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Bike-sharing holds promise for available and healthy mobility services during COVID-19 where bike sharing users can make trips
with lower health concerns due to social distancing compared to the restricted transportation modes such as public transit and
ridesharing services. Leveraging the trip data of the Divvy bike-sharing system in Chicago, this study exploresspatially het-
erogeneous effects of built environment on bike-sharing usage under the pandemic. Results show that the average weekly ridership
declined by 52.04%. To account for the spatially heterogeneous relationship between the built environment and the ridership, the
geographically weighted regression (GWR) model and the semiparametric GWR (S-GWR) model are constructed. We find that
the S-GWRmodel outperforms the GWR and themultiple linear regressionmodels.)e results of the S-GWRmodel indicate that
education employment density, distance to subway, COVID-19 cases, and ridership before COVID-19 are global variables. )e
effects between ridership and the built environment factros (i.e., household density, office employment density, and the ridership)
vary across space. )e results of this study could provide a useful reference to transportation planners and bike-sharing operators
to determine the high bike-sharing demand area under the pandemic,thus adjusting station locations, capacity, and rebalancing
schemes accordingly.

1. Introduction

)eoutbreak of COVID-19 has seriously threatened the lives
of people around the world. According to Johns Hopkins
University in the United States, the cumulative number of
deaths due to COVID-19 in the United States has exceeded
650,000, and the cumulative number of confirmed cases has
exceeded 40.4 million as of September 8, 2021. During this
period, US government agencies have implemented policies
to reduce the community spread of the virus, including
mandate stay-at-home and social distancing orders [1].
)ese orders have largely impacted residents’ daily travel
behaviors and further affected the urban transportation

systems [2]. Given that the pandemic may last for a long
time, the impactsare expectedto continue.

Consideringthe risk of exposure to COVID-19, people
tend to reduce their use of public transportation modes
(i.e.,subways and buses)following soical distancing guid-
ances. However, the use of bike sharing has not been severely
impacted because users could ride bikes in the open space
and keep safe social distances. Studies have shown that when
public transportation systemsare considered dangerous
during COVID-19 [1], residents usually switch from a high-
risk mode to cycling to reduce the risk of infection [3]. As a
result, the demand for the use of bike-sharing has changed
dramatically compared with the period before the outbreak
of COVID-19 [4]. )erefore, understanding how the built
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environment factors affect the usage of public bicycles under
the influence of COVID-19 is necessary because it could
provide an important reference to transportation planners
and bike-sharing operators to determine the high-demand
areas, thusmaking an adjustment to the locations,the ca-
pacity, as well as the reblancing schemes of bike-sharing
stations.

)ere has been a rich body of work on the use of public
bicycles before the pandemic. Two types of models have been
widely used in previous studies, namely global regression
models [5, 6] and local regressionmodels [7]. Global models,
such as linear regression models and negative binomial
regression models, assume that the coefficients of all pre-
dictors do not change across space. Despite their wide use,
they do not capture the spatial variation in the relationship
between predictor and response variables, especially in the
case of large study areas [8, 9]. )erefore, the spatial latent
class model [10] and the geographically weighted regression
(GWR) models [7] are some of the methods adopted to
capture this spatial variation. In this study, the GWR model
is used. Since GWR models assume that all variables have a
spatially varying relationship with the response variable,
which may not be true, semiparametric GWR (S-GWR)
models have been developed that allow some variables to be
global and others to be local.

As a result, this study investigates the spatially varying
relationship between the built environment and the bike-
sharing ridership during COVID-19 while controlling for
the ridership before the pandemic. We intend to answer the
following four questions.

(1) Does the bike-sharing ridership increase or decrease
due to the outbreak of COVID-19?

(2) If bike-sharing ridership changes, will the change of
ridership of each station in proportion to the total
ridership change?

(3) If the change of ridership of each station is not in
proportion to the total ridership change, what fac-
tors, including built environment and demographics,
result in this difference?

(4) How do these factors contribute to this difference?

)e rest of the paper is structured as follows. )e second
part is a summary of relevant studies on the usage of bike-
sharing. )e third part describes the data used in this study.
)e fourth part presents the model results. )e fifth part
concludes this study by summarizing the main findings and
the limitations.

2. Literature Review

)e literature review of related studies is composed of two
parts: the influencing factors of public bicycle ridership
before the outbreak of COVID-19 and the impact of
COVID-19 on bike-sharing usage.

2.1. Factors Influencing Bike-sharing before the Outbreak of
COVID-19. Scholars have used different data and models to
explore the factors that significantly influence bike-sharing

usage. )e factors can be divided into two categories: ex-
ternal and internal.

External factors mainly refer to built environment fac-
tors, including density, diversity, and design [7, 11–14].
Additionally, demographic factors are also regarded as ex-
ternal factors, including age, private car ownership, and
income[15–18]. Other external factors are also included,
such as weather conditions (e.g, temperature, humidity, and
wind speed), substitution mode, and holidays [6, 17, 19–24].
In addition to this, in the context of the epidemic, some
studies have also considered COVID-19-related factors,
such as the number of cases and the number of deaths
directly related to COVID-19 [25–27]. Internal factors
mainly refer to personal preferences and service levels. For
example, some studies explored how users’ intention to use
and fares affect ridership [5, 28–30].

In terms of model selections, many studies used multiple
linear regression (MLR) models to determine significant
influencing variables [6, 12, 31]. Since ordinary least square
models cannot account for multicollinearity,capture spatial
autocorrelations, and accurately estimate regression coeffi-
cients, Hu and Chen used partial least square to deal with the
multicollinearity between explanatory variables. )ey found
that the influence of the independent variables like house-
hold income on ridership at most stations was spatially
different [25]. To further investigate the spatialimpacts, Cox
and Hurtubia used spatial regression models to count for the
spatial autocorrelation [10, 32–34]. And one of the studies
concluded that the usage of dockless bike stations was
spatially autocorrelated in commercial areas and road in-
tersections [31]. Singhvi et al. used generalized linear re-
gression models to deal with skewed distribution of the
response variable [35–37].)e positive effect of station-CBD
distance and the number of entertainment venues on the
number of bike-sharing trips was found [33]. Hu et al.
adopted a different model, the generalized mixed-effects
model, by adding random effects to the generalized linear
regression model [26, 38, 39]. Researchers found that areas
with more COVID-19 cases, high income, and more edu-
cational employment had less human mobility under the
impact of COVID-19 [26].

)e predicting variables, response variables, and models
of the most relevant studies are summarized in Table 1.

2.2. Impact of COVID-19 on Bike-sharing Ridership. )e
studies related to the impact of COVID-19 on the ridership
of bike-sharing are summarized in this section. Bucsky
studied the changes in human mobility and travel mode
shares in Hungary during COVID-19 [4]. Public bicycles
had the smallest decrease in ridership. )e studypointed to
public bicycles as an alternative to public transportation
under COVID-19, giving a stronger rationale for the gov-
ernment to promote cycling. Buehler and Pucher studied the
impact of COVID-19 on public bicycle usage through na-
tional surveys [41]. )ey revealed the general trends and
changes over time in bicycling in different cities in Europe
and the United States from 2019 to 2020. In order to explore
the mechanisms of changes in public bicycle use, several
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Table 1: Summary of studies on the relationship between the built environment and bike-sharing ridership.

Author

Predicting variable

Response
variable Model

Density Diversity Destination accessibility Distance to public transit Design

Population Employment
Mix
land
use

Percent of
different
land use
types

Commuting
distance

Distance
to the city
center

Number
of bus
stops

Number
of subway
stations

Distance
to the
nearest
bus

station

Distance
to the
nearest
subway
station

Bike-station
characteristics

Bike lane
characteristics

Road
network
density

Primary
and

secondary
road

density

Intersection
density

Yang
et al. [7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Hourly

ridership

MLR;
GWR; S-
GWR

El-Assi
et al.
[20]

✓ ✓ ✓ ✓ ✓ ✓ Hourly
ridership

Linear
mixed
model

Lin et al.
[40]

Annual
ridership MLR

Noland
et al.
[28]

✓ ✓ ✓ ✓ ✓ ✓ Monthly
ridership

Negative
binomial
regression

Wang
and
Chen
[33]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Monthly
ridership SEM

Hyland
et al.
[39]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Monthly
ridership

Mixed
multilayer
linear
model

JournalofA
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scholars have started to study the influencing factors using
different methodologies.

Hu and Chen used Bayesian structural time series
models and partial least square regression to study the
temporal evolution of the impact of COVID-19 on transit
ridership in terms of land use, COVID-19 related features,
and sociodemographic variables [25]. )e number of
COVID-19 cases/deaths in the study was positively asso-
ciated with a decline in ridership of public transportation,
opposed toeducational level and income. Hu et al. used the
generalized additive mixed model to explore the relationship
between trips and influencing factors, including COVID-19-
related features, demographic, and employment [26]. )e
results showed that the number of COVID-19 cases, income
level, and educational employment were negatively associ-
ated with trips.)e nonlinear temporal interactions between
various independent variables and bike-sharing usage
change were also explored by the same model [27]. )e
paper illustrated that residential is positively correlated with
bike-sharing usage, while car ownership is negatively cor-
related with it.

In summary, the existing studies addressed the evolution
of the effects in the time dimension and handled mixed
effects of linearity and nonlinearity. However, the spatial
nonstationary relationship has not been considered, which
may lead to estimation bias. )erefore, this paper uses GWR
and S-GWR models to deal with this issue.

3. Data Description

Chicago is one of themost populous cities in North America,
with a large and energetic downtown, which attracts many
commuters and visitors. )is study uses two data sets,
namely, the trip data of the Chicago Divvy bike-sharing
system and the Smart Location Database (SLD) developed by
the U.S. Environmental Protection Agency. )e bike-shar-
ing system of Chicago covers the unrban area of Chicago and
two neighboring suburbs with around 600 stations and over
6,000 bikes. )e data of the Divvy bike-sharing system in-
clude the start/end time of each trip, the start/end station of
each trip, the type of membership, and user information.)e
spatial distribution of Divvy bicycle stations in Chicago is
shown in Figure 1. SLD provides the built environment and
demographic information aggregated at the level of census
block group (CBG).

3.1. Changes in the Spatial Distribution of Usage during
COVID-19. Considering that the spread of COVID-19
began on 2020/2/26 in the United States, the bike-sharing
trip data of the eight weeks before and after the spread week
(2/27/2020-3/4/2020) are used in this study to represent the
pre-COVID-19 period and peri-COVID-19 period.

)e weekly usage of the Divvy system in the eight weeks
before and during COVID-19 is plotted in Figure 2. )e
usage is defined as the sum of the pickup and dropoff trips.

As shown in Figure 2, the usage had fluctuated around
30,000 before COVID-19. During COVID-19, a short rise
was observed, followed by a quick decline from nearly 50,000

to 10,000. After that, the usage became stable, being around
18,000. )erefore, the research period after the epidemic in
this study is from the next three weeks to the next six weeks
(3–6 weeks to the right of the spread week in Figure 2), and
the research period before the epidemic is selected sym-
metrically from the first six weeks to the first three weeks as
the research interval (3–6 weeks to the left of the spread week
in Figure 2). According to statistics, the average weekly usage
before the epidemic was 29,131.5 times, and the average
weekly usage during the pandemic was 13,970.25 times.
Overall, the usage of bike-sharingduring COVID-19 de-
creases by 52.04%.

If the ratio of bike-sharing usage during COVID-19 to that
before COVID-19 is roughly the same for each station, the
change in usage is only caused by the epidemic and has nothing
to do with other factors. If this ratio differs greatly from station
to station, it shows that the change is not only affected by
COVID-19 but also affected by the characteristics of the station
and surrounding environment such as built environment and
demographics. )e histogram of this ratio is shown in Figure 3.

Figure 3 shows that the ridership of most stations de-
creased during COVID-19 while that of some stations

Figure 1: Divvy bicycle stations in the city of Chicago.
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Figure 2: Weekly usage of bike sharing during the period of eight
weeks before and after the outbreak of COVID-19.
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increased and the ratio varies greatly. Figure 4 presents the
spatial distribution of the ratio. )e two figures indicate that
the change of usage is affected not only by the outbreak of
COVID-19 but also by other factors such as the built
environment.

Figures 5 and 6 present the spatial distributions of
ridership. It shows that the stations with high ridership were
centered around the CBD before COVID-19 and centered
around the stations in the north during COVID-19. From
these two figures, we can infer that bike-sharing operators
should pay more attention to the possible shortage of bi-
cycles or docks of the stations in the north during COVID-
19.

3.2.ResponseandPredictingVariables. )e response variable
in this study is the total usage (sum of pickup and drop-off
trips) of each station for the four weeks after COVID-19 (3/
19/2020–4/15/2020), as shown in Figure 1.

In order to study the factors that affect the change of
usage during COVID-19, it is necessary to control the usage
before COVID-19. As a result, it is included in the model as a
control variable. When selecting built environment factors,
this article refers to the “5D” variables (5 types of built
environment variables whose names start with D, including
density, design, diversity, distance, and destination acces-
sibility) proposed by previous studies as potential variables
that may have an impact on the bike-sharing ridership under
COVID-19[17]. In the end, a total of 20 predictors, including
built environment, demographics, COVID-19-related cases
and deaths, and ridership before COVID-19, are selected.

Seventeen variables in the built environment and de-
mographics are derived from SLD. A circular buffer with a
radius of 300meters is drawn around each station. )e
radius of 300meters is determined based on the common
walking distance between the origin or the destination and
the public bicycle station [7]. Values of the predicting
variables are extracted based on the buffer.

)e number of COVID-19 cases and deaths are obtained
from theCity of Chicago. Considering that the COVID-19 cases
and deaths may have a wider influencing area [27], a circular
buffer zone with a radius of 500meters is drawn around each
station to extract the number of COVID-19 cases and deaths.

3.3. Data Processing. )e normal distribution of the de-
pendent variable is an assumption of the classical linear
regression model that ensures that the parameter regression
results are unbiased [42]. )e histogram of the response
variable follows a skewed distribution, different from the
normal distribution. In response to this problem, a loga-
rithmic transformation of the response variable is per-
formed. )e transformation has also been adopted by other
studies. )e transformed results are also shown in Figure 7.

Previous studies have found that demographical and
built environment variables would affect the travel pat-
terns of residents during COVID-19 [25, 26]. For example,
many people may work remotely or study at home due to
the mandated work-from-home order, following social
distance guidelines. Most people’s home-based trips have a

lower decline than office-based trips. )erefore, control-
ling for pre-epidemic ridership, household density is as-
sumed to be positively correlated with peri-epidemicusage,
while employment density is assumed to be negatively
correlated with post-pandemic usage. In addition, vari-
ables such as distance to public transportation and
proximity to the city center are considered to influence
bike sharing usage. So both variables are negatively cor-
related with peri-pandemic ridership. )us, this paper
includes built environment, socioeconomic, and COVID-
19-related variables that may impact peri-epidemic use as
the response variable.

In order to eliminate the large difference in the magnitude
of the explanatory variables and facilitate result interpreta-
tions, the explanatory variables are also logarithmically
transformed. )e modeling result will represent the elasticity
of the response variable to the explanatory variables, which is
expressed as the percentage of change in the response variable
caused by a 1% change in the explanatory variable. )e de-
scriptive statistics of all variables in this study are shown in
Table 2.

)e formula for employment entropy is as follows [43]:

Employment Entropy � −
􏽐

N
i�1 pi( 􏼁In pi( 􏼁

In(N)
, (1)

where N represents the number of employment types
and pi is the proportion of employment type i.

4. Methods

4.1. Multiple Linear Regression (MLR). )is study estab-
lishes the MLR model to analyze factors that influence
bike-sharing usage during COVID-19. )e model
assumes that the relationship between the predictor
variables and the response variable is linear and homo-
geneous across space. Its function is as shown in the
following equation.
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Figure 3: Histogram of the ratio of the ridership during COVID-19
to the ridership before COVID-19.
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y � β0 + β1x1 + β2x2 + . . . + βkxk + ε, (2)

where y is the response variable; x1, x2,. . ., xk are the
predictors; β0, β1,. . ., βk are the coefficients of the predictors;
and ε is the random error, which has an expected value of
zero, follows the normal distribution, and is independent of
each other [42].

In the MLR model, the parameters are mainly estimated
using Ordinary Least Squares (OLS) methods. )e objective
function is as follows:

min􏽘
n

i�1
Yi − 􏽢β0 + 􏽢β1Xi1 + 􏽢β2Xi2 . . . + 􏽢βkXik􏼐 􏼑􏽨 􏽩

2
, (3)

where Yi is the true value of the i-th response variable;
Xi1,. . ., Xik are the k-th predictor of the i-th response
variable’s predictors; and 􏽢β0, 􏽢β1,. . ., 􏽢βk are the estimates of
the parameters.

�e ratio < = 1
.062 - .416
.417 - .662
.663 - 1.000
�e ratio > 1
1.000 - 1.247
1.248 - 2.053
2.054 - 11.000
CBD

0 1.5 3 6 9 12
Miles

N

Figure 4: Spatial distribution of the ratio of ridership during COVID-19 to that before COVID-19.
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Figure 5: Spatial distribution of Divvy usage before COVID-19.
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4.2. Geographically Weighted Regression (GWR). In the case
of a large study area, the relationship between the response
variable and explanatory variables may vary across space. So
the study needs to use a local regressionmodel such as GWR.
)e GWR model improves the traditional MLR model by
allowing the relationship to vary across space. It establishes
local regression equations at each station and thus allows the
regression parameters to vary with spatial location. Its
function is as follows [7]:

yi � βi0 ui, vi( 􏼁 + 􏽘
n

k�1
βik ui, vi( 􏼁xik + εi, (4)

where yi represents the bike-sharing usage of station i,
βik is the coefficient of the predictor k of station i, xik is the
predictor k of station i, εi is the random error term of station
i, and (ui, vi) represents the latitude and longitude of station
i.

)ere are a set of coefficients at each public bicycle
station for the GWR modeling results. It indicates that the
effect of the predicting variables on the response variable
varies across space. When estimating the coefficients of each
station, weight wi is assigned based on the distance from
other stations to the target station.)e coefficients of ex-
planatory variablesare estimated by minimizing the

Usage during COVID-19
2 - 114
115 - 264
265 - 470
471 - 777
778 - 1207
CBD

0 1.5 3 6 9 12
Miles

N

Figure 6: Spatial distribution of Divvy usage during COVID-19.
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Table 2: Descriptive statistics of variables.

Category Variable Meaning Source Mean
(log-transformed)

Variance
(log-transformed)

Usage Usage after
COVID-19

Usage of each station from
2020/3/19 to 2020/4/15 Divvy’s official website 4.872 1.524

Density

Population density Population density
(people/acre) Smart Location Database 3.336 0.510

Household density Household density
(households/acre) Smart Location Database 2.700 0.711

Entertainment
employment

density

Entertainment
employment density

(jobs/acre)
Smart Location Database 0.202 4.540

Education
employment

density

Education employment
density (jobs/acre) Smart Location Database −1.135 8.962

Retail employment
density

Retail employment density
(jobs/acre) Smart Location Database −0.051 2.962

Office employment
density

Office employment
density (jobs/acre) Smart Location Database 0.396 4.699

Healthcare
employment

density

Healthcare employment
density (jobs/acre) Smart Location Database 0.228 3.616

Diversity Employment
entropy

Employment entropy
using the formula for eight
types of jobs such as retail
jobs, factory jobs, and

service jobs

Smart Location Database −0.625 0.342

Design

Auto-oriented links
Length of links only for
automobiles per square

mile
Smart Location Database 1.316 0.721

Multimodal links Length of links for autos
and pedestrians per square Smart Location Database −3.462 20.677

Pedestrians-
oriented links

Length of links only for
pedestrians per square Smart Location Database 3.027 0.081

Distance from
public transit Distance to subway

Distance from population-
weighted centroid to the
nearest subway stop

Smart Location Database 5.112 0.432

Destination
accessibility

Job accessibility Jobs within 45minutes
auto travel time Smart Location Database 12.969 0.189

Working-age
population
accessibility

Working age population
within 45minutes auto

travel time
Smart Location Database 13.228 0.120

Distance to CBD Distance to CBD Own calculation 1.533 0.825

Demographic

Percentage of HH
with no vehicles

Percentage of zero-car
households in CBG Smart Location Database −1.367 0.377

Percentage of low-
income population

Percentage of workers
earning $1250/month or

less
Smart Location Database −0.995 0.898

COVID-19

COVID-19 cases
Cumulative COVID-19
cases from 2020/3/19 to

2020/4/15
Chicago data portal 6.690 0.190

COVID-19 deaths
Cumulative deaths caused
by COVID-19 from 2020/

3/19 to 2020/4/15
Chicago data portal 2.419 0.584

Control Usage before
COVID-19

Divvy usage from 2020/1/
16 to 2020/2/12 Divvy’s official website 5.254 2.751

8 Journal of Advanced Transportation



weighted sum of squares. )e objective function for the
GWR model is as follows:

min􏽘
n

j�1
wij yi − βi0 − 􏽘

n

k�1
βik ui, vi( 􏼁xik

⎛⎝ ⎞⎠

2

. (5)

)e spatial weight reflects the importance of the position.
Many ways can be used to calculate the spatial weight. )e
simplest one is the distance threshold function. )e specific
function is as follows:

wij �
1, dij ≤D,

0, dij >D,

⎧⎨

⎩ (6)

where D represents the distance threshold and dij

represents the distance between station i and the target
station j. To solve the problem of weight discontinuity, the
Gaussian function is also often used to express the rela-
tionship between weight and distance

wij � e
−1/2 dij/b( 􏼁

2

, (7)

where wij represents the weight between stations i and
the target station j, dij represents the distance between
stations i and the target station j, and b is the bandwidth.

4.3. Semiparametric Geographically Weighted Regression (S-
GWR). GWR models assume that the coefficients of all
predictors vary across space. However, the relationship
between some predictors and the response variable may not
vary across space. )e S-GWR model, as an extension of the
GWR model, allows some predictors to be global and others
to be local. )e expression of the S-GWRmodel is as follows
[7], and the symbols in the equation are the same as the
GWR model.

yi � βi0 ui, vi( 􏼁 + 􏽘
n

k�1
βikxik + 􏽘

n

k�1
βik ui, vi( 􏼁xik + εi. (8)

)e objective function for the S-GWR model is as
follows:

min􏽘
n

j�1
wij yi − βi0 − 􏽘

p

k�1
βikxik − 􏽘

n

k�1
βik ui, vi( 􏼁xik

⎛⎝ ⎞⎠

2

. (9)

5. Model Results

)is section establishes MLR, GWR, and S-GWR models to
explore the relationships between explanatory variables and
the response variable.

5.1. Results of MLR Model. )ere are two ways to construct
regression models. One way is to treat the ridership during
COVID-19 as the dependent variable and the ridership
before COVID-19 as well as other variables as the inde-
pendent variables. )e other way is to treat the ratio of the
ridership during COVID-19 to the ridership before COVID-

19 as the dependent variable and other variables as the
independent variables. Both ways are explored in this study.

)e first way to construct the model, which is to treat the
ridership during COVID-19 as the dependent variable and
the ridership before COVID-19 as well as other variables as
the independent variables, is first explored. )e backward
variable selectionmethod is adopted to select variables. After
this method, six explanatory variables are significantly re-
lated to the usage of Divvy bike-sharingduring COVID-19 at
the5% level. Moreover, the variance inflation factor VIF is
less than 5 for these six variables, which indicates there are
no multicollinearity issues.)e formula for VIF is as follows:

VIF �
1

1 − R
2
i􏼐 􏼑

, (10)

where R2
i is the coefficient of determination for the mode using

the i-th explanatory variable as the response variable and the
rest of the explanatory variables as explanatory variables.

Table 3 presents the model results. )e significant var-
iables are household density, education employment den-
sity, office employment density, distance to the nearest
subway station, COVID-19 cumulative cases, and usage
before COVID-19.

Explanations for the relationships between significant
predictors and response variables are given below.

During COVID-19, the household density is positively
correlated with ridership. )is may be due to work-at-home
policies that keep residents at home. As a result, more trips
are home-based trips. )ere is also a positive association
between the cumulative number of cases and the ridership.
)is result may be because areas with more bike-sharing
trips are those with high travel demand. More people
gathering around the area leads to a higher risk of infection.
On the other hand, the increase in the number of COVID-19
infections may also make people use bike-sharing to replace
other public transportation modes, such as the subway and
bus. Moreover, the usage of Divvy bike-sharing before
COVID-19 is positively correlated with the usage of Divvy
bike-sharing during COVID-19. )is shows that stations
with a high usage rate before COVID-19 continue to have
high usage during COVID-19. )e coefficient is 0.626, in-
dicating that if the pre-COVID-19 usage increases by 1%, the
peri-COVID-19 usage will increase by 0.626% on average.

)e education employment density is negatively corre-
lated. It could be due to that most schools require students
and faculty members to stay at home and to take or teach
classes online. Similarly, the office employment density is
also negatively correlated. )is result may also be due to the
stay-at-home order and work-from-home policy in Chicago
in response to COVID-19. And the number of ridership is
negatively correlated with the distance to the nearest subway
station. )e possible reason is that residents who are close to
the nearest subway station after the COVID-19 outbreak
have switched from using the subway to using bike-sharing.

However, bike-sharing usage before COVID-19 may
weaken the effect of time invariant explanatory variables on
bike-sharing usage during COVID-19. To demonstrate the
explanatory power of these predicting variables for bike-
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sharing usage during COVID-19, the ratio of bike-sharing
usage during COVID-19 to bike-sharing usage before
COVID-19 is also developed as the response variable.
Considering there are huge differences in the ratio, the log
transformation is performed on the dependent variable. )e
same backward variable selection method is used to screen
for significant variables. )e results of the model are shown
in Table 4.

)e model results, shown in Table 4, are different from
those of the previous model.)e goodness of fit of the model
is 0.347, which is not as good as that of the previous model.
)is is probably because the variable of ridership before
COVID-19 accounts for a large proportion of the time
invariant components of the response variable, ridership
during COVID-19, in the previous model. Household
density and education employment density are significant at
both mdels. )ough there are some differences in the model
results in terms of significant variables, it should be noted
that the difference in model results is quite common in
empirical studies. Sometimes, simply extending the time
period of the data could lead to different model results.

Specifically, the model results show a positive correlation
between household density and the dependent variable. )e
work-from-home policy made many people stay at home
where office-based trips decreased more dramatically than
home-based trips. )e proportion of households without a
car is also positively correlated with the dependent variable.
During the epidemic, the automobile would be travelers’ first
preference. For households without an automobile, people
are less willing to use the metro or bus, which could lead to
disease transmission and thus turn to bike-sharing. As a
result, bike-sharing riderships in areas with higherhousehold
density and lower vehicle ownershipis not affected by the
epidemic too much.

In contrast, entertainment employment density and
education employment density are negatively correlated
with the dependent variable. )is is probably because the
epidemic severely impacted the entertainment business,
leading to employment loss. Regarding the effect of edu-
cation employment density, both employees and students

are instructed to give lectures or study at home, which
reduces trips to and from schools. )e working-age pop-
ulation accessibility is the working-age population that can
be accessed by driving an automobile in 45minutes. It is also
negatively related to the dependent variable. It may be
because, by dividing the population into a working pop-
ulation and a nonworking population, the trips performed
by the working population have a higher percentage of
decrease compared to those made by the nonworking
population due to the work-from-home policy. )us, by
controlling for the household density, the working-age
population accessibility is negatively related to the depen-
dent variable.

Each of the two models has its own advantage. In this
paper, we adopt the first model to explore the spatially
varying relationship between explanatory variables and the
dependent variable.

5.2. GWRModel Results. )e modeling results of the GWR
model are shown in Table 5.

)e overall R-squared of the GWR model is 0.865. )e
R-squared of each station is visualized in Figure 8.

)e R-squared for each station is above 0.5, with a
considerable proportion being above 0.8, which indicates
that the GWR model fits the data well. )e generally lower
goodness-of-fit for downtown areas may be due to the fact
that ridership at these stations is more variable than at other
stations. In addition, the variables selected do not accurately
explain the dynamic changes in ridership because of the
work-at-home policy.

5.3. S-GWR Model Results. )e S-GWR model is also
constructed.Table 6 presents the modeling results of the S-
GWRmodel. To determine whether each predicting variable
is global or local, all variables are first assumed to be global
variables. )e difference (DIFF) of criterion of each variable
is calculated. )e DIFF indicates the difference in com-
parison metrics (AICc) between the GWR and S-GWR
models. In general, a positive value for the DIFF of criterion

Table 3: MLR model results.

Variable Coefficient Standard error P VIF
Household density 0.288 0.041 0.000 1.953
Education employment density −0.028 0.011 0.013 1.865
Office employment density −0.043 0.021 0.047 3.629
Distance to subway −0.165 0.047 0.000 1.580
COVID-19 cases 0.224 0.069 0.001 1.522
Ridership before COVID-19 0.626 0.022 0.000 2.133

Table 4: MLR model results using the ratio of bike-sharing usage during/before COVID-19 as the response variable.

Variable Coefficient Standard error P VIF
Household density 0.133 0.045 0.004 1.324
Entertainment employment density −0.126 0.024 0.000 2.632
Education employment density −0.072 0.014 0.000 1.930
Working age population accessibility −0.663 0.221 0.003 1.349
Percentage of HH with no vehicles 0.165 0.066 0.012 1.245

10 Journal of Advanced Transportation



indicates that there is no spatial variability [7]. In other
terms, if DIFF> 0, the predicting variable is regarded as a
global variable; otherwise, it is a local variable.

Compared with the MLR modeling results, the intercept
for GWR or S-GWR is a local variable that varies with the
geographical location, which could be observed in previous
studies [7, 41]. As summarized in Table 6, the household
density and the office employment density are local variables
in the model, while the others are global variables.

)e coefficients of the two local variables will be pre-
sented below. )e interpretations of the results will also be
given.

)e spatial distribution of the coefficients of household
density is shown in Figure 9. When household density is a

significant factor, it usually has a positive correlation with
the usage of public bicycles during the epidemic, which is
consistent with the conclusions of the previous study [27].
)e coefficients of household density in the center and
eastern regions were relatively small, ranging from 0.161 to
0.286. )is could be attributed to many high-income resi-
dents who are more likely to commute by private cars in-
stead of public bikes in these two regions.

)e spatial distribution of the coefficients of office
employment density is shown in Figure 10. When office
employment density is a significant factor, it is usually
negatively correlated with ridership. It is probably because
the stay-at-home order during COVID-19 reduced the
number of people working in the office and reduced the
usage of bike-sharing in areas with high office employment
density. )erefore, this negative impact is obvious in the city
center. Also, there is an area in the south where office
employment density is significant because of the proximity
of this area to the location of the University of Chicago. )e
office employment in this area is mainly the faculty members
and staff of the university. During the epidemic, most of the
faculty members and staff of the university are required to
work from home. )e rate of faculty members and staff who
work from home is higher than that of other types of jobs.
)us, the office employment density is negative at a

Table 5: Coefficients of each variable in the GWR model.

Variable Min Lower quartile Median Upper quartile Max
Intercept 4.650583 4.796953 5.013346 5.089241 5.200212
Household density −0.086092 0.193541 0.277111 0.305725 0.373394
Education employment density −0.174001 −0.086815 −0.050423 −0.017703 0.182649
Office employment density −0.245413 −0.150852 −0.040037 0.046748 0.177302
Distance to subway −0.286487 −0.115407 −0.097054 −0.072675 0.084666
COVID-19 cumulative cases −0.136410 0.006409 0.035964 0.059660 0.180760
Ridership before COVID-19 0.818073 0.935148 0.982256 1.030879 1.144220

R-squared of the GWR model
.528 - .607
.608 - .676
.677 - .742
.743 - .801
.802 - .847
CBD

N

0 1.5 3 6 9 12
Miles

Figure 8: Spatial distribution of the R-squared of the GWR model.

Table 6: Variable type test.

Variable F DOF for F DIFF
Intercept 8.902237 2.268 −15.953818
Household density 5.598979 3.301 −11.813178
Education employment
density 1.722706 4.106 1.953052

Office employment density 2.630903 3.698 −1.785874
Distance to subway 2.141936 3.503 0.113963
COVID-19 cases 1.213646 2.911 2.971311
Ridership before COVID-19 1.358139 3.954 3.411965
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significant level. Overall, the magnitude of the negative
coefficients of household density and office employment
density is larger in downtown areas than in the southern
regions. Such relationships may be due to the higher per-
centage of downtown shutdowns than on the south side.

)e overall R-squared of the S-GWR model is 0.886,
which is higher than that of the GWR model. )e spatial
distribution of the R-squared of the S-GWR model is shown
in Figure 11. )e goodness-of-fit of the stations in the city
center is still not high, which shows that the dramatic change
in ridership in these areas caused by COVID-19 is difficult to
capture.

5.4. Model Comparison. )e results of the MLR, GWR, and
S-GWR models are compared and shown in Table 7.

Since the models with a smaller sum of squares of re-
siduals, −2 log-likelihood, AIC, AICc, and higher R-squared
are regarded as better models, the S-GWR model is the best
among the three models.

6. Conclusion

)is study investigates the built environment factors that
influence the bike-sharing ridership of the Chicago Divvy
system during COVID-19 while controlling for the ridership

Negative
-.187 - -.167
-.208 - -.188
-.230 - -.209

Positive
.161 - .286
.287 - .389
.390 - .679
Insignificant
CBD

N

0 1.5 3 6 9 12
Miles

Figure 9: Distribution of household density regression coefficients.

0 1.5 3 6 9 12
Miles

Negative
-.295 - -.167
-.366 - -.296
-.613 - -.367

Positive

Insignificant

CBD

N

Figure 10: Distribution of office employment density regression coefficients.
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before COVID-19. To capture the spatially varying rela-
tionship between built environment and ridership, GWR
and S-GWR models are established.)e MLR model is also
developed to be comparable. We found that S-GWR has the
highest goodness-of-fit from many perspectives.

We also found that the total bike-sharing ridership
declined by half after the outbreak of COVID-19. )e de-
cline of the ridership of each station is different; the spatial
distribution of usage of bike-sharing during COVID-19 is
different from that before COVID-19. )is observation
indicates that transportation planners and bike-sharing
operators should pay attention to this change and could
adjust the capacity and location of the stations as well as the
rebalancing scheme according to the current ridership
pattern.

In terms of the relationship between the built envi-
ronment and change in ridership, some variables are local
variables (i.e., household density and office employment
density), whileother variables are global variables such as
education employment density and distance to the nearest
subway station. )e complex relationship should be fully
considered when estimating the change in ridership of bike-
sharing stations.

)ere are also some limitations in this study. First, al-
though the results obtained from this study may not be
applied to all cities, the analysis framework could be applied

to other cities. Each city should develop policies based on its
own condition. Secondly, because we used cross-sectional
data, the revealed relationship between the independent
variables and the response variable should be regarded as a
correlation instead of a causal relationship. Although some
causal relationships could be inferred from the results, this
inference should be made with caution. In the future, panel
data could be used to deal with this issue. Of course, tra-
ditional Poisson and negative binomial models are designed
for count variables. However, it would be more appropriate
to use linear regression models when the values of the re-
sponse variable do not contain zero or small values [44, 45].
Moreover, when the area of the intersection of the buffer and
the CBG is not the whole block, we assume that the inde-
pendent variables are uniformly distributed in the CBG.
However, the ground truth may not be the case. Another
limitation of this study is that there are different ways to
construct the regression models, and no theoretical justifi-
cation for which model is more suitable. Each of the two
ways has its own advantage. )e model using the ridership
during COVID-19 as the dependent variable is adopted
because the results are more intuitive, and the goodness of fit
is better. But it should be noted that the high goodness of fit
is probably because the ridership before COVID-19 is highly
correlated with the dependent variable, and this high cor-
relation could overshadow the effect of other independent
variables. As such, modeling other related variables, such as
the ratio of peri-COVID-19 and pre-COVID-19 usage, is
also meaningful because it could avoid this issue and is
worth investigating. Finally, we use four-week bike-sharing
ridership data during COVID-19 as the response variable.
)ough the travel volume is relatively stable during COVID-
19 (as indicated in Figure 2)makes it possible to capture
bike-sharing usage patterns under COVID-19, using a
longer time horizon may generate more reliable modeling
results.

R-squared of the S-GWR model
.232 - .393
.394 - .531
.532 - .638
.639 - .747
.748 - .880
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0 1.5 3 6 9 12
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Figure 11: Spatial distribution of the R-squared of the S-GWR model.

Table 7: Comparison of model results.

Indicator MLR GWR S-GWR
Residual sum of squares 112.160 89.645 75.429
−2 log-likelihood 645.349 547.657 472.374
Classic AIC 661.349 612.292 591.082
AICc 661.687 617.640 610.155
R-squared 0.831 0.865 0.886
Adjusted R-squared 0.828 0.851 0.862
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