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If you are not thinking like a Bayesian, maybe you should.  
~John Allen Paulos, 2011 

 
A feeling emerges from reading McGrayne’s book expressed as a paraphrase of a verse 
from Hamlet: There are more things behind Bayes’ theorem, Horatio, than dreamt of in 
your philosophy. The book tells a story of the birth and survival of an idea around which 
social enterprises, personal odysseys, and human passions are masterfully woven by the 
author. The book has 17 chapters distributed in five parts and two annexes. These parts 
reveal a narrative structure worthy of Propp: The hero of the story (Bayes’ theorem) is 
born and raised normally but rejected later. It is forced to act in secret but returns to the 
light and is submitted to several tests. The hero emerges triumphant from all of them. The 
above is just an outline of a complex but accessible chronicle that includes many brilliant 
and fascinating figures and extraordinary situations. We recommend the following three 
reviews that undoubtedly motivate you to immerse yourself in reading the book: Paulos 
(2011), Wainer & Savage (2012) and McGrayne (2015). 
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In this document, we present six key issues of the book we considered important and 
useful from a statistical education perspective; we formulate and support our claims with 
some data taken from different parts of the book since the material is abundant enough 
to delve into each of them. 
 
 

Causes, Effects and Uncertainty 
In the 1740s, an English Presbyterian named Thomas Bayes stated a version of the 
theorem that bears his name; after finishing it, he filed it without trying to publish it for 
the rest of his life. It would be Richard Price, a young friend of Bayes and a fan of 
mathematics, who would polish and publish it in 1763, two years after Bayes’s death. 
McGrayne wonders: What motivated and inspired Bayes to state the theorem that would 
lead to 200 years of controversy? She confesses that we do not know with certainty, but 
she outlines the intellectual environment of England in which such figures as Newton, 
Hume, Berkeley, and de Moivre play an important role. She showed that in those days the 
problems related to cause, effect, and uncertainty were floating in the air, and perhaps 
this influenced Bayes to study the relationships between these concepts quantitatively. 
Later, in the 1770s, the French scientist and mathematician Pierre Simon, Marquis de 
Laplace, independently rediscovered the theorem of the probability of the causes of 
events. Over the years, the tenacious Laplace, among the many scientific projects that he 
developed, perfected the theorem in such a way that he ended up expounding it practically 
in the way we know it today. He applied it to solve problems of demography, 
jurisprudence, statistics, and astronomy. Earlier, in 1781, Laplace learned about the 
Bayes/Price paper via the Marquis de Condorcet and would recognize that: “The theory 
whose principles I explained some years after […] he accomplished in an acute and very 
ingenious, though slightly awkward, manner” (Quoted in McGrayne, 2015). Bayes’s paper 
revealed to Laplace the idea of assuming an initial assumption of a priori probabilities, 
and he immediately made it his own by incorporating it into his version. Thus, from its 
inception, there is a subjective probability associated with the theorem, which would 
make it the target of future criticism. 
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The Central Idea 
Although the theorem offers a procedure for calculating the probability that an event has 
been produced by a cause considering the different possible causes, it can be reformulated 
and interpreted in terms of initial beliefs that are updated based on recent information as 
represented in a simple one-liner: 
 

Figure 1. Beliefs explained 

 
The epigraph that McGrayne chose for his book is a sarcastic phrase by John Maynard 
Keynes that briefly expresses the meaning of Bayes’s theorem: “When the facts change, I 
change my mind. What are you doing, sir?" Despite its simplicity, the idea touches on a 
deeper problem of scientific thought: How do we use evidence to update our knowledge? 
Paulos (2011) suggested that the way Bayes’s Theorem answers this question is: “If you 
want to assess the strength of your hypothesis given the evidence, you must also assess 
the strength of the evidence given your hypothesis.” Following Paulos’s description, the 
theorem states that the posterior probability of a hypothesis is equal to the product of (a) 
the prior probability of the hypothesis and (b) the conditional probability of the evidence 
given the hypothesis, divided by (c) the probability of the new evidence, which is: 
 

𝑃(𝐻|𝐸) 	=
𝑃(𝐻)𝑃(𝐸|𝐻)

𝑃(𝐸) 	 	  

 

𝑃(𝐻) and 𝑃(𝐸) are the prior probabilities and 𝑃(𝐻|𝐸), 𝑃(𝐸|𝐻) are the posterior 
probabilities. 
 
 

The Heart of the Debate 
After Laplace’s death, European thinkers and scientists were at the forefront of the attacks 
on Laplace. John Maynard Keynes mentions that George Boole, John Venn, and Joseph 
Bertrand rejected Laplace’s reasoning, arguing respectively that his hypotheses are 

Initial beliefs + Recent objective data = A new and improved belief 
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arbitrary, not in keeping with the experience, and ridiculously so. However, intellectuals 
such as Augustus de Morgan, William Jevons, Rudolf Lotze, Emanuel Czuver, and Karl 
Pearson accepted Laplace’s thinking. In the 1970s, Charles Sanders Peirce would promote 
the use of probabilities based on frequencies. Thus, there were two antagonistic 
tendencies distinguished, namely the Bayesians and the Frequentists, even though 
Laplace had proposed a combined and delicate balance in using a priori probabilities, 
and frequencies. 
 
We should point out that the heart of the controversy was between the procedure of 
conjecturing prior probabilities with subjective criteria defended by Bayesians against the 
need to start from objective probabilities defended by Frequentists. Statisticians accepted 
the applications of Bayes’ theorem when they knew a prior probability of a particular 
situation, or computable through a valid procedure; but this condition is very restrictive 
because many interesting situations do not fulfill. The debate begins when Bayesians fill 
this gap by making a conjecture about prior probabilities; this procedure is subjectivity 
run amok for frequentists. Two eminent statisticians struck the hardest blow against 
Bayes. One of them was Ronald Aylmer Fisher, for whom Bayes’ theorem constituted "a 
mistake, perhaps the only mistake to which the mathematical world has so deeply 
committed itself", "My personal conviction [...] that the theory of inverse probability is 
founded upon an error and must be wholly rejected" (quoted in McGrayne, 2012, p.48). 
The other was Jerzy Neyman for whom, despite his rivalry with Fisher, agreed with 
outlawing the a priori subjective probabilities in using Bayes’ theorem. 
 
 

The Applications 
While Frequentist statistical inference led by Fischer, Pearson, and Neyman flourished in 
the community of statisticians, Bayesian methods were secretly advancing far from the 
spotlight. McGrayne reveals that statisticians like Alan Turing were using Bayes’ theorem 
to decipher Germany’s naval Enigma code and, thus knowing the positions of the German 
U-boats, established trajectories for the supply ships that allowed England to resist the 
German offensive during World War II. Unfortunately, during the Cold War, the creative 
contributions of Turing to Bayesian methods were classified and kept secret. Also, a 
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hydrogen bomb lost at sea near a Spanish town called Palomares due to an accident 
involving a US military plane; the search method created to find the missing hydrogen 
bomb used and developed Bayesian techniques that have subsequently been used to 
search large areas for missing ships or planes. 
 
Bayesian methods were applied to situations to assess probabilities of singular events 
without data from previous occurrences. The frequentist methods do not offer any 
strategies to solve problems in such situations. McGrayne highlights that besides the 
search for the lost hydrogen bomb in the sea, the problem of estimating the probability of 
an event considered impossible would be like those of an accident at a nuclear plant and 
two planes collided in midair. In both cases, Bayesian analyzes found that the 
probabilities, while small, were not negligible. When those events occurred, the losses in 
both cases corroborated the Bayesian estimates. Mosteller and Wallace (1984) used a 
Bayesian approach to resolve the authorship of Federalist articles. McGrayne also 
describes how John Tukey led an effort to predict election results better and faster than 
anyone else through the secret use of Bayes’ theorem. The theorem was also used in 
medicine to improve medical diagnoses through accumulated data processing. The 
practical statistician Jerome Cornfield analyzed previously accumulated data on lung 
cancer using the Bayes’ theorem and published an important paper arguing the existence 
of a causal relationship between smoking and the development of this disease. 

 
 

The Technology 
In most cases, Bayes’ theorem is used reiteratively to update probabilities each time new 
data emerges; with each iteration, the number of operations needed to resolve a problem 
multiplies and performing these computations becomes a real challenge. Laplace 
developed analytics methods to deal with the computations he needed to perform with 
his data while Alan Turing designed and constructed a specialized machine to process his 
own. In the years following World War II, technology that would allow Bayesians to 
materialize their ideas in important applications was still lacking so they were restricted 
to study problems that implied a scarce number of manageable integrals. But everything 
changed, starting in the 1990s; technological development allowed access to potent 
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desktop computers, new computational methods, and software to execute all sorts of 
computational tasks. These resources made it possible for Bayesians to resolve important 
problems by avoiding the obstacles related to the computational burden. Therefore, 
Bayesian theory is widely used in the digital world and in many applications; furthermore, 
attacks and disqualifications have been left aside and the theory has been accepted as a 
legitimate theory in statistics. McGrayne (2015) mentions:  

Thanks to Bayes, we can filter spam, assess medical and other risks, search the 
Internet for the web pages we want, and learn what we might like to buy, based 
on what we’ve looked at in the past. The military uses it to sharpen the images 
produced when drones fly overhead, and doctors use it to clarify our MRI and 
Pet Scan images. It is used on Wall Street and in astronomy and physics, the 
machine translation of foreign languages, genetics, and bioinformatics. The list 
goes on and on. (p. 159)  

 
 

The Theoretical Advances 
In the 1920s, Emile Borel, Frank P. Ramsey, and Bruno de Finetti, from France, England, 
and Italy, respectively, were three mathematicians who were working individually, and 
almost simultaneously, formulated the idea of conceiving probability as a measure of a 
person’s degree of subjective belief, which could be calculated as a function of the bet the 
person is willing to take in the defense of such belief. Based on this conception of 
probability, Ramsey postulated the problem of finding the formulas to make decisions 
under uncertainty. As well, de Finetti provided subjective probability a solid 
mathematical ground in addition to applying his theory to the domain of financial 
economy. Despite the theoretical advances made by these authors, the statistics 
community made them a target for attacks and deliberated indifference. At the same time, 
their attention and recognition were drawn to the anti-Bayesian triplet: Ronald Fisher, 
Egon Pearson, and Jerzy Neyman. During the next decades, statistics would be dominated 
by the research agenda proposed by these anti-Bayesian statisticians. Despite such an 
adverse environment, geologist Harold Jeffreys would keep Bayes’ theorem alive by 
applying it to the processing of data when determining the most likely epicenter of an 
earthquake. He also developed a new form of Bayes’ theorem that allowed the 
amplification of its applications, developing a new set of formal rules for the selection of 
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the a priori probabilities. The year the First World War began, Jeffreys published his 
Theory of Probability which was the first systematic exposition of the ways Bayes’ theorem 
is applied in scientific problems. Principles of the Bayesian approach would be rebirthed 
after the war by means of Jack Good’s pen, Leonard J. Savage and Dennis V. Lindley. 
Good, who worked with Turing during the war, wrote a book titled Probability and the 
Weighting of Evidence that would be published in 1950 where Good mentions that he 
retakes Alan Turing’s ideas about his fight against the Enigma code in his book. Nowadays 
there are many expositions of Bayesian statistics. 
 
Reading McGrayne’s book is fascinating because it illustrates the dramatic process from 
birth to consolidation of a statistical idea, its rejection and neglect from the statistics 
community and its marginal survival when used to resolve problems loaded with 
unmanageable uncertainty, to finally rebirth with an unexpected strength during the 
contemporaneous technological world. The book is so stimulating that for statistics 
educators who read it would evoke a reflection like Paulos’: if the statistics curriculum for 
the school levels does not contain a Bayesian approach, maybe it should. 

 
 

Addendum 
From a statistics education research perspective, there is a restless feeling that emerges 
when wondering what has been researched about Bayes’ theorem within the education 
domain. It is hard to fully know the wide extent of educational research done in the 
tertiary levels related to Bayes’ theorem. In disciplinary fields that belong to medicine, 
psychology, informatics, artificial intelligence and others, the applications of the theorem 
are especially important and, therefore, it is likely that such communities had already 
dove into research in Bayesian reasoning.  
 
But more popular in the educational domain is the research done in the field of 
Psychology, given that many of the results of the research program of Heuristics and 
Biases under Uncertainty (Kahneman, Tversky & Slovic, 1982) had a major impact in 
statistics education research (Shaughnessy, 1982). One question that guides such a 
research agenda is: Are people good intuitive statisticians? (Kahneman, 2011). A main 
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finding of this program unveiled aspects of Bayesian problems in which most people’s 
reasoning fails to provide an appropriate normative answer. A paradigmatic situation is 
represented by the Taxi problem (Bar-Hillel, 1980; Kahneman & Tversky, 1972) and 
revisited by Shaughnessy (1992). The problem goes as follows: 

Two cab companies operate in a city, the Blue and the Green (according to the 
color of cab they run). Eighty-five percent of the cabs in the city are Blue, and 
the remaining 15% are Green. A cab was involved in a hit-and-run accident at 
night. A witness later identified the cab as a green cab. The court tested the 
witness’ ability to distinguish between blue and green cabs under nighttime 
visibility conditions. It found that the witness was able to identify each color 
correctly about 80% of the time but confused it with the other color about 20% 
of the time. What do you think are the chances that the errant cab was indeed 
Green, as the witness claimed? (Kahneman & Tversky, 1972; Bar-Hillel, 1980)  
 

This is an interesting problem whose solution is reached with the help of the Bayes 

theorem; the solution is 𝑝	 = 	0.41 which is not intuitive at all. A formal solution requires 
translating the information to mathematical symbology for one to apply the theorem, a 
task with its own level of complexity. There are instructional proposals to solve the 
problem in which, with the help of other representations (trees or rectangles), the 
symbolic load is lightened (Shaughnessy, 1992). But what is relevant from psychologists’ 
point of view is that individuals – including experts –, when trying to provide an answer, 
reveal a strong tendency to ignore base probabilities (a priori probabilities) and support 
judgments relying only on the witness probabilities (posterior probabilities). Such 
omission is not due to distraction or neglect, but to a failure to consider why base 
probabilities should be involved. This reasoning bias is called the base-rate fallacy (Bar-
Hillel, 1980). Bar-Hillel mentions that the fallacy’s presence in reasoning about certain 
contexts can lead to inconvenient results with serious practical consequences (e.g., when 
assessing confidence in diagnostic tests or evidence in criminal trials). Indeed, to ignore 
base-rates can produce an overestimation of probabilities of target events in a problem 
given. Besides the characterization of the base-rate fallacy, educational research has also 
characterized the next students’ difficulties related to the wider concept of conditional 
probability: 

• Translation of natural language to symbolic language. As shown in the 
taxi problem, knowledge of the symbolic expression of Bayes' theorem is 
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not enough to solve Bayesian problems found at the school level. These are 
usually formulated in natural language, and one must identify all 
components embedded in Bayes’ theorem. Perceiving and distinguishing 
between simple, compound, and conditional probabilities in the text of a 
problem is a necessary requirement for applying Bayes' theorem in problem 
solving, but making such distinctions also constitutes serious learning 
difficulties for students. (Díaz, Ortiz & Serrano, 2007) 
 

• Fallacy of the transposed conditional. Students frequently believe the fact 
that conditional probabilities and its transposed version were the same, i.e., 
they assume that 𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴). Difficulties for distinguishing each are 
highlighted when such probabilities must be identified in information 
expressed verbally in a problems’ text. (Falk, 1986; Ojeda, 1994; Yáñez, 
2003; Díaz & de la Fuente, 2006) 
 

• Causal and chronological conceptions of conditional probability. 
Frequently, events that intervene in a conditional probability are organized 
through causal schemes because the situations’ context suggests cause-
effect relationships that are not significant to the problem. Time is involved 
in many contexts and can easily call for a chronologist conception of 
probability when is assumed that affects the outcome of the problem. 
(Tversky & Kahneman, 1980; Falk, 1986; Gras & Totohasina, 1995) 
 

One final thought is that McGrayne's research on the development of Bayes' theorem may 
suggest new directions in educational research. Statistics education research should 
explore forms of introducing Bayes, guided by the central idea of answering the question: 
How to use evidence to update our knowledge? Attention to the development of a 
Bayesian component in teaching must solve the problem of how and when to introduce 
the subjective approach to probability. Although subjective probability is mentioned in 
several educational studies, it is not included in the statistics curriculum of pre-university 
levels and, despite the recommendations of Hawkins and Kapadia (1984), the research 
does not seem to offer any alternative yet for teaching the subjective approach to 
probability. It would also be necessary to find new problems for teaching related to the 
current applications of Bayes' theorem which could be supported with technological 
resources. It is necessary that we understand how the problem of learning and teaching 
Bayesian reasoning is transformed with the availability of technological resources. 
Progress in these aspects can constitute concrete referents to understand the theory of 
Bayesian statistics.  
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