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A B S T R A C T 

We have studied the galaxy-group cross-correlations in redshift space for the Galaxy And Mass Assembly (GAMA) Survey. We 
use a set of mock GAMA galaxy and group catalogues to develop and test a novel ‘halo streaming’ model for redshift-space 
distortions. This treats 2-halo correlations via the streaming model, plus an empirical 1-halo term derived from the mocks, 
allowing accurate modelling into the non-linear regime. In order to probe the robustness of the growth rate inferred from 

redshift-space distortions, we divide galaxies by colour, and divide groups according to their total stellar mass, calibrated to 

total mass via gravitational lensing. We fit our model to correlation data, to obtain estimates of the perturbation growth rate, f σ 8 , 
validating parameter errors via the dispersion between different mock realizations. In both mocks and real data, we demonstrate 
that the results are closely consistent between different subsets of the group and galaxy populations, considering the use of 
correlation data down to some minimum projected radius, r min . For the mock data, we can use the halo streaming model to below 

r min = 5 h 

−1 Mpc , finding that all subsets yield growth rates within about 3 per cent of each other, and consistent with the true 
value. For the actual GAMA data, the results are limited by cosmic variance: f σ 8 = 0.29 ± 0.10 at an ef fecti ve redshift of 0.20; 
but there is every reason to expect that this method will yield precise constraints from larger data sets of the same type, such as 
the Dark Energy Spectroscopic Instrument (DESI) bright galaxy surv e y. 

Key words: gravitation – galaxies: groups: general – large-scale structure of Universe. 

1  I N T RO D U C T I O N  

The large-scale structure in the galaxy distribution has a long history 
of providing cosmological information. The first constituents of the 
inhomogeneous galaxy density field to be identified were the rich 
clusters, which today we see as marking the sites of exceptionally 
massive haloes of dark matter. Proceeding down the halo mass 
spectrum, we find progressively less rich groups of galaxies, leading 
to systems dominated by a single L ∗ galaxy, such as the Local Group 
(e.g. Wechsler & Tinker 2018 ). All these systems have been familiar 
constituents of the Universe since the first telescopic explorations 
of the sky, but it took rather longer to appreciate that they were 
connected as part of the cosmic web of voids & filaments (see 
e.g. Peacock 2016 , for some selective history). In part, the history 
here showed a complex interaction of theory and observation, since 
redshift surv e ys through the 1980s lacked the depth and sampling 
to reveal the cosmic web with complete clarity. For a period, it was 
therefore a question of asking whether the real Universe displayed 

� E-mail: e.hang@ucl.ac.uk 

the same structures that were predicted in numerical simulations of 
structure formation in the Cold Dark Matter model (Bond, Kofman & 

Pogosyan 1996 ). But since those times, there has been an increasing 
confidence that galaxy groups are indeed particularly extreme non- 
linear points in the general field of cosmic density fluctuations, and 
this makes them interesting in two ways. First of all, groups are 
readily identified in galaxy surv e ys, pro viding a relativ ely robust 
data set (Eke et al. 2004 ; Robotham et al. 2011 ). Secondly, their non- 
linear nature makes them an informative probe of theory. Modelling 
non-linear behaviour is by its nature challenging compared to linear 
theory, but by studying structure formation further into the non-linear 
re gime, we hav e the chance to test the robustness of our cosmological 
conclusions. 

Our specific aim in this direction is to use galaxy groups as a 
probe of the cosmological peculiar velocity field. Such deviations 
from uniform expansion must exist through continuity, and density 
concentrations such as groups should be associated with an average 
infall velocity in regions surrounding the groups. The amplitude 
of these velocities depends in part on the strength of gravity 
on cosmological scales, and the peculiar velocity field has thus 
increasingly been seen as a means of probing the nature of gravity 

© 2022 The Author(s) 
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and testing alternative theories (e.g. Jain & Khoury 2010 ). Although, 
it is possible to probe peculiar velocities directly using absolute 
distance indicators (Davis et al. 2011 ), the most powerful tool has 
been Redshift Space Distortions (RSD). These arise inevitably in 
the study of the 3D galaxy distribution because the distances to 
galaxies observed on the sky are inferred from their redshifts, z, via 
the standard relation 

d( z) = 

∫ z 

0 

c d z ′ 

H ( z ′ ) 
, (1) 

where c is the speed of light and H ( z) = ȧ /a is the Hubble parameter. 
But this equation does not give the true distances, because Doppler 
shifts from the peculiar velocities modify the observed redshift: 1 + z 

→ (1 + z)(1 + v r / c ), where v r is the radial component of the peculiar 
velocity. If we then use the observed redshift as if it were a true 
indicator of distance, we obtain a distribution of galaxies in ‘redshift 
space’ – in which the apparent properties of galaxy clustering are 
distorted in an anisotropic way. 

These distortions have characteristics that depends on scale: 
outside large density concentrations, galaxies fall coherently together 
under gravity; while the orbital velocities inside dark matter haloes 
are ef fecti vely randomized. The latter ef fect convolves the redshift- 
space density field in the radial direction, leading to the characteristic 
radial elongations of high-density regions known as ‘Fingers of God’ 
(FoG). RSD due to coherent flows in the linear regime were first 
studied by Kaiser ( 1987 ). The growth factor f is defined by 

f ≡ ∂ ln δ

∂ ln a 
� �m 

( z) 0 . 55 , (2) 

where δ is the matter o v erdensity, a is the expansion factor, and �m 

is the matter fraction; the approximation for f ( �m 

) only applies for 
flat � CDM models in standard gravity (Lahav et al. 1991 ; Wang & 

Steinhardt 1998 ; Linder 2005 ). In Fourier space, and in the small- 
angle limit of a distant observer, the matter power spectra in redshift 
space and in real space are related by 

P 

s 
m 

( k, μ) = P 

r 
m 

( k) (1 + f μ2 ) 2 , (3) 

where μ is the cosine of the angle between the wav e-v ector k and 
the line of sight. This simple equation was highly influential from its 
first appearance (Kaiser 1987 ), as it offered the chance of measuring 
�m 

from measuring the RSD anisotropy. But eventually goals shifted 
as �m 

became very well determined from other routes (especially 
the Cosmic Microwave Background). Following Guzzo et al. ( 2008 ), 
the modern view is therefore to emphasize that the growth rate for a 
given density is also proportional to the strength of gravity, so that 
RSD can be used as a test of theories of gravity. 

The RSD signal has been measured by a number of surv e ys, 
including the 2dFGRS at z � 0.2 (Peacock et al. 2001 ; Hawkins 
et al. 2003 ); the 6dFGS at z � 0.1 (Beutler et al. 2012 ); the SDSS 
BOSS & eBOSS surv e ys at z � 0.6 (Reid et al. 2012 ; Alam et al. 
2017 , 2021a ); and at z � 1 by the 8 m VVDS and VIPERS surv e ys 
(Guzzo et al. 2008 ; Pezzotta et al. 2017 ). For the GAMA survey at z � 

0.4, aspects of RSD were studied by Blake et al. ( 2013 ) and Lo v eday 
et al. ( 2018 ), who measured the pair-wise velocity dispersion to small 
scales and as a function of luminosity. The abo v e studies all focused 
on galaxy autocorrelations. 

The challenge in modelling RSD is that truly linear modes are 
rare. In observation, large scales are affected by cosmic variance due 
to the finite surv e y volume. McDonald & Seljak ( 2009 ) proposed 
the use of multiple tracers in order to o v ercome cosmic variance, 
although in practice the impro v ement is slight (Blake et al. 2013 ). 
To gain more information, one needs to probe smaller scales, where 

the effect of non-linearity can systematically bias the results (de la 
Torre & Guzzo 2012 ). 

One possible solution to this dilemma is to use galaxy groups to 
probe the velocity field. Due to the small random virial velocity of 
the central galaxy at the group centre, the coherent large-scale infall 
velocities of groups are dominant down to intermediate and small 
scales. The group autocorrelation would thus have reduced FoG, 
aiding the extraction of the linear growth rate (Padilla et al. 2001 ; 
Mohammad et al. 2016 ). In practice, the group catalogue in GAMA 

is sparse, with a number density of 4 . 3 × 10 −3 h 

3 Mpc −3 between 0.1 
< z < 0.3, and measurements of the autocorrelation will have high 
statistical noise. The cross-correlation between groups and galaxies is 
thus an intermediate route, which ef fecti v ely impro v es the statistical 
power while still reducing the non-linear pairwise velocities at small 
scales. The clustering of GAMA groups has been recently studied 
in Riggs et al. ( 2021 ), and this work extends this study to further 
subsets of the data, concentrating in more detail on their different 
RSD signals. 

Our aim here is thus to test the robustness of RSD methods down to 
small or intermediate scales using multiple tracers involving galaxy 
groups. By cross-correlating galaxies of different colours, and groups 
in different mass bins, we examine the consistency of the inferred 
cosmological results between the subsamples. In order to pursue this 
inv estigation, we dev elop a new model for RSD in cross-correlation, 
involving a combination of the halo model and the streaming 
model, which we implement by including some information taken 
from mock data. Throughout the analysis, we adopt the WMAP7 
Cosmology (Komatsu et al. 2011 ) with σ 8 = 0.81, �m 

= 0.27, h = 

0.70, and n s = 0.967, consistent with the mock catalogue. 
The GAMA data set and its mocks are detailed in Section 2 

followed by Section 3.1 where we introduce the statistics for 
measuring the 2-point function in the data. In Section 3.2 , we 
present the resulting 2D correlation function measurements for sub- 
samples, In Section 4 , we discuss the theoretical modelling of RSD 

in galaxy-group cross-correlations, and in Section 5 we confront 
this modelling with real and mock GAMA data. The models are 
validated in Section 5.1 via detailed comparison with the GAMA 

mocks, where we establish the scales to which the different theories 
can work without bias; we present the fitting of the real GAMA 

data in Section 5.2 . Finally, we summarize the work in Section 6 . We 
include our Appendices A - E in the online Supplementary materials. 

2  G A M A  DATA  A N D  M O C K S  

This analysis is based on the Galaxy And Mass Assembly (GAMA) 
spectroscopic surv e y. This w as conducted using the 2dF f acility at the 
Anglo-Australian 4-m telescope o v er 210 nights between 2008 and 
2014, accumulating spectra of 265 958 distinct galaxies. Together 
with existing data, this yielded a catalogue of 330 542 redshifts o v er 
fiv e surv e y fields totalling 250 deg 2 , with a mean redshift of z � 0.2 
(Driver et al. 2022 ). The three main fields near the equator, G09, 
G12, and G15 are used here, each co v ering an area of 12 × 5 deg 2 . 
The surv e y has an e xtinction-corrected r -band flux limit of r < 19.8, 
based on SDSS photometry. 

The o v erall redshift completeness of the GAMA equatorial region 
is 98.5 per cent: this high completeness was achieved by a large 
number of repeated visits to 2dF fields co v ering the surv e y area in 
different ways. This property is greatly advantageous for small-scale 
galaxy and group studies compared to much larger surv e ys such as 
BOSS, where fibre collisions can lead to substantial undercounting 
of close galaxy pairs and thus bias the measured galaxy 2-point 
correlation function (Guo, Zehavi & Zheng 2012 ). 
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The present analysis uses the DR3 data release (Baldry et al. 2018 ), 
which differs slightly from the final data release, DR4 (Driver et al. 
2022 ). DR4 implements revised flux completeness limits through 
the use of new KiDS photometry. The original SDSS limit of r < 

19.8 was trimmed in DR4 to r < 19.58 for 98 per cent completeness 
in the equatorial fields. Galaxies for the present study are selected 
from the SpecObjv27 DMU (Data Management Unit), with CMB 

frame redshifts adopted from DistancesFramesv14 . We apply 
the following criteria: redshift quality nQ ≥3, angular completeness 
mask > 80 per cent , and visual classification VIS CLASS = 0, 1, 
255. 1 The spectroscopic redshifts are computed by the code runz 
(Driver et al. 2011 ), which has a 1 σ redshift error of 50 km s −1 in 
terms of peculiar velocity (Liske et al. 2015 ). In order to compute 
correlation statistics, it is essential to accompany the galaxy sample 
with a knowledge of the surv e y selection in angle and redshift. 
As usual, this information is captured by a random catalogue 
Randomsv02 of fictitious unclustred galaxies; this catalogue was 
generated by Farrow et al. ( 2015 ) from the actual GAMA galaxy 
catalogue using a modified method following Cole ( 2011 ). The idea 
of this method is to clone each galaxy n times and distribute them 

randomly within the maximum volume V max that the galaxy can be 
observ ed giv en the surv e y magnitude limits 

n = n clones 
V max 

V max , dc 
, (4) 

where n clones = 400 is the total number of randoms divided by 
data, and V max, dc is the maximum volume weighted by o v erdensity 
� ( z). This method is iterated until � ( z) converges, and the redshift 
distribution of the resultant random catalogue is smooth without 
large-scale features (see fig. 4 in Farrow et al. 2015 ). 

The official GAMA group catalogue (G3C) was constructed by 
Robotham et al. ( 2011 ). Most of the groups are found within z � 

0.35 (see fig. 16 in Robotham et al. 2011 ): thus we impose a redshift 
cut 0.1 < z < 0.3 for the groups. The group catalogue is derived using 
an anisotropic friends-of-friends (FoF) algorithm calibrated against 
an N -body mock catalogue. Ho we ver, in order to have consistently 
defined groups in the GAMA mocks (see Section 2.3 ), we do not 
use the official G3C catalogue. Instead, we apply a similar FoF 

group finder algorithm due to Treyer et al. ( 2018 ) to both data and 
mocks (see Kraljic et al. 2018 for an application to GAMA). The 
main difference between the two algorithms is the parametrization 
of the linking length, and a detailed description of the algorithm and 
assessment of the group reconstruction quality can be found in the 
appendix of Treyer et al. ( 2018 ). 

In addition to the abo v e selections, we further split galaxies and 
groups into subsamples based on galaxy colour and group mass. The 
number of selected galaxies and groups in each GAMA field and for 
each subsample is summarized in Table 1 . We describe the selection 
in more detail below. 

2.1 GAMA galaxy colour selection 

Galaxies are divided into two populations that are known to have 
distinct clustering properties: the ‘red’ galaxies, which tend to be 
older, with little or no active star formation, and the ‘blue’ cloud, 
where galaxies are younger with active star formation. To obtain the 
galaxy colours, we use the extinction corrected SDSS magnitudes 

1 VIS CLASS = 0: Not visually inspected but suspicious based on SDSS flags; 
VIS CLASS = 1: Visually inspected and a valid target; VIS CLASS = 255: 
Not visually inspected but should be OK based on SDSS flags. 

Table 1. Number of selected galaxies and groups from GAMA fields with 
redshifts 0.1 < z < 0.3 and flux limit r < 19.8. Galaxies are split into two 
colour classes, red and blue, by equation ( 5 ). Groups are split into three stellar 
mass bins: 40 per cent (LM), 50 per cent (MM), and 10 per cent (HM) by mass 
ranking from low to high, co v ering the mass range log 10 ( M ∗/h −2 M �) = 

9 . 5 –12 . 5. 

Number of G09 G12 G15 

Galaxies Blue 17 335 18 719 19 053 
Red 20 584 22 155 21 141 
Total 37 919 40 874 40 194 

Groups LM 1877 2084 2054 
MM 2347 2606 2569 
HM 470 522 514 
Total 4694 5212 5137 

G3C Total 4937 5367 5358 

Figure 1. Distribution of the g − i colour of galaxies in the redshift range 
0.1 < z < 0.3, for the real GAMA data (upper panel) and the average of 25 
mocks combined (lower panel). Red and blue populations are separated by 
the dashed cyan lines. The cut in GAMA is chosen such that both GAMA and 
mocks have similar red and blue fractions at any given redshift. The dotted 
lines show the cut for an alternative ‘contaminated’ red sample (see text). 

from the TilingCatv46 DMU. It is, ho we ver, non-tri vial to 
separate the galaxy population into these subsets, because the colour 
distribution is continuous without gaps: elaborate approaches have 
been discussed in e.g. Taylor et al. ( 2015 ). For the purpose of this 
study, we adopt a simple quadratic cut in the apparent g − i colour 
versus redshift plane: 

g − i = 6 . 220 z 2 + 1 . 383 z + 0 . 831 . (5) 

A cut of this form is moti v ated empirically by the apparent bimodality 
in the colour–redshift plane, as shown in Fig. 1 . The precise location 
of the cut was adjusted in order to match the red and blue fraction 
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at each redshift in the GAMA data with the corresponding result in 
the mocks (which are discussed below in Section 2.3 ). The o v erall 
fraction of red or blue galaxies is very close to 0.5, and it changes 
only slightly with redshift: at the low redshift end, the red and blue 
fractions are similar, while towards higher redshifts, the fraction of 
red galaxies increases mildly until z ∼ 0.2, and the difference in 
the red and blue fraction then becomes small at z ∼ 0.3. We create 
random catalogues for the red and blue galaxy subsamples where 
required by applying this smoothly varying colour balance to the 
redshift distribution of the main random catalogue. 

2.2 GAMA group mass selection 

Groups are accepted with ≥2 group members, and the centre of the 
group is determined by the most (more) massive member in terms 
of stellar mass. The 2-member systems make up 66 per cent of the 
total groups in the GAMA data, but are likely to have poor fidelity. 
Thus, we emphasize that having the same group finder algorithm for 
the data and mocks is vital in order for these low-fidelity groups 
to be comparable. There are several approaches for determining 
the group centre. The simplest choice is to select the most massive 
member to be the central galaxy, and assume that it o v erlaps with 
the halo centre. Other approaches include determining a weighted 
centre by averaging over the positions of the group members, or 
iterativ ely e xcluding members that are most distantly separated (see 
e.g. Robotham et al. 2011 ). The iterative centres are used in the 
G3C catalogue, and it is shown in Robotham et al. ( 2011 ) that the 
agreement with using the brightest group galaxy (BCG) as group 
centre is 95 per cent for groups with N ≥ 5, and that both BCG 

and iterative centres give highly consistent results for 2 ≤ N ≤
4 compared with the mock, and that the BCG centres are only 
degraded by about 3 per cent compared to the iterative centres. The 
ef fects of dif ferent group centre choices on the group-galaxy cross- 
correlation concern mainly the 1-halo regime at r ≤ 1 h 

−1 Mpc , and 
the correlation functions converge on larger scales (Yang et al. 2005 ). 

The halo mass of GAMA groups was found to be tightly correlated 
with the group total luminosity (Han et al. 2015 ; Viola et al. 2015 ; 
Rana et al. 2022 ), based on using stacked weak lensing measurements 
to determine the mass distribution of the GAMA groups. The halo 
mass of groups is related to the r -band luminosity L grp via 

M h = M p 

(
L grp 

L 0 

)α

, (6) 

where L 0 = 2 × 10 11 h 

−2 L �, log 10 ( M p /h 

−1 M �) = 13 . 48 –0 . 08 ±
0 . 12, and α = 1.08 + 0.01 ± 0.22 (Han et al. 2015 ). The group 
halo mass can be used to compute the expected mean group bias, 
as shown in Section 5.3 , where we also consider alternative mass 
calibrations. It should be noted that in these works, only groups with 
three members or abo v e are used. Robotham et al. ( 2011 ) showed 
that the mass function is noisier, but not biased when including 
two-member groups. Although these systems are individually of low 

reliability, this aspect should be allowed for by the mock catalogue, 
allowing us to gain the statistical advantage of using a larger sample. 
The luminosity is computed from the apparent r -band magnitude: 

− 2 . 5 log ( L/L �) = m − K( z) − 5 log (d L ) − 25 − M �, (7) 

where K ( z) the k -correction up to z = 0 ( kcorr z00 ), d L is the 
luminosity distance, and M � = 4.67 is the r -band absolute magnitude 
of the sun. The luminosity distance is expressed with unit h 

−1 Mpc 
so that the luminosity has units of h −2 L �. 

The total luminosity of the group is computed in Robotham et al. 
( 2011 ) via 

L FoF = BL ob 

∫ −14 
−30 10 −0 . 4 M r φGAMA ( M r ) d M r ∫ M r−lim 

−30 10 −0 . 4 M r φGAMA ( M r ) d M r 

, (8) 

where L ob is the total observed luminosity in the r AB band, B = 1.04 
is the correction for median unbiased estimate for N ≥ 5 groups, and 
M r − lim 

is the absolute magnitude limit of the group depending on 
the redshift z. φGAMA is the luminosity function defined in Robotham 

et al. ( 2011 ). The luminosity function at the faint end for GAMA 

galaxies is well approximated by φ∝ L 

−1 exp ( − L / L ∗) (Loveday et al. 
2012 ). Thus in practice we take the simpler approach of estimating 
a total group luminosity by scaling the observed luminosity by 
a redshift-dependent correction factor exp ( z 2 /z 2 ∗) with z ∗ = 0.33, 
where z is the mean redshift of the group members. This correction 
factor has been checked using the G3C groups to produce a total 
luminosity consistent with the official TotFluxProxy . 

The total stellar mass is another proxy for the total group mass. 
We take the StellarMassesv19 DMU from Taylor et al. ( 2011 ), 
where stellar population synthesis is used to model the optical 
photometry of the GAMA galaxies. Because the modelling uses 
rest frame luminosities, which depends on distance, the stellar mass 
is expressed in units of h −2 M �. 2 Furthermore, for each group, we 
correct the total stellar mass by the same redshift dependent factor 
as the total luminosity. Notice that we do not apply the fluxscale 
correction here, which accounts for the missing flux from matched 
aperture photometry, because our results do not rely on the absolute 
stellar mass of the groups. This correction therefore does not affect 
our primary aim of splitting the groups into a few bins based on their 
ranking in mass. 

The calibration of the total stellar mass and the halo mass from 

weak lensing of the GAMA groups is shown in Fig. 2 for the official 
G3C groups from the G3CFoFGroupv09 DMU (dashed line) and 
the group catalogue used in this work (solid line). The contours show 

95, 50, and 20 per cent of the total sample, and are highly consistent 
between the two group catalogues. We choose to divide groups into 
three stellar mass bins based on percentiles: the low mass (LM) bin 
consists of the least massive 40 per cent groups, the medium mass 
(MM) bin corresponds to the middle 50 per cent, and the high mass 
(HM) bin contains the most massive 10 per cent. The signal-to-noise 
of high mass haloes is expected to be high, despite the low number 
in the HM bin. 

2.3 Mocks 

We include mock catalogues for two reasons: (1) to validate the 
RSD models and assess the bias on the reco v ered growth rate, and 
(2) to quantify the impact of cosmic variance via the construction 
of covariance matrices. We used 25 realizations of a light-cone 
mock catalogue based on the GALFORM semi-analytical galaxy 
formation (Gonzalez-Perez et al. 2014 ). The catalogue exploits 
the Millennium Simulation (Boylan-Kolchin et al. 2009 ) with the 
WMAP7 cosmology. These mocks can be obtained from the Durham 

hosted Virgo-Millennium Database1 3 (Lemson & Virgo Consortium 

2 Notice that this is only approximately true, because the stellar mass to light 
ratio, M / L , which is used to obtain the stellar mass, depends on age and is 
therefore specific to the choice of h . The stellar mass used here assumes h = 

0.72. 
3 http:// virgodb.dur.ac.uk:8080/MyMillennium/ Help?page=databases/ gama 
v1/lc multi gonzalez2014a 
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Figure 2. Upper panel: Correlation between the stellar mass, corrected to 
total by a factor exp ( z 2 /z 2 ∗) and the halo mass estimate derived from the 
total group luminosity mass proxy, together with a lensing-based absolute 
calibration from Han et al. ( 2015 ), for the GAMA groups with two or more 
members between redshifts 0.1 < z < 0.3. The contours denote 95, 50, and 
20 per cent of the total sample. The solid lines show the groups used in this 
work using the group finder algorithm in Treyer et al. ( 2018 ), and the dashed 
lines show the official G3C groups (Robotham et al. 2011 ). Lower panel: 
The same relation for the mock catalogue. In this case, M h is not estimated 
from the luminosity, but directly taken as the arithmetic mean host halo mass 
of the group member. The difference in the distributions indicates that the 
stellar populations in the mock data are not entirely realistic, but it also warns 
us that the exact values of halo mass corresponding to the different GAMA 

group subsets must be treated empirically, and should not be treated as being 
known precisely. 

2006 ). For more details regarding the mock catalogue, see Farrow 

et al. ( 2015 ). By equation ( 2 ), the fiducial value of growth rate 
at the mean redshift of the mocks, z = 0.195, is f fid = 0.593. 
The light-cone is constructed using the methods in Merson et al. 
( 2013 ), where, given an observer, the galaxy is placed at the epoch 
where it first enters the past light-cone of the observer. The galaxy 
trajectories are interpolated between snapshots. Each mock co v ers 
the five GAMA fields with the SDSS r -band apparent magnitude 
SDSS r obs app < 21 , and z < 0.9. 

We use galaxies in the G09, G12, and G15 fields and apply the 
same selection in redshifts 0.1 < z < 0.3 and the apparent r -band 
magnitude cut SDSS r obs app < 19 . 8. We also apply the same 
surv e y mask generated using the random catalogue. The masked 
areas are obtained by binning random galaxies in each field with an 
average of ∼2000 counts in each bin. Pixels with counts smaller than 
five times the Poisson noise are masked. The total masked area in the 
three fields is about 0 . 14 deg 2 . Because the mock redshift distribution 
is not matched exactly with GAMA data and random (see Fig. 3 ), 
we create a random catalogue for these mocks by down-sampling the 

Figure 3. The mean redshift distribution of the 25 GAMA mocks (square) 
is offset from that of the random sample (dotted line). A random catalogue 
is created for the mocks to have matched redshift distribution as the mock 
mean. The redshift distribution of the GAMA galaxy sample is also shown 
(histogram) for comparison. 

random catalogue for the GAMA data, such that the n ( z) matches 
the mean of 25 mocks. 

The red and blue subsamples for the mean of the mocks are 
separated by the empirical line given by 

g − i = 0 . 46 + 3 . 2 z, (9) 

as shown in the lower panel of Fig. 1 . The line is chosen to go through 
the green valley of the mock galaxy g − i colour. The GAMA galaxies 
have a more concentrated red sequence overlapping with an extended 
blue population, without a distinct green valley in between. On the 
contrary, the mocks have a broader red population which is well 
separated from the blue population by a green valley. Since the mock 
catalogues have more distinctive separation for the two populations, 
we find the corresponding colour cut in the GAMA data by matching 
red and blue fractions in the two catalogues for 20 redshift bins in 0.1 
< z < 0.3. The cut is smoothed by fitting a second-order polynomial, 
as shown in the upper panel of Fig. 1 . 

The contamination of the red and blue sub-samples in the GAMA 

data resulting from the colour cut is quantified in the following 
way: for each redshift bin, the red and blue sub-samples are fitted 
by a double Gaussian. It is a reasonable fit except for the green 
valley in the mocks, as shown in Fig. 4 . Given a colour cut, the 
contamination of the red sub-sample is defined as the area under the 
blue Gaussian o v er the area under the red Gaussian, and similarly 
for the contamination of the blue sub-sample. Clearly, GAMA data 
contain a contaminated red sample and a pure blue sample. Therefore, 
we create a contaminated red sub-sample using the mock catalogues 
by placing the mock colour cut such that extra blue galaxies are 
included with the same level of contamination as GAMA data. The 
contaminated red cut in the mocks (see Fig. 1 ) is smoothed by fitting 
a quadratic polynomial of the form 

g − i = 2 . 43 z 2 + 1 . 55 z + 0 . 388 . (10) 

For mock groups, the stellar mass is computed by the sum of 
diskstellarmass and bulgemass of all group members, and 
corrected by the same redshift-dependent factor as the data. We do 
not estimate the group halo mass from the same mass–luminosity 
relation in equation ( 6 ). Instead, we use the host halo mass of the 
mock galaxy directly. Because some haloes contain more than one 
galaxy, for each group, we test the largest, the arithmetic mean, and 
the median halo mass of the group member, and find that they give 
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Figure 4. The g − i colour distribution of GAMA and 25 mocks combined at 5 of the 20 redshift bins in 0.1 < z < 0.3. The black dashed lines are double 
Gaussian fits to the distributions, characterizing the blue and red populations. The yellow cuts show a linear cut in the green valley in the mocks, and the 
corresponding cuts in GAMA which give the same red and blue fraction. The green dotted cuts in mock is the cut for the impure red sample. 

similar results. We also test using the sum of unique host haloes in 
the group. This increases the total group halo mass in the lower mass 
end, but does not affect the higher mass end. The stellar–halo mass 
relation of the groups using the total stellar mass and the arithmetic 
mean host halo mass of the group members is shown in the lower 
panel of Fig. 2 . It is clear that the mocks show a much larger scatter 
in the M h –M ∗ plane and the slope is smaller compared to data, i.e. 
at fixed stellar mass, the halo mass is larger. The total stellar mass 
of the mock groups is also smaller by about 0.5 dex compared to 
data. The clear difference between data and the mocks shows that 
estimating the halo mass from luminosity using equation ( 6 ) is not 
very reliable. The luminosity is itself strongly correlated with stellar 
mass via the luminosity–mass relation, thus the upper panel of Fig. 2 
does not show the true scatter of M h at fixed M ∗ faithfully (or vice 
versa). A comparison between the group and the halo catalogue in the 
GAMA mocks reveals that the 2-member groups have low fidelity, 
also discussed in Robotham et al. ( 2011 ). This again emphasizes the 
importance of using a consistent group finder algorithm between the 
GAMA data and the mock catalogues. The mock group catalogues 
are separated into three stellar mass bins based on the 40, 50, and 
10 per cent percentiles as measured in the data. 

3  CROSS-CORRELATION  MEASUREMENTS  

3.1 Correlation statistics 

We estimate the 2-point correlation function by counting pairs of 
galaxies and randoms using the Davis–Peebles estimator (Davis & 

Peebles 1983 ): 

ˆ ξ ( r p , π ) = 

D 1 D 2 

D 1 R 2 
− 1 , (11) 

where the subscript i = 1, 2 denotes the two samples to be correlated 
(in case of autocorrelation, the same sample), D i denotes data, 
and R i denotes the corresponding random points. Each term in the 
equation (e.g. D 1 D 2 ) is the normalized pair count between data and 

(or) random points, measured in bins of the pair separation ( r p , π ) 
defined below. For two objects located at s 1 and s 2 , their separation 
is given by s = s 1 –s 2 . The line of sight is defined along the mean 
position of the pair, r = ( s 1 + s 2 ) / 2. One can then decompose the 
separation into components parallel and perpendicular to the line of 
sight: 

π = 

s · r 
| r | ; r p = 

√ 

s 2 − π2 . (12) 

The random catalogue R captures various properties of the actual 
data, such as the surv e y mask and the sample redshift distribution 
n ( z), but has no spatial correlation. Thus, these estimators essentially 
measure the excess clustering of the data points compared to a 
random distribution. For the red and blue galaxy samples, the random 

n ( z) is modulated by the redshift-dependent red and blue fraction 
respectively (see Section 2.1 ). 

For the case of autocorrelations, the Landy–Szalay estimator 
(Landy & Szalay 1993 ) is known to be superior to the Davis–Peebles 
approach, and there is a natural generalization to cross-correlation: 

ˆ ξ ( r p , π ) = 

D 1 D 2 − D 1 R 2 − D 2 R 1 + R 1 R 2 

R 1 R 2 
. (13) 

Ho we ver, implementing this estimator would require a random 

catalogue for galaxy groups in different mass ranges, and we prefer 
to a v oid this complication. In contrast, the Davis–Peebles estimator 
requires a random catalogue for only one of the populations being 
correlated. Both Mohammad et al. ( 2016 ) and Riggs et al. ( 2021 ) 
estimated cross-correlations using a form of Landy–Szalay where R 2 

was replaced by R 1 , but this has no justification, and will yield 
incorrect results when the selection functions of the two tracers 
are very different. We measured the galaxy autocorrelations using 
both estimators, and found negligible difference for our sample. 
Throughout the analysis, the size of random catalogue used is 
20 times that of data. 

The 2D correlation functions are measured out to a maximum 

scale of 40 h 

−1 Mpc for both the r p and π directions in bins of 
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1 h 

−1 Mpc . This maximum scale is chosen due to the limited volume 
of the GAMA surv e y. It may appear to be a concern that at this 
scale perturbation theory starts to break down (thus the scale is often 
chosen as the cut-off scales for larger data sets). Ho we ver, we shall 
show later that empirical models based on linear theory can still give 
relatively unbiased results below this scale. For the halo streaming 
model, which we will elaborate in Section 4.2 , we use a 1-halo 
template to absorb the deviation of non-linear clustering from the 
perturbative 2-halo term. Although in principle, r p and π should be 
measured in the range [ −40 , 40] h 

−1 Mpc , in practice, pair counts 
in the positive and ne gativ e bins are combined and our correlation 
functions have two mirror planes of symmetry. This is the standard 
practice for r p , because the correlation function is symmetric around 
the transverse direction. Along the line of sight, positive and negative 
π measurements can in fact be distinctive in cross-correlations due to 
secondary gravitational effects. For example, gravitational redshift 
can give rise to a non-vanishing dipole between two samples that 
differ significantly in mass (Wojtak, Hansen & Hjorth 2011 ; Bonvin, 
Hui & Gazta ̃ naga 2014 ; Cai et al. 2017 ; Beutler & Dio 2020 ). 
Ho we ver, gi ven the size of the sample, we shall not investigate this 
issue in this study. The combination of the π bins also impro v es the 
signal-to-noise ratio for our measurements. 

3.2 Results 

In the following analysis, we will refer to the group subsamples 
as LM, MM, and HM. We thus have six configurations for the 
group-galaxy cross-correlations: LMred, MMred, HMred, LMblue, 
MMblue, and HMblue. In addition, we also measure the red and blue 
galaxy autocorrelations. The inclusion of galaxy autocorrelations in 
the analysis helps in breaking the near de generac y between b gal and 
b grp . Ideally, one would also include the autocorrelations for the 
group catalogue. These are excluded here: as mentioned abo v e, we 
do not construct random versions of the group catalogue. 

Fig. 5 shows the red and blue galaxy autocorrelations (top row) and 
the cross-correlation functions for the six configurations (lower three 
rows) measured from the GAMA data (first and third column), and the 
corresponding mocks average (second and forth column). The first 
noticeable feature is that the red configurations (left two columns) 
have larger clustering signals compared to the blue ones (right two 
columns). This is most obvious in the two galaxy autocorrelations. 
On relatively large scales, the squashing is also stronger in the blue 
configurations. This effect is controlled by the Kaiser distortion 
parameter β = f / b (see Section 4.1 below), and is expected to be 
stronger for samples with a smaller bias b (vice v ersa), giv en that 
the growth rate f is fixed. The fact that red galaxies have a larger 
galaxy bias compared to blue galaxies implies that red galaxies are 
preferentially associated with more massive dark matter haloes, in 
agreement with other studies (e.g. Guo et al. 2014 ; Mandelbaum et al. 
2016 ; Bilicki et al. 2021 ). On smaller scales, the red configurations 
also show a much more prominent FoG signal compared to the 
blue ones. This is intuitively sensible because more massive haloes 
are associated with a larger velocity dispersion. Comparing the 
correlation functions across different groups for a specific galaxy 
selection, we see a similar trend on both small and large scales: with 
the increase in group mass, a larger clustering amplitude, group bias, 
and FoG effect are observed. Notice the high signal-to-noise ratio 
at small scales in the HM groups, despite that the sample size in 
this mass range is only about 1/4 of the other mass ranges. These 
observations confirm that the identification of the galaxy groups, 
as well as the separation of group masses based on the ef fecti ve 

halo mass (total luminosity) are successful for the purpose of 
this study. 

The agreement between the mock average and the GAMA data is 
good in general – the same trends in galaxy colour and group mass 
are captured. In regions where r p is close to zero, the mock average 
seem to produce weaker clustering compared to the actual data in the 
blue configurations. The match in the red configuration, on the other 
hand, is excellent. The mock contaminated red sample is also shown 
as dotted contours (second column). The inclusion of extra blue 
galaxies has the effect of slightly reducing the o v erall amplitude in 
this contaminated sample compared to the pure red sample. On larger 
scales, the signal in data is noise and cosmic variance dominated. 
This is most noticeable in the LM subsamples, where the signal 
greatly exceeds the mock average on r ≥ 20 h 

−1 Mpc . Inspecting the 
measurement in each mock sample, this level of fluctuation in the data 
is expected. It should be noted that cosmology adopted in the mock 
catalogue is �m 

= 0.27, which is lower than the current constraint 
from Planck , �m 

= 0.315 ± 0.007 (Planck Collaboration VI 2020 ). 
Thus, one may expect some difference in clustering between the 
mock average and the data. Ho we ver, gi ven the noise in the GAMA 

data, a percent-level shift in the growth rate f ∝ �0 . 55 
m 

is hard to 
discern. It is also found in Farrow et al. ( 2015 ) (e.g. their fig. 8) 
that the mock can capture similar clustering trends as the GAMA 

data, when split into bins of redshift and stellar mass. Notice that 
there are significant deviations at small scales ( r p < 1 h 

−1 Mpc ) in 
the shape of the projected correlation functions, but these scales are 
not explored in this analysis. 

4  RSD  M O D E L S  

4.1 Quasi-linear dispersion model 

To describe the RSD in galaxy density field, one can extend 
equation ( 3 ) by including the galaxy bias b : 

P 

s 
g ( k, μ) = b 2 P 

r ( k) (1 + βμ2 ) 2 , (14) 

where β = f / b is often referred to as the distortion parameter. 
The abo v e formalism is valid for galaxy autocorrelation, but it is 
straightforward to generalize to cross-correlation: 

P 

s 
c ( k, μ) = 

b 2 gal 

b 12 
(1 + βgal μ

2 )(1 + b 12 βgal μ
2 ) P 

r ( k) , (15) 

where b gal is the galaxy bias, and b 12 is the ratio between galaxy 
and group bias: 

b 12 ≡ b gal /b grp . (16) 

The 2-point correlation function is the Fourier transform of the power 
spectrum. It is convenient to express the correlation functions in terms 
of Legendre polynomials P � ( μ) with � = 0, 2, 4 (Hamilton 1992 ): 

ξ s 
g = ξ0 ( r) P 0 ( μ) + ξ2 ( r) P 2 ( μ) + ξ4 ( r) P 4 ( μ) . (17) 

In this expression, the coefficients of the Legendre polynomials, 
ξ 0 ( r ), ξ 2 ( r ), and ξ 4 ( r ) are referred to as the monopole, quadrupole, 
and hexadecapole. In linear theory, only even modes are present up 
to the forth order because of the RSD effect modifies the power 
spectrum by the factor (1 + βμ2 ) 2 . The specific form of these 
multipoles are computed by Hamilton ( 1992 ) for autocorrelation, 
and Mohammad et al. ( 2016 ) for cross-correlation. We summarize 
these formulae in Appendix A. 

The FoG effect is accounted for by a convolution of the correlation 
function with some distribution of the non-linear random peculiar 
velocity along the line of sight (Peacock & Dodds 1994 ). N -body 
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Figure 5. False colour images of autocorrelation and cross-correlation functions in redshift space for the actual GAMA data and the corresponding average 
o v er the set of 25 GAMA mocks. r p denotes transverse separation; π is radial separation. LM, MM, and HM denote the three group mass bins. A number of 
trends are apparent: both the bias (amplitude of clustering) and the small-scale Finger of God (FoG) dispersion increase with group mass, and are larger for red 
galaxies than for blue. The mock contaminated red sample is shown as dotted contours on the second column, with log 10 | ξ | = { − 1.0, −0.5, 0, 0.7 } . 

simulations show that the actual distribution is non-Gaussian (e.g. 
Sheth 1996 ; Scoccimarro 2004 ; Cuesta-Lazaro et al. 2020 ). Thus, 
we adopt: 

D( π ) = 

1 √ 

2 σ12 

exp 
(
−

√ 

2 H 0 π/σ12 

)
, (18) 

where σ 12 is the pairwise velocity dispersion. In Fourier space, this 
function takes the form of a Lorentzian function, ˜ D ( kμ) = [1 + 

( kμσ12 ) 2 / 2] −1 , which damps the high- k modes of the anisotropic 
power spectrum. 

At quasi-linear scales, non-linearity may introduce systematic 
biases in the inferred cosmological parameters (de la Torre & Guzzo 
2012 ). There are multiple challenges in extending the model beyond 
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linear regime. There, the peculiar velocities can be large, and the 
formalism described breaks down at linear order. Non-linearities alter 
the small-scale shape of the matter power spectrum and correlate 
the density and velocity fluctuations. Accounting for these effects 
requires higher order expansion in the Perturbation Theory and the 
inclusion of the velocity spectrum, P θθ ( k ), and the density–velocity 
cross spectrum, P δθ ( k ), e.g. the TNS model by Taruya, Nishimichi & 

Saito ( 2010 ). Galaxy bias can also be non-linear and stochastic on 
small scales (Dekel & Lahav 1999 ). Furthermore, the approximate 
velocity dispersion in equation ( 18 ) fails to fit autocorrelation data 
on the smallest scales. More elaborate velocity distributions are 
proposed by e.g. Reid & White ( 2011 ); Zu & Weinberg ( 2013 ); 
Bianchi, Chiesa & Guzzo ( 2015 ) based on simulations. 

One simple approach is the replacement of the linear power 
spectrum in the linear Kaiser model (equation 14 ) by the non-linear 
power spectrum. This is reasonable because the redshift space power 
spectrum should match that in real space at μ = 0. Blake et al. ( 2011 ) 
showed that this combination is actually among the best-performing 
RSD models when fitting down to k max = 0 . 2 h Mpc −1 with fixed 
cosmology. 4 For this model, we adopt the non-linear power spectrum 

from HALOFIT (Smith et al. 2003 ; Takahashi et al. 2012 ). In the non- 
linear regime, we should in principle allow for a scale-dependent 
bias. But in practice it is a good approximation to assume that the 
non-linear galaxy and matter power spectra are in a constant ratio 
(see Camacho et al. 2019 ). In the following analysis, we refer to this 
model as the ‘quasilinear dispersion’ (QD) model. 

4.2 RSD in the halo model 

The main deficiency of the QD model is that it does not address post- 
linear couplings between density and velocity, which will modify 
the simple Kaiser angular anisotropy. There is an e xtensiv e literature 
of attempts to impro v e such modelling, based on various forms of 
perturbation theory. The model of Taruya et al. ( 2010 ) is widely used, 
although more recent efforts have concentrated on the Ef fecti ve Field 
Theory approach. This adds additional terms dictated by symmetry 
in a way that can also capture bias effects, including non-linearity 
and non-locality (e.g. Carrasco, Hertzberg & Senatore 2012 ; Senatore 
2015 ; d’Amico et al. 2020 ). These results are impressive, but have the 
limitation that they are presented in Fourier space and are not reliable 
beyond k � 0 . 3 h Mpc −1 . For a robust prediction of correlation 
functions, we need a formalism that still behaves correctly in the 
large- k limit. 

For this reason, we have developed a model that seeks to access 
the highly non-linear regime by using the halo model. In real space, 
this involves correlations that count pairs of galaxies in the same halo 
or in different haloes: 

ξ ( r) = ξ1 h ( r) + ξ2 h ( r) . (19) 

The 1-halo term is determined by the form of the halo density profile, 
and the 2-halo term is close to a linearly biased version of the 
matter two-point function. The bias in turn is determined by the 
halo occupation number, N ( M ), of galaxies in haloes as a function 
of their mass. This halo model has pro v ed a highly ef fecti ve way 
to understand the relation between the clustering of galaxies and of 
mass (Peacock & Smith 2000 ; Seljak 2000 ; Cooray & Sheth 2002 ), 
and for the case of dark matter alone has led to the highly precise 
HALOFIT framework (Smith et al. 2003 ; Takahashi et al. 2012 ). 

4 Although it should be noted that if the model could introduce bias to �m 

if 
the cosmology is not fixed, as shown in Parkinson et al. ( 2012 ). 

The halo-model separation into two independent pair contributions 
must also apply for the redshift-space correlations, namely 

ξ ( r p , π ) = ξ1 h ( r p , π ) + ξ2 h ( r p , π ) , (20) 

but it should be clear from the outset that the 1-halo and 2-halo 
contributions would be expected to have rather different anisotropy 
signals. The characteristic quadrupole plus hexadecapole Kaiser 
distortion arises from the coherent component of the velocity field, 
and this will apply to the 2-halo term only, since pairs from within the 
same halo are unaffected by bulk motion of the halo. This redshift- 
space decomposition using the halo model was advocated by Hand 
et al. ( 2017 ), who invested much effort in trying to predict the two 
distinct components using perturbation theory. Our work bears some 
resemblance to their approach, with two distinct differences: we 
work directly in configuration space, and we base the 1-halo term on 
empirical simulation results, rather than attempting to calculate it a 
priori. 

A particular point to clarify in this decomposition is the treatment 
of Fingers of God. Random motions within a halo are treated in 
the dispersion model by a radial convolution – but in fact the 
appropriate convolution will be different for the 1-halo and 2-halo 
terms. The main reason for this is that the 1-halo and 2-halo terms 
weight contributions as a function of halo mass differently, with a 
higher weight given to high-mass haloes in the 1-halo term (see e.g. 
equations 8 and 10 of Seljak 2000 ). Since the pairwise dispersion σ 12 

increases with halo mass, we expect larger FoG effects to apply to the 
1-halo term. This is further complicated by the existence of central 
and satellite galaxies, since the weighting of these is different in the 
1-halo and 2-halo terms. For example, suppose each halo contains 
either just a single central or one central and one satellite, where the 
velocity dispersion of satellites is σ . The 1-halo contribution must 
pair a central with a satellite, so the pairwise dispersion is σ . But 
the 2-halo term can also pair centrals with centrals (assumed to have 
negligible pairwise dispersion – although Reid et al. 2014 showed 
that the actual pairwise velocity could be up to 30 per cent of σ ) and 
satellites with satellites (pairwise dispersion 

√ 

2 σ ) , so the average 
rms pairwise dispersion depends on the fraction of haloes that contain 
a satellite. If most haloes are central-only (as in BOSS CMASS, for 
example), the pairwise dispersion for the 2-halo term will be σ . In 
the opposite direction, one can argue that the velocity field of haloes 
will contain some stochastic component in addition to the coherent 
velocities that generate the Kaiser distortion. 

With this perspective, an improved simple model for the cross- 
power between tracers a and b would be as follows: 

P ab ( k, μ) = P 1 h ( k ) D 1 ( k μ) 

+ b a b b P lin ( k) (1 + βa μ
2 )(1 + βb μ

2 ) D 2 ( kμ) . (21) 

Leaving aside the 1-halo term for the moment, one way in which we 
can seek to impro v e this e xpression further is in terms of quasi-linear 
effects on the 2-halo term. A first requirement is that the real-space 
spectrum (at μ = 0) should have the full non-linear form. When 
discussing the dispersion model, we achieved this by replacing P lin 

by the non-linear spectrum. In the halo model, we should not do 
this, since the 2-halo term in real space is close to linear theory, and 
the 1-halo term supplies most of the non-linear corrections (Smith 
et al. 2003 ). We do ho we ver adopt the HALOFIT 2-halo term, with 
scale-independent bias, as the best model for the real-space 2-halo 
term. 

The next step is to seek impro v ement in the density–velocity 
coupling that leads to the Kaiser distortion factors. An attractive 
approach here is the streaming model (e.g. Fisher 1995 ; Vlah, 
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Figure 6. Illustrating the decomposition of the measured mock correlation data (left-hand panel) into a 2-halo fit (middle panel) and an empirical 1-halo term 

in the form of the residual of the fit (right-hand panel), for the particular case of red-MM cross-correlation. The 2-halo term is computed using the streaming 
model, and is matched to the data at radii r > 10 h −1 Mpc , with the additional criterion that r p > 3 h −1 Mpc . 

Castorina & White 2016 ), in which we consider the quasilinear 
relativ e v elocity distribution as a function of pair separation, and 
use this to transform to redshift space while exactly conserving pair 
counts. The details of the construction of this model are given in 
Appendix B. As with the linear model for the 2-halo term, there are 
three main free parameters, the tracer biases and the growth rate: 
( b a , b b , f ). This assumes that the mass power spectrum is known 
exactly, whereas it depends on all fundamental � CDM parameters. 
The main variation of the power is ∝ σ 2 

8 , so it is common to factor 
out this degree of freedom and take the main RSD parameters to be 
( b a σ 8 , b b σ 8 , f σ 8 ). Ho we ver, there is a weaker further dependence on 
σ 8 when we adopt the HALOFIT prediction of the 2-halo matter power 
spectrum, rather than taking this to be pure linear theory (although 
the difference is not important in practice). 

In addition to these three main RSD parameters, we have pa- 
rameters connected to the FoG damping. As described earlier, it is 
conventional to model FoG effects by radial convolution, taking the 
velocity PDF to be a Lorentzian and using a velocity dispersion as 
the single free parameter. But in the present context, it is important 
to be clear that the empirical evidence for the Lorentzian form comes 
mainly from the 1-halo term. This is D 1 ( k z ) in equation ( 21 ); but we 
want the effect on the 2-halo term, D 2 ( k z ). We have argued that this 
will be characterized by a different dispersion, but in addition there 
is no strong reason to assume it will have a Lorentzian form. As a 
more general alternative, we considered a modified Lorentzian: 

D 2 ( kμ) = 

(
1 + ( kμσ12 ) 

2 / 2 γ
)−γ

(22) 

and experimented with different values of γ . But in practice the 
results were rather insensitive to the choice of this parameter, so 
we retained the Lorentzian γ = 1. It is shown in e.g. Scoccimarro 
( 2004 ), Bianchi et al. ( 2015 ), and Cuesta-Lazaro et al. ( 2020 ) that 
the shape of the PDF is only rele v ant where the correlation function 
changes significantly o v er a scale comparable to the width of the 
smoothing function. But the issue of the exact form of the PDF for 
FoG corrections to the 2-halo term is a problem that merits further 
study. 

In summary, we therefore have two models with similar real- 
space correlations, but different degrees of RSD: (1) QD: quasi-linear 
dispersion model and (2) HS: halo streaming model. Both of these 
converge to the linear Kaiser model on large scales, so what is of 
interest is the smallest scale to which their predictions are reliable. 
We will assess these by comparison with mock data. 

4.2.1 The 1-halo term 

The real-space 1-halo term can in principle be computed in the 
usual halo model frame work, gi ven the occupation numbers for the 
tracers and the halo radial profile. But there is also a case for taking 
an empirical approach, given that the real-space correlations are in 
principle observable directly, in a manner free of RSD effects, via 
the projected correlation function w p ( r p ). One might for example 
model the real-space 1-halo term by a power-law of free amplitude 
and slope, or via an NFW profile. 

But whatever approach is taken in real space, there is then the 
question of how the 1-halo term appears in redshift space. As 
described abo v e, the simplest approach is to assume that the transition 
to redshift space consists of a radial convolution with a single 
FoG function. Ho we ver, it is not hard to see that this must be 
an o v ersimplification. The 1-halo term arises from random orbital 
velocities within the halo, but the velocity dispersion is unlikely to 
be constant. If for example we consider the case of isotropic orbits, 
then the dispersion would need to fall to zero at the virial radius of 
the halo, beyond which the density is assumed to vanish. 

Here, we address this concern directly by using the mocks. Given a 
hypothesis for the 2-halo term, we can subtract the 2-halo prediction 
from the mock data to obtain an empirical ξ 1h ( r p , π ) that sums 
with the 2-halo term to give exactly the mock data (specifically, we 
apply this approach to the average of all the mocks). The 2-halo 
term can be deduced by fitting to the mock data in a regime where 
we assume the 1-halo contribution to be negligible. The exact cuts 
adopted in the process are not critical; in practice, we chose to match 
to the data at radii r > 10 h 

−1 Mpc , with the additional criterion 
that r p > 3 h 

−1 Mpc . The operation of this procedure is illustrated in 
Fig. 6 . The resulting residual 1-halo term is clearly well localized 
near the origin, and indeed it can be seen that the RSD effects in the 
1-halo term are complicated, with the FoG effect being largest at r p 
= 0, whereas the function appears more isotropic close to its outer 
limit at r p � 5 h 

−1 Mpc . This interesting behaviour is clearly worthy 
of being modelled in detail, but we shall not do that here. 

We now have a decomposition of the redshift-space correlations 
that by construction exactly matches the average of the mocks. 
Ho we ver, each mock realization will be different, as will be the 
real data, so can these different data sets be fitted in this framework? 
The 2-halo term is already parametrized, and these parameters can be 
varied for an y giv en data set. But the 1-halo term must also have some 
variation. Our approach is to assume that the mocks are sufficiently 
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realistic that the ef fecti ve 1-halo term in any given case will be close 
to the mock average, and that the difference can be captured by two 
nuisance parameters: 

ξ1 h ( r p , π ) → αξ1 h ( r p , η π ) . (23) 

In other words, assume that we have roughly the right functional 
form, but that the amplitude may be off (scale by α), and that the 
FoG strength may be off (stretch in the radial direction by 1/ η). 
Physically, the amplitude parameter α can be related to the way in 
which galaxies populate haloes: there may be different numbers of 
satellite galaxies in a given halo compared to the mock, leading to 
a different small-scale clustering signal. We have previously seen 
that an empirical rescaling of the 1-halo amplitude can yield an 
accurate fit to correlation data in real space (Hang et al. 2021 ). The η
parameter attempts to capture the velocity dispersion of the galaxies 
in the halo: a smaller η produces a larger FoG effect. Again, this can 
be understood in terms of an uncertain halo occupation, which can 
alter the mean mass of the haloes that contribute the 1-halo term. 

As we show below, this approach is able to succeed in matching 
the individual mock realizations, and so we see no reason not to apply 
the same model to the real data. We emphasize that we do not need 
to assume that the mocks are completely realistic, as long as they are 
qualitatively similar to reality. The reliability of this approach can be 
judged by whether or not the fitted values of α and η are close to unity 
(as indeed turns out to be the case). We only consider this minimal 
set of two empirical nuisance parameters in the current analysis; 
for forthcoming large data sets of higher statistical precision, more 
parameters may be required in order to make the model acceptably 
accurate. Eventually, we will need to validate the model by deriving 
1-halo templates from a given set of mocks and showing that they 
can fit data derived from mocks produced according to different 
assumptions. We intend to pursue this high-precision robustness test 
in a future study. 

4.3 Fitting methodology 

4.3.1 Covariance matrix and likelihood inference 

In the abo v e discussion, we hav e not been explicit about exactly what 
it means to fit the averaged mock data. In principle, one would like to 
have an understanding of the errors on the data, so that the likelihood 
can be computed as a figure of merit that is used to optimize the 
fit. For an individual data set, this can be done in the standard way 
by using an ensemble of mocks to estimate the covariance matrix of 
the data, and then appealing the to central limit theorem to compute 
the likelihood in the Gaussian approximation. For fitting the stacked 
mocks, the appropriate covariance matrix is less obvious, but in any 
case it is less important to have a likelihood in that case, where 
the aim is simply to estimate a 1-halo contribution as a basis for 
further modelling. We are not interested in placing errors on the best- 
fitting parameters of the 2-halo term, for which a likelihood would 
be required. In practice, therefore, we took the simple approach of 
seeking a least-squares fit in ln (1 + ξ ) to the mock average. The 
exact figure of merit chosen is unimportant as regards the 1-halo 
residual. 

The covariance matrix for a single data realization is most often 
estimated in one of two ways: either directly via the scatter o v er a 
number of mock realizations, or via Jackknife resampling of a single 
realization. Both of these approaches have their limitations, but the 
best strategy is when they are combined: an expanded set of mock 
realizations is created by Jackknife resampling of each one, yielding 
an impro v ed estimate of the co variance matrix (Alam et al. 2021b ). 

For a data vector with component x i and a model vector y i , where i 
= 1,..., m , the χ2 is defined as 

χ2 = 

m ∑ 

i,j 

[ x i − y i ] C 

−1 
ij [ x j − y j ] . (24) 

In the abo v e equation, C ij is the covariance matrix, estimated from 

N independent realizations of mock data: 

ˆ C ij = 

1 

N − 1 

N ∑ 

k= 1 

[ x k i − 〈 x k i 〉 ][ x k j − 〈 x k j 〉 ] . (25) 

Given a model with p parameters, there are m − p degrees of freedom 

in the χ2 -fitting. Due to the small number of mocks, we apply 
Jackknife re-sampling on the mocks by dividing each surv e y field 
into 18 sub-regions, giving a total of N J = 54 samples for each mock. 
The covariance matrix for an individual mock sample is estimated 
using equation ( 25 ), with an extra factor ( N J − 1) to account for 
correlations between the Jackknife samples. We av erage o v er the 
covariance matrices of the 25 mocks to obtain the final covariance 
matrix. It is pointed out in Escoffier et al. ( 2016 ) that this method 
can reduce the noise on the covariance estimation, and fast approach 
the truth. Ho we ver, we caution that these mocks are not completely 
independent, because they are constructed from the same N -body 
simulation (Gonzalez-Perez et al. 2014 ). 

The posterior of the model parameters θ given data D is estimated 
in a Bayesian way: 

P ( θ | D) = 

P ( D| θ ) P ( θ ) 

P ( D) 
, (26) 

where P ( θ ) is the prior and P ( D ) is treated as a normalization. The 
term P ( D | θ ) is proportional the likelihood L , which we assume to be 
Gaussian: 

L ∝ exp ( −χ2 / 2) . 

We use Monte Carlo Markov Chain (MCMC) sampling of the 
parameter space, implementing the python package emcee . 5 

4.3.2 Data compression 

Instead of fitting the whole 2D correlation function, which requires 
an N ( r p ) × N ( π ) – dimensional covariance matrix, we compress the 
2D information into the multipoles defined as 

ξ� ( r ) = 

2 � + 1 

2 

∫ 1 

−1 
ξc ( r , μ) P � ( μ) d μ; � = 0 , 2 , 4 . (27) 

We ignore higher order multipoles because they are typically noisy 
and more sensitive to non-linearity. Multipoles are computed by 
interpolating the 2D correlation function, and this is done consistently 
for both the measurements and the models. In the QD model, we 
exclude ξ 4 from the fitting, because the non-zero signal at scales 
r ≥ 10 h 

−1 Mpc cannot be well reproduced by this model. 
We also considered adding the projected correlation function w p : 

w p ( r p ) = 

∫ πmax 

−πmax 

ξ ( r p , π ) d π. (28) 

This has the merit that it is in principle independent of RSD for 
large enough πmax , and a knowledge of the true real-space clustering 
should be advantageous if we are focusing on redshift-space effects 
that cause deviations from this. However, we found in practice that 

5 http:// dfm.io/emcee/ 
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it was not possible to choose a large enough πmax to achieve results 
that converged to the true real-space clustering without the results 
being too noisy to be useful. The w p statistic may be useful at small 
separations, r < 10 h 

−1 Mpc , as a means of probing the real-space 
1-halo term, but as discussed abo v e we do not need to do this in 
the present work. We included w p in the fitting for the QD model; 
ho we ver, due to the limited information it could provide in addition 
to the multipoles, the w p was excluded in the HS model fitting. 

For each of the six cross-correlation configurations, we fit the 
measurement simultaneously with its corresponding galaxy autocor- 
relation. This allows us to break the de generac y between the galaxy 
and group bias. 

4.3.3 Scale cuts 

Below quasi-linear scales r ∼ 10 h 

−1 Mpc , both models may fail 
to capture the full non-linear features. Fitting data points at these 
scales may introduce significant bias into the measured growth 
rate. Therefore, we test the models on a set of minimum fitting 
scales, r min = 2 , 5 , 10 , 15 , 20 h 

−1 Mpc using the mock catalogues, 
and adopt the most appropriate cut for each subsample. For the HS 

model, because the model is designed to be able to fit smaller scales, 
we only test the model at r min = 2 , 5 , 10 h 

−1 Mpc . 

4.3.4 Integr al constr aints 

To account for the missing power for modes larger than the GAMA 

surv e y scale, we include the integral constraint I , which is a small 
constant added to the 2D correlation function. The expected integral 
constraint is given by 

I ≡ b 1 b 2 

3 
σ 2 

eff = 

b 1 b 2 

3 

∫ 
� 

2 ( k ) W 

2 ( k , r = r eff ) d ln k , (29) 

where � 

2 ( k ) is the dimensionless linear matter power spectrum, 
b 1 and b 2 are the tracer biases, W ( k , r ) = 3[sin ( kr )/( kr ) 3 −
cos ( kr )/( kr ) 2 ], and r eff is the ef fecti v e radius of the surv e y volume 
in one of the GAMA fields, V = 4 πr 3 eff / 3. The factor 1/3 accounts 
for the fact that we combine measurements o v er three GAMA fields. 
Equation ( 29 ) gives I = 0.0017 b 1 b 2 . This can also be measured 
in the mock data directly, by comparing the projected correlation 
function w p at large scales between the average of 25 samples and the 
combination of all mock samples. The measured values are consistent 
with the expectation given the statistical errors. In the QD model, we 
allowed I to be a free parameter, and found that it has little impact 
on other parameters, with a posterior consistent with zero (e.g. see 
Tables D1 and D2 in Appendix D). The integral constraints are then 
fixed to the measured values from mock for the streaming model, as 
shown in Tables D3 and D4. 

4.3.5 Priors 

The parameters used in the two models and their uniform prior 
ranges can be found in Table 2 . For each of the group-galaxy 
subsample, the galaxy autocorrelation is fitted simultaneously with 
the cross-correlation. Parameters with subscript ‘ a ’ are used for 
autocorrelations and ‘ c ’ for cross-correlations. There is another 
cosmological parameter that should be considered: the normalization 
of the (linear) matter power spectrum σ 8 . From equation ( 14 ), it 
is clear that on linear scales, σ 8 and b are completely degenerate, 
hence RSD measurements are usually quoted in the combination f σ 8 . 
At large k , the shape of the non-linear power spectrum is actually 

Table 2. Range of the uniform priors of the RSD fitting parameters. For 
growth rate, the usual constraint from RSD is f σ 8 , but we fix σ 8 = 0.81 in 
this analysis. The α, and η parameters are the 1-halo parameters applied in 
the GSM model only. 

Parameter Prior (QD) Prior (HS) 

b gal [0.1,2.5] [0.5,2] 
b 12 [0.1,2.5] [0.25,3] 
f [0,2] [0,2] 
σ a (km s −1 ) [143,1140] [30, 800] 
σ c (km s −1 ) [143,1140] [30, 800] 
I a [0,0.1] Fixed 
I c [0,0.1] Fixed 
αa – [0.1,2] 
αc – [0.1,2] 
ηa – [0.5,2.5] 
ηc – [0.5,2.5] 

sensiti ve to σ 8 . Ho we ver, such dependence is weak for the scales 
probed here, and we fix σ 8 = 0.81 throughout the analysis. 

5  RESULTS  

5.1 Mocks 

We fit both models to each of the 25 mock samples, and compute the 
mean and scatter of the best-fitting parameters. The aim is to assess 
the scale at which an unbiased growth rate can be reco v ered. The 
result is shown in Fig. 7 for the set of r min as mentioned in previous 
sections, and for each of the six configurations. The fiducial value of 
f with ±10 per cent range is marked by the grey band in each panel. 
The error bar is comparable to, but should not be taken directly as 
the expected error size on the GAMA sample. The specific values 
of all model parameters are summarized in Tables D1 and D3 in 
Appendix D. 

Notice that in the case of halo streaming model, there is a caveat 
that the 1-halo templates are obtained from the average of the same set 
of mocks as they are tested on. Ideally, we w ould lik e to have access 
to multiple sets of simulations co v ering different cosmology and 
HOD prescription, with matched surv e y configurations as GAMA. 
Then, we would test the halo streaming model on by extracting 
the 1-halo templates from one set of simulations and apply it to the 
measurements from the others. In this way, we can assess whether the 
model is robust against bias due to a different cosmology or change 
of the simulation settings. Such test will be particularly rele v ant for 
the forthcoming large data sets, where the demand of the precision 
of the model is high. Ho we v er, this is be yond the scope of this paper 
given the noise level of the GAMA data. We w ould lik e to defer such 
detailed comparison to a future study. 

The top panel of Fig. 7 shows the reco v ered growth rate f 
using the QD model (Section 4.1 ). As expected, when the small 
scales are included ( r min ≤ 5 h 

−1 Mpc ), the fitted growth rates are 
significantly biased in all configurations, while at larger scales 
( r min ≥ 15 h 

−1 Mpc ), the y conv erge to the fiducial value. The o v erall 
growth rate seems to be underestimated by about 5 –10 per cent 
for most scale cuts, but this is much smaller compared to the 
statistical error of the GAMA sample. It is noticeable that the blue 
configurations are less biased down to smaller scales, with f reco v ered 
to within 10 per cent at r min = 5 –10 h 

−1 Mpc , compared to the red 
configurations which are only unbiased at r min = 15 –20 h 

−1 Mpc . 
This may be due to the smaller FoG effect in the blue configu- 
rations compared to the red. From this test, we choose to adopt 
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Figure 7. The means and scatter of the best-fitting growth rate f from 25 mocks as a function of the minimum fitting scale, r min , for the quasi-linear dispersion 
(QD: top) and the halo streaming (HS: bottom) models. Data points at each r min are displaced by 0 . 1 h −1 Mpc for clarity. The grey band marks the 10 per cent 
regions around the mock fiducial value f = 0.593 at z = 0.195. Note that the error bars are for a single surv e y, so that the errors on the mean of the mocks are 
5 times smaller than shown. 

r min = { 10 , 10 , 10 , 15 , 20 , 20 } h 

−1 Mpc for the LMblue, MMblue, 
HMblue, LMred, MMred, and HMred subsamples, respectively, for 
the QD model in the application to the GAMA data. The bottom 

panel of Fig. 7 shows the reco v ered growth rate f using the HS 

model, where the results are impressively consistent. The growth 
rates for the different subsets are consistent to within an rms of 
3 per cent in the mock average results, and the global average of 
these different subsets is within 2 per cent of the fiducial value. 
This successful performance holds down to even r min = 2 h 

−1 Mpc , 
although the estimated errors at that point are little different to those 
at r min = 5 h 

−1 Mpc , so we conserv ati vely adopt the larger figure in 
our HS analysis. 

Fig. 8 shows the linear and streaming model with the mean best- 
fitting parameters from the mock subsamples, at the respective r min 

as mentioned abo v e. The mock av erage measurement as well as the 
1 σ error on the mean is also shown. In addition, we also show the 
corresponding 2-halo term of the streaming model in dotted black 
lines. On large scales ( r ≥ 15 h 

−1 Mpc ), all of the model curves 
converge, and match well with the mock average. It is noticeable that 
the full streaming model (with the addition of the 1-halo template) 
and its 2-halo term do not coincide exactly on these scales: the 
extracted 1-halo template still has some residuals in the monopole and 
quadrupole. The largest difference is seen in the hexadecapole. The 
slightly positive values seem to be produced only by the 1-halo FoG, 
which both the linear and the 2-halo terms of the streaming model 
fail to capture. Looking at smaller scales ( r ≤ 10 h 

−1 Mpc ), it seems 
that the QD model underpredicts the power in the red configurations, 
and o v erpredicts that in the blue configurations. 

5.2 GAMA 

Fig. 9 shows the measured GAMA multipoles (filled circles), the 
best-fitting QD models (black dashed lines), and the HS models 
(black solid lines). In addition, the corresponding HS model 2-halo 
term is shown in the dotted black lines. The same scale cuts, r min , 
are adopted as in the mock case for each of the models. The χ2 and 
parameter values are shown in Tables D2 and D4. The full HS model 
2D models are contrasted with the GAMA data in Appendix C. 

We see that the QD model provides a reasonable fit to the 
monopole and quadrupole at given r min in most configurations. The 
only exception is the LMred and LMblue subsamples, where the 
monopole power is boosted at large scales and the quadrupole power 

is consistent with zero. Despite the visual discrepancy, the χ2 of 
these models are consistent with the degrees of freedom of the data. 
The HS model is able to capture the shape of the multipoles down to 
smaller scales, especially the hexadecapole at scales r > 5 h 

−1 Mpc . 
At smaller scales ( r < 5 h 

−1 Mpc ), although excluded from fitting, 
the mock 1-halo template continues to provide a reasonable fit 
to the red configurations. But this is not the case for the blue 
configurations, where the non-linear velocity dispersion seems to 
be stronger in the actual data compared to the mock catalogues. 
One possible explanation could be the impact of redshift measuring 
errors. These are not included in the mocks, and so any measured 
velocity dispersion in the real data only will include the redshift 
error in quadrature. The typical GAMA error is 50 km 

−1 , but in 
detail Liske et al. ( 2015 ) showed that redshift errors can depend 
on spectral and target properties. The redshift error for galaxies 
classified as the ‘absorption’ type (i.e. the spectrum is dominated by 
absorption features) is 101 km s −1 , compared to the ‘emission’ type, 
which is 33 km s −1 . But red galaxies have a larger measured velocity 
dispersion, so the impact of redshift errors on the total measured 
dispersion will be less in that case. 

Fig. 10 shows the mean and 1 σ error on the model parameters from 

the MCMC posterior for the GAMA data, fitted at respective r min . 
The open and filled symbols denote parameter constraints from the 
QD model and the HS model, respectively. In the latter case, we also 
show the constraints measured using the 1-halo template from the 
‘contaminated’ red galaxy sample (purple filled symbols). All sets of 
constraints show good consistency. Notice that the size of the error 
bar in the blue configurations is similar in both models, although 
the QD model has a scale cut at 10 h 

−1 Mpc while the HS model 
at 5 h 

−1 Mpc . This is the consequence of the additional nuisance 
parameters added in the latter model. The specific parameter values, 
including the 1-halo parameters in the HS model, can be found in 
Tables D2 and D4. In Figs E1–E4 in Appendix E, we further show 

the full posteriors from MCMC for all parameters in both models, 
grouped by the red and blue configurations. In the HS model, the 
1-halo parameters α and η have no primary degeneracy with the 
growth rate, although the growth rate can be shifted slightly through 
their small de generac y with the velocity dispersion parameters. In 
practice, one would always marginalize o v er the 1-halo parameters. 

The middle two panels show the measured group and galaxy biases 
in both models. The LM, MM, and HM group biases measured 
consistently between the red and blue configurations in both models. 
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Figure 8. The multipoles of the group-galaxy cross-correlation functions in the mock average (open diamond). The coloured bands show the scatter on the 
mean. The best-fitting QD models are shown in dashed black line, with r min = { 10 , 10 , 10 , 15 , 20 , 20 } h −1 Mpc for the LMblue, MMblue, HMblue, LMred, 
MMred, and HMred subsamples, respectively. The best-fitting Gaussian streaming models with a 1-halo template are shown in solid black lines, with a fixed 
r min = 5 h −1 Mpc for all sub-samples, with the corresponding 2-halo term shown in dotted black lines. For the presentation purpose, the multipoles have been 
multiplied by r 1.5 . 

For our selection of galaxies, we find that b gal ≈ 1 for the blue 
galaxies, and b gal ≈ 1.3 for the red galaxies; for the groups, we 
find that b grp ≈ 1.2, 1.4, 1.8 for the low, medium, and high mass 
ranges. The b grp measurements are in qualitative agreement with 
that in Riggs et al. ( 2021 ) on large scales (e.g. see their Fig. 8 ), 
although direct comparison is non-trivial due to difference in the 
group selection. The consistency between the two models is good 
in general, although for the blue configuration, the HS model gives 
systematically lower biases compared to the QD model by 0.5 σ–
1.5 σ . The lower two panels show the measured autocorrelations and 
cross-correlation velocity dispersion, σ a and σ c . The two models 
measure consistent velocity dispersion, despite slightly different 
form for the FoG term. Notice that for the red configuration in the 
QD model, because of the large scale cut, the velocity dispersion 
posterior is prior driven. There is a tentative trend (at ∼2 σ ) that 
the red configurations have larger velocity dispersion compared to 
the blue configurations, with σa,c ∼ 400 − 500 kms −1 for the red 
configurations, and σa,c ∼ 300 kms −1 for the blue configurations 
in both autocorrelations and cross-correlations. There is, ho we ver, 
no clear dependence on the group mass. These measured galaxy 
biases and velocity dispersion are in good agreement with other 
measurements from GAMA (e.g. Blake et al. 2013 ; Lo v eday et al. 
2018 ). The marginalized posterior for f , b gal , and b 12 for the six 
configurations is shown in Figs 11 and 12 for the QD and HS models, 
respectively. 

The top panel shows the measured growth rate, consistent across 
the six subsamples for both models. Here, we have presented the 
results in the more general form of f σ 8 ( z). The rationale for this is that 

our modelling assumes that the background cosmology (WMAP7 
parameters) is known exactly. This is not precisely true, and the 
observed distortion parameter, β = f / b , is actually ∝ f σ 8 (since b σ 8 is 
observable). We therefore multiply our fitted f by the fiducial σ 8 ( z) in 
order to obtain a combination that should be insensitive to the exact 
fiducial model. 

We also note that RSD analyses commonly also allow for the 
Alcock-Paczynski effect (Alcock & Paczynski 1979 ; Ballinger, 
Peacock & Heavens 1996 ), which introduces additional distortions 
of the 2D correlation function from distance measurements using a 
‘wrong’ cosmology. This degree of freedom can boost the errors on 
f σ 8 substantially if the cosmological model is left free. But the AP 

effect is unimportant if the model is constrained by precise external 
CMB data as here. A further reason that this is reasonable is that the 
interest in RSD comes from the desire to test gravity: the CMB data 
give a precise prediction of f σ 8 and we want to know if this is what 
we measure. 

In detail, then, we take σ 8 ( z ) = g ( z ) σ 8 (0) = 0.73, where z = 

0.20, σ 8 (0) = 0.81, and g ( z) is the time-dependence of the (linear) 
density fluctuation in linear theory, normalized to g (0) = 1. The 
measurements give a mean of f σ 8 = 0.27 with uncertainties ranging 
from 0.07 to 0.20 for the QD model, and f σ 8 = 0.29 with uncertainties 
ranging from 0.07 to 0.14 for the HS model. We combine our mea- 
surements from the six cross-correlation configurations for the HS 

model, accounting for their correlations using the mock catalogues. 
We compute the scatter on the average as well as the covariance of 
the best-fitting f for the six configurations in the 25 mock samples. 
Ideally, one would like to use the full posterior. Ho we ver, this would 
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Figure 9. Same as Fig. 8 but for the actual GAMA data, with the same r min adopted. The coloured bands show Jackknife errors. The χ2 for each of the models 
can be found in Tables D2 and D4. 

require the time consuming step of running MCMC for each of the 
mock sample, thus the simple average of the maximum likelihood 
values is adopted. Our combined constraint from the HS model thus 
gives 

f σ8 ( z = 0 . 20) = 0 . 29 ± 0 . 10 . (30) 

The corresponding figure for the QD model is 0.27 ± 0.14, showing 
the extra information gained through the smaller scales that the HS 

model is able to probe. We note that the limited number of mock 
samples means that our covariance matrices will be imprecise, so 
that the errors on the growth rate for an individual sample may 
be underestimated (Hartlap, Simon & Schneider 2007 ; Sellentin & 

Heavens 2016 ). Ho we ver, the empirical dispersion in the mean of the 
maximum-likelihood values should be robust. 

The striking thing about this GAMA-based figure is that it is 
rather low compared to the fiducial Planck figure of f σ 8 ( z = 0.20) 
= 0.47 ± 0.01, derived from the Planck TT, TE, EE + lowE + lensing 
cosmological parameters (Planck Collaboration VI 2020 ): our fig- 
ure is 1.8 σ below this Planck value. This discrepancy is certainly 
une xpected giv en how well our modelling was able to account for the 
RSD signal in the different mock realizations, and how the reco v ered 
growth rates were consistent between different methods of model 
fitting. Furthermore, the figures reco v ered from the different GAMA 

subsamples show the same level of consistency with each other as is 
seen in subsamples within the mocks. 

There are a number of things that can be said about the low 

observed figure. The first is that there is some evidence that the 
fiducial Planck figure may be too high, with local gravitational 
lensing data consistently arguing for a reduction of about 10 per cent 
(see e.g. Hang et al. 2021 ). Our measurement would then be in 1.3 σ
disagreement with a revised fiducial value of 0.42, implying that 
GAMA is an unusual data set, but not unreasonably so. And we do 

have evidence that this is the case: inspection of Fig. 3 shows that 
N ( z) has a substantial dip at z � 0.24, which is seen consistently in all 
three fields. One might suspect a problem with the redshift pipeline, 
but this feature is absent in a subsequent fourth GAMA field, not 
used here; the three main GAMA fields are simply rather unusual 
regions of space. Finally, note that a multitracer analysis of RSD in 
GAMA by Blake et al. ( 2013 ) gave f σ 8 ( z = 0.18) = 0.36 ± 0.09, 
which is also slightly lower than Planck , albeit not inconsistently so. 

5.3 Group bias 

Finally, it is interesting to ask if the group biases that we measure 
are in accord with what is expected for haloes of these masses. We 
compute the expected group bias in GAMA from the calibrated halo 
mass for the groups based on equation ( 6 ). We adopt the Tinker 
et al. ( 2010 ) fitting formula for the linear halo bias. The halo bias is 
expressed in terms of the peak height parameter ν ≡ δc / σ R , where 
δc ≈ 1.686, and σ R is the rms of the linear power spectrum filtered 
with a spherical top hat function with radius R (cf. equation 29 ). This 
is related to the halo mass via M h = 200 ̄ρm 

4 πR 

3 / 3, where ρ̄m 

is 
the mean background density. The mean group bias in a stellar mass 
range is estimated by 

ˆ b grp = 

∑ 

i N ( log M 

i 
h ) b( log M 

i 
h ) ∑ 

i N ( log M 

i 
h ) 

, (31) 

where N ( log M 

i 
h ) is the number of groups in the logarithmic halo 

mass bin i . The halo mass adopted in case of mock and GAMA are 
as shown in Fig. 2 . For GAMA, we also include the uncertainty in 
the calibrated halo mass due to the uncertainties in log M p and α in 
equation ( 6 ). We combine the error via: 

� log M h = � log M p + | � α log ( L grp /L 0 ) | . (32) 
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Figure 10. The MCMC parameter constraints for the actual GAMA data using the QD model (open symbols) and the streaming model with a 1-halo template 
(filled symbols). Each model is fitted with the respective r min as in Fig. 8 . The filled purple points show the constraints obtained using the 1-halo template 
from the ‘contaminated’ red sample in the mock data. The 1-halo parameters are marginalized o v er in the HS model. On the top panel, we have converted the 
constraints back to f σ 8 by multiplying back the fiducial σ 8 ( z = 0.195). The black line and the grey band on the top panel mark f σ 8 = 0.47 ± 0.01, the fiducial 
growth rate at z = 0.195 using �m 

and σ 8 constraints from Planck Collaboration VI ( 2020 ). The specific values for all model parameters are shown in Tables D2 
and D4. 

For the mass range concerned here, � log M h = 0 . 8 –0 . 2 dex from low 

mass to high mass. We account for this scatter by convolving the 
number of objects with a Gaussian distribution with width � log M h 

in each log M h bin. The predicted and measured group biases using 
mocks and GAMA data are summarized in Table 3 . We also show 

biases computed at the logarithmic mean halo mass M̄ h . These values 
are close to the average bias computed from equation ( 31 ) in the case 
of GAMA, but they deviate from the mock average significantly. This 
indicates that estimating the bias from the mean halo mass depends 
heavily on the distribution of the halo mass of the sample considered. 
In addition, we include the case where the more up-to-date mass–
luminosity relation from Rana et al. ( 2022 ) is used to compute 
the group halo mass. The equi v alent parameters to equation ( 6 ) 
are M p = (8 . 1 ± 0 . 4) × 10 13 h 

−1 M �, L 0 = 10 11 . 5 h 

−2 L �, and α = 

1.01 ± 0.07. The halo mass computed with this calibration is larger 
than using the fiducial Han et al. ( 2015 ), resulting in good consistency 
with the fitted group bias from both the QD and HS models as shown 
in Table 3 . 

In the mock catalogues, the predicted group bias for the LM, 
MM, and HM subsamples are all lower than the fitted values. These 
differences are significant given the error bar on the average of the 
mock measurements. In all cases, the group bias has apparently been 

underestimated by about 20 per cent . This deviation in the group bias 
may arise because the arithmetic mean host halo mass of the group 
members is used as a proxy for the group halo mass. Ho we ver, if one 
uses the total mass of unique host haloes in the group as M h , then 
the bias in each mass range only increases by ∼ 10 per cent . Since 
the mock group masses are calibrated using ‘real’ simulation halo 
masses, the difference illustrates clearly that our galaxy groups are 
not in 1-to-1 correspondence with single haloes, emphasizing once 
again the importance of analysing real and mock data with the same 
group finder. 

6  SUMMARY  A N D  C O N C L U S I O N S  

In this work, we have investigated the RSD of group-galaxy cross- 
correlations, with the aim of understanding the robustness with which 
measurements of the density fluctuation growth rate can be extracted 
from such measurements. We have focused on the differences in 
the measured RSD using different types of galaxy and group, and 
de veloped ne w methods for fitting such data do wn to the small-scale 
non-linear regime. 

We have used data from the GAMA surv e y in the redshift range 
0.1 < z < 0.3 to measure the 2D cross-correlation function ξ ( r p , 
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Figur e 11. Mar ginalized MCMC posteriors for the QD model. 

Figur e 12. Mar ginalized MCMC posteriors for the HS model. The best- 
fitting bias parameters are very different among different sub-samples, but 
the reco v ered f values are consistent. 

π ) between groups and galaxies. The groups were found using an 
F oF algorithm from Tre yer et al. ( 2018 ), and were subdivided into 
three stellar mass bins (LM: 40 per cent, MM: 50 per cent, and HM: 
10 per cent). The corresponding halo mass for the groups was cali- 
brated using the relation in Han et al. ( 2015 ), and the groups are ex- 
pected to have typical masses of (10 12 . 2 , 10 12 . 7 , 10 13 . 2 ) M �. For Rana 
et al. ( 2022 ), the mean halo masses are (10 12 . 6 , 10 13 . 1 , 10 13 . 5 ) M �. 
The galaxies were split into red and blue subsets using a cut in 
the g − i versus z plane, yielding in total six cross-correlation 
configurations: LMred, MMred, HMred, LMblue, MMblue, and 
HMblue. 

We have used 25 GAMA light-cone mocks from Farrow et al. 
( 2015 ) to test RSD models and to construct Jackknife covariance 
matrices for likelihood fitting. Mock group catalogues were gener- 
ated using the identical algorithm that was applied to the real GAMA 

data. The mock catalogues are distinct from observation in several 
aspects: the mean redshift distribution, the bimodal g − i colour 
distribution, and the total stellar mass of the groups. We discuss the 
appropriate empirical selection that yields the best match between 
the mocks and the data subsamples. The measured 2D correlation 
functions show good consistency between the data and the mocks 
down to small scales, and the same variation of the signals with 
galaxy colours and group masses are observed. The different cross- 
correlation results yield group biases that increase with mass, as 
e xpected. F or GAMA, the predicted group bias from Tinker et al. 
( 2010 ) is lower but consistent with the fitted values using the halo 
mass calibration in Han et al. ( 2015 ), whereas that from Rana et al. 
( 2022 ) agree well with the fitted values. For mocks, however, these 
values tend to be higher than predicted. This difference illustrates 
that the groups found in redshift space do not constitute a pure halo 
sample. 

We have compared these measurements with two RSD models: 
(1) a quasi-linear dispersion (QD) model; (2) a no v el halo streaming 
(HS) model. The QD model is a generalization of the linear dispersion 
model of Mohammad et al. ( 2016 ) to use the non-linear real- 
space power spectrum. We found from testing on the mocks that 
this model provides unbiased measurements of the growth rate 
at r min = 10 –20 h 

−1 Mpc depending on the subsample. The HD 

model uses a halo model decomposition of the correlations, where a 
streaming model 2-halo term is combined with an empirical 1-halo 
template adopted from the mock average. This promising model, with 
the addition of two nuisance parameters, allows unbiased results on 
the growth rate down to r min = 5 h 

−1 Mpc when fitting individual 
mock realizations, and for all group-galaxy combinations. For the 
GAMA measurements, an MCMC analysis was used to obtain the 
posterior of our model parameters. We found that given the scale cuts, 
all of the subsamples reco v er consistent growth rates in both models. 
The average growth rate from the six subsamples using the HS model 
is f σ 8 = 0.29 ± 0.10 at z = 0.20, where the error should be robust 
as it is taken directly from the dispersion in maximum-likelihood 
values for the mock data. This figure is 1.8 σ lower than the fiducial 
Planck value of f σ 8 = 0.47 ± 0.01, and we have considered the 
implications of this result. At face v alue, the lo w GAMA result is 
consistent with the suggestions from gravitational lensing that the 
true value of f σ 8 may be about 10 per cent lower than the Planck 
central figure (e.g. Hang et al. 2021 . But there are objective reasons 
to believe that the GAMA data set may be a statistical outlier, based 
on known anomalies in the redshift distribution in the GAMA 

fields. 
Therefore, the real test of the RSD modelling presented here 

will be when it can be applied to much larger and more precise 
data sets, such as the Bright Galaxy Sample from the Dark Energy 
Spectroscopic Instrument (DESI) surv e y (Martini et al. 2018 ) and 
the Wide Area VISTA Extra-Galactic Surv e y (WAVES; Driver 
et al. 2016 ). We are greatly encouraged by the success of our 
halo streaming model in reproducing mock cross-correlations down 
to the smallest scales, and in yielding consistent values of f σ 8 

from different tracers, to a tolerance of better than 3 per cent. 
This hybrid approach, taking advantage of ever more realistic 
mock data, therefore seems an attractive way of obtaining robust 
constraints on the growth of cosmological density fluctuations, 
and we look forward to seeing it applied to next-generation 
surv e ys. 
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Table 3. Bias for the groups in the LM, MM, and HM stellar mass bins for the mock average and GAMA. The first column shows the mean bias value computed 
from the fitting formula (Tinker et al. 2010 ), and the second column shows the corresponding bias computed at the mean halo mass in each case. The next two 
columns marked with a ‘ ∗’ show the bias computed in the same way, but with the GAMA group halo mass computed from a more up-to-date mass–luminosity 
relation (Rana et al. 2022 ). The rest of the columns show the fitted biases from the six cross-correlation configurations in the mocks and the GAMA data. 

Group bias T10 T10 b( M̄ h ) T10 ∗ T10 ∗ b( M̄ h ) QD-red QD-blue HS-red HS-blue 

Mocks LM 1.02 0.92 – – 1.20 ± 0.04 1.20 ± 0.02 1.18 ± 0.03 1.20 ± 0.02 
MM 1.26 1.13 – – 1.48 ± 0.05 1.46 ± 0.02 1.42 ± 0.02 1.38 ± 0.02 
HM 1.83 1.65 – – 1.90 ± 0.06 2.09 ± 0.03 1.96 ± 0.03 1.92 ± 0.03 

GAMA LM 1.00 0.96 1.12 1.11 1.07 ± 0.24 1.27 ± 0.10 1.14 ± 0.11 1.24 ± 0.08 
MM 1.20 1.17 1.41 1.39 1.58 ± 0.30 1.52 ± 0.10 1.41 ± 0.10 1.34 ± 0.07 
HM 1.52 1.49 1.85 1.81 1.71 ± 0.46 1.98 ± 0.19 1.81 ± 0.20 1.79 ± 0.14 
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