Old Dominion University

ODU Digital Commons

Computer Science: Research Experiences for Undergraduates in Disinformation Detection and Analytics

NSF Research Experiences for Undergraduates (REU) Programs 2022

Summer 2022

Protecting Blind Screen-Reader Users From Deceptive Content

Ash Dobrenen Virginia Wesleyan University, akdobrenen@vwu.edu

Vikas Ashok (Mentor) Old Dominion University, vganjigu@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/reu2022_computerscience

Part of the Accessibility Commons, and the Software Engineering Commons

Recommended Citation

Dobrenen, Ash and Ashok, Vikas (Mentor), "Protecting Blind Screen-Reader Users From Deceptive Content" (2022). *Computer Science: Research Experiences for Undergraduates in Disinformation Detection and Analytics*. 4.

https://digitalcommons.odu.edu/reu2022_computerscience/4

This Presentation is brought to you for free and open access by the NSF Research Experiences for Undergraduates (REU) Programs 2022 at ODU Digital Commons. It has been accepted for inclusion in Computer Science: Research Experiences for Undergraduates in Disinformation Detection and Analytics by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Protecting Blind Screen-Reader Users From Deceptive Content

By: Ash Dobrenen Mentor: Dr. Vikas Ashok

Old Dominion University | Twitter @Kat9951 | GitHub AshDobrenen | 08/04/2022

Motivation

- Blind users are dependent on Screen Readers
- Visual cues are not usable
- One dimensional method of navigation
- Leads to
 - Sketchy sites
 - Unsafe downloads
- Nothing currently available to help

Existing Works

Existing works are mainly focused on visual accessibility like alt text using automatically created image captions as described in the first article below

Many articles did not look into something for the user to use, rather running many different experiments to find what is inaccessible, and then depending on website developers to make the changes for a site to be accessible as shown in other 2 articles

Auto-Parsing Network for Image Captioning and Visual Question Answering Xu Yang, Chongyang Gao, Hanwang Zhang, Jianfei Cai; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 2197-2207

Moving toward a universally accessible web: Web accessibility and education Serhat Kurt , PhD <u>https://doi.org/10.1080/10400435.2017.1414086</u>

Alnfiai, Mrim, and Wajdi Alhakami. "The Accessibility of Taif University Blackboard for Visually Impaired Students." International Journal of Computer Science & Network Security 21.6 (2021): 258-268.

Solution

Built an intelligent browser extension to help users identify deceptive items (unintentional or intentional)

Tasks

Data set construction

Machine learning classifiers

Refine ML Algorithms and classifiers

Future: Integration into browser extension

Methodology

- 1. Navigated websites using the NVDA screen reader
- 2. Marked in the website where items are not entirely clear when read by the screen reader
- 3. Built a dataset
 - Gathered a variety of 62 websites news, stores, articles, blogs, travel
 - 2. Tagged 574 total data points with 286 "data-attribute='deceptive'" and 288 "data-attribute='nondeceptive'"
- 4. Using the data-attributes, BeautifulSoup, and strings, wrote code to export features to a csv

	pAlt	pKeyword	lengthAlt	pVideoTa	code
(1	0	268	1	0
1	. 1	0	97	0	0
2	2 1	0	143	0	0
3	1	0	167	0	0
4	1	0	71	0	0
5	i 1	0	60	0	0
6	i 1	0	68	0	0
7	/ 1	0	49	0	0
8	8 0	0	0	0	0
9	0	0	0	0	1
10	0	0	0	0	1
568	3 0	0	0	0	1
569	0	0	0	0	1
570) 0	0	0	0	1
571	0	0	0	0	1
572	2 0	0	0	0	1
573	8 0	0	0	0	1
574	L 0	0	0	0	1

Feature Engineering

Features for classifiers were handcrafted based on manual analysis of deceptive content

Presence of alt text	Redirect url to different page/domain
Presence of keywords	Text length in picture
Length of alt text	If text is present in the picture
Presence of video tag if video graphic	Keywords in image text
Presence of close(x) ad button with no	Presence of the blue > ad symbol
alt text	Size/dimensions of image

Machine Learning algorithm

- Used sklearn to split the full dataset into training and testing
- Using 6 different algorithms from the Scikit-Learn Python Machine Learning Library to evaluate the dataset
 - Logistic Regression, SVC, KNN, Decision Tree, Random Forest, Naive Bayes
- Use classification_report for each to get precision, regression, and f1
- Create confusion matrices to visualize which algorithm is best for this dataset
- Output a table of the accuracy and AUC for each algorithm

	Model	Accuracy	AUC
0	Logistic Regression	0.791304	0.78
1	SVC	0.843478	0.84
2	KNN	0.895652	0.90
3	Decision Tree	0.904348	0.90
4	Random Forest	0.913043	0.91
5	Naive Bayes	0.721739	0.70

ML results Training and Testing sets

Classificat	ion Rep	ort for	Logistic	Regression	
	prec	ision	recall	f1-score	support
(9	0.85	0.66	0.74	53
	1	0.76	0.90	0.82	62
accuracy	y			0.79	115
macro av	g	0.81	0.78	0.78	115
weighted av	B	0.80	0.79	0.79	115
Classificat	ion Rep	ort for	SVC		
	prec	ision	recall	f1-score	support
(9	0.84	0.81	0.83	53
	1	0.84	0.87	0.86	62
accuracy	v			0.84	115
macro av	g	0.84	0.84	0.84	115
weighted av	B	0.84	0.84	0.84	115
Classificat	ion Rep	ort for	KNN		
	prec	ision	recall	f1-score	support
	9	0.87	0.91	0.89	53
	1	0.92	0.89	0.90	62
accuracy	y			0.90	115
macro av	g	0.89	0.90	0.90	115
weighted av	g	0.90	0.90	0.90	115

Classification Report for Decision Tree						
	precision	recall	†1-score	support		
0	0.89	0.91	0.90	53		
1	0,92	0.90	0.91	62		
-	0.52	0.50	0.71	02		
accuracy			0.90	115		
macro avg	0.90	0.90	0.90	115		
weighted avg	0.90	0.90	0.90	115		
0						
Classificatio	n Report for	Random Fo	orest			
	precision	recall	f1-score	support		
0	0.89	0.92	0.91	53		
1	0.93	0.90	0.92	62		
accuracy			0.91	115		
macro avg	0.91	0.91	0.91	115		
weighted avg	0.91	0.91	0.91	115		
Classificatio	n Report for	Naive Bay	yes			
	precision	recall	f1-score	support		
0	0.84	0.49	0.62	53		
1	0.68	0.92	0.78	62		
accuracy	0.75	0.70	0.72	115		
macro avg	0.76	0.70	0.70	115		
weighted avg	0.75	0.72	0.71	115		

ML - Current Focus Hyperparameter Tuning

0.9217391304347826							
{'n_estimator 80, 'bootstra	rs': 1600, ' ap': True}	'min_sample	s_split': 1	l0, 'min_s	amples_leaf': 1	L, 'max_features'	: 'auto', 'max_depth':
	precision	recall	f1-score	support			
0	0.92	0.91	0.91	53			
1	0.92	0.94	0.93	62			
accuracy			0.92	115			
macro avg	0.92	0.92	0.92	115			
weighted avg	0.92	0.92	0.92	115			

Analysis

Common reasons why it was incorrectly classified:

- Data point is row of only 0
 - Nondeceptive because of additional features not used due to time constraints
- Deceptive data point with one of the other features having a value other than 0
 - Deceptive even with that feature as a lack of another feature or description makes it unclear
- Non-exhaustive list of keywords

Additional hyperparameter tuning would be needed to truly see the best model

Future Work

- Add computer vision and deep learning to deal with other features such as redirect urls and image processing
- Expand the features to increase the accuracy and scope of the model
- Expand the dataset
- Create a chrome extension to mark deceptive content for screen readers
- Evaluate extension in a user study
- Prepare a manuscript for submission to a conference