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A B S T R A C T 

We derive single S ́ersic fits and bulge-disc decompositions for 13 096 galaxies at redshifts z < 0.08 in the GAMA II equatorial 
surv e y re gions in the Kilo-De gree Surv e y (KiDS) g , r , and i bands. The surface brightness fitting is performed using the 
Bayesian two-dimensional profile fitting code PROFIT . We fit three models to each galaxy in each band independently with a 
fully automated Markov chain Monte Carlo analysis: a single S ́ersic model, a S ́ersic plus exponential and a point source plus 
exponential. After fitting the galaxies, we perform model selection and flag galaxies for which none of our models are appropriate 
(mainly mergers/Irregular galaxies). The fit quality is assessed by visual inspections, comparison to previous works, comparison 

of independent fits of galaxies in the o v erlap re gions between KiDS tiles and bespoke simulations. The latter two are also used for 
a detailed investigation of systematic error sources. We find that our fit results are robust across various galaxy types and image 
qualities with minimal biases. Errors given by the MCMC underestimate the true errors typically by factors 2–3. Automated 

model selection criteria are accurate to > 90 per cent as calibrated by visual inspection of a subsample of galaxies. We also 

present g −r component colours and the corresponding colour–magnitude diagram, consistent with previous works despite our 
increased fit flexibility. Such reliable structural parameters for the components of a diverse sample of galaxies across multiple 
bands will be integral to various studies of galaxy properties and evolution. All results are integrated into the GAMA database. 

Key words: methods: statistical – catalogues – galaxies: fundamental parameters – galaxies: structure; techniques: photometric. 

1  I N T RO D U C T I O N  

The quantitative modelling of galaxy surface brightness distributions 
has a long history dating back to de Vaucouleurs ( 1948 ), S ́ersic 
( 1963 ) and even earlier works; see Graham ( 2013 ) for a re vie w 

of the development of light profile models. While the early works 
focused on azimuthally averaged galaxy profiling with just a single 
functional form (e.g. Kormendy 1977 ), modern codes allow users to 
decompose galaxies into several distinct components and to take 
into account the full two-dimensional information. To this end, 
there are many different techniques, methods, and code packages, 
all of which have become increasingly sophisticated as the quality 
and quantity of available astronomical data have grown. Broadly, 
they can be divided into parametric and non-parametric modelling 
as well as one-dimensional and two-dimensional methods. Which 

� E-mail: sarah.casura@uni-hamburg.de 

of these is most appropriate to use depends on the science case 
and the available data. This work falls into the regime of large- 
scale automated analyses of galaxies with often barely resolved 
components, for which we want to obtain structural parameters that 
are easily comparable between galaxies. Hence, two-dimensional 
parametric analysis is most appropriate (see also the discussion 
in Robotham et al. 2017 and references therein). Examples of 
such two-dimensional, parametric fitting tools used for large-scale 
automated analyses include GIM2D (Simard et al. 2002 ), BUDDA 

(de Souza, Gadotti & dos Anjos 2004 ), GALFIT3 (Peng et al. 
2010 ), GALFITM (Vika et al. 2013 ), IMFIT (Erwin 2015 ), PROFIT 

(Robotham et al. 2017 ), and PHI (Argyle et al. 2018 ). Each of 
these tools comes with its own advantages and disadvantages, which 
goes to show how difficult the problem of galaxy modelling is, 
especially when automated for large samples of a very diverse 
galaxy population. Usually, some form of post-processing is needed 
to assess the influence of systematic errors, judge the convergence, 
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exclude bad fits and identify the most appropriate model to use for 
each galaxy. This can be achieved via visual inspection (for small 
enough samples), logical filters, frequentist statistics such as the F - 
test, Bayesian inference, or similar methods (see e.g. Allen et al. 
2006 ; Gadotti 2009 ; Simard et al. 2011 ; Vika et al. 2014 ; Meert, 
Vikram & Bernardi 2015 ; Lange et al. 2016 ; M ́endez-Abreu et al. 
2017 ). 

Despite the associated difficulties (e.g. convergence and quality of 
fit metrics), many authors have performed two-dimensional surface 
brightness profile fitting for large numbers of galaxies, modelling the 
radial light profile as a simple functional form, most often a S ́ersic 
function (Blanton et al. 2003 , 2005 ; Barden et al. 2005 ; Trujillo et al. 
2006 ; Hyde & Bernardi 2009 ; La Barbera et al. 2010 ; Kelvin et al. 
2012 ; van der Wel et al. 2012 ; H ̈außler et al. 2013 ; Shibuya, Ouchi & 

Harikane 2015 ; S ́anchez-Janssen et al. 2016 , to name just a few). 
The results of such analyses have been used to derive a number of 
key relations between different galaxy properties, their formation 
and evolutionary history, and interactions with the environment. For 
e xample, man y works hav e studied the distribution of, and relation 
between, size and mass or luminosity for different galaxy types (split 
by e.g. S ́ersic index or colour), sometimes including morphology, sur- 
face brightness, internal v elocity, environment, wav elength, colour, 
or redshift effects (e.g. Shen et al. 2003 ; Barden et al. 2005 ; Blanton 
et al. 2005 ; Trujillo et al. 2006 ; Hyde & Bernardi 2009 ; La Barbera 
et al. 2010 ; Kelvin et al. 2014 ; van der Wel et al. 2014 ; Lange et al. 
2015 ; Shibuya et al. 2015 ; Kawinwanichakij et al. 2021 ; Nedkova 
et al. 2021 ). 

With improving data quality of surv e ys, the galaxy fitting com- 
munity has increasingly shifted towards fitting more than one 
component, i.e. to perform bulge-disc decomposition. While some 
authors, such as Gadotti ( 2009 ), Salo et al. ( 2015 ), or Gao & Ho 
( 2017 ) also account for bars, central point sources, spiral arms or 
other additional morphological features, most works focus on the 
bulge and disc. The focus on only two components is especially true 
when running automated analyses of large samples, since in many 
cases the data quality is not sufficient to meaningfully constrain more 
than one or two components, or it would require e xtensiv e manual 
tuning based on visual inspection. From a more physical point of 
view, the majority of the stellar mass in the local Universe resides in 
ellipticals, discs, and classical bulges, with pseudo-bulges and bars 
only contributing a few per cent (Gadotti 2009 ). Hence, for automated 
analyses it is common practice to fit only two components, where the 
term ‘bulge’ is used to describe the central component, irrespective 
of whether it is a classical b ulge, pseudo-b ulge, bar, lens, active 
galactic nucleus (AGN), or a mixture thereof, while ‘disc’ refers to 
a more extended component with typically lower surface brightness 
and potential additional structure such as spiral arms, breaks, flares, 
or rings. 

Examples of large bulge-disc decomposition studies include 
Simard et al. ( 2002 , 2011 ), Allen et al. ( 2006 ), Benson et al. ( 2007 ), 
Gadotti ( 2009 ), Lackner & Gunn ( 2012 ), Fern ́andez Lorenzo et al. 
( 2014 ), Head et al. ( 2014 ), Mendel et al. ( 2014 ), Vika et al. ( 2014 ), 
Meert et al. ( 2015 ), Meert, Vikram & Bernardi ( 2016 ), Kennedy et al. 
( 2016 ), Kim et al. ( 2016 ), Lange et al. ( 2016 ), Dimauro et al. ( 2018 ), 
Bottrell et al. ( 2019 ), Cook et al. ( 2019 ), Barsanti et al. ( 2021 ), and 
H ̈außler et al. ( 2022 ). Such catalogues can then be used to determine 
the relative numbers of different galaxy components as well as their 
luminosity or stellar mass functions, size–mass or size–luminosity 
relations, including their redshift evolution and dependence on other 
properties of the galaxy and its environment (similar to the studies 
of entire galaxies mentioned earlier). This has been done by Driver 
et al. ( 2007b ), Dutton et al. ( 2011 ), Tasca et al. ( 2014 ), Kennedy 

et al. ( 2016 ), Lange et al. ( 2016 ), Moffett et al. ( 2016 ), Dimauro 
et al. ( 2019 ), and many others. 

In addition, quantitative measures for the components of galaxies 
aid the comparison of observational data to theory and simulations. 
Bulges and discs are often decisively different not only in their visual 
appearance but also in their structure, dynamics, stellar populations, 
gas and dust content, and are thought to have different formation 
pathways (Cole et al. 2000 ; Cook, Lapi & Granato 2009 ; Driver et al. 
2013 ; Lange et al. 2016 ; Dimauro et al. 2018 ; Lagos et al. 2018 ; 
Oh et al. 2020 ). Consequently, bulge-disc decomposition studies 
provide stringent constraints on the formation and evolutionary 
histories of galaxies and their physical properties that are not 
easily measured directly such as the dark matter halo, the build- 
up of stellar mass (in different components) o v er time, or merger 
histories (examples include Driver et al. 2013 ; Bottrell et al. 2017 ; 
Bluck et al. 2019 ; Rodriguez-Gomez et al. 2019 ; de Graaff et al. 
2022 ). Hence, consistently measuring the structure of the stellar 
components is essential to make full use of current and future large- 
scale observational surv e ys such as the Kilo-De gree Surv e y (KiDS; 
de Jong et al. 2013 ) or the Le gac y Surv e y of Space and Time (LSST; 
Ivezi ́c et al. 2019 ), and of cosmological hydrodynamical simulations 
such as Illustris (Vogelsberger et al. 2014 ) and IllustrisTNG (The 
Next Generation; Pillepich et al. 2018 ) or Evolution and Assem- 
bly of GaLaxies and their Environments (EAGLE; Schaye et al. 
2015 ). 

In the present study, we obtain single S ́ersic fits and bulge-disc 
decompositions for 13 096 GAMA galaxies in the KiDS g , r , and 
i bands. We choose PROFIT as our modelling software due to its 
Bayesian nature (allowing full MCMC treatment including more 
realistic error estimates), its suitability to large-scale automated 
analyses and its ability, in combination with PROFOUND , to serve as 
a fully self-contained package co v ering all steps of the analysis from 

image segmentation through to model fitting. We supplement this 
functionality with our own routines for the rejection of unsuitable fits, 
model selection, and a characterization of systematic uncertainties. 
The resulting catalogue has already been used to aid the kinematic 
bulge-disc decomposition of a sample of galaxies in the Sydney-AAO 

Multi-object Integral-field spectroscopy (SAMI) Galaxy Surv e y (Oh 
et al. 2020 ) and to examine the properties of galaxy groups (Cluver 
et al. 2020 ), with many more studies in progress. 

Our own plans include deriving the stellar mass functions of 
bulges and discs, studying component colours and trends of other 
S ́ersic parameters with wavelength, and constraining the nature and 
distribution of dust in galaxy discs. The latter can be achieved by 
comparing the distribution of bulges and discs in the luminosity–size 
plane to dust radiative transfer models such as those presented in 
Popescu et al. ( 2011 ) and preceding papers of this series (similar 
to the analysis performed by Driver et al. 2007a albeit with more 
and better data and at several wavelengths). For these science aims, 
we are most interested in obtaining structural parameters that are 
directly comparable amongst each other, i.e. consistent within the 
data set; and correctly represent the statistical properties of the 
entire sample, with less emphasis placed on capturing all aspects 
of the detailed structure of individual galaxies. Correspondingly, we 
choose to model a maximum of two components for each galaxy and 
use the terms ‘bulge’ and ‘disc’ in their widest senses, in line with 
previous automated decompositions of large samples. In particular 
the ‘bulges’ we obtain are often mixtures of classical or pseudo- 
bulges, bars, lenses, and AGN. Similarly, we place more emphasis on 
the central, high surface brightness regions of galaxies by modelling 
only a relatively tight region around each galaxy of interest. While 
most of the fits we obtain are not perfect (because galaxies are more 
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complex than two simple components), they do achieve the above 
named aims and are comparable to similar studies. 

In Section 2 we describe our data (GAMA and KiDS), sample 
selection, and code ( PROFIT and PROFOUND ), and discuss in detail 
the distinguishing features of this study compared to previous work. 
Section 3 then presents the pipeline we developed for the bulge- 
disc decomposition, including preparatory work and post-processing, 
before we show our main results in Section 4 . Sections 5 and 6 focus 
on the quality control of the fits by comparison to previous work and 
a detailed investigation into systematic uncertainties and biases from 

simulations and the o v erlap sample. We conclude with a summary 
and information on catalogue access in Section 7 . We assume a 
standard cosmology of H 0 = 70 km s −1 Mpc −1 , �m 

= 0.3, and �λ = 

0.7 throughout. 

2  DATA ,  SAMPLE,  A N D  C O D E  

2.1 GAMA 

The Galaxy and Mass Assembly (GAMA) 1 surv e y is a large 
low-redshift spectroscopic surv e y co v ering ∼ 238 000 galaxies in 
286 de g 2 of sk y (split into fiv e surv e y re gions) out to a redshift of 
approximately 0.6 and a depth of r < 19.8 mag. The observations were 
taken using the AAOmega spectrograph on the Anglo-Australian 
Telescope and were completed in 2014. The surv e y strate gy and 
spectroscopic data reduction are described in detail in Driver et al. 
( 2009 , 2011 ), Baldry et al. ( 2010 , 2014 ), Robotham et al. ( 2010 ), 
Hopkins et al. ( 2013 ), and Liske et al. ( 2015 ). 

In addition to the spectroscopic data, the GAMA team collected 
imaging data on the same galaxies from a number of independent 
surv e ys in more than 20 bands with wavelengths between 1 nm 

and 1 m. Details of the imaging surv e ys and the photometric data 
reduction are given in Liske et al. ( 2015 ), Driver et al. ( 2016 , 
2022 ), and references therein. The combined spectroscopic and 
multiwavelength photometric data at this depth, resolution, and 
completeness provide a unique opportunity to study a variety of 
properties of the low-redshift galaxy population. 

In this work, we focus on the KiDS g , r , and i -band imaging 
data (see Section 2.2 ) in the GAMA II equatorial surv e y re gions, 
which are three regions of size 12 ◦ × 5 ◦ located along the equator 
at 9, 12, and approximately 14.5 h in right ascencion (the G09, 
G12, and G15 re gions). F or our sample selection, we make use of 
the equatorial input catalogue 2 ( EqInputCat:TilingCatv46 ; 
Baldry et al. 2010 ) and the most recent version of the redshifts 
originally described by Baldry et al. ( 2012 ; LocalFlowCorrec- 
tion:DistancesFramesv14 ), see details in Section 2.3 . For 
the stellar mass–size relation (Section 5.3 ), we also use the Data 
Release (DR) 3 version of the stellar mass catalogue first presented 
in Taylor et al. ( 2011 ; StellarMasses:StellarMassesv19 ); 
for the comparison to previous work (Section 5.4 ) we use the 
single S ́ersic fits of Kelvin et al. ( 2012 ; SersicPhotome- 
try:SersicCatSDSSv09 ); and in order to correct galaxy 
colours for Galactic extinction, we use the corresponding table 
provided along with the equatorial input catalogue ( EqInput- 

1 http://www .gama-survey .org 
2 For the sake of reproducibility, we always give the exact designation of a 
catalogue on the GAMA database in parentheses: the data management unit 
(DMU) that produced the catalogue (e.g. EqInputCat ) followed by the 
catalogue name (e.g. TilingCat ) and the version used (e.g. v46 ). 

Cat:GalacticExtinctionv03 ). All of these catalogues can 
be obtained from the GAMA database 1 . 

2.2 KiDS 

The Kilo-Degree Survey (KiDS, de Jong et al. 2013 ) is a wide-field 
imaging surv e y in the Southern sk y using the VLT Survey Telescope 
( VST ) at the ESO P aranal Observatory. 1350 de g 2 are mapped in the 
optical broad-band filters u , g , r , i ; while the VISTA Kilo-degree 
INfrared Galaxy (VIKING) Surv e y (Edge et al. 2013 ) provides the 
corresponding near-infrared data in the Z , Y , J , H , K s bands. The 
GAMA II equatorial surv e y re gions hav e been co v ered as of DR3.0. 

KiDS provides ∼ 1 ◦×1 ◦ science tiles calibrated to absolute values 
of flux with associated weight maps (inverse variance) and binary 
masks. The science tiles are composed of five dithers (four in u ) 
totalling 1000, 900, 1800, and 1200 s exposure time in u , g , r , i , 
with all dithers aligned in the right ascenscion and declination axes 
(i.e. no rotational dithers). The r -band observations are performed 
during the best seeing conditions in dark time; while g , u , and i 
hav e progressiv ely w orse seeing and i is additionally tak en during 
grey time or bright moon. During co-addition, the dithers across 
all four bands are re-gridded on to a common pixel scale of 0.2 
arcsec. The magnitude zeropoint of the science tiles is close to zero 
with small corrections given in the image headers. The r -band point 
spread function (PSF) size is typically 0.7 arcsec and the limiting 
magnitudes in u , g , r , i are ∼ 24.2, 25.1, 25.0, 23.7 mag, respectively 
(5 σ in a 2 arcsec aperture). This high image quality, depth, surv e y 
size, and wide wavelength coverage in combination with VIKING 

make KiDS data unique. For details, see Kuijken et al. ( 2019 ). 
For this work, we use the g , r , and i -band science tiles, weight 

maps, and masks from KiDS DR4.0 (Kuijken et al. 2019 ), which are 
publicly available 3 for our selected sample of galaxies (Section 2.3 ). 
We plan to extend the analysis to include the KiDS u and the VIKING 

Z , Y , J , H , and K s bands in a future work. 

2.3 Sample selection 

Our main sample consists of all GAMA II equatorial region main 
surv e y targets with a reliable redshift in the range 0.005 < z < 0.08, 
which are a total of 12 958 objects. 4 In addition, we include all 2404 
targets of the ‘GAMA sample’ of the SAMI Galaxy Surv e y 5 (Bryant 
et al. 2015 ), the majority of which are already in our main sample. 
The combination of both results in the full sample of 13 096 unique 
physical objects, which were imaged a total of 14 966 times in each 
of the KiDS g , r , and i bands due to small o v erlap re gions between the 
tiles. 11301, 1742, 31, and 22 objects were imaged once, twice, three, 
and four times, respectively. We keep these multiple data matches to 
the same physical object separate during all processing steps to serve 
as an internal consistency check. 

2.4 PROFIT 

We fit the surface brightness distributions of our sample of galaxies 
using PROFIT 6 (v1.3.2) which is a free and open-source, fully 

3 http:// kids.strw.leidenuniv.nl/ DR4/ index.php 
4 In detail, we select all targets with NQ ≥3, SURVEY CLASS ≥4, and 
0.005 < Z CMB < 0.08 from EqInputCat:TilingCatv46 joined to Lo- 
calFlowCorrection:DistancesFramesv14 on CATAID. 
5 Taking the CATIDs listed in sami sel 20140413 v1.9 publiclist from https: 
//sami-sur vey.or g/data/tar get catalogue 
6 ht tps://github.com/ICRAR/ProFit 
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Bayesian two-dimensional profile fitting code (Robotham et al. 
2017 ). PROFIT offers great flexibility: there are several built-in 
profiles to choose from, it is easy to add several components of the 
same or different profiles, there is a choice of likelihood calculations 
and optimization algorithms that can be used (various downhill 
gradient options, genetic algorithms, o v er 60 variants of Markov 
chain Monte Carlo methods; MCMC), parameters can be fitted in 
linear or logarithmic space, it is possible to add complex priors 
for each, as well as constraints relating several parameters; and 
much more. The pix el inte grations are performed using a standalone 
C ++ library ( LIBPROFIT ), making it both faster and more accurate 
than other commonly used algorithms such as GALFIT (Peng et al. 
2010 ; see detailed comparison in Robotham et al. 2017 ). This allows 
us to fit galaxies with the computationally more e xpensiv e MCMC 

algorithms, o v ercoming the main problems of downhill gradient 
based optimizers: their susceptibility to initial guesses and their 
inability to easily derive realistic error estimates (e.g. Lange et al. 
2016 ). This makes PROFIT highly suitable for the decomposition of 
large sets of galaxies with little user intervention. 

2.5 PROFOUND 

PROFIT (Section 2.4 ) requires a number of inputs apart from the 
(sky-subtracted) science image and the chosen model to fit, most 
importantly initial parameter guesses, a segmentation map specifying 
which pixels to fit, a sigma (error) map, and a PSF image. To 
provide these inputs in a robust and consistent manner, the sister 
package PROFOUND 

7 (Robotham et al. 2018 ) was developed, which 
also serves as a stand-alone source finding and image analysis tool. 
The main no v elties of PROFOUND compared to other commonly 
used free and open-source packages such as SOURCE EXTRACTOR 

(Bertin & Arnouts 1996 ) are that, rather than elliptical apertures, 
PROFOUND uses dilated ‘segments’ (collections of pixels of arbitrary 
shape) with watershed de-blending across saddle-points in flux. This 
means that the flux from each pixel is attributed to exactly one 
source (or the background) and apertures are never overlapping or 
nested. It also allows for extracting more complex object shapes 
than ellipses while still capturing the total flux due to the segment 
dilation (expansion) process. This makes it less prone to catastrophic 
segmentation failures (such as fragmentation of bright sources or 
blending of several sources into one aperture), reducing the need for 
manual intervention or multiple runs with ‘hot’ and ‘cold’ deblending 
settings, hence making PROFOUND particularly suitable for large- 
scale automated analysis of deep extragalactic surveys (Davies et al. 
2018 ; Robotham et al. 2018 ; Bellstedt et al. 2020 ). 

Apart from the segmentation map, the main function of the 
package, PROFOUNDPROFOUND , also returns estimated sky and sky- 
RMS maps (if not given as inputs) and a wealth of ancillary data 
including a list of segments and their properties such as their size, 
ellipticity, and the flux contained. The latter is particularly useful to 
obtain reasonable initial parameter guesses for galaxy fitting; or for 
identifying certain types of sources (e.g. stars for PSF estimation). 
The package also contains many additional functions for further 
image analysis and processing, all within the same framework. In 
addition, combining PROFOUND with PROFIT allows the user to 
estimate a PSF (see Section 3.1.5 ), hence entirely remo ving an y 
dependence on external tools. Finally, both packages come with 
comprehensive documentation and many extended examples and 

7 https:// github.com/asgr/ ProFound/ 

vignettes which serve as great resources for newcomers to the fields 
of source extraction and galaxy fitting. 

We use PROFOUND (v1.9.2) along with PROFIT (v1.3.2) for 
all preparatory steps (image segmentation/source identification, sky 
subtraction, initial parameter estimates, and PSF determination; see 
Section 3.1 for details) producing the inputs needed for the galaxy 
fitting with PROFIT . 

3  BU LGE-DISC  DECOMPOSI TI ON  PI PELINE  

We use the free and open-source R programming language (R Core 
Team 2020 ) for all scripting. 

3.1 Preparatory steps 

3.1.1 Cutouts and masking 

KiDS imaging tiles are registered to the same pixel grid across all 
four bands (with matching weight maps and masks), such that a joint 
analysis of the bands is straightforward. They are also aligned such 
that the x -axis corresponds to right ascension (RA) and the y -axis to 
declination (Dec). Hence, we obtain a 400 arcsec × 400 arcsec cutout 
of the KiDS tile, associated weight map and mask for each object in 
our sample and for each of the three KiDS bands we used ( g , r , i ). 
The masks of all three bands are then combined and all pixels which 
have a value greater than 0 in any of the masks are excluded from 

analysis. This results in approximately 20 per cent of all pixels being 
masked out. This large fraction of masking is primarily due to the 
reflection haloes of bright stars that are also clearly visible in the data 
(see de Jong et al. 2015 for details). We combine the masks in this 
way to ensure that the pixels used for analysis are exactly the same 
in all bands and so the results are most directly comparable between 
bands. Objects for which the central pixel is masked ( ∼ 20 per cent 
of all galaxies) are skipped in the galaxy fitting. 

3.1.2 Ima g e segmentation 

We perform image segmentation in order to determine which pixels 
to fit for each of our objects, identify other nearby sources, impro v e 
the background subtraction, and obtain reasonable initial guesses for 
the galaxy parameters. This is performed on the joint g , r , i cutouts 
with PROFOUND in several steps. 

First, we add the cutouts in the g , r , and i bands using inverse 
variance weighting and compute the joint weight map. We then 
estimate the (joint gri ) sky by running the stacked image through 
PROFOUNDPROFOUND passing in the correct magnitude zeropoint, 
mask, and weight, b ut lea ving SKYCUT on its default of 1. This 
means that all pixels with a flux at least 1 σ above the median are 
progressively assigned to segments (collections of pixels belonging 
to an object) using an iterative process: starting with the brightest 
pixel in the image, segments are grown by adding neighbouring 
pixels with lower flux; new segments are started when a pixel 
shows more flux than its neighbours (within some tolerance) or 
when all neighbouring pixels above the SKYCUT value have been 
assigned. Once all pixels above SKYCUT have been assigned, the 
resulting segments are additionally expanded until flux convergence 
is reached. For more details, see Robotham et al. ( 2018 ). 

Along the way, PROFOUND estimates the sky background several 
times since object detection relies on accurate background subtrac- 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/1/942/6671549 by U
niversity of Louisville user on 21 O

ctober 2022

https://github.com/asgr/ProFound/


946 S. Casura et al. 

MNRAS 516, 942–974 (2022) 

Figure 1. The PROFOUND segmentation map obtained for the galaxy 396 740 
o v erlaid on the KiDS r -band image. Note this is only a cutout of the full 
segmentation map showing the central 100 arcsec × 100 arcsec. Identified 
objects (segments) are shown with contours, coloured from red to blue 
according to the flux contained. Grey contours indicate the more dilated 
segmentation map used for the background subtraction. Masked areas are 
shaded red. 

tion and vice v ersa. 8 F or the final sky estimate, the already-dilated 
segments are expanded even further to ensure that no object flux 
will bias the background determination. This v ery aggressiv e object 
mask is indicated with grey contours in Fig. 1 . We use it for the 
joint- gri sky estimate here and also for the band-specific background 
determination detailed in Section 3.1.3 (performed in the same way). 

For the galaxy fitting, ho we ver, we decided to use tighter segments 
that do not push that deeply into the sky. Besides speeding up the 
fit, this naturally results in the best possible fit to the inner, high 
signal-to-noise regions of the galaxy that we are most interested 
in, and reduces the sensitivity to background subtraction problems, 
flux from the wings of other objects, and features that cannot be 
captured by our models such as disc breaks and flares, and edge- 
on discs requiring the inclined disc model (van der Kruit & Searle 
1981 ). Note, ho we ver, that this choice comes with some trade-offs, 
most notably that the fit frequently o v er-predicts the flux outside the 
segment boundary. We address this in more detail in Section 3.3.3 . 

To obtain these tighter segmentation maps, we run PROFOUNDPRO- 
FOUND again with the sky now fixed and a higher SKYCUT value 
of 2. This means that only pixels with a flux at least 2 σ abo v e the 
background level are considered in the segmentation, which ensures 
that fewer noise fluctuations are ‘detected’ and segment borders 
are smooth. In order to capture all flux of the galaxy wings, the 
segment for the object of interest (only) is then expanded further 
(using PROFOUNDMAKESEGIMDILATE ) such that its area increases by 
typically around 30 per cent. This last step also ensures unbiased 
smooth borders of the segment since it is entirely independent of 
noise fluctuations. The resulting segmentation map is indicated with 

8 The sky variance can also be estimated, but in our case this is already 
provided as the KiDS weight maps and given to PROFOUND as an input. 

coloured contours in Fig. 1 and is used for galaxy fitting in all 
bands, so that exactly the same pixels are fitted in each band (the 
segmentation statistics are of course re-calculated in each band). 

3.1.3 Background subtraction 

KiDS tiles are background-subtracted already; ho we ver, we opt to 
use the sky estimated by PROFOUND to even out inhomogeneities on 
smaller scales. For this, we split our 400 arcsec × 400 arcsec cutout 
into 16 square boxes and mask out all objects using the aggressively 
dilated segmentation map indicated with grey contours in Fig. 1 
(cf. Section 3.1.2 ). The sky is then estimated as the median of the 
remaining (background) pixels in each box independently; and the 
solutions between the boxes interpolated with a bicubic spline. 9 This 
is done for each band independently; ho we v er, the se gmentation 
maps used to mask out objects are the same in all bands. 

This procedure for the background subtraction was chosen after 
e xtensiv e testing during pipeline development. In short, we found that 
the PROFOUND sky adopted here does not subtract object wings while 
still homogenizing the background well enough to a v oid ha ving to 
fit it along with the object of interest (introducing possible parameter 
degeneracies). It also decreases the sensitivity of the fit to the chosen 
segment size. 

3.1.4 Sigma maps 

Once the image segmentation and background subtraction is com- 
pleted, we also calculate the sigma (error) map for each cutout 
(independently in each band). This is a combination of the KiDS 

weight map (where σ = 1 / 
√ 

weight ) and the object shot noise. The 
latter is estimated as 

√ 

N , where N is the number of photons per 
pix el (using positiv e-valued pix els only). This, in turn, is obtained 
by converting the image into counts using the gain provided in the 
meta-data associated with each KiDS tile. 

3.1.5 PSF estimation 

PSF fitting is performed on the background-subtracted 400 arcsec 
× 400 arcsec cutouts with corresponding masks and sigma maps 
in each band. The segmentation statistics returned by PROFOUND 

are used to identify isolated stars (round, bright, small, and highly 
concentrated objects with few nearby segments). More details on the 
star candidate selection are given in Appendix A . These objects 
are then fitted with a Moffat function using PROFIT ; fitting all 
parameters except boxyness, i.e. the position, magnitude, full width 
at half-maximum (FWHM), concentration index, axial ratio, and 
position angle. Scale parameters are fitted in logarithmic space, a 
Normal likelihood function is used, initial guesses are taken from the 
segmentation statistics, and we use the BFGS algorithm from optim 
(R Core Team 2020 ), which is a fast downhill gradient optimization 
using a quasi-Newton method published simultaneously by Broyden 
( 1970 ), Fletcher ( 1970 ), Goldfarb ( 1970 ), and Shanno ( 1970 ). 

Some of the objects fitted abo v e may not actually be suitable 
for PSF estimation as they can be too faint or bright (close to 
saturation), hav e irre gular features, bad pix els, or additional small 
objects included in the fitting segment. Unsuitable objects are 
excluded by a combination of hard cuts in reduced chi-square ( χ2 

ν ), 

9 This is done by PROFOUNDPROFOUND internally; with the box size and the 
order of the interpolation spline being some of the variables we set. 
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Figure 2. The result of the PSF fitting for the galaxy 396740 in the KiDS r 
band with the dashed white square indicating the cutout shown in Fig. 1 . The 
greyscale image shows the r -band weight map with lighter colours meaning 
higher weight. Masked areas from the stacked gri -masks are shown in black 
(zero weight). The vertical and horizontal red lines indicate the position of the 
object of interest (galaxy 396740) and split the image into its four quadrants. 
All fitted PSFs are shown as coloured ellipses with the size (FWHM multiplied 
by 20), axial ratio, orientation angle, and concentration index (colour) taken 
from the fitted Moffat parameters. Stars selected for estimating the final model 
PSF have red borders; dashed red borders mean a fit was classified as suitable, 
but not selected because the maximum of eight stars was already reached. 

position and magnitude relative to the PROFOUND estimates and 
an iterative 2 σ -clipping in FWHM, concentration index, angle, and 
axial ratio. Again, more details can be found in Appendix A . Finally, 
we take the median of the Moffat parameters of a maximum of eight 
suitable stars (the closest two from each quadrant where possible to 
ensure an even distribution around the position of interest) and use 
these Moffat parameters to create a model PSF image. The size of 
the PSF image is adjusted to include at least 99 per cent of the total 
flux; or to a maximum of the median segment size within which the 
stars were fitted, with pixels in the corners of the image set to zero 
to a v oid ha ving a rectangular PSF. 

Fig. 2 shows an example diagnostic plot of the PSF fitting result. 

3.1.6 Outputs 

For the fitting, we are only interested in the central galaxy and 
the closest neighbouring sources (for potential simultaneous fitting 
and to gain a better o v erview during visual inspection). Hence 
we do not save the entire 2000 × 2000 pixel cutouts used in the 
preparatory work as that would unnecessarily waste storage space 
and computational time used on reading and writing files. Instead, 
the image, corresponding mask, segmentation map, sigma map, and 
sky image are cut down to the smallest possible size that includes the 
object of interest (centred) and its neighbouring (touching) segments 
before saving. These five files, the model PSF image, and some 
ancillary information such as the segment statistics are the main 
outputs of the preparatory work pipeline and serve as inputs for the 
galaxy fitting, which we describe in the next section. 

3.2 Galaxy fitting 

3.2.1 Inputs and models 

We use the Bayesian code PROFIT (Robotham et al. 2017 ) to perform 

two-dimensional multicomponent surface brightness modelling in 
each band independently, assuming elliptical geometry and a (com- 
bination of) S ́ersic function(s) as the radial profile. The S ́ersic ( 1963 ) 
function is described by three main parameters: the S ́ersic index 
n giving the o v erall shape (with special cases n = 0.5: Gaussian; 
n = 1: exponential and n = 4: de Vaucouleurs ( 1948 ) profile), the 
ef fecti ve radius R e including half of the total flux, and the overall 
normalization which we specify as total magnitude m . In addition, 
in two dimensions the axial ratio b / a gives the ratio of the minor to 
the major axis of the elliptical model and the position angle PA its 
orientation, while x and y are used to define the position in RA and 
Dec. Throughout the paper, R e refers to the ef fecti ve radius along the 
major axis of the elliptical model. The S ́ersic model is detailed in 
Graham & Driver ( 2005 ). 

The data inputs for PROFIT are a background-subtracted image, 
corresponding mask, segmentation map, sigma map, and PSF. All 
of these are obtained during the preparatory steps (Section 3.1 ). On 
the modelling side, the main choices are the profile(s) to fit with 
initial parameter guesses and priors, the likelihood function to use, 
the fitting algorithm and convergence criteria; which are detailed in 
Sections 3.2.2 –3.2.5 . In short, we choose to fit each object with three 
different models in a four-step procedure: 

(i) Single component S ́ersic fits with initial guesses from segmen- 
tation statistics. 

(ii) Double component S ́ersic bulge plus exponential disc fits with 
initial guesses from single component fits. 

(iii) Double component re-fits for a subset of galaxies which 
seemed to have the bulge and disc components swapped in step 
(ii), see Section 3.2.6 . 

(iv) ‘1.5-component’ point source bulge plus exponential disc fits 
with initial guesses from double component fits. 

Note that, for brevity, we will call the central component ‘bulge’ 
throughout this paper, even if it may not be a classical bulge. In 
particular, we do not distinguish classical bulges from pseudo-bulges, 
bars, AGNs, nuclear discs, combinations thereof, or anything else that 
may emit light near the centre of a galaxy. Hence, we also use the 
term ‘bulge’ for 1.5-component fits where the central component is 
unresolved and for double component central components with low 

S ́ersic index and/or low axial ratios. 
To implement our three models, we make use of two of the many 

models built into PROFIT , namely the S ́ersic and point source models. 
We fit all parameters except boxyness (i.e. we do not allow deviations 
of components from an elliptical shape) and, for the double and 
1.5-component models, tying the positions of the two components 
together. Exponential discs are implemented using a S ́ersic profile 
with the S ́ersic inde x fix ed to 1. This leaves seven free parameters for 
our single S ́ersic and 1.5-component models and 11 free parameters 
of the double component fits, which are summarized in Table 1 . Scale 
parameters (S ́ersic index, ef fecti ve radius and axial ratio) are treated 
in logarithmic space throughout, i.e. the actual fitting parameters are 
log 10 ( X ) for scale parameters X . 

The 1.5-component model is needed for around 15–30 per cent of 
our double component systems where the bulge is too small relative to 
the image resolution to meaningfully constrain its S ́ersic parameters 
(the exact number depends on the band due to the different PSF sizes). 
With the point source profile, at least we can determine the existence 
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Table 1. The fitting parameters for each of our three models. 

Single Double 1.5-comp. 
Parameter Bulge Disc Bulge Disc 

x -centre Free Free Free 
y -centre Free Free Free 
m Free Free Free Free Free 
log 10 ( R e ) Free Free Free N/A Free 
log 10 ( n ) Free Free 1 N/A 1 
log 10 ( b / a ) Free Free Free N/A Free 
PA Free Free Free N/A Free 
boxyness 0 0 0 N/A 0 

of a second component and constrain its magnitude and hence the 
bulge-to-total (or AGN-to-total, bar-to-total, etc.) flux ratio. 

If the centre of an object is masked or the PSF estimation failed 
(which happens if large fractions of the surrounding area are masked), 
then the object is skipped and no fits are obtained. This affects 
approximately 20 per cent of the galaxies. All other objects are fitted 
with all three models; and the best model is selected subsequently 
(see Section 3.3.2 on details of the model selection and Section 4.2 
for the corresponding statistics). 

3.2.2 Initial guesses 

Since we use MCMC algorithms, our fits do not strongly depend on 
the initial guesses. Ho we ver, reasonable starting parameters are still 
required for convergence within finite computing times. 

The initial guesses for the single component S ́ersic parameters are 
obtained directly from the segmentation statistics output by PRO- 
FOUNDPROFOUND (Section 2.5 ) where we use the position, magnitude, 
ef fecti ve radius ( R50 ), axial ratio, and angle as given; and the inverse 
of the concentration (1/ con ) for the S ́ersic index. 

For the double component fits, we convert the single component 
fits into initial guesses as follows: the position is taken unchanged, 
the magnitude of the single component fit is split equally between 
the two components, the bulge, and disc ef fecti ve radii are taken as 
1/2 and 1 times the single component ef fecti ve radius, respecti vely, 
the S ́ersic index of the bulge is set to 4 and its axial ratio to 1 (round), 
the disc axial ratio is set to the axial ratio of the single component fit 
and the position angles of both components are taken as that of the 
single component fit. 

Initial guesses for the 1.5-component fits are taken from the double 
component fits (after making sure the components are not swapped, 
see Section 3.2.6 ), where the bulge magnitude is used as the point 
source magnitude and the disc parameters are taken unchanged. 

3.2.3 Priors, intervals, constraints 

All parameters are limited to fixed intervals. In addition, there can 
be constraints between parameters (such that, e.g. the bulge and disc 
positions can be tied together). If a (trial) parameter is outside the 
bounds of its interval or constraint during any step of the fitting 
process, PROFIT mo v es it back on to the limit before the likelihood 
is e v aluated. 

The limits for single-component fits are given in Table 2 . In 
addition, the position angle is constrained such that if it leaves its 
interval, it is not just mo v ed back on to the limit but jumps back 
180 ◦ (which is the same angle, just more in the centre of the fitting 
interval). 

Table 2. The fitting limits for single-component fits. 

Parameter(s) Lower limit Upper limit 

x - and y -centre 0 Cutout side length 
Magnitude 10 25 
Ef fecti ve radius 0.5 pixels 

√ 

2 cutout side length 
S ́ersic index 0.1 20 
Axial ratio 0.05 1 
Position angle −90 ◦ 270 ◦

There are no additional priors or constraints for single component 
fits. This means that in effect, we use unnormalized uniform priors 
which are 1 everywhere in the respective interval and zero otherwise. 
For scale parameters (which are fitted in logarithmic space) the priors 
are uniform in logarithmic space, corresponding to Jeffreys ( 1946 ), 
i.e. uninformative, priors. 

The limits and constraints for double and 1.5-component fits are 
the same as for the single component fits (for both bulges and 
discs), except for the magnitude where the individual component 
magnitudes have infinity as their upper limit and instead the total 
magnitude is constrained to be within the magnitude limits. This is 
most consistent and also allows the fitting procedure to discard one 
of the two components for systems which can equally well be fitted 
with a single S ́ersic function (we then take this into account in the 
model selection). 

Note that the abo v e procedure results in unnormalized likelihoods. 
The lack of normalization does not impede our analysis because the 
only time when we compare likelihoods is during model selection, 
where we ef fecti vely fold the normalization into the calibration 
during visual inspection (Section 3.3.2 ). 

3.2.4 Likelihood function 

We use a Normal likelihood function for all fits. We have tested 
a t-distribution likelihood function which is less sensitive to out- 
liers/unfittable regions; but found that the Normal likelihood function 
is better suited to our needs for several reasons. 

First of all, the t-distribution fits often preferred to use the freedom 

of the bulge parameters to fit disc features instead (e.g. rings, bumps, 
flares, etc. that cannot be captured by the exponential model), treating 
the bulge as an outlier since the t-distribution prefers a few strong 
outliers (the bulge pixels) over many weak ones. 

Secondly, the t-distribution fits fail for galaxies which are perfectly 
fitted by the model since then the errors truly are distributed 
Normally. This is a relatively common occurrence. 

Hence some galaxies ( ∼ 20 per cent ) need to be fitted with a 
Normal distribution anyway, which, third, makes model selection 
much harder since the likelihood values obtained with different 
likelihood functions cannot easily be compared to each other. 

3.2.5 Fit and convergence 

All fits are performed on the sky-subtracted image within the galaxy 
segment only using the CONVERGEFIT function from the ALLSTARFIT 
package (Taranu 2022 ). This function uses a combination of different 
downhill gradient algorithms available in the NLOPTR package (John- 
son 2017 ) followed by several MCMC fits with LAPLACESDEMON 
(Statisticat 2018 ) until convergence is reached. 

The downhill gradient algorithms are used first to impro v e the 
initial guesses. The MCMC chain is not v ery sensitiv e to the initial 
guesses, but converges much faster if starting closer to the peak of 
the likelihood. Once the MCMC chains hav e conv erged, 2000 further 
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likelihood points are collected to ensure a stationary sample for the 
subsequent analysis of the galaxy. 

We only fit the primary object of interest. While simultaneously 
fitting neighbouring sources is possible in PROFIT and might 
hav e impro v ed the fit on a fe w objects, the ef fects are generally 
small since the galaxies we study are not in highly crowded fields 
and the segmentation process usually excludes the vast majority of 
the flux from other sources. This is especially true since we use 
tight fitting segments within which the galaxy flux is dominant 
(cf. Section 3.1.2 ); and considering that the watershed algorithm 

of PROFOUND cleanly separates even overlapping sources, so 
neighbours are automatically masked (Section 2.5 ). Hence we opted 
for the simpler and computationally cheaper option of just fitting the 
main objects. We confirm that this does not lead to major biases in 
Section 6.2 ). 

An example fit for an object which is well-represented by our 
two-component model is shown in Fig. 3 . 

3.2.6 Component swapping 

Approximately 20–30 per cent of the double component fits have 
their bulge and disc components swapped, i.e. the exponential 
component fitting the central region and the S ́ersic component 
fitting the wings (this is a common problem in galaxy fitting, first 
pointed out by Allen et al. 2006 ). In particular, the freedom of 
the S ́ersic component is often used to fit discs that do not follow 

pure exponential profiles while at the same time being the dominant 
component in terms of flux (which is the case for most galaxies). 
To solve this problem, we devised an empirical swapping procedure 
guided by the visual inspection of a subsample of our galaxies. 

First, we select the galaxies that are most likely to have swapped 
components based on a cut in the plane of the ratio of S ́ersic indices 
and the ratio of ef fecti ve radii for the single component fits and the 
bulge of the double component fits. The reasoning for choosing this 
parameter space to calibrate the cut was that we would generally 
expect bulges alone to be more concentrated (i.e. smaller ef fecti ve 
radius and higher S ́ersic index) than when mixed with their respective 
discs in the single S ́ersic fits. This results in approximately 30 per cent 
of our sample being flagged as possibly swapped, which we then re-fit 
in a second step. 

The re-fit is performed in exactly the same way as the original fit, 
except that we now use the results of the previous double-component 
fit as initial guesses, swapping around the bulge and disc components 
(except for the bulge S ́ersic index for which we use a value of 4). 
While the MCMC chain is less sensitive to initial guesses than a 
downhill gradient algorithm, it will still show some dependency for 
finite run-times. In particular, in our double component model the 
two components are nearly interchangeable with the only difference 
being the S ́ersic inde x (fix ed to 1 for the disc, free for the bulge). 
Hence there will al w ays be two high maxima in likelihood space, 
which are far apart in the 11-dimensional parameter space. Moving 
from one to the other would require changing nine parameters (all 
except position) at once in the right direction and hence is statistically 
unlikely. Therefore, we assist the code in finding the other maximum 

by manually swapping the initial guesses. 
In approximately 5 per cent of all re-fits, the code still converges 

on the same fit as before the swapping, but in most cases we find 
another likelihood maximum which corresponds to the bulge and disc 
components being reversed. As a third step we then select between the 
old and the new fit to obtain the physically more appropriate one. For 
this we first check whether either of the fits has a bulge S ́ersic index 

smaller than 2 and a bulge ef fecti ve radius at least 10 per cent larger 
than the disc ef fecti ve radius and a bulge-to-total ratio abo v e 0.7 (i.e. 
the ‘bulge’ component is close to exponential, larger than the disc 
and contains the majority of the flux). If this is the case for only one of 
the fits, we choose the other one. If it is true for both or neither of the 
fits, then we apply our main criterion, which is that we choose the fit 
with the higher absolute value of bulge flux in the central pixel. These 
selection criteria are again based on visual inspection guided by the 
notion that we expect the bulge to be smaller and steeper than the disc 
and have proven to work very well. Note that the fit we select in this 
way is the one that is physically better moti v ated (i.e. with the bulge 
at the centre), and not necessarily the one which is statistically better. 

After this procedure, the number of galaxies which still have the 
bulge and disc components swapped (and are classified as double 
component fits in model selection) is reduced to ∼ 1 −2 per cent . 

3.3 Post-processing 

3.3.1 Fla g ging of bad fits 

After all three models have been fitted to all objects, we run them 

through our outlier flagging process (separately in each band). Each 
model is treated separately first; they are then combined during the 
model selection (Section 3.3.2 ). 

The criteria for flagging bad fits (outliers) are: a very irregular 
fitting segment, an extreme bulge-to-total flux ratio, numerical inte- 
gration problems, a parameter hitting its fit limits, poor χ2 statistics, 
a large distance between the input and fitted positions, and a small 
fraction of model flux within the fitting segment. Additionally, there 
are some cautionary flags that identify fits which should be treated 
with extra care. All criteria are derived from and calibrated against 
visual inspection and described in more detail below. For orientation, 
we give the percentage of affected r -band fits in parentheses for each 
criterion. Note, ho we ver, that bad fits tend to fall into multiple of these 
categories, so the total number of bad fits is smaller than the sum of 
flagged objects in each cate gory. Ov erall, approximately 9 per cent, 
11 per cent, and 10 per cent of all non-skipped fits are flagged in the 
g , r , and i bands, respectively (after model selection, Section 3.3.2 ). 

Very irregular segment (5.4 per cent): We calculate the difference 
between the magnitude of the model contained within the segment 
and the magnitude contained within the ‘segment radius’, which is 
defined as the maximum distance between the centre of the fit and the 
edge of segment. Objects where this magnitude difference is larger 
than 0.3 are flagged, as this is an indication for irregular segments 
(shredded, partly masked or cut off by another object for example). 
Note this criterion, as expected, often shows o v erlap with the criterion 
on the fraction of model flux contained within the segment (see 
description below). 

Extreme bulge-to-total ratio (0.1 per cent): We flag double com- 
ponent and 1.5-component fits with a bulge-to-total ratio smaller 
than 0.001 or larger than 0.999 because in these cases the second 
component has negligible flux and a single component fit is better 
suited. 

Numerical integration problems (0.2 per cent): PROFIT includes 
an o v ersampling scheme for accurate pix el flux inte gration where 
pixels containing steep flux gradients are recursively oversampled 
up to an o v ersampling factor of 4096; in the central pixel even up 
to ∼10 9 (for more details see Robotham et al. 2017 ). Ho we ver, for 
v ery e xtreme model parameters, ev en this procedure may not be 
accurate enough anymore, leading to significant errors in the pixel 
flux calculations. This could be impro v ed by changing the default 
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Figure 3. The result of the two-component (S ́ersic bulge plus exponential disc) fit for the galaxy 611 298 in the KiDS r band. Top row: The data, two-component 
model and residual between them shown in absolute values of flux given by the colour bar on the right. The green contour indicates the segment used for fitting. 
Note that the flux scaling here is non-linear and optimized to increase visibility of galaxy features, but is the same in all three panels. Middle row: Goodness of 
fit statistics. The right-hand panel is the normalized residual Z (colour bar on the right) capped at ±5 σ . The left-hand panel is the one-dimensional distribution 
(measured probability density function, PDF) of Z within the segment; with blue and red curves showing a Normal distribution with a standard deviation of 1 and 
a Students-t distribution with the rele v ant degrees of freedom for comparison. The middle panel shows the measured PDF of Z 2 compared to a χ2 -distribution 
of 1 degree of freedom (blue). The reduced chi-square, χ2 

ν (sum o v er Z 2 divided by the degrees of freedom of the fit) is given in the top right corner. Bottom 

row: The bulge and disc models in two dimensions on the same flux scale as the top row; and the bulge, disc, and total model compared against the data in 
one-dimensional form (azimuthally averaged over elliptical annuli). The FWHM of the PSF and the approximate 1 σ surface brightness limits are indicated by 
vertical and horizontal dotted lines for orientation. The vertical solid green line indicates the segment radius beyond which our model is extrapolated. The pixel 
scale is 0.2 arcsec for KiDS data, i.e. 1 arcsec corresponds to 5 pix. 

o v ersampling values to achieve higher accuracy (at the cost of in- 
creased computational time); ho we ver, we opted for simply excluding 
those cases since usually this only happens for unresolved bulges 
which are better represented by the 1.5-component fits anyway. 

Parameter hitting limit (5.8 per cent): We flag objects where 
the magnitude, ef fecti v e radius, or S ́ersic inde x hit either of their 
limits (cf. Section 3.2.3 ); or the axial ratio hit its lower limit (for 

double component fits this applies to both components individually). 
The axial ratio upper limit is not flagged because fits are allowed 
to be exactly round, but there is a cautionary flag for all objects 
which hit any of its parameter limits (6.5 per cent). We also add 
a cautionary flag for suspiciously small or large errors on any 
parameter, where ‘suspicious’ is defined as being an outlier in the 
respective distribution of errors (2.1 per cent). 
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Poor χ2 statistics (0.1 per cent): We flag fits with a χ2 
ν larger than 

80; or where the χ2 in the central pixel is more than 1000 times 
larger than the average χ2 per pixel since that is an indication that 
the bulge was not fitted. 

Large distance between input and output position (0.3 per cent): 
We flag fits with a distance between the input and output position of 
more than 2 arcsec (10 pix), which are usually highly asymmetrical 
objects, mergers, objects with very nearby other objects (especially 
small objects embedded in the wings of much larger objects), or 
objects in regions of the image with unmasked instrumental effects. 
Often the fitted object then is not the one that we intended to fit. There 
is also a cautionary flag for offsets abo v e 1 arcsec (1.3 per cent). 

Small fraction of model flux within fitting segment (1.4 per cent): 
We flag fits where the amount of model flux (of any component) 
that falls within the fitting segment is less than 20 per cent. With 
so little flux to work on PROFIT cannot constrain the parameters 
well anymore and these are often objects which are cut off by a 
masked region (e.g. a bright star) or other nearby objects. There is 
a cautionary flag for objects where the fraction of model flux (of 
any component) that falls within the segment is less than 50 per cent 
(9.3 per cent). 

3.3.2 Model selection 

In Bayesian analysis, model selection is performed by computing 
the posterior odds ratio between two models, O 1: 2 , which is the 
ratio of the probabilities of the models given the same set of data 
and background information. With the help of Bayes’ theorem and 
assuming a prior odds ratio of 1, this becomes the Bayes factor (see 
e.g. Sivia & Skilling 2006 for a detailed treatment): 

O 1:2 = 

p( data | M 1 , I ) 

p( data | M 2 , I ) 
, (1) 

where p( data | M 1 , I ) is the probability of the data given Model 1 and 
any background information I (the marginalized likelihood of Model 
1). In practice, these probabilities are often difficult to compute 
because they require marginalizing (i.e. integrating) over all model 
parameters. 

Hence, many information criteria tests have been developed which 
are based on the (non-marginalized) likelihood (or χ2 ) combined 
with some penalty term depending on the number of model parame- 
ters. This penalty term serves to judge whether a more complicated 
model is justified and takes the role of Ockham’s factor (which is 
automatically included in equation 1 due to the integration over all 
parameters). Commonly used tests include the Akaike information 
criterion (AIC; Akaike 1974 ), the Bayesian information criterion 
(BIC; Schwarz 1978 ), or the deviance information criterion (DIC; 
Spiegelhalter et al. 2002 ). We choose to use the deviance information 
criterion, which is usually recommended o v er the AIC or BIC in 
Bayesian analysis (Hilbe, de Souza & Ishida 2017 ) and straightfor- 
ward to compute from an MCMC output. Brief tests using the BIC 

or the estimated log marginal likelihood output by LAPLACESDEMON 
showed similar results. 

The DIC is a direct output of the LAPLACESDEMON function (see 
Section 3.2.5 ) and is defined as 

DIC = Dev + pD = De v + var ( De v) / 2 , (2) 

where pD is a measure of the number of free parameters in the 
model and Dev = −2 ×log-likelihood is the deviance. In theory, 
then, if the DIC difference � DIC between two models is ne gativ e, 
the first model is preferred and if it is positive, then the second 
model is preferred; with differences larger than approximately 4 

being considered meaningful (Hilbe et al. 2017 ). Ho we ver, for the 
case of galaxy fitting where many features are present that cannot be 
captured by the model (bars, spiral arms, disc breaks or flares, tidal 
tails, mergers, foreground objects, etc.), we want to choose the model 
that we consider physically more appropriate rather than better in a 
strictly statistical sense. This requires visual classification, logical 
filters, detailed simulations, or a manual calibration of the � DIC 

cut (or whichever other chosen diagnostic) by visual inspection of a 
representative sub-sample (e.g. Allen et al. 2006 ; Simard et al. 2011 ; 
Vika et al. 2014 ; Argyle et al. 2018 ; Kruk et al. 2018 ). We choose 
the latter approach, which has the added advantages that we do not 
need to worry about normalizing our likelihoods (cf. Section 3.2.3 ); 
hence, circumventing dependencies of the results on prior widths; 
nor the fact that our pixel values are correlated (due to the PSF) –
these effects are simply folded into the visual calibration. 

We use a random sample of ∼700 non-skipped objects per band 
(i.e. ∼2000 objects in total) for the calibration; and a further 1000 
r -band objects that were previously inspected for cross-checking 
the results. In addition, our model selection procedure takes into 
account some of the outlier flagging (Section 3.3.1 ). For each of the 
∼700 objects in each band, SC visually inspected the fits of all three 
models and classified the object into one of the categories: ‘single 
component’, ‘1.5-component’, ‘double component’, ‘not sure if 1.5 
or double component’, ‘not sure at all’, ‘unfittable’ (outlier). We 
then calculate the DIC differences between all three models (i.e. 
� DIC 1 −1.5 , � DIC 1 −2 , and � DIC 1.5 −2 ) and calibrate them for model 
selection in two steps: first, we select between single component fit 
or not; of the ones that are not single component fits we then select 
between double component or 1.5-component fits. 

For the first step of model selection calibration, the � DIC 1 −1.5 and 
� DIC 1 −2 cuts are optimized such that the minimum number of fits 
is classified wrongly. ‘Wrong’ in this case means a fit was manually 
classified as ‘single’ but is now a double/1.5; or a fit was manually 
classified as ‘1.5’, ‘double’, or ‘not sure if 1.5 or double’ but is 
now a single. ‘Unfittable’ and ‘not sure at all’ cases are ignored. For 
the second step of model selection calibration, the � DIC 1.5 −2 cut is 
optimized in the same way; where ‘wrong’ now means that the fit was 
manually classified as ‘1.5’ but is now a double or vice versa, with all 
other categories being ignored. For the two steps of the calibration, 
we bootstrap the manual sample 1000 and 500 times respectively 
and repeat the optimization to get an estimate of the error on the 
chosen DIC cuts. These errors are chosen as the 1 σ quantiles (i.e. 
they contain the central 68 per cent of DIC cut distributions). Our 
calibrated DIC cuts hence all have a median, a lower limit, and an 
upper limit. Any object within these limits is flagged as unsure in the 
model selection, i.e. the DIC differences are not conclusive for this 
object. 

To perform the actual model selection, the calibrated DIC cuts in 
each band are then applied to the entire sample, again in a two-step 
procedure: the single component fit is selected if neither of the 1.5 
or double component fits are significantly better (as indicated by 
the DIC differences). Double component fits need to be significantly 
better than 1.5-component fits, too. In all cases, if the DIC difference 
is very clear, we do the model selection first; then flag objects as 
outliers if needed. 10 In the unsure region of the DIC difference, we 

10 This means that it is possible (and not uncommon) that a galaxy which is 
classified as an outlier has a non-flagged fit in another model (but the fit that 
was chosen was significantly better than the other one, despite it being an 
outlier). 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/1/942/6671549 by U
niversity of Louisville user on 21 O

ctober 2022



952 S. Casura et al. 

MNRAS 516, 942–974 (2022) 

Table 3. The confusion matrix for our model selection based on a DIC 

difference cut compared against visual inspection for the r band. All values 
are in per cent of the total number of visually inspected r -band galaxies. Bold 
font highlights galaxies classified correctly, while grey shows those that were 
ignored during the calibration. 

Number of components 
Visual classification 1 1.5 2 

‘single’ 41.6 0 2.7 
‘1.5’ 2.2 2 .4 0.9 
‘double’ 3.1 0 .1 9.2 
‘1.5 or double’ 0.3 0 .6 3.0 
‘unsure’ 16.1 0 .4 13.1 
‘unfittable’ 0.9 0 .6 2.7 

choose the model that is not flagged as outlier; if neither is flagged, 
the DIC cut is applied. 

Compared against visual inspection (keeping in mind that vi- 
sual classification is not free of errors either), roughly 7 per cent, 
9 per cent, and 6 per cent of the galaxies end up in the wrong category 
in total in the g , r , and i bands, respectively (in both steps of model 
selection combined, ignoring cases which were visually classified as 
‘unsure’). Table 3 gives the detailed confusion matrix for the r band. 
Note that we do not consider the success of the outlier flagging here, 
so for outliers we show what the galaxy would have been classified 
as if it were not flagged (absolute value of the NCOMP column in our 
catalogue). We highlight those galaxies that are correctly classified 
in bold and show those that were ignored during the model selection 
calibration process in grey font. The remaining (black) numbers add 
up to the 9 per cent quoted abo v e. Corresponding confusion matrices 
for the g and i bands are given in Appendix B (Tables B1 and B2 ). 
Note that since we minimize the total number of fits classified 
wrongly, there is a slight bias against the rarer categories in the 
automated model selection. For example, the relative fraction of true 
1.5-component objects (as per the visual inspection) that is classified 
wrongly by the automated selection is higher simply because 1.5- 
component objects are much rarer than single or double component 
objects. 

The accuracy of the model selection is also confirmed using 
simulations, to the extent to which our simulations allow us to do so 
(see Section 6.3 for details). 

3.3.3 Truncating to segment radii 

As detailed in Section 3.1.2 , we produce segmentation maps that 
define the fitting region, meaning that only pixels within the fitting 
segment are considered during the e v aluation of the likelihood of 
the model (equi v alent to gi ving all pixels outside the segment zero 
weight in the fit). We choose tight fitting segments (cf. Section 3.1.2 ) 
in order to obtain the best possible fit in the inner, high signal- 
to-noise ratio regions of the galaxies, and be less sensitive to disc 
breaks, flares, nearby other objects, sky subtraction problems, and 
similar. The disadvantage of this approach is that profiles are not 
necessarily forced to zero for large radii, i.e. our S ́ersic fits often 
show unphysically large effective radii combined with high S ́ersic 
indices. 

To mitigate this effect, we define a ‘segment radius’ for each 
galaxy segment, which is simply the maximum distance between 
the fitted galaxy centre and the edge of the segment and can be 
understood as the upper limit to within which our model is valid. We 
then calculate the ‘segment magnitude’, m seg , which is the magnitude 

of the (intrinsic, not PSF-convolved) profile integrated to the segment 
radius (rather than infinity); and the ‘segment ef fecti ve radius’, 
R e , seg , which is the radius containing half of the flux defined by 
the segment magnitude. These values (and quantities derived from 

them, such as segment bulge-to-total flux ratios) are provided in the 
catalogue (labelled ∗ SEGRAD) and we strongly recommend using 
these instead of the S ́ersic values integrated to infinity whenever 
the y are available. F or a direct parameter comparison to other 
works, the values in those catalogues should also be appropriately 
truncated. 

In the following, we explain this recommendation in more detail; 
with further points to note in Sections 5.4 and 6.4 . 

Fig. 4 illustrates the effects produced by our tight fitting segments, 
how to mitigate those by truncating the magnitude, and ef fecti ve 
radius appropriately; and the circumstances under which this correc- 
tion is necessary. For two example galaxies – 21 4264 and 3896 188 
– we show a detailed comparison of our single S ́ersic fit to a fit using 
a larger segment and to the fit obtained in Kelvin et al. ( 2012 ). We 
present a more general (statistical) comparison of our fit results to 
those of Kelvin et al. ( 2012 ) in Section 5.4 , where we also give more 
details on how their fits were deriv ed. F or the purposes of the analysis 
in this section it suffices to say that Kelvin et al. ( 2012 ) used much 
larger fitting regions than we do, while the remaining analysis is in 
many ways analogous to ours (although they use different data, code, 
and procedures in detail). 

Focussing on the left half of Fig. 4 first, the first six panels (top 
two rows) show the KiDS r -band data, our single S ́ersic model, the 
residual, and various goodness of fit statistics as described in the 
caption of Fig. 3 . Panels 7–12 (rows 3 and 4) show the same for 
a larger fitting segment as indicated by the green contour. Panels 
13–18 again show the same for the Kelvin et al. ( 2012 ) fit, where we 
note that this was originally performed on r -band Sloan Digital Sky 
Surv e y (SDSS; York et al. 2000 ) data but is no w e v aluated on the 
r -band KiDS data. The Kelvin et al. ( 2012 ) fits were performed on 
cutouts larger than the size shown here, i.e. they include all visible 
pixels (and more) in the fit. Note that the reduced chi-square value 
quoted in the bottom middle panel of each set of plots al w ays is 
e v aluated within the smallest segment so that they can be directly 
compared. Finally, the bottom two panels show a direct comparison 
of the one-dimensional profiles of all three fits, which we will now 

study in detail. 
In the top panel of this one-dimensional plot, we show the surface 

brightness (azimuthally averaged over elliptical annuli) against 
the projected major axis for the data (solid black line with grey 
uncertainty region), our model fit for the fiducial segment (dashed 
blue line) and the larger segment (dash–dotted pink line) and the 
Kelvin et al. ( 2012 ) model fit (dotted orange line). The vertical 
green solid and dashed lines indicate the segment radii (for the 
two segment sizes respectively) beyond which our model is an 
e xtrapolation. The v ertical dotted line shows the half width at half- 
maximum (HWHM) of the PSF and the horizontal dotted line is 
the 1 σ surface brightness limit of the data. The inset in the bottom 

left of this plot shows the fitted magnitude m , ef fecti ve radius R e in 
arcseconds, and S ́ersic index n values for our and the Kelvin et al. 
( 2012 ) fits; and the corresponding segment-radius-truncated values 
for m and R e . Finally, the bottom panel shows the difference between 
all three models and the data (with errors): our fiducial fit in blue 
with a dashed line, the fit in the larger segment in pink with a dash–
dotted line and the Kelvin et al. ( 2012 ) fit in orange with a dotted 
line. 

Clearly, our model is a better fit to the inner regions of the galaxy 
than the Kelvin et al. ( 2012 ) fit (out to about 2 arcsec, also evident 
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Figure 4. Left: Detailed comparison of our single-S ́ersic fit, our fit using a larger segment, and the Kelvin et al. ( 2012 ) fit to the galaxy 214 264, which in 
reality is a 1.5-component system. Right: The same for galaxy 3896 188, which is well-described by a single S ́ersic component. Top two rows: Our fit to the 
KiDS r -band data with panels the same as those in Fig. 3 . Rows 3 and 4: The fit we obtained by using a larger fitting segment as indicated. Rows 5 and 6: The 
Kelvin et al. ( 2012 ) fits (originally performed on SDSS r -band data) evaluated on the KiDS r -band data, which use a fitting region larger than the cutout shown. 
Bottom two panels: Direct comparison of the one-dimensional profiles, see text for details. The vertical green solid and dotted lines indicate the segment radii 
for the two segment sizes. The vertical dotted line shows the HWHM of the PSF; the horizontal dotted line is the 1 σ surface brightness limit of the data. The 
quoted values for the effective radius are in arcseconds. 
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from the two-dimensional plots and from the reduced χ2 -value within 
the segment decreasing from 1.84 to 1.08), owing to the higher 
S ́ersic index which better represents the steep bulge at the centre. 
Ho we ver, it has a large ef fecti ve radius and considerable amounts 
of model flux at large radii which are not observed in the data. 
In particular in the region beyond the segment radius, where our 
model is merely extrapolated, it is clearly o v ersubtracting the data 
(also visible in the two-dimensional plots). Correspondingly, the 
truncated segment quantities differ substantially from the fitted S ́ersic 
v alues. The K elvin et al. ( 2012 ) fits, instead, use a larger fitting 
region and hence follow the data out to larger radii, which results 
in a worse fit of the central regions but does not contain such large 
amounts of excess flux beyond the surface brightness limit. Hence, 
truncating to segment radii has a smaller effect on the parameter 
v alues. The truncated v alues for both models are then in reasonable 
agreement with each other, except for the S ́ersic index, for which 
no truncated version exists as it would be unclear how to define 
such a value. Our fit in the larger segment is in between the two 
others in all respects, since it has a fitting region intermediate to the 
other two. 

Note that the differences only come about when the model is not 
(in a formal statistical sense) a good representation of the data, i.e. 
when there is a need to compromise between fitting different regions. 
In the case of the left side of Fig. 4 , the galaxy shown is better 
described by a 1.5-component model ( m 

B = 20.47, m 

D = 18.79, 
R 

D 

e = 1 . 89 arcsec ), although in general there are many objects in 
our sample for which even a two-component model cannot capture 
all aspects of the data. For comparison, in the right half of Fig. 4 , we 
show a galaxy that is well-described by a single S ́ersic model: here, 
both our and the Kelvin et al. ( 2012 ) fits arrive at virtually the same 
solution despite the different fitting regions. In fact, all three models 
and the data are nearly indistinguishable all the way down to the 1 σ
surface brightness limit. 

In short, there is no perfect way to fit a S ́ersic function to 
an object which intrinsically does not have a pure S ́ersic profile. 
For such objects, which unfortunately comprise the majority of 
our sample, the fitted parameters will al w ays depend on the exact 
fitting region used as well as the quality of the data (its depth in 
particular). Most previous work, including Kelvin et al. ( 2012 ), 
opted to use large fitting regions in order to include enough sky 
pixels to ensure that the profiles are constrained to approach zero 
flux at large radii (although a S ́ersic function technically never 
reaches zero exactly). Here, we choose a different approach by 
using smaller fitting segments. This means that the profiles are 
not constrained to approach zero flux at large radii. Instead more 
emphasis is placed on adequately representing the inner regions of 
the galaxies. We choose this approach since it is most appropriate 
for our science case, where we are primarily interested in comparing 
the high signal-to-noise regions of galaxies from the same data set 
amongst each other. In addition, it decreases the sensitivity of our 
fits to deviations from a S ́ersic profile in the low surface brightness 
wings of objects (arguably no galaxy truly follows a S ́ersic profile 
to infinity) as well as nearby other objects and inaccuracies in the 
sky subtraction. We stress that this means that our parameters are 
not directly comparable to other works using larger fitting segments. 
In particular, our S ́ersic indices tend to be systematically higher 
(see Section 5.4 ) since high S ́ersic indices result in high amounts 
of flux at large radii and are hence suppressed when constraining 
the models to zero flux at large radii. Magnitudes and ef fecti ve radii 
can be compared to those of other studies by truncating to segment 
radii. 

4  RESULTS  

4.1 BDDecomp DMU 

Our main result is the BDDecomp DMU in the GAMA database. It 
contains eight catalogues: BDInputs (three times, one for each 
band) with the most important outputs of the preparatory work 
pipeline (segmentation, PSF estimation, initial guesses), BDMod- 
elsAll (three times, one for each band) with the output from the 
actual galaxy fitting and post-processing (model selection, flagging 
of bad fits and truncating to segment radii) and BDModels which 
combines the most important columns of the three BDModelsAll 
tables and has a few additional joint columns (mainly joint model 
selection). Finally, the table BDModelsAlt presents the same 
information as BDModels just with the three bands arranged in rows 
instead of columns. Each table is accompanied by comprehensive 
documentation including descriptions of all columns, details on the 
processing steps and practical tips for using the catalogue. The DMU 

also provides all input data used for the fitting (i.e. image cutouts, 
masks, error maps, segmentation maps, sky estimates, PSFs) as well 
as various diagnostic plots of the fit results on the GAMA file server, 
where detailed descriptions of these files can be found. 

In the following sections we present an o v erview o v er the contents 
of the main catalogue, BDModels . 

4.2 Catalogue statistics 

Table 4 gives an overview of the fit and post-processing results. 
Starting with our full sample (13 096 galaxies from the combination 
of our main and SAMI samples, see Section 2.3 ), we show how the 
number of galaxies evolves through all steps of the pipeline. The 
results are split per-band and per-model where necessary. At some 
steps, we also include percentages of galaxies lost or remaining (grey 
font). In short, we lose nearly 20 per cent of our sample to masking 
and a further almost 10 per cent to the flagging of bad fits; where 
the former is a random subset while the latter preferentially affects 
certain types of galaxies (e.g. mergers and irregulars). 

Note that we used stacked gri images for segmentation and 
masking, but then treated the galaxies independently in all bands 
except for the model selection, where we performed both a per-band 
and a joint version. Therefore, the column ‘joint gri ’ al w ays gives the 
number of galaxies that were ‘good’ in all three bands (hence why 
numbers are generally lower), except for the model selection, where 
it shows the results of the joint model selection (cf. Section 3.3.2 ). 

Fig. 5 visualizes the most important information given in Table 4 , 
namely the final number of objects classified in each category: lighter 
bars in the background refer to individual fits (total 14 966) with the 
number of unique galaxies (total 13 096) o v erplotted. When sev eral 
fits to the same galaxy were classified in different categories, we 
allocate it to the highest of those, 11 which is consistent with Table 4 . 
NCOMP = −999 means the object was skipped (not fitted) because 
it is masked or the PSF estimation failed (usually because of large 
masked areas in the immediate vicinity of the object). NCOMP = 1, 

11 This means that a galaxy is classified as ‘outlier’ if all fits to it are outliers 
and it is ‘skipped’ only if all fits are skipped. Galaxies with good fits are 
allocated to the most complex model of the available fits (assuming that one 
of the images was deeper and allowed to constrain more components than 
the other(s)), while within the outlier categories we allocate it to the simplest 
model. Note that in Table 4 we only show the total number of flagged fits and 
do not split them into the different outlier categories. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/1/942/6671549 by U
niversity of Louisville user on 21 O

ctober 2022



Bulge-disc decomposition of GAMA galaxies 955 

MNRAS 516, 942–974 (2022) 

Table 4. Fit results: numbers (black) and percentages (grey) of galaxies remaining or lost at each step in our pipeline, split per-band, and per-model where 
necessary. 1 

Band g r i Joint gri 
Model (components) 1 1.5 2 1 1.5 2 1 1.5 2 1 1.5 2 

Number of: 
(1) Unique objects (galaxies) 13 096 
(2) Images (independent fits) 14 966 
(3) Images not masked 11 989 
lost due to masking (per cent) 20 

(4) Successful PSFs 11 838 11 872 11 946 11 683 
lost due to PSF fails (per cent) 1 0.8 0.3 2 

(5) Successful fits 11 837 11 837 11 831 11 872 11 870 11 861 11 946 11 943 11 945 11 682 11 678 11 665 
lost due to fit fails (per cent) < 0.01 < 0.01 0.05 0 0.01 0.07 0 0.02 < 0.01 < 0.01 0.03 0.12 
(6) Fits not flagged 10 951 7122 8022 11 025 8164 8759 11 086 7620 7775 10 680 6446 5870 
not flagged/successful (per cent) 93 60 68 93 69 74 93 64 65 91 55 50 
(7) Selected fits 8294 740 1743 7061 585 2935 7411 662 2663 7308 621 2009 
selected/successful (per cent) 70 6 15 59 5 25 62 6 22 63 5 17 

total number (per band) of: 
(8) Good | flagged | skipped fits 10 777 | 1061 | 3128 10 581 | 1291 | 3094 10 736 | 1210 | 3020 9938 | 1745 | 3283 
good | f. | s./all images (per cent) 72 | 7 | 21 71 | 9 | 21 72 | 8 | 20 66 | 12 | 22 

(9) Good | flagged | skipped gal. 9722 | 935 | 2439 9545 | 1145 | 2406 9687 | 1059 | 2350 8998 | 1559 | 2539 
good | f. | s./unique objects (per cent) 74 | 7 | 19 73 | 9 | 18 74 | 8 | 18 69 | 12 | 19 

Notes/explanations of each step: (1) The full sample results from the combination of our main and SAMI samples (Section 2.3 ). (2) Some galaxies have been imaged more than once due to o v erlap re gions between 
KiDS tiles. These duplicate observations of the same physical objects are treated independently throughout our pipeline (Section 2.3 ). (3) We use the associated KiDS masks, combining the three bands. Images 
for which the central galaxy pixel is masked ( ∼ 20 per cent ) are skipped during the fitting (Section 3.1.1 ). (4) For each image in each band, a PSF is then estimated by fitting nearby stars. If the PSF estimation 
fails, the galaxy is skipped during the fit (Section 3.1.5 ). Note that technically, we estimate PSFs also for galaxies that are masked in step (3), but we do not list those here. (5) For each non-masked image with a 
successful PSF estimate, we attempt three fits: a single S ́ersic (1), a pointsource + exponential (1.5) and a S ́ersic + exponential (2). Very rarely, the fit attempts fail with an error (Section 3.2.5 ). (6) Each fit (for 
each model independently) is passed through our outlier flagging process, identifying bad fits (Section 3.3.1 ). (7) Of the non-flagged (i.e. good) fits, we then select the most appropriate one during model selection 
(Section 3.3.2 ). (8) Summing up the selected fits for each model (step 7) gives the total number of good fits. The difference between the good and successful fits (step 5) stems from the outlier flagging. Skipped fits 
are due to masking, PSF or fit fails (steps 3, 4, 5). The sum of good, flagged and skipped fits gives the total number of independent fits (step 2). (9) Removing duplicate observations for the same physical objects 
gives the number of good, flagged, and skipped galaxies, which sum to the number of unique objects (step 1). Here we al w ays use the best available result for each galaxy, i.e. it is counted as ‘good’ if at least one 
of the multiple observations was ‘good’. 1 Based on information given in the ∗ BDQUAL FLAG , ∗ OUTLIER FLAG , and ∗ NCOMP columns of the BDModels catalogue. 

Figure 5. The number of components assigned in our model selection 
procedure for individual bands and the joint analysis. 1, 1.5, and 2 mean single 
S ́ersic, point source bulge + exponential disc and S ́ersic bulge + exponential 
disc models, respectiv ely. Ne gativ e values indicate that the chosen (best) fit 
was flagged as unreliable (mostly irregular or partly masked galaxies). −999 
is assigned to skipped fits, either because the galaxy centre is masked (most 
cases) or because the PSF estimation failed. The lighter (higher) bars show 

the number of images, whereas the shorter bars in the foreground indicate the 
number of unique objects. See text and Table 4 for details. 

1.5, or 2 indicates that this is a good fit classified as single, 1.5 or 
double component fit. NCOMP = −1, −1.5, or −2 indicates that 
this is a bad fit (outlier) which would have been classified as single, 
1.5 or double component fit if it were not an outlier (most often 
these are mergers/irregular galaxies for which our models are not 
appropriate; or galaxies that are partly masked). We keep these three 
classes separate since automated outlier identification can never be 
perfect; and what should be considered a bad fit will depend on the 
use case. The flagging of fits is hence only intended as a guide and 
all available information in the catalogue is retained for all fitted 

objects. Fig. 3 shows an example two-component fit. Examples for 
a single, 1.5-component and outlier can be found in Appendix C . 

4.3 Parameter distributions 

Fig. 6 shows the distribution of the main parameters – magnitude, 
ef fecti ve radius and S ́ersic index – in all three bands ( g , r , and i ) for 
single S ́ersic fits, bulges, and discs. The single S ́ersic fit distributions 
are shown for all galaxies with NCOMP > 0 (i.e. all non-outliers) 
in black and for those galaxies which were actually classified as 
single component systems ( NCOMP = 1) in yellow. Red dotted and 
blue dashed lines show bulges and discs, respectiv ely. F or discs we 
show the 1.5-component fits and double component fits combined 
(i.e. the 1.5-component parameters for objects with NCOMP = 1.5 
and double component parameters for those with NCOMP = 2 added 
into one histogram); the S ́ersic index is not shown since it was 
fixed to 1. Bulge magnitudes are also shown for 1.5 and double 
component fits combined; ef fecti ve radii and S ́ersic indices are only 
shown for the double component fits since they do not exist in the 
point source model. The legend indicates the numbers of objects in 
each histogram, which can also be inferred from Table 4 . Magnitudes 
and ef fecti v e radii are truncated at the se gment radii which we found 
to give more robust results than using the S ́ersic values extrapolated 
to infinity (see Sections 3.3.3 , 5.4 , and 6.4 ). 

The first thing apparent from Fig. 6 is that the distributions in the 
three bands are generally very similar, which is reassuring given that 
the fits were performed independently. Looking at the first column, 
the single S ́ersic number counts increase up to a sharp drop just before 
20 mag in all bands, which is not surprising given the GAMA survey 
limit of 19.8 mag. The faintest of these objects are all classified as 
single component galaxies (yellow line is on top of black line), while 
some of the brighter objects are successfully decomposed into bulges 
and discs. Discs are generally slightly brighter than bulges. The 
bulges show a second, smaller peak at very faint magnitudes which 
we found to be the ones from the 1.5-component fits (unresolved, 
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Figure 6. The distribution of the main parameters (limited to segment radii) for all bands and models. Left, middle, and right columns show magnitude, effective 
radius, and S ́ersic index while top, middle, and bottom rows show the g , r , and i band, respectively. The solid yellow lines are the single S ́ersic values for those 
galaxies which were classified as single component systems, dotted red and dashed blue lines show bulges and discs, respectively, for those objects classified as 
1.5 or double component systems. For reference the solid black line shows the single S ́ersic fits for all galaxies with NCOMP > 0 (i.e. including those classified 
as 1.5 or double component systems). The number of objects in each histogram is given in the legends, where the number of bulges and discs differs for effective 
radii and S ́ersic indices because these parameters do not exist for 1.5-component fits (point source bulge). We do not show disc S ́ersic indices since they were 
fixed to 1 (exponential). 

faint bulges). There is a slight trend for magnitudes to become 
brighter moving from g to r to i for all components, as expected 
from typical galaxy colours. We investigate the colours further in 
Section 4.4 . 

From the middle panels it becomes obvious that bulges tend to be 
smaller than discs by a factor ∼2, while single S ́ersic fits span a wide 
range of sizes. Similar to the trend observed in the magnitudes, the 
smallest objects are classified as single component systems, while 
some of the larger galaxies can be successfully decomposed. 

The S ́ersic indices of single component systems show a clear 
peak around a value of 1 (exponential), a sharp drop-off at lower 

values, and a longer tail towards higher values. Interestingly, the 
single S ́ersic distributions showing all systems (black lines) have a 
secondary ‘bump’ around a value of 4 or 5 (classical de Vaucouleurs 
bulge), which is not apparent in those galaxies classified as single 
component systems (yellow line). Hence most of those high S ́ersic 
index objects were indeed found to contain bulges and were classified 
as double component systems. The bulges themselves show a wide 
range of S ́ersic indices with (at least in r and i bands) a slightly 
double-peaked nature around values of 1 and 4–6. At this point, we 
w ould lik e to remind the reader that we use the term ‘bulge’ to refer 
to all kinds of central components of galaxies, including classical 
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Figure 7. The distribution of the bulge to total flux ratio (limited to segment 
radii) for the 1.5 and double component fits in all bands. Dashed green, solid 
light red, and dotted dark pink lines refer to the g , r , and i bands, respectively. 
The histograms have been normalized by their respective total number of fits 
(cf. Fig. 6 ) to make the bands directly comparable. 

b ulges, pseudo-b ulges, bars, and AGN (cf. Section 3.2.1 ). Hence the 
‘b ulge’ distrib ution will include a variety of physical components 
and their combinations, leading to the wide spread of values. In 
addition, the S ́ersic index tends to be the parameter with the largest 
uncertainty, with typical galaxies showing relative errors on their 
bulge S ́ersic index of 1–10 per cent, adding further scatter to the 
distribution. 

Since the bulge to total flux ratio is a derived parameter that is 
frequently of interest, we additionally show it in Fig. 7 for all three 
bands; for those galaxies that were classified as a 1.5 or double 
component fit in the respective band. The majority of systems have 
intermediate values of B/T with only a few per cent at the extreme end 
abo v e 0.8. The secondary peak at very low B/T values around 0.02 
stems from the 1.5-component fits. The B/T ratio generally increases 
from g to r to i , as expected (see Section 5.2 ). 

Finally, as a first consistency check, we show the difference 
between the single S ́ersic magnitude and the total magnitude derived 
from the double or 1.5-component fits, all limited to segment radii, 
in Fig. 8 . The distributions for all three bands are highly peaked 
around zero, with the vast majority of objects having total magnitudes 
consistent with the single S ́ersic magnitudes within 0.1 mag (o v er the 
entire magnitude range). We only show galaxies that were classified 
as 1.5 or double component fits here to ensure reliable bulge and 
disc magnitudes, but note that the distribution is very similar when 
including objects classified as single S ́ersic fits. This indicates that 
the total magnitude is well-constrained even in the case when the 
individual component magnitudes are not (see also Section 4.4 ). 

4.4 Galaxy and component colours 

The left-hand panel of Fig. 9 shows the distribution of g −r colours 
for galaxies and their components. The colours are corrected for 
Galactic extinction, but not for dust attenuation in the emitting 
galaxy. The Galactic extinction was obtained from v03 of the 

Figure 8. The difference between the single S ́ersic magnitude and the total 
magnitude derived from the double or 1.5-component fits for those galaxies 
that were classified as such, for all bands (all magnitudes limited to segment 
radii). The scatter plot shows the difference between the two magnitudes 
against the single S ́ersic magnitude for all three bands with the running 
medians and 1 σ -percentiles o v erplotted. The top and right-hand panels show 

the respective marginal distributions. Dashed green, solid light red, and dotted 
dark pink lines refer to the g , r , and i bands, respectively. 

GalacticExtinction catalogue accompanying the equatorial 
input catalogue on the GAMA database. We focus on g −r colours 
here since those bands are the deepest KiDS exposures. Results for 
g −i are qualitatively similar, albeit a bit more noisy. 

The solid black line shows the colour distribution for all single 
S ́ersic fits that were not classified as outliers in the joint model 
selection ( NCOMP > 0). It is clearly bimodal, with redder colours 
typically belonging to higher S ́ersic index objects as indicated by 
the thinner dark red and light blue lines splitting the distribution 
at n = 2.5 (in the r band). Not entirely surprisingly (given the 
distribution of S ́ersic indices in Fig. 6 ), the distribution of single 
S ́ersic objects actually classified as such ( NCOMP = 1, solid yellow 

line) mostly follows the distribution of low S ́ersic index objects; 
while the high S ́ersic index objects tend to be classified as double 
component systems. For the latter, we show total colours with a dash–
dotted green line, bulge colours with a dotted red, and disc colours 
with a dashed blue line. As expected, bulges tend to be redder than 
discs, although the scatter is large. 

The right-hand panel of Fig. 9 shows the corresponding colour–
magnitude diagram. Colours and absolute magnitudes are both 
corrected for Galactic extinction but not for dust attenuation in 
the emitting galaxy. The absolute magnitude was calculated using 
the distance modulus provided in v14 of the DistancesFrames 
catalogue from the GAMA database which we also used to obtain 
redshifts for the sample selection. Again, we focus on g −r colour 
and absolute r -band magnitude, M r , but note that results using g −i 
and/or M i are qualitatively similar. 

The grey density plot in the background shows the single S ́ersic 
fits for all non-outlier ( NCOMP > 0) galaxies, corresponding to the 
black line in the left-hand panel of Fig. 9 . The bimodality of the 
distribution is even clearer here, with the red sequence and blue 
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Figure 9. Left-hand panel: The Galactic extinction-corrected g −r colour distributions (limited to segment radii) for galaxies and their components. The colour 
coding of the lines is the same as for Fig. 6 , although with a few additions: The solid black line shows single S ́ersic fits for all galaxies with NCOMP > 0 in the 
joint model selection; the thinner dark red and light blue solid lines split this sample into those with n > 2.5 and n < 2.5 in the r band. The solid yellow line 
gives the single S ́ersic values for those galaxies which were classified as single component systems, dotted red and dashed blue lines show bulges and discs, 
respectively, for those objects classified as 1.5 or double component systems (al w ays in the joint model selection). The dot–dashed green histogram gives the 
total galaxy colour (derived from the addition of bulge and disc flux) for 1.5 and double component systems. The number of objects in each histogram is given 
in the legend. Right-hand panel: The Galactic extinction-corrected g −r versus M r colour–magnitude diagram (limited to segment radii) for galaxies and their 
components. The colour coding of the lines is the same as for the left-hand panel. Contours include 10, 25, 50, 75, and 90 per cent of the sample. 

cloud being well separated. The green contours indicate the part of 
the sample that was classified as 1.5 or double component object; 12 

as expected, this is concentrated towards the bright end of the galaxy 
distribution and hence encompasses mostly galaxies located in the 
red sequence. Correspondingly, bulges and discs are both relatively 
red, with bulges on average slightly redder than the total galaxies 
and discs slightly bluer (while both components – obviously – are 
fainter than the total galaxy). Ho we ver, both components show a 
large scatter and o v erlap with each other: both faint blue bulges exist 
as well as bright red discs. 

A detailed study of component colours and the different popula- 
tions in the right-hand panel of Fig. 9 is beyond the scope of this 
work. Ho we ver, we note that the total galaxy colours show much less 
scatter; indicating that the scatter results from a different splitting of 
the light into bulge and disc components in the g and r bands, while 
the total amount of light is well-constrained (cf. also Fig. 8 ). A further 
brief investigation into extreme systems (blue bulges with red discs 
and also e xcessiv ely red bulges with very blue discs) suggests that 
they are caused by a variety of remaining uncertainties in our analysis, 
e.g. swapped components in one of the two bands (Section 3.2.6 ), 
small faint bulges that are barely detected in the r band and missed in 
the g band, the ‘bulge’ component dominating both small and large 
radii in one of the two bands (cf. Section 4.5.2 ) or failures in the 

12 To be precise, the green contours were derived by adding the respective 
bulge and disc fluxes of the 1.5 or double component objects (for consistency 
with the bulge and disc contours), while the grey density plot is based on the 
single S ́ersic fits (for robustness at low magnitudes). These two versions of 
the total galaxy magnitude are generally very similar as evidenced by Fig. 8 . 

flagging of bad fits, all combined with model selection uncertainties 
and the necessity of joint model selection to compromise between 
the bands. While each of these processes by itself only affects a 
small number of galaxies, in sum across both bands they do reach 
the 10–20 per cent level. Still, on average our colours do follow 

the expected trends, as we show in Section 5.2 with an overview 

of similar studies in the literature. We will study the colours of 
galaxies and their components in more detail in forthcoming work, 
also including further bands (KiDS u and VIKING Z , Y , J , H , K s ) and 
taking full account of inclination effects due to dust in the emitting 
galaxies (see e.g. Driver et al. 2008 ). We will then also assess trends 
in other parameters, such as the component ef fecti ve radii, with 
wavelength. 

4.5 Catalogue limitations 

We finish this section by pointing out a few limitations of our results 
that users of the catalogue should be aware of. 

4.5.1 Model limitations 

All of our models are axially symmetric and monotonically decreas- 
ing in intensity from the centre. We are unable to capture asymmetries 
such as spiral arms, offset bulges, tidal tails, mergers, star-forming 
regions etc.; or disc features such as rings, bumps, truncations, or 
flares. If such features are present in the data, they may bias or skew 

the model parameters. We also remind the reader that when we talk 
about ‘bulges’, what we really mean are the central components. This 
could be a classical b ulge, a pseudo-b ulge, an AGN, a bar, or any 
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combination (sometimes resulting in the model trying to fit a mixture 
between e.g. a bar and a bulge). We make no attempt to distinguish 
between these cases. 

4.5.2 Model selection caveats 

Model selection is accurate to > 90 per cent compared to what could 
be achieved by visual classification (Section 3.3.2 ). However, it is 
important to note that our aim in the model selection is to determine 
which one of our three models is most appropriate to use for the 
given data; and not how many physically distinct components an 
object consists of. The reason for this is that for a given galaxy, the 
data quality will strongly influence how many fitting parameters can 
be meaningfully constrained and using more model parameters will 
inevitably o v erfit the data and lead to unphysical results. Hence, even 
in the joint model selection, we base our visual classification on the 
fit and residuals in individual bands (which is what we fit to), rather 
than e.g. colour images. Due to the different depths and resolutions 
of the KiDS bands, it is hence common for the same galaxy to be 
classified as double component in one band, but single component 
in another. 

In an attempt to make fitting parameters more directly comparable 
across bands, we introduced the joint model selection (Section 3.3.2 ), 
yet this is necessarily a compromise between the different bands. For 
example, we lose bulges that are resolved in the r band but not in g and 
i bands due to the larger PSFs; or there may be some ill-constrained 
i -band fitting parameters for an extended low-surface brightness disc 
that is visible in r and g but not in the shallower i -band image. There 
are also more skipped fits and outliers in the joint model selection 
than in the band-specific ones because all objects that are skipped or 
flagged in at least one of the three bands is skipped or flagged in the 
joint model selection. 

Irrespective of the result of the model selection, we provide all 
fitted parameters of all models in the catalogue (along with the 
postage stamps of all fits and a flag indicating the preferred model). 
This allows users to perform their own selection if desired; but also 
requires care as not all provided parameters will be meaningful. 
While single S ́ersic fits to double component objects are mostly 
reasonable; double component fits to true single component galaxies 
will have unconstrained and hence potentially unphysical parameters 
for at least one of the components. 

We are also aware of a population of objects that are classified 
as double component fits b ut ha ve the bulge component dominating 
both the centre and the outskirts, with the disc only dominating at 
intermediate radii or even staying ‘below’ the bulge at all radii. We 
believe these are essentially single component systems that do not 
follow a S ́ersic law (e.g. S ́ersic index would be higher at centre 
than outskirts); and so the freedom of the disc is used to offset this. 
This population is easily identifiable by the high bulge-to-total ratio 
(B/T � 0.6 or 0.7). The single S ́ersic fits may be more appropriate to 
use in these cases (see also the discussion of this issue in Allen et al. 
2006 ). An example is shown in Fig. C4 in the appendix. 

4.5.3 Drawbacks of tight fitting segments 

As detailed in Section 3.3.3 , we use relatively tight segments around 
the galaxies for fitting, which results in the best possible fit of 
the inner regions of the galaxy but can lead to large, unphysical 
wings. Hence we recommend using only integrated properties, 
i.e. the summed flux/magnitude within the region that was fitted 
and the corresponding ef fecti ve radii and bulge-to-total ratios as 

given by the corresponding ∗ SEGRAD properties in the catalogue. 
For comparisons to other catalogues using larger fitting segments, 
their profiles should also be appropriately truncated (see details in 
Sections 3.3.3 and 5.4 ). 

4.5.4 Sources of systematic uncertainties 

We provide errors for each fitted parameter in the catalogue including 
our best estimate of systematic uncertainties taken from Table 6 . 
Ho we ver, we do not apply the (small) bias corrections given in the 
same table, since they are only applicable to large random samples 
of our galaxies and not to individual objects. In addition, we would 
like to point out that the systematic errors were estimated from single 
S ́ersic r -band fits. We expect that individual components as well as 
the g and i bands are affected by similar systematics, but we did not 
test for this. Also, there are some systematic uncertainties that we do 
not account for in our simulations, most obviously galaxy features 
that cannot be captured by our models. For these reasons, the given 
errors should still be considered as lower limits of the true errors. 

4.5.5 GAMA-KiDS RA/Dec offset 

We observed an average offset between the input and output (fitted) 
positions of galaxies in both RA and Dec of approx. 0.4 pix (0.08 
arcsec). This is due to an offset between the GAMA (SDSS) and 
KiDS positions; the same offset can be seen when comparing the 
KiDS source catalogue with the Gaia catalogue; see also fig. 15 
in Kuijken et al. ( 2019 ). We correct for this during the outlier 
rejection, but give the original (uncorrected) fitted values for position 
otherwise. 

4.5.6 Completeness limits 

Due to our sample selection (Section 2.3 ), our spectroscopic com- 
pleteness is 100 per cent and even the faintest objects in our sample 
are well-resolved and bright enough in KiDS data to allow for robust 
single S ́ersic fits. Ho we ver, there is a systemic limit to the component 
magnitude in that the samples of bulges and discs with magnitudes 
fainter than the GAMA limit ( r < 19.8 mag) are incomplete. For 
example, a bulge with a magnitude of 22 mag in the r band will only 
be contained in our sample if the corresponding disc is bright enough 
such that the total magnitude is below 19.8 mag; hence the sample of 
bulges with 22 mag is incomplete. This applies almost e xclusiv ely 
to the faint bulges from the 1.5-component fits as can be seen in the 
first column of Fig. 6 . 

5  C O M PA R I S O N  TO  P R E V I O U S  WO R K S  

After presenting some of the contents of our main catalogue, we 
now turn towards demonstrating its robustness. We start with a 
comparison to previous works in this section (including work on the 
same galaxy sample); then describe additional internal consistency 
checks and a detailed study of biases and systematic errors with 
bespoke simulations in Section 6 . 

5.1 Comparison of catalogue statistics 

As a first check, we compare our model selection statistics to those 
of other bulge-disc decomposition works, although care must be 
taken in judging these results since they will depend on the sample 
selection, data quality and observational band. 
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Table 5. Comparison of our catalogue statistics to previous works (in the r band unless stated otherwise). 

Reference 
Single 

(per cent) 
Double 

(per cent) 
Unsuitable 
(per cent) Notes 

This work 47 23 30 Double including 1.5-comp.; unsuitable including masking (20 per cent) 
Barsanti et al. ( 2021 ) 47 28 25 Cluster S0 galaxies 
Meert et al. ( 2015 ) 44 39 17 Larger sample up to higher redshift but smaller magnitude range 
Head et al. ( 2014 ) 19 35 46 g band; early-type sample; more stringent criteria for ‘good’ fits 
Lackner & Gunn ( 2012 ) 35 29 36 Single corresponding to pure exponential or de Vaucouleurs; unsuitable 

corresponding to their ‘S ́ersic’ category 
Simard et al. ( 2011 ) 73 26 1 Unsuitable corresponding to failure rate of fitting routine; no selection of ‘good’ fits 

given 
Allen et al. ( 2006 ) 43 34 23 B band; unsuitable galaxies excluded through cuts in redshift, galaxy size and surface 

brightness 

Table 5 summarizes the corresponding percentages including a 
few notes on the most important differences of the quoted works 
to ours (more details on the majority of these studies are given in 
Section 5.2 ). In short, for the automated decomposition of large 
samples of galaxies in the r band, most authors – including ourselves 
– class roughly half of all galaxies as being well-represented by a 
single S ́ersic model, with the other half split approximately evenly 
into double component fits and objects unsuitable for fitting with 
such simple models. 

5.2 Comparison of component colours to literature 

g −r colours of galaxy components, such as those we present in Fig. 9 
and Section 4.4 , are not found frequently in the literature, although 
a number of authors have presented bulge-disc decompositions in 
sev eral bands. F or e xample, Simard et al. ( 2011 ) perform bulge-disc 
decompositions for a large sample of galaxies in the SDSS g and 
r bands but only present colour–magnitude diagrams for the total 
galaxies (their figs 9 and 10). These are visually comparable to our 
total galaxy colours as indicated by the dot–dashed green contours 
in the right-hand panel of fig. 9. Mendel et al. ( 2014 ) add the SDSS 

u , i , and z bands to the analysis of Simard et al. ( 2011 ) and present 
component masses in ugriz but also do not study component colours. 

Similarly, Meert et al. ( 2015 ) present a large r -band catalogue 
which is extended to include the g and i bands in Meert et al. ( 2016 ). 
Colour–magnitude diagrams, ho we ver, are again only presented for 
total galaxies, with the authors noting that component colours can be 
calculated from their catalogue but should be used with care since 
they are subject to large uncertainties. 

More recently, Dimauro et al. ( 2018 ) provide (UVJ) component 
colours in their catalogue but defer their study to future work; while 
Bottrell et al. ( 2019 ) present ugriz colour–magnitude diagrams for 
total galaxies (colour coded by B/T); but again not for individual 
components. 

Among the first to show component colours for a large sample of 
galaxies were Lackner & Gunn ( 2012 ) in their study of ∼70 000 z < 

0.05 SDSS galaxies in the g , r , and i bands. Ho we ver, in contrast to 
our fits, their g and i -band fits are not independent. Instead, in order 
to decrease the noisiness of the colours, the structural parameters 
are taken from the r band and only the magnitude is adjusted. 
Additionally, Lackner & Gunn ( 2012 ; along with e.g. Mendel et al. 
2014 ) fix the S ́ersic index of the bulge to either 1 or 4 for their double 
component fits to limit the number of free parameters since the data 
is insufficient to constrain the bulge light profile. Keeping these 
differences in mind, their fig. 32 showing the g −r versus M r colour–
magnitude diagram for bulges and discs as contours superimposed 

on the greyscale background for all galaxies can be compared to 
the right-hand panel of our Fig. 9 (for a more detailed description 
of Fig. 9 , see Section 4.4 ). In general, both plots are very similar: 
the grey background shows a large blue cloud and a well-separated 
red sequence. The double component fits populate the red sequence, 
green valley and the brighter part of the blue cloud. The bulges 
tend to be slightly redder than the red sequence but with a large 
scatter especially at the faint end. Discs spread from the red sequence 
towards the green valley with a smaller population also in the blue 
cloud. 13 Lackner & Gunn ( 2012 ) also note the large scatter in colour 
for bulges in particular, despite their fitting constraints and lower 
redshift limit. Hence it is not surprising that even with the higher 
quality KiDS data and our new fitting routines, we get a large scatter 
in component colours, especially since we lea ve the b ulge S ́ersic 
index free and perform independent fits in both bands. The latter in 
particular can lead to very extreme colours since it is not guaranteed 
that the ‘bulge’ and ‘disc’ models actually fit the same features in 
both images (in particular when there are additional features present 
that are not fully captured by the models; see also Section 4.4 ). 

Kim et al. ( 2016 ) found similar difficulties when performing g and 
r -band decompositions on ∼10 000 large bright and approximately 
face-on SDSS galaxies. While the y leav e the S ́ersic index free as 
we do, the g -band structural parameters are again taken from the 
r -band fits with only the magnitudes adjusted. Despite this, they find 
it necessary to remo v e almost 40 per cent of their sample after fitting 
because they show excessively red bulge colours (combined with low 

B/T values in the r -band). After this cut, the g −r versus M r colour–
magnitude diagram for bulges shown in their Fig. 7 is slightly less 
noisy than ours (Fig. 9 ), although still comparable. Kim et al. ( 2016 ) 
did not study the properties of the discs in their sample. 

One of the most direct comparisons to make is with Kennedy 
et al. ( 2016 ) who study GAMA galaxies in the G09 region (a 
subset of our sample) in the ugrizYJHK bands from the SDSS 

(York et al. 2000 ) and the United Kingdom Infra-red Telescope 
Infrared Deep Sky Survey (UKIDSS, Lawrence et al. 2007 ). They 
use the MEGAMORPH multiband fitting method with GALAPAGOS-2 
and GALFITM (H ̈außler et al. 2013 ; Vika et al. 2013 ) to perform 

simultaneous S ́ersic plus exponential fits across all nine bands. The 
structural parameters are constrained to be the same in all bands, with 
only the component magnitudes allowed to vary freely, therefore 
providing robust colours. While the paper focusses on studying 
u −r colours, the corresponding catalogue on the GAMA database 

13 For reference, their cyan contours represent 6684 galaxies with a bulge 
S ́ersic index of 1 and the magenta contours show 14 042 objects with a bulge 
S ́ersic index of 4. Also note that their x -axis is reversed with respect to ours. 
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Figure 10. Our Galactic extinction-corrected g −r component colours (lim- 
ited to segment radii) compared against those from Kennedy et al. ( 2016 ) for a 
subsample of 390 objects that appear in both catalogues and were classified as 
double component fits in the joint model selection. The scatter plot shows the 
direct comparison, while the density plots show the respective distributions 
in both catalogues (ours on the left, Kennedy et al. 2016 on the top). Bulges 
are again shown in red with dotted lines and discs in blue with dashed lines. 
To aid the direct comparison of the distributions, the lighter solid lines also 
show the Kennedy et al. ( 2016 ) bulge distribution on the left and our disc 
distribution on the top. 

( MegaMorph:MegaMorphCatv01 ) contains the information for 
the fits in all nine bands such that g −r colours can easily be derived. 

This comparison is shown in Fig. 10 for those galaxies that were 
present in both catalogues and classified as double component fits 
( NCOMP = 2) in the joint model selection of our fits (Kennedy 
et al. 2016 do not perform model selection nor outlier rejection). 
In addition to the scatter plot directly comparing the component 
colours, we show the corresponding distributions in the left (this 
work) and top (Kennedy et al. 2016 ) panels of Fig. 10 . As al w ays, 
bulges are shown in red (points and dotted lines) and discs in 
blue (points and dashed lines). To aid the direct comparison of the 
distributions, we additionally show the Kennedy et al. ( 2016 ) bulge 
colour distribution in the left-hand panel as a solid orange line and the 
disc distribution from this work in the top panel as a light blue solid 
line. Component colours are all corrected for Galactic extinction and 
limited to segment radii for our fits. 

Despite the large scatter, it can be seen that our component colours 
are generally in agreement with those from Kennedy et al. ( 2016 ) 
with no systematic differences. The scatter in both catalogues is 
also comparable, although Kennedy et al. ( 2016 ) perform multiband 
simultaneous fits with fixed structural parameters that should lead to 
more robust component colours. This advantage of their work seems 
to be balanced by advantages of our work, such as the impro v ed 
data quality of KiDS, the robustness of the fitting procedure with 
PR OFOUND and PR OFIT and our post-processing steps (in particular 
outlier rejection and model selection). 

In addition to the large g −r component colour studies discussed 
abo v e, there are a number of publications focussing on the g −i 

colours of bulges and discs for samples ranging between ∼100 and 
∼1000 objects (i.e. roughly a factor of 10 smaller than ours), namely 
Gadotti ( 2009 ), Head et al. ( 2014 ), Vika et al. ( 2014 ), Fern ́andez 
Lorenzo et al. ( 2014 ), Cook et al. ( 2019 ), and Barsanti et al. ( 2021 ). 
We briefly compare our work to their results here, noting that all 
abo v e authors have more stringent constraints on their fits than we 
do and also report problems in deriving bulge colours. For example, 
Fern ́andez Lorenzo et al. ( 2014 ), although they fit the galaxies in 
both bands, use fixed aperture photometry to derive more stable 
bulge colours. Vika et al. ( 2014 ), while performing simultaneous 
multiband fits, do not allow for any variation of structural parameters 
(except magnitudes) with wavelength. Head et al. ( 2014 ), in addition 
to v arying magnitudes, allo w for a trend in disc sizes with wavelength 
in approximately 30 per cent of their sample, noting that this leads 
to increased scatter. Cook et al. ( 2019 ), who use PROFIT like this 
work, allow discs to deviate slightly from the exponential profile 
but fix all bulges to be exactly round (axial ratio of 1), again 
only allow magnitudes and disc sizes to vary between bands and 
employ a sophisticated, visually-guided re-fitting procedure to obtain 
physically meaningful fits for ‘difficult’ objects. Barsanti et al. 
( 2021 ), also employing PROFIT , additionally allow for differing bulge 
sizes and S ́ersic indices in the different bands (but fixing bulge and 
disc axial ratios and position angles and performing model selection 
in the r band only), but class approximately half of their double 
component fits as ‘unreliable’. Gadotti ( 2009 ), fitting bulges, bars, 
and discs to a sample of face-on, visually-selected ‘well-behaved’ 
galaxies refrain from automated fitting and instead treat each galaxy 
individually. 

After these notes on the inherent difficulties associated with 
deriving component colours, we can now turn to the corresponding 
results: Head et al. ( 2014 ), in their study of early-type red-sequence 
galaxies in the Coma cluster, measure an average g −i difference 
between bulges and discs of 0.09 ± 0.01 mag. Similarly, Barsanti 
et al. ( 2021 ) find a bulge-disc g −i difference of 0.11 ± 0.02 mag for 
their sample of S0 cluster galaxies. Fern ́andez Lorenzo et al. ( 2014 ), 
on the other hand, have a sample of mostly late-type spirals (with 
B/T < 0.1 for ∼66 per cent of their objects) and find a difference of 
0.29 mag in the median g −i bulge and disc colours, i.e. a factor 
of ∼3 larger. In line with this, Vika et al. ( 2014 ) report that the 
bulge and disc colours are similar for early-type galaxies but differ 
significantly for late-types. The g −i differences for the different 
morphological classes given in their table two range from 0.03 ± 0.04 
mag for ellipticals to 0.28 ± 0.06 mag for late-type spirals; with the 
o v erall av erage (comprising approximately two thirds late-types) 
being 0.19 ± 0.04. Similarly, the average g −i colour difference 
of the Gadotti ( 2009 ) sample of varying galaxy types amounts to 
0.18 ± 0.04 (from the online-version of their table 2). 

Our results are perfectly in line with this: the median bulge- 
disc g −i colour difference for our 1.5 or double component fits 
is 0.17 ± 0.01 mag, consistent with the Vika et al. ( 2014 ) and 
Gadotti ( 2009 ) results. Limiting to objects with a total g −i > 1 
(red-sequence galaxies) reduces the value to 0.14 ± 0.01 mag; while 
focussing on two-component fits only (excluding 1.5-component fits) 
yields 0.10 ± 0.02 mag, in agreement with Head et al. ( 2014 ) and 
Barsanti et al. ( 2021 ). This is because our double component galaxies 
lie predominantly on the red sequence, as can be seen in Fig. 9 . 
1.5-component fits on the other hand, have very small (namely 
unresolved) bulges by definition and hence belong to the class of 
late-type spirals. In fact, 87 per cent of the 1.5-component objects 
have a ( g -band) B/T ratio less than 0.1, with the median value as 
low as 0.02. Computing the bulge-disc g −i colour difference for 
this sample of objects yields a value of 0.46 ± 0.02, suggesting 
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that the trend described in Vika et al. ( 2014 ) continues at very 
low B/T. 

From all of these comparisons we conclude that our component 
colours – although noisy – are in line with previous work. In order 
to increase the colour robustness while preserving the ability to 
capture physical trends with wavelength (i.e. not fixing the structural 
parameters to be the same in all bands), a simultaneous fit in all bands 
is needed. This has many advantages as shown by the MEGAMORPH 

project team using GALAPAGOS and GALFITM (H ̈außler et al. 2013 , 
2022 ; Vika et al. 2013 ), especially for automated analyses, since 
it naturally ensures smooth wavelength trends while preserving 
physical variation and additionally allows more robust fits to fainter 
magnitudes. With PROFIT v2.0.0, released in February 2021, now 

supporting a multiband fitting mode, this is certainly an interesting 
avenue to explore in future work and could provide a valuable 
alternative. 

5.3 Comparison to size–stellar mass relations of Lange et al. 
( 2015 ) 

Fig. 11 shows the size–stellar mass relation obtained from our 
r -band single S ́ersic fits in combination with the redshifts and 
distance moduli of v14 of the DistancesFrames catalogue 
(Baldry et al. 2012 ) and v19 of the StellarMasses catalogue 
(Taylor et al. 2011 ); both from the GAMA database. The aperture- 
derived stellar masses have been scaled to match the S ́ersic total flux 
using the fluxscale k eyw ord provided in the StellarMasses 
catalogue. The g -band and i -band results are very similar to those 
from the r band and hence we do not show them here. 

The sample is limited to objects which were not flagged during 
our outlier rejection (Section 3.3.1 ) and split into early- and late-type 
galaxies according to our fitted S ́ersic index ( n ≶ 2.5; analogous to 
Lange et al. 2015 ). We also limit the redshift range to 0.0001 < z < 

0.06 and the stellar mass range to M ∗ > 10 9 M �, thus a v oiding the 
need for volume corrections. For comparison, we show the M ∗−R e 

relations obtained by Lange et al. ( 2015 ) by fitting a single power 
law to the single component r -band fits of Kelvin et al. ( 2012 ; pre- 
release of SersicPhotometry:SersicCatSDSSv09 ) com- 
bined with an earlier version of the stellar masses catalogue of Taylor 
et al. ( 2011 ; StellarMasses:StellarMassesv16 ). We note 
that the stellar masses did not change much between v16 and v19: 
the mean and standard deviation of � log 10 ( M ∗/M �) are 0.006 and 
0.07, respectively for our sample. The two panels show the results 
obtained with ef fecti ve radii taken directly from the S ́ersic fits (top; 
extrapolated to infinity by definition) or limited to the segment radius 
within which they were fitted (bottom; see Section 3.3.3 for further 
explanation). To guide the eye, we also show the running median 
and its error for our data; where the error is taken as the 1 σ -quantile 
divided by the square-root of data points within that bin (usually 
smaller than the size of the data points). 

In both cases, the slope of the mass–size relation obtained from 

our data agrees well with the fit results of Lange et al. ( 2015 ). There 
is a clear offset in the absolute sizes, but those will inherently depend 
on the exact definition of the size measurement at hand as well as the 
(depth of the) data used. Already calculating ef fecti ve radii within 
the segments within which we fitted for them (bottom panel) brings 
our results much closer to those of Lange et al. ( 2015 ); although the 
measurements are then not directly comparable to their fits anymore 
since they use S ́ersic values extrapolated to infinity (which will, in 
turn, depend on the segment size used for fitting). We now discuss 
these issues further by directly comparing our fits to those of Kelvin 
et al. ( 2012 ), which the Lange et al. ( 2015 ) results were based on. 

Figure 11. The size–stellar mass relation for our r -band fits (dots) compared 
to the Lange et al. ( 2015 ) fits (lines). The sizes are obtained from our 
single S ́ersic ef fecti ve radii (top panel: extrapolated to infinity; bottom 

panel: limited to segment radius) and the distance moduli provided in 
the DistancesFrames catalogue originally described by Baldry et al. 
( 2012 ). The stellar masses are taken from the most recent version of the 
StellarMasses catalogue initially presented in Taylor et al. ( 2011 ). The 
sample is limited to the redshift range 0.0001 < z < 0.06 (redshifts also 
from DistancesFrames ) and the stellar mass range M ∗ > 10 9 M �. Large 
circles with error bars indicate the running median with its error (usually 
smaller than the data point). Solid lines show the single exponential M ∗–R e 

relation fits obtained by Lange et al. ( 2015 ) for their single component r -band 
sample, split by a S ́ersic index cut at n = 2.5 (taken from their tables 2 
and 3). 

5.4 Comparison to single S ́ersic fits of Kelvin et al. ( 2012 ) 

To further investigate the size offset observed in Section 5.3 , 
we directly compared our fits to those of Kelvin et al. ( 2012 ; 
SersicPhotometry:SersicCatSDSSv09 on the GAMA 

database). Since Kelvin et al. ( 2012 ) do not provide double com- 
ponent fits, the analysis is limited to single S ́ersic fits. We again use 
the r band as an example for the discussion, but note that results are 
very similar for the g and i bands. 

The Kelvin et al. ( 2012 ) fits are based on the Structural In- 
vestigation of Galaxies via Model Analysis ( SIGMA ) code applied 
to data from SDSS DR7. SIGMA is a wrapper around SOURCE 

EXTRA CTOR , PSF EXTRA CTOR , and GALFIT3 performing similar steps 
to what we do in our pipeline (Section 3 ), i.e. source identification, 
background subtraction, PSF estimation, and 2D model fits to 
the surface brightness profile of the galaxies. The differences lie 
in the data and code used, where we upgrade SDSS to KiDS, 
SOURCE EXTRACTOR to PROFOUND , PSF EXTRACTOR to a combination 
of PROFOUND and PROFIT and GALFIT to PROFIT ; with all the 
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advantages described in Sections 2.2 , 2.4 , and 2.5 . In addition, 
we also perform multicomponent fits and model selection. For the 
comparison to the Kelvin et al. ( 2012 ) results, we focus on the three 
most important single S ́ersic fit parameters: magnitude m , S ́ersic 
index n , and ef fecti ve radius R e , which tend to be the least ‘well- 
behaved’ (position, axial ratio, and angle are generally more easily 
constrained and uncorrelated). 

Fig. 12 shows the difference between our fits and the Kelvin et al. 
( 2012 ) fits for these three parameters. For the magnitudes, we show 

the dif ference [K elvin et al. ( 2012 ) fits – our fits], while for the 
ef fecti ve radius and S ́ersic index (scale parameters) we show the 
quotient [Kelvin et al. ( 2012 ) fits / our fits] on the y -axis; al w ays 
plotted against our fitted values on the x -axis (in logarithmic space for 
scale parameters). Again, we show the results for S ́ersic parameters 
extrapolated to infinity (top) and for the magnitude and ef fecti ve 
radii calculated within the segment radius (see Section 3.3.3 ), 
where we limit both our fits and those of Kelvin et al. ( 2012 ) to 
our fitting segment (which are generally smaller than the fitting 
regions used in Kelvin et al. ( 2012 )) to obtain directly comparable 
results. 

For the S ́ersic parameters extrapolated to infinity (top panels), 
large differences can be seen in all fitted parameters, including clear 
systematic trends across the parameter space. This shows once again 
that fitted S ́ersic parameters are not directly comparable given the 
differences in the data, code, and processing steps with a wealth 
of potentially different systematic uncertainties (Section 3.3.3 ). 
Ho we ver, when we limit the analysis to our segment sizes (bottom 

panels), the fits become much more comparable. On average, now, 
our fits are ∼0.03 mag brighter and approximately 7 per cent larger 
than the Kelvin et al. ( 2012 ) fits to the same galaxies, which is 
not surprising given the increased depth and resolution of KiDS 

compared to SDSS and the numerous sources of different systematic 
uncertainties (e.g. differing sky subtraction and PSF estimation). 
Also, there are fewer trends across the parameter space, indicating 
that systematic differences arise mainly from the extrapolation to 
infinity. 

The slight exception to this is the S ́ersic index, which still shows 
some trends. The reason for this is that the S ́ersic index, unlike 
the magnitude and ef fecti ve radius, cannot easily be corrected for 
different fitting segment sizes. The Kelvin et al. ( 2012 ) fits, which 
were performed within larger fitting segments than our fits, will 
hence inevitably have to compromise more between the inner and 
outer regions of the galaxy to be fitted (unless the light profile truly 
follows a single S ́ersic profile with no deviations out to very large 
radii, which is rarely the case). Our tight fitting segments, on the other 
hand, will result in better fits to the inner regions of the galaxy at the 
expense of producing unphysical wings when extrapolated beyond 
the fitting region (Section 3.3.3 ). In a sense, fitted S ́ersic indices are 
hence al w ays a weighted average (or compromise) across a range 
of radii and their absolute values will never be directly comparable 
between catalogues unless the fitting regions are exactly the same 
(or the galaxies studied happen to follow perfect S ́ersic profiles). 

5.5 Comparison to Lange et al. ( 2016 ) double component fits 

Double component fits for samples of galaxies o v erlapping with 
our sample have been performed by Lange et al. ( 2016 ), H ̈außler 
et al. ( 2022 ) and Robotham, Bellstedt & Driver ( 2022 ). The latter 
two include a comparison to the fits presented in this work (figs 19 
and 20 in Robotham et al. 2022 and fig. B2 in H ̈außler et al. 2022 ), 
including a discussion of observed differences. We refer the reader 
to these works and do not repeat the comparisons here. Instead we 

Figure 12. The difference � or quotient Q (for scale parameters) between the 
Kelvin et al. ( 2012 ) fits and our fits plotted against our fits for the three most 
important single-S ́ersic parameters magnitude, ef fecti ve radius, and S ́ersic 
index in the r band. The top panels show the S ́ersic parameters extrapolated 
to infinity, while for the bottom panels we calculated the magnitude and 
radius within the segment radius for both our and the Kelvin et al. ( 2012 ) 
fits. Outliers are clipped to the plotting interval; which is the same in 
both cases. Black dots show all fits, red dots with error bars show the 
running median and its error in evenly spaced bins, and horizontal blue 
lines indicate no difference between the fits. The numbers in the top left 
corners of the first column of panels show the median and 1 σ -quantile of 
the respective distribution in the y -direction (which is identical for all panels 
of a row). The sample is limited to fits that are available in the Kelvin 
et al. ( 2012 ) catalogue and were classified as single component in our model 
selection. 
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focus on a comparison to Lange et al. ( 2016 ), for which the fits can 
be obtained from the GAMA wiki. 

The Lange et al. ( 2016 ) fits are performed on SDSS r -band data 
for GAMA galaxies with redshifts z < 0.06, which is a subsample 
of our sample. They use SIGMA (Section 5.4 ) to fit each galaxy with 
a single S ́ersic and a double S ́ersic function, starting from a grid 
of starting values in both cases to o v ercome the susceptibility of 
GALFIT to initial guesses and to obtain more realistic values for 
the fit uncertainties. Note that the disc S ́ersic index is left as a 
free fitting parameter in contrast to our work where we fix it to 1 
(exponential). 

Fig. 13 shows the direct comparison of our double component fits 
to those obtained by Lange et al. ( 2016 ) for the five most important 
double component parameters (limited to segment radii), similar to 
the single S ́ersic comparison against Kelvin et al. ( 2012 ) in Fig. 12 
and Section 5.4 . We note that the comparison to the Lange et al. 
( 2016 ) single S ́ersic fits is very similar to that for Kelvin et al. ( 2012 ) 
except for the smaller sample size, so we do not show it here. The 
scatter is larger for all parameters in Fig. 13 compared to Fig. 12 . 
This is expected since fitting two components will intrinsically show 

higher uncertainties and more degeneracies than fitting a single 
S ́ersic function. There is an average offset and clear trends across the 
parameter space for the bulge and disc magnitudes (first two rows 
of Fig. 13 ). On average, our bulges are ∼ 0.3 mag fainter than those 
of Lange et al. ( 2016 ), with discs being correspondingly brighter. 
Small and faint bulges are most severely affected. This is most likely 
caused by the lower resolution of the SDSS data compared to KiDS: 
the same trend is observed by H ̈außler et al. ( 2022 ) when comparing 
our fits to their fits performed on SDSS data (left two panels of the 
second row of their fig. B2), but not when comparing our fits to their 
fits performed on KiDS data (right two panels of the second row of 
their fig. B2). 

The ef fecti ve radii and bulge S ́ersic index show reduced o v erall 
offsets in Fig. 13 as compared to Fig. 12 . The median values are 
consistent with no difference for most bins with reasonable numbers 
of data points. The bulge ef fecti ve radii show an average offset of 
less than 1 per cent (albeit with large scatter), while our discs tend 
to be slightly larger (by around 6 per cent) than those of Lange et al. 
( 2016 ). The bulge S ́ersic indices are also consistent within 1 per cent 
on average, despite their large scatter. This reduction of systematic 
differences compared to the single S ́ersic fits in Fig. 12 is most 
likely due to the generally better model fit of the double component 
model, which reduces the effects of the different fitting segment sizes 
(since those are only rele v ant for galaxies which cannot be accurately 
represented by the model, cf. Sections 3.3.3 and 5.4 ). 

6  SYSTEMATIC  UNCERTAINTIES  A N D  BIASES  

F RO M  SIMULATIONS  A N D  T H E  OV E R L A P  

SAMPLE  

The MCMC chain errors returned by the fitting procedure do not 
include systematic uncertainties which arise due to galaxy features 
not accounted for in the models, nearby other objects, imperfect 
PSF estimation, background subtraction inaccuracies and similar 
ef fects. For an indi vidual galaxy, the presence of such ‘features’ will 
systematically shift the fitted parameters away from the true values, 
thus introducing a bias. For a statistically large enough sample of 
galaxies, ho we ver, most of these effects are expected to cancel out 
on average since they are random from one galaxy to the next (e.g. 
nearby other sources shifting the fitted positions). These ‘random 

systematics’ can – for statistical samples – be accounted for by simply 
increasing the given parameter errors such that in most cases, the true 

values are included in the credible intervals again. Such systematics 
can be studied using o v erlap sample galaxies, i.e. those that appeared 
in more than one KiDS tile (cf. Section 2.3 ). In addition, there can be 
‘one-sided effects’ that lead to an o v erall bias across the sample, e.g. 
due to excess flux from nearby objects. These can only be detected 
using simulations. In the following, we study both of these effects 
using our bespoke simulations, the o v erlap sample of real galaxies, 
and the o v erlap sample of simulated galaxies; where we refer to the 
random systematics as ‘error underestimates’ and to the one-sided 
effects as ‘biases’. 

The final corrections for both of these effects are listed in Table 6 . 
In short, biases are very small ( � 1 per cent ), while systematic errors 
are a factor of 2–3 larger than the random MCMC errors alone. 
The error underestimate corrections are also applied to the released 
catalogues, while the bias corrections are not since they are only 
valid for a large random subset of our galaxies and not for individual 
objects. Note that the systematic error studies were carried out on 
v03 of the BDDecomp DMU, while the remainder of this work 
describes v04 (both on the GAMA database). Ho we ver, since v04 
is statistically identical to v03 , the results can directly be transferred. 
We would also like to point out that we focus on single S ́ersic r -band 
fits in this section. We expect individual components in the 1.5 and 
double component fits as well as the g and i bands to be affected by 
similar systematics. Effects are likely to become worse for fainter 
and/or less well-resolved objects (i.e. bulges in particular). A more 
detailed investigation into the systematics of double component fits 
will be included in future work. 

6.1 Overlap sample comparison 

As an internal consistency check, we compared the fit results obtained 
from multiple observations of the same physical object (Section 2.3 ) 
in Fig. 14 . The plots are very similar to the ones in the bottom panels 
of Fig. 12 (see description in Section 5.4 ; but note the different y -axis 
scale), except that we now show the differences between two of our 
own fits to different KiDS images of the same galaxy (in the o v erlap 
region between the KiDS tiles). Hence all fits shown in Fig. 14 are 
based on KiDS data and use the exact same pipeline for analysis, 
though the different observations are treated entirely independently. 
We al w ays use the deeper image as the reference image (the image 
depth at the edge of KiDS tiles can vary greatly depending on the 
number of dithers – between 1 and 5 – that co v er the area), but 
e v aluate the magnitude and ef fecti ve radius within whichever of 
the two segment radii is smaller to a v oid extrapolation and obtain 
consistent results. 

As expected, there are very little differences between the two fits 
to the same galaxy; and there are no systematic trends across the 
parameter space. The running median is consistent with 0 (or 1, for 
scale parameters) in almost all bins, which shows that there are no 
inherent systematic differences in our fits related to image depth. 
This holds true despite the segment radii being systematically larger 
for the deeper images (as expected), as long as both fits are e v aluated 
within the same region before comparison. 

6.2 Simulations: parameter reco v ery 

As a final test of our pipeline, we ran simulations where we insert 
single S ́ersic model galaxies convolved with an appropriate PSF at 
random locations in the KiDS data. To obtain a realistic distribution 
of parameters for the model galaxies (including correlations), we 
use the fitted single S ́ersic parameters of a random sample of 1000 
r -band galaxies that were not classified as outliers. The PSF to 
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Figure 13. The difference � or quotient Q (for scale parameters) between the Lange et al. ( 2016 ) fits and our fits plotted against our fits for the five most 
important double component parameters bulge magnitude m 

B , disc magnitude m 

D , bulge ef fecti ve radius R 

B 
e , disc ef fecti ve radius R 

D 

e , and bulge S ́ersic index 
n B in the r band. Magnitudes and ef fecti ve radii are limited to segment radii and all values are clipped to the plotting intervals. Black dots show all fits, red dots 
with error bars show the running median, and its error in evenly spaced bins and horizontal blue lines indicate no difference between the fits. The numbers in the 
top left corners of the first column of panels show the median and 1 σ -quantile of the respective distribution in the y -direction (which is identical for all panels 
of a row). The sample is limited to fits for which both bulge and disc measurements were available in the Lange et al. ( 2016 ) catalogue, that were classified as 
double component object in our model selection and that were not flagged as unreliable in either catalogue. 

convolve with is taken as the model PSF that was fitted to the nearest 
real galaxy (at the position where the model galaxy is inserted), 
which is close to the real PSF at that image location. We then 
simply add the PSF-convolved galaxy to the KiDS data and run 
the resulting image through our entire pipeline (se gmentation, sk y 
subtraction, PSF estimation, galaxy fitting, outlier flagging, model 
selection). 

In this way we are able to check for intrinsic biases in our entire 
pipeline, with three exceptions: issues due to galaxy features not 
represented by our models (bars, spiral arms, disc breaks, mergers, 
etc.), problems in the data processing performed by the KiDS team 

(if any), and deviations of the true PSF from a Moffat function. 
In Fig. 15 we show the corresponding plots to Figs 12 and 14 ; 

where on the x -axis we now have the true (input) parameters of our 
simulated galaxies and on the y -axis the difference between the fitted 
and the true values; both limited to segment radii. 

Generally, all parameters are reco v ered well, although the mag- 
nitudes show a slight offset of ∼ 0.01 mag (with corresponding 
trends in ef fecti ve radius and S ́ersic index since these parameters 
are correlated); worsening for faint objects. This offset is driven 
by a number of galaxies scattering to very low values, i.e. where 
the fit attributes significantly more flux to the galaxy than what we 
put into the simulation. Visual inspection of these simulated objects 
revealed that all of them have additional flux from other objects 
included in the segmentation maps. Fig. 16 shows an example, 
where the difference between the fitted and the true magnitude 
is −0.17. 

Nearby objects affect approximately 5–10 per cent of our simu- 
lated fits in this way. Since it is a one-sided effect (there are no 
sources with ne gativ e flux), it results in a slight o v erall bias across 
the sample. This is expected to occur at a similar level also in the 
fits to real galaxies and could only be impro v ed by simultaneously 
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Figure 14. Similar to the bottom panels of Fig. 12 but no w sho wing an 
internal consistency check of our catalogue using galaxies that were imaged 
(and successfully fitted) at least twice in the KiDS r band. We pass these 
duplicate observations of the same physical objects through our pipeline 
independently and then compare the fit to the shallower image with the fit 
to the deeper (higher signal-to-noise ratio) image. Note the different plotting 
ranges relative to Fig. 12 (on the y -axis in particular). 

Figure 15. Similar to Fig. 14 but comparing the fitted parameters of 
simulated images to the true (input) parameters; both limited to the segment 
radius. 

fitting nearby sources (see also the discussion of this issue in H ̈aussler 
et al. 2007 ). Ho we ver, for this work we decided against this option 
as explained in Section 3.2.5 . We may revisit this decision in future 
work. 

Figure 16. An example fit to a simulated galaxy where the difference 
between the true and the fitted magnitude is large due to the wings of a 
nearby bright object and a small faint object included in the segmentation 
map. Panels are the same as top and middle row in Fig. 3 . 

Figure 17. An example fit to a simulated galaxy which was flagged as a 
bad fit due to a nearby masked area from a bright star chopping up the 
segmentation map. Panels are the same as top and middle row in Fig. 3 . 

6.3 Simulations: model selection accuracy 

Since we know that all of our input galaxies were perfect single 
S ́ersic systems, the model selection and outlier rejection statistics 
can be used to judge the failure rate of these routines (cf. also 
Sections 3.3 and 4.2 ). We simulated 1000 galaxies at random 

locations; which resulted in 1126 objects to be fit (due to the 
o v erlap re gions between KiDS tiles). Of these, 262 (23 per cent) 
were skipped; which is similar to the fraction of skipped fits for real 
galaxies, as expected since the main reason for this are the KiDS 

masks. Of the remaining objects, 94 per cent are classified as single 
component fits, three per cent are 1.5 or double component fits and 
3 per cent are flagged as outliers. 

The number of outliers is significantly less than the 11 per cent 
of real r -band galaxies flagged (Section 3.3.1 ) because in the 
simulations all galaxies are intrinsically ‘well-behaved’. Fig. 17 
shows an example of the most commonly occurring reason for being 
flagged as an outlier (in the simulations), namely the mask of a nearby 
bright star chopping up the segmentation map. 

The fact that 97 per cent of non-outlier simulated galaxies are 
correctly classified as single component fits confirms that model 
selection is accurate provided the galaxy can be unambiguously 
assigned to the single S ́ersic model (cf. Section 3.3.2 ). We visually 
inspected the 3 per cent 1.5 and double component fits and found 
nearby interfering objects in all of them. Fig. 18 shows an example, 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/1/942/6671549 by U
niversity of Louisville user on 21 O

ctober 2022

art/stac2267_f14.eps
art/stac2267_f15.eps
art/stac2267_f16.eps
art/stac2267_f17.eps


Bulge-disc decomposition of GAMA galaxies 967 

MNRAS 516, 942–974 (2022) 

Figure 18. An example fit to a simulated galaxy which was classified as a 
double component fit. Single component fit at the top; double component fit 
at the bottom. Panels are the same as in Fig. 3 . 

where the fit attempts to capture the additional ‘features’ with the 
freedom of a second component. Note that since we only simulated 
single S ́ersic objects, we cannot comment on the accuracy of the 
model selection procedure for double component objects here. 
Ho we ver, our model selection procedure was optimized on all types 
of real galaxies (not just single S ́ersic objects), see Section 3.3.2 
for details. We also point out that the confusion rate of the model 
selection derived from the idealized simulations is a strictly lower 
limit. Realistic confusion rates for real galaxies, as calibrated against 
visual inspection, are quantified in Table 3 (Section 3.3.2 ) for the r 
band as well as Tables B1 , B2 , and B3 (Appendix B ) for the g , i , and 
joint model selection. 

6.4 Systematic uncertainties 

Fig. 19 shows the results of our systematic error study, which we will 
now discuss in detail. Going from left to right we show three different 
plot types as labelled on the x -axis and described in more detail in 
the caption and below. Going from top to bottom, each plot type is 
shown for each single S ́ersic parameter as labelled in the left-hand 
panels; and the colours of the lines in the plot indicate which sample 
was used according to the legend at the bottom of the figure. The left- 
hand panels show the distribution of absolute differences between 
the values fitted to both versions of a galaxy (in the indicated units); 

the middle panels show the corresponding error distribution (errors 
added in quadrature for the two fits; in the same units as the fit); and 
the right-hand panels show the distribution of the absolute difference 
divided by its error (unit-less). The solid black lines labelled ‘real 
data o v erlap’ are using the o v erlap sample. The dashed dark blue 
lines labelled ‘simulation o v erlap’ show the same for the o v erlap 
sample in simulated galaxies, where we have run more simulations 
specifically to boost the number of simulated o v erlap galaxies to a 
similar value as we have for the real o v erlap sample ( ∼700). The 
dashed light blue line labelled ‘sim. o v erlap (t. PSF)’ is the same as 
the dashed dark blue line, just that when fitting the galaxy, instead of 
the estimated PSF we passed in the true PSF (i.e. the one we used to 
convolve the model galaxy with originally). The dotted dark orange 
line labelled ‘simulation fit versus true’ shows the difference between 
the fitted value and the true value (instead of between the two fitted 
values in the o v erlap re gion) for the same sample of galaxies. Note 
the errors here now are just the errors of the fit since the true values 
do not have errors. The dotted light orange line (‘sim. fit versus true 
(t. PSF)’) is the same for the run that used the true PSFs. 

All values are clipped to the plotting intervals (for plotting only). 
For scale parameters, all distributions are shown in logarithmic 
space (which the parameters were also fitted in). To make the scales 
comparable to the other parameters, the angle is shown in units of 30 ◦

(which it was also fitted in to make the MCMC step size comparable 
to the other parameters). For the magnitude and ef fecti ve radius, we 
show both the fitted S ́ersic values and the segment truncated values 
(cf. Section 3.3.3 ). Comparing rows 3 and 4 (S ́ersic and segment 
magnitudes) or rows 5 and 6 (S ́ersic and segment ef fecti ve radii) 
against each other, it becomes clear immediately that the distributions 
for the segment values are narrower, i.e. limiting to segment sizes 
increases the stability and reduces the scatter in those parameters 
as already observed in many previous sections. Note, though, that 
our simulated galaxies do follow perfect single S ́ersic profiles, so 
the differences between the segment and S ́ersic values are generally 
expected to be much smaller in the simulations than in real data (see 
Section 3.3.3 for details). 

For each distribution, we also give the median of the absolute 
difference and the errors and the 1 σ -quantile (half of the range con- 
taining the central 68 per cent of data) of the normalized difference. 
These values (with errors) are also given in Table 6 . 

6.4.1 Overlap sample: real versus simulated 

Focussing on the real data and simulation overlap samples (solid 
black and dashed dark blue lines), which are most directly com- 
parable, it can be seen that the distributions of the parameter 
differences (left column) are broader for the real galaxies than 
for the simulated galaxies for all parameters; i.e. for two versions 
of the same galaxy in the o v erlap sample, the fitted values are 
on average closer to each other in the simulation than in the real 
data. This could be due to two reasons: either irregular galaxy 
features in combination with noise (i.e. perfect single S ́ersic objects 
are just more easily constrained/less easily influenced by noise 
fluctuations); or differences in the KiDS data processing between 
tiles (e.g. inaccuracies in their background subtraction procedure) 
that affect the real galaxies but not the simulated ones since 
those were added later. In reality, it is probably a combination 
of these two effects (with the first one presumably dominating). 
All steps of our own analysis affect both the simulated and the 
real galaxies and hence on average will have the same effect on 
both. 
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Figure 19. For all single S ́ersic parameters as labelled top to bottom: Left column: The distribution of the absolute difference between the fitted and true 
values for simulated galaxies; or between the fitted values to two versions of the same (simulated or real) galaxy in the o v erlap sample. The le gend at the 
bottom indicates which difference is shown; scale parameters are treated in logarithmic space throughout. See text for details. Middle column: The error on the 
parameter difference shown in the left column. Right column: The parameter difference normalized by its error (i.e. left column divided by middle column). 
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The errors (second column) do reflect this additional uncertainty in 
real galaxies in that they are larger by 0.2–0.3 dex for all parameters. 
In fact, the errors on the simulated galaxies seem to be more severely 
underestimated than those on the real galaxies, which becomes 
clear when looking at the parameter differences normalized by the 
respective errors (third column). In an ideal world, these would 
all be Gaussians centred on zero with a standard deviation of 1. 
As there will al w ays be a few outliers due to interfering objects 
or image artefacts, instead of the mean and standard deviation we 
will consider their more robust equi v alents, the median, and 1 σ - 
quantile (shown in plots). Indeed, all o v erlap sample distributions 
(simulated and real, i.e. black, dark blue and light blue lines) are 
centred on zero, as already expected from the results shown in 
Fig. 14 . Ho we v er, it can be seen that for all parameters e xcept 
segment ef fecti ve radius, the 1 σ -quantile is larger than 1 both for 
the simulated and the real sample: values generally range between 2 
and 3 with simulated galaxies performing slightly worse due to the 
underestimated errors (which are most likely caused by the PSFs, 
see discussion below). 

The exception to this is position (RA and Dec, top two rows), 
for which the normalized distribution is a factor of approximately 
10 broader for real galaxies than for simulated ones. In fact, a 
considerable fraction of these distributions fall outside of the plotting 
range, such that the clipping to these intervals results in prominent 
peaks at the plot edges (top right two panels of Fig. 19 ). We believe 
this to be mainly due to the accuracy of the astrometric solution 
of the KiDS data, which shows a scatter of approximately 0.04 
arcsec in DR4.0 in both RA and Dec (Kuijken et al. 2019 ; and 
we also confirmed this using the KiDS r -band source catalogues). 
This is a factor of 4 larger than the median MCMC error on 
position (top two panels in the middle row of Fig. 19 ). Accounting 
for this additional source of scatter between the tiles (which only 
affects real objects but not the simulations since those were inserted 
after the astrometric calibration) would bring the normalized error 
distribution for the real data o v erlap sample into much closer 
agreement with the simulated version. The remaining factor of ∼2–3 
difference could also be due to the astrometry, considering that the 
o v erlap sample by definition sits at tile edges, where the astrometric 
solution is the most uncertain; or – as for all other parameters –
due to irregular galaxy features in combination with noise (see 
discussion abo v e). As a last point we w ould lik e to note that the 
absolute differences in position are usually still within 1 pixel (0.2 
arcsec), i.e. although it stands out from the plot, this is a sub-pixel 
effect. 

6.4.2 Simulated overlap: imperfect versus true PSFs 

These distributions of the simulated o v erlap sample can be compared 
to their equi v alent distributions using the true PSFs (dashed light blue 
lines in Fig. 19 ). This allows us to determine which parameters are 
affected by imperfect PSF estimates. However, we note that we can 
only make qualitative and relative statements here since we do not 
kno w ho w close to the truth our estimated PSFs for the real galaxies 
are. When simulating our galaxies, we convolve it with the model 
PSF fitted to the nearest real galaxy, i.e. this is the true PSF (cf. 
Section 6.2 ). When processing the simulated galaxy through our 
pipeline, the estimated PSF is then obtained by fitting nearby stars in 
the usual way. The nearest galaxy (which the true PSF is based on) 
is typically around 200 arcsec away, with the distribution ranging 
between ∼0 and ∼500 arcsec. This is close enough to provide a 
realistic PSF for the position of interest since KiDS tiles are much 

larger than this ( ∼ 1 deg 2 ) and the PSF varies only slowly across the 
tiles. Ho we ver, it is further away than the stars used to obtain the 
estimated PSF, which are typically within ∼100–200 arcsec and can 
at the very maximum be 

√ 

2 ∗ 200 arcsec away since the large cutouts 
used for PSF fitting are 400 arcsec on each side. This is expected 
since the density of stars is much higher than that of GAMA galaxies. 
Ho we ver, it implies that the deviations of the estimated to the true 
PSFs in the simulations will on average be larger than for real data, 
hence leading to the errors on simulated galaxies being more severely 
underestimated as noted in the previous sections. 

Comparing the simulations with true PSFs to the real data, it can be 
seen that the simulations now perform better than the real data for all 
parameters except segment ef fecti ve radius (1 σ -quantiles between 1 
and 2.8). In addition, comparing the simulations with the true and the 
false PSFs against each other, we can assess which parameters are 
most affected (relatively speaking): position angle and axial ratio are 
most se verely influenced; follo wed by S ́ersic index, ef fecti ve radius, 
and magnitude, while the position is nearly unaffected. This makes 
sense: the axial ratio and position angle are very sensitive to mistakes 
in the ellipticity and orientation of the PSF; while the fitted S ́ersic 
index, ef fecti ve radius, and magnitude depend on the concentration 
and FWHM of the PSF. The position is only very weakly affected 
since the PSF is al w ays centred and symmetric. 

Note that all 1 σ -quantiles are still larger than 1 (ranging from 1.1 
to 2.8) even for the simulations with true PSFs. This indicates that the 
error underestimates of these parameters are not e xclusiv ely caused 
by the effects studied so far (galaxy and/or image processing features 
not accounted for in the simulations and PSF uncertainties) but there 
is an additional contribution from features that are also present in the 
simulations such as nearby objects, noise fluctuations, background 
subtraction inaccuracies, or image artefacts. 

6.4.3 Simulated sample: fitted versus true values 

Finally, for the simulated samples we can compare the fitted values 
to the true values (instead of the o v erlap sample comparison), which 
is shown as dotted orange lines in Fig. 19 . This allows us to detect 
biases, but is less directly comparable to the sample of real galaxies 
where the true value is unknown. Note the errors are generally 
slightly smaller compared to the o v erlap studies since for those, 
the errors for both fits were added in quadrature while the true values 
now obviously do not have errors. Correspondingly, the normalized 
distributions are slightly broader even though the absolute differences 
between parameters are comparable. Most notably, ho we ver, the 
median of the distribution is now shifted away from zero for 
magnitude, ef fecti ve radius, and S ́ersic index (see also Table 6 ). 
This is due to the bias caused by nearby objects already described in 
Section 6.2 : magnitudes are too bright by ∼ 0.01 mag; ef fecti ve radii 
and S ́ersic indices too large by approximately 1 per cent (al w ays a 
bit better for segment values and/or simulations using the true PSFs). 
All other parameters still have their distributions centred on zero, i.e. 
do not show any bias – at least not one that we can test with our 
simulations. This makes sense since position, axial ratio, and angle 
will be influenced by nearby objects (and other effects) as well, but 
without any preferred direction and hence on average this leads to 
an error underestimate rather than an o v erall bias. Using the true 
PSFs (dotted light orange lines) narrows all distributions slightly as 
expected; but again there is only an error underestimate rather than an 
o v erall bias introduced by the wrong PSFs since they are ‘randomly 
wrong’. 
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Table 6. Biases and error underestimates for all single S ́ersic parameters 
derived from our systematic error studies (Section 6.4 ). The bias is additive 
(indicated with ±) for those parameters that were treated in linear space 
and multiplicative (indicated with � ) for those treated in logarithmic space. 
Error underestimates are al w ays multiplicative. The column ‘bias/ σ ’ gives 
the significance of each bias. 

Param. Bias Bias/ σ Error 
(using true PSFs) underest. 

RA ± (7 ± 18) × 10 −5 arcsec 0.39 12.27 ± 0.71 
Dec ± (10 ± 19) × 10 −5 arcsec 0.56 10.98 ± 0.53 
m ± ( −11 . 4 ± 0 . 8) × 10 −3 −13.83 3.10 ± 0.16 
m seg ± ( −8 ± 0 . 5) × 10 −3 −14.92 1.79 ± 0.09 
R e � (1 . 0105 ± 0 . 0009) 11.61 2.68 ± 0.12 
R e , seg � (1 . 0074 ± 0 . 0005) 14.39 1.01 ± 0.05 
n � (1 . 010 ± 0 . 001) 10.93 2.49 ± 0.10 
PA ± ( −4 ± 19) × 10 −3 deg −0.19 2.00 ± 0.10 
b/a � (0 . 9993 ± 0 . 0004) −2.07 2.51 ± 0.09 

One source of potential bias that we cannot test with the sim- 
ulations are galaxy features not accounted for in the models. If, 
for example, there is a large population of galaxies that have bars; 
and these bars lead to the bulge axial ratios being systematically 
underestimated, this is again a one-sided effect that could lead to 
an o v erall bias. In addition, such features could further increase the 
error underestimate because they will obviously tend to influence 
both fits to a galaxy in the o v erlap sample in the same way and hence 
are difficult to detect in the abo v e analysis. If there are systematic 
one-sided deviations of the true PSFs from Moffat functions, these 
could lead to one-sided systematically wrong PSF estimates which 
could in turn also introduce an additional bias that cannot be tested 
by the simulations which use Moffat model PSFs. 

6.4.4 Corrections for systematics and their validity 

Table 6 summarizes the results of the systematic error studies: for all 
single S ́ersic parameters (plus the segment magnitude and segment 
ef fecti ve radius), we give the average bias and error underestimates 
with errors. The bias is estimated from the median of the offset 
between fitted and true values in the simulation using the true PSFs 
(light orange numbers in the first column of Fig. 19 ). The errors on the 
median are taken as the 1 σ -quantiles of these distributions divided by 
the square-root of the number of data points ( ∼2000). Logarithmic 
parameters are converted back into linear space to simplify bias 
correction in the catalogue. None the less, scale parameters have 
multiplicative correction factors while location parameters have 
additive corrections (in given units). In other words: to correct for 
the bias, subtract the values in Table 6 from the catalogue values 
for position, magnitude, and position angle; and di vide by the gi ven 
values for effective radius, S ́ersic index, and axial ratio. Users should 
note, ho we ver, that due to the way these biases were estimated, they 
do not include all sources of potential bias (e.g. galaxy features such 
as bars and spiral arms; or systematically wrong PSFs). Also, we 
recommend to apply the bias correction only to statistically large and 
random samples; they are average values not applicable to individual 
galaxies as evident from Fig. 15 . 

The next column in Table 6 gives the significance of each bias, 
which is the deviation of the median from 0 (or 1 for scale parameters) 
divided by its error. It can be seen that position, position angle, and 
axial ratio are not biased (consistent with 0/1 within 2 σ ), while 

magnitude, ef fecti ve radius, and S ́ersic index are biased (deviation 
from 0/1 of > 5 σ ); as found and discussed before. 

Finally, the last column in Table 6 gives the error underestimates 
estimated from the width of the distribution of the normalized 
difference between fits to two versions of the same galaxy in the 
o v erlap sample (black numbers in the last column of Fig. 19 ). The 
errors in this case were estimated by bootstrapping the distributions 
1000 times each to get an estimate of the variation of the distribution 
width. Since these distributions were normalized (by the respective 
errors), there is no need to convert between linear and logarithmic 
space and the gi ven v alues can hence directly be used as correction 
factors for the MCMC errors. We have applied the rele v ant correction 
to all quoted errors in the catalogue, but also give the original (purely 
random) errors for completeness. Also note that since these values are 
now based on real data, they do include PSF uncertainties (in contrast 
to the biases). Also, since the o v erlap sample is in many ways the 
worst in terms of data quality (sitting at tile edges), these are likely 
upper limits. Ho we v er, the y still do not include error underestimates 
caused by (galaxy) features not accounted for in the models such as 
bars, rings, spiral arms or similar, as well as nearby objects. Since 
these are physical (rather than related to the data taking or image 
processing), they will be present in both versions of the overlap 
sample galaxy and influence both fits in similar ways – leading 
to a (random) bias on individual galaxy fits; and hence an error 
underestimate for a large enough sample. These issues should be 
kept in mind when using the catalogue. 

7  C O N C L U S I O N S  

In this work we presented our pipeline for the single S ́ersic fits and 
bulge-disc decompositions of 13 096 galaxies at redshifts z < 0.08 
in the GAMA II equatorial fields in the KiDS g , r , and i bands. 
The galaxy modelling is done using PROFIT , the Bayesian two- 
dimensional surface profile fitting code of Robotham et al. ( 2017 ), 
fitting three models to each galaxy: 

(i) a single S ́ersic component, 
(ii) a two-component model consisting of a S ́ersic bulge plus 

exponential disc and 
(iii) a two-component model consisting of a point source bulge 

plus exponential disc (for unresolved bulges). 

The preparatory work (image segmentation, background subtrac- 
tion and obtaining initial parameter guesses) is carried out using the 
sister package PROFOUND (Robotham et al. 2018 ); with the PSF 

estimated by fitting nearby stars using a combination of PROFOUND 

and PROFIT . Segmentation maps are defined on joint gri -images, 
while the remaining analysis is performed individually in each band 
except for the model selection, for which we offer both a per-band 
and a joint version. The analysis is fully automated and self-contained 
with no dependency on additional tools. 

In addition to the galaxy fitting, we perform a number of post- 
processing steps including flagging of bad fits and model selection. 
An o v erview of the number of galaxies successfully fitted in each 
band as well as the number classified in each category is given in 
Table 4 and Fig. 5 . For our planned applications of the catalogue, 
which involves the statistical study of dust attenuation effects, we 
need fits that are most directly comparable to each other. Hence, we 
choose to model a maximum of two components for each galaxy 
even if more features may be present; and focus on achieving good 
fits in the high signal-to-noise regions of the galaxies by choosing 
relatively small segments for fitting. Consequently, we recommend 
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using truncated magnitudes and ef fecti ve radii for all analyses instead 
of the S ́ersic values which are extrapolated to infinity by definition. 
The quality of the fits is tested and ensured by visual inspection, 
comparing to previous works (Kelvin et al. 2012 ; Lange et al. 2015 ), 
studying independent fits of galaxies in the o v erlap re gions of KiDS 

tiles and bespoke simulations. The latter two are also used for a 
detailed analysis of how systematic uncertainties affect our fits. 

We find that the combination of PROFOUND and PROFIT is well 
suited to the automated analysis of large data sets. The fully Bayesian 
MCMC treatment enabled by PROFIT is able to o v ercome the 
main shortcomings of traditionally engaged downhill-gradient based 
optimizers, namely their susceptibility to initial guesses and their 
inability to easily derive realistic error estimates. The watershed de- 
blending algorithm used by PROFOUND is less prone to catastrophic 
segmentation failures and allows us to extract more complex object 
shapes than other commonly used algorithms based on elliptical 
apertures; while still preserving the total flux well. With its wealth 
of utility functions, it not only facilitates the robust segmentation of 
large sets of images but also provides sky background estimates and 
reasonable initial guesses for the MCMC fitting. 

These characteristics, in combination with our own routines for 
quality assurance, led to results that are robust across a variety of 
galaxy types and image qualities and in reasonable agreement with 
previous studies given the different data, code, and focus of the 
analysis. The outlier rejection routine efficiently identifies objects for 
which none of our models is appropriate such as irregular galaxies 
or those compromised by masked areas. Model selection is based 
on a DIC cut and accurate to > 90 per cent compared to what could 
be achieved by visual inspection. There is a minimal bias in the 
fitted magnitude, ef fecti v e radius, and S ́ersic inde x of approximately 
0.01 mag, 1 per cent, and 1 per cent, respectively (on average across 
the full sample), caused by excess flux from nearby other objects. 
The errors obtained from the MCMC chains are underestimated with 
respect to the true errors by factors typically between 2 and 3 (see 
Table 6 ) and can easily be corrected for statistically large samples of 
galaxies. 

All results are integrated into the GAMA database as v04 of 
the BDDecomp DMU. This consists of a total of eight catalogues 
giving the results of the preparatory work, the 2D surface brightness 
distribution fits and the post-processing of all 13 096 galaxies in our 
full sample ( z < 0.08 in the GAMA II equatorial surv e y re gions) in 
the KiDS g , r , and i bands (see Section 4 for details). 

The full DMU is currently available to GAMA team members with 
a version restricted to SAMI galaxies available to the SAMI team. 
It will be made publicly available in one of the forthcoming GAMA 

data releases. Readers interested in using (parts of) the catalogue 
before it is publicly released are encouraged to contact the authors 
to explore the possibilities for a collaboration. 14 

We plan to extend this work to include the KiDS u and VIKING 

Z , Y , J , H , K s bands, ideally making use of PROFIT ’s new multiframe 
and multiband fitting functionality. The decompositions will then be 
used to derive the stellar mass functions of bulges and discs and 
constrain the nature and distribution of dust in galaxy discs. This is 
achieved by comparing the distribution of bulges and discs in the 
luminosity–size plane to the dust radiative transfer models of Tuffs 
and Popescu (and preceding papers of this series Popescu et al. 2011 ); 
essentially expanding the work of Driver et al. ( 2007a ) with more 
and better data and at several wavelengths. 

14 http://www .gama-survey .org/ collaborate/ 

AC K N OW L E D G E M E N T S  

GAMA is a joint European-Australasian project based around a 
spectroscopic campaign using the Anglo-Australian Telescope . The 
GAMA input catalogue is based on data taken from the Sloan 
Digital Sk y Surv e y and the UKIRT Infrared Deep Sk y Surv e y. 
Complementary imaging of the GAMA regions is being obtained 
by a number of independent surv e y programmes including GALEX 

MIS, VST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT, 
and ASKAP providing UV to radio coverage. GAMA was funded 
by the Science and Technology Facilities Council (STFC), the Aus- 
tralian Research Council (ARC), the Anglo-Australian Observatory 
(AAO), and the participating institutions. The GAMA website is 
http://www .gama-survey .org/. 

J. Liske acknowledges support by the Deutsche Forschungsge- 
meinschaft (DFG) under Germany’s Excellence Strategy – EXC 2121 
"Quantum Universe" – 390833306. 

Based on observations made with ESO Telescopes at the La 
Silla Paranal Observatory under programme IDs 177.A-3016, 177.A- 
3017, 177.A-3018, and 179.A-2004, and on data products produced 
by the KiDS consortium. The KiDS production team acknowledges 
support from: Deutsche Forschungsgemeinschaft (DFG), European 
Research Council (ERC), Netherlands Research School for Astron- 
omy (NOVA), and Dutch Research Council (NWO) M grants; Target; 
the University of Padova, and the University Federico II (Naples). 

DATA  AVAI LABI LI TY  

The data underlying this article are integrated into the GAMA 

database. For access options, see http://www .gama-survey .org/coll 
aborate/. 

REFERENCES  

Akaike H., 1974, IEEE Trans. Autom. Control, 19, 716 
Allen P. D., Driver S. P., Graham A. W., Cameron E., Liske J., de Propris R., 

2006, MNRAS , 371, 2 
Argyle J. J., M ́endez-Abreu J., Wild V., Mortlock D. J., 2018, MNRAS , 479, 

3076 
Baldry I. K. et al., 2010, MNRAS , 404, 86 
Baldry I. K. et al., 2012, MNRAS , 421, 621 
Baldry I. K. et al., 2014, MNRAS , 441, 2440 
Barden M. et al., 2005, ApJ , 635, 959 
Barsanti S. et al., 2021, ApJ , 911, 21 
Bellstedt S. et al., 2020, MNRAS , 496, 3235 
Benson A. J., D ̌zanovi ́c D., Frenk C. S., Sharples R., 2007, MNRAS , 379, 

841 
Bertin E., Arnouts S., 1996, A&AS , 117, 393 
Blanton M. R. et al., 2003, ApJ , 594, 186 
Blanton M. R., Eisenstein D., Hogg D. W., Schlegel D. J., Brinkmann J., 

2005, ApJ , 629, 143 
Bluck A. F. L. et al., 2019, MNRAS , 485, 666 
Bottrell C., Torrey P., Simard L., Ellison S. L., 2017, MNRAS , 467, 2879 
Bottrell C., Simard L., Mendel J. T., Ellison S. L., 2019, MNRAS , 486, 390 
Broyden C. G., 1970, J. Inst. Math. Appl. , 6, 76 
Bryant J. J. et al., 2015, MNRAS , 447, 2857 
Cluver M. E. et al., 2020, ApJ , 898, 20 
Cole S., Lacey C. G., Baugh C. M., Frenk C. S., 2000, MNRAS , 319, 168 
Cook M., Lapi A., Granato G. L., 2009, MNRAS , 397, 534 
Cook R. H. W., Cortese L., Catinella B., Robotham A., 2019, MNRAS , 490, 

4060 
Davies L. J. M. et al., 2018, MNRAS , 480, 768 
de Graaff A., 2022, MNRAS , 511, 2544 
de Jong J. T. A., Verdoes Kleijn G. A., Kuijken K. H., Valentijn E. A., 2013, 

Exp. Astron. , 35, 25 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/1/942/6671549 by U
niversity of Louisville user on 21 O

ctober 2022

http://www.gama-survey.org/collaborate/
http://www.gama-survey.org/
http://www.gama-survey.org/collaborate/
http://dx.doi.org/10.1111/j.1365-2966.2006.10586.x
http://dx.doi.org/10.1093/mnras/sty1691
http://dx.doi.org/10.1111/j.1365-2966.2010.16282.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20340.x
http://dx.doi.org/10.1093/mnras/stu727
http://dx.doi.org/10.1086/497679
http://dx.doi.org/10.3847/1538-4357/abe5ac
http://dx.doi.org/10.1093/mnras/staa1466
http://dx.doi.org/10.1111/j.1365-2966.2007.11923.x
http://dx.doi.org/10.1051/aas:1996164
http://dx.doi.org/10.1086/375528
http://dx.doi.org/10.1086/422897
http://dx.doi.org/10.1093/mnras/stz363
http://dx.doi.org/10.1093/mnras/stx276
http://dx.doi.org/10.1093/mnras/stz855
http://dx.doi.org/10.1093/imamat/6.1.76
http://dx.doi.org/10.1093/mnras/stu2635
http://dx.doi.org/10.3847/1538-4357/ab9cb8
http://dx.doi.org/10.1046/j.1365-8711.2000.03879.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14962.x
http://dx.doi.org/10.1093/mnras/stz2789
http://dx.doi.org/10.1093/mnras/sty1553
http://dx.doi.org/10.1093/mnras/stab3510
http://dx.doi.org/10.1007/s10686-012-9306-1


972 S. Casura et al. 

MNRAS 516, 942–974 (2022) 

de Jong J. T. A. et al., 2015, A&A , 582, A62 
de Souza R. E., Gadotti D. A., dos Anjos S., 2004, ApJS , 153, 411 
de Vaucouleurs G., 1948, Ann. d’Astrophysique, 11, 247 
Dimauro P. et al., 2018, MNRAS , 478, 5410 
Dimauro P. et al., 2019, MNRAS , 489, 4135 
Driver S. P., Popescu C. C., Tuffs R. J., Liske J., Graham A. W., Allen P. D., 

de Propris R., 2007a, MNRAS , 379, 1022 
Driver S. P., Allen P. D., Liske J., Graham A. W., 2007b, ApJ , 657, L85 
Driver S. P., Popescu C. C., Tuffs R. J., Graham A. W., Liske J., Baldry I., 

2008, ApJ , 678, L101 
Driver S. P. et al., 2009, Astron. Geophys. , 50, 5.12 
Driver S. P. et al., 2011, MNRAS , 413, 971 
Driver S. P., Robotham A. S. G., Bland-Hawthorn J., Brown M., Hopkins A., 

Liske J., Phillipps S., Wilkins S., 2013, MNRAS , 430, 2622 
Driver S. P. et al., 2016, MNRAS , 455, 3911 
Driver S. P. et al., 2022, MNRAS , 513, 439 
Dutton A. A. et al., 2011, MNRAS , 410, 1660 
Edge A., Sutherland W., K uijken K., Driv er S., McMahon R., Eales S., 

Emerson J. P., 2013, The Messenger, 154, 32 
Erwin P., 2015, ApJ , 799, 226 
Fern ́andez Lorenzo M. et al., 2014, ApJ , 788, L39 
Fletcher R., 1970, Comput. J. , 13, 317 
Gadotti D. A., 2009, MNRAS , 393, 1531 
Gao H., Ho L. C., 2017, ApJ , 845, 114 
Goldfarb D., 1970, Math. Comput. , 24, 23 
Graham A. W., 2013, in Oswalt T. D., Keel W. C., eds, Planets, Stars and 

Stellar Systems. Springer, Dordrecht, p. 91 
Graham A. W., Driver S. P., 2005, PASA , 22, 118 
H ̈aussler B. et al., 2007, ApJS , 172, 615 
H ̈außler B. et al., 2013, MNRAS , 430, 330 
H ̈außler B. et al., 2022, A&A , 664, A92 
Head J. T. C. G., Lucey J. R., Hudson M. J., Smith R. J., 2014, MNRAS , 440, 

1690 
Hilbe J. M., de Souza R. S., Ishida E. E. O., 2017, Bayesian Models for 

Astrophysical Data: Using R, JAGS, Python, and Stan. Cambridge Univ. 
Press, Cambridge 

Hopkins A. M. et al., 2013, MNRAS , 430, 2047 
Hyde J. B., Bernardi M., 2009, MNRAS , 394, 1978 
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APPENDI X  A :  PSF  ESTIMATION  DETA I LS  

The selection of star candidates for PSF estimation proceeds in three 
steps. 

From the segmentation statistics returned by PR OFOUNDPR O- 
FOUND , we select relatively round and isolated objects as follows: 

(i) objects that do not touch other se gments, masked re gions or 
image edges (edge fraction = 1) 

(ii) objects with a regular boundary geometry (edge excess < 1) 
(iii) objects with an axial ratio (minor/major axis) larger than 0.5 
(iv) objects which were not flagged as possibly spurious 

Of these relatively round and isolated objects, a given fraction 
(depending on the depth of the image and source extraction, 4 per cent 
for the gri stacks and a SKYCUT value of 2) are identified as star 
candidates via a joint cut in R50 (semi-major axis containing half 
the flux) and the concentration ( R50/R90 , where R90 is the semi- 
major axis containing 90 per cent of the total flux). This selection 
is based on the notion that we would expect stars to be small (i.e. 
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low R50 ) and highly concentrated (i.e. low R50/R90 ) and was 
calibrated empirically. 

Around each of these star candidates, a smaller cutout is taken and 
a subsample selected: 

(i) objects brighter than the 5 σ point source detection limit and 
fainter than the saturation limit (both taken from the headers of the 
corresponding KiDS tile) 

(ii) objects where less than 10 per cent of pixels in the cutout 
belong to other segments 

(iii) objects where the star cutout does not o v erlap with the edge 
of the large cutout 

(iv) objects with a positive sum of the cutout (excluding poorly 
background-subtracted and/or purely noise-dominated objects) 

In the next step, the star candidate cutouts are normalized to 
a magnitude of 0, masked appropriately and fitted with a Moffat 
function using PROFIT (see fitting details in Section 3.1.5 ). 

After fitting, suitable stars for PSF estimation are determined as 
follows: 

(i) The fitted centre in x and y must be within ± 1 pixel of the 
centre of the cutout (fixed since the cutout was centred on the star) 

(ii) The fitted magnitude must be within ± 0.1 mag of 0 (fixed 
since the cutout was normalized to a magnitude of zero according 
to the segmentation statistics, so any deviation indicates a difference 
between the magnitudes estimated by PROFOUND and PROFIT , which 
likely points to bad segmentation, additional objects in the segment, 
or a bad model fit) 

(iii) The reduced chi-square ( χ2 
ν ) of the fit must be smaller than 3 

(calibrated by inspection to exclude visually bad fits) 
(iv) FWHM, concentration index, angle, and axial ratio must not 

be equal to the fit limits (except for the axial ratio, which is allowed 
to be exactly 1 although this is the upper limit of the fit). 

(v) Outliers in any of FWHM, concentration index, angle, axial ra- 
tio or background are rejected via an iterative 2 σ clip (in logarithmic 
space where appropriate). 

The stars fulfilling these criteria are classified as suitable, from 

which the selection is made: 

(i) The closest two from each quadrant (eight in total) are selected 
to make sure they are roughly evenly distributed around the galaxy. 

(ii) If one or more quadrant contains less than two stars, the closest 
stars from any other quadrant (which are not already used) are taken 
instead to give eight stars in total. 

(iii) If there are less than eight stars in total, all of them are used. 
(iv) If there are no stars classified as suitable, the object is flagged 

as having a failed PSF and consequently skipped during the galaxy 
fitting. 

The stars selected in this way are then used to create the model 
PSF as described in Section 3.1.5 . 

APPENDIX  B:  M O D E L  SELECTION  A  C C U R A  C Y  

Tables B1 , B2 , and B3 show the confusion matrices for the model 
selection in the g and i bands and the joint model selection. The 
confusion matrix for the r band is already shown in Table 3 . 

In addition to this band-specific model selection, we perform a 
joint model selection for all three bands. For this, we sum the DIC 

values of all three bands for each model before computing the DIC 

differences. Then we perform the same optimization procedure as 
for the single bands (using all ∼2000 visually classified objects 
across the three bands) to obtain cuts in DIC difference which we 

Table B1. The confusion matrix for our model selection based on a DIC 

difference cut compared against visual inspection for the g band. All values 
are in per cent of the total number of visually inspected g -band galaxies. Bold 
font highlights galaxies classified correctly, while grey shows those that were 
ignored during the calibration. 

Number of components 
Visual classification 1 1.5 2 

‘single’ 48 .9 0.4 1.0 
‘1.5’ 2 .1 3.7 0.6 
‘double’ 1 .8 0.1 6.0 
‘1.5 or double’ 0 .4 1.5 1.9 
‘unsure’ 19 .5 0.9 7.3 
‘unfittable’ 1 .3 0.3 2.1 

Table B2. The confusion matrix for our model selection based on a DIC 

difference cut compared against visual inspection for the i band. All values 
are in per cent of the total number of visually inspected i -band galaxies. Bold 
font highlights galaxies classified correctly, while grey shows those that were 
ignored during the calibration. 

Number of components 
Visual classification 1 1.5 2 

‘single’ 51 .8 0 .4 1 .5 
‘1.5’ 1 .9 3 .0 1 .5 
‘double’ 0 .7 0 8 .9 
‘1.5 or double’ 0 1 .0 1 .9 
‘unsure’ 10 .0 0 .7 12 .4 
‘unfittable’ 1 .2 0 .3 2 .2 

Table B3. The confusion matrix for our model selection based on a 
DIC difference cut compared against visual inspection for the joint model 
selection. All values are in per cent of the total number of visually inspected 
g , r and i band galaxies. Bold font highlights galaxies classified correctly, 
while grey shows those that were ignored during the calibration. 

Number of components 
Visual classification 1 1.5 2 

‘single’ 47 .4 0.5 1 .5 
‘1.5’ 2 .2 2.4 1 .4 
‘double’ 2 .2 0.4 7 .3 
‘1.5 or double’ 0 .3 1.1 2 .1 
‘unsure’ 15 .0 0.7 11 .1 
‘unfittable’ 1 .0 0.4 2 .4 

subsequently apply for the model selection. Note that the model 
selected in this way is by necessity a compromise between the 
different bands, which have different depth and seeing. In this 
procedure, approximately 9 per cent of fits are classified wrongly 
across all bands compared to visual classification. The corresponding 
confusion matrix is shown in Table B3 . 

APPENDI X  C :  FIT  EXAMPLES  

Figs C1 , C2 , and C3 show examples of galaxies classified as single 
S ́ersic, 1.5-component fit, and outlier ( NCOMP = 1, 1.5, and −2), 
respectiv ely. An e xample double component fit ( NCOMP = 2) is 
already shown in Fig. 3 . In addition, Fig. C4 shows an example 
of a very high B/T object where the bulge dominates both the centre 
and the wings of the object (see Section 4.5.2 ). 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/1/942/6671549 by U
niversity of Louisville user on 21 O

ctober 2022



974 S. Casura et al. 

MNRAS 516, 942–974 (2022) 

Figure C1. The single S ́ersic fit to galaxy 342 160, classified as single 
component object ( NCOMP = 1) in the KiDS r band. Panels are the same 
as the top two rows in Fig. 3 . 

Figure C2. The 1.5-component fit to galaxy 517190, classified as 1.5- 
component object ( NCOMP = 1.5) in the KiDS r band. Panels are the same as 
those in Fig. 3 . 

Figure C3. The double component fit to galaxy 278 760, classified as 
outlier ( NCOMP = −2) in the KiDS r band. Panels are the same as those in 

Fig. 3 . 

Figure C4. The double component fit to galaxy 549 706, classified as double 
component object but with a very high B/T ratio of 0.71 in the KiDS r band. 
Panels are the same as those in Fig. 3 . 
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