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Abstract 
 
 

Kousalya Soumya Lahari Voleti 

UTILIZING FEDERATED LEARNING AND MET LEARNING 

FOR FEW-SHORT LEARNING ON EDGE DEVICES 

2021-2022 

Shen-Shyang Ho, Ph.D. 

Master of Science in Computer Science 
 
 

The efficient and effective handling of few-shot learning tasks on mobile devices is 
 

challenging due to the small training set issue and the physical limitations in power and 
 

computational resources on these devices. In this thesis, we propose a solution that 
 

combines federated learning and meta-learning to handle independent few-shot learning 
 

tasks on multiple devices (or clients) and the server. In particular, we utilize the 
 

Prototypical Networks to perform meta-learning on all devices to learn multiple 
 

independent few-shot learning models and to combine the models in a centralized data 
 

distributed architecture using federated learning which can be reused by the clients 
 

subsequently. We perform extensive experiments to (1) compare three different federated 
 

learning approaches, namely Federated Averaging (FedAvg), Federated Proximal 
 

(FedProx), and Federated Personalization (FedPer) on our proposed framework, and (2) 
 

explore the effect of data heterogeneity issue on the few-shot learning performance. Our 
 

empirical results show that our proposed approach is feasible and is able to improve the 
 

devices’ individual prediction performance and improve significantly on the global model 
 

(on the server) using any of the federated learning approaches when the few-shot learning 
 

tasks are on the same datasets. However, the data heterogeneity problem still affects the 
 

prediction performance of our proposed solution no matter which federated learning 
 

approach we used. 
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Chapter 1 
 
 

Introduction 
 
 

There is a rapid growth in mobile device usage over the last decade. Moreover, 
 

there is a need to build effective predictive models on these mobile devices for different 
 

user needs. In other words, predictive models are different on different devices. The main 
 

challenge to build these predictive models is the limited amount of data for each object 
 

class (e.g., five to ten images available for each class) available for the predictive model 
 

on a device. This is the so-called few-shot learning problem [1]. 
 
 

Federated Learning (FL) [2, 3] is an evolving technique which can solve the few-shots 
 

learning issue [1] by allowing the edge devices to collaboratively train and share 
 

knowledge to improve the prediction accuracy at each device. In particular, distributed 
 

devices can effectively train their models and aggregate them to form an effective global 
 

model shared by the devices. 
 
 

The key difference between our few-shot learning scenario and scenarios on existing 
 

federated few-shots learning problems is that each device has its own distinct prediction 
 

task different from the others. Moreover, we have a centralized server that has an initial 
 

larger, but non-overlapping dataset as compared to the data available in the devices. Our 
 

proposed solution combines federated learning (using aggregated models trained for the 
 

few-shots learning tasks) with meta-learning [4] to fine tune (e.g., the distance metrics and 
 

parameters for the) predictive models (at the devices) so that they work well when the 
 

number of data samples for each class is limited on new few-shot learning tasks at the 
 

mobile devices. Figure 1 shows an example of our problem scenario and a high-level sketch 
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of the proposed solution utilizing federated learning for knowledge sharing (models) 
 

among multiple devices to perform few-shot learning at these devices driven by meta- 
 

learning to fine-tuning the individual models. 
 
 
 
 

Figure 1 
 
 

Overview of Federated Few-Shot Learning Using Meta Learning 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To enhance the efficiency of few-shot learning on the devices, a meta-learning technique 
 

is applied on each device on a collection of few-shot learning tasks so that global and local 
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predictive models can be efficiently learned for unseen few-shot learning tasks on both the 
 

server and devices. Many meta-learning methods have been presented for the few-shot 
 

learning problem such as Task Agnostic Meta-Learning [5] and meta-learning over a pre- 
 

trained model on the whole datasets using some evaluation metric [6]. In this thesis, we 
 

utilize Prototypical Networks [7] to fine-tune the predictive model by learning the metric 
 

space that the few-shot classification tasks can be performed the best based on the data 
 

available on the mobile device. Unlike meta-learning approaches such as MAML, PT-MAP 
 

[8, 29] which includes higher order derivatives, computationally expensive algorithms and 
 

has longer run times, Prototypical Networks instead is computationally efficient and 
 

provides much more stability. 
 
 

In this thesis, we implement our proposed federated few-shot learning framework utilizing 
 

Prototypical Networks to perform meta-learning on all devices in a centralized data 
 

distributed architecture such that different few-shot predictive models can be executed on 
 

the devices and the server. We perform extensive experiments on three real-world datasets, 
 

namely CIFAR-100 [9], Fashion-MNIST [10] and Omniglot [11], to (1) compare three 
 

different federated learning approaches, namely Federated Averaging (FedAvg) [12], 
 

Federated Proximal (FedProx) [13], and Federated Personalization (FedPer) [14] on our 
 

proposed framework and (2) explore the effect of data heterogeneity (using different 
 

datasets on different edge devices) on the few-shot learning performance. The main 
 

observations and conclusions from our empirical results are as follows: 
 
 

1. Varying the FedProx proximal term between 0.01 and 1.5 does not have a 
 

significant effect on the prediction performance for our proposed approach using 
 

FedProx for federated learning. 
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2. For few-shot classification tasks with reasonable difficulty (> 50% accuracy), the 
 

proposed approach is able to improve the devices’ individual prediction 
 

performance and improve significantly on the global model (on the server) using 
 

any of the federated learning approaches when the few-shot learning tasks are from 
 

the same datasets. 
 

3. Unsurprisingly, the aggregated (global) models from FedPer perform the best most 
 

frequently, followed by aggregated models from FedProx. 
 

4. Data heterogeneity problem affects the prediction performance of our proposed 
 

solution no matter which federated learning approach we used. 
 
 

The thesis is organized as follows. In Chapter 2, we describe the few-shot learning problem, 
 

how meta-learning approaches are used to build few-shot learning solutions, and the 
 

federated learning setting. Then, we describe our problem setting in detail. In Chapter 3, 
 

we describe previous work on meta-learning methods, and their use to build few-shot 
 

learning solutions, federated learning, and meta-federated learning. The proposed 
 

federated-learning-driven few-shot learning solution using meta-learning, the experimental 
 

scenarios, its implementation, and related issues are described and discussed in detail in 
 

Chapter 4. In Chapter 5, we present extensive experimental results to study the proposed 
 

Prototypical Network based solution for few-shot learning tasks on devices using three 
 

different datasets and three different federated learning approaches. Chapter 6 is our thesis 
 

conclusions including possible future work. 
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Chapter 2 
 
 

Background 
 

In this chapter, we describe the few-shot learning problem, and how meta-learning 
 

techniques have been used to handle few-shot learning problems. Then, we describe the 
 

two different federated learning architectures. Moreover, we introduce Prototypical 
 

Networks which we use for meta-learning of few-shot learning tasks in a federated learning 
 

setting. Finally, we provide a description of the centralized architecture for the federated 
 

learning setting considered in this thesis and the assumptions on the data available on the 
 

server and the edge devices. 
 

2.1 Few-Shot Learning 
 
 

Few-shot learning (FSL) [1] is a machine learning task which particularly deals with 
 

developing models which can best predict on a limited amount of data. It is a learning 
 

problem given only a few examples per class. During multi-class classification, when there 
 

is only one example per class, FSL is termed as one-shot learning [15] and if there is no 
 

example per class, then it is termed as zero-shot learning [16]. Driven by the goal of making 
 

machine learning models a better predictor, more human-like and less computationally 
 

expensive, research on few-shot learning has been a recent hot topic. Since the model is 
 

being deprived of data, traditional supervised learning methodologies cannot handle the 
 

problem effectively to ensure good predictive performance. To address this problem, new 
 

approaches driven by other machine learning solutions such as meta learning [17] , multi- 
 

task learning [18], adversarial learning [19], generative modeling [20] have been proposed 
 

to overcome the challenges in few-shot learning tasks. 
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Multi-task learning [18] uses parameter sharing as a technique to solve FSL. For 
 

this learning problem, there exists a set of multiple related tasks for the model to learn and 
 

predict. All these tasks consist of classes with fewer samples (few-shot tasks) and with a 
 

large number of samples (base tasks). The few-shot tasks are used for fine-tuning training, 
 

whereas the base-tasks are considered as prior knowledge for pre-training. Each task is 
 

first divided into a training set and a test set for the model to be trained individually. After 
 

initial training of the model using the training set of base-tasks, the feature extractor layers 
 

of this model are divided into task-generic layers (to share their parameters with model 
 

training on other tasks), and task-specific layers (to specialize current tasks). The model 
 

trained in this way is further fine-tuned on a training set of few-shot tasks and finally, one 
 

can validate the model using the test set of few-shot tasks. 
 
 

Another few-shot learning approach is based on adversarial learning and generative 
 

modeling techniques of machine learning [20]. These are broadly termed as Hallucination 
 

based algorithms. These algorithms directly deal with the data deficiency by data 
 

augmentation. The basic assumption of these techniques is that a model can learn some 
 

intraclass relationships (e.g., variance, etc) during training of given samples, which can be 
 

further applied to a new few-shot learning task. One recently proposed method is the 
 

Adversarial Feature Hallucination Network (AFHN) [20], which is a GAN-based 
 

algorithm for solving FSL. It learns the image feature representations of given classes and 
 

synthesizes them using a conditional framework and uses this knowledge for few-shot 
 

classification. In other words, they perform data augmentation (from learned knowledge) 
 

for the limited number of samples from which they can hallucinate and predict on unseen 
 

data. 
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2.2 Meta Learning for Few-Shot Learning 
 

Meta-learning [4] is learning from one model with a large amount of data, and 
 

fine-tuning it to another model for a new similar task. One recent research of interest is 
 

whether one can utilize meta-learning techniques to support few-shot learning tasks [1]. 
 

Unlike supervised learning of training on one set and testing on another set, meta-learning 
 

technique uses three different sets, namely: base set for prior training, support set for 
 

fine-tuning and a query set which one performs prediction on. The support set and query 
 

set mostly have classes with fewer samples that are unseen in the base set. 
 

Every support set and query set is specified as n-way: k-shot: q-query tasks where n- 
 

way denotes number of classes in the sets, k-shot is number of images per class in support 
 

set and q-query is the number of images per class in the query set. In this section, we 
 

describe how meta-learning can be used to solve the few-shot learning problem. 
 

The meta-learning solution is broadly classified into two categories: 
 

1. Inductive Approach (Supervised): Meta-learning methods follow traditional 
 

supervised learning techniques in which the prediction is made on totally unseen samples. 
 

The trained generalized model is used to make a prediction. The two main steps of such 
 

meta-learning methods are as follows: 
 

1) Creating a set of Support and Query sets for Training. To learn to handle an 
 

unseen few-shot learning task, a training set is needed to build prior knowledge 
 

of the model. This training set is also called a base set containing a large number 
 

of classes and images in each class. The base set is randomly sampled to create 
 

multiple support and query sets of pre-defined n-way k-shot q-query configuration 
 

for n-way k-shot few-shot learning training purposes. By replicating the process 
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of predicting with support and query sets during training, when the model needs 
 

to train on a new unseen support and query set, the training will be more efficient 
 

and effective. 
 

2) Fine Tuning Using a Support set. The pre-trained model is given a support set 
 

(or a novel set) of n-way k-shot configuration. One will fine-tune the predictive 
 

model (based on the base set) for the query set using the support set. 
 

A query set (or a validation set) with n-way q-query is used to test the 
 

performance of the fine-tuned prediction model. In other words, a prediction 
 

model which is trained on a large base set and fine-tuned on an n-way k-shot 
 

support set will predict on an n-way q-query query set. 
 

An important point to note here is that for most cases the n-way k-shot q-query 
 

set can be just termed as n-way k-shot which means that both the support set and 
 

query sets are different but use the same quantity of images. In this thesis, we 
 

referred to it as n-way k-shot q-query in our experimental results. Every client and 
 

the server chooses random support and query sets from their data loaders which 
 

will be clearly explained in Chapter 5. 
 

Some of the popular existing meta-learning methods which follow the above steps are 
 

Prototypical Networks [7], Matching Networks [31], Relation Networks [32], MAML 
 

(Model Agnostic Meta-learning) [8] etc. These algorithms are explained in detail in 
 

Chapter 3. Apart from these, there is also another category of algorithms called Transfer 
 

Learning Baselines [17] which follow very much similar steps as meta-learning 
 

approaches but are slightly different in the usage of the small number of data from each 
 

class. These algorithms do not follow episodic learning but instead transfer relevant 
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knowledge from the trained model to the particular few-shot learning tasks by undergoing 
 

fine tuning. Examples of this type are Baseline and Baseline++ [17]. 
 

2. Transductive Approach (Semi-Supervised): Such an approach is limited to the 
 

performance of the current task and not generalized to multiple tasks. In this case the 
 

classifier will have access to both support set and query set making it very easy for the 
 

model to predict with greater accuracy than compared to the inductive approach. In fact, 
 

the approach has only one single step, in which the transductive classifier takes both the 
 

training samples which are labeled as well as unknown samples and makes a prediction 
 

on these unknown samples. Since the prediction is made on a batch of unlabelled data 
 

inputs that is already known, and these training samples are not provided with labels, it 
 

is thus called semi-supervised meta-learning or transfer learning approach [28]. There 
 

have been a number of methods and algorithms explored in recent times for this setting 
 

in the field of meta-learning [27, 33 and 34]. One example of transductive approach is 
 

PT-MAP (Power Transform- Maximum A-Posterior) [29] method which uses Gaussian 
 

like Distributions for handling semi-supervised data (See Section 3.1). 
 

2.3 Federated Learning 
 

Federated learning techniques allow one to train predictive model(s) across multiple edge 
 

devices or servers that have their own local datasets, without sharing the data explicitly. 
 

In a federated learning problem setting, it is no longer like the traditional centralized (i.e, 
 

single location) technique which builds a single predictive model using datasets from 
 

different devices on a single server and often with the assumption the local datasets on 
 

the edge devices are identically distributed. This learning setting addresses data privacy, 
 

data security, data access rights and access to heterogeneous data in many real-world 
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Internet-of-Things (IoT) applications [2]. 
 

In a federated learning scenario, individual edge device (aka client) participation in this 
 

case will be highly beneficial to both the clients and the server. The process of federated 
 

learning relies on the regular communication between the clients and/or with the server 
 

(if any). After completion of each communication round, an aggregation method is used 
 

to combine models from the clients to improve the predictive model. The data provided 
 

by the clients can be of two types: Independent and Identically Distributed (IID) or Non- 
 

IID [13]. Dealing with IID data is probably the easiest task for any federated learning 
 

related problem but the real challenge is to build a robust predictive model using Non- 
 

IID data. 
 

The federated learning problem setting can be characterized into two ways: 
 

1. Centralized Architecture: The server creates a global model, sends it to the clients 
 

for getting trained on their own private data and then they just send back the model 
 

parameters to be aggregated at the server. The flow of data is asymmetric and 
 

communication between the edge devices can be synchronous or asynchronous. 
 

A simple aggregation approach for this architecture is FedAvg [12] which takes 
 

the average of the model parameter values from the clients. 
 

2. Decentralized Architecture: There is no requirement of a trusted server or 
 

manager device. In each communication round, one client updates the local 
 

parameters of their local data, then selects another party and sends its computed 
 

gradients or model parameters to the selected client(s). Next, the party which is 
 

selected uses these parameters to train a local model using its own private data. 
 

The selection and sending process continues until all parties finish in one round. 
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Every client is selected for updating the global model for the same number of 
 

rounds. An example of the federated learning algorithm for this architecture is 
 

SimFL [30]. 
 

2.4 Meta-Learning Using Prototypical Networks for Few-Shot Learning 
 

In this thesis, we explore the utilization of Prototypical Networks [7], an efficient meta- 
 

learning algorithm which prioritizes the few-shot learning in the federated learning setting. 
 

These networks are characterized by calculating the prototypes (i.e., centroid of a feature 
 

space). Consider a support set S of n labeled examples from k classes {c1,c2….ck} given by 
 

{(x1,y1),(x2,y2),...(xn,yn)} where {x1,x2,,....xn} are input images and {y1,y2,...yn} are their 
 

respective labels. Let Sk denote all the examples of class k and we use its total number of 
 

examples for calculating the mean [7]. We pass these images to the feature extractor 
 

parameterised by function F and get feature vectors {z1, z2…zn}. For each class ck, we 
 

calculate the average of feature vectors, and find k prototypes {p1, p2…pk}. 
 

Mathematically, [7] 
 
 
 
 

where, (1) 
 
 

Now when a query set image, say xq is given, we again extract its feature vector using F to 
 

get zq and calculate Euclidean distance between zq and each prototype pk. Since we have k 
 

prototypes we get k distances, {d1, d2…dk}. Because we cannot predict using these 
 

distances, we calculate the negative logarithmic probability distribution of these distances 
 

using softmax. The class k with highest softmax values is predicted as an output class for 
 

xq. The learning proceeds by reducing the loss using SGD optimization [36]. 
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The Prototypical Networks, unlike other meta-learning methods, are computationally 
 

inexpensive as well as efficient. Since it is based on distance metric calculation of 
 

prototypes of each class, they are very easy to implement. Also estimation of these 
 

prototypes is done using mean calculation, which makes it noise resistant. 
 
 

2.5 Problem Setting and Study Objectives 
 

In this thesis, we consider a centralized architecture as described in Section 2.3 similar to 
 

the example in Figure 1 in Chapter 1. For our problem setting, the server has a larger 
 

training set (i.e., base set) at initialization for the meta-learning process. The clients (i.e 
 

edge devices) have smaller non-overlapping sets (with similar classes present in training 
 

set) which are used to generate support sets for few-shot learning on an n-way k-shot 
 

prediction problem on q-query over 20 communication rounds. 
 

The server performs a federated learning aggregation process at each round using the 
 

meta-learning models for few-shot tasks learned at the edge devices and shared with the 
 

clients. Our main investigation objectives are to understand 
 

1) The performance behavior (on clients and server) of 3 different federated learning 
 

aggregation approaches described in Chapter 4 on our proposed meta-learning 
 

few-shot learning solution. 
 

2) The performance and learning behavior over multiple communication rounds for 
 

our proposed solution. 
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Chapter 3 
 
 

Related Work and Literature Review 
 
 

In this chapter, we will review some important previous work related to few-shot learning 
 

using meta-learning, federated learning, and meta-learning to improve federated learning. 
 
 

3.1 Few-Shot Learning Using Meta-Learning 
 
 

1) Matching Networks [31]: This is a meta-learning algorithm which is very much 
 

similar to Prototypical Networks (see Section 2.4). The only difference is that the 
 

MatchingNet uses cosine distance as its distance metric instead of Euclidean 
 

distance. It calculates the average cosine distance for each class between the query 
 

feature and each support feature. The algorithm uses the learned embedding space 
 

for the support set and for the query set. 
 

2) Relation Networks [32]: These neural networks divide the few-shot learning 
 

classification problem into two modules, an embedding module to retrieve the 
 

feature representations of the query set images and a relation module (a more 
 

deeper learnable comparator) instead of a standard linear one to compare the 
 

properties of image categories in the support set and query set [32]. Several 
 

different feature maps are extracted from the average of all the support set images 
 

from the embedded module to be fed into the relation module in the later stage to 
 

produce scalar range relation scores from 0 to 1 which represents the similarity or 
 

dissimilarity between the considered query image and support image. 
 

3) MAML [8]: Model Agnostic Meta-Learning is a unique and a very powerful 
 

algorithm compared to all the others. Its main goal is to learn how to initialize 
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good parameters of the model which can successfully make an accurate prediction 
 

based on optimal minimization of the loss function. Here one does not consider 
 

any embedded feature vectors but rather the neural network is given the entire 
 

large training set (divided into episodes) to make a supervised learning prediction 
 

out of learned features. Then this network will be added with a linear layer that 
 

predicts the output. Next, the gradient information from the loss function is used 
 

to fine-tune the same neural network but on a specific set of support points until 
 

it can better predict query points. One important thing to note is that, it does not 
 

learn an update function or a learning rule, but it learns the model parameters in 
 

a differentiable way. The name agnostic means that it can be used in different task 
 

contexts. Because it has an ability to deal with different types of data and is able 
 

to make a good prediction on it, it is therefore used for meta-federated learning 
 

where data heterogeneity is a major concern. 
 

Until now we have discussed the inductive methods; the following is a pretty good 
 

example of a transductive approach. 
 

4) PT-MAP Transductive [29]: Unlike the traditional supervised learning, in the 
 

transductive approach some of the unlabelled query samples are given to the neural 
 

network during the training process. Power Transform- Maximum A Posterior 
 

algorithm (PT-MAP) [29] concentrates on applying preprocessing and 
 

transformation techniques for the feature vectors from the support set and query 
 

set to be more aligned to Gaussian-like Distributions (Power Transformation 
 

phase). These distributions then undergo a technique called Sinkhorn Mapping for 
 

a number of iterations (MAP phase). For each iteration, the class centers are 
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updated and after all iterations, the prediction is made on the query set. 
 

3.2 Federated Learning 
 

The conventional centralized federated learning algorithms involve the following 
 

two stages: First, one of the server trains a global model with a huge amount of data. Then 
 

it randomly chooses N clients among K clients and then sends them the server trained 
 

model for training on their local data. These selected clients send back their models to 
 

the server to be combined in a useful way. One of the oldest, basic yet frequently used 
 

federated learning approaches is Federated Averaging (FedAvg) [12] which basically 
 

averages the weights of all the client models and updates the server model. The main 
 

weakness for FedAvg is that it cannot handle data heterogeneity in the different clients. 
 

All the algorithms that have been developed after this traditional algorithm use the same 
 

aggregation idea but with different modifications to overcome its drawbacks. In order to 
 

handle data heterogeneity, Federated Matched Averaging (FedMA) [21] performs simple 
 

matching of models using Probabilistic Federated Neural Matching before averaging. 
 

FedDist [22], again based on model matching, combines FedAvg and FedMA. For 
 

FedDist, during model aggregation FedAvg is performed first and similarity between a 
 

client model and the aggregated model is based on Euclidean distance. Additional 
 

statistical information on the client models are utilized to decide whether a client model 
 

should be aggregated into the server model. Both FedMA and FedDist attempts to 
 

identify the client models which can diverge due to dissimilar and data heterogeneity and 
 

avoid their inclusion into the aggregated server model. 
 

Another important work done in this field is the FedRep [23]. The intuition behind this 
 

is that all the data which has been learnt by the clients share a common feature 
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representation which can be used by the clients again to build a more personalized 
 

classifier which can further determine each client’s local data labels. In this thesis, we 
 

perform federated learning using the basic FedAvg, FedPer and FedProx algorithms (see 
 

Chapter 4) and compare their performances on few-shot learning tasks. 
 

There have been attempts to integrate meta-learning into federated learning solutions. For 
 

example, FedMeta [24] and Per-FedAvg [25] are proposed to improve the FedAvg 
 

algorithm. Both algorithms used MAML (See Section 3.1) to improve FedAvg so as to 
 

deal with non-homogeneous data. FedMeta reduces the communication overhead with 
 

faster convergence of client performances and efficiently increasing the prediction 
 

performance. Per-FedAvg emphases on personalization of client local data usage using 
 

MAML and handles data heterogeneity. Fed-Meta has been tested only on LEAF [26] 
 

datasets. FedFSL [19] tackles the few-shot learning with federated learning and 
 

adversarial learning techniques. It creates a separate feature space for each client and uses 
 

adversarial learning techniques for prediction. 
 

Three federated learning aggregation approaches to be integrated into our proposed 
 

solution framework and compared in our empirical experiments are described below: 
 
 

1) FedAvg [12]: When the clients receive the server pre-trained model, they undergo 
 

several rounds of local training for their individual data. At each round, these 
 

clients update the weights and finish their local training, their weight updates are 
 

averaged and sent back to the server for further testing. The client and the server 
 

model use the Stochastic Gradient Descent (SGD) [36] optimization method for 
 

parameter updates to minimize the loss function. It is a simple averaging 
 

technique and it does not address the data heterogeneity issue among the clients. 
 
 
 

16 



 

2) FedPer [14]: Fed-Personalization as the name suggests, concentrates more on the 
 

individual learning process of the clients. The more the clients learn, the better is 
 

the overall aggregated global server model performance. So, the client neural 
 

network has its layers divided into base and personalization layers where base 
 

layers often get updated with the FedAvg aggregated model layers and 
 

personalization layers are kept aside for client specialization. For every 
 

communication round only the base layers are changing with respect to the server 
 

model but the personalization layers are never changed. 
 

3) FedProx [13]: Federated Optimization (FedProx) specifically addresses and 
 

deals with the inconstant resource constraints of clients during federated learning 
 

and also the issue with heterogeneity of local data at the clients. They assure the 
 

non-uniform working of different client devices and give each client a varying 
 

amount of work to be done. They use a proximal term for this process, which 
 

balances the local updates. 
 

We will see the algorithmic design of these algorithms in more detail in Section 4.4 
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Chapter 4 
 

Federated Few-Shot Learning Using Prototypical Network 
 

In this chapter, we describe our proposed methodology for federated few-shot learning 
 

driven by meta-learning using Prototypical Network on all clients in a centralized data 
 

distributed architecture such that different few-shot predictive models can be executed 
 

on the clients. 
 

4.1 Solution Implementation Overview 
 
 

Our solution implementation on a centralized architecture (see Section 2.3) with a 
 

server and multiple edge devices (See Chapter 1 Figure 1) consists of three main steps. 
 

First, we have a huge dataset on the server that allows us to perform meta-learning for few- 
 

shot learning on the server in an episodic manner. A prototypical neural network model is 
 

created using a set of few-shot learning tasks randomly generated from the huge dataset. 
 

Second, this trained meta-learning model is sent to all the clients for training and to fine- 
 

tune this model with their own local data which are smaller in size. Note that the data 
 

provided by the clients is always few-shot in a fixed n-way k-shot q-query configuration 
 

based on the problem of interest. Third, we perform the aggregation process of federated 
 

learning. In other words, after the completion of client local training, their models are sent 
 

to the server through an aggregation method. The three steps are iterated for multiple 
 

rounds in our experimental scenarios. 
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4.2 Experimental Scenarios 
 
 

To explore the feasibility and efficacy of our few-shot solution using meta-learning and 
 

federated learning on both homogeneous and heterogeneous data, we perform experiments 
 

on two scenarios. 
 
 

1) Single Dataset: The server and all (two or three) clients learn from the same 
 

dataset. The dataset of interest is divided among the server and clients. The server 
 

gets a huge portion of it and the rest of the dataset is divided equally among the 
 

clients. 
 

2) Multiple Datasets: Server has two datasets and every client (three of them) has a 
 

different dataset. Aggregation may not be done on a particular client. The main 
 

objective is to test the effect of performing fine-tuning on few-shot learning 
 

models learned from the two datasets (on server) on an unrelated dataset (on a 
 

client). 
 

We limit our experiments on the three aggregation algorithms to just three clients. We 
 

create a simulated centralized federated learning architecture for the server and three 
 

clients and since all the datasets are not in equal length, we consider either two or three 
 

clients in active mode depending on the dataset used. We also limit the number of shots 
 

in the few-shot learning tasks on the clients. We consider three few-shot learning task 
 

configurations, namely: (i) 3-way: 5-shot: 10 query, (ii) 5-way: 5-shot: 10-query and (iii) 
 

5-way: 5-shot: 5-query. We have chosen these particular configurations so that we can 
 

make a fair comparison between the way-change and shot-change. The number of clients 
 

used is different for each dataset since three datasets (see Chapter 5) we used in our 
 

experiments are not of the same size. The feature extractor we used in our Prototypical 
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Networks is ResNet18, and SGD optimization is used during training. 
 

4.3 Implementation of the Proposed Solution on Experimental Scenarios 
 

The steps we followed for a single round of federated learning is shown in Figure 2. We 
 

assume three clients in our implementation description below. Every dataset is divided 
 

into five parts if it is a three-client scenario or four parts if it is a two-client scenario. 
 
 
 
 

Figure 2 
 
 

Implementation of Proposed Solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 1: The dataset (B) with a huge number of data points is considered at the server side 
 

for base training, This dataset is further randomly sampled into support (Sb) and query 
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set (Qb) of predefined few-shot configuration by the global model M which is based on 
 

Prototypical Network. Zs is the feature space of the support set for which prototypes are 
 

calculated. Now using these prototypes, we calculate the Euclidean distances to query set 
 

feature space ZQ (see Section 2.4). Finally, using softmax and fully connected layers we 
 

predict the label of each query datapoint and minimize the loss using SGD. This process 
 

happens for 400 such randomly sampled support + query sets which is called episodic 
 

training. In Figure 3, we see a detailed view of this. 
 

Step 2: The global model M is sent to the clients. 
 

Step 3: Depending on the number of clients, each client randomly chooses a support set 
 

and query set of a predefined few-shot learning configuration (e.g., 5-way, 5-shot, 5- 
 

query). Once the clients receive M, they perform model fine-tuning with their distinct 
 

support sets S1, S2, S3 and perform prediction on their query sets Q1, Q2, Q3 using their 
 

respective fine-tuned model M '1, M '2, M '3. Note that the client undergoes fine-tuning 
 

with just 1 support set and query set instead of episodical training. 
 
 

Step 4: Local copy of global models which are updated in Step 3, are sent back to the 
 

server. 
 
 

Step 5: Next, we perform model aggregation of the updated models on the server, using 
 

one of the federated learning algorithms (FedAvg, FedProx, and FedPer) described in 
 

Chapter 3. The resulting model is referred to as M’. 
 
 

Step 6: Using M’ we test the server using S and make a prediction on Q and obtain a server 
 

testing accuracy. 
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These steps are iterated for multiple rounds (20) in our experimental scenario 
 

implementation. 
 
 
 
 

Figure 3 
 
 

Server Side Global Model Pre-Training 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4 Algorithm Design of FedPer and FedProx 
 

FedPer: FedPer allows a client to learn a local model using the client’s own local data to 
 

overcome the data heterogeneity issue in federated averaging (FedAvg). FedPer divides 
 

the client neural network layers into base layers and personalization layers where base 
 

layers are always updated with federated averaging method which happens for every round 
 

in the training, but the personalization layers remain unchanged. The intuition behind this 
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implementation is that these personalized layers can help capture the client’s local data 
 

patterns. 
 
 

For Prototypical Networks in our proposed solution, we use ResNet18 [35] as our feature 
 

extractor. ResNet18 has 1 residual block and 4 sequential layers, each consisting of 2 basic 
 

blocks which makes it a total of 9 blocks (residual + basic). A basic block consists of 2 
 

convolutional 2D layers. Including activation function and bias layers, a residual block has 
 

6 layers and each of the 8 basic blocks have a total number of layers in the order: 
 

{12,12,18,12,18,12,18,12}. Including the activation function layer and normalization 
 

layers, the ResNet18 architecture consists of 120 layers. We divide these layers into two 
 

configurations of base and personalization layers: (1) 78 base layers and 42 personalization 
 

layers, and (2) 42 base layers and 78 personalization layers. 
 
 

For the first configuration, the base layers consist of 1 residual block (6 layers) along with 
 

the first 5 basic blocks (72 layers) and personalization layers consist of the last 3 basic 
 

blocks (42 layers). 
 
 

For the second configuration, the base layers consist of 1 residual block (6 layers) , 2 basic 
 

blocks (24 layers) and another 12 layers from the 3rd basic block. The personalisation 
 

layers consist of the remaining 6 layers of 3rd basic block and 5 basic blocks. In Figure 4, 
 

we showed the 42 layers of basic blocks (representing base layers for FedPer) structure of 
 

a ResNet18. 
 
 

In Section 5.6, we explore the FedPer performance with a varying number of base layers 
 

and personalization layers. In particular, using ResNet18 as the baseline architecture, we 
 

compare the above two configurations. 
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Figure 4 
 
 

Sample 42 Base Layers for FedPer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FedProx: While updates are done on FedAvg and FedPer during the aggregation step, 
 

FedProx is a modification of the client local training process. It is a novel approach used 
 

to handle convergence improvements with the help of a proximal term to enhance local 
 

client performances in spite of highly diverse data. This proximal term is chosen based on 
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the dataset characteristics. During the client local updates, for every round of training we 
 

minimize the loss function F using a proximal term as follows [13]: 
 
 
 

(2) 
 
 

where is the old loss, and is the proximal term which varies according to the data. 
 

is the client local data weight parameters and is the global model parameters at time . 
 

So by updating the loss of each round with 2-norm between global model and local model, 
 

and a proximal term to stabilize the model, we implement the slight modification to 
 

FedAvg method. The intuition behind this algorithm is that the proximal term will help in 
 

keeping the client local updates as close as they can to the initial global model and this will 
 

allow the algorithm to handle the issue of data heterogeneity among the clients. By varying 
 

the proximal term and with a number of epochs, clients show convergence in their 
 

performance with greater accuracies [13]. In our experiments, we use four different 
 

proximal values for this method. 
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Chapter 5 
 
 

Empirical Results 
 
 

In this chapter, we give a brief description of all the datasets that are used, the data 
 

preprocessing steps, the experimental scenarios, performance measures, and the 
 

experimental design and setups. Finally the experimental results are described and 
 

discussed in detail. 
 
 

5.1 Datasets Description 
 
 

Three datasets, namely Fashion MNIST [10], Omniglot [11], and CIFAR-100 [9] are used 
 

in our empirical study of the federated few-shot learning problem. 
 
 

1) Fashion MNIST [10]: It is a dataset of Zalando’s article images which consists of 
 

60,000 images in training set and 10,000 images in testing set. All these images 
 

belong to 10 different classes and all are different types of clothes such as trousers, 
 

shirts etc. Every image is a 28 x 28 grayscale image. 
 

2) Omniglot [11]: It is a dataset of 1623 hand-written characters from different 
 

languages written by 20 different persons, that is 1623 x 20 = 32,460 data points. 
 

It consists of characters from 50 different alphabet series. Every omniglot character 
 

image is 105*105 pixel size grayscale image. The training set consists of 19,280 
 

data points and the test set consists of 13,180 data points. 
 

3) CIFAR-100 [9]: It is a subset of 80 million tiny images dataset [9]. It consists of 
 

60,000 images divided between 100 different classes. Each image is 32 x 32 pixels 
 

and is colored. The training set has 50,000 images of 500 classes and the test set 
 

has 10,000 images of 100 classes. 
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5.2 Dataset Preprocessing 
 
 

Experiments are performed on Fashion MNIST, Omniglot, and CIFAR-100 to study 
 

federated few-shot learning. The n-way, n-shot and n-query parameters are manually 
 

selected by the user during training and testing. For our experiments, we use three few-shot 
 

learning task configurations, namely: 3-way: 5-shot: 10-query, 5-way: 5-shot: 10-query 
 

and 5-way: 5-shot: 5-query. 
 
 

The three datasets are directly imported from the Pytorch Python package. We then 
 

download them, transform them into tensor data by normalizing, and then load them into 
 

different sets of dataloaders for the clients and server to utilize them more easily for training 
 

and testing. We used pytorch because it already has every dataset pre-divided into training 
 

and test sets and is easy for transforming and composing according to our needs. Since we 
 

are considering different non i.i.d forms in a simulated federated learning scenario we 
 

chose this simplest way for data division among clients and the server. 
 
 

5.3 Experimental Setups 
 
 

We explore the working and performance on the three datasets for the two client-server 
 

scenarios: (a) 2-client and 1 server, and (b) 3-client and 1 server. 
 
 

We analyze the performances of different approaches on these datasets in two ways: 
 

individually and collectively. For the first way, we perform meta-learning and federated 
 

learning among clients and the server for each dataset individually and change the shots 
 

and query sets of each task. Every dataset is divided into five parts namely, one large part 
 

for server base training, three parts for clients individual training and finally one part for 
 

final server testing. These five parts are the same for every round but the few-shot tasks for 
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each round are chosen randomly using the data loader from these parts. The data 
 

distribution in this scenario depends on the number of clients and are described below. 
 
 

1) Fashion MNIST: The server base training set and three client local data parts are 
 

taken from the training set and the server final testing would be on the shots taken 
 

from the test set only. Server base training has 30,000 image data points. The 
 

remaining 30,000 data points are divided equally among the three clients (i.e. 
 

10,000 images for each client). During the training rounds, different n-way k-shot 
 

q-query sets will be chosen randomly from these individual data parts. 
 

2) Omniglot: This is the smallest dataset with only 1623 hand-written characters from 
 

different languages written by 20 different people. Since each client chooses shots 
 

randomly, the data loader needs sufficiently more data but the dataset here is 
 

comparatively smaller than others. Hence, we only perform experiments on the 2 
 

clients and 1 server scenario. 
 

3) CIFAR-100: Similar to Fashion MNIST, we divide the training set into 4 parts. 
 

Server base training gets 20,000 images and the remaining 30,000 data points are 
 

equally divided among the three clients. The test set is given to the server testing. 
 
 

5.4 Performance Measures 
 
 

Like all other typical image classification problems, we use accuracy to measure 
 

the performance of different models. Accuracy gives the percentage of correct predictions 
 

out of all the total predictions. Since the datasets that we are working on are balanced and 
 

this is clearly a problem of multi-class classification, this performance metric would be 
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very useful. This metric provides useful information about how often the classifier can 
 

predict correctly. 
 
 

5.5 Experimental Designs and Implementation 
 
 

Since we do not assume that all devices involved in the knowledge sharing of model 
 

parameters have sufficient computational resources, we only train every model for 20 
 

rounds and the number of epochs for each client or server is 1. Number of episodes in pre- 
 

training is 400. The optimization technique we use in the ResNet18 [35] model is 
 

Stochastic Gradient Descent (SGD) [36]. It is a widely used optimizer for convolutional 
 

deep neural networks and it is best in finding optimal solutions iteratively and to decrease 
 

the loss. The step size of weight updation or the learning rate hyperparameter for this 
 

algorithm that we have chosen is 0.1 for all experiments. The platform used for the 
 

experiments is Google Colaboratory Pro+ which consists of a GPU (NVIDIA PT100), 52 
 

GB RAM for faster runtime and efficient computation. 
 
 

5.6 Experimental Results and Discussions 
 
 

5.6.1 Performance Comparison of 2 Layer Ratios in FedPer Using Fashion-MNIST 
 
 

The FedPer algorithm allows the client to concentrate more on learning and personalizing 
 

on its own data by dividing the client model layers into two parts: base and personalization 
 

layers (see Section 4.4). Maintaining an appropriate ratio of base layers is an essential 
 

criteria here. In this experiment, we compare 2 configurations: (1) 78 base layers and 42 
 

personalized layers and (2) 42 base layers and 78 personalization layers using a 2-client 
 

and one server experiment scenario. 
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Table 1 
 
 

Base+Personalization Layers Effect on Fashion-MNIST (2 Clients) 
 
 

 

Base + 

Personaliz 

ation 

layers 

 

N-way 

classes 

 

K-shot 
 

Q-

Query 

 

Server 

training 

accuracy on 

model M 

 

C1 

accur 

acy on 

S1-Q1 

 

C2 

accur 

acy on 

S2-Q2 

 

Server 

testing 

accuracy 

on 

Aggregated 

model M’ 
 

42+78 
 

3 
 

5 
 

10 
 

69.950 
 

79.0 
 

75.499 
 

86.66 
 

78+42 
   

 

67.801 
 

71.166 
 

75.0 
 

88.33 

 
 

5 
 

5 
 

10 
 

61.355 
 

68.2 
 

69.8 
 

84.0 42+78 
 

78+42 
   

 

62.635 
 

69.2 
 

68.6 
 

85.1 

 
 

5 
 

 

5 
 

 

67.6 
 

 

78.8 42+78 5 57.89 67.2 
 

78+42 
   

 

56.270 
 

66.8 
 

67.4 
 

77.8 

 
 
 
 
 

From Table 1, we observe that their prediction performance is comparable for the three 
 

different few-shot learning task configurations on the server global model and the client 
 

local models. When we are performing experiments using FedPer for our proposed 
 

solution, we use the model with the first configuration (78 base and 42 personalized layers) 
 

which emphasizes less on the importance of local data. In the next section, we see the 
 

impact of FedProx parameter changes on the same dataset. 
 
 
 
 
 
 
 
 
 
 
 

30 



 

5.6.2 Effect of FedProx Proximal Term on Prediction Performance 
 

Using Fashion-MNIST 
 
 

The proximal term used in FedProx algorithm helps stabilize the machine learning model 
 

when there is a need for each client device to train for a number of epochs. It helps to 
 

optimize the performance of each client using its local data (see Section 4.4). 
 
 
 
 

Figure 5 
 
 

Prediction Performance as Varies on Fashion-MNIST (2 Clients) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 shows the average of all the three clients and server prediction performance on 
 

three few-shot learning task configurations on the Fashion-MNIST dataset over all 20 
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rounds as takes the values 0.01, 0.1, 1 and 1.5. One general observation (also for all our 
 

subsequence experiments) is that the prediction performance for the server global model is 
 

consistently better than the client local models as more data (before or after the 
 

aggregation) are used if we use a single dataset. One observes that one cannot pick a 
 

particular value that works best across the different few-shot learning task configurations 
 

even if the configuration variation is not significant. We use = 1 in our experiments. 
 
 

5.6.3 Performance Comparison of Proposed Solution Using Different Federated 
 

Learning on Each Dataset in Single Dataset Scenario 
 
 

5.6.3.1 Fashion-MNIST. Table 2 shows the prediction performance for the server 
 

global models (before and after aggregation) and clients’ local models for the three few- 
 

shot learning task configurations on the Fashion-MNIST dataset with the three different 
 

federated learning aggregation methods. In the table, Server Base Train M (column 5) is 
 

the training accuracy for models learned using the large base set on the server which 
 

happens episodically. Column 6, 7, 8, 9 are the average test accuracy for models for Client 
 

C1, C2, C3, and the aggregated model M’ on server over 20 rounds. 
 
 

The computation time is very minimum for 20 rounds. When it comes to a 2-client 
 

prediction, each experimental trial takes about 300 to 420 seconds. In the case of 3-clients, 
 

an experimental trial takes 600 to 696 seconds. Noticeably, the FedProx algorithm when 
 

computing for 3 clients takes the highest time of 696 sec and FedPer of 685 seconds. 
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Table 2 
 
 

Results on Fashion-MNIST Dataset 
 
 

 

No.of 

clients 

 

Type of 

Algorithm 

 

N-way 

classes 

 

K-shot 
 

Q-Query 
 

Server 

training 

accuracy on 

model M 

 

C1 

accu 

on 

S1-Q1 

 

C2 

accu 

on 

S2-Q2 

 

C3 

accu on 

S3-Q3 

 

Server 

testing 

accuracy on 

Aggregated 

model M’ 

 

2 
 

FedAvg 
 

3 
 

5 
 

10 
 

61.195 
 

64.90 
 

71.50 
 

- 
 

80.10 
 

3 
 

FedAvg 
   

 

60.13 
 

67.0 
 

66.10 
 

67.3 
 

82.6 
 

2 
 

FedPer 
   

 

60.725 
 

76.4 
 

68.0 
 

- 
 

87.3 
 

3 
 

FedPer 
   

 

61.68 
 

71.7 
 

65.2 
 

69.8 
 

83.7 
 

2 
 

FedProx 
   

 

61.225 
 

70.00 
 

67.10 
 

- 
 

79.70 
 

3 
 

FedProx 
   

 

59.91 
 

65.40 
 

72.40 
 

68.20 
 

80.60 
 

2 
 

FedAvg 
 

5 
 

5 
 

10 
 

61.08 
 

75.20 
 

67.80 
 

- 
 

82.90 
 

3 
 

FedAvg 
   

 

61.52 
 

70.70 
 

70.4 
 

72.4 
 

83.3 
 

2 
 

FedPer 
   

 

61.335 
 

72.40 
 

70.2 
 

- 
 

79.4 
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No.of 

clients 

 

Type of 

Algorithm 

 

N-way 

classes 

 

K-shot 
 

Q-Query 
 

Server 

training 

accuracy on 

model M 

 

C1 

accu 

on 

S1-Q1 

 

C2 

accu 

on 

S2-Q2 

 

C3 

accu on 

S3-Q3 

 

Server 

testing 

accuracy on 

Aggregated 

model M’ 
 

3 
 

FedPer 
   

 

61.3 
 

70.3 
 

75.4 
 

70.8 
 

89.0 
 

2 
 

FedProx 
   

 

61.22 
 

65.40 
 

67.60 
 

- 
 

80.80 
 

3 
 

FedProx 
   

 

61.385 
 

66.0 
 

70.4 
 

71.0 
 

86.5 
 

2 
 

FedAvg 
 

5 
 

5 
 

5 
 

62.0 
 

69.60 
 

68.70 
 

- 
 

80.30 
 

3 
 

FedAvg 
   

 

60.585 
 

68.60 
 

67.40 
 

70.70 
 

82.60 
 

2 
 

FedPer 
   

 

59.805 
 

67.70 
 

69.90 
 

- 
 

81.90 
 

3 
 

FedPer 
   

 

60.76 
 

69.40 
 

71.90 
 

71.90 
 

86.10 
 

2 
 

FedProx 
   

 

60.58 
 

71.00 
 

72.30 
 

- 
 

80.50 
 

3 
 

FedProx 
   

 

61.75 
 

67.80 
 

68.40 
 

69.50 
 

80.30 



 

Figure 6 
 
 

Fashion MNIST Single-Data Results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note. Top Left: 3-5-10; Top Right: 5-5-10; Bottom Left: 5-5-5 (3 clients); Bottom Right: 
 

5-5-5 (2 clients) 
 
 
 
 
 

From Table 2, we observe that FedPer aggregated global models consistently perform the 
 

best for the three few-shot learning task configurations. Moreover, recall that the server 
 

has a large base set and their training accuracies were only around 60%. After federated 
 

learning, we observe a significant improvement in the performance of the server after 
 

aggregations on entirely previously unseen test data compared to the clients’ models. None 
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of the three federated learning methods outperforms the others as their aggregated global 
 

models do not consistently help improve clients’ predictive performance. However, we did 
 

observe that performance for all client (fine-tuned) local models improved from 
 

performance of the global model sent to the client (before fine-tuning). 
 
 

In Figure 6, we again see that the server global model testing performance for the few-shot 
 

learning task is always greater than the client's local model. However, there is no clear 
 

winner on which aggregation method is best for this dataset according to Figure 6. In fact, 
 

there is no consistent improvement (or convergence) in prediction performance for the few- 
 

shot learning task as more rounds (i.e., more meta-learning and federated learning) are 
 

iterated. 
 
 

5.6.3.2 CIFAR-100. From Table 3, we observe that few-shot learning tasks 
 

constructed from the CIFAR-100 dataset are very challenging tasks with average 
 

accuracy between 24% and 48%. Moreover, none of the federated learning approaches is 
 

favorable for few-shot learning tasks constructed from this dataset. While the aggregated 
 

models performed better than the initial models learned via meta-learning, the client local 
 

models did not perform better than the initial models sent to the clients. In Figure 7 we 
 

observe that unlike the Fashion MNIST few-shot learning tasks, the aggregated global 
 

models do not performed significantly better than the client fine-tuned models for the 
 

three few-shot learning task configurations on the CIFAR-100 dataset with the three 
 

different federated learning aggregation methods. The computation time is very 
 

minimum for 20 rounds. Noticeably, the FedProx algorithm when computing for 3 clients 
 

takes the highest time of 571 sec and FedPer of 609 seconds both less than Fashion- 
 

MNIST. 
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Table 3 
 
 

Results on CIFAR-100 Dataset 
 
 

 

No.of 

clients 

 

Type of 

Algorithm 

 

N-

way 

classes 

 

K-

shot 

 

Q-

Query 

 

Server 

training 

accu on 

model M 

 

C1 

accu 

on 

S1-Q1 

 

C2 

accu 

on 

S2-Q2 

 

C3 

accu 

on 

S3-Q3 

 

Server testing 

accu on 

Aggregated 

model M’ 

 

2 
 

FedAvg 
 

3 
 

5 
 

10 
 

40.258 
 

41.33 
 

38.66 
 

- 
 

31.0 
 

3 
 

FedAvg 
   

 

40.775 
 

39.83 
 

44.66 
 

42.33 
 

37.90 
 

2 
 

FedPer 
   

 

40.758 
 

43.33 
 

40.33 
 

- 
 

29.3 
 

3 
 

FedPer 
   

 

41.858 
 

47.33 
 

38.16 
 

38.83 
 

32.7 
 

2 
 

FedProx 
   

 

41.575 
 

44.33 
 

42.83 
 

 

30.30 
 

3 
 

FedProx 
   

 

41.75 
 

45.33 
 

42.66 
 

43.00 
 

33.40 
 

2 
 

FedAvg 
 

5 
 

5 
 

10 
 

29.240 
 

32.0 
 

28.8 
 

- 
 

30.4 
 

3 
 

FedAvg 
   

 

29.685 
 

32.50 
 

29.5 
 

29.4 
 

37.20 
 

2 
 

FedPer 
   

 

29.02 
 

30.6 
 

27.3 
 

- 
 

39.80 
 

3 
 

FedPer 
   

 

28.29 
 

27.7 
 

29.8 
 

27.4 
 

34.2 



3
8

 
 
 

 

No.of 

clients 

 

Type of 

Algorithm 

 

N-

way 

classes 

 

K-

shot 

 

Q-

Query 

 

Server 

training 

accu on 

model M 

 

C1 

accu 

on 

S1-Q1 

 

C2 

accu 

on 

S2-Q2 

 

C3 

accu 

on 

S3-Q3 

 

Server testing 

accu on 

Aggregated 

model M’ 

 

2 
 

FedProx 
   

 

29.67 
 

30.0 
 

30.50 
 

- 
 

32.80 
 

3 
 

FedProx 
   

 

28.095 
 

26.00 
 

30.30 
 

25.80 
 

34.90 
 

2 
 

FedAvg 
 

5 
 

5 
 

5 
 

28.49 
 

30.80 
 

24.40 
 

- 
 

30.50 
 

3 
 

FedAvg 
   

 

27.59 
 

31.40 
 

31.20 
 

30.60 
 

30.20 
 

2 
 

FedPer 
   

 

27.23 
 

25.20 
 

27.20 
 

- 
 

31.20 
 

3 
 

FedPer 
   

 

26.35 
 

26.2 
 

31.8 
 

33.0 
 

31.4 
 

2 
 

FedProx 
   

 

28.87 
 

25.80 
 

27.80 
 

- 
 

34.90 
 

3 
 

FedProx 
   

 

26.84 
 

26.20 
 

24.80 
 

31.60 
 

35.60 



 

Figure 7 
 
 

CIFAR-100 Single-Data Results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note. Top Left: 3-5-10; Top Right: 5-5-10; Bottom Left: 5-5-5 (3 clients); Bottom Right: 
 

5-5-5 (2 clients) 
 
 
 
 
 

5.6.3.3 Omniglot. The omniglot dataset consists of much fewer data points 
 

compared to the other two datasets, hence we only considered the case of 2-clients. From 
 

Table 4, one observes that FedPer and FedProx resulted in significant improvement in the 
 

global model performance. All three federated learning algorithms with meta-learning 
 

resulted in improvements in the client’s local model prediction performance. From Table 
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3 and Figure 8, we observed that the aggregated global model performances are better than 
 

the client local model prediction performance. Similar to Fashion MNIST, there is no 
 

consistent improvement (or convergence) in prediction performance for the few-shot 
 

learning task as more rounds (i.e., more meta-learning and federated learning) are iterated. 
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Table 4 
 
 

Results on Omniglot Dataset 
 
 

 

No.of 

clients 

 

Type of 

Algorithm 

 

N-way 

classes 

 

K-

shot 

 

Q-

Query 

 

Server 

train 

accu on 

model 

M 

 

C1 

Accu 

on 

S1-Q1 

 

C2 

Accu 

on 

S2-Q2 

 

Server testing 

accuracy on 

Aggregated 

model M’ 

 

2 
 

FedAvg 
 

3 
 

5 
 

10 
 

57 
 

64.7 
 

70.8 
 

89.7 
 

2 
 

FedPer 
   

 

55.93 
 

70.40 
 

64.40 
 

90.50 
 

2 
 

FedProx 
   

 

56.445 
 

67.400 
 

68.80 
 

90.60 
 

2 
 

FedAvg 
 

5 
 

5 
 

10 
 

57.315 
 

67.80 
 

67.00 
 

89.20 
 

2 
 

FedPer 
   

 

58.605 
 

69.60 
 

73.80 
 

91.00 
 

2 
 

FedProx 
   

 

58.67 
 

71.6 
 

68.6 
 

91.7 
 

2 
 

FedAvg 
 

5 
 

5 
 

5 
 

57.715 
 

70.80 
 

68.00 
 

88.20 
 

2 
 

FedPer 
   

 

58.185 
 

69.90 
 

68.30 
 

95.20 
 

2 
 

FedProx 
   

 

57 
 

68.2 
 

61.8 
 

88.3 



 

Figure 8 
 
 

Omniglot Single-Data Results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note. Top Left: 3-5-10; Top Right: 5-5-10; Bottom: 5-5-5 
 
 
 
 
 

5.6.4 Performance Comparison of Proposed Solution Using Different Federated 
 

Learning in Multiple Datasets Scenario 
 
 

We consider the case when multiple datasets are used across the server and client devices 
 

to explore the prediction performance of the global model under the heterogeneous data 
 

scenario using meta-learning to solve the few-shot learning tasks. Here, we consider the 
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server training on CIFAR-100 and Omniglot. Testing is performed on the global model 
 

and client local models that are used to predict on a single dataset for few-shot learning. 
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Table 5 
 
 

Results on Multiple-Data Scenario of All Three Datasets 
 
 

 

No.of 

clients 

 

Typ 

e of 

Algo 

 

N-way 

classes 

 

K-

shot 

 

Q-

query 

 

Server 

M 

Train 

Accurac 

y 

CIFAR, 

Omni-

glot 

 

C1 

S1-Q1 

Cifar 

Accur 

acy 

 

C2 

S2-Q2 

Omni-

glot 

Accura 

cy 

 

C3 

S3-Q3 

Fash-

Mnist 

Accur 

acy 

 

Server 

Test M’ 

Accu 

F-MNIST 

Accuracy 

 

Server 

Test 

M’ 

Accura 

cy 

CIFAR 

 

Server 

Test M’ 

Accuracy 

Omniglot 

 

2 
 

Fed 

Avg 

 

3 
 

5 
 

10 
 

63.933 
 

41.33 
 

90.00 
 

- 
 

66.50 
 

41.16 
 

79.33 

 

3 
 

Fed 

Avg 

   
 

64.65 
 

40.33 
 

90.66 
 

60.33 
 

74.00 
 

44.83 
 

83.00 

 

2 
 

Fed 

Per 

   
 

64.191 
 

46.33 
 

92.00 
 

- 
 

64.16 
 

48.50 
 

71.50 

 

3 
 

Fed 

Per 

   
 

61.975 
 

44.83 
 

87.166 
 

55.66 
 

69.166 
 

45.66 
 

81.00 
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No.of 

clients 

 

Typ 

e of 

Algo 

 

N-way 

classes 

 

K-

shot 

 

Q-

query 

 

Server 

M 

Train 

Accurac 

y 

CIFAR, 

Omni-

glot 

 

C1 

S1-Q1 

Cifar 

Accur 

acy 

 

C2 

S2-Q2 

Omni-

glot 

Accura 

cy 

 

C3 

S3-Q3 

Fash-

Mnist 

Accur 

acy 

 

Server 

Test M’ 

Accu 

F-MNIST 

Accuracy 

 

Server 

Test 

M’ 

Accura 

cy 

CIFAR 

 

Server 

Test M’ 

Accuracy 

Omniglot 

 

2 
 

Fed 

Prox 

   
 

64.2083 
 

48.83 
 

91.00 
 

- 
 

79.00 
 

45.66 
 

87.833 

 

3 
 

Fed 

Prox 

   
 

65.1416 
 

44.83 

3 

 

88.50 
 

64.33 
 

73.66 
 

47.83 
 

86.53 

 

2 
 

Fed 

Avg 

 

5 
 

5 
 

10 
 

60.62 
 

32.30 
 

91.40 
 

- 
 

59.90 
 

30.30 
 

87.50 

 

3 
 

Fed 

Avg 

   
 

58.545 
 

31.00 
 

87.50 
 

56.30 
 

62.60 
 

29.60 
 

74.90 
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No.of 

clients 

 

Typ 

e of 

Algo 

 

N-way 

classes 

 

K-

shot 

 

Q-

query 

 

Server 

M 

Train 

Accurac 

y 

CIFAR, 

Omni-

glot 

 

C1 

S1-Q1 

Cifar 

Accur 

acy 

 

C2 

S2-Q2 

Omni-

glot 

Accura 

cy 

 

C3 

S3-Q3 

Fash-

Mnist 

Accur 

acy 

 

Server 

Test M’ 

Accu 

F-MNIST 

Accuracy 

 

Server 

Test 

M’ 

Accura 

cy 

CIFAR 

 

Server 

Test M’ 

Accuracy 

Omniglot 

 

2 
 

Fed 

Per 

   
 

57.365 
 

32.40 
 

88.80 
 

- 
 

53.30 
 

27.70 
 

87.10 

 

3 
 

Fed 

Per 

   
 

59.925 
 

31.70 
 

88.90 
 

51.00 
 

64.60 
 

34.30 
 

67.90 

 

2 
 

Fed 

Prox 

   
 

58.16 
 

27.90 
 

89.60 
 

- 
 

49.70 
 

28.30 
 

85.5 

 

3 
 

Fed 

Prox 

   
 

56.56 
 

30.00 
 

86.5 
 

50.10 
 

60.60 
 

33.10 
 

74.80 

 

2 
 

Fed 

Avg 

 

5 
 

5 
 

5 
 

53.02 
 

26.28 

5 

 

85.904 
 

- 
 

60.60 
 

33.40 
 

76.20 
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No.of 

clients 

 

Typ 

e of 

Algo 

 

N-way 

classes 

 

K-

shot 

 

Q-

query 

 

Server 

M 

Train 

Accurac 

y 

CIFAR, 

Omni-

glot 

 

C1 

S1-Q1 

Cifar 

Accur 

acy 

 

C2 

S2-Q2 

Omni-

glot 

Accura 

cy 

 

C3 

S3-Q3 

Fash-

Mnist 

Accur 

acy 

 

Server 

Test M’ 

Accu 

F-MNIST 

Accuracy 

 

Server 

Test 

M’ 

Accura 

cy 

CIFAR 

 

Server 

Test M’ 

Accuracy 

Omniglot 

 

3 
 

Fed 

Avg 

   
 

56.6 
 

27.60 
 

87.0 
 

49.60 
 

67.4 
 

32.80 
 

69.60 

 

2 
 

Fed 

Per 

   
 

52.19 
 

27.60 
 

87.00 
 

- 
 

67.4 
 

32.80 
 

84.20 

 

3 
 

Fed 

Per 

   
 

53.05 
 

33.20 
 

88.00 
 

49.40 
 

62.800 
 

33.80 
 

71.60 

 

2 
 

Fed 

Prox 

   
 

53.11 
 

31.80 
 

84.20 
 

- 
 

47.80 
 

30.00 
 

80.60 

 

3 
 

Fed 

Prox 

   
 

53.18 
 

29.80 
 

86.20 
 

49.20 
 

66.80 
 

32.30 
 

77.200 



 

During client fine-tuning, each client will be given a single dataset. We investigate how the 
 

global model reacts to few-shot learning tasks on an unseen dataset, but only provided 
 

relevant information to the client model fine-tuning. The results for this scenario are shown 
 

in Table 5. 
 
 

Some observations from Table 5 are: 
 
 

Broadly comparing single-dataset scenarios and multiple-dataset scenarios with respect to 
 

server testing accuracies, one can make the following observations. 
 
 

1) Fashion-MNIST test accuracies for single-dataset scenarios are in the range of 80% 
 

to 86% where in case of multiple-dataset scenarios it is only 60% to 70% in all few- 
 

shot learning task configurations. 
 

2) CIFAR-100 under multiple-dataset scenarios has accuracies in the range of 27% to 
 

33% in case of 5-5-5 and 5-5-10 few-shot learning task configuration and 40% to 
 

48% in case of 3-5-10 few-shot learning task configuration, whereas in single- 
 

dataset case it is just 30% to 35% in all three few-shot learning task configurations. 
 

3) Omniglot in single-dataset scenarios is more accurate in the range of 88% to 90% 
 

whereas in multiple-dataset scenarios its accuracy is only between 71% and 87%. 
 
 

From the above three observations, we can say that Fashion-MNIST and Omniglot have 
 

decreased their performance in multiple data scenarios, whereas CIFAR-100 has shown 
 

the same or a slightly increased performance compared to single data scenarios. 
 
 

Next, we will see how few-shot learning for each dataset varied from single-dataset to 
 

multiple-dataset scenario over the 20 federated rounds. We only use 5-5-5 task 
 

configuration for algorithm-wise comparisons in both the scenarios. For the next three 
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figures, on the left side we see the case of single-dataset (from Figure 5, 6, 7) and on the 
 

right side the case of multiple-dataset. 
 
 

5.6.4.1 Fashion-MNIST. 
 
 
 

Figure 9 
 
 

Results of Fashion-MNIST on Single-Data and Multiple-Data Scenarios 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note. Top-Left: Single-Dataset Scenario; Top-Right: Multiple-Dataset Scenarios Results; 
 

Bottom: With and Without Client Training On Fashion-MNIST 
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Firstly, Figure 9 (top right side) shows the server performance for 20 rounds with and 
 

without client training on few-shot learning tasks using Fashion-MNIST. When the client 
 

has not been trained on Fashion-MNIST, server performance is not better. When the 
 

client has been trained on Fashion-MNIST, the server model trained using FedProx is the 
 

best performer over all three aggregation algorithms. Figure 9 (bottom) shows the client 
 

and server testing performances. In some rounds, server testing accuracy is greater than 
 

client, whereas in some rounds it is not. 
 
 

5.6.4.2 CIFAR-100. In Figure 10, we compare the individual client and server 
 

performances on all 20 rounds in both the single-dataset and multiple-dataset scenarios of 
 

CIFAR-100 dataset. 
 
 
 

Figure 10 
 
 

Comparison of CIFAR-100 on Single-Data and Multiple Data Scenarios 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note. Top-Left: Single-Data Results; Top-Right: Multiple-Data Results 
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There is no significant difference between client and server performances in both scenarios. 
 
 

5.6.4.2 Omniglot. In Figure 11, we see that the individual client accuracies are 
 

higher compared to server testing accuracies in case of multiple-datasets which is not the 
 

case in single-data scenario. In other words, the Omniglot dataset has a rapid decrease in 
 

its server performance when it comes to multiple-datasets. 
 
 

Also, there is no particular algorithm that performs constantly better in both the cases for 
 

this dataset. 
 
 
 

Figure 11 
 
 

Comparison of Omniglot on Single-Dataset and Multiple-Dataset Scenarios 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note. Top-Left: Single-Data Results; Top-Right: Multiple-Data Results 
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Chapter 6 
 
 

Conclusions and Future Work 
 
 
 
 

In this thesis, we described our study of combining federated learning and meta-learning 
 

to handle independent few-shot learning tasks on multiple devices and the server. In 
 

particular, we proposed utilizing the prototypical networks to perform meta-learning on 
 

all devices to learn multiple independent few-shot learning models and to combine the 
 

models in a centralized architecture using federated learning which can be reused by the 
 

clients subsequently. We performed extensive experiments to (1) compare three different 
 

federated learning approaches, namely Federated Averaging (FedAvg), Federated 
 

Proximal (FedProx), and Federated Personalization (FedPer) on our proposed 
 

framework, and (2) explore the effect of data heterogeneity on the few-shot learning 
 

performance. Our empirical results show that our proposed approach is feasible and is 
 

able to improve the edge devices’ individual prediction performance and improve 
 

significantly on the global model (on the server) using any of the federated learning 
 

approaches when the few-shot learning tasks are from the same datasets. However, the 
 

data heterogeneity problem still affects the prediction performance of our proposed 
 

solution no matter which federated learning approach we used. 
 

In this thesis, we assume that the server and clients may have data from the same classes 
 

in the few-shot learning tasks. In other words, the datasets are partitioned for the server 
 

and clients in our experiments, but the partitioning did not take into account the fact that 
 

the server and clients should have a non-overlapping set of classes. The most important 
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part of future work is to perform experiments to study meta-few-shot learning in federated 
 

learning scenarios by dividing the classes for base-training set and support/query sets 
 

such that the server and clients will not have data from the same class.. This will provide 
 

additional experimental scenarios to study the data heterogeneity issue and additional 
 

meta-learning algorithms can be investigated. In addition, other federated learning 
 

algorithms can be compared using more clients. Exploring the federated meta-few-shot 
 

learning with decentralized architectures can be another interesting topic of research. 
 

Unlike inductive meta-learning algorithms, implementing this concept with transductive 
 

meta-learning algorithms can significantly improve the performance of few-shot learning 
 

and implementing this in a federated scenario would be another possible future work. 
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