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Abstract. In this paper, we consider the partial gathering problem of
mobile agents in synchronous dynamic bidirectional rings. The partial
gathering problem is a generalization of the (well-investigated) total
gathering problem, which requires that all k agents distributed in the
network terminate at a non-predetermined single node. The partial gath-
ering problem requires, for a given positive integer g (< k), that agents
terminate in a configuration such that either at least g agents or no agent
exists at each node. The requirement for the partial gathering problem
is strictly weaker than that for the total gathering problem, and thus it
is interesting to clarify the difference in the move complexity between
them. So far, partial gathering has been considered in static graphs. In
this paper, we consider this problem in 1-interval connected rings, that
is, one of the links in the ring may be missing at each time step. In
such networks, we aim to clarify the solvability of the partial gathering
problem and the move complexity, focusing on the relationship between
values of k and g. First, we consider the case of 3g ≤ k ≤ 8g − 2. In
this case, we show that our algorithm can solve the problem with the
total number of O(kn) moves, where n is the number of nodes. Since
k = O(g) holds when 3g ≤ k ≤ 8g − 2, the move complexity O(kn)
in this case can be represented also as O(gn). Next, we consider the
case of k ≥ 8g − 3. In this case, we show that our algorithm can also
solve the problem and its move complexity is O(gn). These results mean
that, when k ≥ 3g, the partial gathering problem can be solved also
in dynamic rings. In addition, agents require a total number of Ω(gn)
(resp., Ω(kn)) moves to solve the partial (resp., total) gathering prob-
lem. Thus, the both proposed algorithms can solve the partial gathering
problem with the asymptotically optimal total number of O(gn) moves,
which is strictly smaller than that for the total gathering problem.
Keywords: mobile agent, partial gathering problem, dynamic ring



1 Introduction

1.1 Background and Related Work

A distributed system comprises a set of computing entities (nodes) connected by
communication links. As a promising design paradigm of distributed systems,
(mobile) agents have attracted much attention [6]. The agents can traverse the
system, carrying information collected at visited nodes, and execute an action
at each node using the information to achieve a task. In other words, agents can
encapsulate the process code and data, which simplifies design of distributed
systems [10].

The total gathering problem (or the rendezvous problem) is a fundamen-
tal problem for agents’ coordination. When a set of k agents are arbitrarily
placed at nodes, this problem requires that all the k agents terminate at a non-
predetermined single node. By meeting at a single node, all agents can share
information or synchronize their behaviors. The total gathering problem has
been considered in various kinds of networks such as rings [8, 9, 4], trees [1], tori
[7], and arbitrary networks [3].

Recently, a variant of the total gathering problem, called the g-partial gath-
ering problem [13], has been considered. This problem does not require all agents
to meet at a single node, but allows agents to meet at several nodes separately.
Concretely, for a given positive integer g (< k), this problem requires that agents
terminate in a configuration such that either at least g agents or no agent exists
at each node. From a practical point of view, the g-partial gathering problem
is still useful especially in large-scale networks. That is, when g-partial gather-
ing is achieved, agents are partitioned into groups each of which has at least
g agents, each agent can share information and tasks with agents in the same
group, and each group can partition the network and then patrol its area that
it should monitor efficiently. The g-partial gathering problem is interesting also
from a theoretical point of view. Clearly, if k < 2g holds, the g-partial gather-
ing problem is equivalent to the total gathering problem. On the other hand,
if k ≥ 2g holds, the requirement for the g-partial gathering problem is strictly
weaker than that for the total gathering problem. Thus, there exists possibility
that the g-partial gathering problem can be solved with strictly smaller total
number of moves (i.e., lower costs) compared to the total gathering problem.

As related work, in case of k ≥ 2g, Shibata et al. considered the g-partial
gathering problem in rings [13, 14, 18], trees [16], and arbitrary networks [15]. In
[13, 14], they considered it in unidirectional ring networks with whiteboards (or
memory spaces that agents can read and write) at nodes. They mainly showed
that, if agents have distinct IDs and the algorithm is deterministic, or if agents
do not have distinct IDs and the algorithm is randomized, agents can achieve g-
partial gathering with the total number of O(gn) moves (in expectation), where
n is the number of nodes. Notice that in the above results agents do not have
any global knowledge such as n or k. In [18], they considered g-partial gathering
for another mobile entity called mobile robots that have no memory but can
observe all nodes and robots in the network. In case of using mobile robots,
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Fig. 1. An example of the g-partial gathering problem in a dynamic ring (g = 3).

they also showed that g-partial gathering can be achieved with the total number
of O(gn) moves. In addition, the g-partial (resp., the total) gathering problem
in ring networks requires a total number of Ω(gn) (resp., Ω(kn)) moves. Thus,
the above results are asymptotically optimal in terms of the total number of
moves, and the total number O(gn) of moves is strictly smaller than that for
the total gathering problem when g = o(k). In tree and arbitrary networks, they
also proposed algorithms to solve the g-partial gathering problem with strictly
smaller total number of moves compared to the total gathering problem for some
settings, but we omit the details in this paper.

Although all the above work on the total gathering problem and the g-partial
gathering problem are considered in static graphs where a network topology does
not change during an execution, recently many problems involving agents have
been studied in dynamic graphs, where a topology changes during an execution.
For example, the total gathering problem [12], the exploration problem [11, 5],
the compact configuration problem [2] and the uniform deployment problem [17]
are considered in dynamic graphs. However, to the best of our knowledge, there
is no work for g-partial gathering in dynamic graphs, and hence in this paper
we consider it in dynamic rings as a first step.

1.2 Our Contribution

In this paper, we consider the g-partial gathering problem of mobile agents
in synchronous dynamic bidirectional rings with whiteboards at nodes. In this
paper, we consider 1-interval connected rings [12, 11, 2, 17], that is, one of the
links may be missing at each time step. An example is given in Fig. 1. In such
networks, we aim to clarify the solvability of the g-partial gathering problem and
the move complexity, focusing on the relationship between values of k and g.

In this paper, we assume that agents have distinct IDs, chirality, and knowl-
edge of n and k. In Table 1, we compare our contributions with the result for
agents with distinct IDs in static rings. We also analyze the time complexity for
solving the problem. First, we consider the case of 3g ≤ k ≤ 8g− 2. In this case,
we show that our algorithm can solve the problem with O(n) time and the total
number of O(kn) moves. Next, we consider the case of k ≥ 8g − 3. In this case,
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Table 1. Results of g-partial gathering for agents with distinct IDs in ring networks
(n: #nodes, k: #agents).

Result in [13]
Results of this paper

Result 1 (Sec. 3) Result 2 (Sec. 4)

Static/Dynamic ring Static Dynamic Dynamic

Knowledge of n and k No Available Available

Relation between k and g k ≥ 2g 3g ≤ k ≤ 8g − 2 k ≥ 8g − 3

Time complexity Θ(n) Θ(n) Θ(n)

Total number of agent moves Θ(gn) O(kn)(= O(gn)) Θ(gn)

we show that our algorithm can also solve the problem and the time complexity
and the move complexity are O(n) and O(gn), respectively. These results mean
that, although it is open that whether or not the g-partial gathering problem
can be solved in dynamic rings when 2g ≤ k < 3g, it can be solved when k ≥ 3g
and the time complexity O(n) of our algorithms is asymptotically optimal. In
addition, since k = O(g) holds when 3g ≤ k ≤ 8g−2 holds like the first case, the
both proposed algorithms can achieve g-partial gathering also with the asymp-
totically the total number of O(gn) moves, which is strictly smaller than the
move complexity for the total gathering problem. Furthermore, it is worthwhile
to mention that, while total gathering (i.e., all agents gather at a single node)
cannot be solved in dynamic rings and it needs to relax the requirement so that
agents stay at either of two nodes connected by a link [12], g-partial gathering
can be achieved without relaxing the requirement.

Due to the page limitation, we omit several pseudocodes and proofs of theo-
rems and lemmas.

2 Preliminaries

2.1 System Model

We basically follow the model defined in [12]. A dynamic bidirectional ring R
is defined as 2-tuple R = (V,E), where V = {v0, v1, . . . , vn−1} is a set of n
nodes and E = {e0, e1, . . . , en−1} (ei={vi, v(i+1) mod n}) is a set of links. For
simplicity, we denote v(i+j) mod n (resp., e(i+j) mod n) by vi+j (resp., e(i+j)) for
any integers i and j. We define the direction from vi to vi+1 (resp., vi to vi−1)
as the forward or clockwise (resp., backward or counterclockwise) direction. In
addition, one of links in the ring may be missing at each time step, and which
link is missing is controlled by an adversarial scheduler. Such a dynamic ring is
known as a 1-interval connected ring. The distance from node vi to vj is defined
to be (j− i) mod n. Note that this definition of the distance is correct when any
of the links from vi to vj is not missing. Moreover, we assume that nodes are
anonymous, i.e., they do not have IDs. Every node vi ∈ V has a whiteboard that
agents at node vi can read from and write on.

Let A = {a0, a1, . . . , ak−1} be a set of k (≤ n) agents. Agents can move
through directed links, that is, they can move from vi to vi+1 (i.e., move forward)
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or from vi to vi−1 (i.e., move backward) for any i. Agents have distinct IDs
and knowledge of n and k1. Agents have chirality, that is, they agree on the
orientation of clockwise and counterclockwise direction in the ring. In addition,
agents cannot detect whether other agents exist at the current node or not.
An agent ai is defined as a deterministic finite automaton (S, W , δ, sinitial,
sfinal, winitial, w

′
initial). The first element S is the set of all states of an agent,

including two special states, initial state sinitial and final state sfinal. The second
element W is the set of all states (contents) of a whiteboard, including two
special initial states winitial and w′initial. We explain winitial and w′initial in the
next paragraph. The third element δ : S × W 7→ S × W × M is the state
transition function that decides, from the current states of ai and the current
node’s whiteboard, the next states of ai and the whiteboard, and whether ai
moves to its neighboring node or not. The last element M = {−1, 0, 1} in δ
represents whether ai makes a movement or not. The value 1 (resp., −1) means
moving forward (resp., backward) and 0 means staying at the current node. We
assume that δ (sfinal, wj) = (sfinal, wj , 0) holds for any state wj ∈ W , which
means that ai never changes its state, updates the contents of a whiteboard,
or leaves the current node once it reaches state sfinal. We say that an agent
terminates when its state changes to sfinal. Notice that S, δ, sinitial, and sfinal

can be dependent on the agent’s ID.

In an agent system, (global) configuration c is defined as a product of the
states of all agents, the states (whiteboards’ contents) of all nodes, and the
locations (i.e., the current nodes) of all agents. We define C as a set of all
configurations. In an initial configuration c0 ∈ C, we assume that agents are
deployed arbitrarily at mutually distinct nodes, (or no two agents start at the
same node), and the state of each whiteboard is winitial or w′initial depending on
the existence of an agent. That is, when an agent exists at node v in the initial
configuration, the initial state of v′s whiteboard is winitial. Otherwise, the state
is w′initial.

During an execution of the algorithm, we assume that agents move instanta-
neously, that is, they always exist at nodes (do not exist on links). Each agent
executes the following four operations in an atomic action: 1) reads the contents
of its current node’s whiteboard, 2) executes local computation (or changes its
state), 3) updates the contents of the current node’s whiteboard, and 4) moves
to its neighboring node or stays at the current node. If several agents exist at
the same node, they take atomic actions interleavingly in an arbitrary order. In
addition, when an agent tries to move to its neighboring node (e.g., from node
vj to vj+1) but the corresponding link (e.g., link ej) is missing, we say that the
agent is blocked, and it still exists at vj at the beginning of the next atomic
action.

In this paper, we consider a synchronous execution, that is, in each time step
called round, all agents perform atomic actions. Then, an execution starting from
c0 is defined as E = c0, c1, . . . where each ci (i ≥ 1) is the configuration reached

1 The knowledge of k is used for agents to decide which proposed algorithm they apply
by comparing it with the value of g.
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from ci−1 by atomic actions of all agents. An execution is infinite, or ends in a
final configuration where the state of every agent is sfinal.

2.2 The Partial Gathering Problem

The requirement for the g-partial gathering problem is that, for a given integer
g, agents terminate in a configuration such that either at least g agents or no
agent exists at each node. Formally, we define the problem as follows.

Definition 1. An algorithm solves the g-partial gathering problem in dynamic
rings when the following conditions hold:

– Execution E is finite (i.e., all agents terminate in state sfinal).
– In the final configuration, at least g agents exist at any node where an agent

exists.

In this paper, we evaluate the proposed algorithms by the time complexity
(the number of rounds for agents to solve the problem) and the total number of
agents moves. In [13], the lower bound on the total number of agent moves for
static rings is shown to be Ω(gn). This theorem clearly holds also in dynamic
rings.

Theorem 1. A lower bound on the total number of agent moves required to
solve the g-partial gathering problem in dynamic rings is Ω(gn) if g ≥ 2.

On the time complexity, the following theorem holds. Intuitively, this is be-
cause there exist an initial configuration and link-missings such that the distance
between some agent ai and its nearest agent is Ω(n), which requires Ω(n) rounds
for ai to meet with other agents.

Theorem 2. A lower bound on the time complexity required to solve the g-
partial gathering problem in dynamic rings is Ω(n).

3 The case of 3g ≤ k ≤ 8g − 2

In this section, when 3g ≤ k ≤ 8g − 2, we propose a naive algorithm to solve
the g-partial gathering problem in dynamic rings with O(n) rounds and the
total number of O(kn) moves. Since k = O(g) holds in this case, this algorithm
is asymptotically in terms of both the time and move complexities, similar to
the second algorithm explained in Section 4. In this algorithm, all agents try
to travel once around the ring to get IDs of all agents, and then determine
a single common node where all agents should gather. However, it is possible
that some agent cannot travel once around the ring and get IDs of all agents
due to missing links. Agents treat this by additional behaviors explained by the
following subsections. The algorithm comprises two phases: the selection phase
and the gathering phase. In the selection phase, agents move in the ring and
determine the gathering node where they should gather. In the gathering phase,
agents try to stay at the gathering node.
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3.1 Selection phase

The aim of this phase is that each agent achieves either of the following two
goals: (i) It travels once around the ring and gets IDs of all agents, or (ii) it
detects that all agents stay at the same node. To this end, we use an idea similar
to [12] which considers total gathering in dynamic rings. First, each agent ai
writes its ID on the current whiteboard, and then tries to move forward for 3n
rounds. During the movement, ai memorizes values of observed IDs to array
ai.ids[ ]. After the 3n rounds, the number ai.nVisited of nodes that ai has visited
is (a) at least n or (b) less than n due to missing links. In case (a), ai must have
completed traveling once around the ring. Thus, ai can get IDs of all k agents
(goal (i) is achieved). Then, ai (and the other agents) select the gathering node
vgather as the node where the minimum ID min is written.

In case (b) (i.e., ai has visited less than n nodes during the 3n rounds), we
show in Lemma 1 that all k agents stay at the same node (goal (ii) is achieved).
This situation means that agents already achieve g-partial (or total) gathering,
and they terminate the algorithm execution.

Concerning the selection phase, we have the following lemma.

Lemma 1. After finishing the selection phase, each agent achieves either of the
following two goals: (i) It travels once around the ring and gets IDs of all agents,
or (ii) it detects that all agents stay at the same node.

3.2 Gathering phase

In this phase, agents aim to achieve g-partial (or total) gathering by trying to
visit the gathering node vgather. Concretely, for 3n rounds from the beginning of
this phase, each agent ai tries to move forward until it reaches vgather. If agents
are blocked few times, all agents can reach vgather and they achieve g-partial (or
total) gathering. However, it is possible that some agent cannot reach vgather

due to link-missings. To treat this, we introduce a technique called splitting.
Intuitively, in this technique, when at least 2g agents exist at some node, from
there an agent group with at least g agents tries to move forward and another
agent group with at least g agents tries to move backward. In addition, when
an agent group with at least g agents visits a node where less than g agents
exist, the less than g agents join the agent group and try to move to the same
direction as that of the group. By this behavior, it does not happen that all
agents are blocked, and agents can eventually terminate in a configuration such
that at least g agents exist at each node where an agent exists.

Concretely, after the 3n round from when agents tried to move forward to
reach vgather, by the similar discussion of Lemma 1, all agents that do not reach
vgather stay at the same node. Let v′ be the node. Then, there are at most two
nodes vgather and v′ where agents exist after the movement. If between g and
2g − 1 agents exist at vgather or v′ (or both), the agents staying there terminate
the algorithm execution. On the other hand, if less than g agents exist at vgather

(resp., v′), at least 2g agents exist at v′ (resp., vgather) since we consider the
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Fig. 2. An execution example of the gathering phase (g = 3).

case of k ≥ 3g. We call the node with at least 2g agents vmore. Notice that it is
possible that at least 2g agents exist at both vgather and v′. Let k′(≥ 2g) be the
number of agents staying at vmore. Then, each agent ai at vmore calculates how
small its ID is among the k′ agents. We denote the ordinal number by ai.rank.
Then, if 1 ≤ ai.rank ≤ g holds, it belongs to the forward agent group Af and
tries to move forward. Else if (k′ < 3g)∨ (g+ 1 ≤ ai.rank ≤ 2g) holds, it belongs
to the backward agent group Ab and tries to move backward. If ai does not satisfy
any of the above conditions, it terminates the algorithm execution because there
still exist at least g agents even after Af and Ab leave vmore.

While Af and Ab move in the ring, if Af (resp., Ab) visits a new node vj , it
sets a flag vj .fMarked (resp., vj .bMarked) representing that vj is visited by Af

(resp., Ab). These flags are used for an agent group A to check whether or not
the current node is visited by another agent group and A can stop moving in the
ring. In addition, if Af (resp., Ab) visits a node with less than g agents, the less
than g agents join Af (resp., Ab) and try to move forward (resp., backward).
However, it is possible that the number num of agents in the updated group
is more than 2g. In this case, using their IDs, only g agents continue to try
moving and the remaining num − g agents terminate the algorithm execution
at the current node. By this behavior, each link is passed by at most 2g agents
and the total number of moves for agent groups can be reduced to O(gn) (this
technique is used in Section 4). Moreover, since Af or Ab can visit a next node
at each round even when some link is missing, Af (resp., Ab) repeats such a
behavior for n rounds or until it visits some node vj with vj .bMarked = true
(resp., vj .fMarked = true), which implies that all the remaining nodes that Af

(resp., Ab) should visit are already visited by another agent group Ab (resp.,
Af ).

An example is given in Fig. 2 (we omit nodes unrelated to the example).
From (a) to (b), a backward group Ab visits a node with two (< g) agents, and
the two agents join Ab. Then, since the number of agents in the updated Ab

is 7, (> 2g), only three agents continue to try moving and the remaining four
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agents terminate the algorithm execution there ((b) to (c)). From (c) to (d), we
assume that a forward agent group Af continues to be blocked due to a missing
link. Even in this case, Ab can continue to move since there is only one missing
link at each round. When Af (resp., Ab) visits a node with a flag set by Ab

(resp., Af ) like (e), or n rounds passed from when agent groups started trying
to move, agents achieve g-partial gathering.

Concerning the gathering phase, we have the following lemma.

Lemma 2. After finishing the gathering phase, agents achieve g-partial gather-
ing.

We have the following theorem for the proposed algorithm.

Theorem 3. When 3g ≤ k ≤ 8g − 2 holds, the proposed algorithm solves the
g-partial gathering problem in dynamic rings with O(n) rounds and the total
number of O(kn) moves.

4 The case of k ≥ 8g − 3

In this section, when k ≥ 8g − 3, we propose an algorithm to solve the problem
with O(n) rounds and the total number of O(gn) (i.e., optimal) moves. Since
the move complexity is not O(kn) but O(gn), it is not possible that all agents
try to travel once around the ring as in Section 3. Hence, in this section agents
aim to reduce the total number of moves using distinct IDs and the fact of
k ≥ 8g− 3. The algorithm comprises three phases: the semi-selection phase, the
semi-gathering phase, and the achievement phase. In the semi-selection phase,
agents select a set of gathering-candidate nodes each of where at least 2g agents
may gather. In the semi-gathering phase, agents try to stay at a gathering-
candidate node. As a result, at least 2g agents gather at some node (the node
may not be a gathering-candidate node due to link-missings). In the achievement
phase, agents achieve g-partial gathering by the same method as that for the
gathering phase in Section 3.2.

4.1 Semi-selection phase

The aim of this part is to select a set of gathering-candidate nodes each of
where at least 2g agents may gather. A possible approach is that each agent ai
moves forward and backward for getting IDs of its 1-st, 2-nd, . . . , (2g − 1)-st
forward agents and IDs of its 1-st, 2-nd, . . . , (2g − 1)-st backward agents, and
then returns to its initial node. Here, the i-th (i 6= 0) forward (resp., backward)
agent a′ of agent a represents the agent such that i − 1 agents exist between
a and a′ in a’s forward (resp., backward) direction in the initial configuration.
Thereafter, ai compares its ID and the obtained 4g − 2 IDs. If its ID is the
minimum, ai selects its initial node as a gathering-candidate node vcandi. Then,
the 2g − 1 agents existing in ai’s backward direction try to move forward to
stay at vcandi and eventually 2g agents may gather at vgather. However, since
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we consider 1-interval connected rings, there are two problems: (1) it is possible
that no gathering-candidate node is selected since some agent may not be able
to collect 4g − 2 IDs due to link-missings, and (2) even if a gathering-candidate
node vcandi is selected, it is possible that some agent cannot reach vcandi due to
link-missings and only less than 2g agents gather at each node.

To treat these problems, each agent ai in this phase keeps trying to move
forward, tries to observe more than 4g − 2 IDs, and considers some observed
ID as its own ID when it observed the necessary number of IDs. Concretely, for
3n rounds, each agent ai tries to move forward until it observes 10g − 4 IDs
or at least 2g agents exist at the current node. Thereafter, ai determines its
behavior depending on whether it observed at least 8g − 3 IDs or not. If ai did
not observe at least 8g−3 IDs, we show in Lemma 3 that at least 2g agents exist
at some node vj and then a flag vj .candi is set to true to represent that vj is a
gathering-candidate node (problem (1) is solved). Intuitively, this is because ai
does not observe at least (10g − 4)− (8g − 4) = 2g IDs and this means that at
least 2g − 1 agents existing in ai’s backward direction also do not observe the
necessary number of IDs and they eventually stay at ai’s node.

On the other hand, if ai observed at least 8g − 3 IDs, it uses the first 8g − 3
IDs for comparison and considers the (4g − 1)-st ID as its own ID. Then, this
situation is similar to one that ai compares its ID with 4g − 2 forward IDs and
4g−2 backward IDs. Hence, if the (4g−1)-st ID is the minimum among the 8g−3
IDs, ai sets vj .candi = true at the current node vj . Then, since k ≥ 8g−3 holds,
all the 8g − 3 IDs are distinct and thus 4g − 2 agents existing in ai’s backward
direction can recognize ai’s staying node as the nearest gathering-candidate node
vcandi in the forward direction when they observed at least 8g−3 IDs. Thus, the
4g − 1 agents in total (ai and the 4g − 2 agents) try to move forward and stay
at vcandi (the detail is explained in the next subsection). Then, when some link
continues to be missing, the 4g − 1 agents are partitioned into two groups and
at least one group has 2g agents (problem (2) is solved).

The pseudocode of the semi-selection phase is described in Algorithm 1.
Global variables used in the algorithm is summarized in Table 2 (several variables
are used in other sections). Concerning the semi-selection phase, we have the
following lemma.

Lemma 3. After finishing the semi-selection phase, there exists at least one
node vj with vj .candi = true.

Proof. Let amin be the agent with minimum ID among all agents and ai be the
(4g − 2)-nd backward agent of amin. We consider the cases that the value of
ai.nIDs after executing Algorithm 1 is (a) less than 8g−3 and (b) at least 8g−3
in this order. First, (a) if ai.nIDs < 8g− 3 holds, let g′ = (10g− 4)− ai.nIDs be
the number of IDs that ai could not observe and ai−1, ai−2, . . . , ai−(g′−1) be the
1-st, 2-nd, . . . , (g′−1)-st backward agents of ai. Then, since (g′−1)+ai.nIDs =
((10g−4)−ai.nIDs)−1 +ai.nIDs = 10g−5 < 10g−4, agent ai−(g′−1) does not
observe the required number 10g − 4 of IDs. Thus, ai−1, ai−2, . . . , ai−(g′−1) also
observed less than 10g−4 IDs and they stay at the same node (a′is node) by the
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Table 2. Global variables used in the proposed algorithm.

Variables for agent ai
Type Name Meaning Initial value

int ai.rounds number of rounds from some round 1

int ai.nIDs
number of different IDs that
ai has observed from some round

0

int ai.nVisited number of nodes that ai has ever visited 0

int ai.rank
ordinal number of how its ID is small
among IDs of agents at the same node

0

array ai.ids[] sequence of IDs that ai has observed ⊥
Variables for node vj
Type Name Meaning Initial value

int vj .id ID stored by vj ⊥
int vj .nAgents number of agents staying at vj 0
boolean vj .fMarked whether vj is visited by a forward group or not false
boolean vj .bMarked whether vj is visited by a backward group or not false
boolean vj .candi whether vj is a gathering-candidate node or not false

Algorithm 1 The behavior of agent ai in the semi-selection phase (vj is the
current node of ai.)

Main Routine of Agent ai
1: vj .id := ai.id, ai.ids[ai.nIDs] := vj .id
2: ai.nIDs := ai.nIDs + 1, vj .nAgents := vj .nAgents + 1,
3: while ai.rounds < 3n do
4: if (ai.nIDs < 10g − 4) ∧ (vj .nAgents < 2g) then
5: vj .nAgents := vj .nAgents− 1
6: Try to move from the current node vj to the forward node vj+1

7: if (ai reached vj+1 (that becomes new vj)) ∧ (vj .id 6=⊥) then
8: ai.ids[ai.nIDs] := vj .id, ai.nIDs := ai.nIDs + 1
9: end if

10: vj .nAgents := vj .nAgents + 1, ai.rounds := ai.rounds + 1
11: end if
12: end while
13: if (vj .nAgents ≥ 2g)∨((ai.nIDs ≥ 8g−3)∧(∀h ∈ [0, 8g−2]\{4g−2}; ai.ids[4g−2] <

ai.id[h])) then
14: vj .candi := true
15: Terminate the semi-selection phase and enter the semi-gathering phase
16: end if

similar discussion of Lemma 1. Since g′ − 1 ≥ (10g − 4)− (8g − 4)− 1 = 2g − 1
holds, at least 2g agents (including ai) stay at the same node vj and thus vj .candi
is set to true. Next, (b) if ai.nIDs ≥ 8g − 3 holds, ai recognizes that amin’s ID
is its own ID and the ID is the minimum among the 8g − 3 IDs. Hence, ai sets
vj .candi = true at the current node vj . Therefore, the lemma follows. ut
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Algorithm 2 The behavior of agent ai in the semi-gathering phase (vj is the
current node of ai.)

Main Routine of Agent ai
1: ai.rounds := 1, ai.nIDs := 1
2: while (ai.rounds < 3n) ∧ (ai.nIDs 6= 4g − 1) do
3: if vj .candi = false then
4: vj .nAgents := vj .nAgents− 1
5: Try to move from the current node vj to the forward node vj+1

6: if (ai reached vj+1 (that becomes new vj)) ∧ (vj .id 6=⊥) then ai.nIDs :=
ai.nIDs + 1

7: vj .nAgents := vj .nAgents + 1
8: if vj .nAgents ≥ 2g then vj .candi := true
9: end if

10: ai.rounds = ai.rounds + 1
11: end while
12: Terminate the semi-gathering phase and enter the achievement phase

4.2 Semi-gathering phase

In this phase, agents aim to make a configuration such that at least 2g agents
exist at some node. By Lemma 3, there exists at least one gathering-candidate
node vj with vj .candi = true at the end of the semi-selection phase. In the
following, we call such a candidate node vcandi. Then, if less than 2g agents exist
at vcandi, 4g − 2 agents in total that already stay at vcandi and exist in vcandi’s
backward direction try to stay at vcandi. Concretely, in this phase, for 3n rounds
each agent tries to move forward until it stays vcandi or at least 2g agents exist
at the current node. Then, due to link-missings, it is possible that only less than
2g agents gather at vcandi after the movement. In this case, we can show by the
similar discussion of Lemma 1 that all the agents that do not reach vcandi among
the 4g − 2 agents stay at the same node. Then, the 4g − 1 agents (the 4g − 2
agents and the agent originally staying at vcandi) are partitioned into two groups
and at least one group has at least 2g agents in any partition. Thus, agents can
make a configuration such that at least 2g agents exist at some node.

The pseudocode of the semi-gathering phase is described in Algorithm 2.
Note that, during the movement, when agents are blocked few times and they
do not stay at a node with at least 2g agents, agents may require the total
number of more than O(gn) moves. To avoid this, each agent stop moving when
it observed 4g − 1 IDs even if it does not stay at a node with at least 2g agents
(line 2).

Concerning the semi-gathering phase, we have the following lemma.

Lemma 4. After finishing the semi-gathering phase, there exists at one node vj
with vj .nAgents ≥ 2g.

Proof. We consider a configuration such that there exists no node with at least
2g agents at the beginning of the semi-gathering phase. By Lemma 3, there exists
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at least one node vj with vj .candi = true, and 4g−2 agents in total that already
stay at vj and exist in vj ’s backward direction try to stay at vj by Algorithms 1
and 2. Then, by the similar discussion of the proof of Lemma 1, after executing
Algorithm 2 for 3n rounds, all agents among the 4g−2 agents that do not reach
vj stay at the same node. Thus, the 4g − 1 agents (the 4g − 2 agents and the
agent originally staying at vj) are partitioned into two groups and at least one
group has at least 2g agents in any partition. Therefore, the lemma follows. ut

4.3 Achievement phase

In this phase, agents aim to achieve g-partial gathering. By Lemma 4, there
exists at least one node with at least 2g agents as in Section 3.2. The difference
from Section 3.2 is that there may exist more than two nodes with agents and
there may exist several nodes each of which has at least 2g agents. Also from
this situation, agents can achieve g-partial gathering using the same method as
that in Section 3.2, that is, (1) agents staying at a node with at least 2g agents
are partitioned into a forward group and a backward group and they try to
move forward and backward respectively, and (2) when a forward group (resp.,
a backward group) visits a node with less than 2g agents, the less than 2g agents
join the forward group (resp., a backward group).

An example is given in Fig. 3. In Fig. 3 (a), there exist two nodes vp and vq
each of which has 6 (= 2g) agents. Hence, a forward group Afp and a backward
group Abp (resp., Afq and Abq ) start moving from node vp (resp., from node vq).
From (a) to (b), Abp reaches node v` with less than 2g agents, and the less than
2g agents join Abp and try to move backward. From (b) to (e), we assume that
Afq continues to be blocked by a missing link. From (b) to (c), Afp and Abq

crossed and they recognize the fact by the existence of flags, and they terminate
the algorithm execution. From (c) to (d), Abp reaches node vm with less than 2g
agents, and the less than 2g agents join Abp and try to move backward. Then,
since the number num of agents in the updated Abp is 7 (> 2g), by using their
IDs, only g agents continue to try moving backward and the remaining num− g
agents terminate the algorithm execution there ((d) to (e)). By this behavior,
during this phase each link is passed by at most 2g agents and the achievement
phase can be achieved with the total number of O(gn) moves. From (e) to (f),
Afq and Abp reach some node simultaneously and recognize the fact by flags, and
they terminate the algorithm execution and agents achieve g-partial gathering.

Concerning the achievement phase, we have the following lemma.

Lemma 5. After executing the achievement phase, agents achieve g-partial gath-
ering.

We have the following theorem for the proposed algorithm.

Theorem 4. When k ≥ 8g−3 holds, the proposed algorithm solves the g-partial
gathering problem in dynamic rings with O(n) rounds and the total number of
O(gn) moves.
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Fig. 3. An execution example of the achievement phase (g = 3).

5 Conclusion

In this paper, we considered the g-partial gathering problem in bidirectional
dynamic rings and considered the solvability of the problem and the move com-
plexity, focusing on the relationship between values of k and g. First, when
3g ≤ k ≤ 8g − 2, we showed that the proposed algorithm can solve the problem
with O(n) rounds and the total number of O(kn) moves. Next, when k ≥ 8g−3,
we showed that the proposed algorithm can solve the problem with O(n) rounds
and the total number of O(gn) moves. These results show that, when k ≥ 3g,
the g-partial gathering problem can be solved also in dynamic rings. In addition,
since k = O(g) holds when 3g ≤ k ≤ 8g − 2 holds like the first case, the both
proposed algorithms can achieve g-partial gathering with the asymptotically op-
timal total number of agent moves.

Future works are as follows. First, we consider the solvability in case of
2g ≤ k < 3g. Second, when 3g ≤ k < 8g − 3, we consider whether agents can
achieve g-partial gathering with the total number of moves smaller than O(kn)
or not. Finally, we will consider agents with weaker capabilities, e.g., agents with-
out distinct IDs, without chirality, or agents that behave semi-synchronously or
asynchronously. In any of the above cases, we conjecture that agents cannot
solve the problem or require more total number of moves than the proposed
algorithms.
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