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Central to understanding the nonperturbative, intrinsic partonic nature of hadron structure are the
concepts of transverse momentum dependent (TMD) parton distribution and fragmentation functions.
ATMD factorization approach to the phenomenology of semi-inclusive processes that includes evolution,
higher orders, and matching to larger transverse momentum is ultimately necessary for reliably connecting
with phenomenologically extracted nonperturbative structures, especially when widely different scales are
involved. In this paper, we will address some of the difficulties that arise when phenomenological
techniques that were originally designed for very high energy applications are extended to studies of hadron
structures, and we will solidify the connection between standard high energy TMD implementations and
the more intuitive, parton model based approaches to phenomenology that emphasize nonperturbative
hadron structure. In the process, we will elaborate on differences between forward and backward TMD
evolution, which in the context of this paper, we call “bottom-up” and “top-down” approaches, and we will
explain the advantages of a bottom-up strategy. We will also emphasize and clarify the role of the integral
relations that connect TMD and collinear correlation functions. We will show explicitly how they constrain
the nonperturbative “g-functions” of standard Collins-Soper-Sterman implementations of TMD factori-
zation. This paper is especially targeted toward phenomenologists and model builders who are interested in
merging specific nonperturbative models and calculations (including lattice QCD) with TMD factorization
at largeQ. Our main result is a recipe for incorporating nonperturbative models into TMD factorization and
for constraining their parameters in a way that matches perturbative QCD and evolution.

DOI: 10.1103/PhysRevD.106.034002

I. INTRODUCTION

The techniques of transverse momentum dependent
(TMD) factorization and evolution that are rooted in the
Collins-Soper-Sterman (CSS) [1–3] approach are by now
very widespread, but applications tend to take on super-
ficially different forms depending on their use and the
specific phenomenological context. This fact will be very

important for understanding the goals of the present paper.
To unify different TMD applications, and especially to
compare the phenomenologically extracted nonperturbative
transverse momentum dependence across many different
processes, some translation is still necessary. For our
purposes, we will need to consider at least the following
two phenomenological settings where TMD factorization
has often been applied in the past:
(1) Very large Q (Type II): With treatments of the

transverse momentum spectra of processes at very
large hard scales (sayQ≳ 10 GeV), it is common to
assume (sometimes implicitly) that transverse mo-
mentum dependence is describable mostly as a form
of perturbative radiation in collinear factorization.
An example is weak boson production in hadron-
hadron collisions, where the hard scale is fixed by a
heavy boson mass, larger than 80 GeV. When the
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transverse momentum qT of the boson is of order the
hard scale, calculations can follow a fixed order
collinear factorization treatment. The challenge is
then to describe the behavior as qT decreases relative
to Q. Term by term in fixed order calculations there
are logarithms such as

∼αsðQÞnlnm
�
Q
qT

�
; ð1Þ

with integer m, n > 0, that grow until they spoil
truncated perturbation theory. With this as the
starting point, the natural strategy is to try to resum
as many such logarithms as possible. Most tradi-
tional TMD factorization techniques [1–3], along
with soft-collinear effective theory (SCET)-based
approaches [4–6], as well as approaches that directly
resum transverse momentum logarithms [7–11],
effectively account for these types of logarithms
while also allowing for at least some contribution
from nonperturbative transverse momentum in the
qT ≈ ΛQCD region.

(2) Hadron structure and moderate Q (Type I): TMD
parton distribution functions (pdfs) and fragmenta-
tion functions (ffs) also feature prominently in
studies whose focus is more directly on the non-
perturbative structure of hadrons. In these types of
applications, the relevant hard scales tend to be at
much lower Q than in Type II situations, such as the
Q≈ few GeVs common in many semi-inclusive deep
inelastic scattering (SIDIS) measurements. It is
possible to trace the origin of many of the ha-
dron-structure oriented approaches in Type I appli-
cations to intuitive pictures of colliding hadrons in a
parton model. The hadrons, in this view, are com-
posed entirely of nonperturbative quark and gluon
constituents [12–15], and the earliest versions of
phenomenological Type I applications usually
adopted the approximation that all transverse mo-
mentum dependence is nonperturbative in origin. As
such, they could mostly ignore the role of perturba-
tive tails at large qT and of evolution [16–19].

The Type I and Type II classification roughly follows that at
Feynman, Field, and Fox ([20] Fig. 6). At a formal level, it
is now very well understood that approaches to Type I and
Type II observables can be made equivalent. And, of
course, there is no sharp distinction between what con-
stitutes a Type I or a type II scenario. It is possible to merge
treatments of hadron structure with the evolution formulas
that were traditionally applied at much larger Q [3,21–24],
and indeed much activity over the past decade was devoted
to implementing TMD evolution, in the context of hadron
structure studies, in ways that include nonperturbative
parts [25–40]. (The versions of TMD factorization and
evolution that we will focus on in this paper are those

rooted in, or very similar to, the CSS formalism as
described in Ref. [3]—see also Ref. [41] for translations
to other approaches.)
There are, nevertheless, some remaining open issues

related to the interpretation of intrinsic nonperturbative
transverse momentum dependence that is extracted pheo-
menologically and its role in cross section calculations, and
these can have practical consequences. We will explain
what, we mean here in much more detail in the main body
of this paper. For now, we will prepare the reader by noting
how some of the remaining complications originate in a
clash between the natural phenomenological strategies that
are often implicit in Type I and Type II situations.
Starting from a typical Type II perspective, the main issue

is that large transverse momentum perturbation theory
calculations (with very large Q) receive correction terms
such as Eq. (1) that diverge as qT approaches zero. So, the
natural strategy is to try to resum as many transverse
momentumdependent logarithms as possible asqT decreases
until one is essentially forced to incorporate a nonperturba-
tive transverse momentum dependent component. We call
this a “top-down” view because it starts by optimizing a large
qT dependence at large qT ≈Q in collinear perturbation
theory, and then it extends it via evolution and resummation
downward to more moderate Q and qT ≈ 0.
But, as an alternative strategy, one might instead start

from the perspective more common in Type I scenarios.
That is, one may begin by considering a moderate input
scale Q0, low enough so that the accessible range of qT
either is comparable toQ0 and is perturbative in origin or is
smaller than Q0 and is mostly nonperturbative.1 A TMD
parton model type of description is the most natural and
appropriate approach here. There is no region within the
range of 0 < qT ≲Q0 where calculations involve large
logarithms analogous to Eq. (1). Thus, forQ ≈Q0, the need
to resum them does not arise. The only task then is to match
a nonperturbative parametrization of transverse momentum
dependence to a fixed order qT ≈Q0 calculation of trans-
verse momentum dependence in collinear factorization.
However, the diverging logarithms will reappear later if

we evolve to large Q. In this case, the uncontrolled
perturbation theory errors will reappear at large qT once,
we consider Q ≫ Q0 where the transverse momentum
region qT ≫ Q0 becomes accessible. The problematic
logarithms are in the correlation functions that were
originally defined at the input scale, and they take the form

∼αsðQ0Þn lnm
�
qT
Q0

�
: ð2Þ

1More specifically, there exists no significant transverse
momentum region where m=qT and qT=Q0 are both simulta-
neously small, though each is small in some region of qT. Note
that it is possible for this to be the situation even if Q0 is large
enough that αsðQ0Þ is small.

GONZALEZ-HERNANDEZ, ROGERS, and SATO PHYS. REV. D 106, 034002 (2022)

034002-2



Unlike with the Type II oriented approaches discussed
previously, the large logarithms from the bottom-up per-
spective are due to qT getting large rather than small.We call
it a “bottom-up” viewpoint because it starts by optimizing
qT ∼ 0 treatments at moderate Q0, and then uses evolution
equations to extend to large qT and large Q ≫ Q0 where
terms such as Eq. (2) need to be addressed. These aspects of a
bottom-up style of approachwill bemademuch clearer in our
review of TMD factorization in Sec. II.
In a more general sense, within typical Type II oriented

approaches, transverse momentum dependence is seen as
primarily perturbative and requiring corrections from non-
perturbative behavior, while in typical Type I oriented
approaches it is seen as a primarily nonperturbative
phenomenon that needs to be improved with perturbative
corrections from large transverse momentum. In the former,
divergences are seen as a low qT problem while in the latter
they are a large qT problem.
There is no formal difference between the bottom-up and

top-down viewpoints just discussed, and they are generally
described by identical sets of factorization and evolution
equations. The logarithms such as Eq. (2) are simply the
mirror images of those in Eq. (1). However, they suggest
different phenomenological strategies, and this can have
practical consequences, as we will see. The focus of this
paper will be to give a full account of a bottom-up
approach, which to our knowledge has never been made
entirely explicit. We will also formally link it back to top-
down approaches.
As, we will see, adopting a bottom-up strategy brings

with it some significant practical advantages in situations
where extracting nonperturbative transverse momentum
dependence is the primary goal. It also raises several
important aspects of nonperturbative parametrizations that
are often hidden to the foreground. All of this will be made
clearer in the main body of the text.
One advantage is that, at the input scale Q0, it will be

natural from the bottom-up perspective to categorize
regions as perturbative or nonperturbative in transverse
momentum space rather than in transverse coordinate
space. This accords well with standard approaches to
interpreting experimental data. For example, Ref. [42]
offers some interpretations of recent COMPASS measure-
ments with their Fig. 17 and the comment “… the two
exponential functions in our parameterisation F1 can be
attributed to two completely different underlying physics
mechanisms…”. Much earlier, Feynman, Field, and Fox
similarly identified different physical TMD mechanisms in
transverse momentum space—see Figs. 6 and 7 and the
surrounding discussion from Ref. [20]. Associated with
observations such as these is an implicit choice to catego-
rize physical mechanisms as perturbative or nonperturba-
tive in momentum space.
Themost prevalentmodels of nonperturbative TMDswere

also constructed inmomentumspace, so they also sort regions

into perturbative and nonperturbative categories in transverse
momentum space. In many models, the large transverse
momentum tails are suppressed on the grounds that it is only
the small transverse momentum dependence that is non-
perturbative or intrinsic to the hadron structure. Examples
include at least spectator models [43–46], light-cone wave
function descriptions [47–51], bag models [52–56], the
Nambu-Jones Lasinio model [57–59], calculations based
on the Dyson-Schwinger equations [60], classic quark-
hadron model approaches, and many others [36,61,62]. As
will become clear, it is easier to incorporate models such as
these into full evolution treatments when starting from a
bottom-up approach.
It will also turn out to be easier to match these models to

perturbative transverse momentum calculations at large qT
in transverse momentum space than in coordinate space.
Generally, fixed order perturbation theory calculations in
collinear factorization for large transverse momentum
(qT ≈Q) observables are performed in momentum space.
When, we categorize behavior as perturbative or non-
perturbative in TMD factorization according to momentum
space regions, we will find that we are better able to ensure
a consistent transition to the large-qT, collinear description
where transverse momentum is generated perturbatively.
(See also our comments below regarding the “asymptotic”
term.) The difficulty of matching regions of qT with
different physics has led to proposals to implement all
Type II style resummation entirely in momentum space,
such as [63,64], inspired by earlier pioneering work that
resummed leading transverse momentum logarithms [65].
Another issue that will become clearer from a bottom-up

perspective is the question of how to describe the transition
between perturbative and nonperturbative transverse coor-
dinate space dependence. Working in coordinate space has
significant advantages for both setting up TMD factorization
theoretically and implementing it. For example, most ver-
sions of the CSS formalism [1,2,66,67] are in coordinate
space. In this paper, we will continue to use coordinate
space for implementing evolution. But in most top-down
approaches to phenomenology, which are almost always
formulated in coordinate (bT) space, it is onlywhenbT is very
large, usually above some specified transition pointbmax, that
there is an explicit allowance for a nonperturbative transverse
coordinate dependence. The strategy is often to push reliance
on perturbation theory, with its well-understood collinear
pdfs, normally considered valid only at small bT, as far into
the large bT region as possible and thereby maximize the
predictive power supplied by collinear factorization.
However, unless the functions that parametrize the non-
perturbative bT > bmax region are constructed very carefully,
there can be undesired side effects, particularly if the non-
perturbative bT-dependent contribution becomes non-
negligible. In the original setup of TMD factorization, bmax
marks a totally arbitrary line of demarcation between what
are labeled “large/nonperturbative” and “small/perturbative”
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transverse coordinate space regions. Formally, bmax depend-
ence vanishes exactly from any physical observables. (See,
for example, our discussion in Sec. 13.10.4 of [3].) A setup
such as this ensures that purely perturbative calculations are
sequestered fromdependence on nonperturbative parameters.
However, in practical implementations there is an unsettling
tendency for bmax dependence to propagate into collinear
perturbative calculations [68] and affect final results. Thus,
purely perturbative calculations can appear to get contami-
nated by nonperturbative modeling. A significant bmax
dependence in a calculation is a symptom that something
is likely nonoptimal about the underlying approximations
being used. Part of the difficulty is that a valid description over
the whole range of bT needs to interpolate between the
perturbative and nonperturbative regions, and varying bmax
amounts to simply reshuffling contributions between factors.
In many practical applications, however, there is a rather
abrupt switch between a purely collinear perturbation-theory
calculationandone that involves a nonperturbative ansatz.We
will show how switching from a top-down to a bottom-up
perspective clarifies the steps that are needed to minimize
bmax dependence in the parametrizations used in phenom-
enological applications. Indeed, we will find that we are able
to avoid the usual b� prescription entirely, along with a bmax,
and rely instead only on the input hard scaleQ0 to demarcate
any transition between large and small transverse momenta.
Part of the work that is necessary in setting up reasonable

phenomenological TMD parametrizations involves ensur-
ing that they retain at least an approximate hadron structure
interpretation. For example, the probability density inter-
pretation of an unpolarized quark TMD pdf fi=pðx; kTÞ
gives

Z
d2kTfi=pðx; kTÞ ≈ fi=pðxÞ; ð3Þ

where i is the flavor of a quark in hadron p and fi=pðxÞ is
the corresponding collinear pdf. We use the “≈” symbol
here because the actual transverse momentum integral in
Eq. (3) is ultraviolet (UV) divergent in QCD and needs to
be regulated. After accounting for the UV divergence
(by renormalizing the operator definition of the pdf, for
example, and introducing regulators), the equality only
holds up to order αs and power-suppressed corrections.
The role that identities such as Eq. (3) play in con-

straining nonperturbative transverse momentum depend-
ence is often unclear in implementations of the CSS
and related formalisms. The main reason is that the
relation seems to be satisfied automatically in the way that
final CSS cross section formulas are usually presented.
To see how this happens, first consider the TMD pdf
expressed in terms of its transverse coordinate space
version, f̃i=pðx;bTÞ,

fi=pðx; kTÞ ¼
1

ð2πÞ2
Z

d2bTeikTbT f̃i=pðx; bTÞ: ð4Þ

The UV divergence in Eq. (3) manifests itself in Eq. (4) as a
divergence in f̃i=pðx; bTÞ as bT → 0, so it may be regulated
by freezing the bT argument in f̃i=pðx; bTÞ below some very
small bmin. In that case, the integral of Eq. (3) applied to
Eq. (4) is just

Z
d2kTfi=pðx; kTÞ ¼ f̃i=pðx; bminÞ: ð5Þ

In the next step, one observes that an operator product
expansion (OPE) applies to f̃i=pðx; bminÞ in the limit of
small bmin and relates it to the collinear pdf fiðxÞ,

f̃i=pðx;bminÞ¼
X
j

Ci=j ⊗ fj=p¼ fiðxÞþOðαsÞþp:s: ð6Þ

TheCi=j is a perturbative hard coefficient, Ci=j ⊗ fj=p is the
usual convolution integral of collinear factorization, the
sum is over parton flavors, and “p.s.” refers to power
suppressed corrections. The perturbation theory expansion
on the right-hand side is optimized by choosing renorm-
alization scales appropriately in relation to bmin. So,
dropping small corrections from the right-hand side of
Eq. (5)/Eq. (6) recovers Eq. (3).
At first sight, the steps leading from Eqs. (5) to (6) can

appear to constitute a derivation of Eq. (3). The normal
presentations [for example, Eq. (22) of [69] ] of the evolved
CSS cross sections amplify that impression because they
almost always include the transition to the OPE in Eq. (6) at
small bT automatically in the final cross section expres-
sions. From Eq. (6) above, it then appears that any
nonperturbative modeling of large bT behavior can only
impact the right-hand side of Eq. (3) through power
suppressed terms that are mostly irrelevant.
However, Eq. (6) is itself a restatement of Eq. (3), not a

derivation of it. That is, a derivation of Eq. (6) requires that
one identify and factorize integrals over the small, non-
perturbative region of parton transverse momentum (i.e.,
the core contribution to the TMD pdf) and identify them
with contributions to a collinear pdf, just as in Eq. (3).
Therefore, a derivation of Eq. (3) that refers back to Eq. (6)
as its starting point is circular. Using Eq. (6) assumes that a
version of Eq. (3) already holds nonperturbatively.
There are practical consequences of this for setting up

nonperturbative parametrizations of TMD correlation func-
tions. One discards an important and useful constraint from
the hadron structure interpretation of the nonperturbative
fi=pðx; kTÞ if one assumes that Eq. (3) holds automatically
on the basis of the OPE alone. By doing so, one is
effectively assuming that, from the outset, all important
regions of the integrand on the left-hand side of Eq. (3) are
at such large kT that they are expressible entirely in terms of
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collinear pdfs, and that the intrinsic transverse momentum
is completely irrelevant insofar as the integral is concerned.
But there are many practical situations in TMD physics
where that is obviously not the case. For example, at
moderate scales where fi=pðx; kTÞ can be successfully
modeled phenomenologically by a Gaussian distribution,
with no collinear perturbative tail present at all, the entire
range of the integration is described by a nonperturbative
model. Thus, it is a requirement that Eq. (3) be imposed
explicitly as a constraint from the outset if the goal is to
maintain a connection between the nonperturbative TMD
parametrizations of hadron structure interpretations and the
corresponding collinear functions.
Many past TMD parton model approaches to Type I

phenomenology do, of course, impose a version of Eq. (3)
on TMD pdfs, but they typically do not include the
transition to perturbative transverse momentum at large
transverse momentum [or small bT as in Eq. (6)]. Gaussian
fits in momentum space are the most prominent examples.
The reverse limitation is true of many CSS and similar
approaches; these approaches account appropriately for
large transverse momentum behavior, but they rarely (if
ever) impose conditions analogous to Eq. (3) directly on the
models of nonperturbative transverse momentum depend-
ence. We will show in this paper how adopting a bottom-up
perspective makes it clearer how to do both simultaneously,
and we will give special attention to integral relations such
as Eq. (3) and expand on the discussions above.
It is worth noting that similar issues also appear in other

formalisms that deal with parton transverse momentum,
such as the small-x oriented unintegrated pdfs of the
Kimber-Martin-Ryskin-Watt [70,71] treatments [72–74].
The issues that are clarified by a bottom-up perspective

are interrelated, and the two just discussed will turn out to
be examples of that. Earlier, we mentioned how failing to
interpolate explicitly between nonperturbative and pertur-
bative transverse momentum dependence can lead to
undesired bmax dependence in perturbative calculations.
But, as wewill see, setting up that interpolation involves the
use of relations such as Eq. (3). Conversely, imposing a
version of Eq. (3) on small transverse momentum descrip-
tions, in a way that accounts for a cutoff around kT ≈Q0,
naturally requires a careful treatment of the large kT ≈Q0

region, and thus the interpolation to perturbatively large kT
becomes relevant.
Very broadly speaking, switching to a bottom-up

approach helps with the inverse problem that arises from
transforming between transverse momentum and coordi-
nate space (see also [75]). Performing exact Fourier trans-
formations to momentum space requires exact knowledge
about the full range of the transverse coordinate space
correlation functions. But actual measurements only probe
specific limited ranges of bT. Very large Q measurements
are only sensitive to small transverse sizes, and so they
poorly constrain the nonperturbative transverse coordinate

dependence at very large bT. As a consequence, fits evolved
from large Q down to moderate Q can be unstable. For
instance, the authors of Refs. [76,77] pointed out that the
nonperturbative evolution extracted from the earlier CSS
fits, which were frequently dominated by very largeQ data,
is too rapid when it is used to evolve down to the Q of only
a few GeVs that are relevant for hadron structure studies.
Conversely, measurements done at a more moderate
Q ≈Q0 might be dominated by nonperturbatively large
bT (or small kT), but they are usually insensitive to the
TMD correlation functions’ very small bT ≪ 1=Q0 (or
large kT ≫ Q0) behavior. The latter, however, do not
generally need to be extracted but are instead calculable
in terms of collinear correlation functions. So, a more stable
phenomenological strategy is to first emphasize the role of
more moderate Q measurements for constraining input
nonperturbative transverse momentum and then rely on
perturbation theory to evolve to larger Q.
Another aspect of TMD phenomenology that will be

easier to control in a bottom-up approach is the matching to
a momentum space, large transverse momentum asymp-
totic term. That step is important for relating the small
qT ≪ Q treatment supplied by TMD factorization to the
standard momentum space qT ≈Q treatments in collinear
factorization. Agreement between the two types of calcu-
lations at large qT provides an important consistency test. In
practice, however, ensuring that the asymptotic term and
the TMD factorization calculations match can be difficult at
moderate Q. That is especially the case near the lowest
scales, around Q0 ≈ 1–2 GeV, that are conventionally
accepted as reasonable input scales. The difficulties can
be largely traced back to those that we have discussed so far
in this Introduction. Errors that grow as Q evolves down-
ward propagate, at least to some degree, to all values of
transverse momentum, including the large transverse
momentum. The range of accessible qT shrinks, so there
is a less well-defined separation between different trans-
verse momentum regions.
We have so far emphasized a dichotomy between

bottom-up/top-down approaches to phenomenology to
highlight steps that continue to be a challenge when
merging nonperturbative TMD parton model descriptions
with TMD factorization and evolution in phenomenology,
and to provide readers a basic foundation from which to
read the rest of this paper. We reassure readers who find the
discussion to be rather vague so far that it likely will
become much clearer in the main body of this paper; some
of the points noted above require explicit examples in order
to be made entirely clear. We will provide some such
examples within the main text.
Another way to understand the goals of this paper is to

recall that nonperturbative transverse momentum depend-
ence enters the standard CSS implementations in the form
of extra coordinate space factors, often expressed as
exponential factors e−gj=Aðx;bTÞ for a flavor j in hadron A
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or e−gKðbTÞ ln
Q
Q0 for the nonperturbative TMD evolution. [For

example, consider again Eq. (22) of Ref. [69].] Our purpose
is to explain, in much more detail than is usual, how to
optimally parametrize these functions in phenomenological
applications, such that they match to existing models or
calculations of intrinsic nonperturbative transverse momen-
tum dependence. Nothing about the standard TMD fac-
torization formalism itself will change. The final outcome
will be a recipe for merging arbitrary nonperturbative
models of gj=Aðx; bTÞ and gKðbTÞ with TMD evolution
in the CSS style. To our knowledge, this is the first instance
of such a discussion. We will connect the bottom-up
strategy with more standard presentations that involve
gj=Aðx; bTÞ and gKðbTÞ in Sec. IX. Some of our goals
overlap with those recently addressed in [75], which
introduced techniques for disentangling large and small
bT contributions to cross sections, and these techniques will
likely be helpful in future efforts to identify and separate
perturbative and nonperturbative contributions.
To further prepare the reader, we end this Introduction by

listing the main aspects of what we will advocate that differ
from what is sometimes done:

(i) When, we discuss phenomenology at an input scale
Q0, we will work mainly in transverse momentum
space rather than in coordinate space.

(ii) We will nevertheless account for the perturbative
behavior at qT ≫ Q0 in TMD correlation functions.
We will do this even for Q ≈Q0 where such con-
tributions are often phenomenologically irrelevant.

(iii) For the region where Q ≈Q0, qT ≈Q0, all renorm-
alization scales will be fixed at order Q0 and not
1=bT since there is no need for resummation of
logarithms of the type lnðqT=Q0Þ or lnðbTQ0Þ.

(iv) We will nevertheless perform evolution to Q ≫ Q0

in coordinate space, and switch to a ∼1=bT scale, but
only at a later step.

(v) Also for Q ≈Q0, we will explicitly impose approxi-
mate matching to the fixed order asymptotic behav-
ior at qT ≈Q0.

(vi) In nonperturbative parametrizations of TMD corre-
lation functions at Q ¼ Q0, we will explicitly
impose a version of Eq. (3). We will do this in
momentum space with a large transverse momentum
cutoff to regulate UV divergences and to match
with what is typically done in phenomenological
models.

(vii) Our approach will include an explicit interpolation
between purely nonperturbative and purely pertur-
bative descriptions of transverse momentum
dependence in the TMD correlation functions.

Along the way, we will highlight the advantages of these
choices by using explicit examples. At the end, we will
translate the expressions into forms that are more familiar
from standard TMD factorization implementations in the
CSS formalism.

We will start by reminding the reader of the basic setup
of TMD factorization and evolution in Sec. II. Section III
discusses the role of integral constraints for nonperturbative
parametrizations of TMD correlation functions in more
detail. Sections IV and V will focus on the details of
modeling nonperturbative parts of TMD functions at an
input scaleQ0 and in momentum space. The steps for using
input parametrizations to evolve to higher scales are
summarized in a practical phenomenological recipe in
Sec. VI. In Sec. VII, we use concrete toy examples to
illustrate the steps, including plots. In Sec. VIII, we return
the integral relation and discuss it in light of the bottom-up
approach. In Sec. IX, we explain how to connect the
bottom-up approach to standard CSS expressions. We offer
our concluding remarks in Sec. X.
Explaining some intermediate steps will require a more

pedantic system of notation than what is normally neces-
sary. To help the reader keep track of symbols and
conventions, we have therefore included a notation glossary
in Appendix A.

II. TMD FACTORIZATION AND EVOLUTION

We begin by reviewing some of the basic setup of
TMD factorization to establish context and introduce
notation for later sections. While all of what we discuss
is meant to apply to any of the basic processes for which
there are TMD factorization theorems, it will be instructive
to work within a specific example. For this, we will use
semi-inclusive annihilation (SIA) of a lepton-antilepton
pair (usually electron-positron) into a pair of nearly back-
to-back hadrons with a sum over all other final state
particles X,

e−ðlÞ þ eþðl̄Þ → HAðpAÞ þHBðpBÞ þ X: ð7Þ

A quark-antiquark pair is produced in the hard vertex, and
hadrons HA and HB are measured in the final state. This is
among the simplest processes to work with theoretically,
and it is ideal for illustrating the basics of TMD factori-
zation. (See, for example, the discussion in Chapter 13
of Ref. [3].)
The process is illustrated graphically in Fig. 1: An

electron (l) and a positron (l̄) annihilate to create a virtual
photon of momenta q, which creates a quark-antiquark pair.
The two hadrons measured in the final state with momenta
pA and pB are then produced when partons A and B
fragment. The momentum of the virtual photon sets the
hard scale of the process Q, with q2 ≡Q2. See also
Refs. [78–80] for more details about the general kinemati-
cal setup.
In a reference frame where the hadrons are back-to-back,

the transverse momentum of the photon qT is the relevant
observed final state transverse momentum. When it is
small relative to the hard scale, qT ≪ Q, it is sensitive
to intrinsic transverse momenta of the hadronizing quark
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and antiquark, respectively. The usual Lorentz invariant
kinematic variables related to collinear momentum frac-
tions are

zA ¼ pA · pB

q · pB
≈
pþ
A;h

qþh
; zB ¼ pA · pB

q · pA
≈
p−
B;h

q−h
; ð8Þ

where the “≈” means, we drop terms that are power
suppressed in the current fragmentation region (by which,
we mean zA and zB are fixed and not too small relative to 1).
The “h” subscripts on light cone momentum components
indicate that they are with respect to the hadron frame.
In TMD factorization, the unpolarized cross section

differential in zA, zB, and q2T is written [3]

Q2
dσA;B

dzAdzBdq2T

¼ Hjj̄ðμQ;C2Þ
Z

d2kAT d2kBTDj=AðzA; zAkAT; μQ;Q2Þ

×Dj̄=BðzB; zBkBT; μQ;Q2Þδð2ÞðqT − kAT − kBTÞ
þ YA;BðqT; Q; μQÞ þOðm=QÞ: ð9Þ

The second line has the familiar form from the TMD parton
model, but with extra auxiliary arguments for evolution.
The capital Dj=A and Dj̄=B are the TMD ffs for a quark of
flavor j (j̄) to fragment into hadron A (B). A sum over
flavors is implied.
In addition to the longitudinal and transverse parton

momentum arguments zA;B and kA;BT, the TMD ffs also
depend on a renormalization group scale μ and a rapidity
evolution scale ζ, which in Eq. (9), we have already fixed
equal toμ ¼ μQ ≡ C2Q and ζ ¼ Q2 to optimize perturbation
theory. Here, C2 is an arbitrary numerical constant of order
unity. (Throughout this paper, we will assume C2 ¼ 1.)
HðμQ;C2Þ is a hard factor of the formH ¼ 1þOðαsðμQÞÞ,
up to an uninteresting overall constant. TheYðqT; QÞ termon
the last line is an abbreviation for the correction needed for
the qT ≈Q behavior, and it is calculable entirely in fixed
order collinear factorization. The second line in Eq. (14) is
exactly the TMD parton model familiar from typical Type I

applications if we drop the auxiliary μ and ζ arguments and
set HðμQ;C2Þ ¼ 1.
We will focus on a very specific combination of physical

observables in order to simplify later illustrative examples.
Say that hadron A is hþ and hadron B is its antiparticle h−.
Then we can consider the combination

dσNS

dzAdzBdq2T
¼ dσh

þ;h−

dzAdzBdq2T
þ dσh

−;hþ

dzAdzBdq2T

−
dσh

þ;hþ

dzAdzBdq2T
−

dσh
−;h−

dzAdzBdq2T
: ð10Þ

We will also consider only the j ¼ “up quark” contribution
to Eq. (9). Then, summing the corresponding terms on the
right-hand side of Eq. (9) gives

HuūðμQ;C2Þ
Z

d2kAT d2kBT½Du=hþðzA; zAkAT;μQ;Q2Þ

−Du=h−ðzA; zAkAT;μQ;Q2Þ�× ½Dū=h−ðzB; zBkBT;μQ;Q2Þ
−Dū=hþðzB; zBkBT;μQ;Q2Þ�δð2ÞðqT − kAT − kBTÞ
þ YNSðqT;Q;μQÞ þOðm=QÞ: ð11Þ

Then we can define nonsinglet TMD fragmentation
functions

DAðzA;zAkAT;μQ;Q2Þ≡Dj=hþðzA;zAkAT;μQ;Q2Þ
−Dj=h−ðzA;zAkAT;μQ;Q2Þ; ð12Þ

DBðzB;zBkBT;μQ;Q2Þ≡Dj̄=h−ðzB;zBkBT;μQ;Q2Þ
−Dj̄=hþðzB;zBkBT;μQ;Q2Þ: ð13Þ

And, we can drop the j index for the rest of this paper and
rewrite Eq. (9) in a more abbreviated way as

Q2
dσNS

dzAdzBdq2T

¼ HðμQ;C2Þ
Z

d2kATd2kBTDAðzA; zAkAT; μQ;Q2Þ

×DBðzB; zBkBT; μQ;Q2Þδð2ÞðqT − kAT − kBTÞ
þ YNSðqT; Q; μQÞ þOðm=QÞ: ð14Þ

Our results are general and independent of the specific
hadrons in the final state, but organizing the discussion
around this channel will simplify illustrative example
calculations later on by allowing us to drop explicit flavor
indices and consider only nonsinglet ffs in parts of
calculations that involve collinear DGLAP evolution.
Specifically, in our examples we will use the JAM20
collinear fragmentation functions for πþ and its corre-
sponding grid for αs values [81]. Note that because of
charge conjugation, to construct the TMDs in Eqs. (12) and

FIG. 1. The semi-inclusive eþe−-annihilation process.
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(13), only the nonsinglet combination u − ū is involved.
We use the set ¼ 0, from the LHAPDF library [82], since
we will not be making any comparison to data. All that is
needed for our present purposes is that the collinear ffs
employed in our numerical examples obey nonsinglet
DGLAP evolution equations.
Since our focus for this paper is on the qT ≪ Q region at

leading power, where TMD correlation functions are
relevant, we will also drop any mention of the YðqT; QÞ
term from here forward.
The second line in Eq. (14) is exactly the TMD parton

model familiar from typical Type I applications if we drop
the auxiliary μ and ζ arguments and set HðμQ;C2Þ ¼ 1.
This term is sometimes called the W term.
It can be convenient to write the W term in terms of

coordinate space TMD ffs,

WðqT; QÞ ¼ HðμQ;C2Þ
Z

dbT
ð2πÞ2 e

−iqT·bTD̃AðzA; bT; μQ;Q2Þ

× D̃BðzB; bT; μQ;Q2Þ; ð15Þ
where the transverse coordinate and momentum space
TMD ffs are related to one another via

Dðz; zkT; μ; ζÞ ¼
Z

d2bT
ð2πÞ2 e

−ikT·bTD̃ðz; bT; μ; ζÞ: ð16Þ

The TMD ffs DA and DB are hadron-vacuum correlation
functions defined in a very particular way in terms of quark
field operators. An explanation of these definitions and
their origins in factorization theorems would involve topics
such as Wilson lines, rapidity divergences, soft factors, and
other related issues that are beyond the scope of this article.
In recent years, they have been reviewed in many places,
so to avoid repetition we refer the reader to [83], which
includes an overview and a list of references associated

with TMD definitions derived in the style relevant for this
article, and also to [84], which includes additional relevant
references.
With regard to the TMD definitions, what is important

for our purposes is only that they satisfy an exact set of
evolution equations for the auxiliary variables μ and ζ. For
a TMD ff in coordinate space, the evolution equations are

∂ ln D̃ðz; bT; μ; ζÞ
∂ ln

ffiffiffi
ζ

p ¼ K̃ðbT; μÞ; ð17Þ

dK̃ðbT; μÞ
d ln μ

¼ −γKðαsðμÞÞ; ð18Þ

dlnD̃ðz;bT;μ;ζÞ
dlnμ

¼ γðαsðμÞ;ζ=μ2Þ

¼ γðαsðμÞ;1Þ− γKðαsðμÞÞ ln
� ffiffiffi

ζ
p
μ

�
: ð19Þ

The evolution kernels, γ, γK, and K̃, are known by many
different names in the literature. In keeping with our earlier
work, we will refer to K̃ðbT; μÞ as the Collins-Soper (CS)
kernel.
For large enough μ, the anomalous dimensions γK and γ

are both calculable in perturbation theory, and they are
independent of bT. K̃ðbT; μÞ is also perturbatively calcu-
lable at small bT ∼ 1=μ, but it becomes nonperturbative
over large distances, bT → ∞. However, since it is inde-
pendent of the identity of external hadrons, it has very
strong universality properties related to the QCD vacuum.
The evolution equations are first order linear differential

equations that relate the TMD ffs in Eq. (15) at an input
scale Q0 to a different scale Q, so they can easily be solved
exactly and analytically. The general solutions to the
evolution equations for DA and DB, substituted into
Eq. (15), allow us to write WðqT; QÞ as

WðqT; QÞ ¼ HðαsðμQÞ;C2Þ
Z

d2bT
ð2πÞ2 e

−iqT·bTD̃AðzA; bT; μQ0
; Q2

0ÞD̃BðzB; bT; μQ0
; Q2

0Þ

× exp

�
K̃ðbT; μQ0

Þ ln
�
Q2

Q2
0

�
þ
Z

μQ

μQ0

dμ0

μ0

�
2γðαsðμ0Þ; 1Þ − ln

Q2

μ02
γKðαsðμ0ÞÞ

��
: ð20Þ

We could express the same evolved W with TMD ffs in
transverse momentum space, and in some cases that might
help with intuition since it more closely matches the TMD
parton model. But then the Fourier transforms of simple
factors become transverse momentum convolution integrals

of several functions. For the purposes of implementing
evolution, we will continue to work with Eq. (20) in
coordinate space, as is normally done.
When Q ¼ Q0, Eq. (20) exactly reproduces the TMD

parton model form of the factorization,

WðqT;Q0Þ¼HðμQ0
;C2Þ

Z
d2bT
ð2πÞ2 e

−iqT·bTD̃AðzA;bT;μQ0
;Q2

0ÞD̃BðzB;bT;μQ0
;Q2

0Þ

¼HðμQ0
;C2Þ

Z
d2kATd2kBTDAðzA;zAkAT;μQ0

;Q2
0ÞDBðzB;zBkBT;μQ0

;Q2
0Þδð2ÞðqT−kAT−kBTÞ: ð21Þ
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So far, Eqs. (20) and (21) still involve no approximations at
all on the W term. However, approximations are ultimately
necessary, of course, for getting practical results.
Rather different kinds of approximations to Eq. (20) can

enter in a number of different ways, so the language can
become confusing. We will be as precise as possible with
our wording here. There are at least four different types of
approximation that generally take place simultaneously,
including
(1) The choices of models, assumptions, or approxima-

tions used to describe nonperturbative contributions;
(2) The neglect of power suppressed corrections to

factorization, such as the last term in Eq. (14);
(3) Truncation of high powers of αs in perturbative parts

of the calculation; and
(4) In phenomenological applications involving fits,

whatever assumptions and approximations are used
at the level of fit extractions.

When, we discuss an “nth-order” perturbative treatment,
we will mean by this that all parts that are calculable in
fixed order perturbative QCD have been included through
order n, and they are optimized using the renormalization
group and Collins-Soper evolution [Eq. (17)]. These
“perturbative parts” include the right-hand sides of
Eqs. (17)–(19), which in Eq. (20) appear as γKðαsðμ0ÞÞ,
γðαsðμ0Þ; 1Þ, and K̃ðbT; μQ0

Þ when bT (or kT) is small
(large) enough that its bT dependence is perturbative. In
Eq. (20) it also includes HðμQ;C2Þ and the D̃A, D̃B

functions in regions of small bT (or large kT). An “(n)”
superscript on a function means that it has been replaced by
its truncated, fixed order perturbation theory calculation
through order n. When, we discuss nonperturbative parts in
later sections, it should be understood to be in the context of
phenomenological extractions. We will assume for the sake
of our discussion here that all nonperturbative parametri-
zations have been made flexible enough that the significant
errors come only from the limitations of factorization
and truncated perturbation theory, and not from a poor
choice of nonperturbative parametrizations or artifacts of

the fitting procedure. Thus, a function such as D̃ðnÞ
A should

be read as “a D̃A parametrization including nonperturba-
tive parts extracted from measurements and using an nth-
order perturbation theory treatment for its perturbative
ingredients.”
Also, when we use the phrase “nonperturbative part”

(e.g., the g functions of the CSS formalism), it should
generally be understood that we are not necessarily refer-
ring to parts of a calculation that cannot ever be improved
with small coupling techniques. It only refers to contribu-
tions that we choose to exclude from those factors that we
explicitly identify as perturbative.
Now consider how one might use Eq. (20) to do

phenomenology in a Type I scenario and from a bottom-
up perspective. Near the input scale, Q ≈Q0, the evolution
factor on the second line is nearly unity, and we can, to a

good approximation, just work with Eq. (21). If Q0 is only
of order ∼1–2 GeV, then a phenomenological measure-
ment of WðqT; Q0Þ is only sensitive to the region of
nonperturbatively large bT parts of D̃A and D̃B, whereas
the bT ≪ 1=Q0 contributions are strongly suppressed in
cross sections. Therefore, measurements of the Q ≈Q0

region place rigid constraints on the nonperturbative trans-
verse momentum dependence while remaining mostly
insensitive to perturbative tails from large kA;BT (or small
bT). Indeed, past phenomenology with Eq. (21) has
confirmed that the basic TMD parton model is quite
successful at describing moderate Q data with entirely
nonperturbative kT parametrizations such as Gaussians
[18,85–87]. Work that is done in this style effectively
replaces the exact Eq. (21) with the approximation

WðnÞðqT; Q0Þ ¼ HðnÞðμQ0
;C2Þ

Z
d2bT
ð2πÞ2 e

−iqT·bT

× D̃A;npðzA; bT; μQ0
; Q2

0Þ
× D̃B;npðzB; bT; μQ0

; Q2
0Þ; ð22Þ

where the “np” subscripts on the TMD ffs refer to
Fourier-Bessel transforms of entirely nonperturbative
model parametrizations for DAðzA; zAkAT; μQ0

; Q2
0Þ and

DBðzB; zBkBT; μQ0
; Q2

0Þ (e.g., Gaussians), with no matching
to perturbative large-kT tails. If most of the 0≲ qT ≲Q0

region of transverse momentum dependence is nonpertur-
bative at Q ≈Q0, then there is nothing more to do at
this scale, and replacing HðμQ0

;C2Þ by HðnÞðμQ0
;C2Þ in

Eq. (22) is the maximum amount of perturbative input that
is possible.
Notice that, if we have perfectly constrained the input

TMD ffs for all kT at the input scaleQ0, then evolving them
to larger Q ≫ Q0 with Eq. (20) is almost trivial. All that
is necessary are γKðαsðμ0ÞÞ, γðαsðμ0Þ; 1Þ, and K̃ðbT; μQ0

Þ
calculated to nth order in perturbation theory and a way to
perform the inverse Fourier-Bessel transform. Thus, tradi-
tional Type I extractions of TMD ffs near an input scale
might appear at first sight to be all the input that is
necessary, aside from a treatment of the evolution kernels,
for evolution to any other scale.
However, this will fail to work if applied directly to

traditional Type I oriented styles of phenomenological
extractions that neglect large kT tails. The reason is that
DAðzA; zAkAT; μQ0

; Q2
0Þ andDBðzB; zBkBT; μQ0

; Q2
0Þ need to

be well-described over their entire kT ranges, not just over
the 0≲ kT ≲Q0 regions that moderate Q0 measurements
effectively probe, in order for the evolution to largerQ to be
accurate. Fortunately, the large-kT behavior of TMD ffs is
calculable in collinear factorization, so nothing prevents us
from simply interpolating between phenomenological fits
of the small kT region and a large-kT perturbative descrip-
tion of the input TMD correlation functions at kT > Q0.
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We will discuss how to make this adjustment to standard
Type II oriented approaches in later sections.
If Q0 is, as we intend, a lower bound on what is

considered a reasonable hard scale, near the boundary
between large and small coupling, then there is a very rapid
scale dependence when a choice of μ ∝ Q0 is varied
downward. Therefore, it is preferable to keep renormaliza-
tion and rapidity scales fixed around μQ0

and Q0 in the
moderate kT ≈Q0 or bT ≈ 1=Q0 regions. (We elaborate on
this slightly subtle point in Appendix B to avoid breaking
the flow of our main discussion here.)
But in the kT ≫ Q0 region, large logarithms of the form

lnðkT=Q0Þ start to degrade the accuracy of such a treatment.
Extending calculations to the very large kT ≫ Q0 region
requires another iteration of the evolution equations to
switch scales. (Actually, when we do this in later sections, it
will be in coordinate space as is more common, and we will
switch to the usual ∼1=bT scale.) We will explain the
details of both the interpolation and the scale transforma-
tion in Sec. V. The discussion of Eq. (2) in the Introduction
was in reference to these types of logarithmic errors.
For readers accustomed to more standard presentations of

the CSS formalism, the above discussion might seem like a
slightly odd starting point because normally one does not
stopwithEq. (20).Rather, one immediately performs the step
of evolving D̃AðzA; bT; μQ0

; Q2
0Þ and D̃BðzB; bT; μQ0

; Q2
0Þ to

scales of order 1=bT to optimize collinear factorization
calculations with the OPE in the region of bT ∼ 1=Q. The
resulting expressions [see, for example, Eq. (22) of [69] ]
highlight the role of thebT ∼ 1=Q calculation.Ultimately,we
will perform an equivalent step, but we choose to delay it for
now for reasons that we hope will become clear later. The
connection between Eq. (20) and the usual CSS presentation
will be made in Sec. IX.

III. INTEGRAL RELATIONS

As wewill see in later sections, consistently interpolating
between nonperturbatively small kT and perturbatively
large kT will require integral relations such as Eq. (3). In
this section, we will define and discuss a collinear ff that
obeys an analogous equation with a cutoff on large trans-
verse momentum. This section also introduces additional
notation that will be necessary in later sections. We remind
the reader of our notation glossary, Appendix A.
We will use a superscript “ðn; drÞ” on a TMD ff to

indicate that it is calculated in a large (kT ≈Q) transverse
momentum approximation. Thus,

Dðz; zkT ≈Q; μQ;Q2Þ

≡Dðn;drÞðz; zkT; μQ;Q2Þ þO

�
m
kT

; αsðkTÞnþ1

�
: ð23Þ

As usual, “n” is the order of collinear perturbation theory.
Thus,Dðn;drÞðz; zkT; μQ;Q2Þ is calculated through order αns ,

with powers of αnþ1
s and∼m=kT errors neglected. However,

now we have also included a “dr” in the superscript. This is
to indicate that the collinear factorization calculation uses a
renormalized collinear ff drðz; μQÞ. The subscript r on dr in
turn labels the UV renormalization or regularization
scheme (such as, for example, r ¼ MS renormalization).
We also define

Dðn;drÞðz; zkT; μQ;Q2Þ≡ 0 ∀ n < 1: ð24Þ

The m=kT in the error term of Eq. (23) symbolizes
contributions that are power suppressed when kT ≈Q.
Throughout this paper, an “m” will always represent any
generic mass scale that is of order a small hadronic size
such as ΛQCD or an intrinsic transverse momentum. Also, to
simplify notation, any power-suppressed contributions of
the form ðm=QÞβ or ðm=kTÞβ, with β > 0, will always
simply be written as Oðm=QÞ or Oðm=kTÞ, regardless of
the power β.
To summarize, the symbol Dðn;drÞðz; zkT; μQ;Q2Þ is the

approximation to an individual TMD ff wherein it is
calculated in fixed order collinear perturbation theory,
optimized to the region kT ≈Q and Q → ∞, and using
dr collinear fragmentation functions. The fixed order
perturbative expression for Dðn;drÞðz; zkT; μQ;Q2Þ in col-
linear factorization has the form

Dðn;drÞðz; zkT; μQ;Q2Þ ¼ ½CðnÞD ðzkTÞ ⊗ dr�ðz; μQÞ: ð25Þ

The “⊗” here symbolizes the usual collinear convolution
integral

ðf ⊗ gÞðz; μÞ≡
Z

1

z

dξ
ξ
fðz=ξÞgðξ; μÞ: ð26Þ

In Eq. (25), CðnÞD ðzkTÞ is a hard coefficient. We have written
its zkT argument explicitly as a reminder that this particular
hard factor has kT dependence. Approximations to
Dðz; zkT; μQ;Q2Þ appropriate to regions other than kT ≈Q
will be left unaddressed for now. They will be discussed
in Sec. V.
The TMD ff is related to a collinear ff by an integral over

transverse momentum,

2πz2
Z

μQ

0

dkTkTDðz;zkT;μQ;Q2Þ

¼drðz;μQÞþΔðn;drÞðαsðμQÞÞþO

�
m
Q
;αsðμQÞnþ1

�
; ð27Þ

with the details of the notation to be explained below. In a
literal probability density interpretation, μQ would be set
equal to infinity and the second two terms on the right-hand
side would be zero. In a renormalizable theory such as
QCD, the integral needs to be regulated, and corrections are
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necessary to relate the cutoff integral to collinear ffs defined
in standard schemes. The Δðn;drÞðαsðμQÞÞ term on the right-
hand side of Eq. (27) is our notation for the perturbative
correction through nth order that relates the cutoff integral
to the collinear ff drðz; μQÞ in scheme r. There are also, in
general, power-suppressed corrections, as indicated by the
error term in Eq. (27). The correction term Δðn;drÞðαsðμQÞÞ
is related to collinear ffs via another factorization theorem,

Δðn;drÞðαsðμQÞÞ ¼ ½CðnÞΔ ⊗ dr�ðz; μQÞ; ð28Þ

and CðnÞ
Δ is an order-αsðμQÞn hard coefficient, with a Δ

subscript included here to distinguish it from the kT-
dependent hard coefficient in Eq. (25). The “ðn; drÞ”
superscript in Δðn;drÞðαsðμQÞÞ is to symbolize that
Eq. (28) is to be calculated through order αsðμQÞn, and
that the collinear ff is defined in the r renormalization and/
or regularization scheme. Note thatΔðn;drÞðαsðμQÞÞ is also a
function of z and Q, but we have dropped explicit
dependence on those variables to maintain as compact a
notation as possible. We also define

Δðn;drÞðαsðμQÞÞ≡ 0 ∀ n < 1: ð29Þ

To make the above more explicit, let us define a new
collinear ff that is the transverse momentum integral of a
TMD ff regulated with a cutoff on all kT > μQ:

dcðz; μQÞ≡ 2πz2
Z

μQ

0

dkTkTDðz; zkT; μQ;Q2Þ: ð30Þ

The r ¼ c subscript on the left indicates that this is an ff
defined in the “cutoff” scheme.2 Equation (30) is just the
left-hand side of Eq. (27). Dropping the power-suppressed
and order-αnþ1

s ðμQÞ terms on the right-hand side of Eq. (27)
gives an equation that is satisfied only approximately. To
give this a notation, we also define

dðn;drÞc ðz; μQÞ≡ drðz; μQÞ þ Δðn;drÞðαsðμQÞÞ: ð31Þ

Then, Eq. (27) is

dðn;drÞc ðz; μQÞ − dcðz; μQÞ ¼ O

�
m
Q
; αsðμQÞnþ1

�
: ð32Þ

If the scheme for dealing with UV transverse momentum
divergences is the cutoff scheme itself, r ¼ c, then

Δðn;dcÞðαsðμQÞÞ ¼ 0 ð33Þ

exactly by definition. If the scheme is modified minimal
subtraction, r ¼ MS, then

Δðn;d
MS

ÞðαsðμQÞÞ

¼αsðμQÞ
2π

Z
1

z

dz0

z0
dMSðz=z0;μQÞ½2Pqqðz0Þ lnz0 þCFð1−z0Þ�

þOðαsðμQÞ2Þ; ð34Þ

where we have used the standard splitting function notation

PqqðzÞ ¼ Pq̄ q̄ðzÞ ¼ CF

�
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
: ð35Þ

The quantities in Eqs. (23)–(32) are so far intended to be
exact. That is, Dðz; zkT; μQ;Q2Þ, drðz; μQÞ, etc., are the
operator definitions.
Equation (30) is a version of Eq. (3) wherein the

collinear ff dcðz; μQÞ is defined such that the integral
relation is satisfied exactly when the UV divergent integral
is regulated with a cutoff. A collinear pdf or ff defined in
this way does have some practical advantages. It is a natural
definition when regions are categorized as perturbative or
nonperturbative in transverse momentum space, and it is
the preferred definition in some work associated with
hadron structure (see, for example, the work of Brodsky
and collaborators [88]). It is also a natural definition for
matching to fixed order large-qT calculations, which, of
course, are almost always performed in momentum space.
However, it also comes with significant disadvantages as
well; see, for example, Ref. [89] for a discussion of the
different ways of handling UV divergences in definitions of
collinear pdfs and the pitfalls of each. An important point is
that the correction terms relating cutoff scheme and
renormalized pdfs are not just perturbative, but also include
the power-suppressed errors in Eq. (27).

IV. THE COLLINS-SOPER KERNEL NEAR
THE INPUT SCALE Q0

Up to now, our discussion has mainly focused on
establishing context and defining notation. In the bulleted
list of Sec. I, we explained that wewill explicitly interpolate
between nonperturbatively small kT and perturbatively
large kT in our parametrizations of TMD functions at an
input scale. With the language and notation of Secs. II and
III, we are ready to step through the interpolation details.
Inspection of Eq. (20) shows that there are actually two

separate types of functions in which we will need to
interpolate between nonperturbative parametrizations and
perturbative regions of transverse momentum when we do
calculations for phenomenology. First, there are the TMD ffs
themselves, D̃AðzA; bT; μQ0

; Q2
0Þ and D̃BðzB; bT; μQ0

; Q2
0Þ, at

the input scaleQ0. Second, there is theCSkernel K̃ðbT; μQ0
Þ,

2For the renormalization of the TMD ff in the integrand of
Eq. (30), it is to be understood that the scheme is a standard one
like MS.
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also at the input scale Q0, which will be necessary for
evolving away from Q ¼ Q0.
Between these two, it is actually the CS kernel that is the

simpler to handle, so we will begin by focusing on it. In
fact, the steps for interpolating a full parametrization of an
input TMD ff Dðz; zkT; μQ0

; Q2
0Þ between large and small

kT will turn out to be very analogous to what we do for the
CS kernel.
It is straightforward to calculate KðkT; μQ0

Þ in fixed
order perturbative theory if kT ≈Q0. Using notation analo-
gous to that of Sec. III, we express this as

KðkT; μQ0
Þ ¼ KðnÞðkT; μQ0

Þ þO

�
αsðμQ0

Þnþ1;
m
kT

�
: ð36Þ

KðnÞðkT; μQ0
Þ is our notation for the fixed order perturbative

calculation through order n and with all nonperturbative
effects ignored. It takes the form

KðnÞðkT; μQ0
Þ ¼ 1

k2T
κ

�
αsðμQ0

Þ; kT
μQ0

�
; ð37Þ

where κ is a function of αsðμQ0
Þ and logarithms involving

kT=μQ0
. For example, in MS renormalization it is

Kð1ÞðkT; μQ0
Þ ¼ αsðμQ0

ÞCF

π2
1

k2T
: ð38Þ

Away from kT ≈ μQ0
, the accuracy of KðnÞðkT; μQ0

Þ as an
approximation to KðkT; μQ0

Þ degrades. The reason for
kT < μQ0

is simply that the kT dependence of the zero
momentum soft radiation is nonperturbative. Conversely,
the reason for the approximation failing at kT ≫ Q0 is
that the error terms in Eq. (36) include logarithms of
kT=μQ0

that diverge in the large kT=μQ0
limit.

The kT ≫ Q0 contribution is numerically unimportant in
Eq. (21) or Eq. (22) because the region of transverse
momenta far above Q0 is suppressed at the input scale
(for reasonable fixed values of zA and zB). With regard to
Q ≈Q0 cross sections, therefore, a suitable parametrization
of KðkT; μQ0

Þ only requires that we deal with the region
0 < kT ≲Q0. That is to say, near the input scalewe only need
to extend the perturbative kT ≈Q0 treatment inKðnÞðkT; μQ0

Þ
downward into the nonperturbative kT < μQ0

region in order
to have a parametrization of KðkT; μQ0

Þ that is useful for all
kT accessible at the input scale. Let us therefore start by
defining an “input” parametrization for KðnÞðkT; μQ0

Þ that
equals the fixed order calculation, Eq. (38),when kT ≈ μQ0

or
larger, but interpolates to a nonperturbative parametrization
for kT < μQ0

.

KðnÞ
inputðkT; μQ0

Þ

≡
�
KðnÞðkT; μQ0

Þ if kT ≳ μQ0
;

nonperturbative parametrization otherwise
:

ð39Þ
Now the (n) superscript on the left-hand side of this equation
refers to the perturbative order of the large kT tail in this input
nonperturbative parametrization. When we work with
Eq. (20), we will need its coordinate space version of the
CS kernel,

K̃ðnÞ
inputðbT; μQ0

Þ≡
Z

d2kTeikTbTK
ðnÞ
inputðkT; μQ0

Þ: ð40Þ

The scale dependence of the exact K̃ is exactly bT indepen-
dent by the renormalization group (RG) equationEq. (18), so
we will enforce the condition that an nth-order parametriza-
tion satisfies Eq. (18) to orderαsðμÞn, with onlyOðαsðμÞnþ1Þ
errors,

dK̃ðnÞ
inputðbT; μÞ
d ln μ

¼ −γðnÞK ðαsðμÞÞ þOðαsðμÞnþ1Þ: ð41Þ

In Sec. VII A, we will provide an example of a specific
trial functional form for Eq. (39). In general, however, any
phenomenologically successful parametrization that satis-
fies Eqs. (39) and (41) is allowed. The parametrizations in
Eqs. (39) and (40) are appropriate specifically whenQ ≈Q0

such that only the region of 0 < kT ≲Q0 is important.
However, it is a poor approximation to the true

K̃ðbT; μQ0
Þ in the kT ≫ Q0 region, and this matters if

we evolve to large enough Q for contributions from
kT ≫ Q0 to become significant. In Eq. (40), the large
errors manifest themselves as higher order terms logarith-
mic in bTμQ0

, which diverge in the bT → 0 limit. There
needs to be a change in renormalization scale. Thus, in
coordinate space the more common choice for the RG scale
is μ ¼ C1=bT, with C1 being an order unity proportionality
constant. The truncated RG improved perturbation theory
then increases in accuracy as bT → 0.
To obtain a KðkT; μQ0

Þ parametrization that works well
for all Q, we need steps that combine the stability of fixed
scale calculations in the Q ≈Q0, kT ≈Q0 region with the
RG-improved calculations that optimize for the bT → 0
limit. Specifically, we need to perform a scale transforma-
tion on the above parametrization using the RG equation at
a bT somewhat below 1=Q0. If we implement this scale
transformation at small enough bT, it will have a negligible
effect on phenomenology that uses the above parametriza-
tion near Q ≈Q0 where the bT ≪ 1=Q0 is strongly sup-
pressed. Therefore, fits that use Eq. (39) will be largely
unaffected. And, if the transformation takes place in a range
of bT at least comparable to ≲1=Q0, then its overall effect
will only appear at order nþ 1 or higher, so the effect of the
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transformation will always be one order higher in pertur-
bation theory than the working order. So, the transforma-
tion will ensure an accurate treatment of evolution to large
Q in any subsequent steps. We will show how this works in
detail below.
The first step in implementing the scale transformation is

to define a bT-dependent mass scale, which we will call
Q̄0ðbTÞ, that smoothly transitions between Q0 and a 1=bT
dependence in the region just below bT ≈ 1=Q0. Specifically,

Q̄0ðbTÞ ¼
�
C1=bT bT ≪ C1=Q0;

Q0 otherwise;
ð42Þ

where C1 is an order unity numerical constant, typically
taken to be C1 ¼ 2e−γE . When bT is comparable to C1=Q0,
the scales Q0 and C1=bT are numerically similar, so any
sensitivity to the difference between the two scales is a
higher order effect that can be reduced by including higher
orders in perturbation theory. Therefore, the exact form of
Q̄0ðbTÞ is arbitrary so long as it provides a reasonably
smooth interpolation between the Q0 and C1=bT behavior
at large and small bT. Some example suggestions for
Q̄0ðbTÞ, which we will call the transformation function,
are shown in Appendix C.
Next, we need to combine this with the RG equation,

Eq. (18), whose exact solution is

K̃ðbT; μÞ ¼ K̃ðbT; μiÞ −
Z

μ

μi

dμ0

μ0
γKðαsðμ0ÞÞ: ð43Þ

Here, μi is an arbitrary initial scale. To make it useful in
applications of Eq. (20), let us evolve from an initial scale
μi ¼ μQ̄0

(where μQ̄0
¼ C2Q̄0) so that the right-hand side

contains K̃ðbT; μQ̄0
Þ:

K̃ðbT; μÞ ¼ K̃ðbT; μQ̄0
Þ −

Z
μ

μQ̄0

dμ0

μ0
γKðαsðμ0ÞÞ: ð44Þ

For any μ ≈Q0, the second term in Eq. (44) is calculable
in perturbation theory with the nth-order anomalous

dimension, γKðαsðμ0ÞÞ → γðnÞK ðαsðμ0ÞÞ, and it vanishes for
bT ≈ C1=Q0 or larger.
The original parametrization in Eq. (40) was designed to

provide an accurate perturbative description of K̃ðbT; μQ0
Þ

in the region of bT ≈ 1=Q0 and larger. Now if we replace
the first term on the right-hand side of Eq. (44) with

K̃ðnÞ
inputðbT; μQ̄0

Þ, it continues to describe the bT ≳ 1=Q0

region, by our construction of Q̄0ðbTÞ. However, now the
RG-improved perturbative contribution to K̃ðbT; μQ̄0

Þ also
remains accurate into the bT ≪ 1=Q0 region.
Therefore, we obtain an optimal parametrization by

replacing the exact K̃ðbT; μQ̄0
Þ on the right-hand side of

Eq. (44) by the approximate K̃ðnÞ
inputðbT; μQ̄0

Þ and the exact

γKðαsðμ0ÞÞ by γðnÞK ðαsðμ0ÞÞ. We define this as

K̃ðnÞðbT;μÞ≡ K̃ðnÞ
inputðbT;μQ̄0

Þ−
Z

μ

μQ̄0

dμ0

μ0
γðnÞK ðαsðμ0ÞÞ: ð45Þ

The underline on K̃ðnÞðbT; μÞ is our notation for the final
parametrization to be used with evolution. The above
applies to the cases where μ ≈Q0, so as a final step we
set μ ¼ μQ0

and write the underlined parametrization as

K̃ðnÞðbT; μQ0
Þ

≡ K̃ðnÞ
inputðbT; μQ̄0

Þ −
Z

μQ0

μQ̄0

dμ0

μ0
γðnÞK ðαsðμ0ÞÞ: ð46Þ

This is the form of the parametrization for the CS kernel
that we will ultimately use in Eq. (20). The errors in
K̃ðnÞðbT; μQ0

Þ, as an approximation to K̃ðbT; μQ0
Þ, are

suppressed by at least αsðμQ0
Þnþ1 point by point for all bT.

A final constraint on parametrizations of KðnÞ
inputðkT; μQ0

Þ
is obtained by recalling that soft gluon effects cancel in
collinear factorization when we integrate over all transverse

momentum. Thus, after an integration of KðnÞ
inputðkT; μQ0

Þ
over kT up to a cutoff kmax of order μQ0

, sensitivity to
any nonperturbative mass parameters must vanish as
m=μQ0

→ 0. We may express this by demanding that

π

Z
k2max

0

dk2TK
ðnÞ
inputðkT; μQ0

Þ

¼ χðnÞðkmax=μQ0
; αsðμQ0

ÞÞ þO

�
m
μQ0

;
m
kmax

�
; ð47Þ

where χðnÞðkmax=μ; αsðμÞÞ is either zero or a perturbatively
calculable function, independent of any nonperturbative

mass parameters in KðnÞ
inputðkT; μQ0

Þ.
Before continuing, let us summarize the basic properties

of the parametrization, K̃ðnÞðbT; μQ0
Þ:

(i) For bT ≈ 1=Q0 or larger, it differs negligibly from

K̃ðnÞ
inputðbT; μQ0

Þ, by construction. Therefore, both

K̃ðnÞðbT; μQ0
Þ and K̃ðnÞ

inputðbT; μQ0
Þ are equally appro-

priate for describing the Q ≈Q0 region phenom-
enologically.

(ii) For small bT, the RG scale transitions to the usual
μ ∼ 1=bT RG-improved form, but only when bT is
very small relative to the input scale, bT ≪ 1=Q0.

(iii) The parametrization in Eq. (45) obeys an exact RG
equation,

dK̃ðnÞðbT; μÞ
d ln μ

¼ −γðnÞK ðαsðμÞÞ; ð48Þ

with no error terms present.
(iv) By contrast, the “input” parametrization defined in

Eqs. (39)–(41) obeys the approximate RG equation
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in Eq. (41) with possible perturbative error terms, as
shown in the equation.

(v) Both Eqs. (41) and (48) are satisfied for all bT.
The resulting K̃ðnÞðbT; μQ0

Þ is an accurate representation of
the exact K̃ðbT; μQ0

Þ up to at most (nonlogarithmic) order
αsðμQ0

Þnþ1 errors.
There is an ambiguity in the exact choice of functional

form for Q̄0ðbTÞ in Eq. (42) in the region of bT ≈ 1=Q0, but
this is just the usual scale uncertainty that appears in any
truncated perturbation theory, akin to the dependence on
the exact numerical choices for C1 and C2. Since Q0 and
C1=bT are of similar size when bT ≈ 1=Q0, the effect of the
transformation is under perturbative control and the ambi-
guity diminishes as one incorporates higher orders.
To state this more explicitly, consider a family of

different choices for Q̄0ðbTÞ smoothly connected by an
extra parameter a:

Q̄0ðbTÞ → Q̄0ðbT; aÞ: ð49Þ

The only requirement is that Eq. (49) satisfies Eq. (42) for
all the a one might consider. Then,

d
da

K̃ðnÞðbT; μÞ

¼ 1

μQ̄0

dμQ̄0

da
d

d ln μQ̄0

K̃ðnÞðbT; μÞ

¼ 1

μQ̄0

dμQ̄0

da

�
d

d ln μQ̄0

K̃ðnÞ
inputðbT; μQ̄0

Þ þ γKðαsðμQ̄0
ÞÞ
�

∼
1

μQ̄0

dμQ̄0

da
αsðμQ̄0

Þnþ1lnðnþ1ÞðbTμQ̄0
Þ: ð50Þ

In the second line, we have substituted Eq. (45) and in the
last line we have used Eq. (41) while noting that at small bT
the suppressed errors are enhanced by terms logarithmic in

bTμQ̄0
. However, by construction 1

μQ̄0

dμQ̄0

da is only allowed to

be nonzero in a region of bT where 1=bT,Q0, and Q̄0 are all
of comparable size. So Eq. (50) is just

d
da

K̃ðnÞðbT; μÞ ¼ OðαsðμQ0
Þnþ1Þ: ð51Þ

So effects from varying the precise choice of transition
function Q̄0ðbTÞ are always one order higher in αsðQ0Þ than
the working order n.
We will illustrate the steps above more concretely with

specific examples in Sec. VII A.

V. PARAMETRIZATION OF THE TMD FFS
AT Q=Q0

Now, we turn to the parametrizations of the input TMD
ffs themselves. Following the strategy outlined in the

Introduction, we will categorize regions as perturbative
or nonperturbative for the input scale TMD ff in transverse
momentum space. The steps will be very analogous to
those just described in the previous section for K̃ðbT; μÞ. As
in that case, we will use an “input” subscript to label the
TMD ff parametrization that applies phenomenologically at
the input scaleQ ¼ Q0, and which is to be used in Eq. (22).
For kT < Q0, the input parametrization will be defined to
have a mainly nonperturbative transverse momentum
dependence while for kT ≈Q0 or larger it will transition
into its nth-order perturbative description, the first term in
Eq. (23). Specifically, we define

Dðn;drÞ
input ðz; zkT; μQ0

; Q2
0Þ

≡
�
Dðn;drÞðz; zkT; μQ0

; Q2
0Þ if kT ≳Q0

nonperturbative parametrization otherwise
:

ð52Þ

The only condition on the intermediate region between
kT ≪ Q0 and kT ≈Q0 is that it should be reasonably
smooth. The input parametrization in Eq. (52) has the
coordinate space representation

D̃ðn;drÞ
input ðz; bT; μQ0

; Q2
0Þ

≡
Z

d2kTeikT·bTD
ðn;drÞ
input ðz; zkT; μQ0

; Q2
0Þ: ð53Þ

We will require that the input coordinate space paramet-
rizations satisfy the evolution equations through the nth
order in the evolution kernels, at least for the bT ≈ 1=Q0

region:

∂ ln D̃ðn;drÞ
input ðz; bT; μ; Q2Þ

∂ lnQ

¼ K̃ðnÞ
inputðbT; μÞ þOðαsðμÞnþ1Þ þOðbTmÞ; ð54Þ

d ln D̃ðn;drÞ
input ðz; bT; μ; Q2Þ

d ln μ

¼ γðnÞðαsðμÞ;Q2=μ2Þ þOðαsðμÞnþ1Þ þOðbTmÞ: ð55Þ

Usually, these will be satisfied automatically if the para-
metrization follows Eq. (52). Note the analogy between
Eqs. (52)–(55) above and Eqs. (39)–(41) for the CS kernel.
Finally, for the integrated TMD ff to be consistent with

the definition in Eq. (30), we must impose it directly on the
parametrization,

2πz2
Z

μQ0

0

dkTkTD
ðn;drÞ
input ðz; zkT; μQ0

; Q2
0Þ

≡ dðn;drÞc ðz; μQ0
Þ: ð56Þ
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Here, we have introduced new notation and another
definition. The underline on dðn;drÞc ðz; μQ0

Þ is meant to
indicate that this is a specific parametrization (one deter-

mined by the Dðn;drÞ
input ðz; zkT; μQ0

; Q2
0Þ parametrization) of

the dcðz; μQ0
Þ defined in Eq. (30). In accordance with

Eq. (32), it is to have, by its definition, the property that

dðn;drÞc ðz; μQ0
Þ ¼ dðn;drÞc ðz; μQ0

Þ þO

�
m
μQ0

�
: ð57Þ

The parametrization dðn;drÞc ðz; μQ0
Þ is a description of the

definition dcðz; μQ0
Þ, with an nth-order collinear treatment

of the high transverse momentum region. It is simply the

dðn;drÞc ðz; μQ0
Þ from Eq. (31), but with account taken of the

power-suppressed behavior in Eq. (27) that vanishes
as m=μQ0

→ 0.
It is worth pausing to review the different types of cutoff

collinear ffs that we have introduced so far, given that there
are now at least three. First, the version in Eq. (30) with no
underlines or superscripts is the exact dcðz; μQ0

Þ that
follows from the abstract operator definitions. Second,

the dðn;drÞc ðz; μQ0
Þ above is a specific parametrization of

that definition, with the only requirement being that in the
limit of large μQ0

it reduces to the nth-order collinear
perturbation theory calculation in terms of renormalized ffs

with scheme r. Finally, there is the dðn;drÞc ðz; μQ0
Þ defined in

Eq. (31), which is just the limit of dðn;drÞc ðz; μQ0
Þ where

power-suppressed terms are dropped. An equally valid
definition is

dðn;drÞc ðz; μQ0
Þ≡ lim

m
μQ0

→0
dðn;drÞc ðz; μQ0

Þ: ð58Þ

Because Eq. (56) is just a definition, it contains no
constraint by itself. The constraint is in Eq. (57).

So far, the steps for constructing the TMD ff para-
metrizations are very analogous to those of Sec. IV for
KðkT; μQ0

Þ, but there are some differences. The most
significant is that the “perturbative” large kT part of
Eq. (52) is not entirely perturbative because it involves
nonperturbative collinear ffs as input in Eq. (25). The
perturbative contribution to large transverse momentum
dependence only enters in the coefficient function

CðnÞ
D ðzkTÞ. By contrast, the only input to the perturbative

calculation in Eq. (37) is the strong coupling αs.
The conditions in Eqs. (52)–(56) are all that, we need for

constructing phenomenologically useful parametrizations
in the Q ≈Q0 region. Any model or parametrization that
satisfies them is acceptable, but we will give some explicit
examples in later sections.
However, the perturbative part of the parametrization in

Eq. (52) does not provide an accurate description in the
region of kT ≫ Q0, where ratios of kT and Q0 diverge. In
coordinate space, the same issue arises at bT ≪ 1=Q0 in the
form of large logarithms of μbT. That does not create a
problem for phenomenological applications near Q ≈Q0

where the kT ≫ Q0 contributions are suppressed in the
integral of Eq. (21). However, it becomes important as one
evolves to Q ≫ Q0 and the kT ≫ Q0 region starts to
contribute more significantly.
Therefore, there needs to be a scale transformation from

μ ¼ μQ0
to μ ¼ C1=bT in the coordinate space TMD ff in

the region of bT just below bT ≈ 1=Q0. This, of course, is
exactly the same issue that we faced in the case of

K̃ðnÞ
inputðbT; μQ0

Þ in the previous section. For the TMD ff,

it also implies that we have to evolve the CS scale
ffiffiffi
ζ

p
from

Q0 to C1=bT. For the scale change, we can reuse the same
scale transformation function from Eq. (42).
The exact solution to the TMD evolution equations

for an individual TMD ff evolving from scales μi, Qi to
μQ0

, Q0 is

D̃ðz; bT; μQ0
; Q2

0Þ ¼ D̃ðz; bT; μi; Q2
i Þ exp

�Z
μQ0

μi

dμ0

μ0

�
γðαsðμ0Þ; 1Þ − ln

Q0

μ0
γKðαsðμ0ÞÞ

�
þ ln

Q0

Qi
K̃ðbT; μiÞ

�
: ð59Þ

Or, if we use μi ¼ μQ̄0
, Qi ¼ Q̄0 for the input scale,

D̃ðz; bT; μQ0
; Q2

0Þ ¼ D̃ðz; bT; μQ̄0
; Q̄2

0Þ exp
�Z

μQ0

μQ̄0

dμ0

μ0

�
γðαsðμ0Þ; 1Þ − ln

Q0

μ0
γKðαsðμ0ÞÞ

�
þ ln

Q0

Q̄0

K̃ðbT; μQ̄0
Þ
�
: ð60Þ

As of yet, there are still no approximations on D̃ðz;
bT; μQ0

; Q2
0Þ. The lef-hand side has no dependence on

Q̄0; any Q̄0 dependence in D̃ðz; bT; μQ̄0
; Q̄2

0Þ is exactly
canceled by an opposite Q̄0 dependence in the exponential
factor.

Now, we can substitute approximations into the right-
hand side of Eq. (60) in a way that is again very analogous
to the way, we handled K̃ðbT; μÞ in the previous section by
making substitutions on the right-hand side of Eq. (44). We
approximate D̃ðz; bT; μQ̄0

; Q̄2
0Þ on the right-hand side of
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Eq. (60) by replacing it with the Dðn;drÞ
input ðz; zkT; μQ̄0

; μ2Q̄0
Þ

from Eq. (52). Because of the scale transformation, the
result is a parametrization of D̃ðz; bT; μQ̄0

; Q̄2
0Þ that is an

accurate description not only for bT ≈ 1=Q0 and larger but
also for all bT ≪ 1=Q0. For the K̃ðbT; μQ̄0

Þ in the exponent

on the right-hand side of Eq. (60), we already have the
analogous result from Eq. (46) in Sec. IV, and we can reuse
it here. All that remains then is to substitute γðαsðμ0Þ; 1Þ and
γKðαsðμ0ÞÞ by their truncated nth-order perturbation theory
approximations. Thus, our final parametrization of the
input TMD ff is

D̃ðn;drÞðz; bT; μQ0
; Q2

0Þ

¼ D̃ðn;drÞ
input ðz; bT; μQ̄0

; Q̄2
0Þ exp

�Z
μQ0

μQ̄0

dμ0

μ0

�
γðnÞðαsðμ0Þ; 1Þ − ln

Q0

μ0
γðnÞK ðαsðμ0ÞÞ

�
þ ln

Q0

Q̄0

K̃ðnÞ
inputðbT; μQ̄0

Þ
�
: ð61Þ

The underline on D̃ðn;drÞðz; bT; μQ0
; Q2

0Þ is our notation for
the final parametrization of the TMD ff at the input scale
μ ¼ μQ0

, ζ ¼ Q2
0.

To summarize, D̃ðz; bT; μQ0
; Q2

0Þ has the following
properties:

(i) Each factor in Eq. (61) is an accurate approximation
to the corresponding factor in the exact Eq. (60)
point-by-point in bT.

(ii) For bT ≈ 1=Q0 or larger, the exponential evolution
factor deviates from unity by a negligible
amount. This is by our construction of Q̄0ðbTÞ.
D̃ðn;drÞðz; bT; μQ0

; Q2
0Þ therefore deviates negligibly

from D̃ðn;drÞ
input ðz; bT; μQ0

; Q2
0Þ when Q ≈Q0. Both

D̃ðn;drÞðz; bT; μQ0
; Q2

0Þ and D̃ðn;drÞ
input ðz; bT; μQ0

; Q2
0Þ

with Eq. (22) are equally appropriate for applica-
tions to phenomenology when Q ≈Q0. Also, recall

that the D̃ðn;drÞ
input ðz; bT; μQ0

; Q2
0Þ was originally for-

mulated in transverse momentum space.
(iii) There is a smooth scale transformation to μ ∼

ffiffiffi
ζ

p
∼

1=bT at small bT, but only when bT ≪ 1=Q0.
Therefore, D̃ðn;drÞðz; bT; μQ0

; Q2
0Þ continues to pro-

vide an accurate approximation to the exact TMD ff
after Q ≫ Q0 where the bT ≪ 1=Q0 region starts to
be relevant.

(iv) Thus, at smallbT,wemay express theTMDff in terms
of collinear ffs dr using the usual OPE methods.

(v) D̃ðn;drÞðz; bT; μQ0
; Q2

0Þ satisfies the exact evolution
equations

∂ ln D̃ðn;drÞðz; bT; μQ0
; Q2

0Þ
∂ lnQ0

¼ K̃ðnÞðbT; μQ0
Þ; ð62Þ

d lnD̃ðn;drÞðz;bT;μQ0
;Q2

0Þ
dlnμQ0

¼ γðnÞðαsðμQ0
Þ;1Þ

−γðnÞK ðαsðμQ0
ÞÞln

�
Q0

μQ0

�
:

ð63Þ

There are no error terms in either of these equations,
and both Eqs. (62) and (63) are valid for all bT.

(vi) By contrast, the evolution equations for the “input”
subscript TMD ffs in Eqs. (54)–(55) do come with
explicit error terms.

As was the case for K̃ðnÞðbT; μQ0
Þ, sensitivity to the

choice of functional form for Q̄0ðbTÞ is the standard scale
uncertainty in truncated perturbation theory, and it vanishes
in the limit that Q0 is large and/or high enough orders in
αsðQ0Þ are included. To see this, we may repeat steps
analogous to those after Eq. (49):

d
da

ln D̃ðn;drÞðz; bT; μQ0
; Q2

0Þ ¼
1

μQ̄0

dμQ̄0

da
d

d ln μQ̄0

ln D̃ðn;drÞðz; bT; μQ0
; Q2

0Þ þ
1

Q̄0

dQ̄0

da
∂

∂ ln Q̄0

ln D̃ðn;drÞðz; bT; μQ0
; Q2

0Þ

¼ 1

μQ̄0

dμQ̄0

da
½K̃ðnÞ

inputðbT; μQ̄0
Þ þ γðnÞðαsðμQ̄0

Þ; 1Þ − K̃ðnÞ
inputðbT; μQ̄0

Þ − γðnÞðαsðμQ̄0
Þ; 1Þ

þOðαsðμQ̄0
Þnþ1Þ þOðbTmÞ�:

¼ OðαsðμQ0
Þnþ1Þ þO

�
m
Q0

�
: ð64Þ
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After the second equality, we have substituted the expres-
sion for D̃ðn;drÞðz; bT; μQ0

; Q2
0Þ from Eq. (61) and applied

Eqs. (54)–(55) to D̃ðn;drÞ
input ðz; bT; μQ̄0

; Q̄2
0Þ. We have also used

that μQ̄0
¼ Q̄0 when C2 ¼ 1 to simplify expressions. On

the last line, we have used the fact that 1
μQ̄0

dμQ̄0

da vanishes by

construction everywhere except where bT ∼ 1=Q0.
Thus, sensitivity to the choice of Q̄0ðbTÞ, at any order n,

vanishes as m=Q0 → 0.
Since our notation has now grown rather extensive, we

remind the reader that it is summarized in Appendix A.

VI. SUMMARY OF STEPS

So far, we have focused on describing D̃ðz; bT; μQ0
; Q2

0Þ
only at a fixed input scale Q0. Now all that is necessary
to calculate WðqT; QÞ at any other scale using
D̃ðn;drÞðz; bT; μQ0

; Q2
0Þ and K̃ðnÞðbT; μQ0

Þ is to substitute
them into the right-hand side of Eq. (20), along with the
nth-order perturbative expressions for HðαsðμQÞ;C2Þ,
γðαsðμ0Þ; 1Þ, and γKðαsðμ0ÞÞ. The result is an approximation
for WðqT; QÞ that includes evolution and is accurate
for Q ≥ Q0,

WðnÞðqT; QÞ≡HðnÞðαsðμQÞ;C2Þ
Z

d2bT
ð2πÞ2 e

−iqT·bTD̃ðn;drÞ
A ðzA; bT; μQ0

; Q2
0ÞD̃ðn;drÞ

B ðzB; bT; μQ0
; Q2

0Þ

× exp

�
K̃ðnÞðbT; μQ0

Þ ln
�
Q2

Q2
0

�
þ
Z

μQ

μQ0

dμ0

μ0

�
2γðnÞðαsðμ0Þ; 1Þ − ln

Q2

μ02
γðnÞK ðαsðμ0ÞÞ

��
: ð65Þ

The approximation, notated by the (n) superscript on
WðnÞðqT; QÞ, is such that the scale dependence given by
the evolution equations in Eqs. (17)–(19) is accurate point-
by-point for Q ≥ Q0 with errors at most of order
OðαsðQ0Þnþ1Þ—see Eqs. (62)–(63). When Q ¼ Q0 the
WðnÞðQ0; qTÞ defined in Eq. (65) reduces to the TMD
parton model up to the overall factor of HðnÞðαsðμQÞ;C2Þ
and

WðqT; Q0Þ −WðnÞðqT; Q0Þ

¼ OðαsðμQ0
Þnþ1Þ þO

�
m
Q0

�
: ð66Þ

While it might appear that, we have only succeeded at
introducing an excessive amount of notation, the end result
is a fairly simple recipe for combining any arbitrary model
of nonperturbative transverse momentum dependence with
full TMD factorization and evolution. After some basic
initial decisions such as choosing a value for Q0 and fixing
renormalization schemes, the steps are as follows:

(A) Model building

A1: Choose a nonperturbative model, or a nonperturba-
tive technique more generally, to phenomenologically
parametrize the small transverse momentum dependence
in the TMD ff DðzA; zAkAT; μQ0

; Q2
0Þ and in KðkT; μQ0

Þ at
the input scale. (See, for example, the list of models in the
Introduction. These can likely be used here.)
A2:For stepA1,make anymodifications to themodels that

are necessary to ensure that they satisfy Eqs. (39), (41), (47),
(52), and (54)–(57). This step mostly amounts to extrapo-
lating existing models to low order perturbative descriptions
of kT ≈Q0 behavior. The result is a set of parametrizations

for D̃ðn;drÞ
input;AðzA; bT; μQ0

; Q2
0Þ, D̃ðn;drÞ

input;BðzB; bT; μQ0
; Q2

0Þ, and
K̃ðnÞ

inputðbT; μQ0
Þ.

A3: Choose a functional form for the Q̄0ðbTÞ in Eq. (42)
to implement the transition between scales. Use the “input”
functions from step A2 to construct K̃ðnÞðbT; μQ0

Þ and
D̃ðn;drÞðz; bT; μQ0

; Q2
0Þ via Eqs. (45) and (61).

(B) Phenomenology at Q ≈ Q0

B1:Apply factorization phenomenologically toQ ¼ Q0,
Type I processes by taking

D̃ðn;drÞðz; bT; μQ0
; Q2

0Þ → D̃ðn;drÞ
input ðz; bT; μQ0

; Q2
0Þ

in Eq. (65). This corresponds to the TMD parton model
formula in Eq. (22) with the input function of step A2. Fix
any parameters in the nonperturbative model. This step is
essentially no different from traditional TMD parton model
motivated approaches to describing Type I processes. Thus,
prior existing phenomenological results can likely be
reused here.
B2: Consider the phenomenological behavior of cross

sections in a region of Q around Q ≈Q0. Take

D̃ðn;drÞðz; bT; μQ0
; Q2

0Þ → D̃ðn;drÞ
input ðz; bT; μQ0

; Q2
0Þ;

K̃ðnÞðbT; μQ0
Þ → K̃ðnÞ

inputðbT; μQ0
Þ

in Eq. (65), and use the resulting formula in phenomeno-
logical fits to fix any nonperturbative parameters in

K̃ðnÞ
inputðbT; μQ0

Þ in the Q ≈Q0 region.
B3: Verify that the effect of replacing K̃ðnÞðbT; μQ0

Þ
and D̃ðn;drÞðz; bT; μQ0

; Q2
0Þ by K̃ðnÞ

inputðbT; μQ0
Þ and
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D̃ðn;drÞ
input ðz; bT; μQ0

; Q2
0Þ, respectively, is negligible for nu-

merical calculations around Q ≈Q0.

(C) Phenomenology at large Q

C1: Use Eq. (65) to evolve to significantly larger Q and
make predictions for Type II observables. Then refit and/or
tune the nonperturbative parameters and improve the agree-
ment with the higher Q observables. The adjustment of
parameters should be expected to beminimal since the larger
Q measurements are less sensitive to large bT.
C2: Continue to repeat step C1 with even higher Q. One

should expect the accuracy of predictions to increase, both
because of the growing constraints on nonperturbative
parameters from previous steps and because larger Q is
less sensitive to large bT and more sensitive to small αsðQÞ
perturbative contributions.

It is possible to transform Eq. (65) into a form more
familiar from traditional implementations of the CSS
formalism. While that is not necessary, and indeed we
would advocate for using Eq. (65) directly, at least for
hadron structure applications, there may still be situations
where it is desirable. The steps for transforming Eq. (65)
into the more familiar form will be explained later in
Sec. IX.
We have used the example of SIA and TMD ffs to have a

concrete factorization formula for illustration purposes,
but everything up to now carries over in obvious ways to
TMD pdfs and processes such as Drell-Yan scattering.
The steps bridge standard approaches to Type I and Type II
phenomenology.
Before continuing on to examples, notice that we may

rewrite Eq. (65) as

WðnÞðqT; QÞ ¼ HðnÞðαsðμQÞ;C2Þ
Z

d2bT
ð2πÞ2 e

−iqT·bTD̃ðn;drÞ
A ðzA; bT; μQ̄0

; Q̄2
0ÞD̃ðn;drÞ

B ðzB; bT; μQ̄0
; Q̄2

0Þ

× exp

�
K̃ðnÞðbT; μQ̄0

Þ ln
�
Q2

Q̄2
0

�
þ
Z

μQ

μQ̄0

dμ0

μ0

�
2γðnÞðαsðμ0Þ; 1Þ − ln

Q2

μ02
γðnÞK ðαsðμ0ÞÞ

��
ð67Þ

by directly substituting Eqs. (46) and (61) into Eq. (65).
Which form to use is a matter of convenience, but each
highlights different aspects of evolution at moderate
and/or large Q. Equation (65) is written in a way that
makes it obvious that TMD factorization exactly follows a
TMD parton model description at Q ¼ Q0. That form of
WðnÞðqT; QÞ also makes it clear that if the TMD ffs and
K̃ðbT; μQ0

Þ are known exactly for all bT at a fixed input
scale, the evolution to larger Q becomes technically trivial.
Conversely, in Eq. (67), we have been able to eliminate Q0

entirely from the expression, and the RG improved treat-
ment of the Q ≫ Q0 limit is automatic in the ∼1=bT scale
dependence at small bT. Indeed, this form is very similar to
the standard presentation of theWðnÞðqT; QÞ, as we will see
in Sec. IX.

VII. LOW ORDER EXAMPLES

We mean for the steps in Sec. VI to apply to any model
or nonperturbative method of parametrizing the intrinsic
transverse momentum, so we have left the nonperturbative
parts in Eqs. (39) and (52) completely general. But specific
examples make the steps much clearer, so we will illustrate
them in this section with very minimalistic models of the
nonperturbative intrinsic transversemomentumdependence.
We caution that the nonperturbative parametrizations

that we will use below should be regarded only as toy
examples at this stage, only to be used for illustration
purposes. In future work, we hope to implement the steps in

Sec. VI with input from at least some of the more
sophisticated models or nonperturbative techniques refer-
enced in the Introduction.
Since this section makes much use of the notation we

have introduced in earlier sections, we remind the reader
once more of our notation glossary Appendix A. We will
assume that MS renormalization is used everywhere, and
we will always useQ0 ¼ 2 GeV for making example plots.

A. CS kernel example

To motivate a simple model for the nonperturbative part
of the CS kernel, let us recall the physical effect that a
nonzero K̃ðbT; μQ0

Þ has on momentum-space cross sections
at small transverse momentum. Consider the CS evolution
equation for WðQ; qTÞ in transverse momentum space.
Fourier-Bessel transforms become transverse momentum
convolutions so

∂

∂ lnQ2
WðQ;qTÞ

¼
Z

d2kTKðkT;μÞWðQ;qT − kTÞ þConst ×WðQ;qTÞ:

ð68Þ

(See, for example, Eq. (25) of [69].) The partial derivative
here indicates that zA and zB should be fixed. The “Const”
is independent of transverse momentum and is related to
the anomalous dimension γ. It only contributes to a
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Q-dependent normalization. Our task is to find a reasonable
input KðkT; μQ0

Þ parametrization that satisfies Eq. (39) and
also gives a good phenomenological description of cross
sections in the region of Q ≈Q0 close to the input scale.
One way that KðkT; μÞ can contribute to the evolution of
WðQ ≈Q0; qTÞ is simply through a normalization. To
capture that behavior in Eq. (68), the model parametrization
should include a term proportional to a δ function,

KinputðkT; μQ0
Þ ∝ δð2ÞðkTÞ: ð69Þ

This is an example of step A1 applied to KðkT; μQ0
Þ. But as

step A2 prescribes, KinputðkT; μQ0
Þ also needs to match the

large kT perturbative description,

KinputðkT; μQ0
Þ ¼kT≈Q0 Kð1ÞðkT; μQ0

Þ; ð70Þ

where for now we work at order n ¼ 1. We also know that

Kð1ÞðkT; μQ0
Þ ¼ αsðμQ0

ÞCF

π2
1

k2T
: ð71Þ

[For a textbook derivation of Eq. (71), see Sec. 13.10.2 of
[3]. Also see Ref. [90] for earlier calculations. For higher
order K̃ expressions, see also [91–94], and see Ref. [41] for
translating between different notations. See also [95] for
more discussion of the operator definition.]
As kT decreases below Q0, Eq. (70) needs to transition

into a nonperturbative eparametrization in a way that is still
phenomenologically successful at describing Q ≈Q0

behavior. Existing evidence, both theoretical and phenom-
enological [76,77,96] and from lattice calculations [97],
points toward a shape for TMD pdfs and ffs that varies only
very weakly with scale in the Q ≈Q0 region. Our trial
parametrization will reproduce this behavior if it is fairly
sharply peaked around kT ≪ Q0 and then falls off rapidly
for larger kT. Equation (68) with Kð1ÞðkT; μQ0

Þ captures that
general behavior if we make the replacement k2T → k2T þ
m2

K and keep the nonperturbative parameter mK small
relative to Q0. Thus, we obtain a reasonable candidate

for a Kð1Þ
inputðkT; μQ0

Þ parametrization that satisfies Eq. (39)
if we combine the k2T → k2T þm2

K modification of Eq. (71)
with Eq. (69):

Kð1Þ
inputðkT; μQ0

Þ

¼ αsðμQ0
ÞCF

π2
1

k2T þm2
K
þ CKδ

ð2ÞðkTÞ: ð72Þ

The transformation into coordinate space is

K̃ð1Þ
inputðbT; μQ0

Þ ¼ 2αsðμQ0
ÞCF

π
K0ðbTmKÞ þ CK: ð73Þ

Satisfying both Eqs. (41) and (47) with the MS expression

for γð1ÞK requires

CK ¼ 2αsðμQ0
ÞCF

π
ln

�
mK

μQ0

�
: ð74Þ

So the input CS kernel is just the single parameter function

K̃ð1Þ
inputðbT; μQ0

Þ

¼ 2αsðμQ0
ÞCF

π

�
K0ðbTmKÞ þ ln

�
mK

μQ0

��
: ð75Þ

Note that the same massmK appears in Eq. (74) and the first
term of Eq. (75) reproduces the known lowest order
coordinate space K̃ð1ÞðbT; μQ0

Þ in MS at small bT:

lim
bT→0

K̃ð1Þ
inputðbT; μQ0

Þ

¼ −
2αsðμQ0

ÞCF

π

�
ln
�
bTμQ0

eγE

2

�
þ ln

�
mK

μQ0

��
þ CK

¼ −
2αsðμQ0

ÞCF

π
ln

�
bTμQ0

eγE

2

�
: ð76Þ

At large bT, we get the expected (see [69] Sec. VII-A)
constant negative behavior,

lim
bT→∞

K̃ð1Þ
inputðbT; μQ0

Þ ¼ 2αsðμQ0
ÞCF

π
ln

�
mK

μQ0

�
: ð77Þ

This completes steps A1 and A2 insofar as they pertain to
the CS kernel.
To get a K̃ð1ÞðbT; μQ0

Þ that can be extended to calcu-
lations of K̃ðbT; μQ0

Þ at bT ≪ 1=Q0, we need to proceed
with step A3 and choose a form for the scale transition
function Q̄0ðbTÞ. For now we will use the form in Eq. (C1)
from Appendix C for any numerical calculations and plots.
Later, we will demonstrate that the details of this choice do
not significantly affect calculations.
Finally, we get K̃ð1ÞðbT; μQ0

Þ by substituting the trial

K̃ð1Þ
inputðbT; μQ0

Þ from Eq. (75) into Eq. (46),

K̃ð1ÞðbT; μQ0
Þ ¼ K̃ð1Þ

inputðbT; μQ̄0
Þ −

Z
μQ0

μQ̄0

dμ0

μ0
γð1ÞK ðαsðμ0ÞÞ

¼ 2αsðμQ̄0
ÞCF

π

�
K0ðbTmKÞ þ ln

�
mK

μQ̄0

��

−
Z

μQ0

μQ̄0

dμ0

μ0
γð1ÞK ðαsðμ0ÞÞ; ð78Þ

Repeating Eq. (50) confirms that variations in the form of
Q̄0ðbTÞ only enter at order αsðμQ0

Þ2,
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d
da

K̃ð1ÞðbT; μQ0
Þ

¼ 1

μQ̄0

dμQ̄0

da

2βðμQ̄0
ÞCF

π

�
K0ðbTmKÞ þ ln

�
mK

μQ̄0

��

¼ OðαsðμQ0
Þ2Þ ð79Þ

for all bT.
This completes step A3 from Sec. VI, and it completes the

model building for the CS kernel with n ¼ 1. To determine
the phenomenological parametermK, onewould need to then
proceed to the next steps in Sec. VI, in particular B2. But for
that, one needs to first construct amodel for the TMDff itself,
which we will do in the next subsection.
Before proceeding to that step, it is instructive to

examine the trial K̃ð1ÞðbT; μQ0
Þ graphically and to verify

that the properties described above hold. For example, we
expect only a numerically mild, perturbatively suppressed,
dependence in K̃ð1ÞðbT; μQ0

Þ on the scale transformation
parameter a in the region between small and large bT,
consistent with Eq. (79). The lower panel of Fig. 2 shows
plots of our trial K̃ð1ÞðbT; μQ0

Þ with Q0 ¼ 2 GeV and
mK ¼ 0.1 GeV, while the top panel shows two slightly
different functional forms for Q̄0ðbTÞ from Eq. (42), as
given in Appendix C and Eq. (C2). The two transition
functions are generated by using two different values of a,
a ¼ 2 GeV and a ¼ 4 GeV. The narrow central panel
shows the percent variation between the two Q̄0ðbTÞ,
and it can be seen from the graph that they differ by a
maximum of about ≈30% for bT ≈ 0.3 GeV−1, but for bT
much larger or smaller than this the variation vanishes as
per our requirements.
The K̃ð1ÞðbT; μQ0

Þ calculation in the lower panel of Fig. 2
was performed using both of the two Q̄0ðbTÞ functions in
the top panel. We have plotted them as solid black and
dashed-red curves, but the two are visually indistinguish-
able, confirming the good approximate scale insensitivity in
Eq. (79). Despite the clearly visible difference between the
two Q̄0ðbTÞ functions in the upper panel in the region just
below bT ≈ C1=Q0 ≈ 0.5 GeV−1, the effect of switching
between them essentially vanishes in the K̃ð1ÞðbT; μQ0

Þ
calculations of the lower panel.
The normal way to calculate K̃ðbT; μQ0

Þ in the small-bT
limit is to transform to an RG scale, μQ0

→ C1=bT, and use
low order perturbative calculations. We should thus expect
to recover this in the small-bT limit of the K̃ð1ÞðbT; μQ0

Þ
from Fig. 2. To check this, let us define a “purely
perturbative” calculation of the small-bT K̃ðbT; μQ0

Þ called
K̃ð1Þ

pertðbT; μQ0
Þ:

K̃ð1Þ
pertðbT; μQ0

Þ≡ K̃ð1ÞðbT;C1=bTÞ −
Z

μQ0

C1=bT

dμ0

μ0
γð1ÞK ðαsðμ0ÞÞ:

ð80Þ

We have shown K̃ð1Þ
pertðbT; μQ0

Þ as the violet dashed curve in
the lower panel of Fig. 2. As expected, the purely
perturbative curve diverges at large bT, while it merges
with the K̃ð1ÞðbT; μQ0

Þ curves for bT ≪ 1=ΛQCD.
Care is needed when interpreting the numerically small

Q̄0ðbTÞ dependence observed in plots such as Fig. 2. In
cross section calculations such as Eq. (20), K̃ð1ÞðbT; μQ0

Þ
multiplies a lnðQ2=Q2

0Þ, so small errors will be amplified as
Q ≫ Q0. The effect of K̃ð1ÞðbT; μQ0

Þ on the bT-space cross
section is entirely through the overall factor of
exp fK̃ð1ÞðbT; μQ0

Þ lnðQ2=Q2
0Þg, as seen in Eq. (20). So,

FIG. 2. The example parametrization for K̃ð1ÞðbT; μQ0
Þ from

Eq. (78) obtained after performing the steps A1, A2, and A3 of
Sec. VI. The top panel shows two scale transformation functions
Q̄0ðbTÞ that satisfy Eq. (42). The choice of functional form is
Eq. (C2) from Appendix C, shown for two choices of a (solid
black and dashed red curves). For comparison, lines for the scales
μQ0

¼ 2 GeV (dash-dotted violet) and C1=bT (dashed violet) are
also shown. The central panel is the percent difference between
the Q̄0ðbTÞ obtained from the two values a ¼ 2 GeV and
a ¼ 4 GeV, calculated as the difference divided by the average.
The bottom panel is a plot of the actual K̃ð1ÞðbT; μQ0

Þ para-
metrization in Eq. (78). The results are shown for both a ¼
2 GeV and a ¼ 4 GeV (black solid and red dashed curves), but
the difference between the curves is not visible on the graph. The
violet dashed curve in the lower plot is a bT → 0 purely
perturbative calculation, Eq. (80), shown for comparison. See
text for details.
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we get a better sense of the size of errors after evolution by
plotting this exponent for a wide range of Q > Q0. For
example, we may calculate K̃ð1ÞðbT; μQ0

Þ using different
Q̄0ðbTÞ and compare the resulting exp fK̃ð1ÞðbT; μQ0

Þ×
lnðQ2=Q2

0Þg for several Q > Q0. We have shown an
example of this in Fig. 3 for the two different choices of
Q̄0ðbTÞ in the top panel of Fig. 2. In the top panel of Fig. 3,
we have replotted the two K̃ð1ÞðbT; μQ0

Þ curves from the
lower pane in Fig. 2, but now with axis ranges shifted until
the variation between the two calculations starts to become
visible on the plot. It is evident from the curves that, we
should expect any effect from varying a to be significant
only in a band around bT ≈ 0.3 GeV−1. In the lower panel,
we have plotted the ratio of exp fK̃ð1ÞðbT; μQ0

Þ lnðQ2=Q2
0Þg

for the two different values of a from the top panel. That is,
we plot

rða1; a2Þ≡
exp fK̃ð1ÞðbT; μQ0

Þ lnðQ2=Q2
0Þgja¼a2

exp fK̃ð1ÞðbT; μQ0
Þ lnðQ2=Q2

0Þgja¼a1

ð81Þ

for Q ¼ 4 GeV and Q ¼ 100 GeV. After evolving from
Q ¼ 2 GeV to Q ¼ 100 GeV, the maximum effect is just
under 6%. We will see in more detail how the scale
sensitivity propagates to the cross section in Sec. VII C.
So far, our example plots have only usedmK ¼ 0.1 GeV,

but nonperturbative parameters such as these will in general
need to be adjusted in fits. In our setup, adjustments to
parameters such as mK will have a negligible effect on the
bT ≲ 1=Q0 region of K̃ð1ÞðbT; μQ0

Þ so long as mK is kept
small relative to Q0. To illustrate this, we have plotted
K̃ð1ÞðbT; μQ0

Þ once again in Fig. 4 for several values of mK ,
now on a linear horizontal axis to magnify the effect on the
large bT region. The plot confirms that the region of bT ≲
0.5 GeV−1 is essentially unaffected by the values of themK
parameter between ≈0.1 GeV and ≈0.5 GeV, so long as
those values are kept reasonably small relative to Q0. A
vertical line indicates the bT ¼ 0.3 GeV−1 position where
we previously found the greatest scale sensitivity in the
perturbative part of the calculation—the peak of the bump
in Fig. 3. In contrast to the small scale sensitivity in the
bottom panel of Fig. 2, sensitivity to changes in the value of
mK is large and clearly visible, but only in the region of
large bT. The step of fitting the purely nonperturbative
parameter has been sequestered from the treatment of the
transition into the perturbative regime.

FIG. 3. Top panel: A blown-up version of the curves in the
lower panel of Fig. 2. The axes have been adjusted so that the
deviation between the two K̃ð1ÞðbT; μQ0

Þ calculations for different
Q̄0ðbTÞ are visible, and we can see that the most significant
variation is in a narrow band around bT ≈ 0.3 GeV−1. Bottom
panel: The effect of the choice of the transformation function on
the ratio in Eq. (81). All curves are obtained from our trial n ¼ 1
parametrization for Q ¼ 4 GeV and Q ¼ 100 GeV. At
Q ¼ 100 GeV, the ratio rða1; a2Þ deviates from unity by a
maximum of about 6% in a transition region around
bT ≈ 0.3 GeV−1.

FIG. 4. The trial K̃ð1ÞðbT; μQ0
Þ from Eq. (78) calculated for

three different values of the nonperturbative parameter mK. The
transformation function that was used is Eq. (C2) for a ¼ 2 GeV
as before. The black solid curve is identical to the black solid
curve in the lower panel of Fig. 2, but now we show two
additional values of mK , and with a linear horizontal axis. The
sensitivity to mK is only visible for bT ≳ C1=Q0 ≈ 0.5 GeV−1, as
expected. The vertical line at bT ¼ 0.3 GeV marks the point
where we previously found significant scale sensitivity, as
seen in Fig. 3.
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In phenomenological applications, one converges on
an unambiguous K̃ as one repeats the steps above but
with higher orders for the large kT region. That amounts
to constructing parametrizations for K̃ð2ÞðbT; μQ0

Þ,
K̃ð3ÞðbT; μQ0

Þ, etc. Going to larger n reduces sensitivity
to arbitrary choices such as the functional form for Q̄0ðbTÞ.
Quantities such as a and mK are also increasingly con-
strained as more data from larger Q are included in fitting.
Extending the above construction of K̃ð1ÞðbT; μQ0

Þ to the
case of K̃ð2ÞðbT; μQ0

Þ is straightforward and instructive, but
we leave it to future work.

B. TMD ff example

Next, we need to repeat steps A1–A3 from Sec. VI for
the TMD ffs themselves. To keep the discussion here
simple, we will assume that the TMD ffs are the same for
hadrons A and B, and we will continue to focus only on the
n ¼ 1 case. Fortunately, the steps are very analogous to the
CS kernel, so much of the below will be repetition.
A typical parametrization, common in TMD parton-

model descriptions of Type I processes, is a Gaussian,

Dð0;drÞ
input ðz; zkT; μQ0

; Q2
0Þ ¼

C
πM2

e−z
2k2T=M

2

: ð82Þ

This fails to satisfy Eq. (52) when, we try to extend it directly
to n ¼ 1 because it does not have the right functional form to
match toDðn;drÞðz; zkT; μQ0

; Q2
0Þwhen kT ≈Q0. To construct

a TMD ff for n ¼ 1, we need to describe the transition from a
nonperturbative peak such as Eq. (82) to a perturbative large
kT power-law tail. The simplest way to do this is to just
append Dðn;drÞðz; zkT; μQ0

; Q2
0Þ to Eq. (82) as an additive

term. Inside Dðn;drÞðz; zkT; μQ0
; Q2

0Þ, we can then make the
replacement k2T → k2T þm2

D, wheremD is a nonperturbative
parameter, to smooth the kT → 0 behavior into a non-
perturbative peak, analogous to what we did in Eq. (72).
Thus, our trial input parametrization is

Dð1;drÞ
input ðz; zkT; μQ0

; Q2
0Þ

¼ 1

2πz2
1

k2T þm2
D

�
AðdrÞðz; μQ0

Þ

þ BðdrÞðz; μQ0
Þ ln Q2

0

k2T þm2
D

�
þ CðdrÞ

πM2
e−z

2k2T=M
2

; ð83Þ

where we have utilized the following abbreviations:

AðdrÞðz; μÞ≡ αsðμÞ
π

�
½ðPqq ⊗ drÞðz; μÞ� −

3CF

2
drðz; μÞ

�
;

ð84Þ

BðdrÞðz; μÞ≡ αsðμÞCF

π
drðz; μÞ: ð85Þ

For a textbook derivation of the large kT perturbative
behavior see, for example, Eqs. (13.101) and (13.66) of
Ref. [3]. At the order αs, we are working in, the expressions
are independent of the exact renormalization scheme r used
for the collinear ffs, so we have left it general in Eq. (83) for
now. We will specialize to r ¼ MS later.
The TMD ff should at least approximately match its

collinear perturbative expansion for kT ≈Q0, so mD andM
should be kept small relative to Q0 in any fits.
One of our requirements from step A2 is that para-

metrizations of the TMD ffs must satisfy the integral
relation in Eq. (56) with Eq. (57) satisfied. We will use
this constraint to fix CðdrÞ, which so far is just another
nonperturbative parameter. Evaluating the transverse
momentum integral of Eq. (83), expanding in small

m=μQ0
, and solving for CðdrÞ in terms of dð1;drÞc ðz; μQ0

Þ give

CðdrÞ ¼ dð1;drÞc ðz; μQ0
Þ − AðdrÞðz; μQ0

Þ ln
�
μQ0

mD

�

− BðdrÞðz; μQ0
Þ ln

�
μQ0

mD

�
ln

�
Q2

0

μQ0
mD

�

þO

�
m
μQ0

�
: ð86Þ

We still need to choose a form for dð1;dcÞc ðz; μQ0
Þ, but our

requirement is that it must satisfy Eq. (57), where we allow
them=μQ0

-suppressed contributions to be chosen to give an
optimal parametrization. Thus, let us define the power-
suppressed terms in Eq. (57) (again, for n ¼ 1) to exactly
equal those in Eq. (86). Then,

CðdrÞ ¼ dð1;drÞc ðz; μQ0
Þ − AðdrÞðz; μQ0

Þ ln
�
μQ0

mD

�

− BðdrÞðz; μQ0
Þ ln

�
μQ0

mD

�
ln

�
Q2

0

μQ0
mD

�

¼ drðz; μQ0
Þ − AðdrÞðz; μQ0

Þ ln
�
μQ0

mD

�

− BðdrÞðz; μQ0
Þ ln

�
μQ0

mD

�
ln

�
Q2

0

μQ0
mD

�

þ Δðn;drÞðαsðμQÞÞ; ð87Þ

where in the last line we have used Eq. (31). These last few
steps are necessary if we wish to relate CðdrÞ to known
collinear ffs in standard schemes.
Equation (83), with Eq. (87) now for CðdrÞ, is the

parametrization of the TMD ff that is to be substituted
into Eq. (22) and, in accordance with step B1, used
phenomenologically for describing Type I processes with
standard TMD parton model techniques near the input
scale Q ≈Q0.
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To get a general sense of what the Eq. (83) para-
metrization of the TMD ff looks like at Q ¼ Q0, we have
plotted it in Fig. 5 using MS collinear ffs and reasonable
values of the mass parameters mD and M. (The non-
perturbative mass parameters are kept small relative to
Q0 ¼ 2.0 GeV.) For this case, Δðn;d

MS
ÞðαsðμQÞÞ is given by

Eq. (34). The plot is for a sample value of z ¼ 0.3, but other
values of z produce qualitatively similar curves, as can
easily be checked. Since there is a general expectation from
existing Type I TMD phenomenology that the small
transverse momentum region in moderate Q processes is
well-described by Gaussian TMDs, we have overlaid a
Gaussian curve on top of Eq. (83), confirming that the
kT ≪ Q0 region retains a generally Gaussian shape.
As per step B1, the small kT region is to be described by

fitting the mD andM parameters to measurements. So long
as these mass parameters are reasonably small compared to
Q0, the parametrization at least approximately recovers the
lowest order perturbative description in collinear factori-
zation around kT ≈Q0. In principle M and mD can both
have z dependence:

M → MðzÞ; mD → mDðzÞ; ð88Þ

but we will not include this in any of our example plots.
While, we intend for the above parametrization to be

only a toy example to illustrate broader procedural points, it
is worth noting that at least some phenomenological
support for an additive two-component model [such as
Eq. (83)] exists in the observation from [42] that a sum of
two peaked nonperturbative functions provides a good fit to
data in the moderate Q region. In that case, the two peaked
functions were both Gaussians, but the trend is nevertheless
suggestive of a two component form more generally.
Reference [98] has also confirmed that a combination of

a Gaussian peak at small transverse momentum and a
power-law tail at large transverse momentum provides a
reasonable description of moderate Q data.
The two model parameters in our construction have

natural interpretations: The lowercasemD describes exactly
how the TMD ff transitions from the Gaussian-like behav-
ior typically ascribed to nonperturbative dependence to the
power-law behavior more typical of a perturbative tail,
while the capitalM parameters control the precise shape of
the Gaussian peak at small kT.
The inverse Fourier-Bessel transform into transverse

coordinate space is

z2D̃ð1;drÞ
input ðz;bT;μQ0

;Q2
0Þ¼AðdrÞðz;μQ0

ÞK0ðbTmDÞþBðdrÞðz;μQ0
ÞK0ðbTmDÞ ln

�
bT
2mD

Q2
0e

γE

�
þCðdrÞ exp

�
−
b2TM

2

4z2

�
; ð89Þ

where CðdcÞ is now defined as in Eq. (87). For checking various properties of the input TMD ff, it will also be useful to have
the mbT → 0 limit,

z2D̃ð1;drÞ
input ðz; bT; μQ0

; Q2
0Þ ¼ −AðdrÞðz; μQ0

Þ ln
�
bTμQ0

eγE

2

�
− BðdrÞðz; μQ0

Þ
�
ln2

�
bTμQ0

eγE

2

�
þ ln

�
bTμQ0

eγE

2

�
ln

�
Q2

0

μ2Q0

��

þ drðz; μQ0
Þ þ Δð1;drÞðαsðμQÞÞ þOðmbTÞ: ð90Þ

Or, specializing to r ¼ MS,

z2D̃
ð1;d

MS
Þ

input ðz; bT; μQ0
; Q2

0Þ ¼ −Aðd
MS

Þðz; μQ0
Þ ln

�
bTμQ0

eγE

2

�
− Bðd

MS
Þðz; μQ0

Þ
�
ln2

�
bTμQ0

eγE

2

�
þ ln

�
bTμQ0

eγE

2

�
ln

�
Q2

0

μ2Q0

��

þ αsðμQÞ
2π

Z
1

z

dz0

z0
dMSðz=z0; μQÞ½2Pqqðz0Þ ln z0 þ CFð1 − z0Þ� þ dMSðz; μQ0

Þ þOðmbTÞ: ð91Þ

FIG. 5. The n ¼ 1 input TMD ff from Eq. (83). The function is
shown for M ¼ 0.2 GeV and mD ¼ 0.3 GeV at a fixed value of
z ¼ 0.3 (blue dot-dashed curve). For comparison, we have also
overlaid a Gaussian (black dashed) curve. Up to kT ≈ 1.0 GeV,
both lines exhibit similar profiles. The change in sign at larger kT
is due to matching to the perturbative collinear factorizaton
expression using MS collinear ffs.
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Equation (91) is the usual small-bT OPE applied to
D̃ðz; bT; μQ0

; Q2
0Þ in the MS scheme through order αsðμQ0

Þ.
Using Eq. (90), it is straightforward to verify Eqs. (54)–(55)
by directly applying to Eq. (90) a partial derivative with
respect to Q0 and a total derivative with respect to μQ0

.
This completes our steps A1 and A2 from Sec. VI. Now,

we have a D̃ð1;dcÞ
input ðz; bT; μQ0

; Q2
0Þ parametrization that is

suitable for Type I phenomenological applications.
Finally, for step A3 we need to construct a paramet-

rization D̃ðn;drÞðz; bT; μQ0
; Q2

0Þ that applies not only

near the input scale Q ≈Q0 but also to Q ≫ Q0. To
switch to the final underlined parametrization, we can
continue to use the same Q̄0ðbTÞ from Sec. IV and
Appendix C that we used for the CS kernel.
Implementing step A3 amounts to simply substituting

our D̃ð1;dcÞ
input ðz; bT; μQ0

; Q2
0Þ from Eq. (89) into the right-

hand side of Eq. (61) along with the K̃ð1Þ
inputðbT; μQ̄0

Þ that
we already constructed in Sec. VII A, Eq. (75). The final
expression is

D̃ð1;d
MS

Þðz; bT; μQ0
; Q2

0Þ

¼ D̃
ð1;d

MS
Þ

input ðz; bT; μQ̄0
; Q̄2

0Þ exp
�Z

μQ0

μQ̄0

dμ0

μ0

�
γð1Þðαsðμ0Þ; 1Þ − ln

Q0

μ0
γð1ÞK ðαsðμ0ÞÞ

�
þ ln

Q0

Q̄0

K̃ð1Þ
inputðbT; μQ̄0

Þ
�
: ð92Þ

This is simply Eq. (61) again but now we mean it to be
implied that it is being used with the specific models from
Eqs. (72) and (83). From Eq. (89),

z2D̃
ð1;d

MS
Þ

input ðz; bT; μQ̄0
; Q̄2

0Þ
¼ Aðd

MS
Þðz; μQ̄0

ÞK0ðbTmDÞ

þ Bðd
MS

Þðz; μQ̄0
ÞK0ðbTmDÞ ln

�
bT
2mD

Q̄2
0e

γE

�

þ Cðd
MS

Þ exp
�
−
b2TM

2

4z2

�
; ð93Þ

and K̃ð1ÞðbT; μQ̄0
Þ is the same n ¼ 1 result already written

in Eq. (78). Cðd
MS

Þ is given by Eq. (87).
For illustration, Fig. 6 is a plot of our trial

D̃ð1;d
MS

Þðz; bT; μQ0
; Q2

0Þ from Eq. (92), plotted in coordinate
space, where as before we have used an input scale
Q0 ¼ 2 GeV and z ¼ 0.3. We have chosen typical sizes
for the nonperturbative mass parameters: M ¼ 0.2 GeV,
mD ¼ 0.3 GeV, and mK ¼ 0.1 GeV. As in the case of
K̃ð1ÞðbT; μQ0

Þ, we are able to test scale sensitivity in the
intermediate bT region by varying the transition function
Q̄0ðbTÞ. In Fig. 6, we do this by again switching between
the two Q̄0ðbTÞ functions from the upper panel of Fig. 2;
the solid black and dashed red curves are for a ¼ 2 GeV
and a ¼ 4 GeV, respectively. The weakness of the
observed variation confirms that the setup is behaving as
intended [recall Eq. (64)]. As with K̃ð1ÞðbT; μQ0

Þ, sensitivity
to parameters such as a can in principle be reduced still
further by including higher orders and fitting at larger Q.
This requires matching to a higher order treatment of the
large qT tail—see, for example, Refs. [93,99,100].

C. Cross section examples

With Eq. (92) now completely set up, all that is needed
to get the cross section is to substitute it, along with
Eq. (78), into Eq. (65) to obtain a calculation of
Wð1ÞðqT; QÞ for any Q ≥ Q0. To illustrate how the features
of the D̃ð1;d

MS
Þðz; bT; μQ0

; Q2
0Þ and K̃ð1ÞðbT; μQ0

Þ paramet-
rizations from the previous subsections influence
Wð1ÞðqT; QÞ, and to finish reviewing the steps of
Sec. VI, we will end this section by examining several
example plots of Wð1ÞðqT; QÞ.

FIG. 6. The example D̃ð1;d
MS

Þðz; bT; μQ0
; Q2

0Þ from Eq. (92),
with typical nonperturbative mass parameters chosen for illus-
tration purposes; mD and M have the same values as in Fig. 5
whilemK has the same value as in the lower panel of Fig. 2. As in
all previous plots, we have also fixed Q0 ¼ 2 GeV. The differ-
ence between the two curves corresponds to switching between
the two transition functions Q̄0ðbTÞ in the upper panel of Fig. 2,
as indicated by the two values of a. This figure is the culmination
of steps A1, A2, and A3 from Sec. VI.
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First, Fig. 7 shows qTWð1ÞðqT; QÞ (divided by an
uninteresting normalization Hð1Þ) plotted versus qT and
with a selection of Q values just above the input scale
Q0 ¼ 2 GeV. The nonperturbative parameters are the same
M ¼ 0.2 GeV, mD ¼ 0.3 GeV, and mK ¼ 0.1 GeV values
that we used in our illustrations from the previous sub-
section, and the Q̄0ðbTÞ is the same transition function from
the upper panel of Fig. 2 with a ¼ 2 GeV. The solid black
curves are obtained if we substitute the underlined func-
tions of Eqs. (78) and (92) into Eq. (65). For comparison,
the blue dot-dashed curves are obtained when we simply
substitute the input parametrizations, Eqs. (75) and (91),
into Eq. (65), instead of the final underlined parametriza-
tions optimized for the small bT limit. Showing both curves
confirms that switching between “input” and underlined
parametrizations results in a negligible difference in the
cross section calculation at qT ≪ QwhenQ is only slightly
larger than Q0. In Fig. 7, the difference between the solid
black and dot-dashed blue curves is nearly invisible for Q
between Q0 and 2Q0, and only becomes significant for
Q ≈ 5Q0 and larger qT. Making these observations corre-
sponds to step B3 from Sec. VI. They confirm that the input
or the underlined parametrizations are both valid and
interchangeable for phenomenological Type I applications
near Q ≈Q0.

Next, Fig. 8 shows the Wð1ÞðqT; QÞ calculation (from
now on, we will always use the underlined parametriza-
tions) plotted against qT on a logarithmic scale for a
selection of Q covering a large range between Q0 ¼
2 GeV and Q ¼ 1000 GeV. The top panel is calculated
with a fixed scale transformation function Q̄0ðbTÞ, specifi-
cally the a ¼ 2 GeV curve in Fig. 2. The bands in the top
panel were generated by varying the parameters M, mD,
and mK associated with intrinsic transverse momentum by
50% around the values we used in the previous subsections,
M ¼ 0.2 GeV, mD ¼ 0.3 GeV, and mK ¼ 0.1 GeV. The
lower panel in Fig. 8 shows the same Wð1ÞðqT; QÞ calcu-
lations, but now with the intrinsic nonperturbative scales
fixed to their previous values. Instead, the bands are
generated by varying the scale transformation function
Q̄0ðbTÞ between the two curves in the upper panel of Fig. 2
corresponding to a ¼ 2 GeV and a ¼ 4 GeV. Comparing

FIG. 7. Wð1ÞðqT; QÞ from Eq. (65) calculated using
D̃ð1;d

MS
Þðz; bT; μQ0

; Q2
0Þ and K̃ð1ÞðbT; μQ0

Þ from Eqs. (78) and
(92) (solid black curves) for Q ¼ Q0, 2Q0, and 5Q0. Here, as in
all remaining plots that we will show, we use an input scale of
Q0 ¼ 2 GeV and z ¼ 0.3. The scale transformation function
Q̄0ðbTÞ used to produce these curves is the solid black function in
the upper panel of Fig. 2 corresponding to a ¼ 2 GeV. The
model parameters are the same M ¼ 0.2 GeV, mD ¼ 0.3 GeV,
and mK ¼ 0.1 GeV that we used in the plots of the previous
subsection. For comparison, Wð1ÞðqT; QÞ calculations are also

shown wherein K̃ð1Þ
inputðbT; μQ̄0

Þ and D̃
ð1;d

MS
Þ

input ðz; bT; μQ0
; Q2

0Þ from
Eqs. (75) and (91) are used in Eq. (65) (blue dot-dashed curves),
in place of the underlined parametrizations. Note the negli-
gible difference for Q ≈Q0 and small qT. See text for further
discussion.

FIG. 8. Wð1ÞðqT; QÞ, calculated using the trial underlined
parametrizations from this section and evolved to scales much
larger than Q0. The dotted lines are calculated using fixed
intrinsic scales M ¼ 0.2 GeV, mD ¼ 0.3 GeV, and mK ¼
0.1 GeV and the usual scale transformation function with
a ¼ 2 GeV. The colored bands in the top panel show the effect
of varying nonperturbative mass parameters by �50% with
respect to the values used for dotted lines. The bands in the
bottom panel show the perturbative scale sensitivity from varying
a between 2 GeV and 4 GeV, with masses fixed to those of the
dotted lines. For reference, we also show the Q ¼ Q0 case as the
black dotted line.

COMBINING NONPERTURBATIVE TRANSVERSE MOMENTUM … PHYS. REV. D 106, 034002 (2022)

034002-25

12.0 

; 10.0 
::::::: 8.0 
~ 6.0 

2: 4.0 
~ 2.0 
~ 0.0 

E-< 
t:,,-2.0 

Qo = 2GeV z = 0.3 

--- f/l •dMs ) k(l) 
input , input 

_ f/1 ,dMs ) K(l) 
- ,_ 

Q = 2Qo 

,.Q = 5Qo 
' 

-4.0 ~--~---~---~--~ 
0.0 1.0 2.0 

QT(GeV) 

3.0 4.0 

10- 2 

10-2 

Qo = 2GeV z = 0.3 

a= 2GeV 
Q = 2GeV 

lOGeV -
........ \.': lO0GeV 

: '••·· .. , , . .. ,, lO00GeV ........... .... ,, 
\ ''••············· ::::::::::: :: ::::::::::::·,:·,•,,,,,,,.,,_ 

M = o.i:::8:i8 GeV 
m - 0 3+0 -15 GeV D - · -0.15 
m - 0 1 +o.o5 Ge V K - · -0.05 

.. :·:.\ Qo < a< 2Qo 
~-. - •, 

"• •· 

0.0 

t>, ··········· .,,,,,,,.,. 
M = 0.2GeV 
mn =0.3GeV 
mK =0.lGeV 

2.0 4.0 6.0 8.0 10.0 12.0 

QT(GeV) 



the upper and lower panels in Fig. 8 shows that, within the
range of parameters considered here, scale sensitivity is
far weaker than the sensitivity to intrinsic transverse
momentum parameters. On the logarithmic scale, the scale
sensitivity is only visible, even at large Q, around the node
where Wð1ÞðqT; QÞ crosses zero.
Nevertheless, sensitivity to intrinsic transverse momen-

tum parameters does clearly diminish with increasing Q,
especially for qT ≳Q0. To get a sense of how rapidly it
decreases with our parametrizations, we have plotted the
top curves from Fig. 8 again in Fig. 9, but now with linear
axes and only for the region of qT < 4.0 GeV in order to
magnify sensitivity to variations in M, mD, and mK . We
have also normalized the curves by their values at qT ¼ 0.
The upper panel in Fig. 9 shows the bands for smaller Q ¼
2 GeV andQ ¼ 10 GeV scales, and it shows that the small
transverse momentum region qT ≪ Q is very sensitive to
nonperturbative intrinsic mass scales. At qT ¼ 0, the width
of the band is about an order of magnitude for Q ≈Q0.
The lower panel of Fig. 9 shows the bands for the
larger Q ¼ 100 GeV and Q ¼ 1000 GeV scales. There,
the sensitivity to intrinsic mass parameters at qT ¼ 0 is
much weaker than for the smaller Q, and it becomes

essentially invisible above about qT ≳ 0.02Q. This weak
sensitivity to intrinsic nonperturbative transverse momen-
tum parameters at qT ≫ m will be especially important if
we need to consistently match to fixed order asymptotic
calculations [101].
In phenomenological applications such as fitting, non-

perturbative parameters such asM,mD, andmK , along with
scale setting choices such as the value of a, become better
constrained each time data from somewhat higher Q are
included in the fitting. As higher Q are incorporated into
fits, and input parameters become better constrained, it
eventually becomes unambiguous how to evolve to still
higher Q. The steps that, we have described in this
subsection, along with the plots used to illustrate them,
correspond to steps C1 and C2 in Sec. VI.
The illustrative examples in this subsection are to

confirm that the setup in Sec. VI reproduces general
expectations. We emphasize once again, before closing
the discussion of examples, that our purpose here is not to
advocate for a particular choice of a model parametrization
for small kT dependence, but rather to illustrate the general
steps from Sec. VI in concrete situations. Ultimately, it is up
to phenomenological tests to assess the success of any
particular model or calculation of nonperturbative trans-
verse momentum dependence.

VIII. INTEGRAL RELATIONS II

It is worthwhile to return again to the integral relations
discussed in Sec. III in light of parametrizations such as the
one we constructed above. Now recall how integral
relations often appear in phenomenological extractions
of TMD functions near the input scale. For Q ≈
1–2 GeV and kT ≪ Q0, it is well-known that the shapes
of transverse momentum distributions are generally well
approximated by Gaussians, so one might reasonably adopt
a parametrization of the form

Dðz; zkT; μQ0
; Q2

0Þ¼??
dðz; μQ0

Þ
πM2

e−z
2k2T=M

2

; ð94Þ

where we have dropped subscripts and superscripts to
simplify expressions. The TMD and collinear ffs para-
metrized in this way automatically satisfy the parton model
integral relation

2πz2
Z

dkTkTDðz; zkT; μQ0
; Q2

0Þ ¼ dðz; μQ0
Þ: ð95Þ

A parametrization such as Eq. (94) imposes a strong
suppression on large kT, cutting off the large kT tail.
Because large kT dependence is generally regarded as
perturbatively calculable, it is tempting to assume that it
is possible to fix Eq. (94) in later steps simply by appending
a purely perturbative tail for the region of kT ≳Q0 while
leaving the initial Gaussian of Eq. (94) completely

FIG. 9. Same as the top panel of Fig. 8, but with the horizontal
axes now restricted to qT < 4 GeV, with linear vertical axes, and
with each Wð1ÞðqT; QÞ curve normalized to its value at qT ¼ 0.
The upper panel shows the lower Q values, Q ¼ Q0 ¼ 2 GeV
andQ ¼ 10 GeV, while the lower panel shows the largeQ values
Q ¼ 100, 1000 GeV.
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unchanged. Taking that view literally would mean that, as
regards the integral relation, one does not need to modify
either Eqs. (94) or (95) other than to explicitly indicate an
upper cutoff on the integral on the right-hand side of
Eq. (95) and to specify that higher orders in αs and/or 1=Q0

are neglected:

2πz2
Z

μQ0

0

dkTkTDðz; zkT; μQ0
; Q2

0Þ

¼?? dðz; μQ0
Þ þ small corrections: ð96Þ

A problem with this approach can be seen, however, in our
examples from the previous section, where Eq. (96) would
amount to applying the transverse momentum integral in
Eqs. (96) to (83) with CðdrÞ ¼ drðz; μQ0

Þ instead of Eq. (87)
so that

z2D̃ð1;drÞ
input ðz; bT; μQ0

; Q2
0Þ

¼ AðdrÞðz; μQ0
ÞK0ðbTmDÞ

þ BðdrÞðz; μQ0
ÞK0ðbTmDÞ ln

�
bT
2mD

Q2
0e

γE

�

þ drðz; μQ0
Þ exp

�
−
b2TM

2

4z2

�
: ð97Þ

But then the integral on the left-hand side of Eq. (96)
becomes

2πz2
Z

μQ0

0

dkTkTDinputðz; zkT; μQ0
; Q2

0Þ

¼ drðz; μQ0
Þ þ AðdrÞðz; μQ0

Þ ln
�
μQ0

mD

�

þ BðdrÞðz; μQ0
Þln2

�
μ2Q0

m2
D

�
: ð98Þ

The last two terms involving AðdrÞ and BðdrÞ would thus
need to be identified with the “small corrections” of
Eq. (96). However, the factorization theorem applies to
the limit that m=μQ0

→ 0, so the last two terms are not the
purely perturbative corrections implied by an expression
such as Eq. (96). While AðdrÞðz; μQ0

Þ and BðdrÞðz; μQ0
Þ

involve a coupling αsðμQ0
Þ that vanishes asymptotically

such as

αsðμQ0
Þ ∼ 1

lnðμQ0
=ΛQCDÞ

;

at large μQ0
, the logarithms in Eq. (98) more than

compensate for this in the limit of large μQ0
. Indeed, the

term in Eq. (98) involving BðdrÞðz; μQ0
Þ blows up as

μQ0
=m → ∞. To keep a consistent integral relation

that matches a parton model interpretation while also

accounting for tails, evolution, etc., the coefficient of the
Gaussian in Eq. (94) needs to be an expression such as
Eq. (87) rather than a simple collinear ff.
To write a version of Eq. (96) that is consistent with the

presence of a large kT tail region, as with our example in
Sec. VII B with Eq. (89), it was necessary to interpolate
between the nonperturbative and tail regions first.

IX. COMPARISON WITH THE
STANDARD PRESENTATION

After step C2 of Sec. VI, we noted that it is possible to
recast final results into a form more familiar from past
applications of TMD evolution in Type II contexts. We will
show how to perform that translation in this section. We
emphasize that the steps below are not necessary for
implementing the approach above, so this section may
be skipped without missing the main points of this article.
Most of the steps below amount to reshuffling factors in the
cross section expression. Ultimately, however, the trans-
lation is important for comparing approaches.

A. The b� method

Readers who are familiar with standard implementations
of the CSS formalism might find the surface appearance
of our expressions for the evolved WðnÞðqT; QÞ in
Secs. IV–VII somewhat odd. Normally, the cross section
is written with nonperturbative TMD effects contained in
separate exponential factors usually notated

e−gAðzA;bTÞ; e−gBðzB;bTÞ; and e
−gKðbTÞ lnQ

2

Q2
0 ; ð99Þ

where the nonperturbative transverse momentum depend-
ence is encoded in the (coordinate dependence of) the
lowercase g functions in the exponents. (The gA and gB
functions are placed inside exponents so that they retain the
appearance of Sudakov form factor contributions.) Then, in
the usual presentation, the rest of the factors in the cross
section automatically get expressed in terms of collinear
functions by using the OPE to approximate the small bT
behavior. For a specific example of what we mean here,
consider Eq. (13.81) of [3].
In this subsection, we will review the steps for trans-

forming the low-qT cross section [or rather WðqT; QÞ] in
Eq. (20) into the form that involves Eq. (99) g functions.
Setting up the usual presentation of the cross section

begins with a partition of the coordinate space W̃ðbT; QÞ
into regions considered large and small bT. One does
this by defining an arbitrary function of bT, traditionally
called b�ðbTÞ. The function should smoothly interpolate
between bT at small values of bT and a maximum transverse
size bmax as bT grows to bT ≫ bmax. It is otherwise
arbitrary. In other words,
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b�ðbTÞ ¼
�
bT bT ≪ bmax

bmax bT ≫ bmax
: ð100Þ

The value of bmax is also arbitrary, but it is usually interpreted
roughly as a value somewhere near the boundary between
nonperturbatively large and perturbatively small regions of
bT. The purpose of the “b� method” [102] is to sequester a
purely perturbative calculation of transverse coordinate
dependence away from a part that involves nonperturbative
modeling or fitting. While any reasonably well-behaved,
smooth function of bT that obeys the right-hand side of
Eq. (100) is a valid b�ðbTÞ, the most often used choice is

b�ðbTÞ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2T=b
2
max

p : ð101Þ

Later on, we will also need to define another hard scale that
approaches the RG improved value of μ ¼ C1=bT appro-
priate to the bT → 0 limit but that levels off at a fixed scale at
large bT. The simplest (and standard) way to do this is to just
use the inverse of b� and define

μb� ≡ C1=b�: ð102Þ

The behavior of μb� is similar to that of our Q̄0ðbTÞ, but
Q̄0ðbTÞ approaches Q0 at large bT while μb� approaches
C1=bmax. [Indeed, in our treatment belowwe could opt to use
Q̄0ðbTÞ instead of μb� , but wewill continue with μb� to make
the comparison with standard expressions clear.]
Next, one solves Eq. (18) to relate a TMD ff (for hadron

A, for example) at an input scale Q0 to the TMD ff at any
other scale

ffiffiffi
ζ

p
by

D̃Aðz; bT; μ; ζÞ

¼ D̃Aðz; bT; μ; Q2
0Þ exp

�
K̃ðbT; μÞ ln

� ffiffiffi
ζ

p
Q0

��
: ð103Þ

Exactly the same equation applies independently of the
transverse coordinate bT, so we also have

D̃Aðz; b�; μ; ζÞ

¼ D̃Aðz; b�; μ; Q2
0Þ exp

�
K̃ðb�; μÞ ln

� ffiffiffi
ζ

p
Q0

��
: ð104Þ

Then the ratio of Eqs. (103) and (104) is

D̃Aðz;bT;μ;ζÞ
D̃Aðz;b�;μ;ζÞ

¼ D̃Aðz;bT;μ;Q2
0Þ

D̃Aðz;b�;μ;Q2
0Þ

×exp

�
−½K̃ðb�;μÞ− K̃ðbT;μÞ� ln

� ffiffiffi
ζ

p
Q0

��

¼ D̃Aðz;bT;μ;Q2
0Þ

D̃Aðz;b�;μ;Q2
0Þ
exp

�
−gKðbTÞ ln

� ffiffiffi
ζ

p
Q0

��

¼ D̃Aðz;bT;μQ0
;Q2

0Þ
D̃Aðz;b�;μQ0

;Q2
0Þ
exp

�
−gKðbTÞ ln

� ffiffiffi
ζ

p
Q0

��
; ð105Þ

where on the second line, we have defined

gKðbTÞ≡ K̃ðb�; μÞ − K̃ðbT; μÞ: ð106Þ

Since the μ dependence of K̃ðbT; μÞ is also bT independent,
gKðbTÞ is μ independent. That is, μ dependence cancels
between the two terms, so gKðbTÞ is μ independent by
definition. Also, on the last line of Eq. (105), we have
used that the μ dependence of D̃Aðz; bT; μ; Q2

0Þ is a bT-
independent overall factor—recall the evolution equation in
Eq. (19)—to specialize to the case of μ ¼ μQ0

.
Next, one defines the logarithm of the ratio on the last

line of Eq. (105) by the symbol −gAðz; bTÞ:

−gAðz; bTÞ≡ ln

�
D̃Aðz; bT; μQ0

; Q2
0Þ

D̃Aðz; b�; μQ0
; Q2

0Þ
�
; ð107Þ

with the A subscript reminding one of potential sensitivity
to the identity of the final state hadron. Combining
Eqs. (105) and (107) gives

D̃Aðz; bT; μ; ζÞ ¼ D̃Aðz; b�; μ; ζÞ

× exp

�
−gAðz; bTÞ − gKðbTÞ ln

� ffiffiffi
ζ

p
Q0

��
:

ð108Þ

The D̃Aðz; b�; μ; ζÞ on the right-hand side is still the exact
operator definition, but it is only ever evaluated at
bT ≤ bmax. The remaining exponential factor is sensitive
to the large bT region. As of yet, there are no approx-
imations. In particular, any sensitivity to bmax or the choice
of the b� parametrization in Eq. (100) cancels exactly
between the factors on the right-hand side of Eq. (108). We
have simply taken the original definition of D̃Aðz; b�; μ; ζÞ
and partitioned it into two factors.
The logarithm on the right-hand side of the definition in

Eq. (107) is cosmetic; expressing the nonperturbative ratio
as the exponential of a function −gAðz; bTÞ gives it the
appearance of a type of contribution to a Sudakov
exponent.
Despite the apparent arbitrariness of the above steps, one

can aniticipate the motivation for writing the TMD ff as in
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Eq. (108) by looking ahead. We obtain the full cross section
by substituting Eq. (108) into the evolved WðqT; QÞ in
Eq. (20) with μ ¼ μQ0

and
ffiffiffi
ζ

p ¼ Q0. In the resulting
cross section expression, D̃Aðz; b�; μQ0

; Q2
0Þ will be well-

approximated by collinear factorization at bT ≈ 1=Q0 so
long as bmax ≈ 1=Q0 and Q0 is reasonably large compared
to nonperturbative scales. This would be sufficient for
calculations with Q ≈Q0, where the 1=Q0 ≲ bT < ∞
region is the only relevant contribution. However, if we
plan to evolve to very large Q, then we also need an

accurate treatment of D̃Aðz; b�; μQ0
; Q2

0Þ in the bT ≪ 1=Q0

limit. But the fixed order calculations of D̃Aðz; b�; μQ0
; Q2

0Þ
in collinear factorization are poorly behaved as bTμQ0

→ 0,
even though this is the limit where perturbative QCD
should be most reliable.
As usual, therefore, we need to apply the evolution

equations [Eq. (59)] once again in order to evolve
D̃Aðz; b�; μ; ζÞ from μ, ζ to the RG-improved μb� , μ2b� .
The evolution equations allow us to rewrite Eq. (108) as

D̃Aðz; bT; μ; ζÞ ¼ D̃Aðz; b�; μ; ζÞ exp
�
−gAðz; bTÞ − gKðbTÞ ln

� ffiffiffi
ζ

p
Q0

��

¼ D̃Aðz; b�; μb� ; μ2b� Þ exp
�Z

μ

μb�

dμ0

μ0

�
γðαsðμ0Þ; 1Þ − ln

ffiffiffi
ζ

p
μ0

γKðαsðμ0ÞÞ
�
þ ln

ffiffiffi
ζ

p
μb�

K̃ðb�; μb� Þ
�

× exp

�
−gAðz; bTÞ − gKðbTÞ ln

� ffiffiffi
ζ

p
Q0

��
: ð109Þ

Recall that μb� is defined in Eq. (102). There is, of course, an exactly analogous equation for D̃Bðz; b�; μb� ; μ2b� Þ. Substituting
the evolved versions of D̃Aðz; b�; μb� ; μ2b�Þ and D̃Bðz; b�; μb� ; μ2b� Þ into theW-term factorization formula Eq. (15) and setting

the final scales equal to μ ¼ μQ and ζ ¼ Q2 in Eq. (15) gives

WðqT; QÞ ¼ HðμQ;C2Þ
Z

d2bT
ð2πÞ2 e

−iqT·bTD̃AðzA; b�; μb� ; μ2b� ÞD̃BðzB; b�; μb� ; μ2b� Þ

× exp

�
2

Z
μQ

μb�

dμ0

μ0

�
γðαsðμ0Þ; 1Þ − ln

Q
μ0
γKðαsðμ0ÞÞ

�
þ ln

Q2

μ2b�
K̃ðb�; μb�Þ

�

× exp

�
−gAðzA; bTÞ − gBðzB; bTÞ − gKðbTÞ ln

�
Q2

Q2
0

��
: ð110Þ

Equation (110) is very close to the standard way of
expressing the CSS-evolved W term.3 As we have written
it, there are still no approximations; the solutions to the
evolution equations are exact and the steps above simply
reorganize the original factorization formula in Eq. (15).
However, by writing WðqT; QÞ as in Eq. (110), we have
isolated on the first two lines those factors that can be
confidently approximated in perturbation theory using
collinear factorization. The value of bT never rises above
bmax, and the scale μb� never drops below C1=bmax.
Therefore, one obtains well-behaved perturbative calcula-
tions by replacing HðμQ;C2Þ, γðαsðμ0Þ; 1Þ, γKðαsðμ0ÞÞ, and
K̃ðb�; μb� Þ by their nth-order perturbative calculations.
For the TMD ffs themselves on the first line, the choice

of μ ¼ ffiffiffi
ζ

p ¼ μb� implements RG improvement for the

limit of small bT. As long as bmax is small enough,
D̃A;BðzA;B; b�; μb� ; μ2b� Þ can be expanded in an OPE:

D̃ðn;drÞðz; b�; μb� ; μ2b� Þ

¼
Z

1

z

dẑ
ẑ3−2ϵ

drðẑ; μb� ÞC̃ðnÞ
D ðz=ẑ; bT; μ2b� ; μb� ; αsðμb� ÞÞ

þOðmbTÞ; ð111Þ

which is a more explicit version of Eq. (25) but in bT space.
(Here, as usual,m represents any of the small intrinsic mass
scales, including now 1=bmax.) Substituting Eq. (111) for
both D̃AðzA; b�; μb� ; μ2b�Þ and D̃BðzB; b�; μb� ; μ2b� Þ, along
with the other perturbative approximations mentioned
above, recovers the standard CSS expression—compare,
for example, with the Drell-Yan version of TMD factori-
zation in Eq. (22) of [69].
The b� method, as it is explained here, has several

desirable properties. There is the elegant feature that, in
dealing with the nonperturbative region of large bT, one

3There are, however, a large number of minor but not always
obvious variations in the form of the expression in the literature.
There are also many different systems of notation. See [41] for
some translation.
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never modifies or approximates the operator definitions of
the TMD ffs themselves. Rather, on the first line of
Eq. (110), we have simply changed their arguments from
bT to b�. Along the same lines, the g functions on the last
line have explicit definitions in terms of the underlying
QCD operators. The final result for the cross section,
Eq. (110), is exactly independent of the choice of the
b�ðbTÞ function in Eq. (100) or of the value of parameters
such as bmax. Since changing them simply amounts to
reshuffling contributions between the perturbative and
nonperturbative factors, the b� independence is a version
of RG invariance that we can express as

d
dbmax

WðqT; QÞ ¼ 0: ð112Þ

Or, if we consider other more general b�ðbTÞ functions
determined by a collection of possibly many parameters
fb-paramsg, we can express the same relation schemati-
cally as

d
dfb-paramsgWðqT; QÞ ¼ 0: ð113Þ

These relations are exact for Eq. (110). Therefore, it is
legitimate to say that perturbative calculations of the first
two lines in Eq. (110) are completely perturbative in that
they have no dependence on nonperturbative parameters
beyond whatever power suppressed errors are introduced
when, we substitute Eq. (111). Thus, the b� method is not
itself a model when used as originally set up. It is only a
method for reorganizing contributions between the various
factors in Eq. (110).
For all of this to be preserved in practice when perform-

ing calculations and applying them to phenomenology, the
Eq. (99) g functions need to be parametrized nonperturba-
tively but in a way that preserves Eq. (113). If a change of
b� or bmax induces a change in the perturbative parts, a
compensating change is needed in the Eq. (99) functions.
(For more on this, see, for example, the discussion in
Sec. 13.13.2 of [3].) When specific parametrizations and
approximations are substituted for the symbols in
Eq. (110), the statements above that are exact become
approximate. Ideally, however, one hopes to do this in such
a way that the errors are small and controlled.
But implementing this style of approach in practice is

complicated by the fact that it leaves very little said about
the details of the Eq. (99) g functions other than that they
must vanish such as a power at small bT. In particular, it
leaves unaddressed the treatment of the transition between
the purely perturbative and purely nonperturbative regions
in the parametrizations, along with the role that integral
relations such as Eq. (96) play in that transition. For very
large Q, where the g functions are anyway expected to give
only small corrections, these details might not have an

important effect on calculations. But they become impor-
tant once one enters regimes where one is sensitive to the
details of hadron structure. In the earliest implementations,
b2T power laws [103] and/or bT power laws [104] were
proposed, and these work reasonably well for many
applications. But if a g function from Eq. (99) is modeled
with a simple ansatz, relations such as Eq. (113) tend to be
violated in ways that can significantly affect results
[68,105]. In some applications, the b� method and the
choice of functions such as Eq. (100) get reinterpreted as
being part of the nonperturbative model itself, due to the
large b� sensitivity that is introduced by most simple
ansatzes as discussed above. But then the perturbative
calculation of the small bT behavior becomes intertwined
with the nonperturbative modeling, which is a situation that
the b� method of organization in Eq. (110) is meant
to avoid.
These and related complications are all very well-known,

and efforts have been made to overcome them. One
essentially needs to reverse engineer the ansatzes for the
g functions to recover some approximate consistency with
relations such as Eq. (113). For example, Refs. [68,106]
impose continuity for both the functions and their deriv-
atives at a point bmax in bT space that they designate as a
boundary between perturbative and nonperturbative
regions. Similarly, in treating gKðbTÞ Ref. [69] proposed
to expand the nonperturbative parametrization in a power
series of b2max at small bT and match to the corresponding
powers in the perturbative part of K̃ðb�; μÞ.

B. Bottom-up in the b� method

Since the bottom-up procedure that, we described in
Secs. IV–VI explicitly interpolates between nonperturba-
tive and perturbative transverse momentum dependence,
there was no need for a b� method. The Q̄0ðbTÞ that, we
introduced in Eq. (42) plays a role that is in some sense
analogous to the μb� from Eq. (102) in that both impose
an RG improved μ ∼ 1=bT scale in the small bT limit.
However, in the earlier sections of this paper, we never
attempted to completely sequester purely perturbative and
purely nonperturbative parts.
Nevertheless, the steps for the b� method carry over

directly to our final expressions from the bottom-up
procedure and Eqs. (61)–(65), and the problems summa-
rized at the end of the last subsection are automatically
avoided. One simply arrives at expressions for Eq. (99) that
are connected to specific nonperturbative TMD models or
calculations, constrained from the outset to satisfy all
important properties. In this subsection, we will show
the details of how to rewrite the bottom-up expression in
Eq. (65) using the b� method. Most steps are simply a
repetition of the normal way of writing the CSS evolution
in terms of b�, μb� , etc., that we reviewed in the last
subsection but now use the underlined functions and their
evolution equations.

GONZALEZ-HERNANDEZ, ROGERS, and SATO PHYS. REV. D 106, 034002 (2022)

034002-30



By construction, all of the underlined objects satisfy the specific evolution equations in Eqs. (48), (62), and (63) exactly.
Therefore, steps identical to those leading from Eqs. (103)–(110) apply also to Eq. (65) as long as we maintain all the
appropriate underlines and (n) superscripts everywhere. They thus allow us to rewrite WðnÞðqT; QÞ as

WðnÞðqT; QÞ ¼ HðnÞðμQ;C2Þ
Z

d2bT
ð2πÞ2 e

−iqT·bTD̃
ðn;d

MS
Þ

A ðzA; b�; μb� ; μ2b� ÞD̃
ðn;d

MS
Þ

B ðzB; b�; μb� ; μ2b�Þ

× exp

�
2

Z
μQ

μb�

dμ0

μ0

�
γðnÞðαsðμ0Þ; 1Þ − ln

Q
μ0
γðnÞK ðαsðμ0ÞÞ

�
þ ln

Q2

μ2b�
K̃ðnÞðb�; μb� Þ

�

× exp
�
−gðn;dMS

Þ
A ðzA; bTÞ − g

ðn;d
MS

Þ
B ðzB; bTÞ − gðnÞK ðbTÞ ln

�
Q2

Q2
0

��
; ð114Þ

but now with

gðnÞK ðbTÞ≡ K̃ðnÞðb�; μQ0
Þ − K̃ðnÞðbT; μQ0

Þ; ð115Þ

−gðn;dMS
Þðz; bTÞ≡ ln

�
D̃ðn;d

MS
Þðz; bT; μQ0

; Q2
0Þ

D̃ðn;d
MS

Þðz; b�; μQ0
; Q2

0Þ

�
: ð116Þ

The functions defined in Eqs. (115) and (116) are now
written in terms of whatever model or nonperturbative
calculation is being used at μ ¼ μQ0

, but just as with
Eqs. (106) and (107), they are μ independent. The under-
lines and superscripts indicate that these g functions are
defined with specific model parametrization and perturba-
tive calculations in mind, rather than the purely abstract g
functions of Eqs. (106)–(107).

It is instructive to substitute the example parametriza-
tions, Eqs. (78) and (92), that we constructed in Sec. VII
into Eqs. (114)–(116) and confirm the bmax independence
and other expected properties. In Fig. 10, the solid black
curves are the same K̃ð1ÞðbT; μQ0

Þ as in Figs. 2 and 3, but for
comparison we have also shown the separate K̃ð1Þðb�; μQ0

Þ
and −gð1ÞK ðbTÞ curves. The two panels compare the graphs
for different values of bmax: the top panel is for bmax ¼
0.1 GeV−1 while the bottom panel is for bmax ¼
1.0 GeV−1. In both cases, −gð1ÞK ðbTÞ approaches zero as

bTm → 0, and K̃ð1Þðb�; μQ0
Þ approaches the unapproxi-

mated K̃ð1ÞðbT; μQ0
Þ as bTm → 0. Ultimately, it is only

K̃ð1ÞðbT; μQ0
Þ ¼ K̃ð1Þðb�; μQ0

Þ − gð1ÞK ðbTÞ ð117Þ

that appears in Eq. (65), and indeed the sum of the dashed
and dot-dashed curves in Fig. 10 always reproduces exactly
the solid black K̃ð1ÞðbT; μQ0

Þ curve. The separate terms in
Eq. (117) are different for different bmax but, of course,
K̃ð1ÞðbT; μQ0

Þ is not.
A similar comparison for −gð1;dMS

Þ
A ðz; bTÞ is shown in

Fig. 11. Now from Eq. (116) the combination of terms that
is independent of bmax is

lnðD̃ð1;d
MS

Þðz; bT; μQ0
; Q2

0ÞÞ
¼ lnðD̃ð1;d

MS
Þðz; b�; μQ0

; Q2
0ÞÞ − gð1;dMS

Þðz; bTÞ: ð118Þ

The solid black curve in Fig. 11 is
lnðD̃ð1;d

MS
Þðz; bT; μQ0

; Q2
0ÞÞ, and it is the same for the upper

FIG. 10. The example K̃ð1ÞðbT; μQ0
Þ from Eq. (78) and the

corresponding gð1ÞK ðbTÞ [Eq. (115)] and K̃ð1Þðb�; μQ0
Þ calculated

in the b� prescription with Eq. (101). Results are obtained using
the same mK ¼ 0.1 GeV and a ¼ 2 GeV as in Fig. 2. The top
panel is the case of bmax ¼ 0.1 GeV−1 and the bottom panel is the
case of bmax ¼ 1.0 GeV−1. The bmax dependence in K̃ð1Þðb�; μQ0

Þ
(violet dot-dashed curve) cancels that of −gð1ÞK ðbTÞ (blue dashed
curve). The solid black curve showing K̃ð1ÞðbT; μQ0

Þ is identical
in the top and bottom.
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(bmax ¼ 0.1 GeV−1) and lower (bmax ¼ 1.0 GeV−1) pan-
els. The dashed and dot-dashed curves are for
lnðD̃ð1;d

MS
Þðz; b�; μQ0

; Q2
0ÞÞ and −gð1;dMS

Þðz; bTÞ, respec-
tively. The sum of the latter two always reproduces
lnðD̃ð1;d

MS
Þðz; bT; μQ0

; Q2
0ÞÞ while −gð1;dMS

Þðz; bTÞ goes to
zero such as a power at small bT.
Note carefully that there are no error terms in going from

Eq. (65) to Eq. (114). So far, the expression is just another
way to write Eq. (65). Plots of Eq. (114) that use our
parametrization from Sec. VII produce figures identical to
Figs. 7–9.

There are actually two ways that, we can recast the
methods of Secs. IV–VI in the b� method. In the first, we
can simply notice that Eq. (114) is already very close to the
standard form. This version of the b� expression is literally
identical to the bottom-up expression in Eq. (65). However,
it requires that we use the exact K̃ð1ÞðbT; μQ0

Þ and

D̃
ðn;d

MS
Þ

A;B ðzA; b�; μb� ; μ2b�Þ. In our specific examples from
earlier, this would be Eqs. (78) and (92). Of course, this
defeats the purpose of the b� approach.
However, now we can also use that

K̃ðnÞðb�; μb� Þ ¼ K̃ðnÞðb�; μb�Þ þOðmbmaxÞ ð119Þ
and

D̃ðn;d
MS

Þðz; b�; μb� ; μ2b� Þ
¼ D̃

ðn;d
MS

Þ
OPE ðz; b�; μb� ; μ2b� Þ þOðmbmaxÞ; ð120Þ

where D̃
ðn;d

MS
Þ

OPE ðz; b�; μb� ; μ2b� Þ is the first term on the right-
hand side of Eq. (111). In other words, we can use purely
perturbative expressions for these functions since they are
constrained to arguments bT < bmax. Dropping the order
mbmax terms and substituting Eqs. (119)–(120) gives us our
last expression for WðnÞðqT; QÞ,

WðnÞ
b� ðqT; QÞ ¼ HðnÞðμQ;C2Þ

Z
d2bT
ð2πÞ2 e

−iqT·bTD̃
ðn;d

MS
Þ

A;OPE ðzA; b�; μb� ; μ2b� ÞD̃
ðn;d

MS
Þ

B;OPE ðzB; b�; μb� ; μ2b�Þ

× exp

�
2

Z
μQ

μb�

dμ0

μ0

�
γðnÞðαsðμ0Þ; 1Þ − ln

Q
μ0
γðnÞK ðαsðμ0ÞÞ

�
þ ln

Q2

μ2b�
K̃ðnÞðb�; μb� Þ

�

× exp

�
−gðn;dMS

Þ
A ðzA; bTÞ − g

ðn;d
MS

Þ
B ðzB; bTÞ − gðnÞK ðbTÞ ln

�
Q2

Q2
0

��
: ð121Þ

The b� subscript on the left is to indicate that
we have dropped the underlines on K̃ðnÞðb�; μb� Þ and

D̃ðn;d
MS

Þðz; b�; μb� ; μ2b�Þ and we have neglected the
OðmbmaxÞ terms in Eqs. (119)–(120). These functions
are just calculated in collinear perturbation theory now.
Thus,

WðnÞðqT; Q0Þ −WðnÞ
b� ðqT; Q0Þ ¼ OðmbmaxÞ: ð122Þ

Equation (121) is the evolved WðqT; QÞ as it is normally
presented in the CSS formalism. [For comparison, consider
Eq. (22) from Ref. [69].] However, now there is no

ambiguity about what the functions g
ðn;d

MS
Þ

A ðzA; bTÞ,

FIG. 11. The example D̃ð1;d
MS

Þðz; bT; μQ0
; Q2

0Þ from Eq. (92),
and the corresponding gð1;dMS

Þðz; bTÞ [Eq. (116)] and

D̃ð1;d
MS

Þðz; b�; μQ0
; Q2

0Þ from the b� prescription [Eq. (101)].
The curves are generated using the same M ¼ 0.2 GeV,
mD ¼ 0.3 GeV, and a ¼ 2 GeV as in Fig. 7. The top panel is
the case of bmax ¼ 0.1 GeV−1, and the bottom panel is the
case of bmax ¼ 1.0 GeV−1. The bmax dependence in
lnðD̃ð1;d

MS
Þðz; b�; μQ0

; Q2
0ÞÞ (violet dot-dashed curve) cancels

that of −gð1;dMS
Þðz; bTÞ (blue dashed curve). The solid black

curves for D̃ð1;d
MS

Þðz; bT; μQ0
; Q2

0Þ are identical in the top and
bottom panels.
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g
ðn;d

MS
Þ

B ðzB; bTÞ, and gðnÞK ðbTÞ are, assuming that one has
already followed the steps in Sec. VI. Whatever model,
parametrization, or calculational technique we have used to
describe the nonperturbative small transverse momentum
dependence near the input scale (steps A1 and A2) simply
gets substituted into the right-hand side of Eqs. (115)–
(116). The integrand in Eq. (121) equals that of Eq. (65) up
to corrections that vanish as a power of bT ≤ bmax. As long
as bmax is small relative to the intrinsic mass parameters in
the model, Eq. (113) is satisfied automatically.
Now in the bottom-up approach here there are no

drawbacks to choosing bmax small enough to make the
right-hand side of Eq. (122) as small as desired. It amounts
simply to including more of the perturbative part of the
calculation inside the g functions.
Of course, the above applies to any other ff renormal-

ization scheme, and we have usedMS because it is the most
common.
One may check the above directly by using the explicit

n ¼ 1 example from Sec. VII. Equations (114) and (121)
are both plotted in Fig. 12 for two values of Q and with a
range of bmax. The solid black curves are the same
Wð1ÞðqT; QÞ from Sec. VII with the same sample param-
eters, while the other curves are generated by Eq. (121) for
a sequence of decreasing bmax. As expected, Eq. (121)
converges to Eq. (114)/Eq. (65), and bmax dependence
vanishes, for small enough bmax. This happens more rapidly
at the larger Q where there is less sensitivity to the large bT
region. The size of the OðmbTÞ errors are, of course,
dependent upon the size of the parametersM, mK , mD, and
a in the parametrization of the g functions. In practice, we
may, of course, simply choose bmax small enough that this
error is negligible.
Compare what, we have done above with the way that

g
ðn;d

MS
Þ

A ðzA; bTÞ (and the analogous function for the B
hadron) is often treated in top-down styles of approaches,
where a g function is usually modeled by an ansatz:

g
ðn;d

MS
Þ

A ðzA; bTÞ → g
ðn;d

MS
Þ

A ðzA; bT; fc1; c2;…gÞ: ð123Þ

Here, the fc1; c2;…g is a list of ansatz parameters. But
notice that the integral

Z
μQ0

0

dkTkTe−g
ðn;d

MS
Þ

A ðzA;bT;fc1;c2;…gÞ

is constrained by Eqs. (56)–(57). Therefore, the initially
postulated fc1; c2;…g parameters are not independent if a
separate set of collinear ffs is known and available. At least
one of the parameters is fixed in terms of the other
parameters and the collinear functions. In the example
from Sec. VII, this corresponds to the step where we
replaced the CðdcÞ in Eq. (83) by the right-hand side
of Eq. (87). Without that step, the parameters of

g
ðn;d

MS
Þ

A ðzA; bTÞ are underconstrained, and the model of
the nonperturbative transverse momentum will generally be
inconsistent with the collinear correlation functions.4 To
our knowledge, such a step is not explicitly performed in
the top-down implementations of TMD factorization and
evolution.
These constraints also mean that the nonperturbative g

functions are strongly correlated with the collinear func-
tions, consistent with observed phenomenology [107].
Before closing this section, we emphasize once more that

the steps above involving b� are not strictly necessary if one

FIG. 12. A comparison of the cross section Wð1ÞðqT; QÞ
calculated using Eqs. (114) and (121), with the example models
from Sec. VII, at scales of Q ¼ 2 GeV (top panel) and Q ¼
10 GeV (bottom panel), and with fixed values of intrinsic masses
M, mD, and mK as indicated in the labels. In each case, the solid
lines implement the cross section in the usual notation of the CSS
formalism, i.e., through the use of Eq. (114) and g functions
defined in terms of our model examples, as in Eqs. (115) and
(116). The dashed lines are obtained by the use of Eq. (121), with
the same g as solid lines but with Eq. (121). Note that Eq. (114) is
identical to Eq. (65) and is thus independent of bmax by
construction.

4Alternatively, one could in principle leave the TMD ff model
unconstrained by Eq. (56) and instead calculate all collinear ffs
directly in terms of the parametrization for the TMD ff. This may
be impractical, however, given the existing extensive phenom-
enology that constrains collinear functions as compared to the
TMD ones.
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has already adopted the bottom-up steps of Sec. VI and
implemented Eq. (65), but they may be helpful in compar-
ing with past results.

X. CONCLUSION

In this paper, we have explained the advantages of a
bottom-up/forward-evolution style of treating TMD corre-
lation functions modeled or calculated nonperturbatively at
a moderate input scale. Before concluding, let us reempha-
size that we have not made any fundamental modifications
to standard TMD factorization and evolution—indeed, see
Eq. (121). Rather, our purpose has been to make explicit the
steps for combining any choice of nonperturbative model or
parametrization of transverse momentum dependence with
full TMD evolution in a reasonably automated way. This
did lead to a significant amount of reorganization of
previously known results, but we hope that the final
prescription is fairly straightforward. Overall, our discus-
sion in this paper might be summarized as a prescription for
constructing the “g functions” of typical CSS implementa-
tions in a way that conforms simultaneously with the TMD
parton model viewpoint and TMD evolution.
The phenomenological strategy is to take TMDs gen-

erated from models, nonperturbative calculations, and/or
fits near an input scale Q0, and use these to make
predictions for higher Q measurements. Based on how
successful those predictions are, models and/or fit param-
eters can be updated. The expected trend is that the amount
of parameter adjustment diminishes as larger Q measure-
ments are included.
Future steps involve constructing nonperturbative para-

metrizations analogous to our example functions in
Sec. VII, but with more sophisticated input from non-
perturbative QCD, including the models discussed in the
Introduction. It is likely (as was our intent) that many
existing “Type I” phenomenological results can be com-
bined with our approach with minimal modifications.
Using the steps from Sec. VI to implement evolution with
specific models such as the spectator or bag models is a
natural next task. Of course, all expressions need to be
extended to all flavors and channels and to TMD pdfs.
Other minor tasks still to be completed include extending to
higher n (for K̃ this is simple), including the singlet gluon
channel, and extending it to a treatment of gluon
TMDs [30].
Over the past several years, there has been significant

progress also in lattice-based methods for calculating TMD
functions [108–115]. The techniques discussed in this paper
will also be important for connecting those developments to
experimental data and phenomenological extractions.
We have focused on discussing unpolarized cross sec-

tions, but the same steps carry over in a straightforward way
to polarized processes. A point of caution is that the integral
relations analogous to Eq. (30) become more subtle in
some spin dependent TMD functions, and the translation

between correlation functions defined with cutoffs and in
other schemes is not as straightforward [116,117].
Nonperturbative g functions exactly analogous to

Eq. (99) appear in the TMD factorization formula for
double scattering with double parton TMDs—see
Eq. (6.31) of [118]. Therefore, techniques analogous to
what we have described for single scattering should in
principle apply there as well.
An application where our procedure also likely helps, but

which we have not yet discussed in detail, is in the
matching to large transverse momentum. The so-called
“asymptotic” term discussed in, for example, Ref. [101] is
the large kT asymptote of Eq. (21), and it is an important
ingredient for matching to the fixed order collinear calcu-
lation at large qT ≈Q. In top-down/backward evolution
approaches, errors that grow larger as Q decreases tend to
spoil reasonable agreement between direct calculations of
Eq. (21) and the asymptotic term [119]. By contrast, in the
bottom-up approach we have laid out in this paper, the
matching to the asymptotic term at Q ≈Q0 is automatic by
construction. A separate but related issue is the difficulty
observed in some processes, especially at moderate Q, of
explaining qT ≈Q using standard fixed order collinear
factorization and existing collinear pdfs and ffs [120–123].
In large Q measurements, there is reason to expect that

nonperturbative transverse momentum eventually becomes
phenomenologically irrelevant. It can remain important,
however, when very high precision is a goal, such as
measurements of vector boson masses [124–128].
We leave all of these considerations to future work.
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APPENDIX A: NOTATION GLOSSARY

(1) XðnÞ
An object X calculated through order αns.

(2) WðqT; QÞ
The low-qT contribution to the cross section TMD

factorization, the “W term.” See Eq. (14).
(3) m

Any small mass scale of hadronic size or smaller,
e.g., ΛQCD, mπ , mq.
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(4) mK , mD, M
The nonperturbative mass scales in the paramet-

rizations from Sec. VII. See Eq. (72) and Eq. (83).
(5) Renormalization group scales:

μ: A generic scale.
μQ ¼ C2Q.
μQ0

¼ C2Q0.
μQ̄0

¼ C2Q̄0ðbTÞ.
See below for Q̄0ðbTÞ, and see also Appendix C.

(6) Hard factors:
(a) HðαsðμQÞ;C2Þ: The exact overall hard factor for

the W term in Eq. (20).
(b) HðnÞðαsðμQÞ;C2Þ: The hard factor in perturba-

tion theory truncated beyond order αsðμQÞn.
(c) CðnÞD ðzkTÞ: The hard coefficient in the factoriza-

tion formula relating the TMD ff to the collinear
ff at kT ≈ μQ, calculated in perturbation theory
and truncated past order αsðμQÞn. See Eq. (25).

(d) CðnÞΔ : The hard coefficient in the correction term
relating the cutoff integrated TMD ff to the
collinear ff at kT ≈ μQ, calculated in perturbation
theory and truncated past order αsðμQÞn.
See Eq. (28).

(7) dAðzA; μÞ
Definition: collinear fragmentation function for a

quark with momentum fraction zA fragmenting to
hadron A.

(8) dA;rðzA; μQÞ
Definition: A more precise notation for

dAðzA; μQÞ. Collinear fragmentation function with
UV divergences handled in the r renormalization
and/or regularization schemes. (For example, dMS is
the standard collinear fragmentation function de-
fined in the MS scheme.) The auxiliary scale μ is the
renormalization scale, and in the above we have
already replaced it with μ ¼ μQ ¼ C2Q. Throughout
this paper, we always assume C2 ¼ 1.

(9) DAðzA; zAkAT; μQ;Q2Þ
Definition: The TMD quark ff for a quark with

transverse momentum kAT fragmenting to hadron A.
The auxiliary parameters associated with evolution
are μ and ζ, and in the above they have already been
replaced by μ ¼ μQ and ζ ¼ μ2Q ¼ Q2. We use
different symbols for μ and ζ to keep deriva-
tives clear.

(10) Dðn;drÞ
A ðzA; zAkAT; μQ;Q2Þ
A calculation of a TMD quark ff in perturbative

nth-order collinear factorization optimized for kT ≈
Q and using collinear ffs dr defined in the r scheme.

(11) dA;cðzA; μQÞ
Definition: A special case of dA;rðzA; μQÞ where

the UV divergences are handled using the cutoff
scheme. See Eq. (30).

(12) Δðn;drÞðαsðμQÞÞ
The correction term for relating dA;cðzA; μQÞ to the

collinear fragmentation function dA;rðzA; μQÞ in
another scheme r. See Eq. (27).

(13) dðn;drÞA;c ðzA; μQÞ
The approximate expression for dA;cðzA; μQÞ in

terms of dA;rðzA; μQÞ, accurate up to order αnþ1
s and

power suppressed errors. See Eqs. (31)–(32).
(14) dðn;drÞA;c ðzA; μQÞ

A parametrization of dA;cðzA; μQÞ obtained from
the cutoff integral of the underlined TMD ff,

D̃ðn;drÞ
A ðzA; bT; μQ0

; Q2
0Þ. See Eqs. (56)–(57) and

the definition of D̃ðn;drÞ
A ðzA; bT; μQ0

; Q2
0Þ below.

(15) K̃ðbT; μÞ
Definition: The coordinate space CS kernel. See

Eqs. (17)–(18). Related to its momentum space
version via

K̃ðbT; μÞ≡
Z

d2kTeikTbTKðkT; μÞ:

(16) KðnÞðkT; μÞ
A fixed nth-order, fixed scale perturbative calcu-

lation of KðkT; μÞ. See Eqs. (36)–(37).
(17) KðnÞ

inputðkT; μQ0
Þ

The parametrization of the momentum space CS
kernal that interpolates between a nonperturbative
parametrization of KðkT; μQ0

Þ at small kT and
KðnÞðkT; μQ0

Þ at large kT. See Eq. (39). Optimized
for applications in the Q ≈Q0, kT ≲Q0 region of

Eq. (20). The coordinate spaceversion K̃ðnÞ
inputðbT; μQ0

Þ
is found from Eq. (40).

(18) Q̄0ðbTÞ
Transformation function for switching from

μ ¼ Q0 to μ ¼ C1=bT RG scales. See Eq. (42).
See also Appendix C.

(19) K̃ðnÞ
inputðbT; μQ̄0

Þ
Same as K̃ðnÞ

inputðbT; μQ0
Þ but with μQ̄0

¼ C2Q̄0ðbTÞ
as the scale.

(20) K̃ðnÞðbT; μQ0
Þ

Final parametrization of K̃ðbT; μQ0
Þ optimized for

all bT, including the RG improved treatment of the
bT ≪ 1=Q0 region. See Eq. (46).

(21) Dðn;drÞ
input ðz; zkT; μQ0

; Q2
0Þ

The input parametrization of the TMD ff with a
nonperturbative parametrization for small kT and
interpolating to an nth-order perturbative calculation
at kT ∼Q0. Applicable to phenomenology at
Q ≈Q0 where 0 ≤ kT ≲Q0 is the relevant kinemati-
cal region. The perturbative part uses dr collinear ffs
in the r renormalization/regularization scheme. See
Eq. (52).
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(22) D̃ðn;drÞ
A ðzA; bT; μQ0

; Q2
0Þ

The final parametrization of the coordinate
space TMD ff at the input scale and optimized for
all bT, including the RG improved treatment of the
bT ≪ 1=Q0 region. The perturbative part uses dr
collinear ffs in the r renormalization/regularization
scheme. See Eq. (61).

(23) AðdcÞðz; μÞ, BðdcÞðz; μÞ, CðdcÞ
Abbreviations for factors that involve collinear

factorization. See Eqs. (84), (85), and (87).
(24) WðnÞðqT; QÞ

A calculation of WðqT; QÞ in Eq. (20)

using D̃ðn;drÞ
A;B ðzA;B; bT; μQ0

; Q2
0Þ, HðnÞðαsðμQÞ;C2Þ,

K̃ðnÞðbT; μQ0
Þ, γðnÞK ðαsðμÞÞ, and γðnÞðαsðμÞ; 1Þ.

APPENDIX B: SCALE SETTING

The expansion in m=Q that gives the TMD factorization
in Eq. (14) as its leading power must eventually break down
as Q becomes small. In practice, this means one must
choose a minimum Q0 below which one stops trusting
factorization in phenomenological applications, and this is
what we have called the input scaleQ0. Values of μ nearQ0

are understood to be close to the boundary where pertur-
bative expansions in αsðμÞ and power expansions in m=Q0

cease to be valid even approximately. For the purposes of
the present paper, Q0 may be treated as a phenomenologi-
cally determined number. In practice it is usually taken to
be somewhere in the range of 1–3 GeV.
The value of Q0 fixes the overall RG (μ) and rapidity (ζ)

scales in the input TMD ffs in Eq. (21). There is nothing
incorrect in principle with working only with TMD factori-
zation in the form that is written in Eqs. (14) and (20). One
may regard D̃AðzA; bT; μQ0

; Q2
0Þ, D̃BðzB; bT; μQ0

; Q2
0Þ, and

K̃ðbT; μQ0
Þ as entirely unknown functions to be determined

phenomenologically or by other nonperturbative means.
This is essentially the TMD parton model and is a standard
approach to much phenomenology applied to nucleon
structure studies near Q ≈Q0. However, it leaves the
TMD ffs very badly constrained at large kT where perturba-
tive calculations should be possible. When kA;BT ≈Q0 in
Eq. (14), or equivalently when bT ≈ 1=Q0 in Eq. (20), it is
possible to expand the TMD functions perturbatively in
collinear factorization and thereby increase predictive power.
When kA;BT is much larger thanQ0, one can further improve
perturbative calculations by choosing kA;BT itself to set the
hard scale in the individual TMD ffs rather than Q0. Of
course, when kA;BT is small, it is not appropriate as a hard
scale, and one should instead continue to useQ0. Indeed, it is
the nonperturbative kT dependence that is often of primary
interest in TMD hadron structure studies.
In this appendix, we elaborate on the issue of the

transition between the choices of Q0 and kT as scales
for the TMD ffs, keeping in mind that the ultimate goal is to

smoothly transition between traditional Type I and Type II
styles of approach. The discussion will be somewhat
schematic and is meant to further motivate the main body
of the text. Also, we will work in transverse momentum
space where our main points will be somewhat more
intuitive, but the discussion applies equally in transverse
coordinate space, which is more common.
To see the issues clearly, recall that when kT is large we

may express the kT dependence in a single input TMD ff in
the form

Dðz; zkT; μQ0
; Q2

0Þ

¼kT≫m 1

k2T

�
δ

�
αsðμQ0

Þ; kT
μQ0

;
Q2

0

μ2Q0

�
þO

�
m
μQ0

;
m
kT

��
; ðB1Þ

where δ is some function of the coupling and the ratios of
the scales that generally appear in logarithms.
When kT ≫ Q0, the kT=μQ0

ratio on the right-hand side
of Eq. (B1) diverges so that perturbative calculations of δ
with fixed μQ0

degrade in accuracy. Optimizing δ in
perturbation theory requires another application of evolu-
tion from μQ0

to μkT ¼ CkkT and Q2
0 to μ2kT ¼ C2

kk
2
T where

Ck is an order unity numerical constant analogous toC1 and
C2 in the main body of the text. After evolution, the TMD ff
that we work with instead has the general behavior

Dðz; zkT; μkT ; μ2kTÞ

¼ 1

k2T

�
δðαsðCkkTÞ; Oð1Þ; Oð1ÞÞ þO

�
m
kT

��
: ðB2Þ

Now as kT=Q0 → ∞ the convergence properties of a
perturbative expansion of δ only improves as the coupling
and power suppressed terms vanish. Most of the standard
Type II/top-down styles of TMD factorization implemen-
tations thus only use a scale choice analogous to Eq. (B2)
(or rather its coordinate space analog) and rarely the fixed
scale version in Eq. (B1).
However, small-αs calculations of δ in Eq. (B2) come

with numerically unstable truncation errors in the region
around kT ≈Q0 simply becauseQ0 is at the border between
perturbative and nonperturbative scales. Small variations
in, for example, the value of Ck can have a big effect on
calculations. The problem is exacerbated by the fact that the
transformation from μQ0

,Q2
0 to μkT , μ

2
kT
effectively involves

a resummation of many higher order logarithms in the
region of kA;BT. That is, what appears in the factorization
after the scale transformation is not Eq. (B2) alone but

∼Dðz; zkT; μkT ; μ2kTÞ
�
1þ

X
terms like

αsðμkÞmlnn
μkT
μQ0

�
: ðB3Þ

However, when kT ≈ μQ0
the logarithms on the second line

are anyway no larger than any other contributions that are
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higher order in αsðkTÞ.5 The advantage of the scale trans-
formation is lost here. More problematically, because of the
rapidly rising coupling αsðμkÞ just below kT ≈Q0, the
higher order logarithmic terms in Eq. (B3) are numerically
unstable over the range of kT extending from just below to
just above Q0. Thus, calculations that use Eq. (B2) are
rather poorly behaved in the kT ≈Q0 borderline region
where we should expect a reasonably smooth transition to a
nonperturbative region.
But calculations with a fixed scale can still be at least

approximately valid around kT ≈Q0 where Eq. (B1) is

Dðz; zkT; μQ0
; Q2

0Þ

¼kT≈Q0 1

k2T

�
δðαsðμQ0

Þ; Oð1Þ; Oð1ÞÞ þO

�
m
Q0

��
: ðB4Þ

As long as Q0 is not very small, one can use low order
perturbative calculations to approximate D. And there are
no large logarithms in Eq. (B1) if kT ∼Q0, so the
advantages of changing scales to Eq. (B2) are absent.
Therefore, our preferred choice of scale for the transition

region around kT ≈Q0 is actually the fixed scale in
Eq. (B1), not the kT ≫ Q0 RG improved scale of
Eq. (B2). Another advantage of using the fixed scale is
that it automatically gives the fixed order asymptotic term
in momentum space at Q ¼ Q0 and qT ≈Q0, which is also
a fixed scale calculation in momentum space, when the
TMD ff is substituted into Eq. (14).
The above suggests that it is best to categorize the kT

dependence not into just two regions of small kT and large
kT, but into three regions: small kT (kT ≪ Q0), large kT
(kT ≈Q0), and very large kT (kT ≫ Q0). The large kT
region is where kT is just barely large enough for small
coupling descriptions of transverse momentum dependence
to be reasonable.
In the discussion above we have worked in transverse

momentum space because that better matches the intuition
of models and phenomenology. However, the analogous
observations apply straightforwardly to transverse coordi-
nate space. In that case, there is a region of very large
bT ≫ 1=Q0 that is entirely nonperturbative, a region of
very small bT ≪ 1=Q0 that is purely perturbative as long as
an RG improved μ ∼ 1=bT is used, and an intermediate

region of bT ∼ 1=Q0 where fixed order, fixed scale calcu-
lations are ideal.
One of our tasks in the main body of the paper is to

interpolate between these three regions in our parametriza-
tions. For the intermediate region of transverse momentum,
transitioning between scales only introduces higher order
errors.
Notice that our discussion of large logarithms above is a

mirror image of how large logarithms are often introduced
in explanations of top down approaches. There, one starts
with Eq. (B1) but using μQ and Q2 instead of the input μQ0

and Q2
0 and assuming Q ≫ Q0:

Dðz; zkT; μQ;Q2Þ

¼kT≫m 1

k2T

�
δ

�
αsðμQÞ;

kT
μQ

;
Q2

μ2Q

�
þO

�
m
μQ

;
m
kT

��
: ðB5Þ

Then the task is to determine how to resum large logarithms
of lnðkT=μQÞ as kT gets small relative toQ, rather than as kT
gets large relative to Q0.

APPENDIX C: SCALE TRANSFORMATION
FUNCTION

For the scale transition function in Eq. (42), we must
arrange for the transition from ∼1=bT to Q0 to occur at bT
somewhat smaller than 1=Q0 to avoid modifying the
treatment of Eq. (20) in the Q ≈Q0 region. One choice
that satisfies this for a Q0 ¼ 2 GeV is

Q̄0ðbTÞ

¼2.0GeV

�
1−

�
1−

C1

ð2.0GeVÞbT

�
e−ð4GeV2Þb2T

�
: ðC1Þ

If we wish to adjust the exact shape in the ≈1=Q0 transition
region by adding a parameter as in Eq. (49), we may modify
Eq. (C1) by introducing a parameter a,

Q̄0ðbT; aÞ

¼ 2.0 GeV

�
1 −

�
1 −

C1

ð2.0 GeVÞbT

�
e−b

2
Ta

2

�
: ðC2Þ

Here the transition between the two RG scales takes place
around bT ∼ 1=a. We can use the Eq. (C2) form to check
approximate scale independence in the transition region by
varying a slightly. C1 is the usual numerical constant,
C1 ¼ 2e−γE ≈ 1.123.

5It is also worth recalling here that QCD perturbation series are
only asymptotic rather than convergent.
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