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Refinement of AlphaFold2 models against
experimental and hybrid cryo-EM density maps

Maytha Alshammari1 , Willy Wriggers2* , Jiangwen Sun1 and Jing He1

1Department of Computer Science, Old Dominion University, Norfolk, VA, USA and 2Department of Mechanical and
Aerospace Engineering, Old Dominion University, Norfolk, VA, USA

Abstract

Recent breakthroughs in deep learning-based protein structure prediction show that it is
possible to obtain highly accurate models for a wide range of difficult protein targets for which
only the amino acid sequence is known. The availability of accurately predicted models from
sequences can potentially revolutionise many modelling approaches in structural biology,
including the interpretation of cryo-EM density maps. Although atomic structures can be
readily solved from cryo-EM maps of better than 4 Å resolution, it is still challenging to
determine accurate models from lower-resolution density maps. Here, we report on the benefits
of models predicted by AlphaFold2 (the best-performing structure prediction method at
CASP14) on cryo-EM refinement using the Phenix refinement suite for AlphaFold2 models.
To study the robustness of model refinement at a lower resolution of interest, we introduced
hybrid maps (i.e. experimental cryo-EM maps) filtered to lower resolutions by real-space
convolution. The AlphaFold2 models were refined to attain good accuracies above 0.8 TM
scores for 9 of the 13 cryo-EMmaps. TM scores improved for AlphaFold2models refined against
all 13 cryo-EM maps of better than 4.5 Å resolution, 8 hybrid maps of 6 Å resolution, and
3 hybrid maps of 8 Å resolution. The results show that it is possible (at least with the Phenix
protocol) to extend the refinement success below 4.5 Å resolution. We even found isolated cases
in which resolution lowering was slightly beneficial for refinement, suggesting that high-
resolution cryo-EM maps might sometimes trap AlphaFold2 models in local optima.

Introduction

The advancement in protein structure determination and protein structure prediction from amino
acid sequences has made the two initially independent paths more interconnected. On the one
hand, experimental techniques, such asX-ray crystallography,NMR, and cryo-electronmicroscopy
(cryo-EM), have driven the rapid growth of atomic structures deposited in the Protein Data Bank
(PDB). The large number of high-quality 3D structures is an important asset in the investigation of
functional mechanisms in biochemistry and structural biology. On the other hand, accurate atomic
details have also fed a wealth of data to machine learning approaches in computational protein
structure prediction. The quality of such predictedmodels has now sufficiently improved to have a
real impact in imaging-based structure determination, such as in cryo-EM, where the resolution of
the experimental maps is often too low to resolve individual atoms.

As of April 2022, 8,029 atomic structures have been solved from 9,752 cryo-EM maps with
better than 4 Å resolution. Even in those high-resolution maps, there are often local regions of
lesser quality that are challenging to interpret, but for the better-defined regions, the atomic
structures are reliable down to the position of individual atoms. In addition, 2,195 models have
been predicted from 3,344 cryo-EM maps with 4–6 Å resolution. It is still challenging to
determine structures accurately in this ‘twilight zone’ of resolution due to the ambiguities of
interpreting the shapes of amino acid side chains (Cheng, 2015; Casañal et al., 2019; Malhotra
et al., 2019; He et al., 2022; Zhang et al., 2022). Recent studies have shown that the 3D prediction
of atomic structures of proteins for which only the amino acid sequence is known can assist in the
interpretation of cryo-EM maps when the quality of maps is insufficient to resolve atoms and
amino acid side chains (Jiang et al., 2001; Topf et al., 2006; DiMaio et al., 2009, 2015; Baker et al.,
2011; Lindert et al., 2012; Wang et al., 2015; Chen et al., 2016; Afonine et al., 2018; Terashi and
Kihara, 2018; Zhang et al., 2020). Finally, there are also 1,066 atomicmodels in the PDB that were
derived from 2,573 maps of medium resolution (6–10 Å), where the backbone of the polypeptide
chain is generally no longer visible in themap. Thesemodels are predominantly derived by fitting
known template structures into the maps (Wriggers et al., 1998, 2000; Tama et al., 2002; Chacon
et al., 2003; Wriggers, 2010, 2012; Kovacs et al., 2018). A template structure can be an existing
protein structure of a closely related protein or a model that is modified from an existing
structure. The initial model must be similar to the structure of the target protein for fitting to
low-resolutionmaps to be reliable (Egelman, 2008). Due to the limitations of such fitting, 6–10 Å
resolution cryo-EM maps are also increasingly deposited without associated PDB models (95 in
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2002–2009, 223 in 2010–2014, 645 in 2015–2019, and 567 since
2020). These recent trends inmedium-resolution prolificacy call for
new computational tools that enable such cryo-EM maps to bear
atomic resolution fruit at a later time.

The rise of deep learning methods capable of producing highly
accurate structures has recently revolutionised the computational
protein structure prediction field. In the first 12 Critical Assessment
of Protein Structure Prediction (CASP) meetings, the prediction
accuracy for difficult targets was generally poor, with an overall less
than 50 Global Distance Test � Total Score (GDT_TS) (Martz,
n.d.), above which a model generally represents a correct fold
(Kryshtafovych et al., 2021). This was due to the challenge of
handling proteins with previously unknown folds and to insuffi-
cient knowledge extracted from existing sequences and structures.
However, the debut of deep learning led to a marked improvement
in prediction accuracy. By CASP14 in 2020, AlphaFold2 had
become the best-performing method across all levels of target
difficulty (Kryshtafovych et al., 2021). Ranked by increasing diffi-
culty, the challenge levels are Template-Based Modelling-easy
(TBM-easy), Template-Based Modelling-hard (TBM-hard), Free
Modelling/Template-Based Modelling (FM/TBM), and Free Mod-
elling (FM). For 87 of the 92 domain targets, the best of five models
submitted by the AlphaFold2 group of DeepMind achieved near
experimental accuracy, with GDT_TS above 70 (Jumper et al.,
2021a). Themarked improvement of accuracy for themost difficult
targets in Free Modelling represents a significant improvement in
the state of the art in protein structure prediction (Jumper et al.,
2021a; Kryshtafovych et al., 2021).

The success in predicting Free Modelling targets at CASP was
largely due to the improved prediction of residue contact distances,
beyond a yes or no answer (Hou et al., 2019; Xu, 2019). Coevolution
can be related to statistical dependencies that encode the contact
between two residues. For example, if one changes from a positively
charged residue, the other is likely to change to a negatively charged
residue. Deep learning methods, such as MULTICOM, TripletRes,
DeepPotential, tFold, and RaptorX, have been shown effective in
uncovering residue coevolutionary patterns among homologous
sequences (Guo et al., 2021; Li et al., 2021a, 2021b; Shen et al.,
2021; Xu et al., 2021). Due to such improvements, other structure
prediction methods, such as RoseTTAFold, QUARK, and MULTI-
COM, have also recently shown improved model accuracy (Yang
et al., 2020; Baek et al., 2021; Zheng et al., 2019, 2021; Hou et al.,
2020; Wu et al., 2021).

The availability of highly accurate predicted models potentially
transforms many studies in structural biology, but the impact of
AlphaFold2 models remains to be studied in more detail in various
specific applications. In the related Molecular Replacement prob-
lem in X-ray crystallography (which relies upon the existence of a
model that is similar to the unknown structure from which the
diffraction data is derived), a recent study shows that 30 of
32 models produced by AlphaFold2 in CASP14 can be successfully
used as search models (Pereira et al., 2021). In cryo-EM, a recent
study showed that 22 of 25 AlphaFold2models can be used as initial
models to produce models with over 90% alpha-carbon accuracy
when they are refined using high-resolution cryo-EM maps up to
about 4 Å resolution (Terwilliger et al., 2022). However, as of yet,
little is known about the benefit of AlphaFold2 for interpreting
cryo-EM maps of lower resolution, where certain chains and
regions do not have a known available template structure that could
be fitted.

One of the difficulties in the evaluation of computational
methods that apply to lower-quality maps is the lack of sufficient

benchmark data. Although many atomic models have been derived
from cryo-EMmaps between 4 and 10Å resolution, it is challenging
to validate those models. For example, a misalignment of corres-
ponding atomic structures has been reported for helix regions
(Wriggers and He, 2015; Sazzed et al., 2020) of lower-resolution
cryo-EMmaps. Due to challenges in obtaining reliable (experimen-
tally derived) map-model pairs at lower resolutions, the simulation
of cryo-EM density maps has become important.

Existing methods for simulating density maps (either in direct
space or Fourier space) are based on the convolution of atom points
with a resolution-lowering point-spread function. In the pdb2mrc
of EMAN, the molmap function in Chimera, and the pdb2vol
function of Situs, a 3D density map is produced using a Gaussian
point-spread function whose real-space dimension corresponds to
a desired resolution value, depending on the specific resolution
convention of the packages (Ludtke et al., 1999; Pettersen et al.,
2004; Wriggers, 2012). In this study, we propose a new way to
produce a hybrid density map based on a Gaussian convolution of
an experimental cryo-EM map (instead of an atomic structure).
The variable resolution value adds a new dimension to the method
validation. As a bonus, the approach also incorporates any quality
variation within the parent high-resolution cryo-EM map into the
hybrid map, resulting in a more realistic low-resolution density
model.

Using hybrid maps, we can monitor any change in the effect of
the refinement of AlphaFold2 models when Phenix software is
applied at specific resolution values. Phenix is a Python-based
refinement suite that was historically developed for X-ray crys-
tallography and is therefore most suitable for high-resolution
cryo-EM density maps (better than 4.5Å, according to Terwilliger
et al. (2022)). The Phenix refinement protocols we used here were
tightly integrated with AlphaFold2 and rely on specific outcomes
of the AlphaFold2 prediction process (see Methods). An earlier
study by Terwilliger et al. (2022) already demonstrated that
AlphaFold2 models can be refined against high-resolution cryo-
EM density maps, but the utility of the approach was not conclu-
sive for cryo-EM maps with lower than 4 Å resolution, since only
three such cases were tested and they achieved mixed success. In
the present work, we tested a revised set of experimental high-
resolution maps, and we also explored the impact of the refine-
ment of AlphaFold2 models using hybrid maps of progressively
sampled lower resolutions of 5, 6, 8, 10, and 12 Å. The refinement
against such lower resolution maps is not the original scope of
Phenix, but it is important to us and to many other groups that
focus on modelling cryo-EM maps across a wider resolution
range. Our results demonstrate the potential for AlphaFold2
models to be applied in lower than 4 Å resolution maps through
refinement.

Methods

Both experimental cryo-EMmaps between 2 and 4.5 Å resolution
(see section ‘The data’) and hybrid maps (see section ‘Hybrid
experimental-simulated density maps’) between 5 and 12 Å were
used in the study. AlphaFold2 is accessible from both its standa-
lone copy, which can be downloaded and installed locally, as
well as web services established by both DeepMind and third-
party groups (Jumper et al., 2021b; Mirdita et al., 2021). The
refinement function of Phenix for AlphaFold2 models is also
accessible both from a locally installed Phenix distribution and
from its cloud service through Google Colab. In this study, most of
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the refinements of AlphaFold2 models were conducted using the
free-membership Colab server of Phenix because of their tight
integration, but a few cases were conducted using the local copy of
Phenix for a fine-tuning of parameters (see details in
section ‘Structure prediction using AlphaFold2 and refinement
using Phenix’).

The data

Since the goal of the work was to study the effect of an existing
refinement procedure on density maps of different resolutions, a
data set of 13 cases was created. Of these, 12 were used in the study
of Terwilliger et al. (2022), and one was added. The newly added
case is a Free Modelling case in CASP14 (T1047S1D1, CASP ID)
and it has a cryo-EM map (EMDB 12183, PDB 7BGL chain A)
associatedwith it. The atomic structure of this case was downloaded
from the PDB in March 2022. The other 12 structures listed in
Table 1 were provided from the depository of Terwilliger et al.
(2022), representing the structures downloaded in August 2021
with recent unique size structures between 100 and 1,000 amino
acids and a cryo-EMmap of 4.5 Å or better. Each case consisted of a
sequence of amino acids, its corresponding density map, and an
atomic structure (Table 1). Cryo-EMmaps were downloaded from
Electron Microscopy Data Bank (EMDB), as indicated by the ID
number in Table 1.

Hybrid experimental-simulated density maps

In this work, there was a need to adjust the resolution of cryo-EM
maps used in the validation of the Phenix refinement of the
AlphaFold2 models. The adjustment had to be done on specific
maps, since our tests below show that the performance of the
refinement varies greatly between systems. Traditionally, there

have been methods, in EMmodelling, that lower the resolution of
atomic structures to create ‘simulated’ cryo-EMmaps, such as the
pdb2vol tool of Situs (Wriggers, 2012). However, such simulated
maps would not mimic the unique features of experimental cryo-
EM maps, such as structural deviations, uneven local resolution,
noise, structural flexibility and disorder, or the specific image
processing effects of the 3D reconstruction process. Therefore,
we designed a novel hybrid experimental-simulated density map,
using a high-resolution experimental map as a basis for the
resolution lowering instead of an atomic structure. To re-use
the existing resolution lowering code (pdb2vol ) in Situs, the
cryo-EM density format was first converted with the vol2pdb tool,
with each density voxel represented by a PDB ATOM record that
stores the voxel density in the PDB occupancy field. Each density
voxel was then convoluted with a Gaussian filter using a modified
version of pdb2vol, with a filter size determined by the desired
resolution of the hybrid map. The final resolution of the hybrid
map depends on both the pre-existing (fixed) resolution Re of the
experimental map, and the user-controlled resolution parameter
Rs of the pdb2vol convolution. The relationship is straightforward
because the resolution point spread of the experimental map can
itself be approximated by a Gaussian of resolution Re. In this case,
the convolution of two Gaussians is simply a Gaussian with a
larger resolution value Rh =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
e þR2

s

p
(Bromiley, 2003). For a

desired hybrid target resolution Rh, and a cryo-EMmap with pre-
existing resolution Re, the required resolution parameter Rs of the
Gaussian filter can be computed this way. Hybrid density maps of
Rh = 5, 6, 8, 10, and 12 Å resolution were created for each case in
this fashion.

The detailed relationship between resolution values and dimen-
sions of the Gaussian for various methods, including Situs, are
described in section ‘Discussion and conclusion’ of Wriggers
(2012). There is a significant difference between resolution

Table 1. Accuracy of models before and after refinement using high-resolution cryo-EM maps and hybrid density maps of 5, 6, and 8 Å resolutions

Casea #Amino acidsb Res. (Å)c
AF2

pLDDTd
AF2
TMe

Refined modelsf

High 5 Å 6 Å 8 Å

7LV9-23530-B 97 4.5 55.37 0.39 0.42 0.23 0.34 0.34

T1047S1D1-7BGL-12183-A 211 2.2 75.74 0.53 0.71 0.50 0.51 0.49g

T1047S2D3-7BGL-12183-A 116 2.2 75.17 0.71 0.76 0.51g 0.55g 0.51g

7KZZ-23093-B 281 3.42 89.76 0.76 0.81 0.80 0.70 0.66

7KU7-23035-A 269 3.4 88.56 0.76 0.79 0.79 0.78 0.71

7LCI-23274-R 393 2.9 81.15 0.82 0.95 0.94 0.94 0.64

7M7B-23709-A 209 2.95 77.60 0.83 0.91 0.81 0.81 0.81

7MLZ-23914-A 196 3.71 83.09 0.84 0.90 0.88 0.87 0.61

7MJS-23883-H 132 3.03 89.57 0.88 0.98 0.92 0.88 0.63g

7BRM-30160-A 257 3.6 87.52 0.89 0.89 0.94 0.90g 0.84

7LX5-23566-B 196 3.44 82.93 0.89 0.93 0.93 0.92 0.64

7EDA-31062-A 334 2.78 89.02 0.90 0.92 0.93 0.86 0.66g

7L6U-23208-A 311 3.3 89.74 0.90 0.96 0.95 0.95 0.93

aProtein IDs (PDB ID_EMDB ID_Chain ID). For the two chains involved in CASP challenges, CASP target IDs are indicated.
bThe number of amino acids in the protein.
cThe resolution of cryo-EM maps.
dThe average pLDDT scores of AlphaFold2 models.
eThe accuracy is indicated as TM scores for models obtained from AlphaFold2.
fTM scores for models refined using Phenix (Terwilliger et al., 2022), the cryo-EM maps (High) and the hybrid density maps at 5, 6, and 8 Å, respectively.
gThe Phenix resolution parameter was tuned 2–3 Å lower than the nominal resolution of the density map to ensure completion of the refinement protocol (see text).
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conventions between software tools, since no uniform standards
exist in the experimental and theoretical communities (Wriggers,
2012). The Situs resolution convention (double the 3D standard
deviation of the Gaussian) is different from EMAN2 and UCSF
Chimera and was designed to show features at comparable levels of
detail with published experimental maps, so we expect that the Re

and Rs values in the above formula are compatible. However, users
should be aware that this assumption should ideally be tested with a
detailed resolution analysis, especially if different packages are used
for the calculation of Rs.

Structure prediction using AlphaFold2 and
refinement using Phenix

The overall idea in refinement is to first identify the most con-
sistent model among a set of suggested models from AlphaFold2.
The selected model was then processed to trim unreliable residues
using the per-residue confidence scores produced from Alpha-
Fold2. The resulting more reliable regions of the model are broken
up into domains and docked in the density map, whilst maintain-
ing the connectivity relationship among domains. The model is
then morphed and rebuilt using a density map (Terwilliger, n.d.).
Briefly, this involves the fitting of the segments and the modelling
of connecting loops using various techniques such as refinement,
tracing, loop building, and chain growing. Detailed Phenix
instructions for refining AlphaFold2 models are available online
(Thomas, n.d.).

Although AlphaFold2 software can be downloaded and
installed on local machines, a simple way to obtain a predicted
model is to use its service set up on the Google Cloud Platform.
Recently, a convenient web interface was established on Google
Cloud that initiates a task to run AlphaFold2 and then refines the
model using the functions of Phenix software and a density map
(Jumper et al., 2021b; Mirdita et al., 2021; Terwilliger et al., 2022).
We utilised such cloud services for 11 of the 13 cases to collect
models generated from AlphaFold2 and to conduct subsequent
refinement using Phenix. Specifically, models were obtained from
a Google Colab Notebook ‘AlphaFold with a density map’, a
Python code environment for Google Cloud services (Google
Colab Notebook, n.d.). Default parameters were used, except for
the number of iterations of refinement. Only one iteration of
refinement was performed, rather than four iterations performed
in the study of Terwilliger et al. (2022) because our tests showed
that the conclusions of this paper did not depend on the number of
iterations. For two cases (7LV9–23530-B and T1047S1D1–7BGL-
12183-A), the downloaded Phenix software, instead of the Colab
server, was used. Regarding the lower-confidence prediction
7LV9–23530-B, the maximum_rmsd parameter was fine-tuned
in the local copy to 2.5 Å, instead of the default of 1.5 Å provided
by the Colab server, for enhanced sampling. In the case of
T1047S1D1–7BGL-12183-A, a local run was necessary because
the trial on the Colab server exceeded the time limit of the free
account. The same version of Phenix, dev-4536, was used in either
the Colab server or the local copy.

To prepare the density map for refinement, we followed
the Phenix documentation and applied the tools phenix.
local_aniso_sharpen and phenix.map_box. The map resulting
from these steps was a sharpened, rectangular cropped region
containing the chain of interest. The nominal density map reso-
lution was used as an upper bound for the Phenix ‘high-
resolution limit’ of the main search. The documentation recom-
mends trying the nominal resolution, but to lower the parameter

as needed for a ‘quicker search’ or to compensate for model
quality. We found that the Phenix refinement against the experi-
mental cryo-EM maps was completed without any lowering of
this parameter. However, for some of the lower resolution hybrid
density maps (Table 1), the refinement failed at the docking stage.
Therefore, as recommended by the instructions, a 2–3 Å larger
resolution parameter than the nominal map resolution was used
in these cases.

Results

This study aims to evaluate the accuracy of models obtained using
the AlphaFold2 method and those refined using both cryo-EM
maps of high resolutions and hybrid maps of lower resolutions.
Among the models produced from AlphaFold2, the model
selected by Phenix software was used in the evaluation of accuracy
and subsequent refinement. The selected model represents the
one with the best confidence based on the average predicted local
distance difference test (pLDDT) among the list of suggested
models from AlphaFold2 (Terwilliger et al., 2022). The pLDDT
(Jumper et al., 2021b) is a per-residue confidence metric on a scale
from 0 to 100, and it estimates how well a prediction would agree
with the true structure based on the local distance difference test
Cα (Mariani et al., 2013). The TM-align method calculates actual
structural similarity using heuristic dynamic programming iter-
ations, and it allows the comparison of two models that are not
similar in certain regions (Zhang and Skolnick, 2005). Eachmodel
was aligned with the true structure using TM-align, and the
TM-score was used for an estimation of the accuracy of the model.
(Note that the amino acid sequence submitted to the AlphaFold2
server is longer if the corresponding atomic structure misses a
segment of the sequence in structure determination; we used the
length of the true structure for TM score normalisation). In the
following, we describe our validation studies on experimental
high-resolution cryo-EM maps (section ‘AlphaFold2 models
and improved accuracy using high-resolution cryo-EM maps’)
and on lower-resolution hybrid maps (section ‘Refinement of
AlphaFold2 models using hybrid maps’). This is followed by a
secondary structure analysis (section ‘Secondary structure ana-
lysis of refinement performance’) to characterise the observed
performance.

AlphaFold2 models and improved accuracy using high-
resolution cryo-EM maps

For the 13 cases tested, the accuracy of models obtained from
AlphaFold2 is quite good, since 11 of them show higher than 0.7
TM-score, and eight models have higher than 0.8 TM-score
(Table 1). The TM scores correlated with average pLDDT values
(Table 1), suggesting that AlphaFold2 pLDDT scores predict the
refinement success to some extent. (However, small local errors that
are undetected by the pLDDT averaging can have global structural
consequences, so the TM score was used as a standard for the
validation against the true structures.)

An example with a 0.82 TM-score shows that the overall fold
and secondary structure elements, such as helices and β-strands, are
correct (Fig. 1a). Minor inaccuracies remain in the model in terms
of the length of the secondary structures, the loop, and the relative
positioning of the two secondary structures. For a case with a TM
score of 0.53, one of the two cases with a score less than 0.7, the fold
of the model is still correct, and the secondary structures are
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well-predicted (Fig. 2a). This chain was a target in the difficult Free
Modelling category of CASP14. Although our current AlphaFold2
model was obtained from the Colab server of AlphaFold2, it is
similar to themodel submitted in CASP14 (data not shown). One of
the 13 test cases showed poor model accuracy, with a TM-score of
0.39 (Table 1). The main deficiency of the model is that two shorter
helices were predicted as one long helix, which affected the overall
fold of the chain (Fig. 3a).

The refinement of AlphaFold2 models using Phenix and
high-resolution cryo-EM maps was successful, since an
improvement in accuracy was observed for all the 13 cases
(Table 1). This observation is similar to the results of Terwilliger
et al., even though there are minor differences in the data, the
number of iterations of refinement, and the evaluation of model
accuracy. The evaluation of model accuracy was performed using
TM scores instead of the percentage of alpha-carbons, and a new
CASP target was added to the test data. Our results show that the
high-resolution cryo-EM maps and the refinement method pro-
posed by Terwilliger et al. are capable of correcting model errors.
In particular, for the eight best models with over 0.8 TM scores
obtained from AlphaFold2, the refinement consistently
enhanced them to near experimental accuracy models with near
or over 0.9 TM scores (Table 1). For the threemodels of TM score
between 0.7 and 0.8, the enhancement is modest, producing

models of near 0.8 TM score after refinement. For the poor
model that has a TM score of 0.39, the enhancement is limited,
since the refined model has a TM score of 0.42. Our results show
that the level of enhancement is related to the quality of the
initial model. Those initial models with better than 0.8 TM
scores consistently produce near-experimental accuracy. It is
worth mentioning that the refinement was conducted using a
box-cropped region of the cryo-EM map near the protein chain.
Without using the knowledge of the boundary of the chain, a
box-cropped region often contains partial density of neighbour-
ing chains; therefore, the refinement of such a boxed region is
harder than using a region masked by the envelope of the chain.
If certain knowledge about neighbouring chains is available, it
might be easier for the refinement process. The experiment in
this study tests the original power of the density map in refine-
ment without any knowledge of neighbouring chains, and we
observe that the high-resolution cryo-EMmaps have such power
to refine initial models obtained from AlphaFold2. The limited
enhancement in refinement of the model in the case of 7LV9may
be related to a combination of factors, such as the small size of the
chain, the accuracy of the model, and the resolution of the
density map (Table 1). This case has the lowest accuracy for
the initial model obtained from AlphaFold2 and the lowest
resolution of 4.5 Å among the data set.

Fig. 1. Models obtained from AlphaFold2 and the refinements using Cryo-EM map 23274–7LCI-R (EMDB-PDB-chain ID) and hybrid density maps at 6 and 8 Å resolutions. (a)
Superposition of theprotein structure (red, chain Rof 7LCI) and themodel obtained fromAlphaFold2. (b1) Thebox-cropped regionof cryo-EMmap23274 (EMDB ID, cyan) superimposed
with themodel (blue) refinedusingPhenix and the cryo-EMmap. (b2) Superpositionof the structure (red, chainRof 7LCI) and the refinedmodel (blue)usingPhenix and thebox-cropped
cryo-EMmap in b1.Hybrid densitymaps of 6 Å (grey in c1) and 8 Å (yellow in d1) resolutions are superimposedwith the correspondingmodels refined from themaps, respectively. The
6 Å-map-refined model (Cyan ribbon in c1, c2) and 8 Å-map-refined model (green in d1, d2) are superimposed with the structure (red) in c2 and d2. The superposition of two atomic
modelswasperformedwithTM-align (ZhangandSkolnick, 2005) in all figures. The superpositionof a densitymapandamodelwasperformedusingPhenix (Terwilliger et al., 2022) inall
figures. An example of a weaker density region in the cryo-EM map and in the corresponding hybrid maps is indicated by an ellipse in b1, c1, and d1.
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Refinement of AlphaFold2 models using hybrid maps

For each experimental cryo-EMmap in the previous section, hybrid
density maps were generated at specific resolution values of 5, 6,

8, 10, and 12 Å. The same refinement procedure in Phenix was
applied to hybrid maps at different resolution values, as in the
previous section. When the resolution of maps was progressively
lowered from 5 to 12 Å, the refinement procedure generally
degraded in performance. Among the 13 cases, the number of cases
with enhanced model accuracy after refinement (Fig. 4) is 13 for all
high-resolution cryo-EMmaps, but it drops to 9, 6, 1, 0, and 0 when
hybrid density maps of 5, 6, 8, 10, and 12 Å resolutions were used,
respectively (Fig. 4 and Table 1). Our results show that the current
refinement method is most suitable for maps with resolutions
higher than 6 Å.

We observed that 6 Å was a breakeven point, below which the
refinement predominantly degrades the AlphaFold2 models, and
above which most of them are improved. Therefore, we analysed
the breakeven point in more detail in the following. When hybrid
density maps at 6 Å were used in refinement, almost half (6 of the
13 cases) exhibited improved model accuracy (Table 1 and Fig. 4).
This shows that the hybrid maps at 6 Å still have the potential to
correct the initial models obtained from AlphaFold2. We also
observed that all six cases started from already reasonable initial
models with 0.76 to 0.90 TM scores. The three most enhanced cases
are 7LCI (enhanced from a TM-score of 0.82 to 0.94), 7L6U (from
0.90 to 0.95), and 7LX5 (from 0.89 to 0.92). In the case of 7LCI, the
enhancement appears to bemostly in the β-sheet region of the chain
(Fig. 1a,c2).

In the remaining seven cases, the model accuracy at 6 Å
decreased. The performance for all cases also degrades significantly
at 8 or 10 Å resolution (Fig. 4) due to our refining outside the high-
resolution design parameters of Phenix (note that when high-
resolution cryo-EM maps were used in refinement, the model
accuracy was enhanced for all 13 cases). Fig. 1b1,c1,d1 shows one
example where weak density in the cryo-EM and related hybrid
maps (ellipse) diminishes the refinement accuracy at 8Å resolution.

The number of successful (improved) cases increased from six to
nine when hybridmaps of 5 Å instead of 6Å resolutionwere used in
the refinement (Fig. 4, red bars vs. black bars). Our results, there-
fore, show that the majority of cases at 5 Å can still benefit from
Phenix, although a previous study (conducted predominantly with
2–4 Å resolution cryo-EM maps) suggested a 4.5 Å limit
(Terwilliger et al., 2022).

Secondary structure analysis of refinement performance

As an example of the refinement performance, and to provide a
demonstration of the challenges involved, we show one case, 7KZZ
(PDB ID), inmore detail. Themodel accuracy was increased from a
TM score of 0.76 to 0.81 after refinement using the cryo-EMmap of
3.42 Å resolution, but decreased to 0.70 using the hybridmap of 6 Å
resolution (Table 1 and Fig. 4). This chain has an upper domain and
a lower domain. The upper domain was predicted accurately using
AlphaFold2, but the lower domain was not accurately predicted, as
seen in either the superposition of the entire chain (Fig. 5a1) or the
central axes of secondary structures (Fig. 5a2) (Stephanie et al.,
2017). The lower domain contains six long helices with lengths
between 21 and 30 amino acids. In fact, the sequence segments of
the six helices are well-predicted, with the maximum shift of any
of the 12 ends of the 6 helices within 4 amino acids when compared
to the true structure.

Although the individual helix segments are well-predicted, the
arrangement of the six long helices deviates from the true structure.
Therefore, it is impossible to fit the predictedmodel well with either
the cryo-EMmap or the hybrid density map (Fig. 5a2). Since fitting

Fig. 2. Models obtained from AlphaFold2 and the refinements using Cryo-EM map
12183–7BGL-A-T1047S1D1 (EMDB-PDB-chain ID-CASP14 target ID) and hybrid density
maps at 6 and 8 Å resolutions. (a) Superposition of the protein structure (red, chain A of
7BGL) and the model obtained from AlphaFold2 (yellow). This chain is one of the free
modelling targets in CASP14 with ID T1047S1D1. (b1) The box-cropped region of cryo-
EM map 12183 (EMDB ID, cyan) superimposed with the model (blue) refined using
Phenix and the cryo-EM map. (b2) Superposition of the structure (red, chain A of 7BGL)
and the refined model (blue) using Phenix and the box-cropped cryo-EM map in b1.
Hybridmaps of 6 Å (grey in c1) and 8 Å (yellow in d1) resolutions are superimposed with
the model refined from the corresponding map. The 6 Å-map-refined model (Cyan
ribbon in c1, c2) and 8 Å-map-refinedmodel (green in d1, d2) are superimposed with the
structure (red) in c2 and d2.

Fig. 3. Predicted models using AlphaFold2 for 7LV9-B and 7L6U-A (PDB ID–Chain ID).
The structures (red) andmodels predicted using AlphaFold2 (yellow) are superimposed
for chain B of 7LV9 (a) and chain A of 7L6U (b). See the Supplementary Material for more
details about the two cases.
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the initial model is a step before refinement, the incorrect arrange-
ment of the six long helices presents a challenge that refinement
needs to overcome. This might contribute partially to the limited
enhancement from 0.76 to 0.81, not surpassing 0.9 in the TM score,
even after refinement using the high-resolution cryo-EM map.

To illustrate the arrangement of the helices, we used three
consecutive long helices and manually superimposed one of them
(H7 in the true structure and H6 in the predicted model) so that
the two vectors were approximately aligned (Fig. 5a3). The first
vector represents the central axis of the helix between Trp168 and
Ala196, and the second vector represents the turn between
Trp168 and Tyr 165 (Fig. 5a3). This demonstration of a subset
of helices shows that the relative orientations of the other two
helices in the model (yellow lines) differ from those in the true
structure (red lines).

Fig. 5 shows that the knowledge of secondary structure locations
in a density map can be important for refinement against lower-
resolution maps. Due to the spacing of β-strands of about 5 Å,
individual strands are not detectable in density maps with a reso-
lution lower than 6 Å. However, β-sheets are still detectable above
about 8 Å, and α-helices are detectable above about 10 Å resolution.
Therefore, it might be possible to improve the refinement strategy
to handle down to 8 Å resolution maps if secondary structure
information is integrated. In practice, however, detection accuracy
is affected by the local quality of a map and the complexity of a
structure. A recent study presented a novel flexible fitting method
for cryo-EM maps at intermediate resolutions (4–10 Å). The key
idea was to guide the fitting by the correspondence between the
α-helices in the cryo-EM map and those in the model (Dou et al.,
2017).

To explore the potential benefit of secondary structure detec-
tion, we used DeepSSETracer (Mu et al., 2021), a deep learning-
based method that can be plugged into ChimeraX to segment
volumes belonging to test case 23274–7LCI-R. In this example,
the β-sheet region (cyan) can be approximately segmented in the
8 Å resolution hybrid map (Fig. 6b vs. c or d). In addition, most of
the helices (yellow) were detectable (Fig. 6b vs. c or d). Note that the

detection was performed on a box-cropped map, so the assignment
of features in Fig. 6 might include neighbouring chains. When the
AlphaFold2 model was aligned with the detected secondary struc-
ture regions, the secondary structure regions were visually in good
agreement (Fig. 6b). This is encouraging since it suggests an overall
validity of the AlphaFold2 model. However, minor disagreement
was observed between the model and the segmented secondary
structure regions, as indicated by two arrows for the helix regions
(Fig. 6b). At these two spots, the detected helix regions agree more
with the atomic structure (Fig. 6b,d) and less with the AlphaFold2
model (Fig. 6b,c), and they point to locations for potential improve-
ment in the AlphaFold2 model.

One of the challenges of incorporating any secondary structure
information into refinement is the tradeoff between density and
secondary structure fitting. Although Phenix was developed for
high-resolution maps and emphasises density and structure fitting,
enforcing secondary structure alignment with the map could pre-
vent catastrophic failures at low resolution, such as the melting and
misfolding of the β-sheet domain (cyan in Fig. 6c), prominently
depicted in Fig. 6e.

Discussion and conclusion

This validation study provided new evidence that AlphaFold2
models can be enhanced by exploiting cryo-EM density maps.
Our results using hybrid maps suggest that the 4.5 Å resolution
limit in Terwilliger et al. (2022) was perhaps a bit too conservative,
and good quality AlphaFold2 models might benefit from a refine-
ment against density maps as low as 6 Å resolution.

The accurate determination of atomic structures from cryo-EM
maps of 4–6 Å resolution is, of course, still challenging. Under-
standing the strengths and weaknesses of refinement of initial
models provides insights into developing more effective methods.
The success of refinement depends on the quality of an initial
model, the quality of the density map, the complexity of the
structure, and, last but not least, the specific refinement approach.
In general, onewould not expect an effective refinementmethod for

Fig. 4. Accuracy of models measured using TM-align. The TM score of eachmodel was calculated against the protein structure downloaded from the PDB for 13 cases. In each case,
the accuracy is shown from left to right for the model obtained using AlphaFold2 (black), refinement using Phenix and cryo-EM maps (green), refinement using hybrid map of 5 Å
(red), 6 Å (blue), 8 Å (yellow), 10 Å (grey), and 12 Å (light blue) resolutions.
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Fig. 6. Secondary structure regions detected from the box-cropped hybridmapof 8 Å resolution for 23274–7LCI-R (EMDB-PDB-chain ID). The helix (yellow) and β-sheet (cyan) regions
in (a) and (b) were segmented from the hybrid map at 8 Å using the DeepSSETracer (Mu et al., 2021). The model obtained from AlphaFold2 is coloured by the secondary structure
type for helices (orange), β-sheet (cyan), coil (grey) in (c, b), and superimposed in (b). The atomic structure (red) and themodel refined (green) from the hybrid map are shown in (d)
and (e), respectively.

Fig. 5. The intersecondary structure geometry for long helices in the predicted and refined models of 7KZZ chain B. (a1) The superposition of the protein structure (red, chain B of
7KZZ) and themodel obtained from AlphaFold2 (yellow). (a2) Secondary structures of those superimposedmodels in a1 are represented by their central axes using AxisComparison
(Haslam et al., 2018); The central axes of helices (red) and beta-strand (green) in the structure; the central axes of helices (yellow) and beta-strands (black) in the model obtained
from AlphaFold2. (a3) The axes of three consecutive long helices (H5, H6, and H7) of the structure are overlaid with the corresponding axes of three helices (H4, H5, and H6) of the
model using two vectors, the vector of the central axes between Trp168 and Ala196, and the vector of the turn between Trp168 and Tyr165. Amino acids are labelled at the start and
end of a helix. (b1) The box-cropped region of cryo-EM map 23093 (EMDB ID, yellow) superimposed with the model (blue) refined using Phenix and the cryo-EM map. (b2)
Superposition of the structure (red) and the refined model (blue) obtained using Phenix and the box-cropped cryo-EM map in b1. (c1) Box-cropped hybrid density map of 6 Å
resolution (grey in c1) superimposedwith themodel refined from it. (c2) Superposition of the structure (red) and themodel (cyan) refined using Phenix and the box-cropped cryo-EM
map of 6 Å resolution. Annotation of secondary structures and molecular graphics was conducted with ChimeraX (Pettersen et al., 2021).
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high-resolution maps to work well for lower-resolution maps, and
vice versa.

Our tests have shown that secondary structure information can
be beneficial in a future medium-resolution refinement approach.
Secondary structures can be detected in cryo-EM maps from 5 to
10 Å resolution (Jiang et al., 2001). Many methods have been
developed for the detection of both helices and β-sheets (Baker
et al., 2007; Si and He, 2013; Li et al., 2016; Maddhuri Venkata
Subramaniya et al., 2019; Wang et al., 2021). Despite recent pro-
gress in the development of deep learning detection methods,
accurate detection is still challenging. Our test at 8 Å was generally
at the limit of detectability for β-sheets, and close to the limit for
α-helices, although the complexity of a structure also affects the
accuracy of detection. In the example, the length of the detected
helices was approximate, and there was also a certain amount of
false positive β detection density (Fig. 6a,d). To utilise the strength
of such predicted but imperfect secondary structure locations, the
refinement method needs to take into account various factors, such
as the likelihood of correct detection, local quality of the map, and
local structural complexity. A well-predicted initial AlphaFold2
model could complement the secondary structure prediction, as
well as the density matching. However, even the AlphaFold2
models are not perfect. As was the case in the bygone era of low-
resolution cryo-EMmaps, there remains the risk of a compounding
of errors when fitting imperfect models to imperfect densities
(Egelman, 2008).

A more tangible benefit of the present work is a new real-space
tool for filtering experimental cryo-EMmaps to an arbitrary lower
resolution value without requiring an atomic structure. The simu-
lation of density maps is an important computational approach to
validating methods. Traditionally, a simulated density map of a
protein structure is created using the atomic structure of a protein
(Ludtke et al., 1999; Pettersen et al., 2004; Wriggers, 2012).
However, it has been challenging to create simulated data that
mimic experimental data in all aspects, such as resolution, noise,
and artefacts, due to the 3D reconstruction process. In the current
method, more realistic data in a high-resolution cryo-EM map,
rather than ideal atomic positions, were included in the simula-
tion. An interesting side effect is that the resulting hybridmaps are
expected to retain some features of the original experimental EM
density [such as inhomogeneous density distribution and local
resolution variations (Swint-Kruse and Brown, 2005; de la Rosa-
Trevin et al., 2016; Vilas et al., 2018)]. In other ways, the hybrid
maps are also dominated by the effect of the Gaussian filter
(i.e. high frequencies are attenuated rather than cut off or hidden
in the noise). Thus, the hybrid maps could, in principle, exhibit a
wide range of spatial frequencies, from low frequencies resulting
from sample heterogeneity or variability (Leschziner and Nogales,
2007; Cardone et al., 2013; Katsevich et al., 2015; Naydenova and
Russo, 2017; Lyumkis, 2019; Méndez et al., 2021; Punjani and
Fleet, 2021), ranging all the way to the high frequencies in the
experimental map (albeit attenuated). In future work, we will
explore how well such hybrid maps mimic true low-resolution
cryo-EM maps.

An intriguing effect of the resolution lowering afforded by
hybrid maps is exemplified by the two cases – 7BRM and 7EDA –
where Phenix refinement performance was unexpectedly
improved when the resolution was lowered to 5 Å. This suggests
that the refinement of AlphaFold2 models to high-resolution
cryo-EM maps can get trapped in the local optima. The results
also suggest that a more exhaustive sampling of conformations
might be required, and that lowering resolution could be part of

an annealing strategy to escape from local traps. This is yet
another argument as to why it could make sense to develop a
lower resolution refinement strategy even for high-resolution-
maps.
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