On the Mechanisms of Formation of M⁰-nanoparticles via the Reduction of MⁿL_m Complexes

Alina Sermiagin¹, Totan Mondal¹, Dan Meyerstein^{1,2}, Ronen Bar-Ziv³, Haya Kornweitz¹, Tomer Zidki¹

¹ Department of Chemical Sciences, The Radical Research Center and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Application, Ariel University, ΔΔΔ Ariel, Israel

² Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel ³ Department of Chemistry, Nuclear Research Centre Negev, Beer-Sheva, Israel

It is commonly suggested that the mechanism of formation of M^0 -nanoparticles, M^0 -NPs, via the reduction of M^nL_m complexes, including $M(H_2O)_m^{n+}$ proceeds via the following scheme:

I. I. M^nL_m + reducing agent $\rightarrow M^0$ + mL + oxidized reducing agent

II. $kM^0 \rightarrow M_k^0 \rightarrow M^0$ -NP

However, the redox potentials of most reducing agents used do not enable the reduction of M^nL_m to M^0_{atoms} . This is due to the following: The redox potential of the couple $M(H_2O)_m^{n+}/M^0_{(s)}$ can be calculated from the following equation:

 $E^{0}(M(H_{2}O)_{m}^{n+}/M^{0}_{(s)}) = (\Delta G0$ evaporation + $\Delta G0$ ionization + $\Delta G0$ hydration/solvation)/nF Clearly if one wants to calculate the redox potential of an atom no evaporation is involved and therefore $\Delta G^{0}_{evaporation}$ is not contributing. Therefore, the redox potentials of atoms are: $E^{0}(M(H_{2}O)_{m}^{n+}/M^{0}_{(atom)}) = E^{0}(M(H_{2}O)_{m}^{n+}/M^{0}_{(s)}) - (\Delta G^{0}_{evaporation}/nF)$

As a result most $E^0(M(H_2O)_m^{n+}/M^0_{(atom)})$ are very negative and the mechanism of formation of M^0 -NPs does not involve the formation of M^0_{atoms} .

The mechanisms of formation of Ag^0 -NPs via the reduction of $Ag(H_2O)_2^+$ by H_2 and by BH_4^- will be discussed in detail.