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Abstract

Wu & Peek predict SDSS-quality spectra based on Pan-STARRS broadband grizy images using machine learning
(ML). In this article, we test their prediction for a unique object, UGC 2885 (“Rubin’s galaxy”), the largest and
most massive, isolated disk galaxy in the local universe (D< 100 Mpc). After obtaining the ML predicted
spectrum, we compare it to all existing spectroscopic information that is comparable to an SDSS spectrum of the
central region: two archival spectra, one extracted from the VIRUS-P observations of this galaxy, and a new,
targeted MMT/Binospec observation. Agreement is qualitatively good, though the ML prediction prefers line
ratios slightly more toward those of an active galactic nucleus (AGN), compared to archival and VIRUS-P
observed values. The MMT/Binospec nuclear spectrum unequivocally shows strong emission lines except Hβ, the
ratios of which are consistent with AGN activity. The ML approach to galaxy spectra may be a viable way to
identify AGN supplementing NIR colors. How such a massive disk galaxy (M* = 1011 Me), which
uncharacteristically shows no sign of interaction or mergers, manages to fuel its central AGN remains to be
investigated.

Unified Astronomy Thesaurus concepts: Giant galaxies (652); Galaxy nuclei (609); Disk galaxies (391)

1. Introduction

In recent years, astronomical machine learning (ML) has
transformed from a niche subject to a well-developed suite of
accessible and interpretable algorithms. ML algorithms are
used for catalogs, time series, imaging, and unstructured data
across a wide array of astronomy subdisciplines (e.g.,
exoplanets, Shallue & Vanderburg 2018; radio interferometry,
Vafaei Sadr et al. 2020; transient photometry, Villar et al. 2020;
and studies of the interstellar medium, Xu et al. 2020). For
extragalactic imaging data, ML is regularly relied upon for
classifying galaxy morphology (e.g., Dieleman et al. 2015;
Beck et al. 2018), quantifying observed properties (e.g., Smith
et al. 2021), and predicting spectroscopic properties (e.g.,
Pasquet et al. 2019; Wu & Boada 2019). These advances have
enabled ML to take on an outsized role in mitigating the
observational disparity between enormous survey imaging data
sets and limited spectroscopic follow-up campaigns (e.g., Wu
& Peek 2020). While ML results are robust for estimating the
properties of typical galaxies, it is less clear if predictions are
reliable for rare or unusual systems.

Spectroscopy surveys lag behind imaging ones in coverage
and depth simply because of the longer integration time per
object (see Davies et al. 2018; Driver et al. 2019, for a
discussion on ongoing and near-future surveys). Predicting

spectra or spectral features based on imaging is therefore a
worthwhile endeavor for both scientific and planning purposes.
UGC 2885 (“Rubin’s Galaxy”) is the largest and most

massive spiral galaxy (Rp= 38.1 kpc, M* = 2.2× 1011 Me) in
the local universe (Rubin 1980). It shows very regular rotation
with a maximum rotation velocity of 298 km s−1

(Mtot= 1.50× 1012 Me; Rubin et al. 1980; Roelfsema &
Allen 1985; Wiegert & English 2014; McGaugh & Schom-
bert 2015), rising from the center, indicating a substantial and
extended dark matter halo (Marr 2015). The galaxy has star
formation throughout its disk (Hunter et al. 2013), four spiral
arms, and a specific incidence of globular clusters that hints at
an uneventful accretion history (B. W. Holwerda et al. 2021, in
preparation). It lies just outside the Sloan Digital Sky Survey’s
footprint and has no SDSS or DES spectra.
UGC 2885 defies easy classification: to the first order it is an

Sc galaxy but it is at the outermost edge of the mass and size
envelope for its class. The initial identification of UGC 2885 as
the largest isolated spiral galaxy by Rubin (1980) was
confirmed by Romanishin (1983) for the whole Uppsala
Galaxy Catalog. We measure the Petrosian radius of Rubin’s
galaxy at 38.1 kpc (97″) in sdss-r. Ogle et al. (2016, 2019)
introduce “Super spirals,” a class of massive disk galaxies at
the utmost top of the stellar mass-star formation rate (M*–SFR)
relation. Ogle et al. (2016) note that “Super spirals” are almost
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never in an isolated environment and often show signs of a
recent interaction, e.g., perturbed morphology, dual nuclei, or
other signs of significant merger activity. Rubin’s galaxy does
not meet these qualifications as it has a lower SFR and does not
show signs of recent interaction, which appear to be typical for
this class of galaxies. Saburova et al. (2021) discusses giant
low surface brightness (LSB) disk galaxies. Once again, UGC
2885 does not meet those specifications either: its star
formation is too high and concentrated in a more typical
brightness disk. These giant LSB galaxies also often seem to be
visibly disturbed from recent accretion or merger activity. Yet
Rubin’s galaxy is remarkably unperturbed.

A ∼1011Me stellar mass galaxy typically has an active
galactic nucleus (AGN) and our question for this study is: is
Rubin’s galaxy exceptional here as well? Keel (1983a) remains
the only study to attempt to characterize the nucleus of this
galaxy and does not reach a firm conclusion. Does UGC 2885
show signs of an active nucleus? One would expect its
spectrum to lie in the categories of LINER or star formation/
AGN mix. Can this be predicted from broadband photometry
using ML? How good is the ML prediction of this galaxy’s
spectrum? As a local extreme of size and mass, the lack of an
SDSS spectrum offered the opportunity for a direct test of this
prediction.

The purpose of this paper is to report a “closed envelope”
test of the ML predicted spectrum for the center of Rubin’s
galaxy from Wu & Peek (2020) and compare it to spectra
obtained from private archives and recent observations: the
prediction was made first and then compared to spectra of
comparable quality.

2. Machine-learning Prediction of Rubin’s Galaxy’s
Spectrum

We generate the predicted spectrum for Rubin’s galaxy using
the method described in Wu & Peek (2020). Briefly, the
method uses a convolutional neural network (CNN), trained on
56″× 56″ grizy image cutouts of galaxies from the Pan-
STARRS 3π Steradian Survey DR2, and predicts the galaxies’
optical spectra (3″ aperture, SDSS resolution, and signal-to-
noise ratio (S/N)). Galaxy spectra are normalized, shifted to a
common reference frame, and rebinned in 1000 logarithmically
spaced elements. A variational autoencoder represents each
spectrum using six latent variables, which can be robustly
“decoded” back into SDSS spectra (Portillo et al. 2020). Wu &

Peek (2020) train a CNN to predict galaxies’ SDSS spectra
solely using image cutouts. Figure 1 shows the results of this
ML approach applied to the Pan-STARRS image of Rubin’s
galaxy. In the comparisons this spectrum is shifted to the
galaxy redshift of v= 5802 km s−1 (Canzian et al. 1993).

3. Data

To verify the ML prediction, we obtained two archival
spectra, extracted one from the VIRUS-P IFU observation, and
obtained new MMT/Binospec observations. The apertures
used in each observation are shown in Figure 2.
The first comparison spectrum is originally from Keel

(1983a, 1983b), who conducted an aperture spectroscopic
survey of nearby galaxies to search for AGN activity. Keel
(1983a) reported line strengths for Hα, [N II], and [S II]. Their
verdict on nuclear activity was inconclusive.
Archival data is a scan of a 4 7 diameter circular aperture

spectrum from the Mount Lemmon 1.5 m (60 inch) telescope
taken on 1981 February 4/5, shown in the top panel in
Figure 3, and a 6 1 circular aperture spectrum taken using the
Intensified Image Dissector Scanner on the KPNO 2.1 m,
shown in the second panel in Figure 3. The archival spectra are
normalized by the maximum value in the spectrum for ease of
comparison to the ML spectrum. The 60 inch spectrum closely
resembles an SDSS spectrum in aperture and S/N but is limited
in wavelength coverage. The KPNO spectrum has a similar
wavelength coverage but much lower S/N and a wider aperture
compared to SDSS spectra.
Recent VIRUS-P IFU observations of Rubin’s galaxy seek

to reveal star formation and abundances (J. Young et al. 2021,
in preparation). A blue spectrum (<5800Å) was extracted
using a 4 16 aperture to compare with the ML prediction,
shown in Figure 3, third panel.
A targeted 3× 300 s optical spectrum was obtained at the

MMT Observatory with the instrument Binospec (Fabricant
et al. 2019) in 2020 November with a position angle= 35°
using the 270 lines mm−1 grating with a central wavelength of
6500Å. The observations were taken at R.A.= 3:53:02.4811,
decl.=+35:35:22.103 with a 1″ slit. Data reduction was
completed by the Binospec automated pipeline, which is an
open-source IDL software package distributed under the

Figure 1. The prediction by the ML method of Wu & Peek (2020) for Rubin’s galaxy (top) and reference SDSS spectra for an example of an AGN, a quiescent galaxy,
and a star-forming galaxy, all shifted to the rest frame. The spectral features of Rubin’s galaxy fall between those of a quiescent and an AGN-dominated galaxy.
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GPLv3 license (Chilingarian et al. 2019).15 This standard
reduction resulted in the spectrum in Figure 3, fourth panel.

Both the VIRUS-P and the MMT/Binospec spectra have
been renormalized using the maximum value in each
spectrum’s bandpass (VIRUS-P 4000–5700Å and MMT
4000–7000Å). This leaves a gradual difference in continuum
between normalized ML and either spectrum. Subsequently, we
modeled this continuum difference between the ML prediction
and the observed spectrum as a third degree polynomial to
remove bandwidth-wide effects. We subtracted this continuum
difference to facilitate a direct comparison between spectra and
their features in Figure 3.

4. Discussion

4.1. How Well Did ML Perform?

Figure 3 shows excellent agreement between the ML
predicted spectrum and the observations. Discrepancies in the
stellar continuum are easily attributed to night sky lines
(present in the 60 inch spectrum <6800Å but not preserved in
the SDSS vectorization). In the residual, one can identify a
slight gradient in the KPNO spectrum’s continuum (<5000Å),

which is a similar calibration difference. Discrepancies in Hα/
[N II] and [O III] line strengths are notable in Figure 3.
The 60 inch and VIRUS-P spectra have closely comparable

but not identical apertures to SDSS (∼4″ and 3″ diameters,
respectively, Figure 2), and a slight offset is to be expected.
Both archival spectra (Figure 3, top two panels) show excellent
agreement with the ML predicted spectrum within their
respective noise levels. The major differences are telluric
features (e.g., 6800Å in the 60 inch spectrum in Figure 3), not
included in the original ML prediction (telluric features are a
source of noise in the training set, and are therefore left out as
much as practical).
The VIRUS-P spectrum broadly agrees well with the ML

prediction. The only deviations are the [O III] emission line and
the He I absorption, which are both slightly underpredicted by
the ML method (Figure 3, third panel). About a third of the
equivalent width in the [O III] emission and the He I absorption
is missing (Figure 3, bottom panel).
The MMT/Binospec spectrum (Figure 3, fourth panel)

focuses on the very central region of Rubin’s galaxy. The
[O III] and Hα/[N II] emission line strengths, as well as the
[S II] absorption features at 4000Å, do appear to be under-
predicted by the ML in comparison to the MMT spectrum.
There are two factors resulting in differences between the

ML predicted spectra and those observed: the aperture of the

Figure 2. The nucleus of Rubin’s galaxy from the larger HST mosaic. A clear dustlane partially obscures the central stellar cluster. The inset shows the apertures of the
spectroscopic observations, which are marked using the same color scheme as in Figure 3: Mount Lemon 60 inch (orange), 2.1 KPNO (green), VIRUS-P (blue), and
MMT (white for contrast).

15 https://bitbucket.org/chil_sai/binospec
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observed spectra and the aperture-distance effects in the SDSS
training sample.

Figure 2 illustrates that the archival spectra and VIRUS-P are
for a slightly larger aperture and the MMT one for a smaller
aperture than an SDSS spectrum on this galaxy would have
been. Stronger Hβ and [O III] from the nucleus can be
explained by less dilution of the AGN signal. This can be
seen as the progression of stronger observed emission lines in
Figure 3 with smaller apertures.

Second, the ML algorithm was trained on SDSS with a
known aperture-distance effect (dilution of AGN signal in more
distant galaxies), matching the spectra of more distant galaxies
to Rubin’s Galaxy’s nucleus with a wider aperture diluting the
AGN signal.

4.2. AGN?

Identifying lower-power AGN can be difficult because
selection effects are the most notable at the lower luminosities.
Traditionally, one would select obscured or low-power AGN
from IR colors rather than X-ray or emission lines in spectra.
The ML approach offers an alternative, with Rubin’s galaxy
being an instructive example of one that could be identified
using imaging alone.
Figure 4 shows where the observed and the ML predicted

line strengths place the nucleus of Rubin’s galaxy on the BPT
diagram (Baldwin et al. 1981). The line strengths implied by
the ML predicted spectrum imply strongly that Rubin’s galaxy
is an AGN (blue triangle in Figure 4).

Figure 3. The ML predicted spectrum (black line in the top four panels) and the observed spectra, from Keel (1983a) using the Mount Lemon 60 inch (top panel,
orange), the KPNO 2.1 m telescope (second panel, green), from the VIRUS-P IFU instrument (third panel, blue), and the 2020 MMT Binospec observation (bottom
panel, gray). The bottom panel shows the residuals of each spectrum and the ML prediction.

Figure 4. The BPT diagnostic diagram for nuclear activity. The Galaxy And Mass Assembly Survey data is shown for comparison with the Kauffmann et al. (2003)
star formation/AGN demarcation (dashed lines). The observed line strengths reported in Keel (1983a) and the VIRUS-P observations for Rubin’s galaxy put it in the
active galaxies category. The ML predicted spectrum puts it in the AGN category. None of the line ratios prefer LINER or Seyfert classifications (Kewley et al. 2006).
The MMT line ratios are complicated as Hβ is not well constrained, skewing the vertical position of the nucleus on the y-axis.
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A combination of Keel (1983a) and VIRUS-P line strengths
are more consistent with a lower-power AGN, closer to the
dividing line between active galaxies and star-forming galaxies
(red circle in Figure 4). The MMT/Binospec line strengths put
the nucleus of Rubin’s galaxy solidly in the AGN category
(green square in Figure 4). The MMT spectrum does not
constrain the Hβ well and this skews the O III/Hβ ratio. The
observed or predicted line ratios are not consistent with those of
either a LINER or Seyfert according to the Kewley et al. (2006)
criteria.

Figure 5 shows the WISE colors of the central region of
Rubin’s galaxy for comparison with the classifications of
Jarrett et al. (2011) and Cluver et al. (2014). The WISE colors
are consistent with those of spiral, star-forming disk galaxies.
The source catalog entry corresponding to the center of Rubin’s
Galaxy is in the part of color-space where star-forming galaxies
border on obscured AGN and Seyfert galaxies, according to
Figure 5 in Cluver et al. (2014). However the WISE [3.6]–[4.5]
color criterion from Assef et al. (2016, 2018) does not place
Rubin’s galaxy in the AGN bracket (dashed lines in Figure 5).
Given the angular resolution of WISE, dilution of the AGN
signal by the PSF likely accounts for this lack of AGN
identification, i.e., the WISE flux is dominated by the stellar
population of Rubin’s galaxy. Based on the spectroscopic line
strengths, the center of Rubin’s galaxy is indeed an AGN.
WISE colors have the benefit of suffering less from dust
obscuration allowing for unbiased searches of AGN in the
nearby universe. However, the WISE color section still misses
AGN such as these and the ML approach may be a way to fill
in the missing population.

4.3. Discussion

It is exciting to see that the ML prediction of an SDSS-
quality spectrum of this galaxy is so reliable, even when this
galaxy resides in the space between star-forming and AGN.
The ML method outperforms WISE color selection, the

preferred method of identifying AGN in objects without a
spectrum. A successful ML prediction in the loci of galaxy
populations is reassuring but a tangible success for an extreme
object is especially encouraging. How the ML algorithm
transfers from, e.g., Pan-STARRS broadband grizy images to
the Rubin Observatory’s LSST looks to be a promising
example of transfer learning in astronomy.
The combined line strengths of Rubin’s Galaxy point to

ongoing AGN activity. Combined with the very extended star-
forming disk, the presence of an AGN makes this galaxy an
interesting case: a massive disk galaxy, with no signs of
interaction, relatively normal star formation activity, and very
regular rotation, yet using secular mechanisms only to fuel its
central source.

5. Conclusions

The ML predicted SDSS-quality spectrum from Wu & Peek
(2020) is remarkably close to the observed spectra (Figure 3).
Deviations can be attributed to small differences in aperture or
to residuals from telluric lines. The emission lines in the ML
prediction are underpredicting the [O III] and Hα and [N II]
doublet compared to [O II]. The successful identification of this
galaxy’s spectrum is a promising development in the use of
ML. It is an encouraging development for future use on the
Rubin Observatory data.
In order to supply gas to the central black hole, the gas must

lose angular momentum, and astronomers have long suspected
that galaxy collisions (or at least interactions) provide the
requisite torque to bring that gas into the nucleus (e.g., Hong
et al. 2015; Dietrich et al. 2018; Gao et al. 2020; Marian et al.
2020). However, interactions are not the only avenue for
fueling the AGN (e.g., McKernan et al. 2010; Marian et al.
2019). Rubin’s galaxy is an example of an extremely isolated,
undisturbed, and massive galaxy that shows clear evidence of
nuclear activity, and it may prove a useful laboratory to study
the secular fueling processes on a grand scale. Further

Figure 5. WISE colors of sources in the GAMA Equatorial Fields (Cluver et al. 2014). The WISE colors of the ALLWISE catalog sources at the position of Rubin’s
galaxy are shown. The colors of the bright foreground star projected on the disk of UGC 2885 are as would be expected. The colors of the nucleus are located away
from the bulk of normal galaxies (contours) but the [4.6]–[3.6] color does not quite reach the AGN criterion of Assef et al. (2018).
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dissection of the inner regions of the galaxy may shed light on
the secular mechanisms that supply fuel to AGN.

The authors would like to thank the anonymous referee for
the effort and time spent improving the manuscript. Observa-
tions reported here were obtained at the MMT Observatory, a
joint facility of the University of Arizona and the Smithsonian
Institution. Support for this work was provided by NASA
through grant No. GO-15107 from the Space Telescope
Science Institute, which is operated by AURA, Inc., under
NASA contract NAS 5-26555.

Software: Astropy (Astropy Collaboration et al. 2013).
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