural systems of equations as a directed graph. The
variables form the nodes or vertices of the graph, and edges connect pairs of vertices. Edges come in
several forms, but we will use only one—the single-headed arrow “→”, which means “directly causes”.
Direct causes are also referred to as the parents of the effect or child. We restrict ourselves to directed
acylical graphs (DAGs), which are adequate to the typical CVARs found in the macroeconomics
literature. Graphical causal modeling is not, however, restricted to DAGs: the literature has also
addressed cyclical graphs (for example, graphs in which A causes B, B causes C, and C causes A) and
simultaneous graphs (a particularly tight form of cyclicality in which A causes B and B causes A) (see
Richardson 1996; Phiromswad and Hoover 2013, and the references therein).

5 Hoover (1990; 2001, chps. 2 and 3) provides a detailed account of Simon’s approach and of it generalization to nonlinear
systems, including ones with cross-equation restrictions among the parameters.
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2.2. Graphs and Conditional Independence

The key idea in graph-theoretic accounts of causal structure is the mapping between the causal
graph and the probability distribution described of the true DGP and its reduced form. The mapping
is based on Reichenbach (1956, p. 156) Principle of the Common Cause: if any two variables, A and B,
are probabilistically dependent, then either A causes B (A → B) or B causes A (A ← B) or they have
a common cause (A ← C → B). Essentially, the idea behind the principle is that correlations may
not be causation, but correlations nevertheless must have a causal explanation. The Principle of the
Common Cause is generalized as the “causal Markov condition” (Spirtes et al. 2000, p. 29; see also
Pearl 2009, p. 30).

Without going into detail, the graph encodes certain facts of (conditional) probabilistic dependence
and independence among the variables. If the data were, in fact, generated by a system of equations
corresponding to the graph—as they would be, for example, in a simulation—then the joint probability
distribution for those variables would embody the encoded probabilistic relations.

Some key ideas relate graphs to probabilistic independence and dependence. One variable may
be a common cause of others and the effects will be rendered probabilistically independent of each
other after conditioning on the common cause. Similarly, variables may stand in chains; for example, A
→ C → B or A ← C ← B. In either case, as with the common cause (A ← C → B), conditioning on the
intermediating variable C renders A and B probabilistically independent of each other. In all three
cases, C is said to screen (or screen-off) A from B.

The translation of equations into graphs also generates another characteristic pattern of causal
graphs. When two or more variables are causes of another variable, then several arrows will point into
the effect variable. For example, A → C ← B graphs an equation in which A and B are the causes of C,
and C is said to be a collider on the directed path between A and B. If A and B, conditional on their
parents, are probabilistically independent and collide at C, they will be probabilistically dependent
conditional on C. With stationary data, the presence of colliders helps to orient the arrows in a graph.
As we shall see presently (Section 4.2), colliders are also important to the transmission of trends, as
they represent points at which new local trends are generated.

A final useful concept from graphical causality is causal sufficiency:

Definition 1. A set of variables is causally sufficient if, and only if, any variable that is excluded from the set
directly causes at most one variable within the set (Spirtes et al. 2000, p. 22).

The point of invoking causal sufficiency is that the actual DGP of the economy is more complicated
than any model of observable variables that an economist might analyze. When a set of variables is
causally sufficient, the excluded variables are not common causes and do not induce probabilistic
dependence among the observables, so that it is possible to analyze the subset of variables without loss
of causal information. Clearly, causal sufficiency is a very special case that will rarely be strictly true
for our models, but that sometimes might be approximately true. When it fails, we necessarily face a
latent-variable problem.

Graph-theoretic search algorithms work backward from the data by systematically evaluating
conditional dependence and independence relations for subsets of variables statistically and then
deducing logically what graph or class of graphs or, equivalently, what econometric specifications
could have generated those facts.6 We investigate the possibility of employing a strategy that was
developed for stationary data to infer long-run causal structure using facts about cointegration and
weak exogeneity rather than facts of causal dependence and independence.

6 See Cooper (1999), Spirtes et al. (2000, chps. 5 and 6), and Pearl (2009, chp. 2). The Tetrad software package implements
Spirtes et al. (2000) algorithms, as well as additional algorithms, and can be downloaded from Carnegie Mellon University’s
Tetrad Project website: http://www.phil.cmu.edu/tetrad/.
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3. Where Do Stochastic Trends Come From?7

The nonstationarity of the variables in a system of equations such as Equation (1) may arise in
two ways. Consider two distinct DGPs. Assume that there are two sets of variables, Xt and Tt. The
first corresponds to the graph Figure 1a—a simple chain:

DGP 1

ΔXt = Δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
X1

X2

X3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
t

= ΦXXXt−1 + ΦXTTt−1 + Et

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.2 0.0 0.0
2.0 −0.2 0.0
0.0 2.0 −0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

X3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
t−1

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
T
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
t−1

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε1

ε2

ε3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
t

,

(2)

where the Ts are exogenous I(1) trends

ΔTt = ΔTt = Ht = ηt. (3)

and the ε’s and the η’s are identically, independently distributed (i.i.d.) random shocks. The connection
of DGP 1 to the CVAR of Section 2 will become clear presently.

(a) (b) 

Figure 1. (a) Causal structure of the data-generating process (DGP) 1; (b) causal structure of the DGP 2.

The second distinct DGP corresponds to the graph in Figure 1b:

DGP 2

ΔXt = Δ
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
t

= ΠXt−1 + Zt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.2 0.0 0.002
2.0 −0.2 0.000
0.0 2.0 −0.200

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

X3
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t−1

+
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ζ1

ζ2

ζ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
t

,
(4)

where the ζs are i.i.d. random shocks.
DGP 1 shows the first of the two ways that variables may display stochastically trending behavior:

T trends stochastically independently of the other variables in the system because of its fundamental
random-walk structure and transmits that behavior to the Xs, i.e., if the trend (T) did not appear in
Equation (2), which was otherwise unaltered (i.e., ΦXX remaining the same), the system would not
contain an autoregressive root of unity and the X’s be stationary).

7 This question is addressed from a philosophical point of view in Hoover (2015).
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Now suppose that the trends are latent in DGP 1, so that we observe only the Xs. To see what is
implied for the cointegration of the Xs, we can solve out T to get a reduced form. The resulting system
will have reduced rank (=2) and the cointegration space is spanned by two vectors given by8

[
0.0 2.0 −0.2
2.0 −0.2 0.0

]
.

DGP 2 shows the second way that variables can stochastically trend: here, the X’s trend,
not because of an exogenous cause, but because of the fine-tuning of their structural coefficients
(cf. Davidson and Hall l991, p. 239). In particular, the parameters have been chosen specifically to give
DGP 2 the same cointegration properties as DGP 1.9 It is important to understand that DGP 2 is not a
reduced form of DGP 1. It is a distinct structural system that happens to have coefficients that give it
the same cointegration properties as DGP 1. The fact that its variables display I(1) trends, reflects a
system property of the model that cannot be reduced to the effect of any variables that would trend
without the presence of the others. In contrast, in DGP 1, the Xs trend and are cointegrated because
they are driven by the same exogenous I(1) trend; and that would be true whether or not the driving
trend (T) were observed or latent.

The I(1) behavior of the variables in DGP 2 depends on the exact values of the elements of Π. It is
fragile in the sense that a small change in one of the structural coefficients that does not reflect any
change in the causal graph (Figure 1b) can result in the loss of cointegration and of the trend behavior
of the Xs. In contrast, DGP 1 is generic in the sense that it is robust to changes in the values of the
structural coefficients (i.e., to changes that do not alter the causal graph (Figure 1a)).

To illustrate, suppose that the coefficients of DGP 2 are altered, such that the values of Π in
Equation (4) are now

Π =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.2 0.0 0.002
1.8 −0.2 0.000
0.0 1.8 −0.200

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where the bold entries indicate where Π has been altered. Now the rank(Π) is three, there is no
cointegration among the variables, and, indeed, the previously nonstationary Xt are now stationary.10

In contrast, consider making changes of the same magnitude in the analogous part of the causal
structure of DGP 1 in (2), so that

ΦXX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.2 0.0 0.0
1.8 −0.2 0.0
0.0 1.8 −0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where again the bold numerals indicate the alterations. Unlike the case of DGP 2, qualitatively, the
cointegration properties remain unchanged—there is still only the one trend, T, in the system. Again,
if we take the trend to be latent, then, while the precise values of the cointegrating relationships have
changed, the cointegration rank (2) has not. The cointegrating vectors are now

[
0.0 1.8 −0.2
1.8 −0.2 0.0

]
.

8 In general, calculation of the cointegrating vector is the equivalent of solving out the Ts from the long-run representation of
Equation (2) in which we set ΔXt and the error terms to zero; specifically the cointegrating vector is given as Φ

′
XT⊥ΦXX The

orthogonal complement, indicated by the subscript is defined for a full-rank p × r matrix A, as a p × (p − r) matrix A⊥, such
that A′⊥A = 0; see (Johansen 1995, p. 39).

9 Row 3 of Π in DGP 2 is simply the first cointegrating relation from the reduced form of DGP 1 when T is latent, while Row 2
is the second. Row 1 is (−0.01) × the first cointegrating relation + (−0.1) × the second.

10 The eigenvalues of I + Π are 0.70678 ± 0.16146i, and 0.98643.
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Cointegration in DGP 2 is fragile in the sense that only specific choices of coefficients produce
a trend and cointegration, and small deviations from those values can destroy those properties.
Cointegration in DGP 1 is generic in the sense that small deviations in coefficients, while they alter
precise values of cointegrating relations, nonetheless preserve the cointegration rank (i.e., the number
of trends). The generic nature of the cointegration properties of systems like (2) is the result of
the trend behavior of the X’s having an independent cause based in exogenous variables that are
fundamentally I(1), while the fragility of cointegration in a DGP like (4) is the result of it arising only
from the fine-tuning of the structural coefficients. Such fine-tuning could arise in specific cases for
good economic reasons; however, in the spirit of Reichenbach’s Principle of the Common Cause, we
should assume that it would not be the general case, unless we can point to an economic explanation
of why the structural coefficients take those specific values in a particular case.11 It is unlikely that
cointegration generally arises from a fortuitous combination of coefficients, which combined with the
fact that we often find cointegration among the observable variables without any of them being weakly
exogenous, suggests that the source of nonstationary behavior and cointegration among observable
variables is more typically the result of latent I(1) trends.

In DGP 1, we can point to specific variables that are the source of the trends. In this case, we will
say that the variables are driven by genuine (or real) fundamental trends, whether those trends are
themselves observed or are latent. It is conventional in the CVAR literature to say that any system
of I(1) variables with reduced-rank contains trends equal to the number of variables in the system
less the number of cointegrating relations (the rank). These trends may generally be represented as
the cumulation of the permanent shocks to the CVAR, which are backed out of the shocks to the
Xs by imposing identifying assumptions (see Juselius 2006, chp. 15, especially Section 15). These
representations are generally not uniquely identified, even when there are latent fundamental trends in
the DGP and even when, as in DGP 2, there are no fundamental trends at all. In either case, we might
call them “virtual trends,” since they do not correspond to a particular variable—observable or latent.

Our working hypothesis is that trending behavior originates economically in a relatively small
number of variables whose own natures are such that they are nonstationary; we call these “fundamental
trends.” The number of fundamental trends causally influencing a set of variables is equal to q (the
number of variables (p) minus the rank of the Π matrix (r)). However, the fundamental trends
themselves may or may not be among the observed variables. Other variables may be nonstationary,
because these fundamental trends are among their direct or indirect causes; we call these “ordinary
(nonstationary) variables”. In most cases, it would seem that we observe only ordinary variables, and
the ultimate source of their trending behavior is to be found among their latent causes.

It might be argued that DGP 1 is also fragile because a change of parameters that rendered any of
Ts stationary would upset the cointegration properties of that model in the same way that those of
DGP 2 are upset by a small change in coefficients. However, that would miss the essential point. Of
course, if the exogenous Ts were not I(1), then there would be no trends to transmit. The argument
here, however, is that, in a structural model, it is far more likely that the source of a trend is a particular
I(1) variable—either observed or latent—than that the source would be a group of distinct structural
equations that just happen to have the right coefficients to generate what very often are multiple I(1)
trends. This is ultimately not an econometric argument, but an economic one—we can more easily
think of good economic reasons that a single economic variable might be a random walk (or a random
walk with a drift or a random walk with a deterministic trend) than we can think of good reasons that
that the parameters of several equations are appropriately tuned. For example, common sense and
experience suggest that it is highly unlikely that a small change in the relative weights that a central
bank places on inflation and unemployment in its reaction function would fundamentally change the

11 An analogous case arises in the graph-theoretic search literature in the guise of fragile failures of faithfulness—i.e., failures
of the estimated probability distributions to reflect all of the independence relationships implied by the graph of the DGP
(Spirtes et al. 2000, p. 41; Pearl 2009, pp. 62–63; Hoover 2001, pp. 45–49, 151–53, 168–69).
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cointegration properties of a system of structural macroeconomic equations. If we do not observe
such instability of the cointegration properties and we most often do not find observed exogenous I(1)
variables, then it suggests that typical estimated CVARs are reduced forms and that we will have to
dig deeper to discover the structure that lies behind them. Ultimately, this is an empirical hypothesis
about whether CVARs based on structures like DGP 1 prove to be more economically informative
than those based on structures like DGP 2. Our goal is to explore some of the implications of this
hypothesis about of the typical origin of I(1) trends for the long-run causal structure of the world and
for the possibilities of uncovering that structure (or, as least, parts of it) empirically.12

4. Graphical Analysis of the CVAR

The DGP that adequately represents the long-run causal structure in the economy is not directly
observable. But might it be inferred on the basis of data and not simply imposed as a priori restrictions
on the CVAR? We begin by showing, first, how a DGP can be represented as a causal graph; and,
second, how we can think of that graph as a map of the transmission of trends through the system of
variables. We then want to investigate whether the facts of cointegration and weak exogeneity among
subsets of observable variables might provide the necessary empirical data to allow us to recover
reliable information about the underlying DGP, analogously to the way in which graphical causal
search algorithms allow us to infer the causal structure of stationary data from empirical evidence
about probabilistic dependence and independence among subsets of variables. The two critical
tools are Davidson (1998) analysis of irreducibly cointegrating sets of variables and Johansen (2019)
state-space analysis of the CVAR, which provides an instrument for analytically determining weak
exogeneity among subsets of variables. These tools allow us to explore the logic of causal inference for
nonstationary data. In Section 5, we demonstrate applications of that logic that suggest a possible basis
for a causal search algorithm.

4.1. The Canonical CVAR of a Causally Sufficient, Acyclical Graph

Consider first the long-term structure of a causally sufficient CVAR with an acyclical causal
structure in which the fundamental trends are represented explicitly. In the remainder of the paper, we
consider only cases for a strong form acyclicality in which we do not permit any feedback from one
variable to another, even with a time delay. Thus, we rule out cases such as Xt → Yt+1 → Xt+2.

The DGP is given as
Δξt = Ψξt−1 + Ht, (5)

where ξ = [X
′
, T

′
]
′
; T is a q × 1 vector of fundamental trends; X is a p × 1 vector of ordinary variables,

which may be trending (i.e., I(1)), but are not fundamental trends; H
′
t = [ε1,t , . . . , εp,t, η1,t, . . . , ηq,t]

′

is a (p+q) × 1 vector of shocks to ordinary variables (εit, t = 1, 2, . . . , p) and to fundamental trends (ηjt,
j = 1, 2, . . . , q), each of the elements of which is an identically independently distributed random shock,
and Ht ∼ IN(0, Ω), where Ω is diagonal.

The system can be partitioned as

Δξt =

[
ΔX

ΔT

]
t
=

[
ΨXX ΨXT

ΨTX ΨTT

][
X

T

]
t−1

+

[
HX

HT

]
t
= Ψξt−1 + Ht, (6)

where the submatrix of parameters ΨXX is full rank p × p, while ΨXT is p × q, ΨTX is q × p, and ΨTT is q
× q.

12 The robustness of trend behavior in CVARs driven by exogenous, latent trends would explain why the trends estimated
in CVARs are often robust to widening the data set and recommends Juselius’s specific-to-general approach—once the
trends can be characterized, then any new variable is either redundant or carries information with respect to a new trend
(Juselius 2006, chp. 22; Johansen and Juselius 2014).
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Because X is the vector of ordinary variables, ΨXX is full rank and the eigenvalues of Ip + ΨXX must
be less one in absolute value.13 If the variables in T are the actual I(1) fundamental trends, as opposed
to ordinary variables that serve as the conduits of the fundamental trends into the observable system,
they must be mutually causally independent, requiring ΨTT = 0qq, and strongly exogenous, requiring
ΨTX = 0qp (Johansen 1995, p. 77; Juselius 2006, p. 263).

The Ψ matrix in (5) can be decomposed analogously to the Π matrix in (1) such that Ψ = αβ′,
where α is (p + q) × r and β′ is r × (p + q). The transitional causal structure embedded in Ψ that governs
the transmission of shocks and ultimately determines the long-run causal structure reflected in (25)
can be represented in this αβ′-decomposition in the following canonical way—variables that are both
cointegrated and directly causally connected are represented by the individual cointegrating relations
expressed in β and the effects of causes are indicated by non-zero coefficients in α. To take a concrete
example, consider a specific causal structure embedded in a DGP like (5) and represented graphically
in Figure 2. (With causal time-series graphs, we suppose henceforth that the arrows correspond to a
one-period lag between a direct cause and its effect.)

Figure 2. The causal structure of the DGP of cointegrated vector autoregression (CVAR) (7).

Thus, the causally canonical representation of Figure 2 would be given as
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 βAt1 0
0 1 0 0 0 βBt1 βBt2

0 0 1 0 0 0 βCt2

0 βDB 0 1 0 0 0
0 βEB βEC 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
B
C
D
E
T1

T2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
t−1

+ Ht

(7)

The rules governing the translation of the Figure 2 or any graph into the a DGP analogous to (7) are
straightforward:

i. Each single-variable direct causal pair or each collider is represented by a cointegrating
relationship corresponding to a unique row of the β′ matrix where the value of the parameter
for the effect is normalized to unity;

13 ΨXX is assumed to be full rank because, were it reduced rank, then it would itself generate trends in the manner of DGP 2 in
Section 3—a case that we have argued is possible, but unlikely, in actual economies and which, therefore, we rule out by
assumption in this analysis.
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ii. There are as many adjustment parameters in α as there are rows in β′ (at most one per row)
with the column of each non-zero parameter in α corresponding to the row of one of the effects
(i.e., corresponding to the row in which that variable is normalized to unity) in β′;

iii. If any variable is a cause, but not an effect with respect to all the other variables, it corresponds
to a zero row in α (and, thus, is weakly exogenous).

The β matrix thus tells us which variables are related causally and, therefore, connected by
edges, and the α matrix (equivalently the normalization of β′) tells us which way the arrows point for
those edges.

Except for trivial reorderings of the variables and rescalings, the DGP (7) uniquely represents
the causal graph in Figure 2. Algebraically, however, the matrices α and β are not unique. They
can be rotated to form other pairs (α* and β*) such that Ψ = α*β*′. The αβ′—representation and
the α*β*′—representation yield the same value of the likelihood function. The problem of causal
search is to find empirical information, other than the value of the likelihood function, that would
allow us to select the canonical representation as in DGP (7) that corresponds to the graph of the
data-generating process.

4.2. Formation and Sharing of Local Trends

We can think of the causal graph of a system of I(1) variables as representing the channels of
transmission of these trends. Each collider corresponds to the creation of a local trend, and the causal
variables involved in the collider are cointegrated with the effect variable. The transmission of a local
trend from one variable to a single other variable also implies the cointegration of the cause and
the effect.

Although causal connections produce cointegration, cointegration itself is not essentially a causal
notion. Instead, cointegration results either (a) when a local trend is shared by two variables or (b)
whenever the number of variables sharing the same fundamental trends, whether or not they share the
same local trends (i.e., whether or not they share the fundamental trends in the same proportions),
exceeds the number of fundamental trends. Thus, in case (b), if there is a set of variables each of which
is driven by the same q fundamental trends, then any q + 1 of them will be cointegrated. A causal
connection is, thus, sufficient for the cointegration of the complete set of causes with their effect, but it
is not necessary.

Proposition 1. Causal Cointegration: If each member of the set of parents of a variable C in a causal graph is
I(1), then the set of variables consisting of C and its parents, is cointegrated.

It is convenient to write the fact that a set of variables is cointegrated as CI(Z), where Z is a set of
variables with two or more members. Thus, if the variables A and B are cointegrated, we can write this
as CI({A, B}). Two terms will prove useful:

Definition 2. A cointegrating group is a set of variables in which every pair of variables shares the same common
local trend—i.e., every pair is cointegrated.

Definition 3. A collider group is a set of variables consisting of a variable C and the complete set of its parents.

The variables in a cointegration group share a single common local trend; while the variables in a
collider group generate a new local trend at C. The same variable may be part of both a cointegration
group and a collider group. Other sets of cointegrating variables may be in neither type of group.
Davidson (1998, p. 91) introduces a useful concept, which we define here slightly differently that
he does.

379



Econometrics 2020, 8, 31

Definition 4. A set of variables is irreducibly cointegrating (notated IC(.)) if, and only if, it does not contain a
subset that is itself cointegrated.

4.3. A State-Space Analysis of the CVAR

It will prove useful to examine the relationship between weak exogeneity and the causal graph.
Weak exogeneity is not in itself a causal property; rather, it is a property related to the manner in which
a likelihood function can be decomposed into a conditional and marginal probability distribution
under a given parameterization (Engle et al. 1983). Although weak exogeneity is important because
it is turns out to be the condition that guarantees that the parameters of interest can be efficiently
estimated, we are not interested in the current paper in efficient estimation. Rather we want to show
how zero rows in α in the CVAR for subsets of variables, known as “weak exogeneity” conditions, can
reveal information about the causal structure of the DGP.

Given a DGP, the weak exogeneity status of its variables will depend on the model we estimate.
So, for example, if (7) were the DGP with ψij � 0 and we estimated a CVAR with precisely the form of
the DGP with ψij unrestricted, then the variables T1 and T2 would be weakly exogenous in the model
for {A, B, C, D, E, T1, T2}t+1 given {A, B, C, D, E, T1, T2}t for the coefficients ψij or (αji, βij), i = 1, 2, . . . ,
5, j = 1, 2, . . . , 7. Our main interest, however, will be in the case in which only a subset of the variables
is observed—leaving other variables in the DGP latent. So, for example, we might consider data
generated by (7) but observe only B, C, and E. These variables can be modeled in a CVAR form, but the
coefficients of the model will not in general be the same as those of (7), though we could compute
them if we knew the DGP. Still, we can ask the question whether we can decompose the likelihood
function of this model, with some unobserved variables, in a manner that renders some of the observed
variables weakly exogenous with respect to the coefficients of a conditional model for the remaining
observable variables.

We can notate this weak exogeneity using a new symbol “ �→”, which means “is weakly exogenous
for” and is to be distinguished from “→,” which means “directly causes.” Thus, X �→ Y can be read as
“the variables in the set X are weakly exogenous for the coefficients of a CVAR model of Y conditional
on X” or, leaving the relativity to a particular set of parameters implicit, “X is weakly exogenous for Y.”
If we know the causal graph of the DGP, then we can read the various weak exogeneity relationships
for models of different subsets of variables from information in the causal graph. As a result, if we can
identify weak exogeneity relationships for different subsets, we may be able to work backwards to
determine which causal graphs could have generated them.14

The object of the analysis is to use tests of long-run weak exogeneity in CVARs of the form of
Equation (1) applied to only the observable variables to discover restrictions on allowable causal
ordering of the underlying DGP (6). Long-run weak exogeneity corresponds to a zero row in the α

matrix of the CVAR, so a critical goal is, given a particular DGP, to determine what it implies for the α

matrix of a CVAR of the subset of observable variables (Johansen 1995, Section 8.2.1; and Juselius 2006,
Section 11.1).

Johansen (2019) provides a state-space analysis of the DGP of a CVAR that allows us to determine
analytically what statistical tests of weak exogeneity should find (given sufficient data and so forth)
for different subsets of observable variables. Fundamental trends are assumed to be latent. In order
to analyze weak exogeneity among subsets of variables, Johansen partitions the ordinary variables
Xt = [X1t, X2t] into those that are in the subset of interest X1t (referred to as observed) and those outside
the subset X2t (referred to as the unobserved). Then, rather than partitioning Ψ as in (6), partition

14 The connection of weak exogeneity to the efficient estimation of β might suggest that our notion approach is similar to
LeRoy (1995) approach to causality (cf. Hoover 2001, pp. 170–74). An importance difference, however, is that while LeRoy
defines causal orderings in terms of efficient estimation, we seek only the implications for a possible of the lack of error
correction of a condition that incidentally guarantees efficient estimation.
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it as Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
p×p
M

p×m
C

0
m×p

0
m×m

⎤⎥⎥⎥⎥⎥⎥⎥⎦, where the submatrices of parameters may or may not coincide with the

Ψij, depending on whether any ordinary variables are unobserved. The m × p null element in the
lower left-hand corner of the Ψ matrix corresponds to the assumption that the fundamental trends
are strongly exogenous, and the m × m null element in the lower right-hand corner indicate that
fundamental trends do not cause one another.

The submatrix M
p×p

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
p1×p1
M11

p1×p2
M12

M21
p2×p1

M22
p2×p2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ contains the parameters of the ordinary variables. Only

the parameters in M11 relate exclusively to the p1 observed ordinary variables, while the other Mij
contain parameters that relate partly or exclusively to the p2 latent ordinary variables. The submatrix

C
p×m

=

[
C
′
1

m×p1

C
′
2

m×p2

]′
contains the coefficients in C1 that relate to the effects of the latent fundamental

trends on the observed ordinary variables and those in C2 that relate to the their effects on the
unobserved ordinary variables.

A state-space representation of DGP (6) can then be given.

ΔX1t+1 = M11X1t + M12X2t + C1Tt + ε1t+1; (8)

ΔX2t+1 = M21X1t + M22X2t + C2Tt + ε2t+1; (9)

ΔTt+1 = ηt+1; (10)

where t = 0, 1, . . . . , n − 1, and T0 = 0 and X0 = 0. The shocks are partitioned into those affecting
ordinary variables (ε) and those affecting the latent variables (η), with (εt, ηt) ~ i.i.d. Np+m(0, Ω),

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ωε1 0 0

0 Ωε2 0
0 0 Ωη

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, where Ω is diagonal. In keeping with the distinction between ordinary

variables and fundamental trends, we assume that the eigenvalues of Ip +M, Ip1 +M11, and Ip1 +M22

are less than one in absolute value, so that the source of the nonstationarity of Xt is the fundamental
trends rather than its own dynamics.

The matrix C represents the proportions of fundamental trends present in observable variables
but transmitted to them through latent causal connections and not via causal relationships among the
observable variables. Thus, while the non-zero entries of M correspond to the edges in a causal graph,
C is not given a direct graphical interpretation. The fundamental trends are embedded in T, but the
variables included in T should be regarded as local trends, which may either be latent fundamental
trends directly causing the observed variables or latent ordinary variables that carry some linear
combination of fundamental trends and cause the observable variables. Therefore, while we have
assumed that Ωη is diagonal, it need not be (and the conclusions about weak exogeneity in the next
subsection would be unaffected).

Suppose that the DGP is described as in systems (8)–(10), and we wish to know whether any of
the observed variables (X1t) are weakly exogenous in a CVAR of the observed variables only. This
comes down to the question of whether α in that CVAR has any zero rows. Johansen proves that the α

of such a CVAR can be written as

α = Σ(M12V2T + C1VTT)⊥, (11)

where the conditional variances are

V = var
[ [

X2t

Tt

]∣∣∣∣∣∣X1t

]
=

[
V22 V2T

VT2 VTT

]
;
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and the long-run variances are

Σ = var(X1t) =
[

M12 C1
]
V

[
M

′
12

C
′
1

]
+ Ωε1;

see (Johansen 2019, Sections 2 and 3, especially Equations (12) and (13), Theorem 3, and Equation (18)).
In the simpler case, in which all variables are observed (i.e., there are no X2’s), Johansen (2019,

Section 3, Case 1) shows the formula in Equation (11) can be made even simpler:

α = Ωε1C1⊥. (12)

4.4. Weak Exogeneity and Causal Order

Johansen (2019) state-space representation and his Theorem 2 offer a tool for analyzing weak
exogeneity for subsets of variables in the DGP. These, in turn, correspond in systematic ways to facts
about the causal structure of the DGP itself. Consider some illustrative cases:

Case 1. Consider the causal graph in Figure 3, in which all ordinary variables are observed and only
the fundamental trends are unobserved, so that (12), the simpler formula for α, applies. The DGP
in Equations (8)–(10) specializes to

ΔX1t+1 = Δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A
B
C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
t+1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ψAA 0 0

0 ψBB 0
ψCA ψCB ψCC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
B
C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
t

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ψAT1 ψAT2

ψBT1 ψBT2

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

T1

T2

]
t
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
εA
εB

εC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
t+1

= M11X1t + C1Tt + ε1t+1

(13)

ΔTt+1 = Δ
[

T1

T2

]
t+1

= ηt+1 =

[
η1

η2

]
t+1

, (14)

where

Ωε1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ωAA 0 0

0 ωBB 0
0 0 ωCC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where ωii = var(εit), i = A, B, C; Thus,

α = Ωε1C1⊥ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ωAA 0 0

0 ωBB 0
0 0 ωCC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ψ14 ψ15

ψ24 ψ25

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊥

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ωAA 0 0

0 ωBB 0
0 0 ωCC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where the asterisk (*) indicates a non-zero value.15 The first two rows of α are zero and, therefore,
A and B are weakly exogenous for C (i.e., {A, B} �→ C). Notice that it does not matter, what the
causal relations are among the observables, since they are encoded in the M11 matrix, which plays
no part in the determination of α in Equation (11). What matters is which variables convey the
fundamental trends to the observables.

Case 2. Unfortunately, the simple mapping between weak exogeneity and causal connection suggested
by Case 1 does not hold up. Consider Figure 4, which adds the variable D and edges connecting
it to other variables in Figure 3. The analysis proceeds just as in Case 1. Again, since all variables

15 The orthogonal complement for any matrix is not, in general, unique; but each admissible complement spans the same space
and places zero rows in the same positions.
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are observable, the simpler formula (12) applies. The other relevant matrices of the state-space
formulation are given by

Xt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
B
C
D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
t

, C1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ15 ψ16

ψ25 ψ26

0 0
0 ψ46

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and Ωε1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωAA 0 0 0
0 ωBB 0 0
0 0 ωCC 0
0 0 0 ωDD

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

These imply that

α = Ωε1C1⊥ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗
0 ∗
∗ 0
0 ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which has no zero rows; which, in turn, implies that none of the variables is weakly exogenous.16

The variables A, B, C, D are cointegrated (CI({A, B, C, D})); but with two fundamental trends and
four variables, every three-member subset of the ordinary variables is also cointegrated, implying
not IC({A, B, C, D}). This appears to be a robust finding—the parents in a collider are weakly
exogenous only when the colliding set is irreducibly cointegrated.

Case 3. It is tempting to think that we might consider an irreducible subset of the variables in Figure 4,
such as {A, B, C} and find the same weak exogeneity relations as we did in Figure 3. That,
however, does not work. In analyzing the subset, we are effectively treating D as an unobserved
variable; and we must, therefore, apply the more general formula (11), which requires additional
information. The critical elements of the state-space representation of this reduced system are

X1t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A
B
C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
t

; X2t = [D]t;

M12 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
ψ34

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦; C1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ψAT1 ψAT2

ψBT1 ψBT2

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦; Ωε1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ωAA 0 0

0 ωAA 0
0 0 ωAA

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦;

and

V = var
[

X2t

Tt

∣∣∣∣∣∣X1t

]
=

[
V22 V2T

VT2 VTT

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(Note that, although Ωη is diagonal by assumption, the off-diagonal elements of VTT here are
nonzero. This is the result of D, transmitting T2 to the collider at C. The calculation of V (see
Equation (11)) conditions {D, T1, T2} on {A, B, C} and, in effect, conditions the independent (distal)

16 This is, as in similar cases, a generic claim and does not rule out that zero rows inαmight occur for carefully chosen coefficients.
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causes T1 and T2 on their common (indirect) effect, which induces probabilistic dependence
between them.) The variance of the X1t is

Σ = var(X1t) =
[

M12 C1
]
V

[
M

′
12

C
′
1

]
+ Ωε1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
ψCD

ψAT1 ψAT2

ψBT1 ψBT2

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ψCD
ψAT1 ψBT1 0
ψAT2 ψBT2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ωAA 0 0

0 ωBB 0
0 0 ωCC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦;

and

α = Σ(M12V2T + C1VTT)⊥ = Σ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
∗ ∗

]
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∗ ∗
∗ ∗
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[ ∗ ∗
∗ ∗

]⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊥

= Σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∗ ∗
∗ ∗
0 ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊥

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∗
∗
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∗
∗
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.

With no zero rows in α, none of the variables is weakly exogenous. Although D is unobservable
in the DGP that actually determines the value of the observable variables, it provides a conduit
from the fundamental trends to C that is distinct from the observable conduits, A and B. It is as
if the graph of Figure 4 has been transformed into Figure 6, where the dashed arrow indicates
a causal connection between T2 and C, mediated by D in the DGP but not observable in the
CVAR of the subset {A, B, C}. Unobserved mediating causes, like D, can make an indirect causal
connection appear to be direct.

Case 4. In Case 3, weak exogeneity failed to obtain, even though the causal connections were genuine.
It can also happen that weak exogeneity does obtain, even when causal connections are missing.
Consider Figure 5. The graph shows not (A → C) and not (B → D) and not (B → E), although B
does indirectly cause E. Using the same state-space methods, but omitting the details here, we can
show that {A, B} �→ {C, D, E}. And, looking at subsets of variables {A, B} �→ D. Thus, {A, B, D} have
the same apparent pattern of weak exogeneity as found for {A, B, C} in Case 1 (Figure 3); yet these
variables do not form a collider group in Figure 5. But notice CI({A, B, D}), but also CI({A, D}).
The set {A, B, D}, therefore, is not irreducibly cointegrated. It appears that a mapping between
weak exogeneity and causal connections can be established only in irreducibly cointegrated sets.

Case 5. Weak exogeneity may fail to track direct cause. Consider a causal chain:

T → A → B → C → D

All four observable variables form a single cointegration group, sharing the single fundamental
trend. Note that B �→ C and that {B, C} form a cointegration group. We might be tempted to
conclude that these facts would warrant inferring what is, in fact, true that B → C. A similar case
shows the problem: A �→ C and CI({A, C}); but, in fact, it is not true that A → C (A is an indirect,
but not a direct, cause of C). It is worth showing why it is the case that A �→ C, as it highlights
a subtle issue. We take {A, C} to be observed and {B, D} to be unobserved. Then the relevant
matrices are

X1t =

[
A
C

]
t
; X2t =

[
B
D

]
t
;

M12 =

[
0 0
ψBC 0

]
; C1 =

[
ψAT

0

]
;
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V = var
[

X2t

Tt

∣∣∣∣∣∣X1t

]
=

[
V22 V2T

VT2 VTT

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∗ 0 0
0 ∗ 0
0 0 ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦; Ωε1 =

[
ωAA 0

0 ωCC

]
.

Figure 3. Causal structure of the DGP of Case 1.

Figure 4. Causal structure of the DGP of Case 2.

Figure 5. Causal structure of the DGP of Case 4.
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Figure 6. Virtual causal structure of Case 2 when D is unobserved.

The variance of the X1t is

Σ = var(X1t) =
[

M12 C1
]
V

[
M

′
12

C
′
1

]
+ Ωε1

=

[
0 0 ψAT
ψBC 0 0

]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∗ 0 0
0 ∗ 0
0 0 ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ψBC
0 0
ψAT 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
[
ωAA 0

0 ωCC

]
=

[ ∗ 0
0 ∗

]
;

and

α = Σ(M12V2T + C1VTT)⊥ = Σ

([
0 0
∗ 0

][
0
0

]
+

[ ∗
0

]
[∗]

)
⊥

= Σ

[ ∗
0

]
⊥

=

[ ∗ 0
0 ∗

][
0
∗

]
=

[
0
∗

]
.

The zero row in α implies that A �→ C. The result hinges crucially on V2T being a zero matrix.
This is, in turn, implied by the fact that A screens off B and D from T in the graph. Conditioning on
the screening variable A as is done in the calculation of V2T renders both B and D probabilistically
independent of T.

Using a similar analysis, it is also easy to show that the subset {B, D} displays the same pattern
as {A, C}: B �→ D and CI({B, D}), yet it is not true that B → D. The example shows that we have to be
careful in making such inferences, but not that they are hopeless. Note that we can show that A �→ {B,
C, D}; B �→ {C, D}; and C �→ D; so that the variables form a nested hierarchy with A at the top. This
hierarchy can be reinterpreted as a chain: A �→ B and all variables lower in the hierarchy; B �→ C and all
variables lower in hierarchy; C �→ D; and D is not weakly exogenous for any variable. Such as chain
recapitulates the causal graph. The lesson is that a when a variable is weakly exogenous for another
variable in a cointegration group, it is a direct cause only if it is adjacent in the sense of sitting at the
immediately higher step of the hierarchy.

Although we have not provided a proof, these cases suggest how to read weak exogeneity off a
causal graph. There are four conjectured criteria:

A. Within a set of variables that form a cointegration group, a particular variable is weakly
exogenous for the group if, and only if, it is the sole source of the local trend that cointegrates
the group;

B. The parents in any set of variables that form a collider group in which two or more local trends
are combined are weakly exogenous for the child in the collider group, provided that the number
of variables in the group is fewer than one plus the number of fundamental trends carried by
those variables;

C. If a collider fulfills criterion B, then in any set that replaces one or more weakly exogenous
parents with a variable in the same cointegration group as that parent, provided the variable is
itself weakly exogenous for the parent, will also be weakly exogenous for the child. (Thus, in
Figure 5, in the collider {A, C, E}, {A, C} �→ E; but in the set in which B replaces C (both in the
same collider group), {A, B} �→ E));
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D. If a collider fulfills criterion B, then any variable that is weakly exogenous for the child, either as
a parent or as a member of the same cointegration group that replaces the parent, will be weakly
exogenous for a variable that replaces the child from a cointegration group that includes the
child and for which it is weakly exogenous. (Thus, in Figure 2, {T1, T2} �→ B, but in the set that
replaces B with D, which are both in the same cointegration group, {T1, T2} �→ D.)

The inferential lessons of Cases 1–5 can be summarized in three conjectured rules, consistent with
visual reading of the graph:

Rule 1. If A �→ B, then not B → A.

Rule 1 simply says that causation cannot run against the direction of weak exogeneity.

Rule 2. In a cointegration group, if A �→ B and there is no C such that A �→ C and C �→ B, then A → B.

Rule 2 says that bivariate weak exogeneity coincides with direct causation, provided that the
variables are adjacent.17

Rule 3. A set of variables W with k ≤ q members forms a collider at one of its members (call it variable C), if (i)
IC(W); (ii) W-C �→ C, where W-C is the set W omitting C; (iii) it is not the case that any member B ∈ W-C is a
member of a cointegration group Z such that, for any member D ∈ Z (excluding B), B �→ D and W-B+D �→ C,
where W-B+D is W with D taking the place of B; and iv) it is not the case that C is a member of a cointegration
group Z such that for any member E ∈ Z (excluding C) that E �→ C.

Rules 3 says that if a set of k + 1 variables is irreducibly cointegrated and k variables are jointly
weakly exogenous for the k + 1th variable, then they form a collider, provided that each of the weakly
exogenous variables is adjacent to the third variable (established by conditions (iii) and (iv)).

5. The Basis for a Long-Run Causal Search Algorithm?

The DGP that adequately represents the causal structure in the economy is not directly observable.
Might it be inferred on the basis of data and not simply imposed as a priori restrictions on the CVAR?
Based on our analysis of long-run causal structure, can we recover reliable information about the
underlying DGP from the facts of cointegration and weak exogeneity analogously to the way in which
graphical causal search algorithms infer causal structure for stationary data from empirical evidence
about probabilistic dependence and independence among subsets of variables?

Davidson (1998, Section 3) proposes a search algorithm that identifies every irreducible
cointegrating set of variables within a CVAR. He then uses that information where possible to
identify the cointegrating relations in the β′ matrix. This strategy is successful in some cases and not
others. There is an analogy with causal search for stationary variables. Despite the slogan, “correlation is
not causation,” it is sometimes possible to infer causal direction from tests of unconditional dependence.
For example, for a causally sufficient set of three stationary variables with an acyclical data-generating
process, if A and C are not correlated, but A and B and B and C are correlated, then A → B ← C is
the only consistent causal graph. In most cases, however, unconditional independence is not enough.
Relations of conditional dependence and independence provides a richer source of information for
inferring the direction, as well as the existence of causal edges (see Section 2.2 above).

Davidson’s schema places cointegration in something like the logical role of unconditional
independence (or correlation) in the stationary case. The analysis of Section 4 suggests that Davidson’s
inferential scheme can be further developed by explicitly recognizing, first, that the ultimate source
of nonstationarity in any set of variables is often found in latent trends and, second, that assessment

17 The rule refers to the DGP, so that an unobserved intermediate cause would appear to warrant the inference of a direct
causal connection when only an indirect connection existed in the DGP. This implies that widening the data set might, in
effect, open the “black box” and provide more refined information about causal mechanisms.
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of weak exogeneity may provide evidence of causal asymmetry. Within irreducibly cointegrated
subsets of the variables, weak exogeneity can function in something like the logical role of conditional
independence, when processed according to the three rules of Section 4.4, and may provide richer,
empirically grounded information about the identification of the CVAR. As with causal search in the
stationary case, the application of these rules is unlikely to identify every possible causal graph but
may sometimes be able to partially or completely uncover the underlying causal structure.

To illustrate, we analyze two cases—one with and one without causal sufficiency.

5.1. Long-Run Causal Search in a Causally Sufficient Graph

Consider the DGP in Figure 2 and assume that its variables are causally sufficient and all (including
the fundamental trends) are observed. We are interested in the logic of causal inference rather than
the statistical problem of inference, so we also assume that prior statistical testing has successfully
identified the facts with respect to the cointegration rank of the system and cointegration and weak
exogeneity among any subset of variables. (In the language of the causal search literature, we assume
that we have an oracle.) Naturally, in practice our inference cannot be more certain than the statistical
inferences that provide our assumed facts. Can we use this information to recover the graph of
the DGP?

The inference problem can be viewed as how to place the zero and non-zero coefficients in the α

and β′ matrices in Equation (7).
Given that we know that the cointegration rank is 5, we know that there are two fundamental

trends. This implies that α is 7 × 5 and β′ 5 × 7. Since T1 and T2 are weakly exogenous with respect
to all other variables in the system, we may conclude that, even if they are not identical with the
fundamental trends (which in this case, of course, they are), they are at least the unique sources
introducing those trends into the system. And we are entitled to enter zeroes in the entire rows of α
corresponding to T1 and T2. Without loss of generality, we may enter non-zero αijs along the main
diagonal of the submatrix of α, excluding the T1- and T2-rows, and zeroes everywhere else. Similarly,
we may enter ones on the main diagonal of the submatrix of β′ that excludes the last two columns.

With two fundamental trends, no irreducible cointegrating relation can involve more than three
variables. Exhaustive consideration along Davidson’s lines would produce 21 possible cointegrating
pairs and 35 possible cointegrating triples. Similarly, we need to consider possible weak exogeneity of
variables within each irreducibly cointegrating subset. Most of subsets are not irreducibly cointegrating
or do not contain weakly exogenous variables, so rather than tediously listing the weak-exogeneity
status of all 56 subsets systematically, we just note the salient ones.

From the facts that CI({A, T1}) and that there are no other variables in this cointegration group and
that T1 �→ A, Rule 2 implies T1 → A, which justifies the placement of βAT1 in row 1 of β′ and zeroes in
the remaining unassigned places in that row. Analogous reasoning with respect to {C, T2} implies T2 →
C and justifies the placement of βCT2 and the zeroes in row 3. Again, with respect to {B, D}, analogous
reasoning justifies the placement of βDB and the zeroes in row 4. In addition, in this case, Rule 1 and
the fact that B �→ D imply that not (D → B) and justify the zero in row 2, column 4.

Rule 3 and the facts that IC({T1, T2, B}), that B is not part of a cointegration group with either T1 or
T2, and that {T1, T2} �→ B allows us to identify the collider T1 → B ← T2 and justifies the placement of
βBT1 and βBT2 and the remaining zeroes in row 2 of β′.

Rules 3 and the facts that IC({B, C, E}), ({B, C} �→ E, and not (C �→ T2), with which it forms a
cointegration group, allows us to identify the collider B → E ← C and justifies the placement of βEB

and βEC and the zeroes in row 5 of β′. With that, we were able to recover the entire DGP graph using
only the facts of cointegration and weak exogeneity.

5.2. Long-Run Causal Search in the Presence of Latent Trends

The CVARs typically estimated in practice most often do not contain variables that are weakly
exogenous for the whole system, which could, therefore, be identified as the conduit of the fundamental
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trends to the other variables in the system. It is, therefore, worth considering how the principles of
search might operate when fundamental trends are latent variables. It is possible to apply the rules of
Section 4.2 to the variables generated according to Equation (7) when only the ordinary variables (A, B,
C, D, E), but not the fundamental trends (T1 and T2), are observed.

For some of the causal edges, the reasoning of Section 4.3 is still applicable, and we would be
able to infer the edges shown in Figure 7: B → D and B → E ←C. The remainder of Figure 7 requires
further comment.

Figure 7. Recoverable structure of Figure 2 graph when fundamental trends are latent.

We are unable to infer the edges between T1, T2 and A, B, and C for the simple reason that the
two fundamental trends are not observed and the inference of the edges in which they are involved
requires their observability. However, we do know from the fact that the cointegration rank is 3 that
there are two fundamental trends. What we cannot say, however, is precisely how those two trends
enter directly into the observable system. They may, in fact, be transmitted through ordinary variables
that are also latent. We do know that they must enter through A, B, or C. If that were not the case and a
fundamental trend entered through D or E, we would not have found that CI({B, D}) or {B, C} �→ E. This
is indicated in Figure 7 by the oval enclosing the ordinary variables and the circles (indicating their
latency) around the fundamental trends. The arrows running from the latent fundamental trends to the
oval, stopping short of the particular variables indicates that we know that these variables are caused
by these trends, albeit we do not know exactly what the connections are. Thus, instead of (7), we can
fill in the causally ordered CVAR Equation (15) with the ambiguous information depicted in Figure 7,
where the question marks indicate parameters that correspond to possible, but yet-to-be-determined
causal edges.

Δξt = Ψξt−1 + Ht

= αβ
′
ξt−1 + Ht =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αAA 0 0 0 0
0 αBB 0 0 0
0 0 αCC 0 0
0 0 0 αDD 0
0 0 0 0 αEE

0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ? ? 0 0 ? ?
? 1 ? 0 0 ? ?
? ? 1 0 0 ? ?
0 βDB 0 1 0 0 0
0 βEB βEC 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
B
C
D
E
T1

T2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
t−1

+ Ht
(15)

Equation (15) depicts what observables imply about the DGP and not just facts about the
observables themselves. Here the two trends are not observable, but we know that there are two latent
trends because none of the observable variables is weakly exogenous when one considers the whole
set of observable variables, which again justifies the placement of the two zero rows in α.

Neither the graph nor (15) conveys all the information that we have. We know, for instance,
that there are two fundamental trends and that at least one of the fundamental trends must causally
influence each of A, B, and C. If that were not so, then the only way that all three variables could
carry the trends and be irreducibly cointegrated would be for them to form a collider group in which
one pair is weakly exogenous for the remaining variable. Given the DGP, we know that the weak
exogeneity search should not find such a pattern. Furthermore, we know that no two of A, B, and C
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could have a common latent cause. If that were not true, that pair would form a cointegration group,
which, given the DGP, the search for cointegrating pairs should not find such a cointegration group.
These two conclusions imply that each of the three observed variables carries the fundamental trends
in distinct proportions. These facts place restrictions on how the last two columns of the β′ in (15) can
be filled in to be consistent with the DGP. In particular, in 3 × 2 submatrix in the upper right-hand
corner of β′, at least one row must contain two nonzero entries and the remaining two rows cannot
have zeroes in the same column. This guarantees that the variables A, B, C form a cointegration group
without also forming a collider group with weakly exogenous parents.

6. Conclusions

In the history of econometrics, the problem of identification and the notion of causal order
have long been connected—both in the work of Simon and the early Cowles Commission program
and in the literature on SVARs. Typically, economists have relied heavily on the idea that a priori
restrictions derived somehow from economic theory would provide the needed identification. Recent
work on graphical causal modeling, however, has shown that there is often unexploited information
that could provide a firmer, empirical basis for identification. In the case of cross-sectional data or
the contemporaneous causal orderings of SVARs, the graphical causal modelers have stressed the
information contained in conditional independence relationship encoded in the probability distribution
of the data. Conditional independence may also be a resource in the case of the long-run dynamics of
the CVAR, although the fact that nonstationary data involves non-standard distributions poses some
challenges. We have suggested here that nonstationary data also present the opportunity to take a
different approach.

Where do the trends we observe among macroeconomic variables come from? We showed
that it is possible for the structure of the DGP to be such that a set of observable variables trends
without any fundamental trends acting as drivers. Yet, we have argued that these cases rely on
particular configurations of coefficients that are likely not to be robust to small changes in coefficients
and that call out for an economic explanation of why they arise at all. Once a distinction is drawn
between fundamental trends and ordinary variables, it is clear that a more robust account for
nonstationary behavior is that it is transmitted from its fundamental sources to variables that without
these fundamental trends as direct or indirect causes would not naturally be nonstationary. In typical
CVAR analysis, econometricians mostly do not find variables that themselves can be identified as
the source of fundamental trends. This suggests that, in most cases, fundamental trends are latent
variables, and any sort of structural or causal analysis of CVARs must account for their latency.

We suggested—somewhat informally—that combining Davidson’s suggestion of a comprehensive
search for sets of irreducible cointegrating relations with a similar comprehensive search of weak
exogeneity among those sets could provide a non–a priori empirical basis for discovering identifying
restrictions on cointegrating relations, as well as information on causal direction. We showed that in a
simple example, the complete causal graph of the CVAR could be recovered. But, in most cases in the
face of latent variables, these restrictions are unlikely to provide complete identification. Nevertheless,
as in our illustration, some of the cointegrating relations may be identified, even when there are latent
trends. It is also possible that, in some cases, it would be possible to recover estimates of the trends
using state-space methods (see, e.g., Johansen and Tabor 2017). Finally, viewing the CVAR through the
lens of latent fundamental trends reinforces Juselius’s advocacy of simple-to-general modeling in the
CVAR context (Juselius 2006, Chapter 22, especially. Sections 22.2.3 and 22.3). Cointegrating relations
are robust to widening the data set to include more variables. The aim of such widening can be seen as
an effort to discover the observable variables that are the counterpart of the latent trends in narrower
data sets.
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Abstract: Economic policy agencies produce forecasts with accompanying narratives, and base
policy changes on the resulting anticipated developments in the target variables. Systematic forecast
failure, defined as large, persistent deviations of the outturns from the numerical forecasts, can make
the associated narrative false, which would in turn question the validity of the entailed policy
implementation. We establish when systematic forecast failure entails failure of the accompanying
narrative, which we call forediction failure, and when that in turn implies policy invalidity.
Most policy regime changes involve location shifts, which can induce forediction failure unless
the policy variable is super exogenous in the policy model. We propose a step-indicator saturation
test to check in advance for invariance to policy changes. Systematic forecast failure, or a lack of
invariance, previously justified by narratives reveals such stories to be economic fiction.

Keywords: forediction; invariance; super exogeneity; indicator saturation; co-breaking; Autometrics
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1. Introduction

The Bank of England’s quarterly Inflation Reports announces its projections of CPI inflation and
4-quarter real GDP growth for the next two years. For example, those made in November 2009 are
shown in Figure 1. Accompanying these forecast distributions are textual explanations for the forecasts,
an excerpt from which is:1

CPI inflation looked set to rise sharply in the near term. Further out, downward pressure
from the persistent margin of spare capacity was likely to bear down on inflation for some
time to come.

In his speech on the Report, the Governor stressed:

It is more likely than not that later this year I will need to write a letter to the Chancellor to
explain why inflation has fallen more than 1 percentage point below the target (of 2%).
The stimulus to demand, combined with a turnaround in the stock cycle and the effects of
the depreciation in sterling, is likely to drive a recovery in activity.

1 Bank of England Inflation Report, November 2009, p.47. See http://www.bankofengland.co.uk/publications/Documents/
inflationreport/ir09nov.pdf.
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We term the published numerical forecast a ‘direct forecast’, whereas one constructed from the narrative,
as in e.g., Ericsson (2016) for the USA, is called a ‘derived forecast’. Taken together, we call the joint
production of the numerical forecast and the accompanying narrative a ‘forediction’, intended to
convey a forecast made alongside a story (diction) that describes the forecast verbally.2 In this paper,
we investigate whether a close link between the direct and derived forecasts sustains an evaluation of
the resulting foredictions and their associated policies.

Figure 1 shows the direct forecasts for CPI inflation and 4-quarter real GDP growth from the Bank
of England November 2009 Inflation Report, with the outturns in October 2011. The outturn for CPI
inflation 2 years out lay well above the central 90% of the distribution for the projected probabilities
of CPI inflation outturns, well above the 2% target, yet the outturn for GDP lay in the lowest band.
The large forecast error on the direct CPI inflation forecast refutes the above narrative, and would do so
more generally when the derived forecast is closely similar, resulting in a forediction failure. The next
step would be to investigate the validity of policy decisions made on the basis of the forediction,
namely here, the Bank of England decided to hold the Bank Rate at 0.5% and finance a further £25
billion of asset purchases within 3 months.3

Figure 1. CPI inflation and 4-quarter real GDP growth forecasts, based on market interest rate
expectations and £200 billion asset purchases: November 2009 Bank of England Inflation Report,
with October 2011 outturns.

The two objectives of this paper are (i) establishing when systematic forecast failure, defined as
large, persistent deviations of the outturns from the forecasts, entails forediction failure and when that
in turn implies policy invalidity; and (ii) whether failures of invariance in policy models are detectable
in advance, which should enable more robust policy models to be developed.

There are four key steps in the process of evaluating foredictions and associated policies. The first
is to establish whether the direct and derived forecasts are almost the same. Then forecasts are
indeed closely described by the accompanying narrative in the sense formalized by Ericsson (2016),
namely accurate estimates of the forecasts can be derived by quantifying the narrative. For example,
regressing the derived forecasts on the direct should deliver a highly significant relation with
a coefficient near unity. The second step involves testing whether systematic forecast failure of
the direct forecasts occurs, for which many tests exist. If the direct and derived forecasts are closely

2 Other than the proposal in Hendry (2001), archival search revealed two earlier, somewhat unrelated, uses of ‘forediction’: (1)
by Richard Feynman in a letter to Enrico Fermi in 1951 (see CBPF-CS-012/97); and (2) in Stenner (1964).

3 Bank of England Minutes of the Monetary Policy Committee, November 2009, p.8. See
http://www.bankofengland.co.uk/publications/minutes/Documents/mpc/pdf/2009/mpc0911.pdf.
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linked, as checked in the first step, then systematic forecast failure of the direct forecasts would imply
systematic forecast failure of the derived forecasts. This is forediction failure, checked by testing (a) if
the narrative-derived forecasts remain linked to the direct forecasts, and (b) they also differ significantly
from the realized outcomes. In that case, the accompanying narrative must also be rejected. In the third
step, if a policy implementation had been justified by the forediction, then it too must be invalid after
forediction failure. This is harder to quantify unless there is a known policy rule, such as a Taylor rule
linking interest rate responses to inflation, but the policy link may be stated explicitly in the narrative.
The fourth step is to test if the forediction failure actually resulted from the policy change itself because
of a lack of invariance of the model used in the policy analysis to that change. In that case, the policy
model is also shown to be invalid.

Evaluating the validity of policy analysis involves two intermediate links. First, genuine causality
from policy instruments to target variables is essential for policy effectiveness if changing the
policy variable is to affect the target: see e.g., Cartwright (1989). That influence could be indirect,
as when an interest rate affects aggregate demand which thereby changes the rate of inflation.
Secondly, the invariance of the parameters of the empirical models used for policy to shifts in the
distributions of their explanatory variables is also essential for analyses to correctly represent the likely
outcomes of policy changes. Thus, a policy model must not only embody genuine causal links in the
data generation process (DGP), invariance also requires the absence of links between target parameters
and policy-instrument parameters, since the former cannot be invariant to changes in the latter if their
DGP parameters are linked, independently of what modellers may assume: see e.g., Hendry (2004)
and Zhang et al. (2015). Consequently, weak exogeneity matters in a policy context because its two
key requirements are that the relevant model captures the parameters of interest for policy analyses,
and that the parameters of the policy instrument and the target processes are unconnected in the DGP,
not merely in their assumed parameter spaces. Since changes in policy are involved, valid policy then
requires super exogeneity of the policy variables in the target processes: see Engle et al. (1983).

To this end, the paper proposes a step-indicator saturation test to check in advance for invariance
to policy changes. Step-indicator saturation (SIS) is designed to detect location shifts of unknown
magnitude, location and frequency at any point in the sample, see Castle et al. (2015). Super exogeneity,
which is required for policy validity, can be tested by checking whether any significant location shifts
in models of the policy instruments are significant in the model of the target variables. The proposed
test is an extension of the test for super exogeneity using impulse indicator saturation proposed in
Hendry and Santos (2010).

Combining these ideas, forediction evaluation becomes a feasible approach to checking the
validity of policy decisions based on forecasts linked to a narrative that the policy agency wishes to
convey. Policy decisions can fail because empirical models are inadequate, causal links do not exist,
parameters are not invariant, the story is incorrect, or unanticipated events occur. By checking the
properties of the direct and derived forecasts and the invariance of the policy model to the policy
change envisaged, the source of forediction failure may be more clearly discerned, hopefully leading
to fewer bad mistakes in the future.

The structure of the paper is as follows. Section 2 explores the link between direct and derived
forecasts with accompanying narratives that are often used to justify policy decisions, where Section 2.1
discusses whether narratives or forecasts come first, or are jointly decided. Section 3 considers what
can be learned from systematic forecast failure, and whether there are any entailed implications for
forediction failure. More formally, Section 3.1 outlines a simple theoretical policy DGP; Section 3.2
describes what can be learned from systematic forecast failure using a taxonomy of forecast errors for
a mis-specified model of that DGP; Section 3.3 provides a numerical illustration; and Section 3.4 notes
some of the implications of forediction failure for economic theories using inter-temporal optimization.
Parametric time-varying models are not explicitly considered, but Section 6.1 investigates an approach
that potentially allows coefficients to change in many periods; our analysis would extend to handling
location shifts in models with time-varying coefficients but constant underlying parameters, as in
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structural time series models which have constant-parameter ARIMA representations. Section 4
presents a two-stage test for invariance using automatic model selection to implement step-indicator
saturation, which extends impulse-indicator saturation (IIS): see Hendry et al. (2008). Section 5 reports
some simulation evidence on its first-stage null retention frequency of irrelevant indicators (gauge)
and its retention frequency of relevant indicators (potency), as well as its second-stage rejection
frequencies in the presence or absence of invariance: see Johansen and Nielsen (2016) for an analysis of
gauge in IIS. Section 6 applies this SIS-based test to the small artificial-data policy model analyzed in
Section 3.1, and Section 6.1 investigates whether a shift in a policy parameter can be detected using
multiplicative indicator saturation (MIS), where step indicators are interacted with variables. Section 7
summarizes the forecast error taxonomy and associated relevant tests, and Section 8 considers how
intercept corrections can improve forecasts without changing the forecasting model’s policy responses.
Section 9 concludes.

2. Forediction: Linking Forecasts, Narratives, and Policies

Links between forecasts and their accompanying narratives have been brought into new salience
through innovative research by Stekler and Symington (2016) and Ericsson (2016). The former develop
quantitative indexes of optimism/pessimism about the US economy by analyzing the qualitative
information in the minutes from Federal Open Market Committee (FOMC) meetings, scaled to match
real GDP growth rates in percentages per annum. The latter calibrates the Stekler and Symington (2016)
index for real GDP growth, denoted FMI, to past GDP growth outcomes, removing its truncation to
(−1,+4), and shows that the resulting index can provide excellent post-casts of the Fed’s ‘Greenbook’
forecasts of 2006–10 (which are only released after a 5-year delay). Clements and Reade (2016) consider
whether Bank of England narratives provide additional information beyond their inflation forecasts.

For many years, Central Banks have published narratives both to describe and interpret their
forecasts, and often justify entailed policies. Important examples include the minutes from Federal Open
Market Committee (FOMC) meetings, the Inflation Reports of the Bank of England, and International
Monetary Fund (IMF) Reports. For Banca d’Italia, Siviero and Terlizzese (2001) state that:

...forecasting does not simply amount to producing a set of figures: rather, it aims at
assembling a fully-fledged view—one may call it a “story behind the figures”—of what
could happen: a story that has to be internally consistent, whose logical plausibility can
be assessed, whose structure is sufficiently articulated to allow one to make a systematic
comparison with the wealth of information that accumulates as time goes by.

Such an approach is what we term forediction: any claims as to its success need to be evaluated in the
light of the widespread forecast failure precipitated by the 2008–9 Financial Crisis. As we show below,
closely tying narratives and forecasts may actually achieve the opposite of what those authors seem to
infer, by rejecting both the narratives and associated policies when forecasts go wrong.

Sufficiently close links between direct forecasts and forecasts derived from their accompanying
narratives, as highlighted by Stekler and Symington (2016) and Ericsson (2016), entail that systematic
forecast failure vitiates any related narrative and its associated policy. This holds irrespective of
whether the direct forecasts lead to the narrative, or the forecasts are modified (e.g., by ‘judgemental
adjustments’) to satisfy a preconceived view of the future expressed in a narrative deliberately designed
to justify a policy, or the two are iteratively adjusted as in the above quote, perhaps to take account of
informal information available to a panel such as the Bank of England’s Monetary Policy Committee
(MPC). In all three cases, if the direct and derived forecasts are almost the same, and the narratives
reflect cognitive models or theories, then the large forecast errors around the ‘Great Recession’ would
also refute such thinking, as addressed in Section 3. However, when direct and derived forecasts are
not tightly linked, failure in one need not entail failure in the other, but both can be tested empirically.
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2.1. Do Narratives or Forecasts Come First?

Forcing internal consistency between forecasts and narratives, as both Siviero and Terlizzese (2001)
and Pagan (2003) stress, could be achieved by deciding the story, then choosing add factors to achieve
it, or vice versa, or by a combination of adjustments. The former authors appear to suggest the third was
common at Banca d’Italia, and the fact that Bank of England forecasts are those of the MPC based on
the information it has, which includes forecasts from the Bank’s models, suggests mutual adjustments
of forecasts and narratives, as in e.g., (Bank of England 2015, p. 33) (our italics):

The projections for growth and inflation are underpinned by four key judgements.

Not only could add factors be used to match forecasts to a narrative, if policy makers had a suite
of forecasting models at their disposal, then the weightings on different models could be adjusted
to match their pooled forecast to the narrative, or both could be modified in an iterative process.
Genberg and Martinez (2014) show the link between narratives and forecasts at the International
Monetary Fund (IMF), where forecasts are generated on a continuous basis through the use of
a spreadsheet framework that is occasionally supplemented by satellite models, as described in
Independent Evaluation Office (2014). Such forecasts ‘form the basis of the analysis [...] and of
the [IMF’s] view of the outlook for the world economy’ (p.1). Thus, adjustments to forecasts and
changes to the associated narratives tend to go hand-in-hand at many major institutions.

In a setting with several forecasting models used by an agency that nevertheless delivered
a unique policy prescription, possibly based on a ‘pooled forecast’, then to avoid implementing policy
incorrectly, super exogeneity with respect to the policy instrument would seem essential for every
model used in that forecast. In practice, the above quotes suggest some Central Banks act as though
there is a unique policy model constrained to match their narrative, where all the models in the
forecasting suite used in the policy decision are assumed to be invariant to any resulting changes in
policy. This requirement also applies to scenario studies as the parameters of the models being used
must be valid across all the states examined. Simply asserting that the policy model is ‘structural’
because it is derived from a theory is hardly sufficient. Akram and Nymoen (2009) consider the role of
empirical validity in monetary policy, and caution against over-riding it. Even though policy makers
recognise that their policy model may not be the best forecasting model, as illustrated by the claimed
trade-off between theory consistency and empirical coherence in Pagan (2003), forecast failure can still
entail forediction failure, as shown in Section 3.

2.2. Is There a Link between Forecasts and Policy?

Evaluating policy-based forediction failure also requires there to be a link between the forecasts
and policy changes. This can either occur indirectly through the narratives or directly through the
forecasts themselves (e.g., through a forward looking Taylor rule). That direct forecasts and forecasts
derived from the narratives are closely linked implies that policies justified by those narratives, are also
linked to the forecasts.

In their analysis of the differences between the Greenbook and FOMC forecasts,
Romer and Romer (2008) find that there is a statistically significant link between differences in these
two forecasts and monetary policy shocks. This can be interpreted as evidence suggesting that policy
makers forecasts influence their decisions above and beyond other informational inputs. As such, the
policy decision is both influenced by and influences the forecasts.

Regardless of this influence, the link between forecasts and policy depends on how the forecasts
are used. Ellison and Sargent (2012) illustrate that it is possible for ‘bad forecasters’ to be ‘good
policymakers’. In this sense, forecast failure could potentially be associated with policy success.
However, this is less likely when focusing on systematic forecast failure. Sinclair et al. (2016) find
that forecast failure at the Fed is associated with policy failure. They argue that in 2007–08 the
Greenbook’s overpredictions of output and inflation “resulted in a large contractionary [monetary
policy] shock” of around 7 percentage points. By their calculations, using a forward-looking
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Taylor rule, this forecast-error-induced shock reduced real growth by almost 1.5 percentage points.
Furthermore, Independent Evaluation Office (2014) illustrates that in IMF Programs, the forecasts are
often interpretable as the negotiated policy targets. This suggests that forecasts, narratives and policy
are sufficiently closely linked so that systematic forediction failure can be used to refute the validity of
policy decisions.

3. Forecast Failure and Forediction Failure

Systematic forecast failure by itself is not a sufficient condition for rejecting an underlying theory
or any associated forecasting model, see, e.g., Castle and Hendry (2011). Furthermore, forecasting
success may, but need not, ‘corroborate’ the forecasting model and its supporting theory:
see Clements and Hendry (2005). Indeed, Hendry (2006) demonstrates a robust forecasting device
that can outperform the forecasts from an estimated in-sample DGP after a location shift. Nevertheless,
when several rival explanations exist, forecast failure can play an important role in distinguishing
between them as discussed by Spanos (2007). Moreover, systematic forecast failure almost always rejects
any narrative associated with the failed forecasts and any policy implications therefrom, so inevitably
results in forediction failure.

3.1. A Simple Policy Data Generation Process

In this section, we develop a simple theoretical policy model which is mis-specified for its economy’s
DGP. At time T, the DGP shifts unexpectedly, so there is forecast failure. However, even if the DGP did
not shift, because the policy model is mis-specified, a policy change itself can induce forecast failure.
In our model, the policy agency decides on an action at precisely time T, so the two shifts interact. We
provide a taxonomy of the resulting sources of failure, and what can be inferred from each component.

Let yt+1 be a policy target, say inflation, zt the instrument an agency controls to influence that
target, say interest rates, where xt+1 is the variable that is directly influenced by the instrument,
say aggregate excess demand, which in turn directly affects inflation. Also, let w1,t represent the net
effect of other variables on the target, say world inflation in the domestic currency, and w2,t denote
additional forces directly affecting domestic demand, where the {wi,t} are super exogenous for the
parameters in the DGP. The system is formalized as:

yt = γ0 + γ1xt + γ2w1,t + εt (1)

where for simplicity εt ∼ IN[0, σ2
ε ] with γ1 > 0 and γ2 > 0; and :

xt = β0 + β1zt−1 + β2w2,t + νt (2)

with νt ∼ IN[0, σ2
ν ] where β1 < 0 and β2 > 0. In the next period, solving as a function of policy and

exogenous variables:

yt+1 = (γ0 + γ1β0) + γ1β1zt + γ2w1,t+1 + γ1β2w2,t+1 + (εt+1 + γ1νt+1) (3)

Consequently, a policy shift moving zt to zt + δ would, on average and ceteris paribus, move yt+1 to
yt+1 + δγ1β1. We omit endogenous dynamics to focus on the issues around forediction.

In a high-dimensional, wide-sense non-stationary world, where the model is not the DGP,
and parameters need to be estimated from data that are not accurately measured, the policy agency’s
model of inflation is the mis-specified representation:

yt = λ0 + λ1xt + et (4)
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where λ0 and λ1 are obtained as the OLS estimates of the regression of yt on xt, thus omitting w1,t.
Also, its model of demand is mis-specified as:

xt = θ0 + θ1zt−1 + ut (5)

where θ0 and θ1 are obtained as the OLS estimates of the regression of xt on zt, thus omitting w2,t.
This system leads to its view of the policy impact of zt at t + 1 as being on average and ceteris paribus:

yt+1|t = (λ0 + λ1θ0) + λ1θ1zt + (et+1 + λ1ut+1) (6)

so a policy shift moving zt to zt + δ would be expected to move yt+1|t to yt+1|t + δλ̂1θ̂1 where λ̂1 and θ̂1

are in-sample estimates of λ1 and θ1 respectively. If the agency wishes to lower inflation when λ1 > 0
and θ1 < 0, it must set δ > 0 such that δλ̂1θ̂1 < 0 (e.g., −0.01 corresponds to a 1 percentage point
reduction in the annual inflation rate).

The equilibrium means in the stationary world before any shifts or policy changes are:

E [yt] = γ0 + γ1β0 + γ1β1μz + γ2μw1 + γ1β2μw2 = μy

where E [zt] = μz, E [w1,t] = μw1 and E [w2,t] = μw2 , so that λ0 + λ1μx = μy as well from (4), and:

E [xt] = β0 + β1μz + β2μw2 = μx

where from (5), θ0 + θ1μz = μx. We now consider the effects of the unexpected shift in the DGP in
Section 3.1.1, of the policy change in Section 3.1.2, and of mis-specification of the policy model for the
DGP in Section 3.1.3.

3.1.1. The DGP Shifts Unexpectedly

Just as the policy change is implemented at time T, the DGP shifts unexpectedly to:

yT+1 = γ∗
0 + γ∗

1 xT+1 + γ∗
2 w1,T+1 + εt+1 (7)

and:
xT+1 = β∗

0 + β∗
1zT + β∗

2w2,T+1 + νT+1 (8)

For simplicity we assume the error distributions remain the same, so that:

yT+1 = (γ∗
0 + γ∗

1 β∗
0) + γ∗

1 β∗
1zT + γ∗

2 w1,T+1 + γ∗
1 β∗

2w2,T+1 + (εT+1 + γ∗
1 νT+1) (9)

The equilibrium means after the shift and before the policy change are:

ET+1

[
yT+1|T

]
= μ∗

y = γ∗
0 + γ∗

1 β∗
0 + γ∗

1 β∗
1μz + γ∗

2 μw1 + γ∗
1 β∗

2μw2

where the expectation is taken at time T + 1, and when μz, μw1 , μw2 remain unchanged:

μ∗
x = β∗

0 + β∗
1μz + β∗

2μw2

Even using the in-sample DGP (3) with known parameters and known values for the exogenous
variables, there will be forecast failure for a large location shift from μy to μ∗

y since the forecast error
εT+1|T = yT+1 − yT+1|T is:

εT+1|T = μ∗
y − μy + (γ∗

1 β∗
1 − γ1β1) (zT − μz) + (γ∗

2 − γ2) (w1,T+1 − μw1)

+ (γ∗
1 β∗

2 − γ1β2) (w2,T+1 − μw2) + (εT+1 + γ∗
1 νT+1)
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so that:
ET+1

[
εT+1|T

]
= μ∗

y − μy (10)

and similarly for νT+1|T = xT+1 − xT+1|T , then ET+1

[
νT+1|T

]
= μ∗

x − μx.

3.1.2. The Policy Change

Next, the policy shift changes zT to zT + δ, which is a mistake as that policy leads to the impact δγ∗
1 β∗

1
instead of δγ1β1 as anticipated by an agency using the in-sample DGP parameters. Instead, the policy
shift would alter the mean forecast error to:

ET+1

[
εT+1|T

]
= μ∗

y − μy + (γ∗
1 β∗

1 − γ1β1) δ for δ 	= 0 (11)

The additional component in (11) compared to (10) would be zero if δ = 0, so the failure of super
exogeneity of the policy variable for the target augments, or depending on signs, possibly attenuates
the forecast failure. Importantly, if μ∗

y = μy so the DGP did not shift, the policy shift by itself could
create forecast failure. Section 4 addresses testing for such a failure in advance of a policy-regime shift.

3.1.3. The Role of Mis-Specification

Third, there would be a mis-specification effect from using (6), as the scenario calculated ex ante
would suggest the effect to be δλ1θ1. Although there is also an estimation effect, it is probably Op(T−1),
but to complete the taxonomy of forecast errors below, we will add estimation uncertainty since the
parameters of (6) could not be ‘known’. Denoting such estimates of the model by ˜ , then:

E [yt] = μy = E
[
(λ̃0 + λ̃1θ̃0) + λ̃1θ̃1zt−1

]
= (λ0,e + (λ0θ0)e) + (λ1θ1)eμz

where the in-sample expected values of OLS estimated coefficients are shown by a subscript e,
noting that both {zt} and μz are almost bound to be known to the policy agency. From the T + 1 DGP
in (9):

yT+1 = μ∗
y + γ∗

1 β∗
1 (zT − μz) + γ∗

2 (w1,T+1 − μw1) + γ∗
1 β∗

2 (w2,T+1 − μw2) + (εT+1 + γ∗
1 νT+1) (12)

but from (6), the agency would forecast yT+1 as:

ỹT+1|T = (λ̃0 + λ̃1θ̃0) + λ̃1θ̃1z̃T = μ̃y + λ̃1θ̃1 (z̃T − μz) (13)

where z̃T is the measured forecast-origin value. An agency is almost certain to know the correct value,
but we allow for the possibility of an incorrect forecast-origin value to complete the taxonomy of
forecast-failure outcomes in (16) and Table 1. Then the agency anticipates that shifting zT to zT + δ

would on average revise the outcome to yT+1|T + δλ̃1θ̃1, as against the actual outcome in (12), leading
to a forecast error of ṽT+1|T = yT+1 − ỹT+1|T :

ṽT+1|T =
(

μ∗
y − μ̃y

)
+
(

γ∗
1 β∗

1 − λ̃1θ̃1

)
(z̃T − μz + δ)

+ γ∗
2 (w1,T+1 − μw1) + γ∗

1 β∗
2 (w2,T+1 − μw2) + (εT+1 + γ∗

1 νT+1) (14)

Then (14) has an approximate average value of:

ET+1

[
ṽT+1|T

]
≈ μ∗

y − μy,e + (γ∗
1 β∗

1 − γ1β1) δ + (γ1β1 − (λ1θ1)e) δ for δ 	= 0 (15)

Unless the model is revised, the same average error will occur in the following periods leading to
systematic forecast failure. Indeed, even if the policy agency included w1,t+1 and w2,t+1 appropriately
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in their forecasting model’s equations, their roles in (14) would be replaced by any shifts in their
parameter values, changing (15): see Hendry and Mizon (2012).

3.1.4. The Sources of Forecast Failure

The error in (14) can be decomposed into terms representing mis-estimation (labelled (a)),
mis-specification ((b)) and change ((c)) for each of the equilibrium mean (labelled (i)), slope parameter
((ii)) and unobserved terms ((iii)), as in (16). The implications of this 3x3 framework are recorded in
Table 1, ignoring covariances, and under the assumption that the derived forecasts are closely similar
to the direct.

ṽT+1|T �
(
μy,e − μ̃y

)
i(a)

+
(
μy − μy,e

)
i(b)

+
(

μ∗
y − μy

)
i(c)

+
(
(λ1θ1)e − λ̃1θ̃1

)
(zT − μz + δ) ii(a)

+ (γ1β1 − (λ1θ1)e) (zT − μz + δ) ii(b)

+ (γ∗
1 β∗

1 − γ1β1) (zT − μz + δ) ii(c)

− (γ∗
1 β∗

1 − (λ1θ1)e) (zT − z̃T) iii(a)

+ γ∗
2 (w1,T+1 − μw1) + γ∗

1 β∗
2 (w2,T+1 − μw2) iii(b)

+ (εT+1 + γ∗
1 νT+1) iii(c) (16)

In (16), the impacts of each of the nine terms can be considered in isolation by setting all the others to
zero in turn. Although only i(c) is likely to cause forecast failure, any narrative and associated policy
as discussed above may well be rejected by systematic errors arising from any of these nine terms.

3.2. What Can Be Learned from Systematic Forecast Failure?

The three possible mistakes—mis-estimation, mis-specification and change—potentially affect each
of the three main components of any forecasting model—equilibrium means, slope parameters and
unobserved terms—leading to the nine terms in Table 1. This condensed model-free taxonomy of sources
of forecast errors is based on Ericsson (2017), which built on those in Clements and Hendry (1998) for
closed models and Hendry and Mizon (2012) for open systems.

Table 1. A taxonomy of the implications of systematic forecast failures.

Component Source

Mis-Estimation Mis-Specification Change

Equilibrium mean
Reject

i(a)
FN?, PV?

i(b)
FM, FN, PV

i(c)
FM, FN, PV

Slope parameter
Reject (if δ 	= 0)

ii(a)
FN?, PV?

ii(b)
FM, FN, PV

ii(c)
FM, FN, PV

Unobserved terms
Reject

iii(a) [forecast origin]
FN, PV

iii(b) [omitted variable]
FM?, FN?, PV?

iii(c) [innovation error]
FN?, PV?

As not all sources of systematic forecast failure lead to the same implications, we consider which
sources should cause rejection of the forecasting model (denoted FM in the table), the forediction
narrative (FN), or impugn policy validity (PV). Systematic failure of the forecasts could arise from any
of the terms, but the consequences vary with the source of the mistake. We assume that the derived
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forecasts are sufficiently close to the direct that both suffer systematic forecast failure, so in almost
every case in the table, the entailed forediction and policy are rejected. However, a ‘?’ denotes that
systematic forecast failure is less likely in the given case, but if it does occur then the consequences are
as shown.

Taking the columns in turn, mis-estimation by itself will rarely lead to systematic forecast failure
and should not lead to rejecting the formulation of a forecasting model, or the theory from which it was
derived, as appropriate estimation would avoid such problems. For example,when the forecast origin
has been mis-measured by a statistical agency resulting in a large forecast error in iii(a), one should
not reject either the forecasting model or the underlying theory. Nevertheless, following systematic
forecast failure, any policy conclusions that had been drawn and their accompanying narrative should
be rejected as incorrect, at least until more accurate data are produced.

Next, mis-specification generally entails that the model should be rejected against a less badly
specified alternative, and that foredictions and policy claims must be carefully evaluated as they too
will often be invalid. In stationary processes, mis-specification alone will not lead to systematic forecast
failure, but the real economic world is not stationary, and policy regime shifts will, and are intended
to, alter the distributions of variables. That omitted variables need not induce systematic forecast
failure may surprise at first sight, but iii(b) in (16) reveals their direct effect has a zero mean as shown
by Hendry and Mizon (2012).

Third, unanticipated changes in the non-zero-mean components of forecasting models will
usually cause systematic forecast failure. However, slope shifts on zero-mean influences and changes
in innovation error variances need not. Nevertheless, in almost all cases systematic forecast failure
will induce both forediction and policy failure if the policy implemented from the mistaken narrative
depended on a component that had changed. Finally, the consequences for any underlying theory
depend on how that theory is formulated, an issue briefly discussed in Section 3.4. We return to the
taxonomy in Section 4, where we propose a test for the elements of forediction failure.

3.3. A Numerical Illustration

The scenario considered is one where in (13), the agency’s direct forecast, ỹT+1|T , is higher than
the policy target value, and as θ̃1 < 0, it announces a rise in zT of δ such that ỹT+1|T + δλ1θ1 aims to be
smaller than the target, so xT+1 will fall. Unfortunately, an unanticipated boom hits, resulting in large
rises in xT+1 and yT+1. Below, ŷT+1|T and x̂T+1|T denote forecast values from (infeasible) in-sample
DGP estimates, whereas ỹT+1|T and x̃T+1|T are model-based forecasts, which here also correspond
to the agency’s forediction-based forecasts for inflation and output. An example of how a forecast,
the associated forediction and a linked policy change could be represented is given in Table 2.

Table 2. Forediction example.

Forecast Narrative Policy

The outlook for inflation is Core inflation has been elevated in The Policy Committee today
that it will be 6.25% this recent months. High levels of resource decided to raise its target
year followed by a moderate utilization and high prices of energy interest rate by 100 basis points
decline to 5.25% next year. and commodities have the potential due to ongoing concerns

to sustain inflationary pressures about inflation pressures.
but should moderate going forward.

The numerical values of the parameters in the 5-variable in-sample simulation DGP are recorded
in the top two rows of Table 3.

As w1,t ∼ IN[μw1 , 0.1] and w2,t ∼ IN[μw2 , 0.1], their projections on xt and zt−1 respectively are
both zero, so μy = 6, μx = 3, λ0 = 3.0, λ1 = 1.0, θ0 = 3 and θ1 = −1.0. The policy change is δ = 1
and the shifts in the DGP are described in the bottom two rows of Table 3. Now μ∗

y = 8.25 and
μ∗

x = 4.5, but initially x jumps to around 6 because of the lag in its response to the policy change. For y
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and x these cases are denoted (I) & (II) in Figure 2, whereas cases (III) & (IV) have the same policy
implementation and DGP change, but with no location shift, so γ∗

0 = γ0 = 1.0 and β∗
0 = β0 = 1.0.

Table 3. Parameter values for the simulation DGPs.

in-sample γ0 γ1 γ2 σ2
ε β0 β1 β2 σ2

ν δ μz μw1 μw2

value 1.0 1.0 1.0 0.1 1.0 −1.0 1.0 0.1 0 0 2 2

out-of-sample γ∗
0 γ∗

1 γ∗
2 σ2

ε β∗
0 β∗

1 β∗
2 σ2

ν δ μ∗
z μw1 μw2

value 2.0 0.5 2.0 0.1 2.0 −1.5 2.0 0.1 1 1 2 2

Figure 2. (I,II) both forediction and policy failures from the forecast failure following a changed DGP
with a location shift and a policy change combined; (III,IV) both forediction and policy failures after a
changed DGP without a location shift but with a policy change.

For a single simulation, Figure 2(I) illustrates the systematic forecast failure of ŷt for yt when the
break in the DGP includes both a location shift and the policy change, together with the much larger
failure of the model’s forecast, ỹt. When there is no unexpected location shift, so γ0 = γ∗

0 and β0 = β∗
0,

then as (III) shows, the in-sample DGP-based forecasts ŷt do not suffer failure despite the other changes
in the DGP. However, the model mis-specification interacting with δ 	= 0 still induces both forediction
and policy failure from the model’s forecast ỹt failing. This occurs because the agency’s model for yt is
mis-specified, so the δ change acts as an additional location shift, exacerbating the location shift in (I)
from the change in μy, whereas only the policy change occurs in (III). There is little difference between
x̂t and x̃t in either scenario: even if the agency had known the in-sample DGP equation for xt, there
would have been both forediction and policy failure from the changes in the slope parameters caused
by δ 	= 0 as Figures 2(II),(IV) show.
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3.4. Implications of Forediction Failure for Inter-Temporal Theories

Whether or not a systematic forecast failure from whatever source impugns an underlying
economic theory depends on how directly the failed model is linked to that theory. That link is
close for dynamic stochastic general equilibrium (DSGE) theory, so most instances of FM in Table 1
entail a theory failure for the DSGE class. More directly, Hendry and Mizon (2014) show that the
mathematical basis of inter-temporal optimization fails when there are shifts in the distributions
of the variables involved. All expectations operators must then be three-way subscripted, as in
EDyt

[yt+1|It−1] which denotes the conditional expectation of the random variable yt+1 formed at time
t as the integral over the distribution Dyt(·) given an available information set It−1. When Dyt(·) is the
distribution yt ∼ IN[μt, σy] where future changes in μt are unpredictable, then:

EDyt
[yt+1 | It−1] = μt (17)

whereas:
EDyt+1

[yt+1 | It−1] = μt+1 (18)

so the conditional expectation EDyt
[yt+1|It−1] formed at t is not an unbiased predictor of the outcome

μt+1, and only a ‘crystal-ball’ predictor EDyt+1
[yt+1|It−1] based on ‘knowing’ Dyt+1(·) is unbiased.

A related problem afflicts derivations which incorrectly assume that the law of iterated
expectations holds even though distributions shift between t and t + 1, since then only having
information at time t entails:

EDyt

[
EDyt

[yt+1 | yt]
]
	= EDyt+1

[yt+1] (19)

It is unsurprising that a shift in the distribution of yt between periods would wreck a derivation
based on assuming such changes did not occur, so the collapse of DSGEs like the Bank of England’s
Quarterly Econometric Model (BEQEM) after the major endowment shifts occasioned by the ‘Financial
Crisis’ should have been anticipated. A similar fate is likely to face any successor built on the same
lack of mathematical foundations relevant for a changing world. Indeed, a recent analysis of the
replacement model, COMPASS (Central Organising Model for Projection Analysis and Scenario
Simulation) confirms that such a fate has already occurred.4

The results of this section re-emphasize the need to test forecasting and policy-analysis models
for their invariance to policy changes prior to implementing them. Unanticipated location shifts
will always be problematic, but avoiding the policy-induced failures seen in Figures 2(III) and (IV)
by testing for invariance seems feasible. Section 4 briefly describes step-indicator saturation, then
explains its extension to test invariance based on including in conditional equations the significant
step indicators from marginal-model analyses.

4. Step-Indicator Saturation (SIS) Based Test of Invariance

Many tests for super exogeneity have been proposed since Engle et al. (1983):
see e.g., (Hendry 1988; Favero and Hendry 1992; Engle and Hendry 1993; Psaradakis and Sola 1996;
Jansen and Teräsvirta 1996; Hendry and Santos 2010), including tests based on co-breaking as in
Krolzig and Toro (2002), and Hendry and Massmann (2007). Here we propose a test of invariance
based on step-indicator saturation (denoted SIS), following Castle et al. (2015). SIS builds on the
impulse-indicator saturation (IIS) approach proposed by Hendry et al. (2008) to detect outliers and
shifts in a model.

4 See https://bankunderground.co.uk/2015/11/20/how-did-the-banks-forecasts-perform-before-during-and-after-the-
crisis/.
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In IIS, an impulse indicator is created for every observation, thereby saturating the
model, but indicators are entered in feasibly large blocks for selection of significant departures.
Johansen and Nielsen (2009) derive the properties of IIS for dynamic regression models, which may
have unit roots, and show that parameter estimator distributions are almost unaffected despite including
T impulse indicators for T observations, and Johansen and Nielsen (2016) derive the distribution of
the gauge. Hendry and Mizon (2011) demonstrate distortions in modelling from not handling outliers,
and Castle et al. (2016) show that outliers can even be distinguished from non-linear reactions as the
latter hold at all observations whereas the former only occur at isolated points. Castle et al. (2015)
establish that the properties of step-indicator saturation are similar to IIS, but SIS exhibits higher power
than IIS when location shifts occur. Ericsson and Reisman (2012) propose combining IIS and SIS in
‘super saturation’ and Ericsson (2016) uses IIS to adjust an ex post mis-match between the truncated FMI
Greenbook ‘post-casts’ and GDP outcomes.5

The invariance test proposed here is the extension to SIS of the IIS-based test of super exogeneity
in Hendry and Santos (2010). SIS is applied to detect location shifts in models of policy instruments,
then any resulting significant step indicators are tested in the model for the target variables of interest.
Because the ‘size’ of a test statistic is only precisely defined for a similar test, and the word is anyway
ambiguous in many settings (such as sample size), we use the term ‘gauge’ to denote the empirical null
retention frequency of indicators. The SIS invariance test’s gauge is close to its nominal significance
level. We also examine its rejection frequencies when parameter invariance does not hold. When the
probability of retention of relevant indicators is based on selection, it no longer corresponds to
the conventional notion of ‘power’, so we use the term ‘potency’ to denote the average non-null
retention frequency from selection. However, as IIS can detect failures of invariance from variance
shifts in the unmodelled processes, ‘super saturation’ could help delineate that source of failure.
Neither test requires ex ante knowledge of the timings, signs, numbers or magnitudes of location shifts,
as policy-instrument models are selected automatically using Autometrics.

We test for location shifts by adding to the candidate variables a complete set of T step indicators
denoted

{
1{t≤j}, j = 1, . . . , T

}
when the sample size is T, where 1{t≤j} = 1 for observations up to

j, and zero otherwise (so 1{t≤T} is the intercept). Using a modified general-to-specific procedure,
Castle et al. (2015) establish the gauge and the null distribution of the resulting estimator of regression
parameters. A two-block process is investigated analytically, where half the indicators are added and all
significant indicators recorded, then that half is dropped, and the other half examined: finally, the two
retained sets of indicators are combined. The gauge, g, is approximately α when the nominal
significance level of an individual test is α. Hendry et al. (2008) and Johansen and Nielsen (2009)
show that other splits, such as using k splits of size T/k, or unequal splits, do not affect the gauge of
IIS.

The invariance test then involves two stages. Denote the n = n1 + n2 variables in the system
by q′

t = (y′
t : x′

t), where the xt are the conditioning variables. Here, we only consider n1 = 1. In the
first stage, SIS is applied to the marginal system for all n2 conditioning variables, and the associated
significant indicators are recorded. When the intercept and s lags of all n variables qt are always
retained (i.e., not subject to selection), SIS is applied at significance level α1, leading to the selection of
m ≥ 0 step indicators:

xt = ψ0 +
s

∑
i=1

Ψiqt−i +
m

∑
j=1

ηj,α1
1{t≤tj} + v2,t (20)

5 All of these indicator saturation methods are implemented in the Autometrics algorithm in PcGive: see Doornik (2009) and
Doornik and Hendry (2013), which can handle more variables than observations using block path searches with both
expanding and contracting phases as in Hendry and Krolzig (2005), and Doornik (2007). An R version is available at
https://cran.r-project.org/web/packages/gets/index.html: see Pretis et al. (2016).
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where (20) is selected to be congruent. The coefficients of the significant step indicators are denoted
ηj,α1

to emphasize their dependence on α1 used in selection. Although SIS could be applied to (20) as a
system, we will focus on its application to each equation separately. The gauge of step indicators in
such individual marginal models is investigated in Castle et al. (2015), who show that simulation-based
distributions for SIS using Autometrics have a gauge, g, close to the nominal significance level α1.
Section 4.1 notes their findings on the potency of SIS at the first stage to determine the occurrence of
location shifts. Section 4.2 provides analytic, and Section 4.3 Monte Carlo, evidence on the gauge of
the invariance test. Section 4.4 analyses a failure of invariance from a non-constant marginal process.
Section 4.5 considers the second stage of the test for invariance. Section 5 investigates the gauges and
potencies of the proposed automatic test in Monte Carlo experiments for a bivariate data generation
process based on Section 4.4.

4.1. Potency of SIS at Stage 1

Potency could be judged by the selected indicators matching actual location shifts exactly or within
±1, ±2 periods. How often a shift at T1 (say) is exactly matched by the correct single step indicator
1{t≤T1} is important for detecting policy changes: see e.g., Hendry and Pretis (2016). However, for stage 2,
finding that a shift has occurred within a few periods of its actual occurrence could still allow detection of
an invariance failure in a policy model.

Analytic power calculations for a known break point exactly matched by the correct step function
in a static regression show high power, and simulations confirm the extension of that result to dynamic
models. A lower potency from SIS at stage 1 could be due to retained step indicators not exactly
matching the shifts in the marginal model, or failing to detect one or more shifts when there are N > 1
location shifts. The former is not very serious, as stage 1 is instrumental, so although there will be
some loss of potency at stage 2, attenuating the non-centrality parameter relative to knowing when
shifts occurred, a perfect timing match is not essential for the test to reject when invariance does not
hold. Failing to detect one or more shifts would be more serious as it both lowers potency relative to
knowing those shifts, and removes the chance of testing such shifts at stage 2. Retention of irrelevant
step indicators not corresponding to shifts in the marginal process, at a rate determined by the gauge g
of the selection procedure, will also lower potency but the effect of this is likely to be small for SIS.

Overall, Castle et al. (2015) show that SIS has relatively high potency for detecting location shifts
in marginal processes at stage 1, albeit within a few periods either side of their starting/ending,
from chance offsetting errors. Thus, we now consider the null rejection frequency at stage 2 of the
invariance test for a variety of marginal processes using step indicators selected at stage 1.

4.2. Null Rejection Frequency of the SIS Test for Invariance at Stage 2

The m significant step indicators {1{t≤tj}} in the equations of (20) are each retained using
the criterion:

|tη̂j,α1
| > cα1 (21)

when cα1 is the critical value for significance level α1. Assuming all m retained step indicators
correspond to distinct shifts (or after eliminating any duplicates), for each t combine them in the
m vector ιt, and add all {ιt}, t = 1, . . . , T to the model for {yt} (written here with one lag):

yt = γ1 + γ′
2xt + γ′

3qt−1 + τ′
α1

ιt + εt (22)

where τ′
α1

=
(
τ1,α1 . . . τm,α1

)
, which should be 0 under the null, to be tested as an added-variable set

in the conditional Equation (22) without selection, using an F-test, denoted FInv, at significance level
α2 which rejects when FInv(τ=0) > cα2 . Under the null of invariance, this FInv-test should have an
approximate F-distribution, and thereby allow an appropriately sized test. Under the alternative that
τ 	= 0, FInv will have power, as discussed in Section 4.4.
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Although (20) depends on the selection significance level, α1, the null rejection frequency of FInv
should not depend on α1, although too large a value of α1 will lead to an F-test with large degrees
of freedom, and too small α1 will lead to few, or even no, step indicators being retained from the
marginal models. If no step indicators are retained in (20), so (21) does not occur, then FInv cannot be
computed for that data, so must under-reject in Monte Carlos when the null is true. Otherwise, the main
consideration when choosing α1 is to allow power against reasonable alternatives to invariance by
detecting any actual location shifts in the marginal models.

4.3. Monte Carlo Evidence on the Null Rejection Frequency

To check that shifts in marginal processes like (20) do not lead to spurious rejection of invariance
when super exogeneity holds, the Monte Carlo experiments need to estimate the gauges, g, of the
SIS-based invariance test in three states of nature for (20): (A) when there are no shifts (Section 4.3.1);
(B) for a mean shift (Section 4.3.2); and (C) facing a variance change (Section 4.3.3). Values of g
close to the nominal significance level α2 and constant across (A)–(C) are required for a similar test.
However, since Autometrics selection seeks a congruent model, insignificant irrelevant variables can
sometimes be retained, and the gauge will correctly reflect that, so usually g ≥ α1.

The simulation DGP is the non-constant bivariate first-order vector autoregression (VAR(1)):(
yt

xt

)
| qt−1 ∼ IN2

[(
γ1 + ργ2,t + κ′qt−1

γ2,t

)
, σ22

(
σ−1

22 σ11 + ρ2θ(t) ρθ(t)
ρθ(t) θ(t)

)]
(23)

where qt−1 = (yt−1 : xt−1)
′, inducing the valid conditional relation:

E [yt | xt, qt−1] = γ1 + ργ2,t + κ′qt−1 +
ρσ22θ(t)

σ22θ(t)
(xt − γ2,t) = γ1 + ρxt + κ′qt−1 (24)

with:

V [yt|xt, qt−1] = σ11 + ρ2σ22θ(t) −
ρ2σ2

22θ2
(t)

σ22θ(t)
= σ11 (25)

In (23), let γ2,t = 1 + λ1{t≤T1}, so γ2,t equals γ2 before T1 and γ∗
2 after. Also θ(t) = 1 + θ1{t≤T2}, so the

marginal process is:

xt = 1 + π1{t≤T1} + wt where wt ∼ IN
[
0, σ22(1 + θ1{t≤T2})

]
(26)

As the analysis in Hendry and Johansen (2015) shows, qt−1 can be retained without selection during
SIS, so we do not explicitly include dynamics as the canonical case is testing:

H0: π = 0 (27)

in (26). Despite shifts in the marginal process, (24) and (25) show that invariance holds for the
conditional model.

In the Monte Carlo, the constant and invariant parameters of interest are γ1 = 0, ρ = 2, κ = 0

and σ11 = 1, with σ22 = 5, and T1 = T2 = 0.8T. Sample sizes of T = (50, 100, 200) are investigated
with M = 10, 000 replications, for both α1 (testing for step indicators in the marginal) and α2 (testing
invariance in the conditional equation) equal to (0.025, 0.01, 0.005), though we focus on both at 0.01.

4.3.1. Constant Marginal

The simplest setting is a constant marginal process, which is (23) with π = θ = 0, so the
parameters of the conditional model yt|xt are φ′

1 = (γ1; ρ; σ11) = (0; 2; 1) and the parameters of the
marginal are φ′

2,t = (γ2,t; σ22,t) = (1; 5). The conditional representation with m selected indicators
from (20) is:
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yt = γ1 + ρxt +
m

∑
j=1

τj,α1 1{t≤Tj} + εt (28)

and invariance is tested by the FInv-statistic of the null τα1 = 0 in (28).
Table 4 records the outcomes at α = 0.01 facing a constant marginal process, with s = 4 lags of

(y, x) included in the implementation of (20). Tests for location shifts in marginal processes should
not use too low a probability α1 of retaining step indicators, or else the FInv-statistic will have a zero
null rejection frequency. For example, at T = 50 and α1 = 0.01, under the null, half the time no step
indicators will be retained, so only about 0.5α2 will be found overall, as simulation confirms. Simulated
gauges and nominal null rejection frequencies for FInv were close so long as α1T ≥ 2.

Table 4. SIS simulations under the null of super exogeneity for a constant marginal process. ‘% no
indicators’ records the percentage of replications in which no step indicators are retained, so stage 2 is
redundant. Stage 2 gauge records the probability of the FInv-test falsely rejecting for the included step
indicators at α2 = 0.01.

α1 = 0.01 = α2 T = 50 T = 100 T = 200

Stage 1 gauge 0.035 0.033 0.044
% no indicators 0.287 0.098 0.019
Stage 2 gauge 0.006 0.009 0.009

4.3.2. Location Shifts in {xt}
The second DGP is given by (23) where π = 2, 10 with γ2,t = 1 + π1{t≤T1}, θ = 0 and κ = 0.

The results are reported in Table 5. Invariance holds irrespective of the location shift in the marginal,
so these experiments check that spurious rejection is not induced thereby. Despite large changes in π,
when T > 100, Table 5 confirms that gauges are close to nominal significance levels. Importantly, the test
does not spuriously reject the null, and now is only slightly undersized at T = 50 for small shifts,
as again sometimes no step indicators are retained.

Table 5. SIS simulations under the null of super exogeneity for a location shift in the marginal process.
Stage 1 gauge is for retained step indicators at times with no shifts; and stage 1 potency is for when the
exact indicators matching step shifts are retained, with no allowance for mis-timing.

π = 2 π = 10

α1 = 0.01 T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

Stage 1 gauge 0.034 0.027 0.043 0.018 0.018 0.035
Stage 1 potency 0.191 0.186 0.205 0.957 0.962 0.965
% no indicators 0.067 0.022 0.000 0.000 0.000 0.000
Stage 2 gauge: 0.009 0.010 0.011 0.010 0.009 0.010

4.3.3. Variance Shifts in {xt}
The third DGP given by (23) allows the variance-covariance matrix to change while maintaining

the conditions for invariance, where θ = 2, 10 with π = 0, γ2,t = 1 and κ = 0. Table 6 indicates that
gauges are close to nominal significance levels, and again the test does not spuriously reject the null,
remaining slightly undersized at T = 50 for small shifts.

Overall, the proposed FInv test has appropriate empirical null retention frequencies for both
constant and changing marginal processes, so we now turn to its ability to detect failures of invariance.
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Table 6. SIS simulations under the null of super exogeneity for a variance shift in the marginal process.
Legend as for Table 5.

θ = 2 θ = 10

α1 = 0.01 T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

Stage 1 gauge 0.042 0.051 0.067 0.060 0.083 0.113
Stage 1 potency 0.030 0.030 0.035 0.041 0.043 0.071
% no indicators 0.381 0.135 0.015 0.342 0.091 0.005
Stage 2 gauge 0.006 0.008 0.009 0.006 0.009 0.010

4.4. Failure of Invariance

In this section, we derive the outcome for an invariance failure in the conditional model when the
marginal process is non-constant due to a location shift, and obtain the non-centrality and approximate
power of the invariance test in the conditional model for a single location shift in the marginal.

From (23) when invariance does not hold:(
yt

xt

)
| qt−1 ∼ IN2

[(
γ1 + ργ2,t + κ′qt−1

γ2,t

)
,

(
σ11 σ12

σ12 σ22

)]
(29)

so letting σ12/σ22 = β leads to the conditional relation:

E [yt | xt, qt−1] = γ1 + (ρ − β)γ2,t + βxt + κ′qt−1 (30)

which depends on γ2,t when ρ 	= β and:

xt = γ2,t + ν2,t (31)

When the dynamics and timings and forms of shifts in (31) are not known, we model xt using (20).
Autometrics with SIS will be used to select significant regressors as well as significant step indicators
from the saturating set ∑T

j=1 ηj,α11{t≤j}.
Although SIS can handle multiple location shifts, for a tractable analysis, we consider the explicit

single alternative (a non-zero intercept in (32) would not alter the analysis):

γ2,t = π1{t≤T1} (32)

Further, we take γ1 as constant in (30), so that the location shift is derived from the failure of
conditioning when ρ 	= β:

E [yt | xt, qt−1] = γ1 + (ρ − β)π1{t≤T1} + βxt + κ′qt−1 (33)

The power of a test of the significance of 1{t≤T1} in a scalar process when the correct shift date is known,
so selection is not needed, is derived in Castle et al. (2015), who show that the test power rises with the
magnitude of the location shift and the length it persists, up to half the sample. Their results apply to
testing π = 0 in (32) and would also apply to testing (ρ − β)π = 0 in (33) when 1{t≤T1} is known or is
correctly selected at Stage 1. Section 4.5 considers the impact on the power of the invariance test of
(ρ − β)π = 0 of needing to discover the shift indicator at Stage 1. Castle et al. (2015) also examine the
effects on the potency at Stage 1 of selecting a step indicator that does not precisely match the location
shift in the DGP, which could alter the rejection frequency at Stage 2.

4.5. Second-Stage Test

The gauge of the FInv test at the second stage conditional on locating the relevant step indicators
corresponding exactly to the shifts in the marginal was calculated above. A relatively loose α1 will
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lead to retaining some ‘spurious’ step indicators in the marginal, probably lowering potency slightly.
In practice, there could be multiple breaks in different marginal processes at different times, which may
affect one or more xj,t, but little additional insight is gleaned compared to the one-off break in (32),
since the proposed test is an F-test on all retained step indicators, so does not assume any specific
shifts at either stage. The advantage of using the explicit alternative in (32) is that approximate analytic
calculations are feasible. We only consider a bivariate VAR explicitly, where (ρ − β) = 0 in (30) under
the null that the conditional model of {yt} is invariant to the shift in xt.

Let SIS selection applied to the marginal model for xt yield a set of step indicators Sα1 defined by:

Sα1 =
{
t2ηi,α1

=0 > c2
α1

}
(34)

which together entail retaining
{

1{t≤ti}, i = 1, . . . , m
}

. Combine these significant step indicators in
a vector ιt, and add ιt to the assumed constant relation:

yt = γ1 + βxt + κ′qt−1 + ν1,t (35)

to obtain the test regression written as:

yt = μ0 + μ1xt + μ′
3qt−1 + τ′ιt + et (36)

As with IIS, a difficulty in formalizing the analysis is that the contents of ιt vary between draws,
as it matters how close the particular relevant step indicators retained are to the location shift, although
which irrelevant indicators are retained will not matter greatly. However, Hendry and Pretis (2016)
show that the main reason SIS chooses indicators that are incorrectly timed is that the shift is either
initially ‘camouflaged’ by opposite direction innovation errors, or same-sign large errors induce an
earlier selection. In both cases, such mistakes should only have a small impact on the second-stage
test potency, as simulations confirm. Failing to detect a shift in the marginal model will lower potency
when that shift in fact leads to a failure of invariance in the conditional model.

4.6. Mis-Timed Indicator Selection in the Static Bivariate Case

We first consider the impact of mis-timing the selection of an indicator for this location shift in the
conditional process in (30) derived from the non-invariant system (29) when κ = 0. The conditional
relation is written for (ρ − β)π = φ as:

yt = γ1 + βxt + φ1{t≤T1} + εt (37)

where εt ∼ IN
[
0, σ2

ε

]
, which lacks invariance to changes in π at T1 in the marginal model (20):

xt = π1{t≤T1} + ν2,t (38)

However, (37) is modelled by:
yt = μ0 + μ1xt + τ1{t≤T0} + et (39)

where T0 	= T1.
As SIS seeks the best matching step indicator for the location shift, any discrepancy between

1{t≤T1} and 1{t≤T0} is probably because the values of {εt} between T0 and T1 induced the mistaken
choice. Setting T1 = T0 + T+ where T+ > 0 for a specific formulation, then:

et = (γ1 − μ0) + ((ρ − μ1)π − τ) 1{t≤T0} + (ρ − μ1)π1{T0+1≤t≤T1} + εt + (β − μ1) ν2,t (40)

For observations beyond T1:
et = (γ1 − μ0) + (β − μ1) ν2,t + εt
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so that:

E

[
T

∑
t=T1+1

e2
t

]
= (T − T1)

[
(γ1 − μ0)

2 + (β − μ1)
2 σ2

v2
+ σ2

ε

]
(41)

which could be large for γ1 	= μ0 and β 	= μ1. To a first approximation, least-squares selection would
drive estimates to minimize the first two terms in (41). If they vanish, for t ≤ T0, (40) becomes:

et = (φ − τ) 1{t≤T0} + εt (42)

and between T0 and T1:
et = φ1{T0+1≤t≤T1} + εt (43)

suggesting SIS would find τ ≈ φ, and that chance draws of {εt} must essentially offset φ1{T0+1≤t≤T1}
during the non-overlapping period T0 + 1 to T1. In such a setting:

E

[
1
T

T

∑
t=1

e2
t

]
≈ σ2

ε +
(T1 − T0)

T
φ2

so that the estimated equation error variance will not be greatly inflated by the mis-match in timing,
and the rejection frequency of a t-test of H0: τ = 0 will be close to that of the corresponding test of H0:
φ = 0 in (37) despite the selection of the relevant indicator by SIS.

5. Simulating the Potencies of the SIS Invariance Test

The potency of the FInv-test of H0: τ = 0 in (39) depends on the strength of the invariance violation,
ρ − β; the magnitude of the location shift, π, both directly and through its detectability in the marginal
model, which in turn depends on α1; the sample size T; the number of periods T1 affected by the
location shift; the number of irrelevant step indicators retained (which will affect the test’s degrees of
freedom, again depending on α1); how close the selected step shift is to matching the DGP shift; and on
α2. These properties are now checked by simulation, and contrasted in experiments with the optimal,
but generally infeasible, test based on adding the precisely correct indicator 1{t≤T1}, discussed above.

The simulation analyses used the bivariate relationship in Section 4.3 for violations of super
exogeneity due to a failure of weak exogeneity under non-constancy in:(

yt

xt

)
∼ IN2

[(
γ1 + ργ2,t

γ2,t

)
,

(
21 10
10 5

)]
(44)

where γ1 = 2 and ω2 = σ11 − σ2
12/σ22 = 1, but β = σ12/σ22 = 2 	= ρ, with the level shift at T1 in the

marginal γ2,t = π1{t>T1} (in a policy context, it is more convenient to use 1{t>T1} = 1 − 1{t≤T1}) so:

γ1 + ργ2,t = γ1 + ρπ1{t>T1} (45)

We vary d = π/
√

σ22 over 1, 2, 2.5, 3 and 4; ρ over 0.75, 1, 1.5 and 1.75 when β = 2, reducing the
departure from weak exogeneity; a sample size of T = 100 with a break point at T1 = 80;
and significance levels α1 = 0.01 and α2 = 0.01 in the marginal and conditional, with M = 1000
replications.

5.1. Optimal Infeasible Indicator-Based F-Test

The optimal infeasible F-test with a known location shift in the marginal process is computable in
simulations. Table 7 reports the rejections of invariance, which are always high for large shifts, but fall
as departures from weak exogeneity decrease. Empirical rejection frequencies approximate maximum
achievable power for this type of test. The correct step indicator is almost always significant in the
conditional model for location shifts larger than 2.5

√
σ22, even for relatively small values of (ρ − β).
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Table 7. Power of the optimal infeasible F-test for a failure of invariance using a known step indicator
for α2 = 0.01 at T1 = 80, T = 100, M = 1, 000.

d: ρ 0.75 1 1.5 1.75

1 1.000 1.000 0.886 0.270
2 1.000 1.000 1.000 0.768
2.5 1.000 1.000 1.000 0.855
3 1.000 1.000 1.000 0.879
4 1.000 1.000 1.000 0.931

5.2. Potency of the SIS-Based Test

Table 8 records the Stage 1 gauge and potency at different levels of location shift (d) and departures
from weak (and hence super) exogeneity via (ρ − β). The procedure is slightly over-gauged at Stage 1
for small shifts, when its potency is also low, and both gauge and potency are correctly unaffected by
the magnitude of (ρ − β), whereas Stage 1 potency rises rapidly with d.

Table 8. Stage 1 gauge and potency at α1 = 0.01 for T1 = 80, T = 100, M = 1000 and β = 2.

Stage 1 Gauge Stage 1 Potency

d: ρ 0.75 1 1.5 1.75 0.75 1 1.5 1.75

1 0.038 0.040 0.041 0.039 0.231 0.223 0.227 0.204
2 0.029 0.028 0.030 0.030 0.587 0.575 0.603 0.590
2.5 0.026 0.026 0.025 0.025 0.713 0.737 0.730 0.708
3 0.023 0.023 0.024 0.025 0.820 0.813 0.803 0.817
4 0.020 0.021 0.020 0.022 0.930 0.930 0.922 0.929

Table 9 records Stage 2 potency for the three values of α1. It shows that for a failure of invariance,
even when ρ − β = 0.25, test potency can increase at tighter Stage 1 significance levels, probably
by reducing the retention rate of irrelevant step indicators. Comparing the central panel with the
matching experiments in Table 7, there is remarkably little loss of rejection frequency from selecting
indicators by SIS at Stage 1, rather than knowing them, except at the smallest values of d.

Table 9. Stage 2 potency for a failure of invariance at α2 = 0.01, T1 = 80, T = 100, and M = 1000.

α1 = 0.025 α1 = 0.01 α1 = 0.005

d : ρ 0.75 1 1.5 1.75 0.75 1 1.5 1.75 0.75 1 1.5 1.75

1 0.994 0.970 0.378 0.051 0.918 0.908 0.567 0.127 0.806 0.798 0.535 0.123
2 1.000 1.000 0.966 0.355 1.000 1.000 0.994 0.604 0.999 0.999 0.997 0.653
2.5 1.000 1.000 0.995 0.499 1.000 1.000 0.999 0.744 1.000 0.999 0.998 0.786
3 1.000 1.000 0.999 0.594 1.000 1.000 1.000 0.821 0.999 0.999 1.000 0.861
4 1.000 1.000 0.998 0.712 1.000 1.000 0.999 0.912 0.999 1.000 0.999 0.942

6. Application to the Small Artificial-Data Policy Model

To simulate a case of invariance failure from a policy change, which could be checked by FInv(τ=0)

in-sample, followed by forecast failure, we splice the two scenarios from Figure 2 sequentially in the
order of the 100 observations in panels (III+IV) then those used for panels (I+II), creating a sample of
T = 200.

Next, we estimate (5) with SIS, retaining the policy variable, and test the significance of the
selected step-indicators in (6). At Stage 1, using α1 = 0.001, as the model is mis-specified and the
sample is T = 189 keeping the last 11 observations for the forecast period, two indicators are selected.
Testing these in (6) yields FInv(τ=0)(2, 186) = 13.68∗∗, strongly rejecting invariance of the parameters
of the model for yt to shifts in the model of xt.
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Figure 3 reports the outcome graphically, where the ellipses show the period with the earlier break
in the DGP without a location shift but with the policy change. Panel (I) shows the time series for xt with
the fitted and forecast values, denoted x̃t, from estimating the agency’s model with SIS which delivered
the indicators for testing invariance. Panel (II) shows the outcome for yt after adding the selected
indicators denoted SISse from the marginal model for xt, which had earlier rejected invariance. Panel (III)
reports the outcome for a setting where the invariance failure led to an improved model, which here
coincides with the in-sample DGP. This greatly reduces the later forecast errors and forediction failures.
Finally, Panel (IV) augments the estimated in-sample DGP equation (with all its regressors retained) by
selecting using SIS at α = 0.01. This further reduces forecast failure, although constancy can still be
rejected from the unanticipated location shift. If the invariance rejection had led to the development of an
improved model, better forecasts, and hopefully improved foredictions and policy decisions, would have
resulted. When the policy model is not known publicly (as with MPC decisions), the agency alone can
conduct these tests. However, an approximate test based on applying SIS to an adequate sequence of
published forecast errors could highlight potential problems.

Figure 3. (I) Forecast failure for xt by x̃t even with SIS; (II) Forecast failure in ỹt even augmented by
the SIS indicators selected from the margin model for xt; (III) Smaller forecast failure from ŷt based on
the in-sample DGP; (IV) Least forecast failure from ŷt based on the in-sample DGP with SIS.

6.1. Multiplicative Indicator Saturation

In the preceding example, the invariance failure was detectable by SIS because the policy change
created a location shift by increasing zt by δ. A zero-mean shift in a policy-relevant derivative,
would not be detected by SIS, but could be by multiplicative indicator saturation (MIS) proposed in
Ericsson (2012). MIS interacts step indicators with variables as in dj,t = zt1{j≤t}, so dj,t = zt when j ≤ t
and is zero otherwise. Kitov and Tabor (2015) have investigated its performance in detecting changes
in parameters in zero-mean settings by extensive simulations. Despite the very high dimensionality
of the resulting parameter space, they find MIS has a gauge close to the nominal significance level
for suitably tight α, and has potency to detect such parameter changes. As policy failure will occur
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after a policy-relevant parameter shifts, advance warning thereof would be invaluable. Even though
the above illustration detected a failure of invariance, it did not necessarily entail that policy-relevant
parameters had changed. We now apply MIS to the T = 200 artificial data example in Section 6 to
ascertain whether such a change could be detected, focusing on potential shifts in the coefficient of
zt−1 in (6).

Selecting at α = 0.005 as there are more then 200 candidate variables yielded:

yt = − 1.12
(0.27)

zt−11{t≤90} + 1.17
(0.27)

zt−11{t≤100} + 6.01
(0.045)

− 0.857
(0.2)

zt−1 (46)

with σ̂ = 0.60. Thus, the in-sample shift of −1 in δλ1θ1 is found over t = 90, . . . , 100, warning of a
lack of invariance in the key policy parameter from the earlier policy change, although that break is
barely visible in the data, as shown by the ellipse in Figure 3 (II). To understand how MIS is able to
detect the parameter change, consider knowing where the shift occurred and splitting your data at that
point. Then you would be startled if fitting your correctly specified model separately to the different
subsamples did not deliver the appropriate estimates of their DGP parameters. Choosing the split by
MIS will add variability, but the correct indicator, or one close to it, should accomplish the same task.

7. Forecast Error Taxonomy and Associated Tests

Table 10 relates the taxonomy in Table 1 to the sources of the forecast errors from (16) to illustrate
which indicator-saturation test could be used, where the order (SIS, IIS) etc. shows their likely potency.

Table 10. The taxonomy of systematic forecast failures with associated tests.

Component Problem

Mis-Estimation Mis-Specification Change

Equilibrium mean
Source
Test

i(a) [uncertainty](
μy,e − μ̃y

)
SIS, IIS

i(b) [inconsistent]
+
(
μy − μy,e

)
SIS, IIS

i(c) [shift]
+
(

μ∗
y − μy

)
SIS, IIS, SISse

Slope parameter
Source
(δ 	= 0)
Test

ii(a) [uncertainty]
+
(
(λ1θ1)e − λ̃1 θ̃1

)
×

(zT − μz + δ)
SIS

ii(b) [inconsistent]
+ (γ1β1 − (λ1θ1)e)×

(zT − μz + δ)
SIS

ii(c) [break]
+
(
γ∗

1 β∗
1 − γ1β1

)
×

(zT − μz + δ)
MIS, SIS, IIS, SISse

Unobserved terms
Source

Test

iii(a) [forecast origin]
−
(
γ∗

1 β∗
1 − (λ1θ1)e

)
×

(zT − z̃T)
SIS, IIS

iii(b) [omitted variable]
+γ∗

2 (w1,T+1 − μw1 )
+γ∗

1 β∗
2 (w2,T+1 − μw2 )

IIS, SIS

iii(c) [innovation error]
+εT+1

+γ∗
1 νT+1
IIS

When the source of forecast failure is the equilibrium mean or forecast origin mis-estimation, then
SIS is most likely to detect the systematically signed forecast errors, whereas for other unobserved
terms IIS is generally best equipped to detect these changes. When the slope parameter is the source of
failure for δ 	= 0, then SIS is generally best, whereas when δ = 0, IIS might help. In practice, policy
invalidity and forediction failure are probably associated with i(c) and ii(c), where both SIS and IIS
tests for super exogeneity are valid. In this setting, policy failure can also be triggered through ii(a) and
ii(b) which makes an SIS test for super exogeneity again attractive. Absent a policy intervention, then
zero-mean changes result in ii(c), so may best be detected using multiplicative indicator saturation.
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8. How to Improve Future Forecasts and Foredictions

Scenarios above treated direct forecasts and those derived from foredictions as being essentially
the same. When a major forecast error occurs, the agency can use a robust forecasting device such
as an intercept correction (IC), or differencing the forecasts, to set them ‘back on track’ for the next
period. Although sometimes deemed ‘ad hoc’, Clements and Hendry (1998) show the formal basis
for their success in improving forecasts. However, the foredictions that led to the wrong policy
implementation cannot be fixed so easily, even if the agency’s next narrative alters its story. In our
example, further increases in δ will induce greater forecast failure if the policy model is unchanged:
viable policy requires invariance of the model to the policy change. Nevertheless, there is a partial ‘fix’
to the forecast failure and policy invalidity. If the lack of invariance is invariant, so policy shifts change
the model’s parameters in the same way each time as in (14), the shift associated with a past policy
change can be added as an IC to a forecast based on a later policy shift. We denote such an IC by SISse

IC,
which has the advantage that it can be implemented before experiencing forecast failure. This is shown
in Figure 4(I),(II), focusing on the last 50 periods, where the policy change coincides with the location
shift at observation 191. The first panel records the forecasts for a model of yt which includes the SISse

indicator for the period of the first forecast failure, and also includes SISse
IC as an imposed IC, from

T = 191. Had a location shift not also occurred, SISse
IC would have corrected the forecast for the lack of

invariance, and could have been included in the policy analysis and the associated foredictions.

Figure 4. (I) Forecasts for yt by ỹ∗
t , just using SISse for the first policy-induced shift and SISse

IC at
observation 191; (II) Forecasts for yt by ỹ∗

t also with SIS in-sample; (III) Forecasts from T = 192 for yt

by ỹi,t with a 1-observation IC but without SIS; (IV) Forecasts for yt by ỹi,t also with SIS in-sample.

Figure 4 also shows how effective a conventional IC is in the present context after the shift has
occurred, using a forecast denoted by ỹi,t. The IC is a step indicator with a value of unity from
observation t = 191 onwards when the forecast origin is T = 192, so one observation later, the forecast
error is used to estimate the location shift. Compared to the massive forecast failure seen for the models
of yt in Figure 3 (I) & (II), neither of the sets of forecast errors in Figure 4 (III) & (IV) fails a constancy
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test (FChow(10, 188) = 0.34 and FChow(10, 185) = 0.48). The IC alone corrects most of the forecast
failure, but as (IV) shows, SIS improves the in-sample tracking by correcting the earlier location-shift
induced failure and improves the accuracy of the resulting forecasts.6

In real-time forecasting, these two steps could be combined, using SISse
IC as the policy is

implemented, followed by an IC one-period later when the location shift materialises, although
a further policy change is more than likely in that event. Here, the mis-specified econometric models of
the relationships between the variables are unchanged, but their forecasts are very different: successful
forecasts do not imply correct models.

9. Conclusions

We considered two potential implications of forecast failure in a policy context, namely forediction
failure and policy invalidity. Although an empirical forecasting model cannot necessarily be rejected
following forecast failure, when the forecasts derived from the narratives of a policy agency are very
close to the model’s forecasts, as Ericsson (2016) showed was true for the FOMC minutes, then forecast
failure entails forediction failure. Consequently, the associated narrative and any policy decisions
based thereon also both fail. A taxonomy of the sources of forecast errors showed what could be
inferred from forecast failure, and was illustrated by a small artificial-data policy model.

A test for invariance and the validity of policy analysis was proposed by selecting shifts in all
marginal processes using step-indicator saturation and checking their significance in the conditional
model. The test was able to detect failures of invariance when weak exogeneity failed and the marginal
processes changed from a location shift. Compared to the nearest corresponding experiment in
Hendry and Santos (2010), the potency of FInv is considerably higher for SIS at α2 = 0.01 than IIS at
α2 = 0.025 (both at α1 = 0.025) as shown in Figure 5.

Figure 5. Comparison of the potency of SIS with IIS.

A test rejection outcome by FInv indicates a dependence between the conditional model parameters
and those of the marginals, warning about potential mistakes from using the conditional model to
predict the outcomes of policy changes that alter the marginal processes by location shifts, which is a
common policy scenario. Combining these two features of forecast failure with non-invariance allows
forediction failure and policy invalidity to be established when they occur. Conversely, learning that the
policy model is not invariant to policy changes could lead to improved models, and we also showed a
‘fix’ that could help mitigate forecast failure and policy invalidity.

While all the derivations and Monte Carlo experiments here have been for 1-step forecasts
from static regression equations, a single location shift and a single policy change, the general

6 As noted above, the lagged impact of the policy change causes x191 to overshoot, so x̃i,t is somewhat above xt over the
forecast horizon, albeit a dramatic improvement over Figure 3 (I): using 2-periods to estimate the IC solves that.
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nature of the test makes it applicable when there are multiple breaks in several marginal processes,
perhaps at different times. Generalizations to dynamic equations, to conditional systems, and to other
non-stationary settings, probably leading to more approximate null rejection frequencies, are the focus
of our present research.
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Abstract: We use a cointegrated structural vector autoregressive model to investigate the relation
between monetary policy in the euro area and the stock market. Since there may be an instantaneous
causal relation, we consider long-run identifying restrictions for the structural shocks and also used
(conditional) heteroscedasticity in the residuals for identification purposes. Heteroscedasticity is
modelled by a Markov-switching mechanism. We find a plausible identification scheme for stock
market and monetary policy shocks which is consistent with the second-order moment structure of
the variables. The model indicates that contractionary monetary policy shocks lead to a long-lasting
downturn of real stock prices.

Keywords: cointegrated vector autoregression; heteroscedasticity; Markov-switching model;
monetary policy analysis
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1. Introduction

The interaction of monetary policy and the stock market has been studied extensively with
structural vector autoregressive (VAR) models. A central problem is the identification of the
structural shocks. Nowadays, a range of different tools is available for identifying structural VARs
(see Kilian and Lütkepohl 2017). Therefore, different types of identifying restrictions for monetary policy
and stock market shocks have been used. For example, Bjørnland and Leitemo (2009) considered a
structural VAR model for the US, where long-run and short-run restrictions were combined to identify
structural shocks. Such models were also used in the context of identification by heteroscedasticity
(e.g., Lütkepohl and Netšunajev 2017a, 2017b; Bertsche and Braun 2018). All these studies investigated
the relation between monetary policy and the stock market in the US, but they ignored that the variables
may be cointegrated. In the present study, we consider the relation between monetary policy and the
stock market in Europe and explicitly account for possible cointegration of the variables involved.

European monetary policy is, of course, a central topic of empirical macroeconomics
(e.g., Peersman and Smets 2001). There are also studies investigating explicitly the impact of monetary
policy in Europe on the stock market. Cassola and Morana (2004) found that price-stabilizing monetary
policy contributes to the stability of the stock market in the euro area. Bredin et al. (2009) performed
an event study and found a negative relation between UK monetary policy and stock returns, but
not between German monetary policy and stock returns. Kholodilin et al. (2009) used the approach
of Rigobon and Sack (2004) and found heterogeneous relations between monetary policy and stock
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prices for different sectors, but the effect of an increase in the policy rate of the European Central Bank
(ECB) on an aggregate stock index was reported to be negative. m identified the ECB monetary policy
shocks using an event-study approach and via heteroscedasticity following Rigobon and Sack (2004).
Both identification methods yielded a negative relationship between unexpected changes in policy
rates and stock returns. Alessi and Kerssenfischer (2016) estimated a structural factor model using
euro area data and argued that the responses of stock returns to monetary policy are larger and quicker
than in a conventional small-scale structural VAR. In a more recent study, Fausch and Sigonius (2018)
used different techniques to investigate the relation between ECB monetary policy and German stock
returns, including an event study, a VAR analysis—where monetary policy surprises are captured
by a proxy variable—and a threshold VAR model. They found a negative relation between the ECB
monetary policy and stock returns in the pre-crisis period.

In this study, we use a structural vector error correction model (VECM) identified through
heteroscedasticity to investigate the relation between monetary policy and the stock market.
The cointegration framework developed by Johansen and Juselius (see Johansen and Juselius 1990;
Johansen 1991, 1995; Juselius 2006) opens up a convenient way to impose restrictions on the long-run
effects of structural shocks in structural VAR analysis, as shown by King et al. (1991). They used the
Granger–Johansen representation of a VAR model (Johansen 1995) to determine the long-run effects of
their shocks, and the framework is easy to combine with identifying information obtained from the
second-moment structure of the model (see Lütkepohl and Velinov 2016 or Kilian and Lütkepohl 2017,
chp. 14). We use this framework in our empirical investigation.

We model the conditional heteroscedasticity in the data by a Markov-switching (MS) mechanism
and find a cointegrated structural VAR model for which conventional identifying restrictions are in line
with the second-moment structure of the data. The impulse responses are plausible and, in particular,
production and price level go down after a contractionary monetary policy shock. Although the
long-run impact of a monetary policy shock on stock prices is restricted to zero, such a shock is found
to have a rather long-lasting negative impact on the stock market.

The structure of this study is as follows. In the next section, the basic structural VECM is presented
and the model for the second moments is discussed in Section 3. The empirical analysis is considered in
Section 4 and conclusions are presented in Section 5. The appendix provides details on the data sources.

2. Structural Vector Error Correction Models

The time series variables of interest are collected in the (K × 1) vector yt. The components of yt

may be integrated and cointegrated variables. We assume that all variables are stationary (I(0)) or
integrated of order one (I(1)). Assuming a cointegration rank r, 0 ≤ r ≤ K, our point of departure is
the VECM form of a VAR model,

Δyt = ν + αβ′yt−1 + Γ1Δyt−1 + · · ·+ Γp−1Δyt−p+1 + ut, (1)

where Δ is the differencing operator such that Δyt = yt − yt−1, ν is a (K × 1) constant intercept term,
α is a (K × r) loading matrix of rank r, β is a (K × r) cointegration matrix of rank r, and Γ1, . . . , Γp−1

are (K × K) coefficient matrices (see also Johansen 1995).
The reduced-form residuals ut are white noise, that is, ut is serially uncorrelated with mean zero

but may have time-varying second moments. In other words, ut may be heteroscedastic or conditionally
heteroscedastic. The structural shocks, denoted by εt, are obtained from the reduced-form residuals
by a linear transformation εt = B−1ut or Bεt = ut. The (K × K) transformation matrix B is assumed
to be such that the structural shocks are instantaneously uncorrelated. Hence, E(εtε

′
t) = Σεt is a

diagonal matrix.
Substituting Bεt for ut in (1), the matrix B is easily recognized as the matrix of impact effects of the

structural shocks. Thus, imposing restrictions directly on the impact effects means putting restrictions
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on the elements of B. Typically, zero restrictions are imposed on B, which implies that certain variables
do not respond instantaneously to a shock.

The long-run effects of the shocks are easily obtained through the Granger–Johansen
representation (see Johansen (1995, Theorem 4.2)) of yt corresponding to (1),

yt = Ξ
t

∑
i=1

ui + Ξ∗(L)ut + δt + y∗
0, (2)

where

Ξ = β⊥

[
α′
⊥

(
IK −

p−1

∑
i=1

Γi

)
β⊥

]−1

α′
⊥, (3)

Ξ∗(L)ut is a stationary process, δt contains deterministic terms, and y∗
0 represents initial conditions.

In (3), β⊥ and α⊥ are (K × (K − r)) dimensional orthogonal complements of the (K × r) dimensional
matrices β and α, respectively. If the cointegration rank r is zero, the orthogonal complement matrices
are replaced by (K × K) identity matrices so that the long-run effects matrix becomes

Ξ =

(
IK −

p−1

∑
i=1

Γi

)−1

. (4)

The corresponding long-run effects of the structural shocks are given by ΞB. Since α and β have
rank r, their orthogonal complements have rank K − r, implying that Ξ also has rank K − r, and
the same holds for ΞB because B is an invertible matrix of full rank K. For a given reduced-form
matrix Ξ, restrictions on ΞB imply restrictions for B and, hence, can help identify the structural shocks.
The reduced rank of the long-run effects matrix implies that there can be at most r shocks without
any long-run effects, corresponding to r columns of zeros of ΞB. In other words, only r shocks can
be purely transitory. Another side effect of the reduced rank of ΞB is, however, that simply counting
zero restrictions is not enough to assess identification of the structural matrix B, as we will see in our
empirical application in Section 4.

This setup for identifying structural shocks in VAR models was proposed by King et al. (1991).
Introductory treatments are given by Lütkepohl (2005, chp. 9) and Kilian and Lütkepohl (2017, chp. 10).
An advantage of the structural VECM setup is that only the cointegration rank is needed, which
implies the rank of the long-run effects matrix ΞB. Knowing that rank, the structural shocks can be
properly specified through long-run restrictions. Typically the actual cointegration relations are not
needed. Thus, pretesting for specific cointegration relations and even knowing the precise order of
integration of specific variables is not necessary, as long as the cointegration rank is known.

There are a number of situations of special interest. For r = 0, the matrix of long-run effects ΞB
is of full rank K and, hence, cannot have zero columns. Thus, for r = 0, all K structural shocks have
some long-run effects. If the cointegrating rank is zero, the VECM (1) reduces to a VAR model in
first differences,

Δyt = ν + Γ1Δyt−1 + · · ·+ Γp−1Δyt−p+1 + ut,

for which the accumulated long-run effects on the Δyt are known to be

(
IK −

p−1

∑
i=1

Γi

)−1

B.

The accumulated effects on the first differences are just the long-run effects on the levels yt, of course.
This case was considered by Blanchard and Quah (1989), and the estimation of the structural
parameters, i.e., the B matrix, is particularly easy for this case (e.g., Lütkepohl (2005, chp. 9)).
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If some of the components of yt are I(0), the long-run effects matrix Ξ and, hence, also ΞB,
has corresponding rows of zero elements because a stationary variable is not affected permanently by
a shock. Formally, that can be seen by dividing up the vector

yt =

[
yn

t
ys

t

]
,

where all components of the (Kn × 1) vector yn
t are I(1) and all components of the (Ks × 1) vector ys

t
are I(0). In this case there exists a cointegration matrix of the form

β =

[
β(11) 0Kn×Ks

0Ks×(r−Ks) IKs

]
,

where β(11) is a (Kn × (r − Ks)) matrix and 0M×N denotes a (M × N) zero matrix. Thus, there exists
an orthogonal complement of β such that

β⊥ =

[
β
(1)
⊥

0Ks×(K−r)

]
.

Hence, the last Ks rows of Ξ are rows of zeros.
There are alternative proposals for imposing long-run restrictions for identifying structural

shocks in VARs. Examples are proposals by Gonzalo and Ng (2001); Fisher et al. (2000),
and Pagan and Pesaran (2008). Fisher and Huh (2014) review the literature and discuss the relations
between alternative approaches.

3. Structural VAR Models with Changes in Volatility

If the reduced-form residuals ut are heteroscedastic or conditionally heteroscedastic, this
property can be used for identification purposes. We use the approach of Lanne et al. (2010) and
Herwartz and Lütkepohl (2014), who proposed a Markov-switching (MS) mechanism for modelling
volatility changes in this context. They assumed that the distribution of the error term ut depends on a
discrete Markov process st, such that

ut|st ∼ (0, Σu(st)). (5)

The Markov process st has states 1, . . . , M and transition probabilities

pij = Pr(st = j|st−1 = i), i, j = 1, . . . , M.

Note that only the residual covariance matrices depend on the state st, whereas the VAR slope
parameters are not state dependent. The model captures conditional heteroscedasticity of a quite
general form.

The second-moment structure can be used for structural identification if the covariance matrices
can be decomposed such that

Σu(1) = BB′, Σu(m) = BΛmB′, m = 2, . . . , M, (6)

where the Λm are (K × K) diagonal matrices. In that case, the matrix B can be used to obtain the
structural shocks from the reduced-form residuals, and B is identified if the following condition holds,
where λjk denotes the kth diagonal element of Λj:

∀k, l ∈ {1, . . . , K} ∃j ∈ {2, . . . , M} such that λjk 	= λjl . (7)
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If M = 2, the condition means that the diagonal elements of Λ2 must all be distinct. Generally, the
condition requires that there is sufficient heterogeneity in the volatility changes across the shocks. If this
condition is satisfied, B is unique up to column sign changes and column permutations. In other words,
using this B matrix for computing the structural shocks from the reduced-form residuals, only the sign
and positioning of the shocks remain undetermined. Note, however, that this identification approach
relies on the assumption that the impact effects of the shocks remain time-invariant and only the
variances change over time.

Assuming a normal conditional distribution for ut|st, the model can be estimated by Gaussian
maximum likelihood (ML) using the algorithm described by Herwartz and Lütkepohl (2014). It may
be useful to estimate the cointegration matrix β in a first step and keep it fixed in the subsequent
optimisation of the log-likelihood with respect to the remaining parameters, including the transition
probabilities. Computing the Gaussian ML estimates can be a challenge for larger models with many
variables, autoregressive lags, or volatility states.

The fact that the model assigns the volatility regimes endogenously is appealing. Hence, the
researcher can estimate the volatility states rather than having to know or assume them. We use the
model in our empirical application, which is discussed in the next section.

4. Monetary Policy and the Stock Market in Europe

A five-dimensional VAR model for the euro area with variables yt = (qt, pt, ct, st, rt)′ is considered,
where qt is the log of an industrial production index, pt denotes the log of the harmonized index of
consumer prices (HICP), ct is a log non-energy commodity price index, st is the log of the real Euro
Stoxx 50 stock price index, and rt denotes the 3 month Euribor. The set of variables corresponds to the
system used by Bjørnland and Leitemo (2009) for analysing the relation between monetary policy and
the stock market in the US. We use monthly data for the period 1999M1–2014M12 and, hence, avoid
the period of quantitative easing in the eurozone. Further details on the variables and data sources are
given in the appendix, and the time series are plotted in Figure 1.

Figure 1. Time series used in the empirical study for sample period 1999M1–2014M12.
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Given the substantial impact of the financial crisis in 2008 following the collapse of Lehman
Brothers, one may wonder whether a time-invariant VAR or VECM is appropriate for the full sample
period. We have therefore fitted VAR(2) models for yt = (qt, pt, ct, st, rt)′, where all or some of the
coefficients are allowed to vary over time. The time-variation is governed by a two-state MS mechanism.
Some models are compared in Table 1, using standard model selection criteria. The abbreviations
used in Table 1 follow those proposed by Krolzig (1997), that is, MSIAH stands for a VAR model
with time-varying intercept, VAR slope coefficients, and error covariance matrix; MSIH abbreviates
a model where only the intercept vector and the error covariance matrix are allowed to vary; and
MSH signifies a model with time-invariant intercept and VAR slope coefficients but varying error
covariance matrix. In all cases, two Markov states are used, which is indicated in parentheses behind
the model abbreviation. A lag order of p = 2 is suggested by the Akaike information criterion (AIC),
the Schwarz Criterion (SC), and the Hannan–Quinn criterion (HQ) (see Lütkepohl (2005, sct. 4.3)) for a
time-invariant VAR process for the full sample period. Thus, in Table 1, for example, VAR(2)-MSH(2)
signifies a VAR model of order 2 with 2 possible error covariance regimes and time-invariant intercept
and VAR slope coefficients. It turns out that such a model is favoured by the SC and HQ model
selection criteria, while AIC favours a fully flexible model. Provided the quantitative easing period is
excluded from the sample, it is reasonable to believe that the monetary policy regime has not changed.
With that in mind, and taking into account the preferences of the SC and HQ criteria, we use the model
with time-invariant intercepts and slope coefficients and allow for a time-varying error covariance
matrix only in the following. We decompose the covariance matrices such that time-invariant impact
effects and time-invariant impulse responses are identified.

Table 1. Comparison of Markov-switching vector autoregressive models for yt = (qt, pt, ct, st, rt)
′.

Model Log L AIC SC HQ

VAR(2) 2514.761 −4889.522 −4662.230 −4797.449
VAR(2)-MSIAH(2) 2668.241 −5052.483 −4591.405 −4858.779
VAR(2)-MSIH(2) 2617.071 −5050.142 −4750.452 −4928.766
VAR(2)-MSH(2) 2611.456 −5048.912 −4766.421 −4934.479

Note: L—Gaussian likelihood, AIC = −2 log L + 2× number of free parameters, SC = −2 log L + log T×
number of free parameters, HQ = −2 log L + 2 × number of free parameters × log(log T). MSIAH—model
with time-varying intercept, VAR slope coefficients and error covariance matrix; MSIH—model with
time-varying intercept and error covariance matrix; MSH—model with time-varying error covariance matrix
but time-invariant intercept and VAR slope coefficients.

Based on conventional ADF tests, all five variables are classified as I(1) variables. Thus, there may
be cointegration among the variables, which is worth taking into account in our structural analysis.
Since the VAR(2)-MSH(2) model, and thus a model with conditional heteroscedasticity, was favoured in
the previous analysis, we base tests for the cointegration rank on Johansen’s (1995) cointegration rank
tests robustified for conditional heteroscedasticity by generating the p-values with a wild bootstrap
algorithm, as proposed by Cavaliere et al. (2010) and further investigated by Cavaliere et al. (2018).
The results are presented in Table 2 and suggest a cointegration rank of r = 2 if a 5% significance level
is used. Thus, we consider a VECM(1) with one lag of the differenced variables (i.e., p − 1 = 1) and
cointegration rank r = 2 for our structural analysis.
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Table 2. Testing for the cointegration rank of a VECM(1) with intercept for yt = (qt, pt, ct, st, rt)
′.

H0 LR Statistic p-Value

r = 0 70.570 0.036
r ≤ 1 59.559 0.001
r ≤ 2 20.539 0.081
r ≤ 3 6.227 0.482
r ≤ 4 0.248 0.978

Note: p-values are computed using Algorithm 1 of Cavaliere et al. (2010) with 1000 bootstrap replications.

One advantage of imposing long-run restrictions on the long-run effects matrix ΞB obtained
via the Granger–Johansen representation is that we do not have to take a stand on the exact
cointegration relations, we just need to know the cointegration rank of the model. Imposing
only the rank restriction is also in line with the original ideas behind structural VAR modelling,
which imposes as few restrictions as possible. In this context, it is perhaps worth mentioning
that Bjørnland and Leitemo (2009) considered a system yt = (qt, Δpt, Δct, Δst, rt)′ for US data which
effectively assumes that there is no cointegration between the variables pt, ct and st so that these
variables can be included in first differences. Although we do not want to reconsider the issue for
US data here, it may be worth checking whether a setup with Δpt, Δct, and Δst instead of the levels
variables can be used for European data as well, or whether the variables are potentially cointegrated.
In Table 3, we present the results of cointegration rank tests and find clear evidence of cointegration
between pt, ct, and st. Thus, the precise model specification used by Bjørnland and Leitemo (2009)
would be difficult to defend for our European data, and we use the VECM(1) model with cointegration
rank r = 2 in the following. Another point worth emphasising is that this choice even accommodates
the possibility that there are stationary variables in the model. For example, if there is a suspicion that
the unit root tests have indicated unit roots just because of lack of power, this may be accommodated
in our VECM setup as long as the cointegration tests indicate the cointegration rank adequately.

Table 3. Testing for the cointegration rank of a VECM(1) with intercept for yt = (pt, ct, st)
′.

H0 LR Statistic p-Value

r = 0 53.90 0.001
r ≤ 1 0.928 0.999
r ≤ 2 0.157 0.984

Note: p-values are computed using Algorithm 1 of Cavaliere et al. (2010) with 1000 bootstrap replications.
The lag order of the VECM is suggested by HQ and SC.

Based on the previous MS analysis we fit a volatility model of the type discussed in Section 3 with
two states of the Markov process. The model is referred to as a VECM(1)-MSH(2) in the following.
Given our small sample size, considering more volatility states is unreasonable.1 The AIC, HQ,
and SC values of a VECM(1) model without allowing for heteroscedasticity and a VECM(1)-MSH(2)
model are shown in Table 4. They clearly signal that allowing for conditional heteroscedasticity
improves the model fit. The values of all three model selection criteria are substantially smaller than
the corresponding values for the model without heteroscedasticity. In other words, the second-moment
structure may well provide useful identifying information for the structural shocks.

1 We also tried a Markov process with M = 3 volatility states but failed to get reasonable Gaussian ML estimates.
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Table 4. Comparison of VECMs for yt = (qt, pt, ct, st, rt)
′.

Model Log L AIC SC HQ

VECM(1) 2505.139 −4888.278 −4690.210 −4966.639
VECM(1)-MSH(2) 2595.154 −5034.308 −4781.040 −5134.507

Note: L—Gaussian likelihood, AIC = −2 log L + 2× number of free parameters, SC = −2 log L + log T×
number of free parameters, HQ = −2 log L + 2 × number of free parameters × log(log T).

In Figure 2, the smoothed state probabilities of the VECM(1)-MSH(2) model are presented.
They show that the two volatility regimes change frequently throughout the sample period so that
guessing the change points reliably would be difficult for a researcher. Hence, using a model which
allows for endogenously assigned volatility changes is clearly an advantage over a model where the
volatility states have to be prespecified by the researcher.

Figure 2. Smoothed state probabilities of VECM(1)-MSH(2) model.

To explore the identification issue, we have to consider the diagonal elements of Λ2,
which represent the variances of the structural shocks in the second volatility state relative to the
first state, as explained in Section 3. They are displayed in Table 5, together with estimated standard
errors. Four of the five estimated relative variances of the structural shocks in the second state are
smaller than 1. Hence, most structural shocks have smaller variance in the second than in the first state.
In other words, the second state captures potentially periods of lower volatility. From Figure 2, it can
be seen that the first regime is associated with the period around the turn of the millennium, where the
internet bubble burst, and with the period 2008/2009, where the financial crisis started. These events
may have generated higher volatility in some of the structural shocks. Note, however, that at this point
it is difficult to associate any of the shocks identified through heteroscedasticity with economic shocks
of interest because the ordering of the shocks is arbitrary. Therefore, it is difficult to argue that specific
economic shocks are more volatile in state 1.

For the identification of the shocks through heteroscedasticity, the diagonal elements of Λ2 have
to be distinct. Although the estimated diagonal elements are all distinct, the estimation uncertainty
reflected in the standard errors is rather high and, hence, the true underlying quantities may not be
distinct. This uncertainty in the estimates is not surprising given the relatively small sample size.
However, some of the standard errors are quite small compared to the corresponding estimates of the
relative variances, so it is reasonable to assume that at least some of the diagonal elements of Λ2 are
distinct. Thus, there is at least some identifying information in the second moments which may be
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sufficient to discriminate between competing conventional identification schemes. We emphasise that
for this to hold, it is not necessary that all the λ2i are distinct.

Table 5. Estimated relative variances of VECM(1)-MSH(2) model for yt = (qt, pt, ct, st, rt)
′.

Relative Variance Estimate Estimated Standard Error

λ21 1.557 0.587
λ22 0.765 0.294
λ23 0.479 0.186
λ24 0.024 0.007
λ25 0.202 0.075

We are primarily interested in a monetary policy shock and a stock market shock.
Therefore, we place these shocks in the last two positions of εt, that is, εt = (ε1t, ε2t, ε3t, εsm

t , ε
mp
t )′.

In other words, the stock market shock, εsm
t , is the fourth shock, and the monetary policy shock, ε

mp
t ,

is last. The other components of εt are left unspecified and represent other shocks to the economy.
We consider the two alternative identification schemes in Table 6. Since we have a cointegration

rank r = 2, the rank of ΞB is K − r = 3. Thus, there can be two columns of zeros in the long-run
effects matrix ΞB. The first identification scheme in Table 6 assumes that both the stock market shock
and the monetary policy shock are purely transitory and, hence, do not have any long-run effects on
any of the variables. The two shocks are distinguished by the assumption that εsm

t does not affect the
commodity price index instantaneously, but only with some delay. Hence, there is a corresponding
zero in the third row of B. The long-run restrictions may be justified by the notion that the effects
of monetary policy and stock market shocks should be transitory. In a conventional VAR analysis,
effects of these shocks on the macroeconomic variables vanish over time (see Christiano et al. 1999;
Bjørnland and Leitemo 2009). The restriction on the short-run effect is needed to distinguish the two
shocks, which are both neutral in the long run, and it is part of the identification schemes used
by Christiano et al. (1999), Bjørnland and Leitemo (2009), and others for US data. Note also that no
restrictions are imposed on the first three columns of B and ΞB so that the first three shocks are
identified purely by the volatility changes. Since we are not interested in them, we did not ensure that
they have economic interpretations.

Table 6. Identification schemes for yt = (qt, pt, ct, st, rt)
′.

Scheme B ΞB

(1)

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0

⎤⎥⎥⎥⎥⎦

(2)

⎡⎢⎢⎢⎢⎣
∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎥⎦

The second identification scheme is due to Bjørnland and Leitemo (2009), who used it for US
data. They were also primarily interested in the last two shocks, and arbitrarily identified the first
three shocks by imposing a recursive structure on their contemporaneous impact effects, which is seen
by the recursive structure of the zero entries in the first three columns of B. Again, the last shock is
specified as monetary policy shock. It is assumed to have no long-run impact on stock prices, and this
distinguishes the shock from the stock market shock. Both shocks are assumed to have no impact
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effects on industrial production, the price level, and the commodity price index. This assumption
reflects the belief that these variables move slowly in response to εsm

t and ε
mp
t . There are no further

long-run restrictions.
The two identification schemes differ not only in the way they identify the shocks of interest.

While the first scheme relies primarily on long-run restrictions, the second scheme imposes most
restrictions on the impact effects. Without heteroscedasticity, Scheme (1) is under-identified and the
second scheme is just-identified. Thus, in the absence of heteroscedasticity, they cannot be compared
with statistical tests without further assumptions. However, assuming that the shocks are already
identified by the second-moment structure, the zero restrictions on B and ΞB are over-identifying and
can be tested by standard likelihood ratio (LR) tests.

The results of such tests are presented in Table 7, where the alternative is a model that is purely
identified by heteroscedasticity and has no zero restrictions on B or ΞB. In addition to the value of the
LR statistic, the assumed degrees of freedom of the χ2 limiting distributions are presented on which
the p-values are based. For both tests, the number of degrees of freedom is determined under the
assumption that the structural matrix B is fully identified by heteroscedasticity. The number of degrees
of freedom for testing Scheme (1) is 7 because, for r = 2, the long-run effects matrix ΞB has rank
K − r = 3 and, hence, each column of zeros counts for three independent restrictions only. In other
words, the columns of the matrix ΞB can be represented as a linear combination of three basis vectors.
A zero column is obtained if the basis vectors are multiplied by zero coefficients. Thus, each of the two
columns of zeros is obtained by restricting the three weights of the basis vectors to zero. Hence, the 10
zero coefficients in the last two columns of the long-run effects matrix in Scheme (1) count for six
restrictions only. In addition, there is one zero restriction on the impact effects matrix B.

Table 7. Tests of identification schemes.

H0 LR Statistic Degrees of Freedom p-Value

Scheme (1) 62.494 7 4.787 × 10−11

Scheme (2) 18.807 10 0.043

For Scheme (1), the p-value of the LR test is less than 1%, so Scheme (1) is rejected at any
conventional significance level. This also indicates that there must be identifying information in
the second-moment structure because the H0 model is not identified by the zero restrictions alone.
Thus, the heteroscedastic structure has identifying power. However, since the evidence of all relative
variances being distinct in Table 5 is weak, there is of course the possibility that the structure is only
partially identified by heteroscedasticity. In that case, the degrees of freedom of the LR tests in Table 7
may be smaller than assumed in the table, implying that the p-values would be even smaller than
those in the table.

Considering the second p-value in Table 7, Identification Scheme (2) cannot be rejected at a
1% level, although its p-value is slightly below 5%, at least if a χ2 distribution with 10 degrees
of freedom is used as reference. This outcome is interesting because, in a related study based on
identification through heteroscedasticity, Lütkepohl and Netšunajev (2017a) found strong evidence
against the restrictions for the US. Admittedly, this evidence is based on a quite different sample period.
Moreover, Bertsche and Braun (2018) did not confirm this result with a different volatility model. However,
Lütkepohl and Netšunajev (2017b) also found an implausible reaction of the inflation rate to a monetary
policy shock for the US. Thus, it is instructive to see the responses of the variables to the two shocks of
interest for our European model when Identification Scheme (2) is used.

The estimated impulse responses with ± one standard error bootstrap confidence intervals are
shown in Figure 3. The confidence intervals have a 68% level in a Gaussian environment. The standard
errors are estimated with a fixed-design wild bootstrap conditioning on the transition probabilities,
as proposed in Herwartz and Lütkepohl (2014) and also used in Lütkepohl and Netšunajev (2017a).
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Figure 3. Responses to stock market and monetary policy shocks with ± one standard error confidence
intervals for Identification Scheme (2).

The responses of the variables to both shocks are quite plausible. A stock market shock
is followed by increases in all other variables, although these upswings occur with some delay.
This is in line with the studies by Bjørnland and Leitemo (2009) and Li et al. (2010) for the US.
The increase in output and inflation is consistent with the view that a rise in stock prices increases
consumption (Beaudry and Portier 2006) through a wealth effect and investment through a Tobin Q
effect, thus inducing aggregate demand to increase. Due to nominal rigidities, prices react slowly,
and inflation as well as commodity prices rise in the intermediate run. The response of the interest rate
may be explained by the behaviour of an inflation-targeting central bank which is increasing interest
rates to combat the inflationary pressure of a high aggregate demand.

A contractionary monetary policy shock, induced by an increase in the interest rate, reduces industrial
production, the price level, and commodity prices with some delay. Similar to Peersman and Smets (2001)
and Ehrmann et al. (2003), we do not find any price puzzle and observe long-run effects on prices.
The shock leads to a long-lasting downturn of the stock index after a monetary policy tightening.
This is in line with results of Bjørnland and Leitemo (2009) for the US, but the effect for the euro
area is not as pronounced as in their study. Even though there is mixed evidence regarding the
influence of monetary policy on industry- or country-level stock returns in Europe, most of the
studies agree on a negative relation between ECB monetary policy and aggregate stock returns
in the euro area (Kholodilin et al. 2009; Alessi and Kerssenfischer 2016; Fausch and Sigonius 2018).
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Clearly, our results support those previous findings which show that the policy of the ECB has a
substantial impact on the stock market in Europe.

5. Conclusions

We have constructed a five-dimensional cointegrated structural VAR model for monthly euro
area variables for the period 1999M1–2014M12 to study the relation between monetary policy and the
stock market. The period of quantitative easing is explicitly excluded because it may be regarded as a
new monetary policy regime. We allowed for conditional heteroscedasticity in the data and modelled
volatility changes by a Markov-switching mechanism. Heteroscedasticity was used to disentangle a
stock market and a monetary policy shock. Conventional identification restrictions on the impact and
long-run effects of the structural shocks that have been used for a similar model for the US are found
to be roughly consistent with the second-moment structure of the variables for our sample period,
while an alternative identification scheme is strongly rejected.

The impulse responses for the maintained identification scheme are economically plausible
and, in particular, production and price level go down after a contractionary monetary policy shock.
Although the long-run impact of a monetary policy shock on stock prices is restricted to be neutral,
such a shock is found to have a rather long-lasting negative impact on the stock market.
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Appendix A. Variables and Data Sources

The industrial production index is seasonally adjusted and obtained from the ECB Statistical Data
Warehouse. The harmonized index of consumer prices (HICP) is also seasonally adjusted and obtained
from Eurostat. The non-energy commodity price index is obtained from the World Bank. The Euro
Stoxx 50 stock price series is obtained from www.stoxx.com and deflated by the consumer price
index to measure real stock prices. Finally, the 3 month Euribor is obtained from the ECB Statistical
Data Warehouse.
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Abstract: Wage coordination plays an important role in macroeconomic stabilization. Pattern wage
bargaining systems have been common in Europe, but in different forms, and with different degrees of
success in terms of actual coordination reached. We focus on wage formation in Norway, a small open
economy, where it is custom to regard the manufacturing industry as the wage leader. We estimate a
model of wage formation in manufacturing and in two other sectors. Deciding cointegration rank is
an important step in the analysis, economically as well statistically. In combination with simultaneous
equation modelling, the cointegration analysis provides evidence that collective wage negotiations in
manufacturing have defined wage norms for the rest of the economy over the period 1980(1)–2014(4).

Keywords: cointegration; error-correcting adjustment; estimation and hypothesis testing in
cointegrated models; rent-sharing in wage formation; pattern wage bargaining; inflation
targeting; small open economy wage policies; inflation targeting; macroeconomic fluctuations and
transmission mechanisms

JEL Classification: C52; E24; E31; E37; J31

1. Introduction

We investigate econometrically whether collective agreements in the manufacturing sector
have defined norms for wage adjustments in the other sectors of the Norwegian economy over
the period 1980(1)–2014(4). By linking the evolution of the wage cost level to economic fundamentals
(e.g., business sector profitability and productivity), wage norms can give a sustainable national wage
path. Wage pattern bargaining can also stabilize wage relativities at the industry level. The econometric
model include both the short-run and long-term relationships of the national wage system. We therefore
use the integrated and cointegrated VAR (CVAR) framework to which Johansen and Juselius have
contributed significantly, see Johansen and Juselius (1990); Johansen (1995b); Juselius (2007).

There are several milestones in the history of economic research that give econometric treatment
to wage formation, see Forder (2014, chp. 1–4) and Bårdsen et al. (2005, chp. 3–4). A new epoch in
the econometric modelling of wages commenced with the development of the theory of cointegration,
Engle and Granger (1987); Johansen (1988). “Error-correction” mechanisms in dynamic models of
wage and price setting, which had been used by Denis Sargan in several important applied papers that
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accompanied his seminal methodological contribution (e.g., Sargan (1964); Sargan (1980)), could now
be recognized as having a clear foundation in cointegration methodology. Economic models could
also be formulated that incorporated both deterministic drift and stochastic trends in wage formation,
Nymoen (1989a). The new econometrics of wage modelling also clarified how restrictive the Phillips
curve models had been by imposing untested unit root restrictions that forced a particular natural rate
of unemployment dynamics on the system of wage and price setting, see Bårdsen and Nymoen (2003);
Kolsrud and Nymoen (2014) and Kolsrud and Nymoen (2015).

One advantage of the VAR (CVAR) approach is that we can test hypotheses of absence of
cointegration between wages in different industries without assuming anything about the bargaining
pattern from the outset. Conditional on cointegration, we can develop empirical models of wage
adjustments relevant for testing specific bargaining patterns. For example, we can investigate whether
a stochastic trend in the manufacturing wage level is transmitted to the private service sector, which we
would expect if the two sectors act as wage leader and wage follower.

CVARs have previously been used to estimate wage leadership models (Lindquist and
Vilhelmsson (2006) (Sweden); Lamo et al. (2012); Camarero et al. (2014) (multiple countries)).
Unlike these studies, we include the foreign sector, which is important for representing an imported
nominal stochastic trend in the econometric model, and to test whether the importance of this trend
may have changed. We also show that the simultaneous equations model (SEM) can be useful for
modelling the structure of wage pattern bargaining. Nymoen (1991) specified a SEM for Norwegian
wages and prices with two sectors, which was estimated by full information maximum likelihood
(FIML), but without any formal analysis of cointegration rank.

Historically, the wage leader model was one of several initiatives to curb inflation in the post-war
period, in a situation with full employment and with a commitment to free collective bargaining,
Aukrust (1977); Meade (1982); Forder (2014) among others. Similar systems were developed in Sweden
Edgren et al. (1969); France Courbis (1974) and the Netherlands Driehuis and de Wolff (1976). A key
point was that in the export and import competing sectors of the economy, considerations about the
required return to capital served as an automatic stabilizer of nominal wage cost growth. Over time,
it was one of the corrective mechanisms that would make the wage cost level fluctuate around a
growth path determined by product price and average labour productivity, which defined the scope
for sustainable compensation to wage earners. The sheltered sectors, without foreign competition,
could compensate for increased wages (increased production costs) by adjusting prices. In Norway,
the manufacturing sector was given the role of wage leader, and if the followers were loyal to the
system, they would, on average, get the value of a much higher productivity growth than if they broke
out of the system. The manufacturing sector also signs the leading collective agreements in several
other European countries, see Knell and Stiglbauer (2009).

However, in a recent theoretical contribution, Calmfors and Seim (2013) challenge the conventional
wisdom that such pattern bargaining produces wage restraint. They show theoretically that wage
restraint depends on the monetary policy regime and the size of the leading sector. This serves as a
reminder that wage bargaining has a clear institutional dimension, and that institutions change over
time, cf. Soskice (1990); Camarero et al. (2016). The possibility of a connection between monetary
policy regimes and the system of wage and price setting has also been analysed by Cukierman and
Lippi (1999); Iversen (1999); Soskice and Iversen (2000) and Holden (2005), among others.

The system of pattern wage bargaining represents an advanced product of civilization.
Disruption of such institutions can occur due to changes elsewhere in the economy, or in the wider
society. Hence we look for signs of structural breaks. Two important events stand out in the period
covered by our data set: a change in monetary policy, and a historic increase in labour immigration.
One-third of the sample used represents the era after inflation targeting was introduced in 2001,
and about one quarter of the sample is from the period of high labour immigration due to EU
enlargement. Hence, if the monetary policy regime change or the new immigration flow, or both, have
affected wage formation with any force, the structural break should be detectable empirically.
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The paper is organized as follows: In Section 2, the main theoretical model equations are
specified, together with the hypotheses that we aim to test empirically. In Section 3, the data set
is presented and the VAR that we use for the econometric analysis is formulated. The common
ground of the pattern wage bargaining tests is provided by the cointegration analysis, and is presented
in Section 4. Our estimation results for the pattern wage bargaining parameters are presented in
Section 5. Our results indicate that the Norwegian wage model has preserved its main leader-follower
relationships also in the period of inflation targeting, while the rise in immigration appears to
have reduced the wage target that the wage setters tends to compromise. Our conclusions are also
summarized in Section 6, together with a short discussion.

2. Wage Pattern Relationship

In practice, national wage setting takes place in mixed system, made up of collective agreements,
individual contracts and where legislative measures (e.g., minimum wages) have a role to play.
The Norwegian system is no exception, but is it also custom to regard it as relatively more regulated
by voluntary collective agreements than is seen in most other industrial economies, Evju (2014) and
Nymoen (2017).

The results of collective bargaining typically represent compromises about annual wage
adjustments that balance the concerns about required profitability with fairness in the workers’ share
of the industry’s added value. A wage path that has a common trend with the value of average labour
productivity, often referred to as wage scope (or ability to pay), is then implied. Another term for this
kind of relationship is rent-sharing in wage formation.

In the following, we focus on three sectors: manufacturing (labelled sector 1), the private service
industry (sector 2), and the public sector (i.e., government administration, labelled sector 3).

2.1. Manufacturing Sector

We model wage, price and productivity in natural logarithms. We let w1t denote the wage
(per man hour), q1t denotes the producer price index (in domestic currency) and z1t denotes labour
productivity in fixed prices.

We also measure the national unemployment rate in log scale, and denote it by ut.
However, to represent the potential impact of EU labour market integration on manufacturing sector
wages we also include the variable IM representing the immigration as a percent of the working
population. This variable has not been log-transformed.

In terms of these variables, a long-run wage equation for manufacturing can be written as:

w1t − q1t − z1t = μw1 + βu1ut + βM1 IMt + e1t, βu1 ≤ 0, βM1 ≤ 0. (1)

see e.g., Nickell and Andrews (1983), Hoel and Nymoen (1988), Forslund et al. (2008) among others.
e1t is an unobservable error-term. A typical feature of the data set is that there are dominating positive
trends in q1t and z1t.

For clarity we assume that q1t and z1t are random walks with drifts:

q1t = μq1 + q1t−1 + vq1t, μq1 > 0 (2)

z1t = μz1 + z1t−1 + vz1t, μz1 > 0 (3)

where vq1t and vz1t are taken to be two Gaussian processes, for the sake of simplicity. (2) and (3) imply
that q1t and z1t are integrated of order 1, denoted I(1). Below, we assume that also ut and IMt are I(1).

Given these assumptions, e1t can logically be either I(0) or I(1). Earlier empirical models of
manufacturing wage formation, some of them using data going back to the 1960s, have provided
supportive evidence of cointegration, i.e., I(0), see e.g., Nymoen (1989a), Johansen (1995a), Nymoen
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and Rødseth (2003). However, none of these studies included the labour immigration variable, IM,
since the data sets used in these papers ended before EU labour marked enlargement took place.

Equation (1) has interesting implications for wage coordination and pattern wage bargaining.
First, since the relationship only involves trending variables from inside the manufacturing sector
(i.e., q1t and z1t), it gives a sustainable wage evolution for manufacturing. For wage coordination in
particular, the exclusion of wages in the other sectors of the economy is important, as otherwise relative
wage effects could damage the profitability and investments in the manufacturing sector, and lack of
coordination could lead to wage–wage spirals in the economy.

Second, in the case of cointegration (1) implies that e1t is an equilibrium correction variable which
should logically predict Δw1t+1. Third, for manufacturing to act as a wage-leader, the equilibrium
correction variable e1t should also predict Δw2t+1 and Δw3t+1. The predictive power of e1t can be tested
in for example a cointegrated VAR (CVAR), or in a simultaneous equation model (SEM). In the CVAR,
with Δwit, i = 1, 2, 3 as left hand side variables, it implies that the loading coefficients of e1t−1 should
be non-zero in each of the three rows. In the identified SEM framework we use below, the implication
is that e1t−1 should have a non-non zero coefficient in the Δw1t equation, and that Δw1t should have
non zero coefficients in the equations of Δw2t and Δw3t.

2.2. Private Service Sector and Public Sector

Potential long-run relationships for the private service sector wage, w2t, and the government
sector wage, w3t are:

w2t − w1t = μw2 + βu2ut + βM2 IMt + e2t, e2t ∼ I(0), (4)

w3t − w2t = μw3 + βu3ut + βM3 IMt + e3t, e3t ∼ I(0). (5)

Conversely, if we find empirically that e2t, e3t are I(1), this particular wage pattern does not hold
in the data.

In a clear cut pattern wage bargaining model, with manufacturing in the role as the wage leader,
the equilibrium correction variable e2t−1 should predict Δw2t and Δw3t, but not Δw1t. Likewise, e3t−1

should predict Δw3t, but not Δw1t and Δw2t. In a SEM framework, the implication is that the matrix
of contemporaneous coefficients is (lower) diagonal. Subject to (exact) identification assumptions,
stated below, these restrictions are testable.

Patterns that are less “clean” than this can also be interpreted as consistent with broad sense wage
leader–followership coordination. For example, instead of (5), w3t may cointegrate directly with w1t.
Additionally, in the SEM formulation we can allow a not completely diagonal matrix, for example the
coefficient of Δw3t in the Δw2t equation may be non-zero (allowing wage-wage effects between the
two sectors), without compromising the wage-leadership of the manufacturing sector.

2.3. Wage–Price Inflation

Although the focus of our investigation is the pattern of wage adjustments, it cannot be seen
as completely separate from development of consumer prices. In real world wage settlements,
demands for wage growth to compensate cost-of-living increases are always on the negotiating
table. Since CPI inflation, in turn, depends on growth in wage costs, it is probably unrealistic to have a
model of Δw1t, Δw2t, Δw3t and Δpt which is recursive. In the short run, nominal wage adjustment also
in the wage-leading manufacturing sector is very likely to depend on changes in CPI. For this reason,
we attempt to include a model of the logarithm of CPI, and its change (i.e., inflation) in our multiple
equation system.

Norway is a small open economy and this also affects CPI inflation. Therefore, an import price
index, pit in log form, is included in the data set. Since import prices are in domestic currency,
the inclusion of pit represents a second channel through which the market for foreign exchange can
influence wage-price inflation in our framework, the first being through the wage scope variable.
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The empirical relevance of this kind of “imported inflation”, together with domestic wage adjustments,
has been demonstrated in earlier studies, see e.g., Bårdsen et al. (2005, chp. 8).

More recently, Choo and Kurita (2015) using multivariate cointegration analysis, found that
disequilibrium in the money marked have contributed to inflation impetus in Norway. Hence, while it
is beyond the scope of this paper, a more consolidated empirical assessment of the different dimensions
of inflation dynamics is an interesting topic for further research.

3. Data Set and VAR Formulation

We use time series for three wage rates, as well as price and productivity indices. As mentioned,
it is conceivable that targets for wage shares and relative wages shift when the labour market
fundamentals change. We include the labour immigration rate and the official unemployment
rate as indicators of such structural determinants. The definitions of the variables included in the
investigation are1 :

Wit: index for hourly wage in sector i = 1, 2, 3.
Pt: consumer price index.
Q1t: price deflator of gross value added, manufacturing industry.
Z1t: labour productivity, output per hour in manufacturing.
PIt: price deflator of imports of goods and services.
Ut: unemployment rate, in per cent, civilian unemployment.
IMt: immigration from EU/EFTA countries, North America, Australia and New Zealand and non-EU
Eastern Europe, in per cent of the population aged 15–74.

As mentioned above, lower case letters refer to the logarithm of the original variables. For example,
ut = log(Ut) denotes the log of the unemployment rate. Variables in first differences are denoted by Δ.
Subscripts denote time period. For example, pt−4 refers to the log of the price level four periods back.

Figure 1 shows the time series for manufacturing wage, value added price index and productivity.
It is clearly possible to imagine that these series can contain both unit-root trends and deterministic
trends, possibly with breaks. As noted above, in this paper we attempt to model them as I(1) trends
with unrestricted drift terms. When testing for cointegration we allow for deterministic trends and for
regime shifts in the form of step-dummies. The time plots of the other two key variable, ut and IMt

are shown in Figure 2.
We aim to model wage per man hour in three sectors and the domestic price level. The first

differences of the four variables are shown in Figure 3. The empirical mean of CPI inflation was
higher during the 1990s and later. The same evolution is seen in the wage change data, although
less markedly, and more clearly for Δw1t and Δw2t than for Δw3t. All four series are characterized by
short-run oscillations (negative autocorrelation), mainly due to seasonality. However, the short-run
variation is not constant. The CPI-inflation graph indicates heteroscedasticity: compared to the 1980s,
the variance of inflation went down became reduced during the 1990s before increasing again early
in the new millennium. Heteroscedasticity is also detectable for wage changes. The wage growth
variances were lower during the 1990s than either before or since. Indeed, a four-quarter moving
average of the four variables would remove seasonality and would probably indicate that they are not
I(1), suggesting an I(2) model for further research.2

1 The data set is available from the authors on request.
2 The co-editors’ observation.
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Figure 1. Trends in manufacturing wage formation: hourly wage costs w1t, average labour productivity
z1 and value-added deflator q1. All three variables are measured in natural logarithms. The graphs
have been scale adjusted for easier comparison.
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Figure 2. Plot of the immigration flow (IM) measured as gross immigration in per cent of the
working-age population and the natural logarithm of the unemployment rate (u). The graph for
u has been scale adjusted for easier comparison.
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Figure 3. Time plots of the first differences of three wage variable and the consumer price index.

The vector of modelled log-level variables is denoted by Ywpt = (w1t, w2t, w3t, pt)′. We write the
VAR as:

ΔYwpt =
3

∑
i=1

ΓiΔYwpt−i + ΠYt−1 + ΥQt + εt, (6)

where all variables in the cointegration space are included in the extended data vector Yt =

(Ywpt, x1t, ut, IMt, z1t, pit, Dt)′.
In Yt, we have introduced x1t as notation for the wage scope variable, i.e., x1t = q1t + z1t.

The appearance of the import price index (pit) is a consequence of the decision to model the CPI level
as well as wages. As already noted, ut and IMt are also treated as I(1).

Dt in Yt denotes a vector of components that affect the level of Ywpt. In the unrestricted case it
includes a constant, a trend and two dummies for regimes: D1t is an incomes policy dummy which is
one from 1988q1 to 2002q4, and zero elsewhere, see Bowitz and Cappelen (2001) and Nymoen (2017).
D2t represents the international financial crisis, and is one in the sub-sample 2009q1-2014q1, and zero
elsewhere. We added the two variables into the cointegration relations (i.e., added them to the set of
so called restricted variables). We considered using a third dummy, for the monetary policy regime
shift in 2001q2, but we found little in support for its inclusion in the model. This decision seems to be
validated by the results of the robustness tests mentioned in Section 5.

Qt represents differences of the variables in Yt−1, as well as centered seasonal dummies and
impulse indicators for outliers, notably for 1986q3 (industrial conflict and devaluation) and the first
quarters of 2011–2014 (breaks in National accounts).

Table 1 shows a representative test-battery, with p-values in round brackets. FAR is the F-test
for autoregressive residuals (order 1–5), see Harvey (1990, pp. 174, 278), Kiviet (1986); FARCH
tests for ARCH of order 1–4, Engle (1982); χ2

NORM is the test for departures from normality,
Jarque and Bera (1980).
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Table 1. Diagnostic tests of VAR residuals, with p-values (in parentheses). Sample 1980(1)–2014(4).

w1 w2 w3 p

FAR 1.49(0.21) 1.61(0.17) 1.53(0.19) 1.46(0.21)
FARCH 0.56(0.21) 0.55(0.70) 0.17(0.95) 0.46(0.76)
χ2

NORM 1.12(0.57) 0.46(0.79) 5.30(0.07) 0.14(0.93)

4. Cointegration Analysis

The focus in the cointegration analysis is the Π matrix with dimension 4 × 11. Let r denote
the rank of Π. Since x1, u, IM, pi and z1 are non-modelled variables, r can be 0, 1, 2, 3 or 4. r = 0
corresponds to no cointegration, which would imply rejection of the theory we formulated above.
If, on the other hand, r = 4, the variables x1t, ut, IMt, z1, and pit represent five common trends in the
three nominal wage rates and the price index. The theory of wage leadership points to the wage scope
variable x1t = q1t + z1t as one dominant trend in the system, and pi (“imported inflation”) as another.

Π can be written as Π = αβ′, where α is 4 × r and β (11 × r) is the matrix with cointegration
parameters. The wage system outlined above, with a long-run wage setting equation in manufacturing,
and two normal wage relativities, is consistent with r = 3. A decision about r = 4 may be interpreted
as a potential long-run relationship between the consumer prices index and, for example, an import
price index and domestic unit labour costs.

Regarding structural breaks, we adopt a broken trend interpretation with three regimes.
This seems to be a reasonable model interpretation and representation of the two dummies D1t
and D2t that were introduced above. This approach also allows ut to make use of the recent advance
made by Kurita and Nielsen (2019) in the testing of cointegration rank in partial systems with
deterministic terms.

The result of the trace tests for cointegration rank is given in Table 2, together with 5% critical
values that are due to the work of Kurita and Nielsen (2019, Table A1), who have provided code
for simulation of the asymptotic distributions of the trace statistics for specifications such as ours.3

The values of the trace test statistic are well above the corresponding critical values for test of zero and
one cointegration relationships, which supports that the number of stationary long-run relationships
may be assumed to be at least two. The third row shows that the hypothesis r = 2 fails to be rejected.

Table 2. Tests of cointegration rank. Sample 1980(1)–2014(4).

Eigenvalue Trace Test
(λi) H0 H1 Test Statistics Critical Values

0.49 r = 0 r > 0 234.32 166.63
0.41 r = 1 r > 1 139.80 121.65
0.29 r = 2 r > 2 65.34 80.315
0.12 r = 3 r > 3 17.26 41.97

Endogenous variables: w1, w2, w3, p. Restricted variables: x1 = (q1 + z1), u, IM, pi, z1, Trend, D1, D2.
Unrestricted: Constant 95% quantiles approximated by the Gamma distribution, simulated by using the Ox
code provided with Kurita and Nielsen (2019).

Multiple cointegration relationships are unidentified even after normalization on one endogenous
variable in each equation. Identification is therefore relative to theory, which in our case is the system
of long-run relationships in Section 2. In Table 3, an (over) identified long-run system is shown.
For completeness, we have chosen to continue with r = 4 to investigate whether also the full set

3 The code is written in Ox, Doornik (2018).
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potential long-run relationships in our model can be estimated with economically meaningful results,
even though the third and fourth relationship do not have the same formal test support as the first two.4

The second and third relationships exclude the wage scope variable x1. In order to separate the
second from the third relationship, we exclude w1 and IM from the third, and w3 from the second
relationship. The three identified wage relationships show a close correspondence with the theory of
national wage regulation that we presented above. Finally, the fourth equation in Table 3 represents a
long-run price equation. As the last line in Table 3 shows, the over-identifying restrictions cannot be
rejected at the 11% level.

Table 3. Estimated long-run relationships. Sample 1980(1)–2014(4).

w1 = 1
(.)

x1 −0.71
(0.11)

u −1.91
(0.66)

IM +0.07
(0.08)

D1 +0.05
(0.15)

D2

w2 = 1
(.)

w1 −0.17
(0.03)

u −0.35
(0.18)

IM +0.03
(0.03)

D1 −0.03
(0.05)

D2

w3 = 1
(.)

w2 −0.03
(0.01)

D1 +0.04
(0.01)

D2

pt = 0.45
(0.06)

w2 − 0.09
(0.14)

z1 + 0.30
(0.06)

pi +0.03
(0.02)

D1 −0.07
(0.03)

D2

Test of over-identifying restrictions: χ2(13) = 19.45[0.11]

The coefficients of the wage relationships are also economically interpretable. In the manufacturing
sector, the coefficient (βu1) with respect to unemployment is somewhat higher in absolute value
than the estimates in Nymoen (1989b) and Johansen (1995a), for example, who used data from the
1980s. In private service the numerical significance of the estimated coefficient of u is much smaller.
In the public sector the estimated coefficient was so small that it was practical to set it to zero.
However, in both sectors, the implied wage responsiveness to unemployment will be inherited from
wage setting in manufacturing, through the equations of the system.

The two coefficients of the immigration rate (IM) imply that increased labour supply has affected
the nominal wage path negatively. Clearly, since the wave of European labour immigrants only arrived
late in our sample, after 2005, these estimates must be interpreted with care, perhaps as a mere “first
generation” of estimates of euro-area labour immigration effects on aggregate wages. Nevertheless they
represent evidence that the system of wage formation has not been immune to EU labour market
enlargement. According to the results, the rather large shift upward in IM has reduced the level of
manufacturing sector wage level in particular.

The estimated CPI equation, the fourth line of the table, is interpretable as well. The coefficients of
the wage and productivity variables are correctly signed, and the elasticities of wage and import price
are realistic, see Bårdsen et al. (2003). The additional restriction of long-run price homogeneity of degree
one changed the estimated coefficients of the wage relationships very little. However, that homogeneity
restriction was rejected statistically, and therefore we did not impose it on the models we report below.

Conditional on the identified long-run relationships, we can test for the minimum restrictions that
imply no feed-back from w2 and w3 to w1. The increase in the test of the over-identifying restrictions
is small. Therefore it is not surprising that the three restrictions, αw1,2 = αw1,3 = 0, are statistically
acceptable and the test for the over-identifying restrictions is χ2(2) = 19.45[0.11] (the incremental test
yields χ2(2) = 2.61[0.27]).

We now turn to the results of the SEM parameterization of the cointegrated VAR to investigate the
short run properties of the wage-leader/follower model. The SEM represents a relevant framework

4 One internal inconsistency that arose was that the test of omission of the trend from the cointegrated system was significant.
Dropping the trend, does however not damage the diagnostics, and it gives interpretable results. Keeping it in the
cointegration space does not.
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for analysis of pattern bargaining. In particular, we can test the system of pattern wage bargaining
without assuming a particular ordering from the outset.

5. Testing the Wage-Leading Hypothesis within a SEM

We can interpret the cointegrated VAR as the reduced form of the SEM:

B0ΔYwpt =
3

∑
i=1

BiΔYwpt−i + AECt−1 + ΨQt + εt, (7)

hence the elements in the diagonal of the contemporaneous coefficient matrix B0 are equal to one. ECt

is the vector which has as elements the equilibrium correction variables defined in accordance with (3):

ê1t = w1t − xt + 0.71ut + 1.91IMt − 0.06D1t − 0.05D2t, (8)

ê2t = w2t − w1t + 0.17ut + 0.35IMt − 0.003D1t + 0.003D2t, (9)

ê3t = w3t − w2t + 0.03D1t − 0.04D2t, (10)

ê4t = pt − 0.45w2t + 0.09z1t − 0.30pi − 0.03D1t + 0.07D2t. (11)

The economic theory of wage pattern bargaining has nothing to say about the covariance matrix
of SEM disturbances, call it Ω. Hence, in order to be of empirical relevance, that theory must be shown
to be identified (or not) for the case of unrestricted Ω. In our study, exact identification of the SEM
is therefore based on the specification that A is diagonal. From that starting point, several specific
hypotheses about wage leader/followeship are testable as overidentifying restrictions on Bi. In the
following we focus mainly on restriction on B0.

In Table 4 we report the FIML estimates of B0, and A, after imposing over-identifying restrictions
on the Bi and Ψ matrices. These restrictions aid the estimation of the focus parameters, and are
statistically valid, as the test statistic of the over-identifying restrictions, denoted χ2

ENC−VAR at the
bottom of the table, shows, cf. Doornik and Hendry (2018).

Table 4. Wage–price simultaneous equations model (SEM). FIML estimates of the contemporaneous
coefficient matrix B̂0 (first four columns with estimates) and adjustment coefficients Â (last four
columns). Standard errors in brackets below the estimates. Sample period 1980(1)–2014(4).

Δw1t Δw2t Δw3t Δpt ê1t−1 ê2t−1 ê3t−1 ê4t−1

Δw1t −1 −0.28
(0.20)

−0.11
(0.13)

0.44
(0.21)

−0.03
(0.01)

0 0 0

Δw2t 0.21
(0.06)

−1 −0.19
(0.09)

0.42
(0.13)

0 −0.11
(0.06)

0 0

Δw3t 0.27
(0.11)

−0.09
(0.16)

−1 1.10
(0.22)

0 0 −0.20
(0.03)

0

Δpt −0.05
(0.05)

0.19
(0.08)

0.07
(0.06)

−1 0 0 0 −0.10
(0.01)

χ2
ENC−VAR = 74.48[0.06]

Table 4 shows that all the elements of the Â matrix (in the last four columns) with estimated
coefficients for the equilibrium correction terms are statistically significant. These estimates are
consistent with the conclusions of the cointegration analysis in the previous section.

The estimates of the contemporaneous parameters in B̂0 show a clear pattern: In the row for
Δw1t, the estimated coefficients of Δw2t and Δw3t are negative (“wrong sign”), but they are statistically
insignificant. Conversely, Δw1t has sizeable and significant coefficients in the rows for Δw2t and Δw3t,
which supports the hypothesis that the manufacturing sector is wage-leading, with private service
production and the public sector as wage-followers.
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The column with estimated coefficients of Δpt gives an indication of the contemporaneous
compensation of cost-of-living increases in all three sectors. The estimates are statistically significant.
In addition, all though not shown in the table, the wage equations contain significant lags of CPI
inflation, in addition to Δpt (see Gjelsvik et al. (2015) for details). In sum, the model confirms the role
of cost of living consideration in wage formation.

The last row of Table 4, with the results for the inflation equation Δpt, shows that only Δw2t enters
significantly and that increased wages increase prices. This implies that there are within-quarter effects
of increased wage cost in private service production to consumer price inflation. In addition, since ê4t
includes the domestic wage level with a sizeable weight, the model is consistent with monopolistic
price setting. Hence, through private service production and equilibrium correction, the consumer
price index is influenced by both domestic wages and the price on imports in domestic currency.

Table 5 contains test statistics for the different pattern bargaining hypotheses that can be
formulated as restrictions on the B̂0 matrix. The first two rows in Table 5 test in various aspects
whether sector 1 is wage leading the other two sectors. The first row shows three versions of the null
hypothesis that manufacturing is not wage leading one or both of the two following sectors. Each test
is statistically significant at the 1% level. In the second line of tests, the second entry supports the
assumption that neither wages in the private service nor those in the public sector enter significantly
into the identified SEM equation for the manufacturing wage (sector 1). Therefore, the first two rows
of table 5 support the wage leadership of sector 1 in the pattern wage bargaining. The third row
illustrates the relationship between sectors 2 and 3. The results show that there is a less clear-cut
short-run relationship between wages in the private service sector and the public sector.

Table 5. Likelihood-ratio tests of wage leader/follower restrictions on the model in Table 4.

Restrictions: Sec 1 � Sec 2 Sec 1 � Sec 3 Sec1 � Sec 2 and 3
χ2(1) = 11.91∗∗ χ2(1) = 16.78∗∗ χ2(2) = 26.23∗∗

Restrictions: Sec 2 � Sec 1 Sec 3 � Sec 1 Sec 2 or 3 � Sec 1
χ2(1) = 2.04 χ2(1) = 0.62 χ2(2) = 2.75

Restrictions: Sec 2 � Sec 3 Sec 3 � Sec 2 Sec 2 �
� Sec 3

χ2(1) = 0.32 χ2(1) = 4.41∗ χ2(2) = 5.90

* and ** denotes significance at the 5% and 1% levels.

Table 6 shows the results of a restricted estimation where we have imposed wage-leadership
on the contemporaneous matrix B̂0 discussed above. Compared to Table 4, the remaining estimated
coefficients therefore change only little.

Table 6. Wage–price SEM with wage leader-follower restrictions imposed. FIML estimates of B̂0 and Â

in Equation (7) with standard errors in brackets below the estimates. Sample period 1980(1)–2014(4).

Δw1t Δw2t Δw3t Δpt êc1t−1 êc2t−1 êc3t−1 êc4t−1

Δw1t −1 0 0 0.30
(0.16)

−0.02
(0.005)

0 0 0

Δw2t 0.17
(0.06)

−1 0 0.33
(0.11)

0 −0.14
(0.02)

0 0

Δw3t 0.20
(0.08)

0 −1 1.19
(0.24)

0 0 −0.26
(0.07)

0

Δpt 0 0.14
(0.05)

0 −1 0 0 0 −0.10
(0.01)

χ2
ENC−VAR = 86.42[0.03]

As already noted there are several dummies in the model. However, none of them are closely
related to change in monetary policy regime that took place in 2001(2), or to the impact that the EU
labour market enlargement might have had on wage regulation.
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When a step-dummy for the a monetary policy is added to the price equation, the t-value is −0.09
and therefore insignificant. However, inflation targeters anticipated that also wage formation would
undergo a change after the new monetary policy regime was introduced, cf. Norges Bank (2002).
We find no evidence of this kind of structural break in our investigation: the test of joint significance
of the monetary policy change in the three wage equations became χ2(3) = 1.96 with p-value 0.58.
None of the individual t-values were significant.5

6. Conclusions

We formulated a theoretical model of nominal wage regulation in an open economy.
The interpretation of the model as a mechanism of national wage coordination is simple enough: If the
wage growth in the manufacturing sector leads the wage setting in the other sectors, the functional
income distribution will be relatively stable both in the wage-leading and in the wage-following sectors.
The wage relativities between sectors will also be stable.

The empirical testing of the theoretical wage regulation model involves several important steps:
Decision of cointegration rank in a partial system, identification of multiple long-run relationships and
specification of a dynamic econometric model that allows the testing of alternative hypotheses about
the interactions between wage changes in the different sectors of the model. The empirical model must
allow for the typical broad sense non-stationarity of the data.

The formal tests of cointegration rank allowed us to reject the hypothesis that there was no
cointegration in the system, and gave formal support to two long-run relationships. Tests of
over-identifying restriction on the long-run equations supported the interpretation of one of the
relationships as a wage curve equation of the manufacturing sector, and of the other as a long-run
relativity between the manufacturing wage level, and the wage level in rest of the business sector.
In order to complete the model, we chose to include also two other potential long-run relationships.
One between wages in the government sector wages and the private sector and another relationship
that we identify as a long-run price level equation.

The main conclusion of the testing of alternative hypotheses about pattern wage bargaining
within the empirical model, was that the manufacturing sector has operated as a wage leader, and with
corresponding clear roles of construction, private service production and retail, and the government
sector as wage followers. The relationships are however moderated by labour market indicators.
First, we obtain coefficients of the rate of unemployment with expected signs. Second, the econometric
results support the hypothesis that the long term wage level may have been reduced as a consequence
of immigration made possible by EU labour market enlargement in 2004. However, care must be taken
since our results may be affected by an composition effect, i.e., if immigrants have replaced natives
in the lowest paid jobs, the average hourly wage may become lowered. Hence, our results are not
conclusive evidence of reduced capacity of collective action as a result of increased labour immigration
during the first 15 years of the 2000s. Hopefully, ongoing research where natives’ wages are modelled,
will contribute towards clarification of this issue, cf. Dapi et al. (2019).

We find no indication that the new Norwegian monetary policy established in 2001 has changed
the system of wage formation as we have modelled it. In the light of the evidence, the position taken
by Norwegian inflation targeters, that an implied “over-determination” of the new regime would
force a structural break in wage pattern bargaining, overstated how invasive the monetary policy
change would become, cf. Norges Bank (2002). After all, the target of the new monetary policy was the
inflation forecast, not inflation itself.

5 Additional results, based on a sample split in 2000(4), before both the change in monetary policy and the enlargement of the
EU labour market, are available from the authors.
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Abstract: This paper examines the stability of the Bilson–Fama regression for a panel of 55 developed
and developing countries. We find multiple break points for nearly every country in our panel.
Subperiod estimates of the slope coefficient show a negative bias during some time periods and a
positive bias during other time periods in nearly every country. The subperiod biases display two
key patterns that shed light on the literature’s linear regression findings. The results point toward the
importance of risk in currency markets. We find that risk is greater for developed country markets.
The evidence undercuts the widespread view that currency returns are predictable or that developed
country markets are less rational.

Keywords: imperfect knowledge; Knightian Uncertainty; structural change; currency risky

1. Introduction

The forward rate anomaly is a long-standing puzzle in International Macroeconomics.
The anomaly is based on a linear regression of the future change of the spot exchange rate on the
forward premium. The assumptions of risk neutral investors, no capital controls, and the rational
expectations hypothesis (REH) imply that the slope coefficient (hereafter β) should be unity. However,
Bilson (1981) and Fama (1984) (BF) and many subsequent studies report that β is less than unity and
negative in the major currency markets.1 The negative bias from unity “suggests that one can make
predictable profits by betting against the forward rate” Obstfeld et al. (1996), p. 589.

Macroeconomists have explored two main explanations for the predictable excess returns:
a time-varying risk premium or systematic forecasting errors. REH risk premium models have
encountered considerable difficulty in explaining the negative bias, which has given support to models
in which market participants are less than fully rational.2

The cointegrated VAR (CVAR) studies of (Juselius 2017a, 2017b; Juselius and Assenmacher 2017;
Juselius and Stillwagon 2018) provide evidence that the forward rate anomaly may originate from
another source. These studies find that the process underpinning currency returns is not only unstable,

1 For review articles, see Froot and Thaler (1990); Lewis (1995); Chinn (2006); Engel (1996, 2014); Sarno (2005).
2 See Burnside et al. (2011a); Gourinchas and Tornell (2004); Mark and Wu (1998); Phillip and van Wincoop (2010).
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but the instability is triggered by novel historical developments such as German reunification and
the 1985 Plaza Accord. The instability implies that market participants must cope with imperfect
knowledge about the future and that returns are less predictable than widely reported. The CVAR
findings also provide evidence of a time-varying risk premium, but one based on imperfect knowledge
economics (IKE).3 In the IKE model, the market’s risk premium compensates participants for their
loss aversion and downside risk. The model relates downside risk to the gap between the exchange
rate and its benchmark value, rather than to the volatility of returns as with standard REH models.
Juselius, Assenmacher, and Stillwagon use purchasing power parity (PPP) to define benchmark values.
They find that excess returns are positively related to the gap from PPP at high significance levels
as predicted by the IKE model.4 Taken as a whole, the CVAR findings suggest that forward rate
biasedness may be better understood as a consequence of imperfect knowledge and risk, rather than a
lack of rationality.

In this paper, we present additional evidence of this view. Our analysis examines a key finding in
the literature: forward rate biasedness is less negative for developing countries than for developed
countries. Most studies report that β, although less than unity, is positive for developing countries.5

However, these countries are generally thought to be riskier for investors than developed countries.
They are characterized by greater political and macroeconomic instability, less liquid and more volatile
financial markets, and greater vulnerability to commodity price and other terms of trade shocks.
These countries’ currency markets should thus be characterized by larger and more volatile risk
premiums and thus greater forward rate biasedness. The finding that they are not is taken by Frankel
and Poonawala (2010) and others to imply a striking conclusion: currency markets in developed
countries are less rational than those in developing countries.6

We argue, however, that this conclusion, and the broader claim of predictable excess returns,
misses what is arguably the key problem facing currency forecasters: instability in the process
underpinning outcomes (Clements and Hendry (1999)).7 We go further than (Juselius 2017a, 2017b);
Juselius and Assenmacher (2017), and Juselius and Stillwagon (2018), and others in documenting this
structural change. Our structural change analysis is comprehensive; we examine the BF regression’s
instability for a large panel of 20 developed and 35 developing countries. Our sample of monthly
observations runs from the mid 1980s through January 2016 for most developed countries and the late
1990s (due to data availability) through January 2016 for many developing countries.

We find that the BF regression is characterized by multiple structural breaks for nearly all countries
in the full sample. The breakpoints for each country, in turn, imply multiple subperiods or “regimes”
that are characterized by a distinct β. In roughly half of all the subperiods for both groups of countries,
β = 1 cannot be rejected. In the other subperiods, we find regimes in which β > 1 and other regimes
in which β < 1 (and sometimes negative) for nearly all countries. The results show that there are
prolonged time periods in which one would have earned profits on average by betting against the

3 An IKE risk premium model is developed in (Frydman and Goldberg 2007, 2013a).
4 Juselius (1995) was the first to present evidence of this positive equilibrium relationship. See also (Juselius 1992, 2014, 2017a,

2017b); Cavusoglu et al. (2020); Frydman and Goldberg (2007); Hoover et al. (2008); Johansen and Juselius (1992); Johansen et
al. (2010); Juselius and MacDonald (2004). See Brunnermeier et al. (2008), and Menkhoff et al. (2012) for additional evidence
of downside risk in currency markets. In stock markets, see Ang et al. (2012).

5 For example, see Bansal and Dahlquist (2000); Chinn (2006); Flood and Rose (2002); Frankel and Poonawala (2010); Ito and
Chinn (2007); Lee (2013).

6 To account for greater irrationality, Burnside et al. (2009) develop a model in which informed speculators’ access to private
information matters more in developed countries. Burnside et al. (2011a) assumes that market participants systematically
overreact to information about future inflation. Phillip and van Wincoop (2010) develop a model of rational inattention.

7 The BF regression also suffers from bias due to the much greater persistence in the forward premium compared with
exchange rate changes. See Baillie and Bollerslev (2000); Liu and Maynard (2005); Maynard (2003); Nelson and Kim (1993);
Olmo and Pilbeam (2011); Stambaugh (2006).
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forward rate (β < 1) and other time periods in which one would have either earned profits by betting
with the forward rate (β > 1) or earned no profits at all (β = 1).8

These results undercut the widespread view that currency returns are predictable on the basis
of the linear BF regression. To predict returns, one would need to predict the structural change that
underpins outcomes in these markets. As such, the literature’s linear-regression estimates provide
little evidence, one way or the other that currency markets in developed countries are less rational
than those in developing countries.

Nonetheless, the sharp difference in the linear-regression estimates for the two groups of countries
is intriguing and raises two sets of questions. First, do the subperiod estimates of β display patterns
that shed light on why the linear estimates show a greater negative bias for developed countries?
In addition, second, are the patterns informative of the importance of imperfect knowledge and risk in
currency markets? We find affirmative answers to both questions. A key result is that the size of the
subperiod biases, negative and positive, are roughly two times larger for developed countries than for
developing countries. As such, the structural changes that occur in developed-country markets are
considerably larger and thus lead to greater capital losses when structural change occurs.

The remainder of the paper is structured as follows: Section 2 extends Frankel and Poonawala
(2010)’s linear-regression analysis by updating the sample period and enlarging the panel to
55 countries. We find that Frankel and Poonawala’s main result of a smaller bias for developing
countries is weakened in the extended panel. In Section 3, we test for instability in the BF regression
for the countries in our panel. We rely on recursive procedures that leave open the timing, magnitude,
and number of structural breaks in the data. The section reports two key patterns in the subperiod
biases. Sections 4 and 5 discuss how these patterns point toward the importance of imperfect
knowledge and risk in currency markets. Section 6 offers concluding remarks.

2. Updating the Linear Estimates: Evidence of Instability

The forward rate anomaly is based on the BF regression:

Δst+1 = α + β f pt + εt+1 (1)

where st+1 denotes the log of the spot exchange rate at time t + 1 (the domestic currency price of
foreign exchange), f pt is the forward premium on foreign exchange (the log of the forward rate minus
the log of the spot rate), εt+1 is an error term, and Δ is a first-difference operator.

Frankel and Poonawala (2010) consider the BF regression for a panel of 20 developed and 14
developing countries and a sample period that begins in December 1996 for most countries and runs
through April 2004. We first reproduce their main results. We then consider a larger panel of 55
countries, consisting of the original 34 countries plus 21 additional developing economies. We also
update the sample period so that it begins before December 1996 for most of the developed countries
and some of the developing countries and runs through January 2016.9 We use monthly data on spot
and one-month forward rates for nearly all countries, which we obtain from Thompson DataStream’s
World Market Reuters (WMR). The one exception is New Zealand, for which WMR does not provide a
consistent forward rate series. For this country, we input one-month eurocurrency interest rates and the
spot exchange rate into covered interest parity (CIP) to derive a one-month forward exchange rate.10

There is clearly dependence in the data. Many of the countries in the original and extended panels
had some type of pegged or managed exchange rate regime over most or all of the sample period.

8 Goldberg et al. (Forthcoming) also find this kind of pronounced instability in β for three developed countries. See also Bansal
(1997); Clarida et al. (2009); Frydman and Goldberg (2007); Lothian and Wu (2011); Zhu (2002), and Baillie and Cho (2014).

9 The sample sizes are limited by the availability of forward rate data, which is more difficult to obtain.
10 Covered interest parity provides a very close proxy of the forward rate for economies without capital controls when

eurocurrency interest rates are used. See Levich (1985).
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The panels include countries that were in the European Exchange Rate Mechanism (ERM) until 1998,
members of the euro area starting in 1999 and later, and non-European countries, such as Hong Kong
and Saudi Arabia, which maintained tight U.S. dollar pegs. However, even for floating-rate regimes,
we would expect U.S. macro news to impact all of the U.S. dollar exchange rates in our panel, often in
the same direction.

Frankel and Poonawala include pegged-rate and managed-floating regimes in their analysis.
They first present OLS results for all developed and developing countries, including the 11 individual
euro countries. To account for the dependence in the data, they employ balanced seemingly unrelated
regressions (SUR). The data for the euro countries is largely overlapping (from 1999–2004). Frankel and
Poonawala thus drop individual euro countries in the SUR analysis and use single euro-area spot
and forward rate series for the region. However, they continue to include other tightly pegged
developed- and developing-country regimes in the SUR estimation (for example, Denmark, Hong Kong,
and Saudi Arabia).

We reproduce Frankel and Poonawala’s OLS and main SUR results for their original panel of
countries and sample periods. In order to fully exploit our extended data set, we also estimate an
unbalanced SUR model that includes all developed and developing countries.11 We use single
euro-area spot and forward rate series for the 11 developed euro countries in our panel, but,
unlike Frankel and Poonawala, we treat Denmark as in the euro-area.12,13 Our extended panel
includes five developing euro countries that joined after the single currency’s inception (Estonia,
Latvia, Lithuania, Slovenia, and Slovakia). The samples for the first four of these countries begin in
April 2004. By that date, their currencies were (or soon to be) tied to the euro in an ERM. We thus
treat these countries like the other euro-area countries and drop their individual exchange rate series
from the SUR analysis. Slovakia’s sample, however, begins in March 2002. The country had a floating
currency until the end of November 2005, after which it tied its koruna to the euro as part of an
ERM. We thus include Slovakia as an additional country in our SUR analysis, ending its sample in
November 2005.

Frankel and Poonawala’s rationale for including some tightly pegged regimes, but not others in
their analysis is unclear. Including them either makes sense economically or not.

Pegged rate regimes are characterized by exchange rate fluctuations, albeit in a much more narrow
range than managed floating rate regimes. Although small, the fluctuations should be consistent
with forward rate unbiasedness under the assumptions of risk neutrality and REH, thereby providing
economic rationale for including them. Any incipient deviation from unbiasedness would lead to large
expected profits and massive capital flows that would quickly push rates back into line. Moreover,
pegged and managed-rate regimes are characterized, on the whole, by smaller PPP deviations than their
floating-rate counterparts. According to the IKE model, these regimes should be less prone to downside
risk. The question is whether the many developing countries that have them are characterized by
lower forward rate biasedness. Excluding these countries, therefore, may bias the analysis against such
a finding, hindering attempts to uncover whether risk considerations or irrationality underpinned the
pattern of forward rate biasedness across developed and developing countries.

However, the range of fluctuations in pegged rate regimes may be so narrow, and the expected
exchange rate changes so small that the expected profits from exploiting deviations may be smaller

11 The estimation procedure follows McDowell (2004) and accounts for the unbalanced data by creating a block diagonal
matrix of all the countries.

12 Six of the developed euro-area countries’ samples extend farther back in time than in Frankel and Poonawala’s dataset.
We could include the individual spot and forward rate series in the unbalanced SUR model, ending the samples in December
1998. However, the individual European currencies were bound together in an ERM before 1999, which involved monetary
policy cooperation among countries. These countries are thus best viewed as a single region for the developed country group.
Denmark was tied to the ECU/euro in an informal ERM over the entire sample and so we treat it like a euro-area country.

13 In general, the exchange rate series for any of the ERM/euro countries could be used as our euro-area series. We chose the
Austrian spot and forward rate series since this country’s sample period is the longest among the euro countries (extending
back to 1976).
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than the transactions costs (given by bid-asked spreads) and cost of capital. In this case, deviations from
unbiasedness would not result in capital flows and thus not be a reflection of the importance of risk
or irrationality.14 The Saudi Arabian riyal (SAR) is a case in point. Except for a few brief periods,
the riyal was tightly pegged to the U.S. dollar (USD) at 3.7502 for nearly the entire sample (see Figure 1).
The coefficient of variation of the spot rate over our sample is 0.0003, which is lower than the currency’s
average bid-asked spread (0.0004) over the sample.15 Deviations from unbiasedness in the SAR market
(and other tightly pegged regimes), therefore, may not be economically meaningful, thereby weakening
the strength of the empirical results.

Figure 1. SAR-USD Spot Exchange Rate 1990:06–2016:01.

In order to be conservative, we conduct the SUR analysis for a panel that also excludes the other
tightly pegged regimes, which involve USD pegs. The group entails the following countries/time
periods: Saudi Arabia, Hong Kong, Bahrain, China and Malaysia prior to August 2005, and Thailand
before August 1997.16

14 We are indebted to the editors for this argument and the SAR example that follows.
15 SAR bid-asked prices were taken from a Bloomberg terminal. Bid-asked spreads are larger in the forward market.
16 An earlier version of the paper included the tightly pegged USD regimes in the SUR analysis. The results of this analysis

(which are available on request) are slightly more favorable to our main arguments.
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2.1. Frankel and Poonawala’s Panel

Tables 1 and 2 (columns 3 and 4) report OLS results for Frankel and Poonawala’s original panel
of countries and sample periods.17 The results suggest that forward rate biasedness is much greater
for developed countries. The β estimates (denoted by β̂) for developed countries are all negative
(save for Greece). In total, 17 of the 20 economies are characterized by negative biasedness at the 5%
level (that is, β < 1), which we indicate by bold figures in the table. By contrast, only four of the 14
original developing countries are characterized by a negative β̂, and only seven of the countries in this
group have a negative bias at the 5% level. The average β̂ for the group of developed and developing
countries is −4.12 and 0.27, respectively.

Table 1. Linear individual country BF regressions for developed countries.

Developed Country Full-Sample Time Period β̂ FP (2010) Rob. SE β̂ Full Sample Rob. SE

Australia 12/84–01/16 −6.5895 2.0660 −1.0790 0.5862
Austria 01/76–01/16 −5.3837 2.1372 0.3473 0.5671
Belgium 03/85–01/16 −3.0095 2.0691 −0.1430 0.0881
Canada 12/84–01/16 −3.1380 1.6270 −0.5385 0.7371

Denmark 12/84–01/16 −5.5065 2.0821 −0.0773 0.6478
Finland 01/97–01/16 −5.0479 1.5597 −2.5680 1.5296
France 01/97–01/16 −4.9574 2.1393 −2.3726 1.6716

Germany 01/97–01/16 −4.9477 2.0923 −2.3906 1.6420
Greece 01/97–01/16 2.8595 1.4633 1.6651 0.8928
Ireland 08/86–01/16 −5.5840 2.2778 0.2311 0.9550

Italy 01/97–01/16 −4.1536 2.1424 −1.8370 1.7542
Japan 10/83–01/16 −1.5469 2.0916 −1.1362 0.8807

Netherlands 10/83–01/16 −2.9514 2.0315 −0.5618 0.7746
New Zealand 01/75–01/16 −7.7074 1.9594 −0.3427 1.0636

Norway 12/84–01/16 −3.4212 1.2589 −0.3790 0.7459
Portugal 01/76–01/16 −4.6132 2.3530 0.6550 0.1677

Spain 08/86–01/16 −5.3954 2.2810 −0.9251 0.6121
Sweden 12/84–01/16 −5.0888 1.2093 −0.1818 1.1258

Switzerland 10/83–01/16 −3.8778 2.2572 −1.4289 1.0171
UK 10/83–01/16 −2.3769 2.8693 −0.8198 1.5206

Average −4.1219 −0.6941

Equation (1) is estimated by ordinary least squares (OLS) with Newey-West robust standard errors to correct
for possible heteroskedastic and serially correlated errors. Constant terms in the regression are not reported.
Frankel and Poonawala (2010) denotes Frankel and Poonawalaâs sample periods, which run from 1996/12
through 2004/04 for most countries. Column 2 shows some countriesâ samples start at â1/97â Consequently,
the number of observations for these countries is 87, whereas for the rest, it is 88 as in Frankel and Poonawala
(2010). Figures in bold indicate rejections of the null that β = 1 at the 5% level, against the one-sided alternative
β < 1.

17 The WMR forward rate data that we use for a few of the developed countries and many of Frankel and Poonawala’s
developing countries start one or more observations after their sample begins in December 1996. The full sample dates for
each country in our panel are reported in column 2 of Tables 1 and 2.
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Table 2. Linear individual country BF regressions for developed countries.

Developing
Country

Full-Sample
Time Period

β̂ Frankel and
Poonawala (2010)

Rob.
SE

β̂ Full
Sample-FP
Countries

β̂ Full
Sample-Non-FP

Countries

Rob. SE

Argentina 04/04–01/16 0.8784 0.0766
Bahrain 05/00–01/16 −0.0418 0.0726
Brazil 07/00–01/16 0.1155 0.1471

Bulgaria 04/04–01/16 0.4697 1.9372
Chile 04/04–01/16 1.9463 1.1836
China 03/02–01/16 0.5732 0.1673

Colombia 03/99–01/16 1.4912 0.4180
Czech Rep. 01/97–01/16 1.3479 1.2396 1.0205 0.9551

Estonia 04/04–01/16 −0.9089 1.3922
Hong Kong 10/83–01/16 0.0593 0.0840 0.1259 0.0522

Hungary 11/97–01/16 1.1647 1.3719 −0.887 0.7263
India 11/97–01/16 −0.8749 0.4741 −0.2024 0.5131

Indonesia 01/97–01/16 0.2430 0.2579 0.2541 0.2479
Israel 07/98–01/16 −0.2879 0.3174

Kuwait 06/90–01/16 0.6315 0.8120 1.3529 0.8039
Latvia 04/04–01/16 −1.6891 0.8128

Lithuania 04/04–01/16 0.3618 1.7082
Malaysia 11/97–01/16 −0.0354 0.0123
Mexico 01/97–01/16 −0.4879 0.3188 −0.1656 0.2993

Morocco 04/04–01/16 0.3165 0.5727
Pakistan 05/98–01/16 0.0792 0.0877

Peru 04/04–01/16 0.9109 0.4792
Philippines 01/97–01/16 1.1688 1.3846 1.4306 0.9806

Poland 09/96–01/16 0.6004 0.4437
Romania 04/04–01/16 −0.6929 1.0140

Russia 04/04–01/16 2.5016 0.2242
S. Africa 06/90–01/16 −3.3386 1.7908 −1.6162 1.0938
S. Arabia 06/90–01/16 −0.0435 0.0265 −0.0871 0.0539
S. Korea 04/98–01/16 0.5351 0.5648
Slovakia 03/02–01/16 −2.7064 0.8820
Slovenia 04/04–01/16 1.1925 2.2092

Singapore 12/84–01/16 1.1711 0.7445 0.9057 0.4659
Taiwan 01/97–01/16 0.8770 0.7308 0.7942 0.4810

Thailand 03/95–01/16 1.8896 0.3506 1.5830 0.5017
Turkey 01/97–01/16 0.0200 0.0348 −0.0047 0.0225

Average 0.2734 0.3172 0.2671

Equation (1) is estimated by ordinary least squares (OLS) with Newey-West robust standard errors to correct
for possible heteroskedastic and serially correlated errors. Constant terms in the regression are not reported.
Frankel and Poonawala (2010) denotes Frankel and Poonawalaâs sample periods, which run from 1996/12
through 2004/04 for most countries. Column 2 shows some countriesâ samples start at â1/97â Consequently,
the number of observations for these countries is 87, whereas for the rest, it is 88 as in Frankel and Poonawala
(2010). Figures in bold indicate rejections of the null that β = 1 at the 5% level, against the one-sided alternative
β < 1.

The balanced SUR results in columns 2 and 3 of Table 3 also show greater negative biasedness
for developed countries, although less so compared with the OLS estimates.18 Nine of the 10
developed country β̂s are negative, whereas negative estimates are found for eight of the 13 developing
countries.19 However, the percentage of developed countries that are characterized by a significant
negative bias (again shown in bold in the tables) drops to 60 percent after accounting for data
dependence, and we observe a similar percentage for developing countries. A pooled unbalanced
SUR model shows that both groups of countries are characterized by negative forward rate bias (see
Table 4, column 4).20 However, the results in Table 4 (column 3) also show, like Frankel and Poonawala,

18 As in Frankel and Poonawala (2010), the balanced sample starts in October 1997.
19 Frankel and Poonawala drop Indonesia from the SUR analysis because their sample ends in February 2002. In order to

facilitate a direct comparison, we also drop Indonesia from the analysis.
20 We estimate the pooled model as unbalanced, unlike Frankel and Poonawala. This enables us to keep all developing

countries in the analysis. The unbalanced SUR’s time period is the same as in Frankel and Poonawala (2010).
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greater biasedness for developed countries: β̂ for the group of developed countries is significantly less
than zero, whereas the zero null cannot be rejected for the developing country group.

Table 3. Seemingly unrelated regression estimates.

Developed
FP-2010 SE Full Sample SE

Australia −0.6561 1.6124 −0.4604 0.5696
Canada −0.6173 1.9678 −0.3907 0.5672

Denmark −2.0294 1.0593
Euro Area −1.938 0.8706 0.2353 0.4729

Japan 1.7178 1.7425 −0.5107 0.7336
New Zealand −2.9392 1.9216 −0.3512 0.8266

Norway −1.4489 0.8016 −0.2112 0.4926
Sweden −2.2555 1.0263 0.0901 0.7325

Switzerland −2.4694 1.1320 −1.2431 0.6492
UK −0.494 1.4048 −0.7479 0.9238

Developing

Argentina 0.8454 0.1237
Bahrain
Brazil 0.1048 0.0552

Bulgaria 0.3218 1.5762
Chile 1.0252 0.8838
China 0.6377 0.1404

Colombia 1.2850 0.3175
Czech Rep. −0.3647 0.6256 0.5578 0.7574
Hong Kong 0.0429 0.0775

Hungary −0.2275 0.6461 0.0323 0.2987
India −0.4344 0.3633 0.2357 0.3175

Indonesia 0.2687 0.1831
Israel −0.3092 0.3427

Kuwait 0.7167 0.4929 1.1272 0.4778
Malaysia −0.0312 0.0204
Mexico −0.6581 0.4038 0.0914 0.2384

Morocco 0.3793 0.3645
Pakistan 0.1020 0.0699

Peru 0.6066 0.3893
Philippines −0.5521 0.6393 1.0249 0.4946

Poland 0.2287 0.2664
Romania −0.0605 0.4791

Russia 2.0476 0.5626
S. Africa −1.6594 1.3968 0.1044 0.4304
S. Arabia −0.073 0.0573
S. Korea 0.5437 0.5122

Singapore 0.5269 0.4559 0.8214 0.5338
Slovakia −2.3804 1.1016
Taiwan 0.5754 0.4218 0.5437 0.4397

Thailand −1.1901 0.6349 0.2413 0.9797
Turkey 0.0103 0.0272 0.0059 0.0227

FP vs. Full Sample p-value = 0.0000

The table presents estimates of the BF regressionâs slope coefficient, denoted by β̂. The â Frankel and
Poonawala (2010) âcolumn reports β̂ for the FP sample from a balanced SUR model including developed
and developing countries. The âFull Sampleâcolumn reports β̂ for the full sample from an unbalanced SUR
model including developed and developing countries. The p-value presented at the bottom is for a Wald
test comparing the two sample periods, where critical values come from a Chi. Sq. distribution. The test
is conducted by estimating the unbalanced SUR model with intercept and interaction terms for the Frankel
and Poonawala (2010) sample period and testing the joint significance of these interaction terms. Full sample
estimates are from an unbalanced SUR regression, whereas the Frankel and Poonawala (2010) sample is
balanced (at 78 observations) following Frankel and Poonawala (2010). Numbers in bold indicate rejections of
the null that β = 1 at the 5% level, against the one-sided alternative β < 1.
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Table 4. Pooled regressions via unbalanced SUR.

Frankel and Poonawala (2010) Full Sample
p-Value (β = 0) p-Value (β = 1) p-Value (β = 0) p-Value (β = 1)

β̂ Developed
−1.2612 0.0200 0.0000 −0.0096 0.7140 0.0000
−0.5404 −0.0262

β̂ Developing
0.0289 0.0000 0.0512 0.0000

−0.0405 0.4750 −0.0221 0.0200

The table presents β estimates from unbalanced SUR models of pooled developed and pooled developing
countries. Both SUR models are unbalanced, even for the FP sample period, since the number of countries
are different for the developed and developing countries. For the full sample, the time periods also differ.
The p-values in the table are for tests of the developed and developing country estimates. The null hypothesis
of β = 1 is tested against the one-sided alternative that the bias is negative. The developing country group
excludes Indonesia following Frankel and Poonawala.

2.2. The Extended Panel

The regression results reported in Tables 1–4, and those in most of the literature more broadly,
should be viewed as descriptive at best. This is because the research disregards the problem of
structural change.

The problem can already be seen in the results for the extended panel of countries and sample
periods. When based on OLS regressions, we find that β̂ is considerably less negative in the extended
samples for every developed country examined (see the last two columns in Table 1). Four of these
countries now have positive estimates and the number of countries that are characterized by negative
biasedness at the 5% level drops from 17 to 12. The average OLS estimate for the developed country
group falls in magnitude from −4.19 to −0.69.

The OLS results for developing countries shows less evidence of structural change (see Table 2,
last three columns). Frankel and Poonawala’s countries continue to be characterized largely by positive
β̂s (although the number falls from ten to eight) in the extended sample periods, with an average
estimate for the group that is little changed at 0.32. The added 21 countries are also characterized by
largely positive β̂s (14 in total) with an average estimate for the added group that is little different than
the original group at 0.27.

The unbalanced SUR results are suggestive of structural change for both groups of countries
(see Table 3, the last two columns). Most developed and developing countries witness higher β̂s
compared with the original sample (seven of nine and nine of 11, respectively). All of the developing
countries that remain from the original sample (recall that we drop Hong Kong and Saudi Arabia)
are characterized by a positive full-sample β̂. A Wald test of the null that the original and extended
sample results are the same is rejected at the 1% level (see the bottom of Table 3).21,22

Full-sample slope estimates for the added 17 developing countries (recall that we also dropped
four developing euro-area countries and Bahrain and added Indonesia) are similar in character to
those for Frankel and Poonawala’s original group of countries; the β̂s are largely positive (13 of 17
and 11 of 11, respectively). The added countries’ β̂s are also mostly less than unity at the 5% level
(10 of 17), although this is the case for only five of the original countries. The extended-panel
results continue to show a greater number of negative slope estimates for developed countries.
However, Frankel and Poonawala’s main finding—that developed countries are characterized by
greater negative biasedness—is considerably weakened. The results are reported in the last three

21 The Wald test has finite sample limitations. However, it is a sensible choice here given that we do not have to estimate
multiple models unlike other commonly employed multiple restriction tests. This is particularly advantageous because the
unbalanced SUR model is computationally expensive compared to a balanced SUR model. The computational demands
increase considerably in the model with subperiods as discussed below.

22 To carry out the test, we create a dummy variable for the Frankel and Poonawala sample period. We add this dummy,
and interaction terms with the remaining regressors, and estimate another unbalanced SUR model. The Wald statistic
provides a test of the joint significance of these terms. In order to distinguish the effects of the extended sample period and
list of countries, we repeat the same procedure, but limit it to the Frankel and Poonawala (2010) countries only. We find a
significant difference between the two samples. These results are available upon request.
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columns of Table 4. They show that both developed and developing countries are still characterized by
a negative forward rate bias. However, the difference between the two country groups is much smaller
in the extended panel than in the original panel. Indeed, the developing-country slope estimate is no
longer significantly less than zero.

Taken as a whole, the original and extended panel results suggest that the BF regression’s results
depend on the time period examined.

3. The Changing Nature of Forward Rate Biasedness

We now investigate systematically the BF regression’s instability across developed and developing
countries. Other studies examine this instability, but mostly for a sample of either developed or
developing countries. Many studies test for one or more exogenously imposed breaks in a sample of
developed countries and report strong evidence of structural change.23 Researchers have also used ad
hoc procedures to identify subperiods in the data that are characterized by high or low volatility of
returns (Clarida et al. (2009)) or money growth (Moore and Roche (2012)). They report β estimates
that are negative during low volatility regimes and positive during high volatility regimes. Moore and
Roche (2012) is one of the few studies that examines the instability for both developed and developing
countries. They find that β̂ varies with the volatility regime for both groups of countries.

Several studies employ endogenous structural change tests that allow for multiple break points at
unknown dates. Bekaert and Hodrick (1993) and MacDonald and Nagayasu (2015) estimate a two-state
Markov-switching model for the largest developed countries. They find that β̂ varies with the volatility
regime. Bai and Mollick (2010) and Baillie and Cho (2014) employ Bai and Perron’s (1998, 2003a, 2003b)
sequential test procedure, the former for a sample of developing countries and the latter for a sample
of developed countries. They find that financial crisis triggers shifts in β̂ from negative to positive
values.24 All of these studies find evidence of multiple break points.

In order to examine the instability of the BF regression, we make use of Bai and Perron’s (1998,
2003a, 2003b) sequential test approach.25 The test procedure has several advantages for our purposes
over the Markov-switching approach. Bekaert and Hodrick’s (1993) and MacDonald and Nagayasu’s
(2015) Markov-switching models assume that any structural change involves a switch between only
two possible states, thereby assuming that all structural changes are of the same size. This model also
assumes that the timing of these changes is governed by a fixed probability distribution. By contrast,
the Bai and Perron procedure leaves open the timing and magnitude of the structural changes in the
BF regression.

One limitation of Bai and Perron’s test is that its sequential procedure tends to stop too early in
the search for breaks (Perron (2006)). To address this problem, we combine the sequential procedure
with the double maximum tests proposed by Bai and Perron (1998), following the recommendations
of Perron (2006) and Bai and Perron (2003b). We first employ the double maximum test. If the test
indicates a break, we continue with the sequential procedure to look for additional break points,
conditional on the break point found by the double maximum test.26 If neither of the two tests indicate
a break for a country, we conclude with no breaks (this was the case only for Bahrain).27

The estimated break points, in turn, give rise to multiple subperiods with distinct βs.
The unbalanced SUR model that we estimate below implies a system in which the number of equations
equals the number of countries times the number of distinct subperiods. Small subperiods decrease

23 For example, see Engel (1996); Frydman and Goldberg (2007); Lewis (1995); Mark and Wu (1998).
24 See also Ahmad et al. (2012), who finds that the Asian financial crisis triggered structural change in a panel of

Asian-Pacific countries.
25 The testing procedure proceeds equation by equation and thus ignores cross-country correlations in the data.
26 We set the trimming level of the tests to 5%, as opposed to the commonly employed 15%. This decision allows for a

wider portion of the sample to be considered in the test and relaxes the limit on the maximum number of allowed breaks.
Relaxing this limit is important because we would expect many breaks for countries with the longest time series.

27 We also perform supF tests, which confirm our break number and dating results.
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the accuracy of our estimates, while increasing the variance-covariance matrix’s size and thus the
model’s computational demands. To address these problems, we restrict the size of a subperiod to
twelve months or longer (with exceptions for the first and the last subperiods). As such, we drop any
break point that falls within this minimum bound.28,29

In carrying out the structural change analysis, we augment the BF regression with lags of both the
left- and right-hand side variables via an ADL(2,2) specification. The dynamic specification accounts
for autocorrelated errors, which are typical with persistent variables like the forward premium.30

3.1. More Frequent Structural Change

Our structural change analysis examines the BF regression’s stability for nine developed countries
(including the euro area) and 28 developing countries (Estonia, Latvia, Lithuania, and Slovenia are
treated as part of the euro area), including Slovakia, whose sample period runs from March 2002
through November 2005 (recall that we dropped Hong Kong, Saudi Arabia, and Bahrain). Table 5a,b
report summary results on the frequency of structural change in our panel. Column 2 of the tables
shows the number of break points identified for each country. The full set of change dates is reported
in Table A1 in the Appendix A. We find that the frequency of structural change in the BF regression is
higher for both developed and developing countries than previously reported. The number of break
points for both groups of countries varies considerably, in part because of variation in sample sizes.
The number of break points ranges from a low of four to a high of 10 for developed countries and from
a low of one to a high of 10 for developing countries. The average number of breaks is 8.67 and 5.32
for the developed and developing groups, respectively.

In order to account for differences in sample sizes, we compute the average number of break points
per decade for each country (column 3 in the tables). We would have expected that developing countries
would be characterized by considerably more structural change, given their greater vulnerability to
macroeconomic and political instability. However, the average number of break points per decade
for developed countries is not so different than the number for developing countries, at 2.59 and 3.35,
respectively. Table 6 reports a difference in means test for these averages (column 2). The test compares
the average number of breaks per decade for developed and developing countries via a two-sample
t-test. Hence, this is a descriptive result. The test is suggestive that the difference is significant, with a
p-value equal to 0.053.

28 We also estimate an unbalanced SUR model without the one-year subperiod restriction for the full panel. A few slope
estimates become very large. However, the estimates for the common/comparable subperiods are close in magnitude.
These results are available upon request.

29 Alternative solutions to this problem include increasing the trimming parameter and/or imposing restrictions on the
estimated coefficients, neither of which is suitable for our economic application. The former would limit the number of
breaks, whereas there is no obvious bound to impose with the latter.

30 Johansen et al. (2010) and Juselius (2014) find that interest rate differentials (and thus the forward premium) are near I(2).
Bai and Perron (1998) suggest modeling a dynamic context by either adding lagged values to the regression or employing
a nonparametric correction. Deng and Perron (2008) show in the context of other structural change tests that a dynamic
specification helps address the autorrelated-errors problem.
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Table 5. Linear individual country BF regressions for developed countries.

a

# of Ave # # of # of # of # of # of # of

Breaks Per Decade β < 1 β > 1 β < 1 Signif.
β > 1

Signif.
β < 1 Per
Decade

β > 1 Per
Decade

Australia 4 1.2869 5 0 1 0 1.6086 0
Canada 10 3.2172 7 4 4 1 2.252 1.2868

Euro Area 10 2.5105 9 2 3 0 2.2594 0.5021
Japan 7 2.1762 4 4 2 2 1.2435 1.2435

Norway 10 3.2172 5 5 4 1 1.6086 1.6086
N. Zealand 10 2.4390 8 3 3 2 1.9512 0.7317

Sweden 10 3.2172 7 4 3 1 2.2520 1.2869
Switzerland 7 2.1762 5 3 1 0 1.5544 0.9326

UK 10 3.1088 7 4 5 1 2.1762 1.2435
AVE 8.6667 2.5944 6.3333 3.2222 2.8889 0.8889 1.8784 0.9817

Columns 4 vs. 5 Columns 6 vs. 7 Columns 8 vs. 9
p-value 0.0007 0.0022 0.0006

b

Developing # of Ave # Breaks # of # of # of # of # of # of

Country Breaks Per Decade β < 1 β > 1 β < 1 Signif.
β > 1

Signif.
β < 1 Per
Decade

β > 1 Per
Decade

Argentina 6 5.1064 6 1 4 0 5.1064 0.8511
Brazil 4 2.5806 3 0 2 0 1.9355 0.0000

Bulgaria 5 4.2553 4 2 1 1 3.4043 1.7021
Chile 6 5.1064 5 2 1 0 4.2553 1.7021
China 5 4.7999 4 2 3 0 3.8400 1.9200

Colombia 3 1.7822 1 3 1 2 0.5941 1.7822
Czech Rep. 6 3.1579 4 3 1 0 2.1053 1.5789
Hungary 7 3.8532 6 2 4 0 3.3028 1.1009

India 8 4.4037 8 1 3 0 4.4037 0.5505
Indonesia 1 0.5263 1 1 1 0 0.5263 0.5263

Israel 1 0.5714 2 0 1 0 1.1429 0.0000
Kuwait 5 1.9544 2 4 1 2 0.7818 1.5635

Malaysia 1 0.9600 2 0 1 0 1.9200 0.0000
Mexico 7 3.6842 6 2 2 1 3.1579 1.0526

Morocco 6 5.1064 4 3 3 0 3.4043 2.5532
Pakistan 3 1.6981 3 1 3 0 1.6981 0.5660

Peru 6 5.1064 5 2 3 0 4.2553 1.7021
Philippines 7 3.6842 5 3 5 1 2.6316 1.5789

Poland 7 3.6207 5 3 2 1 2.5862 1.5517
Romania 6 5.1064 4 3 2 1 3.4043 2.5532

Russia 8 6.8085 6 3 2 2 5.1064 2.5532
South Africa 10 3.9088 8 2 1 0 3.1270 0.7818
South Korea 8 4.5070 7 2 3 1 3.9437 1.1268

Slovakia 2 1.4458 2 0 2 0 1.4458 0.0000
Singapore 5 1.6086 4 2 0 0 1.2869 0.6434

Taiwan 6 3.1579 5 2 2 1 2.6316 1.0526
Thailand 6 3.2579 6 1 3 0 3.2579 0.5430
Turkey 4 2.1053 5 0 5 0 2.6316 0.0000

Ave. 5.3214 3.3523 4.3929 1.7857 2.2143 0.4643 2.7817 1.1263

p-value Columns 4 vs. 5
0.0000

Columns 6 vs. 7
0.0000

Columns 8 vs. 9
0.0000

Columns 2 and 3 present the number of breaks in β in total and on average per decade, respectively, using Bai
and Perron’s (1998, 2003a, 2003b) sequential approach. Columns 4–9 present the number of negative and
positive biases based on the unbalanced SUR results for developed countries. We lose one subperiod for
Norway due to multicollinearity. The reported p-values are for two sample t-tests and compare the listed
columns. The tests should be viewed as descriptive; they test the average number of the respective occurrences
and are based on structural break tests that do not account for dependence in the data.

Table 6. Difference in means tests.

Ave # of Breaks Per Decade # of Pos/Neg Biases (# of Pos/Neg Biases )/# of Decades

Developed 2.5944 0.5457 0.1680
Developing 3.3523 0.5230 0.3171

p-value 0.0531 0.8891 0.0598

The table compares the developed and developing countriesâaverage number of breaks per decade, the mean
ratio of positive to negative biases, and the mean ratio of positive to negative biases per decade. The reported
p-values are for two-sample t-tests. The tests should be viewed as descriptive; they test the average number
of the respective occurrences and are based on structural break tests that do not account for dependence on
the data.

3.2. β Is Not Always Less Than Unity

The break points reported in Table A1 imply multiple subperiods or regimes for which the
hypothesis of no structural change cannot be rejected. We use these results and estimate the
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BF regression in the distinct regimes for each country in our panel. In order to correct for correlation in
the data, we make use of an unbalanced SUR model, which is estimated by the approach described
by McDowell (2004). The regression estimates the subperiod β̂s for all developed and developing
countries as a system, thereby accounting for correlations across countries and making the model
temporally nonlinear.

The subperiod estimates give rise to a piecewise linear specification of returns for each country.
If the subperiod βs were uniformly less than unity, betting against the forward rate would continue
to yield predictable profits despite the slope coefficient’s instability (assuming α = 0). Bekaert and
Hodrick’s (1993) and MacDonald and Nagayasu’s (2015) Markov-switching results suggest that this is
the case; they find a β < 1 for both states of nature.

However, test procedures that leave open the number, timing, and magnitude of the structural
changes show that β is not always less than unity. The full set of subsample estimates for each country
are reported in Table A1. We summarize the results in the last six columns of Table 5a,b. Columns 4
and 5 report the number of regimes for which the estimated bias is found to be less than and greater
than unity, respectively. Columns 6 and 7 show the number of estimated biases that are significantly
negative and positive (at the 5% level), respectively, while columns 8 and 9 report the number of
negative and positive biases per decade.

We find that β = 1 cannot be rejected in roughly half of the regimes for most countries in both
groups. This finding is not surprising given the much shorter subperiod samples. We also find that
nearly all countries are characterized by multiple regimes in which β̂ < 1 and other regimes in which
β̂ > 1.31

The pronounced instability vitiates the view that forward rate biasedness is more negative for
developed than developing countries. Moreover, assuming away the instability misses revealing
patterns in the biasedness across the two groups of countries. These patterns shed light on the
literature’s linear regression estimates. They also point towards the importance of risk in driving
currency markets.

3.3. Two Key Patterns

Two key patterns emerge from the subperiod slope estimates. One pattern is shared by both
developed and developing countries: regimes with a negative bias occur more frequently than those
with a positive bias. The other pattern reveals an important difference across the two country groups:
the size of the subperiod biases, both negative and positive, is much larger for developed countries.

3.3.1. Negative-Bias Subperiods Are More Frequent

Table 5a,b, columns 4 and 5, show that the regimes in which β̂ < 1 occur roughly twice as often in
our sample on average as those in which β̂ > 1 for both country groups: 6.33 and 3.22, respectively,
for developed countries and 4.39 and 1.79, respectively, for developing countries. Difference in means
tests (which are reported at the bottom of the tables and again should be treated as descriptive) indicate
that the number of negative biases is significantly higher than the number of positive biases for both
groups of countries. Moreover, the average of the ratios of positive to negative estimated biases for
developed countries is little different than that for developing countries, at 0.55 and 0.52, respectively.
These averages are reported in Table 6, column 3, along with a difference in means test, which suggests
a small difference. Again, the tests in Table 6 should be viewed only as descriptive since they do not
account for the dependence across countries.

The greater number of negative estimated biases for both groups of countries could be a result
of sample sizes. To check this possibility, we examine the number of positive and negative biases

31 Bansal (1997); Clarida et al. (2009); Frydman and Goldberg (2007); Lothian and Wu (2011); Moore and Roche (2012); Zhu
(2002), and Baillie and Cho (2014) also report negative and positive estimates of subperiod biases.

463



Econometrics 2020, 8, 43

per decade for each country (columns 8 and 9 in the tables). We find that the scaled figures deliver
a similar result: the number of negative biases on average is roughly twice the number of positive
biases for developed and developing countries, respectively. We also examine the ratio of positive to
negative estimated biases for each country per decade. Table 6 (column 4) reports the average ratio for
developed and developing countries, along with a difference in means test. The test is suggestive that
the difference is not large.

The higher frequency of negative-bias subperiods is suggestive that carry trade strategies,
which bet against the forward rate, are profitable over prolonged stretches of time in both developed
and developing countries. Burnside et al. (2007, 2011b), and others report such profitability.
However, our structural change results imply that carry trade returns are time dependent and risky.32

Time periods that are characterized by a β̂ < 1 and carry trade profits are eventually followed by a
time period with a β̂ > 1 and carry trade losses.

3.3.2. Developed Countries Have Larger Biases

Tables 7 and 8 (columns 2 and 3) report the average size of the estimated negative and
positive subperiod biases for the two country groups. We find that the negative and positive
biases for developed countries—−4.11 and 7.25, respectively—are roughly 1.5 and 4 times larger
on average, respectively, than the negative and positive biases for developing countries—−2.94 and
1.85, respectively. We see similar patterns when we compute averages of only the significant β̂s
(columns 4 and 5 in the tables) or consider a weighted average of the β̂s using as weights the number
of observations in a subperiod (columns 6 and 7 in the tables). Statistical tests reported in Table 9
(columns 2–5) show that the size differences in both the negative and positive biases across developed
and developing countries are largely significant. The tests take into account the variance–covariance
matrix of the unbalanced nonlinear SUR regression.33

Table 7. Average forward rate bias across regimes: developed countries.

Full Sample Ave Ave Ave Signif Ave Signif WAve WAve

Developed Country (β̂ − 1) < 0 (β̂ − 1) > 0 (β̂ − 1) < 0 (β̂ − 1) > 0 (β̂ − 1) < 0 (β̂ − 1) > 0

Australia −2.9914 NA NA NA −1.7228 NA
Canada −5.9271 6.7986 −20.58 18.6943 −3.9874 4.3390

Euro Area −3.0035 2.0495 −4.2737 1.8425 −2.861 2.0519
Japan −3.1328 22.4420 −2.4243 43.5799 −2.2822 12.4000

Norway −1.8024 4.3062 NA 14.1781 −1.9779 3.7675
N. Zealand −5.2393 3.7370 −5.4428 4.7345 −4.0872 3.9194

Sweden −2.3979 5.6082 −4.8378 18.3950 −2.6548 5.3595
Switzerland −8.4811 6.9277 NA NA −3.9068 6.9442

UK −4.0296 6.1613 −8.5512 3.5790 −3.9248 5.2884
AVE −4.1117 7.2538 −7.685 15.0005 −3.0450 5.5087

The table compares the developed and developing countriesâaverage number of breaks per decade, the mean
ratio of positive to negative biases, and the mean ratio of positive to negative biases per decade. The reported
p-values are for two-sample t-tests. The tests should be viewed as descriptive; they test the average number
of the respective occurrences and are based on structural break tests that do not account for dependence in
the data.

32 See Baillie and Cho (2014); Brunnermeier et al. (2008); Melvin and Taylor (2009), and Daniel et al. (2017) for additional
evidence of this time dependency and riskiness.

33 The Wald tests in Table 9 consider the inidividual subsample biases, negative and positive, for developed and developing
countries. The test is conducted under the null that the negative and positive biases for the two country groups are equal
at mean.
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Table 8. Average forward rate bias across regimes: developed countries.

Full Sample Ave Ave Ave Signif Ave Signif WAve WAve

Developing Country (β̂ − 1) < 0 (β̂ − 1) < 0 (β̂ − 1) < 0 (β̂ − 1) < 0 (β̂ − 1) < 0 (β̂ − 1) < 0

Argentina −0.5385 0.1154 −0.427 0.1154 −0.4789 0.1154
Brazil −0.3912 NA −0.5771 NA −0.148 NA

Bulgaria −15.6032 8.1199 NA NA −13.6887 9.6010
Chile −9.5817 0.4332 −18.2676 0.3136 −10.0681 0.3785
China −0.8983 1.2445 −0.925 0.6309 −0.8086 1.0236

Colombia −2.014 1.9693 −2.014 1.9693 −2.014 1.0956
Czech Rep. −8.9897 3.1573 −5.9186 NA −6.6408 3.1830
Hungary −2.886 0.3530 −2.4584 0.0809 −2.1472 0.2909

India −1.3612 0.2974 −2.2732 NA −1.2374 0.2974
Indonesia −0.8434 2.8981 NA 2.8981 −0.8434 2.8981

Israel −1.0081 NA NA NA −1.0689 NA
Kuwait −1.4426 1.8809 NA 1.8809 −1.3513 1.3770

Malaysia −3.1463 NA NA NA −2.3838 NA
Mexico −0.9832 3.1531 NA 5.8058 −1.0102 2.2689

Morocco −1.2506 0.5352 NA 0.4733 −1.2125 0.5333
Pakistan −0.6239 0.3060 −0.4678 0.3060 −0.4954 0.3060

Peru −1.926 0.9912 −3.1029 0.5442 −2.263 0.9142
Philippines −3.0746 0.8712 −3.0746 1.5622 −2.4908 0.9241

Poland −1.8891 4.6053 −0.3618 8.3328 −1.4679 4.6682
Romania −1.6979 3.5425 NA 9.5916 −1.6564 3.3703

Russia −1.4876 1.4999 NA 1.8991 −1.6152 1.7428
S. Africa −0.7914 1.0140 −0.1457 1.8378 −0.5176 NA
S. Korea −2.2052 1.0901 −9.541 1.9395 −1.9658 1.2115
Slovakia −4.0233 NA −3.8608 NA −4.0197 NA

Singapore −0.3186 2.2261 NA 1.0443 −0.3005 1.5448
Taiwan −10.6036 1.7152 −48.4316 3.3931 −5.2055 1.5626

Thailand −1.7939 0.4889 −3.1215 0.4889 −1.687 0.4889
Turkey −0.8314 NA −0.7207 NA −0.8047 NA

AVE −2.9359 1.8482 −5.8716 2.2554 −2.4854 1.8089

The table presents the estimates from the unbalanced SUR model. Ave ((β̂) − 1) is the straight average
of the sub-period forward rate biases. Ave Signif takes into account only the 5% significant β̂ estimates.
WAve denotes a weighted average using the number of observations in each subperiod for weights.
NA denotes not applicable due to lack of observations.

Table 9. Difference in means tests.

Ave Ave
Ave Ave

Ave Ave Ave Signif. Ave Signif.
Signif Signif

1990s–2016 1990s–2016

(β̂ − 1) < 0 (β̂ − 1) >0 (β̂ − 1) < 0 (β̂ − 1) > 0 (β̂ − 1) < 0 (β̂ − 1) > 0 (β̂ − 1) < 0 (β̂ − 1) > 0

Developed −4.1117 7.2538 −7.685 15.0005 −5.2049 7.5580 −8.7729 17.7866
Developing −2.9359 1.8482 −5.8716 2.2554 −2.9347 1.8482 −5.8716 2.2554

p-value 0.1581 0.0006 0.0002 0.0000 0.0610 0.0000 0.0540 0.0001

The table presents the averages of the negative and positive biases for developed and developing countries.
Ave is the straight average of the sub-period forward rate biases. Ave Signif takes into account only the 5%
significant β̂ estimates. The reported p-values are for Wald tests comparing the biases of developed and
developing countries, where the critical values come from the Chi Sq. distribution.

3.3.3. Origins of Linear Regression Results

The two key patterns show the origins of the literature’s linear regression findings. The negative
biasedness found for both developed and developing countries arises from the greater frequency of
regimes for which β̂ < 1. The larger negative bias that Frankel and Poonawala (2010) and others report
for developed countries stems from the much larger subperiod biases for this group.

The results for the developed countries stem in part from the behavior of the 1980s, which were
characterized by large swings in dollar exchange rates. The developing-country samples miss this
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period, which may underpin the larger biases for developed countries.34 In order to check this
possibility, we analyze the biases of the developed countries for truncated samples that start in
the 1990s.35

Table 10 reports these results. We find that the size of the estimated biases for developed countries
is, for the most part, even greater than when the 1980s are omitted from the sample. They continue
to show that the size of both negative and positive biases is larger for developed than developing
countries. The last four columns of Table 9 show that the differences continue to be significant for this
time period.

Table 10. Average forward rate bias across regimes: developed countries.

1990s–2016 Ave Ave Ave Signif Ave Signif WAve WAve

Developed Country (β̂ − 1) < 0 (β̂ − 1) > 0 (β̂ − 1) < 0 (β̂ − 1) > 0 (β̂ − 1) < 0 (β̂ − 1) > 0

Australia −3.4122 NA NA NA −1.1091 NA
Canada −6.7085 6.7986 −20.58 18.6943 −3.8371 4.3390

Euro Area −4.2955 2.2566 −4.8451 NA −2.3744 1.1410
Japan −3.881 22.4420 −2.4243 43.5799 −1.9602 12.4000

Norway −1.7755 4.3062 NA 14.1781 −1.5509 3.7675
N. Zealand −8.6162 5.6367 −5.4428 5.6367 −3.2916 2.0733

Sweden −3.0723 5.6082 −6.216 18.3950 −2.1244 5.3595
Switzerland −13.1124 6.9277 NA NA −3.5167 6.9442

UK −3.3261 6.1613 NA 3.5790 −2.5905 5.2884
AVE −5.3556 7.5172 −7.9016 17.3438 −2.4839 5.1641

The table presents the estimates from the unbalanced SUR model. Sample periods begin after the first break
point in the 1990s for each country. Ave ((β̂) − 1) is the straight average of the sub-period forward rate biases.
Ave Signif takes into account only the 5% significant β̂ estimates. WAve denotes a weighted average using the
number of observations in each subperiod as weights. NA denotes not applicable due to lack of observations.

4. Unpredictability and Imperfect Knowledge

The pronounced instability of forward rate biasedness implies that currency returns are not
predictable on the basis of the linear BF model. However, currency returns may nonetheless be
predictable. The question turns on whether the instability can be modeled ex ante with a probability
rule. Goldberg et al. (Forthcoming) examine this question for six developed-country markets.
They consider the out-of-sample predictive performance of Markov-switching and other nonlinear
regression models. They find that the nonlinear models have little or no predictive power.36

This finding is supportive of the main premise of imperfect knowledge economics: the process
underpinning economic outcomes undergoes change at points in time and in ways that cannot be
characterized ex ante with the same probability rule at all points in time. Frydman and Goldberg (2013a,
2013b); Frydman et al. (2015) argue that this Knightian uncertainty arises because structural change in
financial markets and the broader economy is triggered in part by historical developments that are to
some extent novel. Examples include the appointment of a new central bank governor or Treasury
Secretary, shifts in exchange rate policy, German reunification, and financial crises. The novelty of these
events implies that they are to some extent non-repetitive and that their impact on returns “deal[s] with
situations which are far too unique...[to rely solely on] statistical tabulations” Knight (1921), p. 198.

Consequently, the structural shifts that they trigger are unlikely to be characterized by a stable
probability rule.

34 Bekaert and Hodrick (1993) report that the large negative biases found for developing countries stem largely from behavior
in the 1980s.

35 Each country’s sample begins with the observation right after the first break date in the 1990s. For example, the first break
date in the 1990s for Australia is September 1993 (see Table A1). The truncated sample for this country therefore begins in
October 1993.

36 Goyal and Welch (2008) report similar results for linear models of stock returns.
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The corpus of Johansen and Juselius’s empirical work on currency markets provides considerable
evidence of a connection between structural change and novel historical developments. In nearly
all of their CVAR studies, they have had to include equilibrium mean shifts, broken trends, and a
series of various dummies to account for the impact of major policy changes and other novel historical
developments. Juselius (2017b) is a case in point. The study estimates a CVAR for the German
mark-U.S. dollar exchange rate. It finds that a well specified unrestricted model requires: (1) a broken
trend and step dummy in January 1991 to control for German reunification; (2) an impulse dummy to
account for three new German excise taxes to pay for reunification; and (3) intervention dummies to
account for large shocks to U.S. goods and bond prices in the aftermath of the 1985 Plaza Accord.

There is also considerable evidence in the broader literature that structural change in financial
markets is triggered by novel historical developments.37 These developments are not mere repetitions
of events in the past. As such, no probabilistic rule that was estimated on ex post data are likely
to enable one to predict their timing or character, let alone their quantitative impact on the process
underpinning asset returns.

Our structural change results provide additional evidence of a connection between structural
change and novel historical developments. The full set of break points for developed and developing
countries (see Table A1) show that breaks are proximate to major historical developments. For example,
one or more break points that are proximate to the 2008 global financial crisis are found for nearly
all countries. In many cases, the instability involved a change in the sign of the forward rate bias.
Not surprisingly, Baillie and Cho (2014) and Daniel et al. (2017) find that carry trade strategies produced
large losses after 2008. Few economists or market participants predicted the financial crisis, let alone
its impact on currency markets and forward rate bias.

5. Developed Countries Are More Risky Not Less Rational

The BF regression’s instability implies that conclusions based on the linear model about the
rationality or irrationality of currency markets in general, or developed countries’ relative irrationality
in particular, are unfounded. Moreover, the structural change results in Tables 5–9 point instead to the
importance of risk in driving currency returns and in understanding forward rate biasedness across
developed and developing countries.

A common measure of risk in financial markets is the volatility of returns. However, volatility
measures suffer from the problem of structural change: the basic properties of market data are not
the same during crisis and noncrisis periods (e.g., see Jorion (2009)). Indeed, market volatility tends
to fall during large price upswings away from benchmark values. However, it is precisely during
these periods that risk rises, as markets become more vulnerable to sudden structural change that is
accompanied by large and sustained price reversals. This behavior lends support to IKE’s alternative
risk premium model, which implies that growing departures from benchmark values lead to greater
risk for investors who bet on even larger departures from benchmark values. The findings of Juselius
and Assenmacher (2017), Juselius and Stillwagon (2018), Cavusoglu et al. (2020), and others provide
strong support for this alternative measure of risk.

This research suggests that the frequency and magnitude of the instability in the BF regression
provide useful additional measures of market risk.38 In terms of the forward rate puzzle, the carry
trade’s ability to generate profits or losses depends on the sign and size of the bias. A negative bias
implies profits on average, whereas a positive bias implies losses. In addition, the larger the size of the

37 In currency markets, see Goldberg and Frydman (1996a, 1996b); Ahmad et al. (2012); Beckmann et al. (2006); Melvin and
Taylor (2009), and Goldberg et al. (Forthcoming). In stock markets, see Pettenuzzo and Timmermann (2011); Frydman and
Goldberg (2011); Ang and Timmermann (2012), and Frydman et al. (2015).

38 Brunnermeier et al. (2008), Daniel et al. (2017) and others find that carry trade returns are highly negatively skewed, which
gives a measure of what they call âcrash or downside ârisk. These studies examine only developed-country markets.
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bias, the greater are the positive or negative returns. Consequently, a greater frequency or magnitude of
structural change in the BF regression implies greater risk in betting against (or with) the forward rate.

The instability results reported in Table 5a,b show that currency markets and carry trade strategies
are riskier than what is suggested by the literature’s linear regression results. In terms of the
prevalence of structural change, and the frequency with which negative- and positive-bias regimes
occur, developed and developing countries are comparably risky.

However, as we saw in Tables 7–10, the size of both the negative and positive biases is larger for
developed countries than developing countries. This finding implies greater profits to carry trade
strategies in developed countries during regimes with a negative bias, but also greater losses during
regimes with a positive bias. It also suggests that the magnitude of the structural changes that occur in
developed-country markets is on average much greater than in developing-country markets.

We find that this is the case. The size difference is easy to spot in Figure 2, which provides
frequency distributions of the absolute value of the changes in β̂ that occurred across the distinct
subperiods for each country, one for the developed countries (the solid blue line), and the other for
developing countries (the dashed red line). We find that the mean of the structural changes for the
group of developed countries (5.08) is roughly twice the mean change for the group of developing
countries (2.59). A descriptive difference in means test is suggestive that the difference is large. We also
employ an ks-test, which is suggestive that the distributions for the two country groups are different.

Figure 2. Absolute changes in β across subperiods.

The results imply that betting against (with) the forward rate in developed-country markets
delivers higher profits than in developing-country markets during subperiods in which the forward
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rate bias is negative (positive). However, they also imply that speculation in the major markets is
much more risky relative to developing-country markets than previously thought.

6. Conclusions

The structural change results reported in this paper indicate that the literature’s linear-regression
findings lead to spurious conclusions about the importance of rationality and risk in developed-
and developing-country currency markets. The BF regression’s instability and lack of predictive
power imply that the widespread claims of currency markets’ irrationality are premature at best.
The connection between structural change and novel historical developments suggests that imperfect
knowledge and not irrationally is key to understanding these markets. The instability findings also
indicate that developed-country markets are riskier than those in developing countries.

An open question is whether any of the risk factors considered in the literature can explain (1)
why subperiods with a negative forward rate bias occur nearly twice as often as subperiods with a
positive bias; and (2) why the subperiod biases (both negative and positive) are on average much
larger for developed countries. The findings of Juselius (1992, 1995, 2014, 2017a, 2017b); Johansen and
Juselius (1992); Juselius and MacDonald (2004); Juselius and Assenmacher (2017); Johansen et al. (2010)
and Juselius and Stillwagon (2018) suggest that the IKE gap measure of risk is a good place to start.
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Appendix A

Table A1. Subperiod coefficients and corresponding break dates.

Country/Subperiod Total # of Observations Coefficient Std. Error Break Dates Number of Months per Subperiod

Developed

Australia 373 −0.3082 0.5984 1999-06 175
−8.6771 13.7382 2001-02 20
−0.6493 1.1689 2008-06 88
−0.7285 2.8214 2010-1 19
0.4062 0.9101 71

Canada 373 −0.2389 0.9779 1987-04 29
−1.4654 1.0122 1989-11 31
0.2372 0.6406 1993-08 45

−2.6832 2.1780 1995-04 20
−1.2089 1.5584 2001-10 78
−9.5507 5.0584 2003-04 18
1.0208 3.9075 2006-02 34
7.5901 4.6161 2007-09 19

−19.5800 9.8565 2009-03 18
2.8892 2.4325 2014-06 63
19.6943 7.9364 18

Euro Area 478 0.4528 0.7482 1978-11 33
0.0321 0.9964 1981-09 34

−2.1309 0.9799 1984-05 32
2.8425 1.1327 1988-1 44
0.0923 0.8849 1991-07 42
3.2566 4.2712 1995-04 45

−2.4436 1.1624 2000-12 68
−5.2466 2.1608 2005-1 49
0.4328 1.5662 2008-12 47

−1.8837 5.8379 2014-03 63
−7.3366 8.4644 21
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Table A1. Cont.

Country/Subperiod Total # of Observations Coefficient Std. Error Break Dates Number of Months per Subperiod

Developed

Japan 386 0.1118 1.0256 1990-09 83
1.8287 2.5877 1995-03 54

−1.9918 1.1511 1998-07 40
2.7793 1.8288 2000-02 19

−1.4243 0.6852 2007-05 87
5.6131 2.6862 2012-10 65
83.5468 30.6330 2014-05 19
−5.2268 9.2788 19

New Zealand 492 −2.2846 1.3259 1978-02 39
4.8323 1.8153 1980-09 31

−1.0799 1.8461 1984-10 49
2.7421 6.3360 1986-10 24

−0.6085 2.6035 1989-07 33
0.5230 0.6438 1996-05 82

−3.7483 2.4294 1998-05 24
−4.4428 1.6941 2006-06 97
6.6367 3.2458 2009-02 32

-20.5526 24.2922 2011-03 25
−1.7211 5.4291 56

Norway 373 −0.9166 1.0722 1986-11 24
−0.7687 0.6134 1989-12 37
0.0000 NA 1991-06 18
0.5360 1.0065 1993-04 22
2.7532 2.9482 1995-02 22

−1.7781 1.5888 2001-06 76
−1.0843 0.8722 2008-06 84
5.1275 3.4849 2009-12 18
1.6363 2.7222 2011-11 23
1.8358 2.6974 2014-05 30
15.1781 6.6951 19

Sweden 373 −2.4596 0.7969 1987-11 36
0.7971 2.1823 1989-08 21
0.1666 0.9902 1991-07 23
2.5192 1.6961 1993-1 18

−1.0084 1.2543 1998-12 71
−2.9010 1.8458 2001-05 29
−5.2160 1.5676 2005-10 53
2.6345 1.4783 2008-06 32
19.3950 5.7027 2010-04 22
0.8363 2.2597 2014-02 46
1.8842 7.1255 22

Switzerland 386 −0.4233 0.9348 1986-08 34
−0.6516 1.2321 1990-07 47
3.2036 3.0870 1992-03 20

−0.8667 0.7235 2007-05 182
4.2475 4.1783 2009-03 22
16.3319 12.9444 2010-12 21

−32.6304 27.5562 2012-07 19
−2.8336 6.4644 41

UK 386 −7.5512 2.8635 1985-06 20
−1.8967 1.3367 1987-05 23
−2.8908 2.3169 1988-12 19
−1.8905 1.2130 1990-09 21
1.1869 1.2998 1992-07 22
4.5790 1.5620 1994-06 23

−2.2244 1.3260 2003-04 106
−0.8953 2.4753 2004-11 19
4.4470 2.3033 2008-06 43
18.4322 10.6962 2010-1 19
−3.8585 6.7086 71

Developing

Argentina 141 −0.0958 0.5646 2004-11 8
0.7673 0.3107 2007-12 37
0.2887 0.0363 2008-12 12
0.4860 0.1059 2012-06 42
1.1154 0.2744 2013-12 18
0.3883 0.0672 2015-06 18
0.9347 0.0776 6
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Table A1. Cont.

Country/Subperiod Total # of Observations Coefficient Std. Error Break Dates Number of Months per Subperiod

Developed

Brazil 186 0.9088 0.0403 2002-12 30
0.9866 0.1477 2004-06 18
0.0000 NA 2006-05 23
0.0000 NA 2014-06 97

−0.0648 0.0248 18

Bulgaria 141 -3.5688 2.9220 2004-11 8
0.4379 1.4784 2008-06 43
0.4148 2.4357 2009-11 17
4.5024 5.9976 2011-05 18
13.7375 7.3284 2014-04 35

−55.6967 30.6570 20
Chile 141 −13.8590 17.0886 2005-06 15

−10.0127 17.1859 2007-1 19
−17.2676 7.8673 2008-02 13

0.7853 4.4646 2009-02 12
−2.5543 7.6903 2010-02 12
1.5528 2.8893 2011-09 19
1.3136 0.6464 51

China 125 0.5924 0.1354 2007-08 25
0.7590 0.1756 2010-08 36
1.6309 0.5411 2012-1 17

−1.1263 0.3327 2013-12 23
0.1817 0.4695 2015-04 16
2.8581 1.6522 8

Colombia 202 1.3873 0.3123 2006-07 89
−1.0140 0.4726 2008-06 23
1.8736 0.5124 2014-02 68
5.6470 2.7517 22

Czech Rep. 228 0.8126 0.7866 1998-11 23
5.4488 4.3751 2001-05 30

−4.9186 1.9831 2005-10 53
2.7161 1.5110 2008-02 28
4.3070 10.2054 2010-03 25

−23.3166 29.1053 2011-05 14
−4.5362 4.3501 55

Hungary 218 1.0809 0.2567 2000-09 35
−1.4584 0.6682 2003-04 31
−0.7277 0.4705 2005-10 30
−6.9917 3.8187 2006-11 13
−2.8764 2.3553 2008-06 19
1.6251 1.6403 2010-04 22
0.2695 1.9366 2011-12 20
0.4686 1.1248 48

India 218 0.4456 0.1802 2002-05 55
−1.7245 0.4493 2004-03 22
−0.1465 0.9981 2006-06 27
−2.5408 0.9615 2008-03 21
0.5489 1.3950 2009-03 12
0.1722 2.2994 2010-03 12

−0.1679 0.7296 2011-03 12
1.2974 0.7176 2013-02 23
0.5237 0.5032 34

Indonesia 228 3.8981 1.9813 1998-05 17
0.1566 0.1551 211

Israel 210 −0.4982 0.3219 2008-04 118
0.4819 0.7938 92

Kuwait 307 1.7744 0.8420 1993 32

−0.3105 0.3083 2006-04 159
4.3963 1.7924 2007-11 19
3.7145 1.0172 2009-02 15

−0.5747 1.1904 2011-07 29
1.6385 0.6491 53

Malaysia 125 -4.2645 8.0502 2008-11 40
−0.0281 0.0172 85
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Table A1. Cont.

Country/Subperiod Total # of Observations Coefficient Std. Error Break Dates Number of Months per Subperiod

Developed

Mexico 228 0.6822 0.4218 1998-08 20
−0.1806 0.2565 2001-02 30
0.3187 0.7664 2003-02 24

−0.1820 0.4709 2006-05 39
1.5004 1.0725 2009-1 32

−1.0894 1.3735 2011-06 29
0.5518 1.1641 2014-08 38
6.8058 2.3260 16

Morocco 141 −0.1280 1.0689 2005-02 11
0.1180 0.4491 2008-05 39

−0.1794 0.5143 2009-11 18
1.8136 0.8844 2011-05 18
1.6589 0.8872 2012-07 14

−0.8132 0.6044 2014-07 24
1.1329 0.5115 17

Pakistan 212 0.0638 0.0573 1999-04 12
1.3060 0.4875 2000-07 15
0.4743 0.2151 2008-02 91
0.5902 0.1446 94

Peru 141 0.0831 0.4122 2005-07 16
−2.2890 1.7241 2007-08 25
2.4383 1.5624 2008-08 12

−0.8687 1.5976 2009-09 13
−2.1029 0.5409 2013 40
0.5476 0.3679 2014-07 18
1.5442 0.4653 17

Philippines 228 2.5033 0.8389 1998-08 20
−0.9631 0.8221 2000-04 20
1.4522 0.8622 2001-06 14
0.3668 0.3465 2004-11 41

−2.0437 0.9682 2006-05 18
−6.1869 3.1264 2008-1 20
1.6098 1.1308 2009-07 18

−1.1853 0.6464 77

Poland 232 0.6382 0.2803 2000-09 49
−0.5078 0.5407 2004-04 43
−3.4396 1.9701 2005-06 14
−1.2795 3.8595 2008-06 36
4.6760 2.9489 2010-11 29
2.8072 3.2026 2011-12 13
0.1432 1.4978 2014-06 30
9.3328 3.6071 18

Romania 141 −1.0197 0.5550 2005 10
−0.4703 1.7485 2007-10 33
1.6233 1.2055 2009-02 16

−0.1026 0.7470 2010-08 18
1.4124 1.5923 2012-07 23

−1.1989 1.2713 2014-06 23
10.5916 3.2499 18

Russia 141 0.8047 0.4158 2005-06 15
−1.2353 1.1216 2006-10 16
−2.1772 1.7489 2008-06 20
2.0998 0.5678 2009-07 13

−1.2113 1.9413 2010-08 13
0.2709 3.1239 2011-09 13
0.6228 1.4569 2012-10 13
3.6984 1.4420 2014-10 24
1.7015 1.5434 14

South Africa 307 0.8543 0.2783 1995-12 67
0.8414 0.7293 1997-03 15
2.8378 1.2608 1998-06 15
0.8760 0.7424 2001-08 38

−0.8895 1.2953 2003-04 20
−2.1292 1.5756 2004-11 19
1.1902 3.2008 2006-04 17
0.7352 2.2410 2007-11 19
0.7370 1.8149 2009-02 15
0.6433 0.7325 2013-08 54
0.0000 NA 28
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Table A1. Cont.

Country/Subperiod Total # of Observations Coefficient Std. Error Break Dates Number of Months per Subperiod

Developed

South Korea 213 1.2408 1.0681 1999-03 12
−8.5410 2.2965 2000-10 19
−0.3671 0.5255 2004-09 47
−0.4782 0.8521 2006-05 20
0.8593 0.4506 2008-1 20
0.6694 1.0405 2009-12 23
2.9395 0.4449 2011-04 16
0.4545 2.2550 2013-04 24

−1.0332 1.9164 32

Slovakia 45 −2.8608 1.1622 2004-1 23
−3.1858 2.0160 2005-02 22

0 NA

Singapore 373 0.5831 0.3100 1995-05 126
0.7140 1.3990 1997-12 31
0.9378 0.8768 2005-09 93
0.4908 0.6365 2008-11 38
2.0443 0.8051 2014-06 67
4.4078 3.8367 18

Taiwan 228 4.3931 1.4556 1998-08 20
1.0372 0.9006 2000-08 24
0.5288 0.9851 2002-06 22
0.8003 0.4580 2008-02 68

−0.3337 0.6425 2010-12 34
−1.5819 2.7336 2014-08 44
−47.4316 15.4424 16

Thailand 221 −0.2435 0.7765 1998-12 17
−1.1262 1.1897 2001-06 30
−3.2605 2.2530 2002-06 12
−0.9522 0.4665 2007-06 60
0.8642 1.1569 2008-10 16

−0.9202 0.4696 2013-03 53
0.6895 0.6123 33

Turkey 228 0.7387 0.0382 2001-1 49
−0.0219 0.0426 2002-1 12
0.0671 0.0286 2010-1 96
0.0322 0.0124 2014-1 48
0.0269 0.0244 23

Values in bold denote negative and significant biases (at a 0.05 level).
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