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LOG COMPLEX COLOR FOR VISUAL color amplitude of the sound , creating a coefficient phase 
PATTERN RECOGNITION OF TOTAL angle of the sound , and displaying the amplitude and phase 

SOUND of the sound simultaneously to generate an image of the 
sound . The method further comprises analyzing the image of 

CROSS - REFERENCE TO RELATED 5 the sound and recreating the sound . 
APPLICATION 

BRIEF DESCRIPTION OF THE DRAWINGS 
This application claims the benefit of U . S . Provisional 

Patent Application Ser . No . 62 / 427 , 499 , filed Nov . 29 , 2016 , The patent application file contains at least one drawing 
the entire contents of which are incorporated herein by 10 executed in color . Copies of this patent or patent application 
reference . publication with color drawing ( s ) will be provided by the 

Office upon request and payment of the necessary fee . 
BACKGROUND OF THE DISCLOSURE FIG . 1 depicts an exemplary embodiment of a logarithmic 

complex - color key in polar coordinates with amplitude on The present disclosure is generally related to audio visu - 15 the logarithmic vertical axis and imaginary phase angle q on alization methods for visual pattern recognition of sound . In the linear horizontal axis in accordance with the present particular , the present disclosure is directed to plotting disclosure . amplitude intensity as brightness / saturation and phase 
FIG . 2A depicts an exemplary embodiment of a rectan cycles as hue - variations to create visual representations of 

sound . 20 gular complex - color log - frequency interpolation of Fourier 
While traditional audio visualization methods depict coefficients for a 10 % frequency - modulated tone centered 

amplitude intensities vs . time , such as in a time - frequency around 256 Hz in accordance with the present disclosure . 
spectrogram , and while some may use complex phase infor - FIG . 2B depicts an exemplary embodiment of a polar 
mation to augment the amplitude representation , such as in complex - color log - frequency interpolation of Fourier coef 
a reassigned spectrogram , the phase data are not generally 25 ficients for a 10 % frequency - modulated tone centered 
represented in their own right . By plotting amplitude inten - around 256 Hz in accordance with the present disclosure . 
sity as brightness / saturation and phase - cycles as hue - varia FIG . 3 depicts an exemplary embodiment of a composite 
tions , the complex spectrogram method described herein beat - schematic in accordance with the present disclosure . 
displays both amplitude and phase information simultane FIG . 4A depicts an exemplary embodiment of a logarith 
ously , making the resulting images canonical visual repre - 30 mic complex color visualization of a northern cardinal bird 
sentations of the source wave . call in accordance with the present disclosure . 

As disclosed herein , encoding log - amplitude visualization FIG . 4B depicts an exemplary embodiment of a logarith 
of complex - number amplitude and phase ( over a wide range mic complex color visualization showing various Fourier 
of intensities ) into a single pixel allows for visualization of phase shifts and multi - harmonic behavior of a human voice 
total sound . That is , visualization is provided for the total 35 theater exercise in accordance with the present disclosure . 
sound coming into a microphone such that every pressure FIG . 4C depicts an exemplary embodiment of an image 
front in time as it impacted the microphone ' s transducer is for half - full wine glass , in grayscale , in accordance with the 
reconstructed from the resulting image . As a result , in some present disclosure . 
embodiments , the original sound is precisely reconstructed FIG . 4D depicts an exemplary embodiment of an analysis 
( down to the original phases ) from an image , by reversing 40 of both a half - full and a quarter - full wine glass in accordance 
this process . This allows humans to apply their highly with the present disclosure . 
developed visual pattern recognition skills to complete audio FIG . 4E depicts an exemplary embodiment of a simulated 
data in a new way . Applications of these methods , for oboe up , clarinet down musical scale illustrating the har 
example , include making “ visual field guides ” to sounds , as monic profile difference between the two woodwind instru 
well as online image generation for sound visualization 45 ments in accordance with the present disclosure . 
through mobile devices running browsers ( e . g . , in real - time FIG . 4F depicts an exemplary embodiment of a logarith 
and / or " without tiling of time - slices ” ) . mic complex color visualization of whistling with no har 

monics in accordance with the present disclosure . 
SUMMARY OF THE DISCLOSURE FIG . 4G depicts an exemplary embodiment of a recording 

50 of water dripping from a faucet in accordance with the 
One aspect of the present disclosure describes an audio present disclosure . 

visualization method for recognition of a sound . The method FIG . 4H depicts an exemplary embodiment of a linear 
comprises capturing a sound , creating a logarithmic color ramp down and up in frequency calculated directly at 44100 
amplitude of the sound , creating a coefficient phase angle of Hertz and displayed on a log - frequency scale using Math 
the sound , and displaying the amplitude and phase of the 55 ematica in accordance with the present disclosure . 
sound simultaneously to generate an image of the sound . FIG . 41 depicts an exemplary embodiment of an excerpt 

Another aspect of the present disclosure describes a from Edvard Grieg ' s “ Anitra ' s Dance ” performed by the 
method of reconstructing a sound from an image . The Limburg Symfonie Orkest in accordance with the present 
method comprises capturing a sound , creating a logarithmic disclosure . 
color amplitude of the sound , creating a coefficient phase 60 FIG . 41 depicts an exemplary embodiment of a series of 
angle of the sound , displaying the amplitude and phase of chords generated by a cellular - automaton and played by 
the sound simultaneously to generate an image of the sound , flutes as simulated by a Mathematica model in accordance 
and reverse processing the generated image to recover the with the present disclosure . 
sound . FIG . 5 depicts an exemplary embodiment of a half - note 

Yet another aspect of the present disclosure describes a 65 log - frequency rendition of a 10 % frequency - modulated tone 
method of recreating a sound on a real - time basis . The centered around 256 Hz in accordance with the present 
method comprises capturing a sound , creating a logarithmic disclosure . 



US 10 , 341 , 795 B2 

FIG . 6 depicts an exemplary embodiment of a visual simpler scheme is applied herein based on complex FFTs 
recording of human speech created using a prototype Total that simultaneously display the amplitude and phase infor 
Sound Videography program that uses logarithmic complex mation associated with each pixel . As in many other appli 
color to represent the Fourier coefficient offset of each cations , not the least of which is the traditional Western 
frequency on the vertical axis as a hue in the pixel associated 5 musical notation , logarithmic scaling of the frequency axis 
with that frequency in accordance with the present disclo is optionally adopted for some embodiments , since on it 
sure . octaves and harmonics are equally spaced . While techniques 

FIG . 7 depicts an exemplary embodiment of Pythagorean - like reassigned spectrograms utilize the imaginary part of 
ratio tuning to middle - C at 258 . 398 Hertz , making C2 an the Fourier transform to enhance accuracy of particular integral multiple frequency separation between Fourier 10 am amplitude and harmonic representations , and chroma ( i . e . , 
coefficients in accordance with the present disclosure . saturation of a distinctive hue of color ) visualizations show 

DETAILED DESCRIPTION OF THE periodic changes in tone as hue - variations , the methods 
DISCLOSURE described herein simultaneously display both real and imagi 

nary Fourier data to produce a canonical view of total sound . 
In some embodiments of the present disclosure , audio By showing Fourier coefficient amplitude as the brightness / 

visualization methods for visual pattern recognition of sound saturation of the associated pixel , and Fourier phase as hue , 
are disclosed . In particular , plotting amplitude intensity as each pixel simultaneously represents both rear and imagi 
brightness / saturation and phase - cycles as hue - variations to nary components of a complex Fourier coefficient . 
create visual representations of sound is described . o On a linear frequency scale , log - color phase - representa 

While some current audio visualization methods use the tion begins with each complex Fourier coefficient being 
complex fast Fourier transform ( FFT ) components to aug converted to a color according to FIG . 1 , which depicts a 
ment the accuracy of ( real ) amplitude readings , they tend to logarithmic complex - color key in polar coordinates with 
be highly application - specific , and do not appear concerned amplitude on the logarithmic vertical axis and imaginary 
with the significance of generalized , total - sound analysis , by 25 phase angle Q on the linear horizontal axis . In such a 
which simultaneous display of both amplitude and phase representation , the hue is determined by the coefficient ' s 
data in each pixel provides a canonical means of recording , phase angle whereas the brightness / saturation is determined 
analyzing , cataloguing , and displaying more sound than by the logarithm of the intensity of the coefficient . 
humans are generally considered capable of hearing . Dis As seen in FIG . 1 , Fourier - coefficient phase - shifts in one 
closed herein is an efficient and robust real - time method of 30 direction result in a red - to - green - to - blue ( RGB ) sequence , 
viewing total sound spectrographs that incorporates log whereas movement in the opposite direction results in a 
intensity ( for improved dynamic range ) amplitude - visual red - to - blue - to - green ( RBG ) sequence . Since the frequency 
ization combined with chroma - like phase - visualization . By scale is linear , the only interpolation involved is that which 
simultaneously displaying both real and imaginary FFT maps the saturation and brightness from a linear to a 
data - sets , the resulting image is ensured to contain all the 35 logarithmic intensity scale ( vertical axis of FIG . 1 ) . By 
information of the original source , meaning it is always plotting the log of the intensity rather than only the intensity , 
possible to recover the original sound from any image so some fine details are sacrificed in order to provide conven 
generated with this method , down to the original phases . tional improvements in dynamic range . Hue , saturation , and 

This presents alternative data storage techniques , novel brightness parameters between 0 and 1 are determined by 
cataloguing methods such as visual sound field - guides 40 equations ( 1 ) , ( 2 ) , and ( 3 ) , respectively . This reversible 
( which , when combined with a mobile real - time visualiza mapping between complex - number absolute - value and 
tion app could allow for live imitation - feedback ) , improved pixel - color thereby trades contrast for dynamic range . 
sound - availability for the hearing - impaired , and more . Addi 
tional modifications that include , e . g . , Grand Staff musical 
overlay and / or stereo versions for wearable devices help 45 h = music readers without specific technical backgrounds and / or 
sensory capabilities to make sense of such total - sound if A < 1 

visualizations . The ever - increasing capability of modern if A > 1 mobile devices can already support implementation of this 1 + In [ A ] 

visualization method , leveraging their wide distribution as 50 
well as their pre - installed microphones , color displays , and if A < 1 b = { 1 - In [ A ] processing speeds . if A > 1 
Methods 
The study of spatial periodicities in nanocrystalline solids 

has shown the utility of representing both amplitude and 55 In order to achieve the benefits of the log - frequency scale 
phase with a single pixel , since condensed matter crystals from equally spaced samples in the time - domain , the linear 
contain periodicities in two and three spatial dimensions , frequency data must be transformed , limiting the retention 
and so require higher dimensional FFTs rather than the one of some detailed sound information in favor of a more robust 
time - dimension periodicities involved in audio analysis . By visual representation . In particular , since the transformation 
applying this visualization method to audio signals , the 60 from linear - to log - frequency expands the lower - frequency 
complete , complex FFT of a given time - slice is displayed as coefficients and compresses the higher - frequency coeffi 
a single column of pixels , allowing the horizontal axis to cients along the vertical axis , the lower - frequency coeffi 
remain available for sequential slices in the time domain . cients ( those below about 1200 Hz ) require interpolation to 

In contrast to current audio visualization methods like sufficiently inform the brightness values for the multiple 
traditional spectrograms , reassigned spectrograms , con - 65 rows of a single coefficient . In contrast , the higher - frequency 
stant - Q transforms ( CQTS ) , and chroma features which use coefficients are under - sampled so that only coefficients clos 
various techniques to optimize amplitude visualization , a est to display - rows are represented . This optional nonlinear 
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transformation of the frequency axis allows the discrete one - third the time necessary to maintain real - time synchro 
time - frequency spectrogram to be “ warped ” ( different fre - nization . Since this method for showing variation in phase 
quencies stretched or compressed differently , but frequency - among Fourier coefficients allows for the representation of 
order preserved ) without being " scrambled ” ( order of rep - a complex number by a single pixel , the entire FFT is 
resented frequencies not preserved ) , making it more 5 conveniently displayed as a vertical line of colored pixels 
amenable to visual pattern recognition techniques . with the brightness corresponding to the log of the intensity 

The log - frequency display is then rendered by first com of the Fourier coefficient and the hue corresponding to the pleting the linear - frequency counterpart as described above coefficient - phase . In the time direction , steady variations in and then by mapping the vertical axis to a log - frequency Fourier - coefficient phase at the onset of each time - slice are scale . At lower frequencies , this requires interpolation 10 seen as colored stripes , with stripes of opposing sequence between complex - valued coefficients , for which there are ( RGB vs . RBG ) occupying opposite sides of the zero two methods . Complex - color log - frequency interpolation of 
Fourier coefficients for a 10 % frequency - modulated tone amplitude lines . When the oscillation frequency is below the 
centered around 256 Hz are shown using rectangular ( FIG . center of a coefficient , the hue alternates in the RBG 
2A ) versus using polar ( FIG . 2B ) interpolation . Color rota - 15 direction , and when the oscillation frequency is above a 
tion from red - to - green - to - blue ( RGB ) indicates that the Fourier - coefficient center , the hue alternates in the RGB 
oscillation frequency is above the Fourier coefficient center , direction , as seen in FIG . 2A . For a static tone , the fre 
and rotation from red - to - blue - to - green ( RBG ) indicates an quency - misalignment , in Hertz , with the Fourier - coefficient 
oscillation frequency below the center of the Fourier coef hardware - reference - frequency was found to be equal to the 
ficient . 20 number of color - cycles in a one - second interval . 

While both polar and rectangular interpolation routines Whenever the phase is centered on the Fourier coefficient , 
were applied to this task , rectangular interpolation ( FIG . 2A ) the hue remains constant , which allows highly accurate , 
was found to be preferable to polar interpolation ( FIG . 2B ) well - centered data points to be easily distinguished and 
by showing small variations in Fourier coefficient phase at isolated even in real - time . In fact , the color - oscillations have 
the onset of each time - slice as colored stripes . This is 25 a period inversely proportional to the frequency offset from 
because the rectangular approach produces a plot that is the coefficient center , just as do amplitude beats used to tune 
interpreted based on existing knowledge of phases and woodwind instruments ( see FIG . 3 ) . Plotted in FIG . 3 is a 
coefficient centers , whereas the polar approach contains an composite beat - schematic , with 128 vertical time - slices 
inherent ambiguity in phase assignment . Consequently , the arrayed across the horizontal axis , and 4 center - to - center 
method defers to rectangular interpolation ( FIG . 2A ) for 30 frequency - coefficients on the vertical axis . Each frequency 
extracting meaningful Fourier phase information from audio coefficient in FIG . 3 is divided into 25 lines with randomized 
data . The newly interpolated phase - angles are then repre - phase - offsets to highlight beat - oscillations as a function of 
sented as colors as shown in FIG . 1 . In each FIG . 2A and the frequency - offset from the coefficient - center ( solid color 
FIG . 2B , the two groups each of five white horizontal lines lines ) . The central dashed line in FIG . 3 marks the center of 
correspond to the lines of the treble and bass clef of the 35 one frequency coefficient , with top and bottom boundaries 
traditional Grand Staff musical notation . 1 / 8th of the height away in each direction . The top 5 / 8ths of 

Since each Fourier coefficient corresponds to a frequency the plot show color phase - beats with respect to coefficient 
range determined by the FFT size , a coefficient “ center ” is center , while the bottom 3 / sths shows monochrome ampli 
where a linear coefficient index plots on the log - frequency tude - beats with respect to a coefficient - centered note . 
scale . Since tiny changes in amplitude are detected by 40 Discussion 
examining more - sensitive phase - variations , mapping Fou The connection of technologies like microphones , digital 
rier phase to hue allows frequency - variations well below the displays , and computing power with currently - existing , 
resolution allowed by a typical FFT size to be visualized globally - interconnected , wireless networks of highly - por 
from one time - slice to the next as colored stripes . In this table devices provides a historically unique opportunity to 
way , rougher frequency data are shown with brightness / 45 drastically expand the scope of applications for visual audio 
saturation , while the finer details are represented in color . analysis . In addition , versatile phase - sensitive audio - analy 
Assuming a sampling rate of 44 . 1 kHz and a 2048 FFT size , sis applications incorporating both modern ( log - frequency ) 
the separation of coefficient centers is 44100 / 2048 ~ 21 . 533 and traditional ( Grand Staff ) optimizations for enhancing 

visual pattern recognition provide a meaningful ( or at least 
At various points between coefficient centers , rectangular 50 relatable ) basis from which anyone with experience reading 

interpolation results in zero - amplitude phase - inversions . music may make interpretations of phase - detailed audio 
During these transitions , the interpolated phases switch from data . 
being above the center of the lower coefficient to being Several exemplary embodiments of applications involv 
below the center of the higher coefficient , or vice versa , at ing these features are illustrated in FIGS . 4A - 4J and con 
which point the Fourier phase undergoes an inversion . At 55 sidered as sample uses for a mobile device application as 
these intersections , the interpolated amplitudes reach zero proposed herein . 
before immediately becoming positive again . The effect is FIG . 4A illustrates a logarithmic complex color visual 
that black lines appear between coefficient centers with ization of a northern cardinal bird call . The inclusion of 
alternating color rotations on either side . Such black lines relevant sound images in text - or print - based media ( such as 
are artifacts of the rectangular phase - interpolation routine , 60 bird - sound field - guides as suggested by panel in FIG . 4A ) 
and , as an exception , do not actually correspond to zero - allows users without appropriate hardware to take advantage 
intensities in the input signal . This effect is seen in practice of this technology by applying independent pattern - recog 
in FIG . 2A . nition analysis to existing sound - images . Moreover , in some 

Results embodiments , such printed images are used in conjunction 
Realizations of this log - color visualization method in 65 with , for example , a mobile - friendly analysis - app to visually 

HTML5 / JavaScript have been shown to process and render compare and classify live captures with sound - visuals of 
audio signals on a variety of hardware platforms in about known origin . 

Hz . 
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FIG . 4B shows both the colored bands of various Fourier is illustrated in FIG . 5 , which shows half - note log - frequency 
phase shifts and the multi - harmonic behavior of the human rendition of a 10 % frequency - modulated tone centered 
voice are readily apparent in the logarithmic complex color around 256 Hz . In fact , in some embodiments , a single 12 
visualization of a “ woo war wow ” theater voice exercise . second multi - octave chromatic scale is used to quantify the 
The right axis lists C - octaves , while the left axis lists 5 tuning state of all notes on a piano . 
frequency in Hertz , and the bottom axis lists time in seconds . FIG . 6 shows a visual recording of human speech created 
A real - time picture of incoming - sound ( as in the theater using a prototype Total Sound Videography program that 
voice example of FIG . 4B ) empowers voice imitators as uses logarithmic complex color to represent the Fourier 
well , even those who are hearing - impaired . coefficient offset of each frequency on the vertical axis as a 

FIGS . 4C and 4D illustrate the utility for home experi - 10 hue in the pixel associated with that frequency . This phase 
menters in the spirit of Google ' s Science Journal app . FIG . information , mainly arising from the digital detector dis 
4C depicts an image for a half - full wine glass ( in grayscale ) . cretely binning components of a continuous time signal , is 
FIG . 4D shows analyses for both a half - full and a quarter - largely ignored or potentially underutilized by many current 
full wine glass . audio analysis applications , and is furthermore likely unde 
FIGS . 4E and 4F illustrate visual comparison of musical 15 tectable by the human ear . The voice depicted in FIG . 6 is 

instrument harmonics . FIG . 4E shows a simulated oboe up , that of the inventor of the Linux operating system , Linus 
clarinet down musical scale and illustrates the differences in Torvalds , introducing himself . 
harmonic profiles between the two woodwind instruments . FIG . 7 shows Pythagorean - ratio tuning to middle - C at 
The first harmonic of the oboe is clearly more pronounced 258 . 398 Hertz , so as to make C2 an integral multiple of ( in 
than that of the clarinet , and the clarinet ' s second harmonic 20 this case 12x ) the 44100 / 2048 = 21 . 5332 Hertz separation 
is that instrument ' s most pronounced , after the base signal . between Fourier coefficients . This is an ancient form of just 
Color indicates phase offset from the center frequency of the intonation tuning optimized for one specific key only , so as 
appropriate Fourier coefficient at the outset of each time to maximize harmony between notes . Each octave starts 
slice ( according to FIG . 1 ) , and the brightness / saturation of with a one second C - note at the left , and works its way 
a given pixel indicates the logarithm of the amplitude of the 25 chromatically up to B at the right . 
appropriate Fourier coefficient . This sacrifice of finer detail In some embodiments , the combination of processing and 
provides conventional improvements in dynamic range . For display techniques described herein enables total sound 
comparison , FIG . 4F illustrates a logarithmic complex color visualization that includes source - detector phase - interfer 
visualization of whistling with no harmonics . ence information . The convenient and portable image format 

FIGS . 46 - J provide exemplary embodiments showing 30 allows for improved accuracy in sound measurement , stor 
application of the techniques described herein . FIG . 4G age , analysis , and reproduction in a plethora of new and 
shows a recording of water dripping from a faucet , in which diverse environments and applications . Further development 
the colored bands indicating shifts in Fourier phase are of robust audio visualization software , in parallel with 
noted . FIG . 4H illustrates a linear ramp down and up in semiconductor technology , will give the general public 
frequency in a 12 second format , calculated directly at 35 access to a growing variety of specialized , phase - interfero 
44100 Hertz and then displayed on a log - frequency scale in metric tools to record , analyze , and recreate sounds on an 
Mathematica . FIG . 41 depicts an excerpt from Edvard increasingly real - time basis . As software is developed , appli 
Grieg ' s “ Anitra ' s Dance " performed by the Limburg Sym - cations which take advantage of traditional musical notation 
fonie Orkest . FIG . 4J shows a series of chords generated by are likely to have the advantage of wider accessibility by the 
a cellular - automaton as played by flutes and modeled using 40 general public , as well as additional potential for musical 
Mathematica . reproduction and conceptual reference . Consequently , the 

In addition to displaying data on the complete sound ability to record and analyze audio in a visual form that 
wave , in some embodiments , a generated image is reverse - retains precise information ( i . e . , regarding the physical ori 
processed to recover the original signal , including the origi entation of the actual sound wave in space relative to the 
nal phases imparted by the interference of the digital detec - 45 detector that recorded it ) is significantly valuable for 
tor with the source wave , which contain information like detailed sound - feature analysis . 
relative angle to direction of source - wave propagation , etc . In some embodiments , a sound is reconstructed from an 
While CQTs have also been shown to be invertible , they do image . A method for reconstructing a sound from an image 
not display phase information explicitly and generally comprises capturing a sound , creating a logarithmic color 
require additional computational resources compared to the 50 amplitude of the sound , creating a coefficient phase angle of 
discrete FFT . Since musical notation provides a practical the sound , generating an image of the sound by plotting the 
reference , and since each pixel is able to be mapped back to amplitude and the phase simultaneously and storing the 
the original sound , both human imitation and recovery to generated image , and reverse processing the generated 
audio occur . Other modifications , such as adjustment of the image to recover the sound . In some embodiments , such as 
frequency axis so Fourier coefficients match frequencies of 55 utilizing various software applications , a sound is captured 
particular tuning standards , are used to readily display and stored as a generated image . Upon retrieval of the 
whether a note is in appropriate tune , or if not , whether it is generated image , the sound is reconstructed by reverse 
sharp or flat and by precisely how much . Such note - specific processing of the plotted amplitude and phase of the gen 
applications are completely accessible to anyone who reads erated image . In some embodiments , the generated image is 
music , and incorporates a new class of potential users of 60 not displayed . In some embodiments , the generated image is 
technically sophisticated audio analysis software . displayed before and / or after the sound is reconstructed . 

Browser implementations are only one facet of this devel When introducing elements of the present disclosure or 
opment . More specialized implementations , e . g . , in hard - embodiments thereof , the articles “ a , ” “ an , ” “ the , " and 
ware instead of software will enable other uses . For instance , “ said ” are intended to mean that there are one or more of the 
by doing a separate transform for each half - note in a 65 elements . The terms “ comprising , ” including , ” and “ having ” 
log - frequency display , a user avoids all interpolation arti - are intended to be inclusive and mean that there may be 
facts and puts any sound into playable music notation . This additional elements other than the listed elements . 
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In view of the above , it will be seen that the several retrieving the generated image ; and , reverse processing 
advantages of the disclosure are achieved and other advan the generated image to recover the sound . 
tageous results attained . As various changes could be made 9 . The method of claim 8 , wherein the image is a pixel . 
in the above processes and composites without departing 10 . The method of claim 9 , wherein the amplitude of the 
from the scope of the disclosure , it is intended that all matter 5 sound is displayed as the brightness and saturation of the 
contained in the above description and shown in the accom pixel . 
panying drawings shall be interpreted as illustrative and not 11 . The method of claim 9 , wherein the phase of the sound in a limiting sense . is displayed as a hue of the pixel . What is claimed is : 

1 . An audio visualization method for recognition of a 10 12 . The method of claim 8 , wherein the image comprises 
a Fourier Transform ( FT ) . sound , the method comprising : 

capturing a sound ; 13 . The method of claim 12 , wherein the FT comprises a 
determining a brightness and saturation level correspond - real data set and an imaginary data set . 

ing to a logarithmic amplitude of the sound , 14 . The method of claim 12 , wherein the FT is displayed 
determining a coefficient phase angle of the sound ; and , 15 as a vertical line of at least one pixel , wherein the amplitude 
displaying the amplitude and phase of the sound simul - of the sound is displayed by a brightness and saturation 

taneously to generate an image of the sound . corresponding to a log of the intensity of the coefficient and 
2 . The method of claim 1 , wherein the image is a pixel . wherein the phase of the sound is displayed by a hue 
3 . The method of claim 2 . wherein the amplitude of the corresponding to the coefficient phase . 

sound is displayed as the brightness and saturation of the 2015 . A method of recreating a sound on a real - time basis , 
the method comprising : 

4 . The method of claim 2 , wherein the phase of the sound capturing a sound ; 
is displayed as a hue of the pixel . determining a brightness and saturation level correspond 

5 . The method of claim 1 , wherein the image comprises ing to a logarithmic amplitude of the sound , 
a Fourier Transform ( FT ) . 25 determining a coefficient phase angle of the sound ; and , 6 . The method of claim 5 , wherein the FT comprises a real displaying the amplitude and phase of the sound simul data set and an imaginary data set . 

7 . The method of claim 5 , wherein the FT is displayed as taneously to generate an image of the sound ; 
a vertical line of at least one pixel , wherein the amplitude of analyzing the image of the sound ; and , 
the sound is displayed by a brightness and saturation cor - 30 recreating the sound . 
responding to a log of the intensity of the coefficient and 16 . The method of claim 15 , wherein the image is a pixel . 
wherein the phase of the sound is displayed by a hue 17 . The method of claim 16 , wherein the amplitude of the 
corresponding to the coefficient phase . sound is displayed as the brightness and saturation of the 

8 . A method of reconstructing a sound from an image , the pixel . 
method comprising : 35 18 . The method of claim 16 , wherein the phase of the 

capturing a sound ; sound is displayed as a hue of the pixel . determining a brightness and saturation level correspond 19 . The method of claim 15 , wherein the image comprises ing to a logarithmic amplitude of the sound , a Fourier Transform ( FT ) . determining a coefficient phase angle of the sound ; 
displaying the amplitude and phase of the sound simul - 40 20 . The method of claim 19 , wherein the FT comprises a 

taneously to generate an image of the sound ; real data set and an imaginary data set . 
storing the sound as the generated image ; 

pixel . 
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