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Abstract: Electroosmosis is one of the most used actuation mechanisms for the microfluidics in the current active lab-on-chip devices. It is
generated on the induced charged microchannel walls in contact with an electrolyte solution. Electrode distribution plays the key role on pro-
viding the external electric field for electroosmosis, and determines the performance of electroosmotic microfluidics. Therefore, this paper
proposes a topology optimization approach for the electrodes of electroosmotic microfluidics, where the electrode layout on the microchan-
nel wall can be determined to achieve designer desired microfluidic performance. This topology optimization is carried out by implementing
the interpolation of electric insulation and electric potential on the specified walls of microchannels. To demonstrate the capability of this ap-
proach, one typical electroosmotic device, i.e., electroosmotic micropump, is modeled with several electrode layouts derived. And this ap-
proach permits potential applications in chemicals and biochemistry due to its outstanding capability on determining the performance of elec-
trokinetic microfluidics.

Keywords: Topology optimization; Micropump; Electroosmosis; Microfluidics; Electrode
2022022

1. Introduction
Lab on chip has been developed into microfluidic systems for bi-

ological and chemical minute laboratories1-3. It is often necessary to
pump fluids from one part of the device to another, control fluid
motion, enhance mixing, and separate fluids, etc. Electroosmosis,
particularly suitable for microfluidic devices, provides an attractive
approach for manipulating liquids in microdevices, since microde-
vices operating on this principle do not require any moving parts.
And electroosmosis has been researched in the literatures in the
field of microfluidics, including the researches on electroosmotic
micropumps4-6 and electroosmotic micromixer7, 8.

Several researches have been implemented for mathematically
modeling electroosmotic microflows by analytical, numerical and
experimental approaches7-13; shape optimization-based geometrical
design of electroosmotic microchannel has been implemented14,15;
optimization of zeta potential distributions has been performed for
minimal dispersion in an electroosmotic microchannel16, to name

the most relevant. In those researches, electrodes play the key role
on generating the microfluidic motion, because they induce the ex-
ternal electric field with attracting charges, because they induce ex-
ternal electric field with attracting charges, thereby attracting ions
to move tangentially along the microchannel wall, driving fluid mo-
tion in the presence of viscous forces. Therefore, reasonable elec-
trode distribution is key for achieving the performance of the elec-
troosmotic microflows. On the researches of electroosmotic elec-
trodes, asymmetric polarization and nonplanar layout has been ad-
opted for electroosmotic micropumping17, 18; staggered array of elec-
trodes has been utilized to produce electroosmotic vortices for mi-
cromixing19; asymmetric electrode pair has been used in electroos-
motic microconcentrator20; electric potential effect imposed on wall
electrodes has been discussed in binary fluids21; facing rows of elec-
trodes has been used for remediation of polluted soils by electroki-
netic soil flushing22, to name the most recent. Although those rele-
vant results provided instructions for the control of electroosmosis,
limits on determining the electrode distribution still exists in view
of lacking generality, flexibility and efficiency because of the de-
pendence on the designers’intuition and lack of objective design
basis. Therefore, this paper focuses on the topology optimization
approach for the electrodes of electroosmotic microflows to over-
come these limits.
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The capability of this topology optimization approach is demon-
strated by determining the electrodes respectively for the electroos-
motic micropumps, because pumping of microfluids is a typical
function that can be achieved by electroosmosis. The derived re-
sults show that effective actuation of microflows can be achieved
by the electrodes derived using the topology optimization ap-
proach. And this proposed method permits potential applications in
chemicals and biochemistry due to its outstanding capability on de-
termining the performance of electroosmotic microfluidics. In the
following, the methodology of the topology optimization approach
is presented in Section 2, followed by modeling the electroosmotic
micropumps in Section 3; the solving procedure of the topology op-
timization problems is introduced in Section 4; the derived results
are discussed in Section 5; and this paper is concluded in Section 6.

2. Methodology

Electroosmosis is caused by the accumulation of a net electric
charge on the solid surface that is in contact with an electrolyte so-
lution9. As a result, charges accumulate in the thin liquid layer next
to the solid surface. This thin layer is known as the Debye (or dou-
ble) layer, and its thickness is typically in the magnitude of 10
nm10. The electric potential is the largest at the solid surface, de-
creases linearly with the increase of the distance from the solid sur-
face, and decays rapidly to electric neutrality away from the solid
surface. This charge separation next to the solid wall causes either a
positive or negative potential difference (i.e., Zeta potential) across
the Debye layer. The magnitude of Zeta potential depends on the
characteristics of the solid and the liquid. In the presence of an ex-
ternal electric field, the charges in the double layer are attracted to
the oppositely charged electrode and drag the liquid along. There-
fore, the electric field, through its action on the charges, creates a
body force that induces fluid motion. Usually, the Debye layer is
much smaller than the feature size of microfluidics, and the thin De-
bye layer can be approximated to be slip wall with velocity propor-
tional to the tangential component of the external electric field.
Therefore, the layout of the electrodes on the lateral walls of micro-
channel, which modulates the electric field variation, plays the key
role on the performance of electroosmotic microfluidics.

Under the assumption that the thickness of the Debye layer is
much smaller than the feature size of microfluidics, the Navier-
Stokes equations with slip boundary condition at the wall can be
used to describe the electroosmotic microfluidics, where the slip ve-
locity satisfies the Helmholtz-Smoluchowski relation, i.e., it is pro-
portional to the tangential component of the electric field intensity
imposed by electrodes11

ì

í

î

ïï
ïï

ρu ⋅ ∇u + ∇ ⋅ [ ]− η ( )∇u + ∇uT + pI = 0 in Ω

− ∇ ⋅ u = 0 in Ω

u =− μeo [ ]∇V − ( n ⋅ ∇V ) n on Γw ⋃ Γd

(1)

where u,p are the fluid velocity and pressure, respectively; V is the
distribution of the external electrical potential imposed by the elec-
trodes;ρ and η are the density and dynamic viscosity of the electro-
lyte solution, respectively; μeo =− ϵrϵ0 ( ξ0 /η ) is the electroosmotic
mobility, with ϵr,ϵ0 and ξ0 respectively representing the relative per-
mittivity, permittivity of free space and Zeta potential;Ωis the com-
putational domain sketched in Fig. 1, with the inlet boundary Γip,
wall boundary Γw∪Γd and outlet boundary Γop satisfying Γip∪Γop∪
Γw∪Γd; the inlet Γip and outlet Γop are a pair of periodic boundaries
imposed with periodic condition of the fluidic velocity; n is the out-
ward unitary normal at ∂Ω; Q is the fluid flux imposed on the inlet

of the microchannel, V0 is the electrical potential imposed on the an-
ode and the cathode is connected to ground.

The distribution of the external electrical potential is described
by the Laplace equation. As sketched in Fig.1, the wall boundary is
split into two parts, i.e., Γw and Γd. For the external electrical poten-
tial, Γw is electric insulation boundary with− ( )σ∇V ⋅ n = 0; and Γd,

the design domain for the electrodes, is the union of electric insula-
tion and electric potential boundary parts. To distinguish those two
types of boundary parts, the variable, nominated physical density,
is utilized, and it is valued in [0, 1] with value 0 and 1 respectively
representing electric potential and electric insulation boundary
types. Then the boundary condition on Γd can be expressed to be
the interpolation of electric insulation and electric potential

− ( )σ ∇V ⋅ n = α ( )V − V0 on Γd (2)

where σ is electric conductivity; V0is the specified electric potential
on the electrodes;αis the penalization expressed to be23

α = αmax

q ( )1 − γfp

q + γfp

(3)

with γfp, αmax and q respectively representing the physical density

variable, the penalization parameter and the parameter used to tune
the convexity of the penalization. The value of αmax should be cho-
sen to be large enough to ensure the domination of the term (V-V0)
in Eq. (2), when the physical density is valued 0. Meanwhile, Eq.
(2) degenerates into the electric insulation boundary condition,
when the physical density is valued 1. Based on numerical tests,
αmax and q are chosen to be 1 × 105 and 1 × 10− 3, respectively. In
sum, the external electrical potential can be described to be

ì

í

î

ïï
ïï

− ∇ ⋅ (σ∇V ) = 0 in Ω

− (σ∇V ) ⋅ n = 0 on Γ ip ⋃ Γop ⋃ Γw

− (σ∇V ) ⋅ n = α (V − V0) on Γd

(4)

where the electric insulation boundary condition is imposed on the
inlet and outlet of the electroosmotic microflows.

On the physical density variable, it is derived from the design
variable defined on Γd, using the procedure introduced in24. The de-
sign variable is filtered using the Helmholtz filter to ensure the min-
imum scale of the implicitly expressed structural layout

{− r2∇s ⋅ ∇sγf + γf = γ in Γd

− r2∇sγf ⋅ ns = 0 on ∂Γd

(5)

where γ is the design variable,γfis the filtered design variable, ∇s is

the gradient operator defined for the local coordinate system on Γd,
r is the filter radius, and ns is the outward unitary normal on ∂Γd;
then the filtered design variable is projected using the threshold
method to remove the intermediary values between 0 and 1 and de-
rive the physical density variable

Fig. 1. Sketch of computational domain Ω for electroosmosis.
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γfp =
tanh ( )βξ + tanh ( )β ( )γf − ξ
tanh ( )βξ + tanh ( )β ( )1 − ξ (6)

where β and ξ are projection parameters. For the value choice of
the projection parameters, one can refer to25.

Based on the above description, the desired performance of the
electroosmosis can be derived by topologically optimizing the elec-
trodes of electroosmotic microflows, where the 0−1 distribution of
the physical density representing the electrode layout can be deter-
mined on Γd by solving a variational problem corresponding to a
specified electroosmotic microdevice.

3. Modeling

Based on the introduced methodology for topology optimization
of electrodes for electroosmotic microflows, the electroosmotic
pumping is modeled as follows.

Micropumping is an essential function of a microfluidic sys-
tem26. Electroosmotic micropumps are frequently utilized to per-
form this function, because electroosmotic micropumps possess
several outstanding features: electroosmotic micropumps are capa-
ble of generating constant and pulse-free flows; the flow magnitude
and direction of an electroosmotic micropumps are convenient to
control; this type of micropump can be fabricated using standard
microfabrication technologies and thus is readily integratable with
lab-on-chip devices because of its no-moving-part characteristics5.
Therefore, this section focuses on topology optimization of the elec-
trodes for electroosmosis to generate the maximal flux in micro-
channel and achieve the micropumping performance. Then, by set-
ting the flow rate at the ports of electroosmotic microchannel to be
the design objective, the variational problem can be constructed to
be

max
γ ∈ [ 0,1]

Φ =
1

Φ0
( )− ∫Γip

u ⋅ n ds + ∫Γop

u ⋅ n ds

s.t.

ì

í

î

ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ì

í

î

ïï
ïï
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ρu ⋅ ∇u + ∇ ⋅ [ ]− η ( )∇u + ∇uT + pI = 0 in Ω

− ∇ ⋅ u = 0 in Ω

[ ]− η ( )∇u + ∇uT + pI n = 0 on Γ ip ⋃ Γop

u =− μeo [ ]∇V − ( n ⋅ ∇V ) n on Γw ⋃ Γd

{− r2∇s ⋅ ∇sγf + γf = γ in Γd

− r2∇sγf ⋅ ns = 0 on ∂Γd

(7)

where Φ0 is the flow rate at the outlet, corresponding to the initial
value of the design variable. For solving the PDE constraints of Eq.
(7) using the linear element-based finite element method, the weak
forms of the PDE constraints are similar with that in equation 1, 4
and 5, except that the boundary integration term on Γi is removed
from Eq.(1).

To derive the adjoint derivative used for evolving the design
variable, the adjoint analysis is implemented for Eq. (7), and the
weak forms of the adjoint equations of the Navier-Stokes equa-
tions, the electrical potential equation and the Helmholtz filter are
derived to be

Find ua ∈ ( H ( )Ω )3,pa ∈ L2 (Ω )

and λfa ∈ ( H
− 1

2 (Γw ⋃ Γd) )3,satisfying

∫
Ω
ρ[ ]( ûa ⋅ ∇u ) ⋅ ua + (u ⋅ ∇ûa)ua

+∇ua: [ η (∇ûa + ∇ûT

a
) − p̂a I ] − pa∇ ⋅ ûadv

+∑
i = 1

Ne ∫Ω i

− τgls∇pa ⋅ ∇p̂adv + ∫Γw ⋃ Γd

λfa ⋅ ûa

+( λ̂fa − p̂an ) ⋅ uads +
1

Φ0
( )− ∫Γip

n ⋅ ûads + ∫Γop

n ⋅ ûads = 0,

∀ûa ∈ ( H ( )Ω )3 ,∀p̂a ∈ L2 (Ω ) and ∀λ̂fa ∈ ( H
1

2 (Γw ⋃ Γd) )3

(8)

find Va ∈ H ( )Ω , satisfying

∫
Ω
σ ∇Va ⋅ ∇V̂adv + ∫Γd

α ∇Va ⋅ V̂ads

+∫Γw ⋃ Γd

μeo [ ∇V̂a − ( n ⋅ ∇V̂a)n ] ⋅ λfads = 0,∀V̂a ∈ H ( )Ω

(9)

find γfa ∈ H ( )Γd , satisfying

∫Γd

r2∇sγfa ⋅ ∇s γ̂fa + γfa γ̂fa + (V − V0)Va

∂α
∂γfa

∂γp

∂γf

γ̂fads = 0,

∀γ̂fa ∈ H ( )Γd

(10)

where ua,pa,Va and γfa are the adjoint variables of the corresponding

state variables, respectively; λfa is the adjoint of the Lagrangian

multiplier λf; ûa, p̂a, V̂a, γ̂fa and λ̂fa are the test functions of the corre-

sponding adjoint variables;H
− 1

2 (Γw ⋃ Γd) is the dual space of the

trace space H
1

2 (Γw ⋃ Γd). The first-order adjoint derivative of the

variational problem in equation 7 is

δ Φ = ∫Γd

− γfa δγds (11)

In Eq. (11), γfa is derived by sequentially solving the state equa-

tions and the corresponding adjoint equations.

4. Solving
The topology optimization problems for determination of the

electrodes for electroosmotic microflows are solved using the itera-
tive approach based on the derived adjoint derivative. The proce-
dure for the iterative approach includes the following steps: (a) the
PDE constraints are solved with the current design variable; (b) the
adjoint equations are solved based on the solution of the PDE con-
straints; (c) the adjoint derivative of the design objective is comput-
ed; (d) the design variable is updated using the method of moving
asymptotes27; (e) the convergent criterion are checked to stop the it-
erative loop, and the procedure will return to (a), if the convergent
criterion are not satisfied. The convergent criterion is specified to
be that the change of the objective values in five consecutive itera-

tions satisfies
1

5∑i = 0

4 || Jk − i − Jk − i − 1 || Jk ≤ 1 × 10− 3 in the kthit-

eration or the maximal iteration number 160 is reached, whereJkis
the objective value in thekthiteration.

During the iterative procedure, the threshold parameter ξ in equa-
tion 6 is set to be 0.5; the initial value of the projection parameter β
is set to be 1 and it is doubled every 40 iterations until the preset
maximal value 16 is reached; the finite element solving of the par-
tial differential equations and corresponding adjoint equations are
implemented in the finite element software COMSOL Multiphysics
(http://www.comsol.com), where linear cubic elements are used for
all the variables. On the relevant numerical setting, one can refer
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to28 for the more details.

5. Results and discussion
In this section, topology optimization of the electrodes is investi-

gated for electroosmotic micropumps based on the methodology in-
troduced in section 2, to demonstrate the capability of the topology
optimization approach for microfluidics. In the following, the liq-
uid of the microflow is the electrolyte with density ρ =1×103 kg/m3,
dynamic viscosity η =1×10−3 Pa·s, dielectric constantϵr = 80.2, con-
ductivity σ =0.12 (Ω·m) −1, and Zeta potential ζ0 = −0.1 V. Consid-
ering the fabrication, different materials may be used for the top/
bottom wall and lateral walls, then one only needs to change the
value of the Zeta potential at the corresponding wall. The character-

istic size of the cross section of the computational domain sketched
in Fig.1 is set to be l = 400 µm, the length of the microchannel cov-
ered by the electrodes is nl · l with nl representing the fold number,
and the length of the inlet and outlet parts of the design domain is
equal to l. The Reynolds number and Peclet number of the micro-
flow are respectively calculated to be Re = ρUl/η and Pe = Ul/D,
where U is the average velocity at the inlet, D is the mass diffusivi-
ty. The computational domain is discretized by 20×20×20 brick ele-
ments per cubic space with edge size equals to the characteristic
size. In the computational domain, the design domain is set to be
the top and bottom surfaces, where positive electrode with speci-
fied potential is localized on the top surface and the ground elec-
trode is localized on the bottom surface.

Based on the introduced topology optimization approach, the
electrode layout is investigated in the straight microchannel
sketched in Fig. 1 to achieve the micropumping performance. For
several different electrical potentials, the layouts of the electrodes
are derived as shown in Fig.2(a)-2(f), respectively by setting V0 to
be 5 V, 10 V, 20 V, 40 V, 80 V, and 160 V, where the length of the
microchannel covered by the electrodes is 1.2mm with nl = 3. The
red arrows represent the velocity vectors in Fig. 2. And the Reyn-
olds number of the actuated microflows corresponding to different
electrical potentials is plotted in Fig.3. Fig.3 shows that the topolog-
ically optimized electrode layouts can achieve the increase of the
actuated flux of the microflow along with the increase of the im-
posed electrical potential. The derived electrode layout can control
the magnitude of the electric field by adjusting the electric poten-
tial, thereby regulating the net flux driving the microchannel.

The distribution of electric field line and velocity are shown in
Fig. 4 for the electroosmotic micropump with topologically opti-
mized electrodes and 160 V electrical potential. The electric field
lines in Fig.4 shows that the topologically optimized electrodes in-
duce the electric field component in the tangential direction of the
microchannel walls. This tangential component actuated the slip ve-
locity at the walls. Because of the viscosity, the fluid in the bulk of
the microchannel is actuated sequentially, and this can be con-
firmed from the velocity distribution shown in Fig. 5. Further, the
net flux is generated by the electroosmotic actuation and the topolo-
gy optimization of the electrode achieve micropump performance.

For different length of the pumping microchannel, topology opti-
mization of the electrode layouts is implemented for the electroos-
motic micropumps. By setting the fold number of the microchannel

length respectively to be different values, the electrode layouts are
derived as shown in Fig.6(a)-6(e), where the electrical potential is
V0 = 5 V. The red arrows represent the velocity vectors in Fig.6.The

Fig. 2. Topologically optimized layouts for electrodes of electroosmotic micropumps with different actuation potentials.

Fig. 4. Electric field line in electroosmotic micropump with topological-
ly optimized electrode layout.

Fig. 3. Plot of actuated Reynolds number corresponding to electroos-
motic micropumps.

(b) V0=10 V 

2.5 

2.0 

1.5 
"" ~ 1.0 

0.5 

0 20 40 

Electric 
field line 

(c) V0=20 V 

60 80 100 120 140 160 

~' 

Anode 

Cathode 



Journal of Advanced Manufacturing Science and Technology 3(1) (2023) 2022022

2022022-5

actuated Reynolds number corresponding to the length of the elec-
troosmotic micropumps with the derived electrode layouts are plot-
ted in Fig.7. Fig.7 shows that actuation performance of the topolog-
ically optimized electrodes firstly increases along with the increase
of the length of the pumping channel, however, its growth rate

gradually slowed down, and the driving performance began to
decline after reaching a certain pumping channel length. Therefore,
relatively longer pumping channel results in larger area of the elec-
trodes, and this is helpful for enhancing the strength of the electric
field; as the area of the electrode increases further, a part of the ac-
tuation effect of the electric field will be neutralized, then the
pumping performance is compromised.

6. Conclusion

This paper has proposed a topology optimization approach for
the electrodes of electroosmosis, which is a widespread used actua-
tion mechanism in microfluidics. This approach is implemented
based on the interpolation of electric insulation and electric poten-
tial on the specified walls of microchannels, where the electrode
layouts are determined to achieve the designer desired microfluidic
performance. Electroosmotic micropump have been demonstrated
as the typical electroosmotic microdevices. Effective pumping of
microfluid has been demonstrated with the derived electrodes,
where the Reynolds number of the actuated microflows can reach
2.5 with 160 V electrical potential imposed. This approach has the
advantage on overcoming the limits of physical intuition-based de-
sign method. It can provide a symmetrical approach for the design
of electroosmotic microfluidics, with potential applications in
chemicals and biochemistry due to the outstanding performance of
the derived microdevices. This paper has studied topology optimi-
zation of electrode layout for DC electroosmosis with steady micro-
flows, and the AC electroosmosis with unsteady microflows will be
investigated in the future.

Fig. 5. Distribution of velocity distribution and vectors in cross sections
of electroosmotic micropump.

Fig. 6. Topologically optimized layouts for electrodes of electroosmotic micropumps with different length of pumping microchannel.
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Fig. 7. Plot of actuated Reynolds number corresponding to electroos-
motic micropumps.
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