Photocatalytic H₂O₂ production over g-C₃N₄ Nanostructures Utilizing Modified Cyanuric Acid-Melamine Complex as Precursor

Hossein Fattahimoghaddam, Tahereh Mahvelati-Shamsabadi, Byeong-Kyu Lee*

Department of Civil and Environmental Engineering, University of Ulsan, Nam-gu, Daehak-ro 93, Ulsan 44610, Republic of Korea *Corresponding author e-mail: <u>bklee@ulsan.ac.kr</u>

The anthraquinone method and a direct production with H_2 and O_2 as the conventional methods for H₂O₂ production are suffering from several unavoidable challenges such as abundant energy and organic solvents consumption and potential explosion hazard of the mixture of oxygen and hydrogen. Photocatalytic H₂O₂ production has been recently introduced as an energy-saving, environment-friendly, facile, and safe method in this regard. Among different materials used as photocatalyst, graphitic carbon nitride (g-C₃N₄) as an organic metal-free photocatalyst has been widely investigated over the past few years. Despite the advantages, pristine g-C₃N₄ possesses poor photocatalytic activity due to the low specific surface area and easy recombination of photoinduced electrons and holes. Although, various strategies have been developed to overcome these weaknesses, scientific attempts are still made to improve the photocatalytic activity of g-C₃N₄based photocatalysts. Starting materials used as synthesis precursors have exhibited a significant impact on the physical, optical, and electronic properties of the obtained g-C₃N₄. Commonly, some triazine derivatives such as melamine are utilized as starting substances for g-C₃N₄ preparation. However, utilization of supramolecular structures, especially cyanuric acid-melamine (CM) complex as starting materials has attracted researchers' attention in recent years. In this study, we have investigated the utilization of cyanuric acid-melamine complex (CM) modified by KH₂PO₄ as a starting material in order to improve the robustness of the starting material and provide a dopant source for synthesis of phosphorous and potassium co-doped g-C₃N₄. The as-prepared catalyst exhibited an enhancement in visible light photocatalytic H₂O₂ production than pristine melamine and CM-complex based g-C₃N₄ samples. The experimental results indicated an improved H₂O₂ production of 208 µM under 1 h visible light irradiation as compared with that of the bulk (71 μ M) and the pristine nanostructured sample (137 μ M).

Acknowledgement:

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST: Ministry of Science and ICT) (No. 2019R1A2C2085250).