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ABSTRACT

It is widely known that the abundance and distribution dynamics of populations of small
pelagic clupeid fish, such as sardines and anchovies, are affected by large-scale climate
variability, which may lead to changeovers to new regimes of small pelagics. However,
long-distance climatic oscillations, such as El Nifio/La Nifia and the Pacific Decadal
Oscillation, have been little explored in the Western Mediterranean Sea. We investigated
the possible effects of the South Oscillation Index (i.e. the atmospheric oscillation
coupled with the EI Nifio/La Nifia) and Pacific Decadal Oscillation on fluctuations in
catches of European anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus)
in the Western Mediterranean Sea, and their association with regional climate
oscillations (i.e. the Atlantic Multidecadal Oscillation, the North Atlantic Oscillation,
the Western Mediterranean Oscillation index, and the Arctic Oscillation). The study
covered two periods: a) landings between 1950 and 2016; and b) abundance, biomass,
and physical condition (i.e., relative condition index) between 2004 and 2016. The main
large-scale climatic oscillations in the region were studied using General Additive
Models to investigate the relationship between a time series of species measures of
European sardine and anchovy from Geographical Subarea 06. Results show that the
long-term Pacific Decadal Oscillation favours sardine landings, whereas the combined
effect of the Western Mediterranean Oscillation Index and the Atlantic Multidecadal
Oscillation favours anchovy. We discuss potential links between the present findings
and changes in the plankton community caused by prevailing winds in the region driven
by long-distance climate oscillations and their impact on the reduction in small pelagic

fish populations in the study area.
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Climatic oscillation, Asian Monsoon, ENSO, PDO, fisheries, small pelagic fish, SOI.
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1. Introduction

It is widely known that the abundance and distribution dynamics of populations
of small pelagic clupeoid fish, such as sardines and anchovies, are affected by large-
scale climate oscillations (e.g., see Rykaczewski and Checkley, 2008; McClatchie,
2014; Béez et al., 2021). These climate indices are considered to represent "oscillations"
of a dipole that drive changes in local weather trends.

Climate oscillations, or teleconnections, are the naturally reoccurring changes of
normal weather patterns in a local area and are associated with the interactions of
atmospheric and oceanic conditions. Among the most relevant climatic oscillations in
the northern hemisphere are the Pacific Decadal Oscillation (PDO), the Atlantic
Multidecadal Oscillation (AMO), the North Atlantic Oscillation (NAO), the Western
Mediterranean Oscillation index (WeMOi), and the Arctic Oscillation (AO) (e.g., see
Chéavez et al., 2003; Martin-Vide and Lopez-Bustins, 2006; Baez and Real, 2011; Alheit
et al., 2014; Béez et al., 2019; Béez et al., 2021). However, the associations between
them have not yet been fully explained (Sutton and Hodso, 2003; Hurrel and Deser,
2009). In this line, Wang et al. (2014) found that the PDO and El Nifio/La Nifia
combination could affect dry-wet patterns even in remote areas of the Pacific Ocean.
They also reported that the effect of the EI Nifio-South Oscillation (ENSO) on dry-wet
changes varies along with the PDO phase. When in phase with the PDO, ENSO-induced
dry-wet changes are amplified in relation to the canonical pattern. When out of phase,
these dry-wet variations weaken or even disappear (Wang et al., 2014). Therefore,
different climatic oscillations could have combined and differential effects leading to
locally differential climatic responses (e.g., Bdez et al., 2013; Wang et al., 2014).

In this setting, the ENSO and the Southern Oscillation Index (SOI) (i.e. the
atmospheric oscillation coupled with the ENSO) are the main source of global
atmosphere-ocean variability patterns. It is widely accepted that they drive climatic
variability in the Pacific Ocean and adjacent Indian Ocean (Yan et al., 2011; Wang et al.,
2014; Wieners et al., 2017).

On the other hand, although climatic oscillations have a differential local
response, this does not imply that they produce short-distance effects. Thus, the spatial
manifestation of the corresponding effects depends on the magnitude of the different

events (and combinations with other processes), and responses range from weak
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regionally confined trends to global large-scale teleconnectivity patterns (Lyon and
Barnston, 2005; Lin and Qian, 2019; Kittel et al., 2021). Several authors have drawn
attention to the relevance of tropical-extratropical ocean-atmosphere interactions on the
North Atlantic and Mediterranean climate (Rogers, 1984; Sutton and Hodson, 2003;
Hurrel and Deser, 2009; Losada et al., 2012; Stan et al., 2017).

Surprisingly, Hasanean (2004) found an association between the mean seasonal
and annual precipitation in the Mediterranean region and the ENSO during the period
1951 to 1998. Using observational datasets and atmospheric reanalyses, Mariotti et al.
(2002) showed that the interannual variability of rainfall in the Euro-Mediterranean
sector is significantly influenced by the ENSO in a way that varies by season. Sanchez-
Laulhé (2020) showed that there is a direct relationship between the development of La
Nifa conditions in the Tropical Pacific and the wind regime during the summer in the
Western Mediterranean region. This relationship could be mediated by the Indian
summer monsoon. Rodwell and Hoskins (2001) suggested that the warm-to-hot and
very dry summers of Mediterranean-type climates were associated with adiabatic
descents induced remotely by the monsoon to the east. The PDO can also influence the
interannual variability of Indian Summer Monsoon (ISM) rainfall by strengthening the
ENSO-ISM relationship when the ENSO and the PDO are in phase, while weakening
the relationship when they are out of phase (Krishnamurthy and Krishnamurthy, 2013;
Dong et al., 2018). Moreover, previous studies have also shown that the El Nifio event
affects planktonic communities in the Western Mediterranean Sea (Hernandez-Almeida
et al., 2005, 2011).

Based on the foregoing, the current study investigates the possible long-distance
effect of major world climate oscillations (i.e., the PDO and SOI) and local climate
oscillations (i.e. AMO, AO, NAO, and WeMOi) on stocks of European anchovy
(Engraulis encrasicolus) and sardine (Sardina pilchardus) in the Western Mediterranean
Sea. This area can respond quickly to any such effects. Understanding the response of
small pelagic fish to great climate variability over long-term periods is relevant to

forecasting human-induced responses to climate change.

Material and Methods

Fisheries data
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The main challenge in analysing biological processes in oceans over long-term
periods is the general lack of available time series of oceanographic studies and data on
the physical condition of fish. However, the use of landing data can be used as a proxy
for fish abundance (for example Castro-Gutiérrez et al., 2022). Nevertheless, the use of
such data can be controversial, because they include fleet variability and technical
improvements, and can also miss unreported catches (Pauly et al., 2013). Nevertheless,
according to Pauly et al. (2013), landings are very often the best data available and have
been used by the FAO and Fisheries Management Regional Organization for stock
assessments. Thus, it is reasonable to use them as a proxy for abundance, or at least
regarding abundance trends over time. To address this issue, we studied two sets of data
with different time scales. On the one hand, as a proxy for abundance, we used the
sardine and anchovy landings in subarea GSA06 (General Fisheries Commission for the
Mediterranean) (Figure 1) from 1950 to 2016. On the other hand, we also analysed
direct estimates of biomass, abundance, and physical condition per species annually
between 2003 and 2016, as data were available for this period.

Specifically, the landing database of European anchovy and sardine from the
GSAO06 (from the French border to the Cape of Gata) (Figure 1) was built using annual
time series provided by different national authorities (i.e. Spanish Fisheries Authorities,
the Spanish Autonomous Communities, and own data of the Instituto Espafiol de
Oceanografia: further details on the time series can be found in Abad and Giréldez,
1990; Abad et al., 1991; Girdldez and Abad, 1991, 2000, and Girdldez and Alemany,
2002).

For the period 2003 to 2016, we used the data from the Spanish Acoustic Survey
“Eco-MEDiterranean” (ECOMED) (2003 to 2008) and the EUfunded MEDIterranean
International Acoustic Survey (MEDIAS) (2009 to 2016). The following data were
obtained from the aforementioned oceanographic surveys: biomass (metric tons),
abundance (number of individuals), relative condition index (Kn; Le Cren, 1951)
(Brosset et al., 2016; Albo-Puigserver et al., 2020; Pennino et al., 2020, Baez et al.,
2021). Further details on the performance of these anchovy and sardine biological

variables can be consulted in previous studies (Pennino et al., 2020; Baez et al., 2021).

Large-scale climate data
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We studied the NAO, AO, AMO, and WeMOi, which are the main drivers of
climatic variability in the northern hemisphere regional area. We also studied the SOI
and PDO, which are main global climatic oscillations. The WeMOi values were
obtained  from  the  University of Barcelona  Climatology = Group
(http://www.ub.edu/gc/es/WeMOi/) and the PDO index used was the classic estimation
proposed by Mantua et al. (2997)
(http://research.jisao.washington.edu/pdo/PDO.latest.txt: accessed: 18/04/2021). Data
on the other climatic oscillations were obtained from the National Oceanic and

Atmospheric Administration of USA website.

Generalized Additive Models

Generalized Additive Models (GAMs) were used to investigate the effect of the
climate oscillation indices on the species variables (i.e., landings, abundance, biomass,
and Kn). The main advantage of GAMs is that they are a non-parametric generalization
of multiple linear regressions and have less restrictive assumptions regarding the
underlying statistical data distributions (Hastie and Tibshirani 1990). GAMs use data-
driven functions, such as splines and local regression, which have superior performance
relative to the polynomial functions used in linear models (Zwolinski et al., 2011;
Diankha and Thiaw, 2016). Specifically, for each species and dependent variable,
GAMs with a Gaussian distribution were applied after the response variables had been
log transformed.

Prior to performing the GAMs, we used a standard technique—in this case, a
Pearson’s correlation test with the corrplot package (Wei and Simko, 2017)—to identify
possible correlations between the explanatory variables. Pairs of variables with high
correlation values (Pearson’s correlation > 0.7) were identified. In particular, a high
correlation was found between the AO and NAO (r > 0.70) and thus the AO was
excluded from further analysis (Supplementary Materials, Figure S1).

In addition to the climate oscillation indices, the year was included as a
continuous variable in all the GAMs in order to assess unexplained temporal variability.
Semi-parametric smooth functions (s) were used to fit the interactions between the
climatic indices and each of the fish species variables, restricting the dimension of the
basis (k) to 4 in order to allow a high degree of flexibility while avoiding overfitting

problems (for example Lloret-Lloret et al., 2022).
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After a stepwise forward procedure, the best final model was selected according
to the lowest Akaike Information Criterion (AIC) and the highest adjusted R-square. For
each final GAM, the assumptions of the model were determined by testing on residuals
the theoretical assumptions of normality, homoscedasticity, and independence. Temporal
correlations in the residuals were determined using the autocorrelation (ACF) and
partial (PACF) functions (Wood, 2006).

Data exploration and statistical analyses were conducted with R 4.0.3 (R Core
Team, 2020). The GAMs were analysed using the mgcv library (version 1.8, Wood and
Wood, 2015) in R.

Results

Landings (1950-2016)

For sardine landings (1950-2016), the only significant variables in the final
model were the Pacific Decadal Oscillation (PDO) and the unexplained annual trend.
This model explained 79% of the variability in sardine landings. Specifically, a positive
association was found between the PDO and sardine landings, while the year effect
shows that although there was an increase in landings in the 1980s and 1990s, landings
decreased from 2000 onward (Figure 2).

The anchovy landings model retained as significant predictors the Atlantic
Multidecadal Oscillation (AMO) and Western Mediterranean Oscillation (WeMOi)
indices as well as the unexplained annual trend. For these variables two opposite
relationships were found with respect anchovy landings, negative for the AMO and
positive for the WeMOi and the year. Overall, these predictors explained 53% of the
variability in anchovy landings (Figure 3).

Biomass, abundance, and physical condition (2004-2016)

Results of the sardine biomass model highlighted that all the variables were
significant, except for the unexplained annual trend. This model explained 78% of the
total data variability. Specifically, a positive association was found between the North
Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO) indices and
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the sardine biomass, whereas a negative association was found between the PDO,
WeMOi, and SOI and the sardine biomass (Figure 4). On the contrary the anchovy
biomass model retained only the annual trend that alone explained 76% of the
variability of the data (Figure 5).

For the sardine abundance, the majority of the variability (49%) was explained
by the WeMOi and unexplained annual trend (Figure 6). Both variables showed a
negative association with the abundance of sardine.

The unexplained annual trend was also a final predictor in the anchovy
abundance model, jointly with the PDO. Both variables showed slightly significant
positive associations with the anchovy abundance (Figure 7) and explained 57% of the
variability.

For sardine Kn, the final model explained 64% of the variability. The retained
significant predictors were the NAO and WeMOi indices. A dome-shaped association
was found between the NAO and sardine Kn, whereas a mixed association was found
between the WeMOi index and sardine Kn (Figure 8). Finally, in the GAM for anchovy
Kn, significant positive associations were only found between the Southern Oscillation
Index (SOI) and the AMO indices and anchovy Kn. Both variables jointly explained
93% of the variability in anchovy Kn (Figure 9).

For all GAM analyses, the residuals show the absence of any violations and
temporal autocorrelations (see Supplementary Materials, Figures S2 to S17).

Table 1 shows the main results of the GAM analysis in relation to landings,

abundance, biomass, and physical condition (Kn) by species.

Discussion

Alheit et al. (2014) demonstrated that, over the long-term, sardine and anchovy
from the European Atlantic and Mediterranean coasts respond to the Atlantic
Multidecadal Oscillation. In this line, Baez et al. (2022) found that, over the short-term,
there is a positive association between sardine landings and the Atlantic Multidecadal
Oscillation, whereas this association is negative in the case of anchovies. They also
found positive associations between sardine biomass and the Atlantic Multidecadal
Oscillation and between anchovy biomass and physical condition. Alheit et al. (2014)
also observed that, since the mid-1990s, increases in the abundance and spatial
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occupation of European anchovy in the North Sea have been related to the Atlantic
Multidecadal Oscillation, whereas from 2012 to 2022, there has been a strong
decreasing trend in sardine landings in the Western Mediterranean Sea (Quattrocchi and
Maynou, 2017; Coll et al., 2019; Béez et al., 2022). Our findings were similar to those
of Alheit et al. (2014) in the case of anchovy from the Western Mediterranean Sea over
the long term. However, we found a long-term association between sardine and the
Pacific Decadal Oscillation (PDO). In effect, and as highlighted by Alheit et al. (2014),
the period from 1992 to 1998 corresponds to a positive PDO phase with the highest
average landings (i.e. 43978 t). In contrast, the period between 2007 and 2013
corresponds to a negative PDO phase with the lowest average landings (13120.4 t).

In the short term, there could be an association between the PDO and sardine
biomass and anchovy abundance, and an association between the Southern Oscillation
Index (SOI) and the physical condition of anchovy. As these findings refer to the short
term, they should be taken with caution: further research is needed using longer data
series. Fortunately, we were able to make use of a 67-year period of sardine and
anchovy landings to test our hypothesis. Nevertheless, we are aware that this period is
not homogeneous in relation to fishing characteristics because there have been
significant technical advances over this period as well as changes in the catch
composition of the fleet that could distort the results. However, the results show a clear
association between the PDO and sardine, and, to a lesser extent, between the PDO and
anchovy.

A possible explanation for the distant effect of the PDO on fluctuations of
sardine and anchovy could be related to rain patterns and wind regimes in the
Mediterranean region due to the Asian monsoon, which in turn is driven by the
PDO/SOI. Rykaczewski and Checkley (2008) showed that increases in the level of
wind-stress curl and SST affected the production of Pacific sardine Sardinops sagax.
They also showed that the wind-stress curl has oscillated over the past 6 decades and
that it is positively correlated with the extent of isopycnal shoaling, nutricline depth, and
chlorophyll concentration. Likewise, wind regimes over the Mediterranean Sea driven
by the PDO/SOI could have a similar effect. Previous studies have also shown that the
El Nifo event affects planktonic communities in the Western Mediterranean Sea
(Hernandez-Almeida et al., 2005, 2011).

Thus, there is a connection between long-distance wind regimes and changes in

plankton communities. In turn, it has been observed that there is a differential trophic

9
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gradient in anchovy and sardine in the Western Mediterranean Sea, which is due to the
differential community plankton composition (Bachiller et al., 2020). Moreover, Brosset
et al. (2016) suggested that there is an association between small pelagic dietary shifts
and ecosystem changes in the Gulf of Lion. Finally, it has been shown that rain patterns
in the Mediterranean region increase the productivity of the sea (Macias et al., 2015),
which could alter trophic gradients.

A key finding of the present study is that the combined effect of multiple
regional and global climatic oscillations provides the best explanation of variability in
anchovy and sardine abundance. Similar associations have been observed in other sites
worldwide (Chavez et al., 2003; Checkley et al., 2017).

As argued by Béez et al. (2021), although there are many climatic oscillations,
there is only a single atmosphere (i.e. climate on a global scale is interconnected by so-
called atmospheric bridges or teleconnections). The PDO has also been shown to have
remote associations with multi-decadal drought and pluvial conditions over many
distant areas through atmospheric teleconnections (Zanchettin et al., 2008; Wang et al.,
2009; Wang et al., 2014; Vance et al., 2015; Johnson et al., 2020) and marine biological
process (Mantua et al., 1997; Mantua and Hare, 2002; Chavez et al., 2003; Baez et al.,
2020). There are inter-basin atmosphere-ocean interactions from the Atlantic to the
North Pacific and vice versa, such as the Arctic Oscillation interaction (mediated by the
Sea Surface Temperature in the North Atlantic) or the Atlantic Multidecadal Oscillation,
which influences the PDO in such a way that it affects the wet/dry patterns in the
Atlantic region (Johnson et al., 2020). Thus, in combination with other climatic
oscillations, the PDO can be considered to be a good proxy for both the regional and
global variability that affects the regional climate of the Western Mediterranean. The
fact that the response of ecosystems can be better explained by distant climatic
oscillations than by local physical variables is a paradox that has been previously
described (Stenseth et al., 2003; Hallett et al., 2004; Béez et al., 2021). Stenseth et al.
(2003) suggested that climatic oscillations affect multiple weather variables
simultaneously—sometimes in distant areas—in what they called packages of weather,
thus affecting the response of corresponding ecosystems (Stenseth et al., 2003; Hallett et
al., 2004; Bastos et al., 2016).

On the other hand, the Western Mediterranean Oscillation index could have a
relevant impact at a regional scale (Martin-Vide and Lopez-Bustins, 2006), at least in

the case of anchovy. Martin et al. (2012) found that the Western Mediterranean

10
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Oscillation index affected sardine and anchovy populations. We found that the Western
Mediterranean Oscillation index had an effect on anchovy biomass.

The North Atlantic Oscillation is the largest source of interannual variability in
the Northern Hemisphere and is related to the multiple biological responses of many
fish stocks (for a recent review, see Béaez et al., 2021). However, the North Atlantic
Oscillation was not included in all of the final models. In fact, according to Martin-Vide
and Lopez-Bustins (2006), due to the orography and geographic position of the Western
Mediterranean area, climatic variability could be better captured by the WeMOi than by
the North Atlantic Oscillation. Nevertheless, according our results there is an unimodal
relationship between the North Atlantic Oscillation and sardine Kn (Figure 8). The
North Atlantic Oscillation reflects the difference in atmospheric pressure at sea level
between the Icelandic low and the high over the Azores archipelago. It is therefore a
difference between pressures, and can take positive or negative signs. However, values
close to zero are a mild North Atlantic Oscillation. In fact, as reviewed in Baez et al.
(2021) the extreme values of the North Atlantic Oscillation, are the most important.
Therefore, the inverted U-shaped effect on sardine Kn could respond, on the one hand,
to a worsening of sardine feeding due to an extreme value (positive or negative phase),
and on the other hand, to an increased competitive stress due to an extreme value of the
NAO variable (positive or negative phase).

Regarding the Arctic Oscillation index, the Arctic Oscillation is another relevant
climatic oscillation in the Northern Hemisphere and is strongly correlated with the
North Atlantic Oscillation, which itself depends on the strength of the polar vortex
(Béez et al., 2013). A relationship has been found between the Arctic Oscillation and
Catch per Unit of Effort of sardine in the purse seine fisheries in Northwest Africa
(Béez et al., 2019).

In recent decades, there have been relevant changes in small pelagic fish
populations in the North Western Mediterranean Sea. The most noticeable fluctuations
in these important fishery resources have been declines in landings, biomass, abundance
sardine. According to Coll et al. (2019), these changes could have multiple causes,
including the cumulative effect of environmental change, overfishing, competition for
trophic resources, and predation. However, we would like to highlight the fact that
positive PDO phases could significantly explain trends in sardine and anchovy landings.
Unfortunately, we are currently in a negative PDO phase, which could aggravate the
reduced sardine stocks in the Western Mediterranean.

11
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Table 1. Results of the GAM analysis of landings, abundance, biomass, and physical
condition (Kn) by species.

Landings Abundance Biomass Kn
Sardine PDO, WeMOi (49%) NAO, AMO, PDO, | NAO, WeMOi
Annual  Trend WeMOi, SOl | (64%)
(79%) (78%)
Anchovy AMO, WeMOi, | PDO, Annual Trend | SOI, AMO (93%)
Annual  Trend | Annual Trend (57%) | (78%)
(53%)

Note: Explained variability is shown in parentheses for each case.
Abbreviations: PDO, Pacific Decadal Oscillation; SOI, South Oscillation Index; AMO,
Atlantic Multidecadal Oscillation; WeMOi, Western Mediterranean Oscillation index;

NAO, North Atlantic Oscillation.
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Figure 2: Partial GAM plots of sardine (Sardina pilchardus) landings (in tons).

Significant partial effects of the (A) Pacific Decadal Oscillation (PDO), and (B) the year

effect are shown. The shaded areas indicate the 95% confidence interval.
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Figure 3: Partial GAM plots of anchovy (Engraulis encrasicolus) landings (in tons).
Significant partial effects of the (A) Atlantic Multidecadal Oscillation (AMO), (B)
Western Mediterranean Oscillation index (WEMO index) and the (C) year effect are

shown.

The shaded areas indicate the 95% confidence interval.
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Figure 4: Partial GAM plots of sardine (Sardina pilchardus) biomass. (A) North
Atlantic Oscillation (NAO), (B) Southern Oscillation Index (SOI), (C) Atlantic
Multidecadal Oscillation (AMO), (D) Pacific Decadal Oscillation (PDO) and (E)
Western Mediterranean Oscillation index (WEMO index). Significant partial effects of
the explicative variables are shown. The shaded areas indicate the 95% confidence

interval.
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Figure 5: Partial GAM plots of anchovy (Engraulis encrasicolus) biomass. Significant
partial effects of the year effect are shown. The shaded areas indicate the 95%

confidence interval.
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index (WEMOi) and the (B) year effect are shown. The shaded areas indicate the 95%
confidence interval.
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of individuals). Significant partial effects of the (A) Pacific Decadal Oscillation (PDO)
and the (B) year variable are shown. The shaded areas indicate the 95% confidence
interval.
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