

Taxonomy Of Security and Privacy Issues in Serverless Computing

by

Vasanta Swarna Ratnam Pusuluri
Master’s in information assurance, St. Cloud State University, St. Cloud, 2021

5/5/2022

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science in

Information Assurance

June, 2022

Starred Paper Committee:
Abu Hussein, Abdullah, Chairperson

Lynn Collen
Akalanka Mailewa

2

Abstract

The advent of cloud computing has led to a new era of computer usage. Networking, and

physical security are some of the IT infrastructure concerns that IT administrators around

the world had to worry about for their individual environments. Cloud computing took away

that burden and redefined the meaning of IT administrators. Serverless computing as it

relates to secure software development is creating the same kind of change. Developers

can quickly spin up a secure development environment in a matter of minutes without

having to worry about any of the underlying infrastructure setups. In the paper, we will

look at the merits and demerits of serverless computing, what is drawing the demand for

serverless computing among developers, the security and privacy issues of serverless

technology, and detail the parameters to consider when setting up and using a secure

development environment based on serverless computing.

3

Table of Contents

 Page

List of Figures...5

Chapter

 I. Introduction .. 6

 Introduction ... 6

 Problem Statement ... 7

 Nature and Significance of the Problem .. 8

 Objective of the Study ... 9

 Study Questions/Hypotheses .. 9

 Definition of Terms ... 10

 Summary .. 11

 II. Background and Review of Literature .. 12

 Introduction ... 12

 Background Related to the Problem .. 12

 Characteristics of Serverless Computing ... 14

 Literature Related to the Problem ... 16

 Literature Related to the Methodology .. 20

 Summary ... 26

 III. Methodology .. 27

 Introduction ... 27

4

Chapter Page

 Design of the Study ... 27

 Data Collection ... 30

 IV. Data Presentation and Analysis ... 34

 Introduction ... 34

 Data Presentation ... 34

 Data Analysis .. 109

 Summary .. 109

 V. Results, Conclusion, and Recommendations ... 110

 Introduction ... 110

 Results .. 110

 Conclusion .. 112

 Future Work .. 113

References ... 114

5

List of Figures

Figure Page

1. Serverless Architecture...13

2. Data Collection..31

3. Analyzing and interpreting the data...32

4. Classification of the data...33

5. Taxonomy of Serverless Computing.. 35

6. Taxonomy of Development tools.. 73

6

Chapter I: Introduction

Introduction

 There was a time where cloud computing was so popular among everyone in the

IT field. It gave an opportunity to abstract the physical hosting environment. Later, the

hosting environments have been scaled down by hosting different hardware units. Since

the beginning of another era in the IT industry with the concept of virtualization, virtual

machines in the cloud have been put in service. Then cloud services increased their

intensity by providing a platform as a service (PAAS). The Operating systems with run

time shared within the cloud. Then vendors started sharing software and applications

within the cloud and the users no longer had to worry about the infrastructure and any

underutilized resources. Without noticing people have stepped into the serverless era of

cloud computing. Now the function-based scaling was reached which is also referred to

as the serverless architecture.

Serverless computing is an emerging technology and became a controversial topic

in no time. It allows to build, and run the applications besides worrying about the servers,

thereby providing seamless hosting and execution environment. But it is still a new

technology, and the developers are trying to get familiar with its functionality and security

features. Hence, this paper discusses these topics to make the developers understand

their role and responsibility security-wise when they work in serverless computing to keep

the serverless environment safe from attackers.

This paper provides a state-of-the-art survey that dives deep into serverless

computing with intention of providing a piece of sound knowledge to the reader to educate

7

themselves with its pros and cons on serverless technology. Starting from the serverless

architecture, the discussion will be continued about its attributes by putting more weight

on security and privacy issues. This paper distinguishes serverless architecture from the

traditional cloud architecture and explores why developers would want to use serverless

computing in their applications and how it affects software development. Furthermore,

serverless enabling technologies will be introduced along with their characteristics. Later,

the contemporary security and privacy issues related to serverless computing will be

discussed and will be specified if there are any security features implemented to mitigate

security risks by defending against these security and privacy issues.

Problem Statement

Serverless computing aids in running the applications without worrying about the

servers. However, the underlying infrastructure like servers belongs to third parties. So,

the developers do not have full control of the system and its data flow which results in

security and privacy issues. The prevailing solutions are designed based upon the

traditional vulnerabilities, but the security evolves whiles the attackers keep shifting their

strategies. Hence, we are talking about the problem that is different from the classical

application. The serverless technology relies on Functional as a Service (Faas) and the

functions concerning the application are available to the public. It is running on the shared

platforms, which creates a potential way for attackers to perform malicious activities. The

solutions for the serverless security attacks are derived using static analyzing functions

which restricts to few policies. This results in increasing the attack surface. Also, there is

8

very little monitoring in serverless applications. Hence tracking of all the attacks is a big

concern. This is a new technology that is more suspectable to zero-day attacks. Some of

the subproblems are Overprivileged Function Permissions, using third party

dependencies that are not secure, and Cross-Execution Data Persistency

Nature and Significance of the Problem

 According to the NEWSTACK 2018, more than 75% of the developers and users

plan or to apply serverless computing as a business solution (Rice, 2018). There is no

assurance from the providers to ensure security. With all the security flaws, it makes the

system vulnerable.

Example:

AWS Lambda which is a serverless service was once pruned to DDOS attack This, in

turn, led to outages to many different services that use the same public DNS (“Could

Zombie Toasters DDoS My Serverless Deployment?,” 2017).

The breach that happened on Cloudflare which was named Cloud bleed caused a

memory leak of their customer's data (Conger, TechCrunch, 2017). Hence the company

has requested all its customers to rotate their passwords.

An intruder gained access to 100 million Americans and 6 million Canadians personal

information of Capital one credit card customers that store their data in AWS (Sheridan,

2019).

9

The Pursec audit states that their serverless projects have one or more critical

vulnerabilities or misconfigurations (Ltd, 2018). Few of the projects share confidential data

such as the API keys and the credentials through publicly available code repositories.

Around 1,00,000 GitHub repos have leaked their API tokens and cryptographic keys

(Catalin, 2019).

Objective of the Study

 The objective of the study is to educate users and developers on the security and

privacy issues in serverless computing. This study also provides the mitigation techniques

for the identified concerns, thereby enabling serverless technologies.

Study Questions/Hypotheses

What are the Security and privacy issues concerning serverless technology?

How to detect the vulnerabilities in serverless computing?

How to respond to the incidents?

What to protect while using serverless?

What are the current trends and open problems?

How users should protect themselves while using serverless computing

Definition of Terms

FAAS – Function as a Service – The Function as a service allows their customers to build,

run and maintain the applications without worrying about the complexity, infrastructure.

An example of this service is serverless. The services are maintained by third party API’S

10

Serverless Computing – The Serverless computing allows the developers to develop and

build the applications without worrying about the servers and the maintainance. The

serverless vendors take care of the servers

PAAS – Platform as a Service – This service offers software and hardware over the

internet. Application and the data are managed by the customers

Cloud Computing – The computer services that are available to the customers without

managing the resources. All the services in the cloud are delivered through the internet

IAAS – Internet as a service – This is typically a cloud-based service, in which the

computer, storage, and the network can be accessed using the internet. Application, data,

OS is managed by the customers

IT – Information Technology – It is the study of computer, networks, and

telecommunication which focuses on accessing, storing, managing and sending the data

API - Application Programming Interface – The intermediate software that connects

different applications to communicate with each other through this interface.

Zero-day attacks – the attack that is performed before the weakness on the system is

discovered and the solution for the vulnerability is being identified

Cloud Foundry (multi-code application platforms) - IBM uses cloud foundry to build and

deploy code, while they coordinate with the given services which ensure fast deployment

of cloud-based applications (IBM Cloud Foundry - Overview, 2021)

AWS - Amazon Web Services – Amazon launched reliable and inexpensive services

which are named AWS. This web service allows pay-as-you-go service which attracted

11

most of the developers to build their applications. (Amazon Web Services (AWS) - Cloud

Computing Services, 2021)

DDoS – Distributed Denial of Service Attack – The Attack that disrupts the normal traffic

which makes services become unavailable (What is a DDoS Attack?, 2020)

Malware – This is software that damages the system, network, or gains unauthorized

access to a PC

SQL Injection – This attack occurs by injecting malicious SQL statements there by gaining

access to the application, modify data, and disclosure the data

Cross-Site Scripting(XSS) – This attack occurs by injecting malicious scripts into the

websites and access users’ data by gaining full control of the system

Summary

 This chapter has covered the introduction to our research on serverless computing.

We have discussed the problems concerning serverless technologies and the nature of

the problem by providing the security threats that have happened in the real world. We

have also discussed the hypothesis on which we are going to work in the future chapters

12

Chapter II: Background and Review of Literature

Introduction

 This chapter gives in-depth knowledge on serverless computing security and

privacy issues. All the security concerns that were faced by this technology will be

elaborated in depth by providing real-time events. Later, the background related to the

problem and the architecture will be discussed.

Background Related to the Problem

 Earlier, system admins would take care of all the memory allocation, servers,

drivers, upgrades, installations, etc. This process is known as the “Bare-Metal”

environment (Retter, 2021). Then, Virtual machines came into the spotlight. This made

developer's life so easy by enabling them to switch from one server to another. Later,

containerization technologies were used. This enables multiple applications to run on the

same system without interfering with each other. Finally, serverless came into existence

which was developed by Austen Collins and introduced in October 2015 (“Serverless

Framework,” 2021). Amazon AWS lambda first builds the serverless framework using

Node.js. This relies on Function as a service (FAAS). Small chunks of code or functions

are taken as inputs, processes, return the results and shutdown. The cloud providers take

care of the Server or cluster provisioning, Patching, Operating system maintenance,

Capacity provisioning,

Administering servers for backend components (compute, databases, storage, stream

processing, message queueing, etc.). Developers can build the system using serverless

without worrying about the infrastructure, maintenance, servers, hardware, etc. After

13

serverless was introduced, many other providers came up with varying processes,

features that can support multiple technologies. It has the auto-scaling service that makes

this technology easier to maintain and build. Since it is a new and emerging technology,

there are few issues that make serverless vulnerable. The below figure depicts how

serverless technology works

Figure 1

Serverless Architecture

The popular serverless providers are Amazon AWS Lambda, Google cloud

functions, Microsoft Azure, Apache open whisk, Tencent SCF, IBM cloud functions,

14

Cloudflare Workers, Kubeless, Knative, Alibaba cloud, Spotinst, Fn (Serverless

Infrastructure Providers, 2020).

Characteristics of serverless computing:

Below are the various characteristics that define serverless computing

1. Stateless: Stateless is a typical characteristic of serverless computing. Using

Function as a service (FAAS), nothing is stored in the memory as the code is

automatically created and deleted by our own platform. So, by this more instances can

be signed up. The only disadvantage in this characteristic is that one will not be able to

use HTTP session’s

2. Efficient: Serverless enables efficiency by allowing the developers to pay for the

resources that are being used. It follows the pay-as-you-go billing model

3. Auto-Scaling: Resources made available as the request comes in and is

managed automatically. For example, Amazon Aurora Serverless provides auto-scaling,

on-demand by automatically starting and shutting down the databases and scale capacity

based on application needs(Amazon Aurora Serverless, 2021)

4. Security: Security is a big concern nowadays, however serverless plays its best

to provide security in all aspects. Serverless considers all the vulnerabilities and follows

the best practices like regular patching, adopting principles of least privileges, fumigate

all the inputs, monitor, and log functions. Also, as the memory is not stored it has a very

low risk of long-term attacks. For example, in AWS Lambda all the communications were

encrypted with Transport Layer Security

15

5. Debugging: Serverless supports debugging for their developers by enabling

them to find the errors and bottlenecks

6. Programming languages: Serverless supports many programming languages

for their developers. They can choose a language based upon their choice to build any

applications in the serverless platform. For example, AWS supports C#, Java, Python,

Node.js, Ruby, PowerShell, and Go(Heath, 2019). They also enable runtime API which

makes them to use additional programming language

7. Composability: Functions in one serverless can be invoked from others which

makes easy computation and development of complex serverless applications.

8. Hostless: With the serverless architecture, users need not worry about the

servers, upgrades, or security patches. This reduces the operational costs. They can

simply install and run the application with little knowledge of the application

configurations(Nazariy, 2019)

As mentioned above, serverless works with Functions as a Service (FaaS). First,

the developers or the users write the function to provide a precise objective. Then, he

defines the event to trigger the cloud service. The cloud service provider verifies if the

function instance is being used or not. If it is not used, the new function starts. The user

can see the executed function results inside the application(Johnson, 2019).

As the coin has two sides, there are certain limitations with serverless computing.

1. Lack of Control: The serverless is provided by third-party API’s. The

configurations are limited, and the users will not be exposed to different

configurations. Also, if an issue occurs other than the one in code and

16

configurations, the user will not have control over the issues, and it can only be

resolved by the platform provider

2. Security: There is no surprise that serverless technology has vulnerabilities as

it is very new and can be prone to security issues. Firstly, it uses different

providers across multiple regions. This compromises security. Secondly, this

new technology is susceptible to a new type of risk such as security

orchestration challenges and perimeter fragmentation (Sollow , July 10 2020).

All these factors compromise the security

3. Debugging and testing: It is difficult to debug and test complex applications

because of the infrastructure and distributed platform. It might be possible to

use third-party tools, but the users might face integrations and security issues(

Roberts et al., 2021b)

4. Performance: Due to its abstraction i.e., hiding of code execution details,

serverless tend to show poor performance

5. Vendor Lock-In: The API acts as an interface between customers and

serverless functions and there is a possibility of lock-in happening at this level.

The vendor lock-in makes users dependable on the service providers. This

makes it difficult for them to migrate from one application to another as the

architecture needs to be remodeled (says, 2018)

Literature Related to the Problem

17

According to the dataset of Synk, most of the data breaches occurred due to the

common vulnerabilities

AWS Lambda was once pruned to DDOS attack which was persistent for 8 hours

and the services went unavailable from 10:30 AM to 6:30 PM PDT in 2019. This, in turn,

led to outages to many different services that use the same public DNS (Staff, 2019). All

the customers were informed that the outage occurred due to a DDoS attack. Currently,

amazon stared using shield advance to protect its services from such attacks. Google

Cloud which also uses the serverless platform has reported a DDoS attack in September

2017, causing 2.5 Tbps in traffic. It was lasted for six months and targeted thousands of

their IP addresses. The attack did not cause any impact, but this leads to the disclose of

many vulnerable servers (Kovas, October 19 2020).

The most popular OTT platform Netflix uses serverless architecture and runs using

AWS Lambda. Even the coco-cola vending machines use AWS serverless framework.

The Distributed Denial Of Service (DDOS) attacks resulted in downtime of Netflix servers.

New York Times which also uses serverless architecture was affected by this attack. This

resulted in users not being able to use their websites (Duc, 2019).

Cloudflare which uses serverless functions, once reported that the vulnerability in

their website caused a data leak which was named as Cloud Bleed attack that occurred

on September 22, 2016. This resulted in the leaking of customer messages, passwords,

hotel bookings, etc. This impacted the companies like Fitbit, uber, OK Cupid, and around

3,400 websites that use Cloudflare software (Ahmed, March 6, 2017). Cloudflare has

requested all its customers to rotate their passwords(Baisakhiya, 2017).

18

Puresec is designated as the security partner of AWS lambda. The Pursec audit

was conducted on open-source serverless projects and it stated that 21% of those

projects have one or more critical vulnerabilities or misconfigurations (Ltd, 2018). 6% of

the projects have application secrets that lead to sharing of confidential data such as the

API keys and the credentials through the publicly available code repositories. It also

stated that the software developers should be aware of the security risks and should gain

knowledge on how to protect their applications while building with serverless. This is

stated because it reported that those vulnerabilities and weaknesses were due to poor

security practices.

One of the vulnerabilities in the AWS lambda function is that the Identity and

access management (IAM) is not versioned through the current Lambda functions. This

increases the usage of numerous versions of the identical function and causes trouble to

add or remove permissions. The recent incident on Amazon AWS services happened

where the credentials are being stolen. It was found that TeamTNT access the docker

containers to install malware which is known as crypto-mining malware. This malware

botnet steals the credentials and also affects multiple servers by deploying more crypto-

miners (Cimpanu, 2021).

Capital, one has suffered from a data breach on July 29, 2019, where the intruder

gained access to 6 million Canadians and 100 million Americans personal information of

their credit card customers. Around 1,40,000 of their social security numbers and 80,000

of the bank accounts have also been compromised. All the data that has been leaked

was stored in the AWS and the reports state that the vulnerability in the AWS has caused

19

the data leaks. Around $150 million incremental cost has been experienced by Capital

One due to this data breach (Lu, 2019).

According to Zhang et al., 2019, Serverless applications can sometimes be over-

headed as they are stored remotely. Hence, Shredder is used to interact with the data

directly within the storage nodes. But there was a speculative execution attack that rooted

data leaks. This occurred due to the side-channel attack that caused to leak victim’s

confidential data. Not only the manufactures but also the run-time developers worked to

mitigate the attacks. Shredders are prone to this type of attack (confidentiality risks) even

if the mitigation strategies are being imposed on them.

As a part of the study, the research implemented a code-injection attack on AWS

lambda. The hackers were able to leak about 170 bits/second (Alpernas et al., 2018) and

proved that the termination channels in serverless computing lead to the security breach.

In addition to this, there are many companies that depend on AWS to perform

certain operations. For example, The OneLogin company was hacked on May 31, 2017,

at 2 am PST where the customer database was being accessed by the hackers. This

reveals not only the sensitive information about their customers, but also creates a

pathway for the hackers to access a set of AWS keys and which makes them to access

AWS API. This also affected 2000 companies and 300 app vendors that use OneLogin

as a single sign-on for cloud applications (OneLogin: Breach Exposed Ability to Decrypt

Data — Krebs on Security, 2017).

Literature Related to the Methodology

20

 The paper Maissen et al. (2020) discusses the main providers of serverless

computing and made a detailed report on their offerings as a cloud provider. According

to their research, AWS lambda was the best of all the serverless providers as it has

consistency in reliability and performance. But it lacks in certain features such as some

security measures which require changing of API’s frequently i.e., in about 30 seconds

which reduces the productivity for developers and testing functions. Microsoft azure

functions performance is less compared to AWS lambda. It is not suitable for short

sessions, as it takes 2 to 4 seconds for the cold start latency. It uses supplementary tools

for local debugging. The Google cloud providers have a well-structured web portal and

proper command-line interface tool. This has the higher cold start latency which is higher

compared to AWS and IBM cloud functions. But there are few drawbacks such as the

deployers have only limited configuration options. The monitoring tool lags in time which

prevents them from prompt involvement. IBM Cloud functions are available to the public

for free. It helps to perform quick tests by invoking the functions. This contains less waiting

time. The main drawback for the cloud function is that it has low performance as the

support for the runtime environment is very low and the cloud foundry (multi-code

application platforms) supports only willful regions.

According to the blog written by Elena (User, 2020), serverless applications run on

event-triggered stateless containers. Developers take care of code, data in cloud and

transit, application logic, and configurations whereas serverless providers take care of

servers, networks, data centers, storage, containers, OS, and their configurations. As the

serverless is provided by third parties, there is no guarantee of security. If the code is not

21

proper, it can be prone to Denial of service (DOS), Cross-site scripting, SQL injection,

Broken authorization, and authentication, etc. The outdated third-party libraries cause a

pathway for the attackers to hack into the system. The usage of APIs, cloud storage,

HTTPS can increase the attack surface. The customization option provided by the

serverless can lead to vulnerabilities if they are not set properly. She proposed the

techniques to bypass the security issues by encrypting all the passwords used, using key

vaults to secure sensitive information. Improper use of APIs needs to be eliminated and

HTTP requests need to be validated. Static, Dynamic, and interactive security testing

techniques need to be applied to identify weaknesses. Using monitoring tools like rook

out, IO pipe helps to identify performance and monitor logs.

According to Jegan et al. (2020), serverless applications can be protected using

SecLambda as existing solutions don’t have enough security. Basically, serverless

applications are divided into small functions and those functions perform specific tasks.

Function instance is called when there are requests to process them. Once the request

is being handled, the function is paused, and the users pay only for the used sources. As

the security challenges increases, log-based anomaly detection tools and traditional

Vulnerability scanning tools are not sufficient to overcome the security concerns. In

SecLambda, a function runs in a modified container which makes the current function to

be in guard mode. This Guard contains a security function depending upon the function

states. According to Puresec (Cloud Workload Protection Platform. Prisma, 2020), one

vulnerable function can lead to virtual crypto mining without being identified by the user.

The SecLambda protects serverless applications by supporting the security policies. This

22

mainly consists of the guard, function runtime, and controller. The controller manages the

security functions whereas the guard executes those security functions based on user

security policies. This SecLambda helps to prevent data leaks, injection attacks, DOS

attacks.

According to Jindal et al. (2021) Serverless applications run based upon the

Function-as-a-service, hence the applications are divided in the form of simple functions

and are uploaded to the FAAS platform. Those functions are stateless. They are only

invoked when the user sends the HTTP request in the FAAS platform. The FAAS platform

then helps to deploy and promote the resources to the application functions. All the

serverless providers have the FAAS platforms and some are available in the form of

Kubernetes. This paper talks about the Apache open whisk, Google cloud platform, and

OpenFass. But there are many other platforms that use serverless architecture such as

Amazon AWS Lambda, Tencent SCF, Microsoft Azure, IBM cloud functions, Cloudflare

Workers, Kubeless, etc.

The research paper Baldini et al. (2017) describes the open problems and current

trends of serverless computing. The good thing about serverless is that it scales to zero

and will not charge for the inactive time. But this in turn causes cold starts which require

some time when invoked for running up the serverless applications. This makes functions

longer time than usual to execute. As the functions run on the shared platforms, isolation

of those is critical. To guarantee scalability of the functions, it supplies responses to the

load and anticipates future load. This can be challenging as the decisions are made with

little application knowledge. Also, multiple serverless platforms and services need to work

23

together with an increase in popularity and there is no guarantee that all the use cases

will work in those platforms. Only the developers have control over the supporting tools

and what code is deployed. Serverless have limited execution time while some programs

might require more execution times. Serverless is stateless, but some real application

requires state. Hence, it would be difficult to maintain a state for such applications. This

paper discusses some open problems in serverless such as scope i.e., whether it is

restricted to the Function-as-a-service, or can it also include other models? In addition to

the stateless functions, can serverless computing deal with the state? Currently, the

serverless code runs on traditional data centers. Will it also be able to run outside those

data centers?

The paper Shafiei et al. (2019) discusses the application of serverless technology

in the real world. The stateless nature of serverless makes it suitable for real-time

collaboration tools like chatbots, instant messaging tools, real-time tracking. This is used

for data analytics where real-time data is streamed into serverless service. The large data

can be handled with its auto-scaling feature. Stream Alert is an intrusion detection tool

built using AWS Lambda. Serverless architecture automatically secures sensitive

information in the public cloud. This also supports IoT services like Kappa platforms that

support parallel computing. The serverless technology supports scientific computing such

as RNA, DNA computing. The video processing frameworks like Sprocket uses serverless

technology. This results in lower cost and lower latency. The pay-as-you-go makes

industrial services like gas and oil field management systems use serverless. Hence, this

paper proves that serverless is used almost in all fields.

24

Serverless computing is a way of providing backend services, a platform that hides

server usage from developers. The platform is provided by a cloud provider who runs the

server and manages dynamically the allocation of machine resources. The architecture

of Serverless allows users to write and deploy code without the bother of worrying about

the underlying infrastructure. In the early days of the web, anyone who wanted to build a

web application had to have his own physical hardware in other to run a server which was

expensive and required a lot of work. The term 'serverless', meaning not using servers

can be referred to as peer-to-peer (P2P) software or client-side only solutions. In the cloud

context, the current serverless landscape can be said to have come about during an

Amazon Web Service (AWS) reinvent event in 2014 and from then, multiple cloud

providers, industrial, and academic institutions have come about with their own serverless

platforms. Serverless appears to be the natural progression following recent

advancements and adoption of Virtual Machine (VM) and container technologies, where

each step up the notion layers led to more lightweight units of computation in terms of

resource consumption, cost, and speed of development and deployment. Serverless

builds upon long-running trends and advances in both distributed systems, publish-

subscribe systems, and event-driven programming models, including actor models,

reactive programming, and active database systems. Serverless removes infrastructure

management responsibilities such as a server or cluster provisioning, patching, operating

system maintenance, and capacity provisioning. You can build them for almost any type

of application or backend service, and everything required to run and scale your

application with high availability is handled for you.

25

Serverless enables you to build modern applications with increased handiness and

a lower total cost of ownership. Building serverless applications means that your

developers can focus on their core product instead of worrying about managing and

operating servers or runtimes, either in the cloud or on-premises. This reduced overhead

lets developers reclaim time and energy that can be spent on developing great products

which scale and that are reliable. According to NIST, PaaS is defined as "the capability

provided to the consumer is to deploy onto the cloud infrastructure consumer-created or

acquired applications created using programming languages and tools supported by the

provider. Here the consumer does not manage or has no control on the underlying cloud

infrastructure which includes network, servers, operating systems, or storage, but rather

has control over the deployed applications and any other possible application hosting

environment configurations." With this definition, users are expected to manage the

distribution of applications and have control over accommodating environment

configurations. With Serverless FaaS, user control over hosting is removed. This paves

the way for simpler scaling and a more attractive billing model. Here the cloud provider

has control over the hosting environment's configuration and runs user-provided code

only when it is invoked, and only. That is a significant change when compared to that of

PaaS. FaaS is very attractive for PaaS users as they do not need to pay for idle resources

and avoid managing rules when it comes to auto-scaling. The main thing that

distinguishes serverless platforms is transparent autoscaling and the process where you

are charged only when code is running.

26

Serverless computing is rapidly gaining attention from IT practitioners and

academics alike. Serverless computing is an emerging cloud computing paradigm that

provides a platform to efficiently develop and deploy applications to the market without

having to manage any underlying infrastructure. Everything shows that serverless

computing is the future and the way to go, there is still more to develop and improve upon

this new and evolving technology with regards to its enormous benefits and potential to

change the face of information technology.

Summary

 This chapter briefly addresses serverless technology security and privacy issues.

Background related to the problem was discussed which addresses the latest and past

security incidents that have taken place in serverless technologies. Later the literature

review was discussed which talks about the other research paper that has put focus on

serverless security features. It was divided into two parts i.e., literature review related to

the background and literature review related to methodology. The literature review related

to the background discusses everything on what is serverless computing, the types, and

characteristics of serverless technology, where this technology is being used, and how it

is used. The literature review related to the problem discusses the security problems of

serverless computing, the incidents that have taken place, and discuss the security and

privacy issues that are studied by other researchers.

Chapter III: Methodology

Introduction

27

 The current chapter discusses the plan to address the issues that were mentioned

in the previous chapter. I did investigation to achieve desired goals. Some of the

questions that are addressed has been mentioned below

1. How to detect and identify vulnerabilities in serverless computing?

2. Different problems are mentioned in the previous chapters. How can we drive

solutions to the mentioned problems?

3. There are different tools available such as Open-source tools like SecLambda.

What are the ways to protect those tools?

4. How to protect the systems that use serverless technologies?

5. How should users or developers take care while using the serverless technology?

6. What are the Security and privacy issues concerning serverless technology?

The above questions provide a pathway for the data to be collected, tools and techniques

to be used, and help to analyze and interpret the data.

Design of the Study

Q1 addresses identifying vulnerabilities in serverless technology and how to overcome

those vulnerabilities and protect the systems. This is found in Google scholar, news

articles, and blogs from the time of 2015 till now. This study helped me to achieve the

bugs in the technology that causes data losses or other security issues. Once, the

vulnerabilities are identified and resolved the serverless technology becomes a useful

tool for the users or developers to use. The keywords that helped me to identify the

28

expected results are Vulnerabilities in serverless, security and privacy issues in

serverless, serverless latest attacks, what are the measures taken by the serverless

providers to overcome the vulnerabilities in their systems.

Q2 was approached by reading the problems that are mentioned in chapter 1,

understanding the problems, and analyzing the solutions. This was achieved by doing a

thorough investigation in google scholar and news articles. News articles and blogs

related to serverless computing discusses the open problems that are encountered in

serverless. This is significant as the problems are the core of this research paper and aid

to identify the solutions when the issues are recognized. The keywords that helped to

answer this question are Serverless security and privacy issues, how to overcome

security issues in serverless technology, latest incidents in serverless computing (Latest

includes incidents that have taken place from 2015 till 2021)

Q3 was addressed by conducting a thorough investigation using the article provided by

the researcher who has introduced the SecLambda Tool. The keywords that helped me

to identify the potentialities to protect this tool are SecLambda tool protection, SecLambda

security issues, design methods. Google Scholar helped me to find the paper that

presents this tool. The timespan was 2020 as this tool was introduced recently

Q4 discussed on How to protect the systems that use serverless technologies. This was

done by examining the system’s that uses serverless, the policies that those systems or

organization supports and the implementation methods of serverless computing. By

analyzing the data, the vulnerabilities were identified, and solutions or improvements

29

rendered the systems. The keywords that helped to solve this question are a system that

uses serverless technology, serverless technology service providers, serverless

architecture, Using serverless technology to a platform. The timeline for the search was

most advanced i.e., 2019, 2020, and 2021 as the system and protection against the

systems keeps evolving.

Q5 discussed how users or developers should take care while using serverless

technology. This was investigated by reading the serverless provider's websites as they

talk about the security and privacy issues of their tools. This acts as a knowledge input

for the developers to use the serverless system considering those facts provided in the

serverless provider websites. This tender’s developers use the application without any

vulnerabilities. The timespan of this search was from 2019 as the latest results yield the

most advanced outcomes

Q6 talked about the Security and privacy issues concerning serverless technology. The

results assisted the reader to understand the concerns in serverless technology, thus

further serves to settle the issues based upon the yields attained in this study. The

developer can build the application using serverless by acknowledging these concerns.

The time span of the study started from the period where serverless came into existence

i.e., from 2015 as we discussed the past issues, latest issues and analyzed them. The

results were found in google scholar, blogs, news articles, serverless provider websites

like AWS lambda which has documentation on the security issues that were being

addressed.

30

Data Collection

 As mentioned in the design of the study, data was collected using Google

Scholars, Blogs related to serverless, new articles on serverless incidents, serverless

provider websites as they discussed more the security and privacy features of their tools,

journals, etc. The data was listed as a taxonomy that contains serverless security and

privacy issues and countermeasures. The period started from 2015 as serverless first

introduced in 2015 by amazon which is named AWS Lambda. Firstly, I investigated the

questions that were discussed in the design of the study, later I analyzed the collected

information and classified it in a taxonomy. This process will be explained better using the

following diagram.

Figure 2

Data Collection

31

Figure 3

Analyzing and interpreting the data

32

Figure 4

Classification of the data

33

34

Chapter IV: Data Presentation and Analysis

Introduction

 This chapter clearly present the in-depth analysis of the serverless technologies,

the taxonomy that defines its security issues, providers, use cases and mitigations to

the security issues in serverless computing. Based on the design each attribute are

defined and elaborated.

Data Presentation

 The taxonomy below contains several branches, and each branch is

divided into sub sections. Each section clearly defines the security and privacy issues in

serverless technology, what are the root causes of those issues, the platforms that the

technology is built upon, it’s features and use cases. Figure 5 explains the overall

features of serverless, and Figure 6 describes the Development tools

35

Figure 5

Taxonomy of Serverless Computing

Taxonomy of security and privacy
issues in serverless Technology

Attack

Type

injection attacks

Distributed Denial of
service

Sensitive data
exposure

Broken
Authentication

Execution flow
manipulation

Protection against
attacks

Protection against
Distributed Denial of

service:

Protection against
injection attacks:

Prevention against
sensitive data

exposure:

Disaster recovery

Intrusion Detection

Vulnerability
Scanning

Rootcause

weak authentication

Third-Party
Dependencies

Exception Handling

Serverless
Deployment

Configuration

Logging

Input Sanitization

Least privilege

Patch function
dependencies

Isolated function
perimeter

Secrets Management

Data in Transit

C.I.A. Triad

Confidentiality

Integrity

Availability

Platform

Commercial

AWS Lambda

Microsoft Azure

Google Cloud

Alibaba Cloud

IBM Cloud

Tencent SCF

Opensource

ApacheOpenWhisk

Kubeless

OpenFaas

Fission

Features

Development Tools

Domains

Service Integrations

Programming
Languages

Scalability

Reduced cost

Decreased Latency

Quick deployments
and updates

Vulnerabilities and
mitigations

Vendor-lock in

Cold Starts

Less Control

Difficult to debug

Low privacy

Use Cases

IoT

Continuous
Integration

Data Processing

Web and Mobile
applicatiosn

Micro Services

Cloud Automation
and CRON jobs

API backends

36

The above picture depicts the serverless computing taxonomy that consists of different

attributes. As shown in the picture it is comprised of several dimensions such as Attack,

C.I.A. Triad, serverless platforms. Each dimension has been divided into several

subcategories. The C.I.A. Triad has been defined as Confidentiality, Integrity, and

Availability. The attack is divided into Attack types, Protection against the given attacks,

Root cause, and the attack impacts. The platform is then categorized into commercial

and Opensource platforms. Subsections are explained below.

A. Attack

This paper talks about the attacks that occur regularly in serverless computing.

i) Attack Types:

1. Injection Attacks: The attack that allows users to enter malicious inputs

that alters the program execution. This happens when the inputs are

performed without proper verification. Lambdas run on operating

systems and send HTTP requests to the URLs. Similarly, the attacker

can perform the same and send the variables to some random link. This

leaks sensitive data (Injection Attacks, February 28, 2019). The event

data which are the additional inputs to the serverless application cause

possible injection attacks. There are several types of injection attacks

that can occur in serverless technologies.

1) Event Data Injection: The serverless technologies perform

in a way that it accepts even inputs. This in turn increases

the possibility of data injection attacks. HTTPS or API calls

37

can be hijacked. The security tools are not yet acclimated

to this kind of vulnerability testing.

2) Command injections: This injection occurs when the

commands execute against the operating systems. The

attacker passes the commands through the URL and

reads the contents of the file causing injection attacks.

3) SQL Injection: SQL injection is a very common injection

attack across the web. This occurs when the hacker

obtains the records in the database bypassing SQL

queries in the input filed. The attackers can delete, modify,

and can execute admin operations. The event sources

increase the attack surface.

4) Cross-Site Scripting (XSS): This occurs when the inputs

given by the user are not being validated before accepting.

JavaScript has a higher chance of XSS including java,

ActiveX, and VB Scripting (Yagolnitze, June 3 2020).

Emails and cloud storage can lead to this kind of attack in

serverless technologies.

2. Distributed Denial of service: A Denial-of-service attack is to make the

resource, website, or application unavailable. DDOS also makes the

website unavailable by flooding with the traffic using multiple sources.

Default limits or executions make the serverless vulnerable to DDoS

38

Attacks. Defaults such as pre-memory allocation functions execution

limits, number of pre-defined processors, and disk capacity (Security

Risks Arising from Serverless Technology, Jan 21, 2021). HTTP flood

attacks are the most common DDoS attacks where a huge amount of

HTTP requests occur. The network is infected by bots and the group of

bots is referred to as zombies. The botnet sends requests to the IP

address and interrupts the normal traffic flow which in turn results in

Distributed Denial of Service attack. Denial of the wallet is quite similar

to the DoS attack, but this attack leads to the financial loss of an

individual since it targets mostly serverless users. This Dow will make

the site available but leads to bankruptcy. If the vendor serverless is

insecure, this leads to the Dow attacks.

3. Sensitive data exposure: It is defined as thieving legible data, stealing

keys, or executing attacks such as man-in-the-middle attacks. The

attackers can read the database tables, access cloud storage such as

s3. The most common cause for sensitive data exposure can be not

using encryption techniques such as cryptography protocols, storing the

data in the temp directory, and not deleting the data after use can lead

to weakness.

4. Broken Authentication: Attackers can bypass the logic of applications

and manipulate their flow when there is weak authentication. It also

exposes potentially executing functions as well as performing actions

39

that were not supposed to be exposed to unauthenticated users.

Developers are advised not to commit resources in building

authentication systems but rather use authentication systems provided

by the serverless vendor. Broken authentication occurs when the design

is poor or when the access controls are not in place. Attackers use the

resources such as cloud, open APIs that can lead to exploiting the

internal resources, data leakage, and break the flow execution.

5. Execution flow manipulation: The hackers subvert the logic which in turn

modifies the application flow. This leads to denial-of-service attacks and

access control bypass. Since the serverless technologies follow the

microservice design patterns and this follows a certain flow of execution.

If a malicious user enters the system at a certain step, he will consume

all the available resources of the system and deny other system user

services. This can be prevented by having access controls in place

rather than assuming the execution flow (The Ten Most Critical Risks for

Serverless Applications v1.0, 2018/2022).

ii) Protection against the attack:

1. Protection against Distributed Denial of service:

A Denial-of-service attack is to make the resource, website, or

application unavailable. DDOS also makes the website unavailable by

flooding with the traffic using multiple sources. This can be prevented by

following measures such as configuring WAF rules such as firewalls,

40

using the AWS shields, blacklisting the traffic that comes from specified

locations, and configuring the query strings to clock certain kinds of

requests, protecting all the endpoints (VISH, 2020). Sometimes issues

occur from the single IP address or traffic spikes at some odd hours.

Those IP addresses can be blocked.

2. Protection against injection attacks:

This attack permits the users to document malicious inputs that alter

the program implementation. This can be prevented by following various

measures. Updating libraries for the programming languages such as

java and .net to the latest version decreases the occurrences of injection

attacks. Validate all the user inputs before accepting them. Limiting the

privileges and user access. implement access restriction, by following

least privilege principles. Encoding all the data before the client receives

it and using valid headers can prevent XSS attacks. Validate all the

special characters as they can lead to SQL injection attacks. The

utilization of Web Application firewalls (WAF) allows scanning all the

incoming traffic for the serverless applications. This works by performing

behavioral analysis to detect intrusions and hacking, threat blacklisting,

and application whitelisting (Web Application Firewall (WAF) Solutions,

2022).

3. Prevention against sensitive data exposure:

41

The serverless technology can be prone to data exposure. This can

be protected by classifying the sensitive data and rescuing data at rest.

Reserving sensitive data should be minimized. Utilizing the HTTP

endpoints for the APIs can render in preventing sensitive data exposure.

During function runtimes, using environmental variables provided by the

infrastructure providers prevents data exposure (OWASP-Top-10-

Serverless-Interpretation-En.Pdf, 2017). AWS introduced a tokenizer

solution that helps to prevent data exposure. Token is different from

encryption. In encryption, an algorithm is used to change the plain text

to ciphertext, and keys are used to decrypt the data. Here in the

tokenizer method, the data is transformed into a string of characters

called tokens. These act as a reference to the original data (Beswick, 29

Jul 2020)

4. Disaster recovery:

Disaster Recovery helps to deprecate the loss that is transpired due

to natural disasters or catastrophic events. Serverless computing has a

backup plan in such critical circumstances. Disaster recovery means

minimizing the impact of disasters by having a proper backup plan that

limits the downtime and plans to minimize the data loss during the

events of disaster. From the Engineering perspective and risk

management, Disaster recovery plan two falls into place.

42

1) Recovery Time Objective (RTO): Usually every company or

service maintains 2nd production service to use during disasters or

primary production downtime. RTO has calculated such that the length

it would take to move to an alternative production service

2) Recovery Point Objective (RPO): this is the portion of information

loss that is calculated in a period (Tseggai, July 12, 2018).

Serverless companies such as AWS lambda have automated

backups, documentation that help during the disaster periods,

automated deployment tools, and automated and continuous monitoring

which limits the impact during the disaster (Allen, 2022).

 Usually, the CEO and the related level people of the company

execute the Disaster recovery plan by calculating the two things. Once

the goals have been set and the process has been defined, they initiate

the Disaster recovery plans. The recovery steps include Storing the data

and restoring the data from the production which is being impacted to

the safe production environment. They restore all the cache, data,

authentication, authorizations. The backed microservices will also be

restored, API endpoints will be swapped, and verify that the recovery is

complete. With the Disaster recovery, the companies ensure continuous

improvements from the current, past actions to ensure that the product

is stable in the future.

43

5. Intrusion Detection: Intrusion can be detected and prevented by using

traditional firewalls. The serverless doesn't use a physical server, which

makes them unable to use the traditional firewall or IDS/IPS. Serverless

used WAF (Web application firewall) to protect the applications against

common exploits. The WAF contains IP addresses lists that need to be

blocked. It also contains a common attack pattern that blocks common

attacks. NACL's (Network ACL) can be used to define rules, which are

more powerful than WAF and controls traffic. One NACL can have 20

rules. It operates as a firewall. If a user needs to block a certain IP

address in a given range, then NaCl could be the better option (Budzoń,

April 5, 2017). Whitelisting can also help in authorization certain IP

addresses.

 AWS introduces Guard Duty which is a hazard detection service that

scans the system for malevolent activities. This analyzes and monitors

API calls. This detected attacks at the network level as the traditional

IDS systems do. This uses a machine learning technique to detect

network anomalies and prioritize the potential threats. Once this finds

certain anomalies, it stops unauthorized activity (Intelligent Threat

Detection—Amazon Guard Duty–Amazon Web Services, 2022).

6. Vulnerability Scanning: There are various tools that are used to scan the

vulnerabilities in serverless computing. Some basic API tests help to run

tests on the servers (Perris, April 8, 2021).

44

i. DAST: Dynamic Application Security Testing runs all the

predefined inputs and checks the vulnerable pieces of evidence.

The response is measured based upon the exploits.

ii. The software Composition analysis will check the dependencies

with the known security vulnerabilities. Sometimes the third-party

dependencies will bring more vulnerabilities than the actual

application. The software composition analysis will detect such

types of vulnerabilities. the NPM audit is one such helpful tool to

detect third-party dependency vulnerabilities.

iii. Synk: This is one prevalent tool in serverless that scans for

vulnerabilities and restores them automatically. Many prominent

organizations utilize Synk to produce secured applications. It

integrates easily, scans continuously, and provides quick-fixes

(Snyk. Developer Security. Develop Fast. Stay Secure., 2020)

iv. Static Application Security Test (SAST): Sometimes

vulnerabilities can happen with the source code. This occurs due

to wrong coding practices. Tools such as GREP, ESLint, Sonar

Lint can detect such kinds of vulnerabilities.

v. Aqua: This tool easily integrates with the CI/CD pipelines and

protects AWS lambda functions in the runtime execution

environment (Serverless Security for Serverless Containers and

Functions, 2022).

45

iii) Root causes:

1. Weak Authentication:

Attackers can bypass the logic of applications and manipulate their

flow when there is weak authentication. It also exposes potentially

executing functions as well as performing actions that were not

supposed to be exposed to unauthenticated users. Developers are

advised not to commit resources in building authentication systems but

rather use authentication systems provided by the serverless vendor eg.

AWS Cognito or single sign-on (SSO), AWS API Gateway authorization

facilities, Azure App Service Authentication / Authorization, IBM Bluemix

App ID, or SSO.

2. Third-Party Dependencies:

Serverless technologies use third-party software or API and

libraries. Some of these might already be prone to security attacks or

might be vulnerable. This can in turn lead to security issues in serverless

technology. The only way to protect from this kind of attack is to regularly

update the libraries/software/APIs that we use from 3rd parties.

The incident that took place in the capital one in August 2017th

(“Capital One Reports Inside Job Data Breach,” August 3rd, 2017),

which was arisen due to employing the 3rd party libraries that are not

updated. The incident resulted in the exposure of sensitive data

46

information like Date of birth, personal identification number and

compromised several files that contain customers' data.

Hence, even if the system that we use is highly secured and if the

dependencies that we have are vulnerable, security issues tend to

occur. Hence to prevent such kinds of security issues, the 3rd party

dependencies should be used only if necessary and need to be updated

regularly. The software/libraries need to be scanned on regular basis to

see if they are any security breaches or changes in the workflow (

Rehemägi, 2021)

3. Exception Handling:

Debugging is complex in serverless and as such developers rely on

and adopt verbose error messages in the form of syntax errors and stack

traces and variables which enable debugging environments. Problems

occur when in the process of moving into production stage codes are

not cleared, this reveals details about the serverless function internal

logic which mistakenly exposes sensitive data. In other to avoid this,

developers are encouraged to avoid verbose messaging but rather rely

on debugging systems provided by the vendor's architecture.

4. Serverless Deployment Configuration:

 With serverless and its architecture being new, there is a high

chance of misconfiguration whiles setting up environments is high and

can lead to data loss as well as exposure of sensitive data

47

5. Logging:

A peculiarity of serverless computing is that functions and containers

are turned off and on in a matter of seconds. If the state, status, and

other information related to these functions and containers are not

captured, the information is irretrievably lost. In the event that a block of

code written in a temporary container malfunction, how can DevOps

verify that the right events required to trigger the block of code were

implemented for example? This is where the importance of logging

becomes paramount. To understand how an application behaves, what

happens when it fails, logging is compulsory.

6. Input Sanitization:

 The Open Web Application Security Project (OWASP) ranks

injections as one of the most dangerous security risks in both

conventional web applications and serverless applications. Serverless

environments by nature have various input sources. For example, AWS

lets users/developers use multiple input sources to call their Lambda

functions. These inputs can be from databases, API gateways, file

storage, etc. Users/developers must imbibe the use of input sanitization

best practices both when writing the program and when it is in operation.

7. Least privilege:

privilege in serverless computing/development is a lot more granular

than other cloud systems. Users/developers are able to set permission

48

models on smaller blocks of code (or function). When deploying many

functions, the easy method is to default to the maximum permission

levels allowable for each function. This practice leads to functions with

less-than-optimal permission security. Users/developers should practice

the principle of ‘least privilege’ when managing permissions giving each

function the minimum permissions necessary.

8. Patch function dependencies:

 In serverless development, Function as a Service (FaaS)

environments have the responsibility of patching operating system

dependencies in your environment. However, the responsibility of

patching your application dependencies lies with you, the developer.

The application dependencies and third-party code libraries pulled and

used for software development such as npm, PyPI, Maven, etc, all are

examples of dependencies whose patching responsibility lies with the

user. A major example was in the case of the Equifax Credit breach, a

known bug in a dependent library was exploited to gain access to their

systems.

9. Isolated function perimeter: As we know, serverless computing uses

function as the unit of scale and developers simply develop their pieces

of code then submit them to the cloud provider for their execution. The

serverless environment the cloud provider provides is secured using

several security mechanisms and techniques. The developer’s functions

49

are the inputs to this secured environment and the cloud provider is not

responsible or accountable for the security of those functions. In that

case, if the developer uploaded a function with security vulnerabilities

and when it gets compromised that function can put not only the

developer’s data in the function at risk but also the other developers’

functions and cloud environment resources. One mode of mitigating this

risk is maintaining isolated function boundaries. Sometimes the

deployment of more than one function is needed to create the workflow

and get the expected output. But we cannot assure that every function

in the cloud environment is highly secured. For instance, a function that

sanitizes its input from the users which neglects input sanitation from

another function can get compromised due to the other function not

sanitizing its inputs from the user and getting compromised already.

Isolated function perimeter assures the functions are isolated within their

perimeters (Tal et al.,, 2019a) and treats every input to the function

coming from a suspicious data source. This way it can filter all the inputs

and block harmful data coming into the function and reduce the risk by

isolating the compromised function from harming other functions.

Creating and adopting standard security libraries also helps ensure

isolated function perimeter.

10. Secrets Management:

50

 Since serverless functions are just pieces of code most of the time

they need to get access to other resources from any other cloud

provider. In that case, serverless functions use credentials (“Six Security

Considerations for Serverless Environments,” 2018). Depending on the

type of service such as cross-account integration, these secrets can be

short-term or long-term and must be saved at someplace. This is where

we require an appropriate method to access, and control secretes. From

the developer’s side, they can focus on encrypting their secrets and

store them in a separate secure place in the memory and scan the code

regularly for any accidental commits of secrets. From the serverless

provider’s side, they offer integrated tools to fulfill this requirement which

is called secrets management for added security. This is secure storage

where the developers can store their secrets and sensitive credentials.

For example, AWS Lambda employs the “Secrets Manager” whereas

Azure utilizes the “Key Vault”. This helps in reducing the risk of sensitive

information exposure to a great extent. During the deployment of the

functions, serverless applications can call the API of the secrets

manager and consume the secrets they need such as access keys.

Using secure storage for sensitive information is highly encouraged and

recommended in serverless environments instead of saving secrets in

static files in code repositories and environment variables. Bitcoin

mining incidents that happen in 2014 (Mardesich, April 15 2014) and

51

2015 (Pauli, 2015) are good examples for using secure storage and

maintaining good security practices. Moreover, Keeping the secrets in

secure storage is the serverless providers’ responsibility and they need

to make sure that the data is encrypted.

11. Data in Transit:

 Since we are articulating about “serverless”, individuals may believe

that there is no data, and it is just a function that is supposed to do some

tasks. But there is data within functions that are fed by the developer

using variables. This data can be user credentials, access keys, credit

card information, and any other sensitive information. We do not

recommend adding sensitive information into functions but, developers

can make mistakes. However, the risks arise whenever the data is

transmitted and exchanged. This transmission can happen in many

ways. One is when the developer uploads the coding to the serverless

environment. Another way is during the function’s execution. Depending

on what the function’s task is, it may need to connect to other functions

in the serverless environment or any other third-party vendor to get

access to some other services(Many-Faced Threats to Serverless

Security. Theburningmonk.Com, 2017) . Whenever the data is in transit,

it increases the attack surface. This risk can be mitigated by making sure

the medium that is used for web communication is sufficiently secured.

Serverless providers force developers to use secure protocols such as

52

HTTPS whenever the developer makes a connection with the serverless

provider to submit their pieces of code. Moreover, using SSL certificates

to verify the identity of whom they are communicating with is also highly

encouraged in serverless computing (Tal et al., 2019b).

B. C.I.A. Traid:

Confidentiality, Integrity, and Availability ate the three main pillars of information

security. It is always a best practice to have this CIA Triad in hand for all the

technology implementations. Serverless can be secured by following these most

promising approaches.

i) Confidentiality:

Confidentiality means protecting sensitive data. This can be

achieved in several ways such as data encryption, access control, File

permissions, etc. This is executed by restricting unnecessary access for the

sources. Serverless functions should be imposed with the least access

privileges. Separation of Duties should be considered such as separation

of policies and separation of roles. This can help in exposing sensitive data

and unauthorized access. Only acceptable services should have interacted

with the serverless functions. If all the services were granted access, the

vulnerabilities in those services could make the serverless system weak

even if the function is more secured. Network inbound and outbound should

be restricted for selected sources and destinations (Khani, March 11, 2021).

ii) Integrity:

53

Integrity is defined as unaltered data i.e., protecting data from

transformations and omissions by unauthorized parties. Because if the data

is changed, the damage can be irreversible considering the sensitivity of the

data. Serverless deals with data processing, IoT, etc. which have a lot of

sensitive data that it deals with. What if the data is being altered which in

turn causes severe problems to the users such as incorrect medication

prescription or devise malfunctioning which could take out the life of an

individual? Therefore, integrity is one of the primary characteristics of the

CIA Triad (What Is the CIA Triad? 2018).

This can be achieved in serverless by following best practices such

as continuous monitoring of the data and observing if there are any sudden

changes. Logging of all the actions is another best strategy. The function

data must be encrypted even if data in transit or at rest. This way data

alterations will not be attainable by unauthorized people. Regular audits, log

files, and taking benefit of all the monitoring tools supplied by the serverless

providers helps in having data visibility that in turn achieves integrity.

iii) Availability:

Availability is defined as the data being available for actual use whenever

needed. An example of lack of availability is a denial of service(DoS attack)

where the service is down by sending multiple requests at a time and

making the service unavailable. This can cause huge financial loss for the

business. Hence ensuring Availability is an essential task.

54

Imposing limitations on computation memory, concurrent executions can

aid in controlling runaway functions which in turn cause DoS attacks in

serverless. The serverless providers such as IBM have Disaster Recovery

plans in high if there are availability issues. Hence there can be very low

downtown in case of any disasters. availability can be achieved by taking a

few precautions such as risk analysis, dependencies documentation such

as Recovery Time Objective (RTO), and Recovery Time period(RTP),

Backing up Data, etc. (Disaster-Recovery-Introduction, 2019)

AWS Lambda has the built-in highly available feature which makes it's one

of the best serverless provider to consider (Serverless Computing –

Amazon Web Services, 2022).

C. Platform

i) Commercial

1. AWS lambda:

This service was provided by Amazon. This is an event-

driven, serverless platform. Using AWS Lambda developers can

run their code virtually without any administration. Developers can

write their code in the supported languages, create functions,

applications or can upload their own code. The lambda functions can

perform different computational tasks. Lambda will automatically

manage the resources with high availability, scalability, and security.

Also, developers can use the other AWS service with the same login

55

to extend the services. It supports most of the programming

languages like Java, Python, C# (. NET Core), and Node. Js. This

service can be found in the AWS website linked here (AWS Lambda

– Serverless Compute - Amazon Web Services, 2021)

 The AWS lambda uses certain criteria to work such as

functions, events, services, and resources. The function is

something like microservices and processes the files, scheduling the

tasks, and maintaining the user’s data in the database. The event

must be triggered to invoke a function. This can be a user request,

message, or image. Once the function is invoked, the resources are

being used such as AWS s3 bucket, Dynamic DB table, etc. A

service is a project that the user can utilize to build the applications

after a function is invoked by the event and the resources being

allocated. The service can be in JSON format or the YAML format.

(Serverless Framework - AWS Lambda Guide - Introduction, 2021)

2. Microsoft azure:

This service was developed by Microsoft which makes their

users build applications without worrying about the infrastructure and

administration. Azure functions help to select different programming

languages based upon the requirements. The programming

languages are selected depending on the runtime. C#, JavaScript,

and F# are supported by 1. x runtime while C#, Java V8, and Python

56

3.6 are supported by 2. x runtime The APIs used b azure are

developer-friendly enabling the developers to build their code and

deploy faster. Azure also concentrates on team performance i.e. it

helps to boost the team performance by providing a fully managed

platform so that team can build their applications. Azure is an event-

driven serverless platform that helps to solve complex problems. The

commercial page can be found here (Azure Serverless. Microsoft

Azure, 2021).

Azure can be used to test the application or the functionality

or the business logic (Serverless Framework - Azure Functions

Guide - Testing 2021). It creates endless connections and boosts

productivity. Users can use Azure Cosmos DB to utilize the

database. Workflow can be made easier using Azure serverless.

This uses API management and creates seamless workflow

(Gursimran, October 2020). The main approaches that azure

serverless follows are Azure logic apps and Azure functions. The

logic apps help to create workflows and the Azure functions to build

the applications (Chris, 2021)

3. Google cloud:

The Google cloud functions is a serverless technology developed by

Google. This helps to write simple single-purpose functions, run

57

codes locally or in the cloud without worrying about the infrastructure.

This is an event-driven serverless compute platform. This helps from

coding to deployments. Like the above serverless services, it also

enables users to pay as they use. Google cloud functions manage

code as well as infrastructure. Knative which is managed by Google

Cloud an open API, helps developers to run their workloads from

anywhere. This serverless service supports multiple languages like

Java, C#, Python, Node.js. Knative helps the developers to focus

only on the coding part, while it takes care of all the deploying,

building, and managing services (Knative, 2021). This tool supports

various frameworks such as Spring, Ruby on Rails, and patterns

such as GitOps. This provides control by making the technology built

with the Continuous Integration/Continuous Deployment (CI/CD)

which can run anywhere whether it on servers or cloud.

 The Knative routes all the traffic that occurs during the

deployments and scales automatically. Abstraction is achieved

which makes the code reusable. Knative can be integrated with the

user’s own platform while using all the benefits of the Google

serverless technologies (Manor, 2018). The Knative reduces

vendor-locking’s. The google cloud is integrated with other services

like artifact registry to manage images and packages and Docker

hubs. The main advantage of the serverless is parallel computation

58

i.e., when there are many batch jobs that need to run and are intense,

the serverless schedules those jobs (Bertram, 22 March, 2021). In

the GCP, the user sends an HTTP request to the google cloud

function, the google cloud function sends the response or the URL

immediately, but whereas AWS lambda uses API gateways in

between the communication as a medium. The logic or the code is

wrapped in a function that makes it executable in the GC function.

Each of the modules performs single action which is quite similar to

microservices architecture (Aruljothi, 2021).

4. Alibaba Cloud:

Container technology helped developers build and deploy their

functions, but the disadvantage is that it might take a very long time

to scale out the instances. Hence there is no auto-scaling

management. Hence, serverless came into existence. Alibaba

provides the tools for the developers to implement serverless

features. “Function Compute” is one such serverless technology

created by the Alibaba cloud. This ensures low operational costs but

delivers quality business deliverables. This is event-driven and can

be used to build applications using the services. The function

compute runs the code elastically and in a reliable manner(What Is

59

Serverless Computing? What Are the Features of Serverless? -

Alibaba Cloud, 2021)

 The Official serverless technology of Alibaba cloud which is

known as Function compute can be found here (Function Compute -

Alibaba Cloud, 2021). This service contains several features such as

an event bridge trigger in which it routes all the events to function

compute. HTTP trigger is another event that receives and processes

HTTP requests and sends back the HTTP responses. This supports

various programming languages such as Java, Python, Node.js,

PHP, c#, etc. To perform deployments, debugging, and run the

application various development tools are available such as funcraft

which is a tool that helps to debug local, create the resources, and

utilize third-party resources. Similarly, fcli is another development

tool which is a command-line interface that is provided by Alibaba

cloud to manage the resources that are in Function compute. Visual

studio code extensions also help to create, debug, or deploy the

applications. Several instances and resource types are available in

Alibaba function to compute that helps to increase the computing

performances. The billing is charged based upon the amount of time

the resource is being used and is not charged for the idle time which

makes the serverless cost-effective.

60

 The workflow in the function compute is as follows. The

developer chooses the programming language and compiles the

applications. Then he uploads the application in the Function

compute. This contains either SDK or API. Then the trigger calls the

function. The trigger method contains functions to compute, APIs,

logs, table stores (What Is Function Compute - What Is Function

Compute. Alibaba Cloud Documentation Center, 2018). The function

computes resize dynamically based on the request and the billing is

invoked. The main advantage of Function compute compared to

other serverless providers is that it uses event triggers, log queries,

monitoring, and alarms for troubleshooting. scaling is done within

milliseconds to an accuracy of 100 milliseconds. As per (A. Wang et

al., 2021), The Function as a service application use container tools

and images for deployments and invocation. Cold starts occur in

serverless computing as it takes time to fetch the data or the images

in the containers. The cold starts range from seconds and might take

minutes to start.

5. IBM cloud:

It is developed by IBM based on Apache Open Whisk. This is

a FaaS functions-as-a-service (FaaS) programming platform. This

enables developers to develop lightweight code and build

61

applications. Here users can pay for what they used. It supports

many programming languages like Python, Swift, Node.js, PHP, and

Java. The IBM cloud functions provide greater control and scalability

as IBM has a network of networks that segregate the traffic and

streamlines. The international network has 2,000Gbps of

connectivity which in favor operates independent network

streamlining administration (“IBM Cloud. IBM Private Cloud. DNA IT

Solutions CloudExperts,” 2021).

The serverless applications are deployed in containers. The

use cases that support serverless are Data Processing, Parallel

computing, API backend, stream processing workloads, and

microservices. Data processing states that the serverless is quite

adapted with the audio, texts, images, data, and videos. Parallel

tasks can be run at one invocation like data search or processing

which makes the serverless parallel compute. API gateway provides

extra security. this enables the HTTP to be readily utilized by the web

clients and available for web actions (Serverless, 2021a).

Web applications, mobile applications can be built using this

service. The user accesses the application in the object storage. The

API is called when the application is used which is defined in the API

gateway. This sends the request to the cloud functions. functions

can be developed using various languages. The tasks can be

62

scheduled in which the function can be executed periodically. The

mobile developers can access the server-side logic and implement

the functions in the languages that like swift to consume server-side

functions. The commercial IBM cloud functions can be found in this

website (IBM Cloud Functions - Overview, 2021)

6. Tencent SCF:

Tencent SCF is a Serverless Cloud Function that helps to

develop and deploy code. This is an event-driven, serverless

platform. It provides auto-scaling and helps the developer to build the

application and supports most of the phased-in software

development lifecycles such as coding, deploying, debugging, and

testing. It also extended its service to alarming, monitoring, and

troubleshooting. Once the resource is available, the developer can

simply write the code.

SCF reduces overhead time as the billing is done based upon

the number of requests and the resources being used. It has a

centralized architecture that makes deployments and tests done in

just one click. The code can be written without worrying about the

components, which makes the SCF easy to use. Even though the

volume is high, SCF provides resources to meet the client's business

needs. The SCF is compatible with various frameworks. Once the

63

function is written, it can be deployed automatically which makes

SCF high in efficiency. SCF has resources in various locations,

making sure that if there is downtime in one resource due to any

reason, it automatically provides the resources from another

location. This makes the service reliable. The official website to use

the Tencent SCF can be found here (Serverless Cloud Function.

Tencent Cloud, 2021).

SCF has high fault tolerance. In order to run functions, users

can customize the time to run those functions. This uses Ckafka

messaging system, SDK is used when an application is being called.

It supports various programming languages such as Go, PHP, Java,

Python, Node.js, etc. The functions can be written online or offline

using the web IDE's that are supported by SCF which makes it easier

and more convenient for the developers to use. It allows developers

to connect to git. Tencent uses push and pulls trigger modes. The

trigger pushes the events and pulls events from function execution.

The trigger events are represented in JSON format. The input

parameters in the programming languages such as java contain

objects that matches the event (Cloud, 1998)

ii) Open Source

64

1. Apache open whisk:

This is an open-source serverless platform. It executes functions in

response to the events. It helps to perform multiple operations in the

code. This allows writing functions in the language desired by the

developers like Java, Scala, .NET, PHP, Python, Ruby, Rust,

NodeJS, Swift and Go. The Apache open whisk provides developers

to integrate with other services. This provides scaling and optimal

utilization. It also provides a development tool that helps developers

to debug their code. The Apache open integrates easily with many

services such as Kafka which is a message queuing system, Agile

tools such as GitHub, JIRA, and Alarm packages which help to

schedule reoccurring intervals. It also integrates with the databases

such as Cloudant, push notifications. Slack messages can also be

utilized in this serverless technology provided by Apache open

whisk. The official website can be found here (Apache Open Whisk

Is a Serverless, Open Source Cloud Platform, 2021).

 Apache opens whisk code to external events which can be

HTTP requests like audio, video, image, a file that gets uploaded.

These can be considered as external events and when invoked,

trigger a function. The function contains backend logic in Apache

open whisk. The deployment is containerized which makes it use of

most of the frameworks such as OpenShift, Kubernetes, etc.

65

 There are few pros of using Apache open whisk than other

popular services such as Google Cloud, AWS lambda. The first and

foremost is that this is open source where other services are

commercial. Apache open whisk provides high security as the

deployments are hosted on-prem, which makes the developers run

their code in the Apache private network rather than using third-party

APIs. There is no vendor lock-in, whereas other famous services

suffer from this. The Apache open whisk uses various technologies

in its architecture such as docker, Kafka, and Cloud DB. The Apache

open whisk is most widely used for mobile applications, web

applications, event-based processing IoT devices. The code that is

developed by the designers can be debugged in real-time with

diverse tools supplied by Apache (“What Is Apache Open Whisk?,”

2019).

Here the functions are stateless which are later triggered by

events. The application is an open whisk is a collection of actions.

Action can be grouped in packages or sequences. It contains a

controller that manages entities, an invoker that launches all the

actions, and the action container that executes the actions. All the

actions are functional which can be invoked with input, event-driven

where environments are being activated by the events, and are time-

66

bound which means it is implemented in the quickest time as

possible (Sciabarra, 2021)

2. Kubeless:

Ever since the launch of AWS Lamba by Amazon, all the

significant cloud providers construct serverless technologies.

Kubeless is one serverless technology developed by a Bitnami

project. It is developed based upon the Kubernetes cluster by taking

privileges of Kubernetes. The advantages of this are being open

source, supporting multiple languages such as Python, Ruby, PHP,

.net, and providing custom runtimes. It triggers events using Kafka

messaging system and HTTP events. This launches run-time based

upon the demand for each custom resource. It helps developers

deploy code using their infrastructure and provides auto-scaling

(Kubeless, 2021). The tools can be run locally or in the cluster. The

official website to use Kubeless can be found here (Kubeless, 2021).

Kubeless provides write code once and runs anywhere and

anytime service. Different development tools can be used with

Kubeless. Kind is one such tool that helps to generate the

Kubernetes cluster inside the docker container. Once the function is

created, it can be deployed in a local cluster and the function is

67

called. Triggers can be configured using the Kubeless through the

HTTP endpoints (Rojas, 2020)

The functions deployments are easy in Kubeless compared to

other serverless services. The function can be involved by running

one command. The script dynamically takes the contents of the file

located in the /Kubeless folder and executes when a request is being

invoked or sent. Changes can be quickly iterated (Team, 2020) .

Kubeless provides easy operational management because the

services and the applications are run on a separate infrastructure.

The cost is less while using this service which uses pay-as-you-go

architecture. applications run smoothly and take less operational

time because of the serverless fast invocation feature. The Kubeless

is used as described. A namespace is created, code is deployed in

a Kubeless cluster, the use case is simulated using the CLI

command, service is being accessed. The services listen to the

messages and trigger the work. There are three trigger types used

in Kubeless such as HTTP triggers, scheduled triggers, and pub-sub

triggers(the triggers that are managed by Kafka clusters) (Singh, 03

February 2022)

3. OpenFaas:

68

OpenFaas is an open source serverless platform that helps to

deploy functions and the code to Kubernetes. This allows the users

to limit the idle time, connect with other possible resources, process

data quickly and effectively. It is also capable to handle various

requests that have intense processing (Ribenzaft, April 13 2020). To

write code and access applications, the users must divide the logic

into individual tasks before implementation. Complex applications

can be run by simplifying serverless functions in the docker

containers. The OpenFaas architecture contains an API gateway

that routes all the functions, a Function watchdog that acts as an

interface between the user and serverless, a Docker Swarm, and

Kubernetes which are the engines to create products and local

functions.

 The official website to use the OpenFaas can be found here

(O. Ltd, 2021). According to the official website, it states that the user

can write, deploy their first python function in just 10 to 15 minutes.

The OpenFass supplies the Templating System that lessens and

communicates codes in the equipped template store. OpenFaas

enterprise is available for business and provides extra functionality

like the scale to zero, single-sign-on, and Kafka integrations.

As this is publicly available, they are a few pros and cons of

using OpenFaas. The errors can be corrected easily while adding

69

new functionality can be quicker and easier. It supports multiple

programming languages like Java, python, c#, Go, Ruby, ASP.net,

Bash, and binaries like ImageMagick, FFmpeg, etc., and users can

use any based upon their convenience. The drawbacks include cold-

start time for the functions to be operational in few supported

programming languages. The function's life span is limited as the

platform will be created and destroyed automatically. This means

that stateless is not achieved (Ribenzaft, April 13 2020). The

advantage of open-source over to the public providers is that they

have vendor-lockin which will have restrictions to the function. The

open source eliminates this limitation and provides on-premises

deployments such as OpenFaas. This uses the HTTP and event

function triggers. The developers provide functions, and the

command-line interface (CLI) manages all the packages into the

Docker container. OpenFaas has a flexible architecture compared to

other open source serverless frameworks (Mohanty et al., 2018).

OpenFaas auto scales as it uses the metrics of Prometheus which is

an integral part of its architecture. This is easy to use and can be

installed with one click. the functions are written in the language

selected by the user and the packages are written in OCI/Docker

image formats. The cold starts don't apply if a function is not scaled

to zero (Openfaas 8.0.4 · Helm/Openfaas, 2021).

70

4. Fission:

 Fission is also an open-source platform that runs based upon

the Kubernetes-native serverless framework. This is developed by

Platform9 private cloud provider. This allows developers to write the

functions in the desired language that are supported by Fission and

then map to HTTP requests. These functions can be deployed using

one command. The fission automates all the configurations that help

developers to focus only on coding. It uses an Apache license and

works on the Kubernetes cluster. It has the flexibility of deploying the

services anywhere. The Fission supports various programming

languages such as Java, Python, PHP, NodeJS, GO, etc. The official

website for the Fission can be found here (Fission, 2021). The main

edge of Fission is the low cold start time which is commonly

100msec. This is achieved by using the pre-warmed containers that

run on the cluster. The developers can build functions once and can

deploy anywhere using the Declarative specification feature of

Fission. By integrating with Fluentd, logs will be incorporated directly

into Command Line Interface. Tracking of metrics and dashboards is

achieved through the integrations with Prometheus. Managing the

micro-services is achieved by integrating with Istio open-source

platform. The functions scale automatically bases on CPU usage.

71

Complex apps can be created in a simpler way and

accelerated deployments which makes the applications available in

just one hour using the workflows. Testing is a lot simpler as the

Record and replay functions examine the function's routines.

Autoscaling help achieve cost optimization. There are several use

cases such as API backend that helps for web or mobile applications

to write functions without worrying about servers. The Kubernetes

services integrate with other services such as Redis or Postgres or

Etcd. Event-driven systems are incorporated in which if any event

occurs, the Fission executed the activities. This expands web

applications without affecting the actual application (Serverless for

Kubernetes with Fission Functions as a Service, 2021)

The Fission uses three main concepts functions, triggers, and

environment. The function is where the code is written. The

environment is the language used and the triggers are used to

execute the functions. It uses three elements that are Executer,

Router, and controller. The controller contains all the three concepts

functions, triggers, and environments and the Kubernetes event

watches. The router implements the HTTP triggers by forwarding the

request and generating responses to the target functions. The

executor Pool Manager and New Deploy control the functions

lifecycles. The autoscaling is achieved using Horizontal Pod

72

Autoscaler (HPA). The fission has centralized log storage. The

functions run in containers; hence the logs are processed as the

container logs. The main advantage of Fission over Kubeless is the

low cold start time, and some advanced features such as custom

workflow and phased releases (Fission, 2019)

D. Features

i) Development Tools:

Serverless computing helps developers build functions without worrying

about the servers. The Development tools make the FAAS services much easier.

These tools reduce the efforts of configurations. The below picture depicts the tools

that integrate with the various famous serverless providers.

Figure 6

Taxonomy of Development tools

73

1. AWS lambda: There are many integration tools that are

supported by the AWS lambda.

a) Node lambda is an open-source command-line tool. This tool

helps the JavaScript developers to run the JavaScript code

locally on their machines and deploy the Node.js application

into the AWS lambda. It can manage thousands of requests

at the same time. Most of the developers who code using the

Node.js language use Node lambda as it is very lightweight

Development
Tools

AWS Lambda

NodeLambda

LambCI

Gordon

Kappa

Lambda
uploader

Chalice

Alibaba Cloud

Funcraft

fcli

webIDE

Midway
serverless

Microsoft
Azure

Visual studio
code

SDK

App
configuration

Google Cloud

Iron

faast.js

fromidable

Apache Open
Whisk

FIWARE
Meteoroid

OpenFaas

faas cli

Tencent SCF

Serverless
WebIDE

74

and handles all the requests instantly. The node lambda

installation kit can be found her (Node-Lambda, 2021)

b) LambCI: LambCI is a Continuous Integration (CI) tool that is

maintained by AWS. This is easy to set up and quite cheaper

than the other SaaS tools such as Travis or CircleCI. The code

deploys easily while costing nothing. The LambCI responds to

slack, GitHub, and can run using various programming

languages such as Node.js, Java, Go, Ruby, etc. (Hart, 2016).

The CI can be achieved through this by uploading the LambCI

package to AWS. Developers can launch things and make

sure that they are up to date. Code is pushed into GitHub, and

it triggers the event. The LambCI tool eliminates the limitations

of traditional systems. It runs around 1000 concurrent builds

which in turn increases the efficiency. The main disadvantage

of using this tool is that there is no root access, and it can only

be supported in Linux. Memory is also limited to 1.5 GB

(Taylor, 2018a).

c) Gordon: The Gordon is an open-source tool that helps to

create or write or deploy AWS lambda using the cloud

formation. The files can be found on this GitHub page

(Bastida, 2015/2021). It allows various programming

languages such as Java, JavaScript, Go, python and Scala.

75

Gordon manages Lambda and connects the lambda to

amazon s3, dynamo, and various amazon services. Gordon

takes care of complex integration and makes the process

smooth for the Lambda developers (Lambdas — Gordon

0.7.0 Documentation, 2015). The process is as follows. It first

downloads the requirements from the Lambda functions, zips

the file, and uploads it into the s3. Now new version can be

created with the code and publish the version. IAM role is

created and attached to the lambda function (Taylor, 2018b).

d) Kappa: Kappa is also an open-source command-line tool that

is used for developing lambda functions. Kappa automates

the process of deployment, updating, testing, configuration,

adding event sources, and uploading of functions (Yegulalp,

2019). Kappa creates IAM policies, roles and helps to

associate those policies with them. All the functions are

uploaded in zip format into was lambda. Logs can be

displayed using the cloud watch log stream. Kappa can be

installed using pip and all the steps can be found in GitHub

(Garnaat, 2014/2021). It uses IAM policies for access, zip

functions, sends the test data, adds events to trigger the

function. Changes can be made easily to lambda functions

using Kappa. This framework can be used for IoT and cloud,

76

create microservices, and dynamically wire IoT devices

(Persson & Angelsmark, 2017).

e) Lambda Uploader: Lambda uploader is a command line utility

that is used for python AWS lambda functions. It supports

work in progress and pull requests. The lambda uploader will

automatically check for requirements in configuration file with

the help of requiremenst.txt file. It controls creation of virtual

environment and install their dependencies. This Zip those

dependencies and interface the package that in turn reduce

the tasks that are more time consuming and makes tasks easy

for the developers (Rackerlabs/Lambda-Uploader -

Githubmemory, 2020).

f) Chalice: Chalice is an AWS serverless framework that helps

to build python-based applications. Applications can be

quickly created and deployed on AWS Lambda. The

commands to implement the Chalice can be found in GitHub

(AWS Chalice, 2016/2021). It acts as a command line to

create and deploy applications, acts as an integration with the

AWS S3, AWS gateway or any other services. This also

automates the IAM policies. Not just creating, deploying but

the applications can also be deleted using chalice delete

command (Nayak, 2020).

77

2. Alibaba Cloud:

In addition to Alibaba cloud serverless, it provides few

tools that help developers to run their programs smoothly and

deploy their applications in local environments. All the tools

can be found here (Function Compute - Alibaba Cloud, 2021).

a) Funcraft: Third-party dependencies can be installed

using the fun craft. It helps to manage function

compute, log services, and API gateways. This is a

command-line tool and can be installed in either

windows, macOS, or Linux. All the resources that help

to deploy, build, or run applications can be defined in

template.yml. In addition to these, code packages can

be built, NAS(storage that provides access and

capacity) files can be managed and uploaded on-

premises (Features - Legacy. Alibaba Cloud

Documentation Center, 2021).

b) fcli: fcli is a command-line tool that helps to manage

function compute resources. The fcli can be

downloaded from GitHub (Releases · Aliyun/Fcli,

2020).There are various commands that perform

various activities such as sandbox where the third party

78

libraries can be installed to perform various operations

like debugging in the local environment. service-

related commands to create or update services,

function-related commands to create, execute or

update a function, trigger related commands to fire a

trigger or update a trigger and log related commands

to create Log store and run the logs (Use Fcli for the

First Time - Legacy. Alibaba Cloud Documentation

Center, 2020).

c) webIDE: webIDE tool that is provided by Alibaba cloud

can be used to manage function compute resources

d) Midway Serverless: This is a serverless framework that

is mainly used for Node. js-based cloud functions. This

reduces the maintenance price thereby focusing more

on the development. Its integrated development

solutions make the applications easy to deliver and

maintain. It is lightweight and publicly available. This

has entry and exit parameters for the function

platforms. It can be migrated easily between the

platforms by expanding runtime API's and unified

configurations. Integrating from traditional web to

79

serverless can be faster using this Midway serverless

framework (Midwayjs, 2018).

3. Microsoft Azure:

 Microsoft offers various SDK tools that help developers

build applications using various features of fully integrated

development environments (IDE). It provides default azure

support and advance debugging abilities. All the tools can be

found in the official website of Microsoft listed here (Developer

Tools. Microsoft Azure, 2021).

a) Visual studio code: This makes developers easily

switch between tools. It is used for the development,

debugging, and deploying of code. All the cloud

projects can be deployed locally using this tool. It also

makes developers set the deployments automatically

to the cloud. With the provided MongoDB support, the

application data can be easily managed or hosted in

the cloud using the azure Cosmo DB free tier. Easy

collaboration can be achieved using GitHub which

enables pair programming. Docker extensions enable

containerized applications, Kubernetes extension to

deploy cloud-hosted Kubernetes in visual studio code.

80

Both the front-end and back-end applications can be

debugged simultaneously

b) SDK: The SDK makes users install language that is

specific to their application. They are the collection of

libraries. These libraries are approachable, consistent,

dependable, idiomatic, and diagnosable. This supports

various programming languages such as Java, .net, C,

C++, Python, android, Ruby, IOS, PHP etc. and all the

documents related to these languages can be found

here (Download Azure SDKs and Tools. Microsoft

Azure, 2021).

c) App configuration: All the azure app configurations can

be stored here which provides a universal hosted

location. It eliminates time-consuming deployments by

managing the configurations effectively. This is

specifically designed for speed, security, and

scalability. The encryption is done for the data that is in

rest or the in-transit data. It can also be integrated

easily with other popular frameworks. Users will have

more control and reduce costly deployments. The

universal configurations make it easy to trouble shoot

while eradicating the errors. The code separated from

81

the date makes it to be a secured tool for the

developers

4. Google Cloud:

a) Iron: An ironworker is a platform that is flexible to not

only google but also various famous serverless

services such as AWS and Microsoft azure. The main

advantage of the iron platform is that it eliminates

vendor locking. This helps developers to run code in

various environments whether it be in the cloud or on-

premises. It supports various programming languages

such as Java, python, ruby, JavaScript, Go, Node.js

and .net. This was said to have the best customer

support (Nick, 2021).

b) faast.js: faast.js is a framework that is multifunctional

and callable as the Google cloud functions or AWS

serverless functions. It ensures in uploading the code

or creating the cloud infrastructures or cleaning up the

code. It can scale the functions in just seconds. The

fasst.js library has no operational overhead time, no

service dependencies, or any complexities. This also

sets up IAM roles, if the user has a google cloud

provider account. serverless functions are scaled to

82

batch jobs. this is very cost-effective and there are no

clusters to manage. faast.js creates and cleans up the

infrastructure when completed. This also works in local

processing mode (GitHub - Faastjs/Faast.Js at

Thechiefio, 2021).

c) Formidable: This is a serverless module written for

Node.js or JavaScript languages. In addition to google

cloud, this also supports AWS and Microsoft azure.

This module parses from data. This is great at error

handling and provides high test coverage. It occupies

low memory and allows plugin APIs in which users

custom plugins and parses. This is sad to be fast and

automatically write the file uploads to disk. Users have

the option to use Koa package to use formidable

manually (The 50 Most Preferred Open-Source

Serverless Tools, 2021).

5. Apache Open whisk:

a) FIWARE Meteoroid: A meteoroid is an open-source

software that integrates firmware and Open whisk to

execute the functions. users can manage the

Meteoroid from the command-line interface. It is also

easy to process the data. meteoroids are made of

83

containers, which makes it instantly build the FaaS

environment that can perform and execute

applications. The meteoroid can be implemented either

with fiware-faas-integrator or without it. This enables

the developers to focus on coding while eliminating the

cumbersome infrastructure preparation (Welcome to

Meteoroid Documentation, 2021).

6. OpenFaas:

a) faas cli: This is a command-line interface for the

OpenFaas serverless technology that is built on docker

and Kubernetes framework. Functions can be built and

deployed using the faas-cli into OpenFaas. Once the

function is written, the CLI does the docker image

processing. It helps to build or push docker mages,

deploys, removes, or invokes the functions, and

manages the secrets to the functions. A single file can

have multiple configuration operations using

environmental variable templates. This also allows

third part templates to be added to the local machines

(Elli, September 5 2017).

7. Tencent scf:

84

a) web IDE serverless: The tensent scf launched the

serverless web IDE for the user to have an integrated

development environment for browsers. It provides an

on-cloud development experience. Development,

deployment, and testing of functions can be done using

IDE. Code autocompletes and smart prompt options

are available. It contains all the configurations that are

supported by SCF such as programming languages,

pip, npm, etc. Functions can be deployed and triggered

either manually or automatically. This also provides an

option to view the logs that include response data,

output logs, and the execution summary. By default, it

provides 5GB of storage space. There might be a risk

of data leakages, hence they recommend installing

phpMyAdmin components (Serverless Web IDE.

Tencent Cloud, 2021-04-12).

II. Domains:

Serverless technology is most widely used in all major

domains such as IoT, Web, and mobile application domains, big

data, machine learning, mathematical computations, etc. Web

services is a dominating domain in serverless technology. Next

comes scientific programming and IoT. Popular services such as

85

Slack, Netflix, Coco-cola use serverless technology. Netflix uses

AWS lambda to mage the infrastructure using event-based triggers.

Shamrock's trading company services are fully (100%) serverless.

They shifted from docker to serverless which made them save a lot

of money (David, May 14, 2021). Web applications can be built easily

using serverless. it ensures scalability, cost-effectiveness, and quick

building of applications. According to one survey conducted by

O’Reilly, about 40% of the respondents have adopted the serverless

architecture in their fields in various industries such as software

ranking 1st and follows with finance, consulting, telecommunications,

health care, government, and manufacturing (Guzikowski, 2019).

This survey includes that AWS lambda was the top service to be

used by followed Microsoft, Google, IBM, and Oracle. The tools that

were most frequently used were Custom tooling, Cloudflare, lambda

uploader, node-lambda, LambdaCI, Cloud Zero, and Kappa.

Although there are few drawbacks considering security, vendor lock-

in in which few companies were not very enthusiastic to adopt the

serverless technology, most of the companies did.

Big data contains a large volume of data that is unstructured.

The data increase daily and maintaining od such large data and

performing analytics on such data can be quite complex and high in

cost. Using serverless architecture in big data analytics can make

86

the tasks easier. Implementation, maintenance, and governance of

these applications in the serverless can be effective (Rahman &

Hasibul Hasan, 2019).

Machine learning systems typically use the serverless

architecture as the data increased in volume and is difficult to handle.

Stateless functions are being executed in the cloud without worrying

about the infrastructure and their maintenance. This dynamically

controls the memory of the stateless functions (Wang et al.,

2019).The serverless architecture has components in which all te

common functionality is located. For example, plug-and-play is a

component that is used to structure and sort the data, and testing

can be done easily on this. It also reduces the development

resources barriers which in turn reduce the infrastructure costs. The

serverless automates many of the big data or machine learning

challenges. vendor-native comments is just what needed to switch

to serverless architecture and is compatible with any of the major

serverless providers (Adam, 2019).

Internet of things is rapidly adopted by many companies and

provided various technological innovations. Implementing those IoT

devices using the serverless technologies lowers the cost of

infrastructure while focusing on the output or the application. For

example, if an IoT developer tries to utilize the was services, they

87

use AWS IoT of integration, Dynamo DB for storing the data, and

AWS lambda for processing of the data. Once the function triggers,

the results are achieved by calling the data that is stored in the

tables. Hence, this reduces operational, developments and

deployment costs. It is fault tolerant and is quite scalable by default

(DataArt, 2017). AWS lambda and other public provider renders

huge support for the services that helps to build secure, reliable IoT

platforms. Developers can create the IoT backend to collect the data,

visualize and analyze the data.

Serverless architecture has the capacity to keep complex

configurations uncomplicated. Serverless can be used to access

numerous CPUs at low costs. Mathematical computations such as

linear algebra can become complex if it is being one machine or of

larger calculations. High-liner algebra algorithms can be

implemented using serverless architecture. According to the

(Shankar et al., 2018), LAmbdaPACK package can be used to

achieve this. it is 240% better because of its elasticity and can

perform matrix and other complex mathematical operations.

Functions as a single core in serverless systems which makes them

execute on any machine. This shows that the algebra algorithms can

be executed with stateless functions and with seamless fault

88

tolerance. the elasticity in the serverless technology enables the

system to dynamically adjust to the natural linear algebra algorithms.

III. Service Integrations:

While using services such as AWS Lambda or Google cloud,

the developers have to take care of the errors that they encounter.

hence, they try to modify the business logic in their code. By

integrating with the API gateways, they can improve the reliability of

the application by reducing the number of lines in the code. At first

rest API's were being used for integrations. Now HTTP APIs were

introduced with fewer configurations than the rest API and have

automatic deployments. The HTTP API directly integrates with the

services offered by Amazon. without any templates. The direct HTTP

API integrations are AWS system manager, step functions, event

bridge, data streams, and simple queue services.

The System manager provides the interface in which users can

track the operational issues and resolve them. Tasks can also be

automized. It helps to monitor, implement and troubleshoot the

application issues. This integration is built to simplify the application

management and lesser the time to resolve the operational problems.

This is very helpful to automate workflows, runbooks, and rollout in

case of errors. It helps to achieve greater control over the applications.

89

The agile issue or requirements tracking tools such as ITSM or service

now can be integrated easily with this (AWS Systems Manager – Gain

Operational Insights and Take Action, 2021).

The AWS step functions help to visualize the workflows,

automate the processes and build the applications using serverless

technologies. It helps developers to focus on codes while this service

integration takes care of failures, integrations, parallelization, etc. This

automates the manual jobs of Extract, transform and load (ETL)

processes. It also makes the data easily processes for machine

learning. It combines several functions into microservices and

serverless applications. There are various industries that use the step

function services (AWS Step Functions. Serverless Microservice

Orchestration. Amazon Web Services, 2021).

The Amazon event bridge helps to build event-driven

applications at scale. It takes the data from the Zendesk or shopify.

Rules can be arranged to verify if the data reacts with the real time

data sources. It is beneficial to connect the SaaS applications without

writing code. It has fault-tolerance and built-in distribution availability.

This connects applications using custom events. Monitoring and

auditing of the application is possible in the real-time to prevent

vulnerabilities (Amazon Event Bridge. Event Bus. Amazon Web

Services, 2021).

90

Amazon Kinesis Data Streams (KDS) is used for data streaming

in the real-time. It seizes data from multiple sources such as social

media feed, logs, financial transactions, location tracking etc. This data

is useful for real-time data analytics and enables dynamic pricing,

anomalies detection. It is secured as data is accessed through virtual

private amazon cloud and easy to use as data processing is quick i.e

within 70 milliseconds form the time data is collected. It is durable and

ensures that there is no data loss and provides multiple layer of

protection. It is high in elasticity as it dynamically scales up the

applications and is very low in cost. This is used in gaming, mobile

applications, event data collection and in analytics (Amazon Kinesis

Data Streams - Data Streaming Service - Amazon Web Services,

2021).

Amazon simple queue services (SQC) enables send, receive,

delete, or prioritizing messages using HTTP API direct integration.

This integration assures that the data is secure through the encryption

of logs. It scales automatically and other is no limit for the messages

in the queue. It provides reliable message delivery and eliminates

infrastructure overhead. This service is used in IoT, healthcare, and

various major industries (Amazon SQS. Message Queuing Service.

AWS, 2018).

91

Hence these are some of the important service integrations that

t are provided by the major cloud provider amazon that helps to easily

integrate with the serverless technologies to make the work of

developers easy and convenient.

IV. Programming Languages:

Serverless supports many programming languages for their

developers. They can choose a language based upon their choice to

build any applications in the serverless platform. For example, AWS

supports C#, Java, Python, Node. js, Ruby, PowerShell and Go.

They also enable runtime API which makes them use additional

programming language. The cloud run supports more languages and

allows it to run on containers. Python and Node.js are the most

popular languages in serverless computing. Node uses express

pattern, Python used flask, Go used Http packages, Java uses

Maven and it also supports other Java Virtual Machine (JVM)

languages such as Kotlin, Scala, and groovy. The .net is built upon

ASP.NET core, Ruby on the standard ruby interface, and PHP using

PHP server (Timmerman, 2020).

V. Scalability:

92

Another factor that makes developers prefer serverless

computing in their applications is its scalable ability. Applications that

are built with a serverless infrastructure tend to scale automatically

as the user base grows which intend means usage increases as well.

Here when functions need to run, they do so in multiple instances,

and all this is done by the provider. They start to run and end as at

when needed with the use of containers. Using containers means the

functions start up much quicker especially when they have been run

not too long ago. This means that it is highly impossible for a

serverless application to be overwhelmed in case of an increase in

usage as they can handle a huge number of requests and also

process a single request as compared to a traditional method which

has a fixed amount of server space.

VI. Reduced Cost:

With serverless computing, developers are only charged for

what they use this is so because code only runs when backend

functions are needed by the serverless application, and because of

this, the code automatically scales up as looked-for. Providing users

with access to applications is dynamic, accurate, and real-time. In

comparison to traditional methods, a developer had to project how

much server size they will need and then acquire that capacity in

93

advance, whether they end up using it or not. This is a very huge

factor that has led to many developers switching to serverless as it

resembles pay as you go in the phone industry.

VII. Decreased Latency:

Latency means delay. Codes can be run from anywhere since

applications are not hosted on the origin server in serverless. This

makes it possible for functions of applications to run close to the user

reducing latency because requests from the users don’t have to

travel all the way to the origin server. This is another factor that

makes developers choose serverless computing over traditional

methods.

VIII. Quick deployments and updates:

Developers prefer using serverless for their applications

because quick deployments and updates are possible. Serverless

infrastructure makes it possible to release a working version of an

application without uploading code to servers. This makes it possible

for developers to release their new products, release code in bits,

upload code a function at a time or all at once. Developers can

update, fix and add new features to their applications a function at a

time rather than make changes to the whole application.

94

E. Vulnerabilities

I. Vendor-lock in:

Vendor-lock in is a situation in using the same vendor

products. If a user wants to shift to a different vendor, it costs very

high. Hence it is said that the customer is locked into the service

provider. Serverless has the vendor-lock in issue as it makes users

lock to its vendor. It has potential risks, for example, the vendor

controls the host, resources such as hardware and operational

systems. The API acts as an interface between the user and the

provider. The API can become vulnerable, prone to attacks as it is

maintained by a third party. This in turn affects the users that use

serverless technologies.

Tight coupling in the code will make it difficult for the user to

shift to different vendors in the future (Vijayan, 2021). Sometimes

vendors may change the product that might not support the business

need of a user. As the clients are already locked in there are chances

of increasing the price of their service. It also increases the

complexity of the maintenance.

Solutions to avoid vendor locking will be the cross-provider

deployments, which help to deploy the same code on different

serverless platforms (Taibi et al., 2021). Some open-source FaaS

95

frameworks are suggested to overcome this. Multi cloud approach

can be followed to leverage this problem, ensure probability and

utilize serverless computing effectively (Sampe et al., 2021). Using

the programming language that is supported by any of the providers

makes it easy for the user to switch from one vendor to another

vendor. Migrating to the vendor that supports the existing

programming language would reduce the migration costs. Users

should consider the architecture pattern. A good pattern makes the

migration easier for the clients. Abstraction plays a role like

Operating systems abstract from hardware, virtualization abstracts

from Operating systems, similarly architecture pattern in serverless

(Tanasa, 2019). Lastly using the technologies that are standardized

makes the migratory easier which reduces the vendor-lock in

problem, For example, HTTP webs server is supported by almost all

the serverless vendors. Hence, migration will be quite easier in such

cases. SQL database is one standardized technology that can be

integrated with any of the service providers. Hence, keeping in mind

with these few techniques reduces the vendor-lock in problem in

serverless technology.

II. Cold Starts: Cold start is expressed as the response period it takes

when the instance starts a new request for the first time after

deployments. Cold start is one most common problem in the

96

serverless world. The reason for the request to process longer is

that it needs to initialize the worker, function module, and then

allocate the worker(Cui, September 20, 2020) . Hence, this in turn

results in more time for the containers to warm up and start the

services. It might take some duration for the code to execute. The

cold start can occur depending upon the language we use, the

dependencies, etc. The scripting languages such as JavaScript,

Python, Golang, and Node.js have better performance than Java, C#

and .net.

 According to the (Comparison of Cold Starts in Serverless

Functions across AWS, Azure, and GCP, Jan 5, 2021), the azure

functions take 20 to 30 mins, AWS lambda consumes 5 to 7 mins

and the Google cloud consumes 15 mins. Hence AWS has fewer

cold starts compared to Azure or google cloud. The packages inside

the languages such as java, JavaScript can increase the cold start.

The cold starts can be mitigated by taking several measures.

Sometimes allocating more memory to the functions help to startup

fast. Removing unnecessary packages or shrinking the package size

before deploying helps in improving startup latency. Keeping the

functions warm reduces the cold start frequency. This can happen

by invoking functions periodically, which reduces the warmup time.

Large functions lead to more cold starts. hence, breaking down the

97

function and having proper architecture increases the performance

(Rehemägi, July 24 2021) .

III. Less Control:

Serverless relies on third parties in several ways such as

libraries, software, or API. Such dependency leads to less control of

the system and more vendor control. If the vendor has any downtime

or vulnerabilities or cost modifications or upgrades, it directly impacts

the users that are using serverless which are dependent on those

vendors. Even if the user needs to switch from one vendor to

another, it would be very difficult as they need to change all the

configurations that need to be adjusted as per the new vendor,

modify the logic and change the designs and architecture. Hence, it

causes a lot of complications to the developers. Even with all the

changes, the components might get affected. Each of these vendors

might have different security concerns which directly impact the

serverless users(Roberts, 22 May 2018)

One main advantage of serverless is that we can customize

the software, version, packages, dependencies, etc as per the

business. Hence, the software is vast and will have less control over

all the vendors and it would be difficult to track all the stacks. The

loss of control can be within performance or configurations or

98

problems resolutions. Configuration-wise, the serverless allows to

configure as per their want but leads to less control and exposure of

data by the vendors. The vendors provide tools that are more

platform-specific rather than operating-system-specific. Hence, they

can be less compatible with the Operating systems (Roberts et al.,

2021a).

This can be reduced by using risk assessment and use what

are the important features for the business. This will have more

control and conduct less effect. Tools such as Dashbird helps to

analyze the metrics, logs events, monitor the errors and health of the

lambda functions. It also specifies memory usage and avoids cold

starts. Users can know the troubleshoot the performance issues

using the Dashbird Tool (Rehemägi, 2021).

IV. Difficult to debug:

 Debugging is a bit difficult in serverless as it has distributed

components which make the live environment debugging difficult. It is

not even cost-effective. Users will not be able to debug live as they do

not have direct approach to the servers. Since debugging is live, it

costs more that might directly impact the business budgets. Few of the

frameworks that the serverless applications use have limitations

imposed which makes debugging quite difficult. Tracing and tracking

99

the code is hard. Sometimes debugging in serverless computing uses

entire logs that make debugging difficult.

The debugging in the serverless world is divided into two areas

such as local debugging and debugging serverless in the cloud.

Frameworks such as AWS Lambda use Serverless Application

Model (SAM). This YAML template helps developers to define

events, functions, and permissions. The command-line interface

helps to invoke functions locally and debug them(Serverless

Debugging Guide, 2022) .

Debugging in the cloud requires a few connections that help

for live testing. The First would be testing APIs such as postman

and curl. secondly, testing the lambda functions where test events

are created. track those applications using AWS cloud watch logs

using familiar tools such as Splunk or ELK. AWS X-RAY to debug

and analyze the applications. that helps in debugging (Sengupta,

January 21, 2021).

V. Low privacy:

Considering all the points mentioned earlier, serverless is

prone to security vulnerabilities. The main reasons can be due to

using multiple resources that tend to make data more visible and less

secured. The attack surface can be more due to numerous providers

and various services. The data in serverless is stored in stateless

100

mode. This can cause privacy issues while transferring the data from

one location to another and can lead to data leaks. Insecure settings

in the deployments can lead comprise the privacy of the files.

Hence it is recommended to follow best practices while using

serverless technologies or applications. Always secure the data

storage, Cautious with third-party services, follow best coding

practices, and only use the trusted 3rd party libraries that can help in

mitigating security issues in serverless.

F. Use Cases

Serverless technology can be used in a variety of applications or

systems which are discussed below. Most of the applications can be built

upon the serverless with fewer limitations. It has fine grade deployments,

less monitoring or maintenance, and more of focusing on development

tasks. Below are the most popular use cases of serverless computing.

I. IoT:

The most popular Alexa, iRobot is serverless users. This itself shows

how serverless is very prevalent among the household appliances or

day-to-day things that build using Internet of Things (IoT) technology.

The IoT is restructuring its models and adapting to serverless

computing since it resolves many of the IoT problems such as

sustainability (Yusuf, 2019).

101

 IoT is expected to have a greater impact in economically poor

societies. But it comes with more security vulnerabilities. IoT in public

domains contains sensitive data and has a more prominent chance of

exposure or a breach that leads to security-related issues. This is why

few countries don't adopt IoT specifying the major security concerns.

IoT also needs technical infrastructure such as cloud, network,

architectures to implement the solutions. All these issues pushed back

IoT.

Serverless came into the picture which made IoT publishers solve

most of the above-mentioned issues. AWS, Lambda solutions in IoT

helps to maintain data privacy even in the public domains. The

Function as a service (FaaS) and Software as a service (SaaS)

solved economic issues of IoT. The serverless architecture is built in

such a way that it addresses all the problems and makes IoT easier

and more secure to be used. It reduces maintenance costs, hence

can be utilized in economically weaker countries. Network, cloud,

and data processing are made easier if IoT uses serverless

technologies for their backend processing. Nevertheless, it is cost-

effective which advantages IoT users and publishers. They provide

quality, secured effective services and monitoring can be very easy

for the IoT appliances that are built upon serverless technology.

II. Continuous Integration:

102

 Users or developers spent most of their time on Continuous

Delivery or continuous Integration known as (CI/ CD) integration in

addition to developments and deployments. Suing serverless

technology helps them to focus mainly on the developments while

the CI/CD is taken by serverless. It is easy to set up and maintain.

Once the pull request has been created, the changes will be

deployed automatically, which helps the team or the developer to

test, preview or view the outcome (Serverless CI/CD, 2022). AWS is

built in such a way that it can easily integrate with GitHub and helps

in serverless CI/CD

According to the (Mishra, 2022), there are several uses for

CI/CD that use serverless or FaaS technology. Server maintenance

is not bothered, and there is no cost for idle time. It can have several

builds happen concurrently which can be more than 100 builds. The

only drawback is that its support for plugins is limited and there is no

root access. Automatic deployments and builds have been fostered.

Custom pipelines can be created for highly developed deployments.

III. Data Processing:

Serverless is highly used in various types of data processing

such as image, audio, video, text files, PDF processing, multimedia

processing, etc. It is known best for Ad Hoc Data Processing.

Frameworks that automatically deploy helps in storing data quickly

103

in a cloud environment. There are yet a few things that affect the data

processing in serverless such as the size of the files, the way files

are split, etc. (Werner et al., 2020).

Amazon uses Kinesis for data processing. Firstly, the data

such as financial or logs or IoT data is being sent to Amazon Kinesis.

This data is stored in the form of a shard. The Fanout technique is

used where the lambda functions are triggered and the date is

pushed out. The data is thus stored in Dynamic DB. It uses a push

and pull model, where data is pushed from sources to the lambda

functions. In the pull model, the data is mapped by the function

(Sitapara, 2018).

Example:(SiteSpirit, 2019) IBM's "Site spirits" is a company

that creates responsive websites for various industries. It uses

serverless Media-library-as-a-service which is also known as "Media

Spirit" to create visually effective pictures for marketing. Using

serverless technology, it retrieves the right picture from thousands of

images easily. It is 10 times faster and 10% more cost-effective after

using serverless. Initially, it was developed using an open-source

database and run on virtual servers using Platform-as-a-service

technology. Now they have completely moved to serverless,

changes the architecture, and started using Open Whisk, IBM's

104

serverless technology. This is now handling its high-demand

requests and delivers quicker responses.

IV. Web and Mobile applications:

 Serverless technology build backend APIs that services

mobile applications and web apps. The Application developers tend

to move to serverless as they can just focus on coding and logic,

while the serverless take care of all the processing, backend data,

monitoring, storing, etc. This results in a quality product, where their

focus will be more on functionality that matches their business.

Whenever developers or serverless users wish to perform changes

to their functionality, they can edit only the function rather than

changing all the backend which in turn makes easier updates. It is

cost-effective as they only pay for what they need like resources that

are being used, storage space, etc.

Serverless also offers predefined frameworks, which make

the life of developers so easy by just editing in the given frameworks.

In FaaS, the functions run independently where the functions are

divided into small functions. whenever the user triggers the event,

the function runs, and the cost is calculated based upon the time the

function is running. we only pay for the running time and not the idle

time. Deployments are quite easier using serverless. There are many

providers available, and the users have options to choose from a

105

wide variety of cloud suppliers such as Google cloud functions, AWS,

Apache, etc.

Below are a few well-known companies that use serverless

technologies: (Arkhipov, July 14, 2020)

1. T-Mobile: This company use serverless to build their mobile and

web applications

2. Coca-Cola: These companies use vending machines that are

implemented using serverless and gained a lot of popularity.

3. Slack: This uses serverless applications for notifications

4. UPS: This company uses serverless technologies for their

communicating bots. UPS uses Microsoft Azure serverless

services and only focuses on client-side functionality while the

backend is all taken care of by Microsoft serverless.

V. Micro Services:

Microservice means an application is divided into smaller

parts and all these parts execute separately rather than the

application being executed as one rigid. These have separate

operations, data storage, and services. Microservices use

serverless deployment models for their deployments as they are fast,

highly elastic, and at lower costs. Monitoring and running

microservices can be taken care of by serverless providers.

106

Using serverless, the microservices only run when needed by

applications. It can also de further divided into smaller functions

depending upon the complexity (Tozzi, March 18, 2021). Code can

be written in microservices, and they can run upon serverless. The

code is executed when they receive HTTP requests and provides a

response. The developers need not worry about the infrastructure as

the serverless providers take care of that. This improves efficiency

and low overhead time. The simplicity makes the complex

applications manageable, scalable, and easy to implement.

The fewer challenges with the serverless microservices are

that cold starts which reduce the function performances. As every

application consists of many microservices, it will be a bit hard for

monitoring all those services. It might be hard to determine the root

cause for the issues as sometimes it can be due to function timeouts

or can be due to the environment (Datadog, 2020)

Considering the major positives of serverless microservices,

it is the best way to integrate them as they both have numerous

advantages.

VI. Cloud Automation and CRON jobs:

Cronjobs are used by almost all companies to automate

cleanups, email notifications, etc. Serverless technologies such as

AWS Lambda can be used to perform such jobs which reduce

107

machine management and have very simple interfaces that are used

for automating tasks (McCumskey, Oct 23, 2019).

This is cost-effective because serverless is paid as you go.

Hence when crone jobs are scheduled to run at a particular time, the

serverless only costs for that, and the rest of the idle is not calculated

which can be a great benefit for the companies to perform crone jobs.

Additionally, it also establishes anomaly detection, monitoring, and

metrics.

To have cloud automation, first, the production database

needs to be connected to the function where it executes all the tables

and data. Next, all the dependencies and the serverless framework

will be installed where the cronjobs are scheduled. AWS also

provides secret management and a various number of alerts that are

built in previously. Periodically backing up data can be easy using

serverless as it doesn't require the server to run continuously

(Serverless Advantages and Use Cases, 2022)

There are very few challenges in executing cronjobs such as

using different hardware such as GPU if the cronjobs execute more

than 15 minutes long.

VII. API backends:

Serverless can work on Rest API backends. The web action

which is enabled from the web help to assemble the Application

108

Program Interface (API) with the API gateway. The actions which are

also called functions are converted to HTTP endpoints. These

endpoints are readily consumed by the clients (Serverless, 2021b).

The IBM cloud function...demonstrated how this can be

achieved using Open Whisk. First, the database is created such as

Mongo DB, then the serverless actions are registered which run

using Function as a service (FaaS). All the entries from the database

are retrieved using a sequence of actions and the database

connections are being established. By the end of this, the functions

will have endpoints. Now API is created, and web application is

deployed (Mittal, 2019).

Data Analysis

 The Data is analyzed based upon the multiple factors that affect serverless by

defining them as attributes in taxonomy. Each attribute helps readers understand the

evolving technology, the precautions that need to be taken before or while using

Serverless computing. Each attribute is then subdivided that explains the developer tools,

which in turn helps readers understand the various options that are available and the

providers that issue them. Taking all the security attributes into consideration, the

developers can build their seamless applications in a secured and cost-effective manner.

Summary

109

 This chapter educates users by understanding the features of serverless

technology, attributes that need to be considered while working with serverless

computing. Risks and precautions are advised that helps readers use the technology in

an effective and secured manner. The data collected from several research papers,

journals, and real-time incidents from newspapers helps to educate the readers and is a

single go-to place to refer to all the attributes of serverless computing. The next chapter

describes the results of the study, conclusion, and future work.

110

Chapter V: Results, Conclusion, and Recommendations

Introduction

 In this chapter, I am going to design a taxonomy based upon the multiple factors

that cause security issues in serverless computing. Based on the design, I will explain

each branch of attributes, define the attribute, and explain why it is important.

Results

Based on the research conducted throughout the study, all the questions that were

identified during the methodology has been found and addressed below.

1. How to detect and identify vulnerabilities in serverless computing?

This research question is answered in the first attribute of the taxonomy,

i.e., "Attack". It describes the Types of Attacks and the Root causes. This

helps readers to detect and identify vulnerabilities.

2. Different problems are mentioned in the previous chapters. How can we drive

solutions to the mentioned problems?

This research question is answered in two branches of the taxonomy. One

"Vulnerabilities and Mitigations" explains the problems and solutions to the

emerging problems. Another branch "Protection against attacks" describes

how to protect the serverless systems, when the problems are being

identified.

3. There are different tools available such as Open-source tools like SecLambda.

What are the ways to protect those tools?

111

This research question is answered in the branch "Features". This explains

all the Developer tools that are available which are provided by the

serverless providers that were defined under "Platforms". It also talks about

the ways to protect the tools and use them in a secure way.

4. How to protect the systems that use serverless technologies?

This research question is answered in both "Attacks" protection against the

attacks and in the "Features" development tools. Also, the overall paper

gives an overview for the readers to help them know how they can protect

the serverless technology-based systems.

5. How should users or developers take care while using the serverless

technology?

The "C.I. A Triad" (Confidentiality, Integrity, and Availability) is one of the

taxonomy branches that describes the best practices that developers

should follow which in turn help them build secured applications on the

serverless. "Use cases" which explains several properties of serverless

computing, also describes how developers should use this technology and

what precautions need to be taken care of.

6. What are the Security and privacy issues concerning serverless technology?

This research question is answered in all the chapters of the paper. This

paper primarily focused on security and privacy issues that concern

serverless technology. By end of the paper, users will get a good knowledge

of serverless technology, security issues in the technology, and how to

112

overcome those issues to build secured applications. In Chapter 4,

Taxonomy the "Attack - Type" defines what are all the attacks in the

serverless world, the root causes of those attacks. "Vulnerabilities" in

vulnerabilities and mitigations also define the security concerns in

serverless technology.

Conclusion

 This paper discusses the emerging technology of serverless computing and its

characteristics. As there are many benefits with serverless, there are some catches that

are clearly described in this paper. Research has been conducted based upon several

articles, recent blogs, google scholars. The data is analyzed, and the taxonomy has been

classified. The taxonomy evidently shows the features of serverless computing, the

platforms that it is built upon such as AWS or Google, various attach types, and the root

cause for those attacks. lastly, several use cases have been depicted such as serverless

being used in IoT, data processing, microservices, etc.

 In this paper, the merits of serverless computing alongside the pitfalls have been

shown. A great deal of responsibility lies on the shoulders of the users/developers using

serverless technologies, especially when it comes to securing their work. Users/developer

must carefully protect their environment, especially from input-oriented attacks but also

lapses in maintenance that can open gates for malicious elements.

113

Future Work

 In the paper, we have shed detailed light on Serverless computing as it relates to

the security of applications and the application development process, highlighted the

security attributes to keep an eye on, and recommended techniques to help mitigate

breaches that might be caused by overlooking these attributes.

Further research can go in the direction of making an automated tool based on the

attributes we have highlighted. A tool that can scan a serverless environment and

determine how much risk is presently based on the attributes we have lined up. The field

of serverless computing is relatively new, which means it is going to keep expanding.

Researchers need to keep an eye out for other indicators of compromise as the serverless

train chugs ahead.

114

References

Sengupta, S. (Jan 21, 2021). Guide to Debugging Serverless Applications. LinkedIn.

Retrieved January 23, 2022, from https://www.linkedin.com/pulse/guide-

debugging-serverless-applications-sudip-sengupta/

Sciabarrà, M. (2021). Learning Apache open whisk [book] - O’Reilly online learning.

O'Reilly. Retrieved June 20, 2022, from

https://www.oreilly.com/library/view/learning-apache-

openwhisk/9781492046158/ch01.html

Roberts, M., & Chapin, J. (2021a). What is serverless? O'Reilly Online Learning.

Retrieved June 19, 2022, from https://www.oreilly.com/library/view/what-is-

serverless/9781491984178/ch04.html

Roberts, M., & Chapin, J. (29021b). What is serverless? O'Reilly Online Learning.

Retrieved June 19, 2022, from https://www.oreilly.com/library/view/what-is-

serverless/9781491984178/ch04.html

Nick. (2021, March 14). 6 development tools for serverless applications. The Iron.io

Blog. Retrieved June 19, 2022, from https://blog.iron.io/6-development-tools-for-

serverless-applications/

Tal, L., & Podjarny, G. (2019a, May 31). 10 serverless security best practices. Snyk.

Retrieved June 19, 2022, from https://snyk.io/blog/10-serverless-security-best-

practices/

115

Tal, L., & Podjarny, G. (2019b, May 31). 10 serverless security best practices. Snyk.

Retrieved June 19, 2022, from https://snyk.io/blog/10-serverless-security-best-

practices/

Adam, J. (2019, March 28). The Serverless Evolution Of Big Data & AI Apps. K&C

Consulting. https://kruschecompany.com/serverless-big-data-ai/

Alpernas, K., Flanagan, C., Fouladi, S., Ryzhyk, L., Sagiv, M., Schmitz, T., & Winstein,

K. (2018). Secure Serverless Computing Using Dynamic Information Flow

Control. ArXiv:1802.08984 [Cs]. http://arxiv.org/abs/1802.08984

Amazon Aurora Serverless. MySQL PostgreSQL Relational Database. Amazon Web

Services. Amazon Web Services, Inc. (2021). Retrieved February 23, 2021, from

https://aws.amazon.com/rds/aurora/serverless/

Amazon EventBridge. Event Bus. Amazon Web Services. Amazon Web Services, Inc.

(2021). Retrieved October 17, 2021, from https://aws.amazon.com/eventbridge/

Amazon Kinesis Data Streams—Data Streaming Service—Amazon Web Services.

Amazon Web Services, Inc. (2021). Retrieved October 17, 2021, from

https://aws.amazon.com/kinesis/data-streams/

Amazon SQS. Message Queuing Service. AWS. Amazon Web Services, Inc. (2018).

Retrieved October 17, 2021, from https://aws.amazon.com/sqs/

Amazon Web Services (AWS)—Cloud Computing Services. Amazon Web Services,

Inc. (2021). Retrieved April 1, 2021, from https://aws.amazon.com/

Apache OpenWhisk is a serverless, open-source cloud platform. (2021). Retrieved

October 3, 2021, from https://openwhisk.apache.org/

116

AWS Chalice. [Python]. Amazon Web Services. (2021). Retrieved September 19, 2021,

from https://github.com/aws/chalice (Original work published 2016)

Allen, L. (2022). AWS Lambda – Serverless Architecture Done Right. Retrieved January

17, 2022, from https://www.missioncloud.com/blog/aws-lambda-serverless-

architecture-done-right

AWS Lambda – Serverless Compute—Amazon Web Services. Amazon Web Services,

Inc. (2021). Retrieved September 19, 2021, from

https://aws.amazon.com/lambda/

Cui, Y. (2020, September 20). AWS Lambda Cold Starts: Solving the Problem. Lumigo.

https://lumigo.io/blog/this-is-all-you-need-to-know-about-lambda-cold-starts/

AWS Step Functions. Serverless Microservice Orchestration. Amazon Web Services.

Amazon Web Services, Inc. (2021). Retrieved October 17, 2021, from

https://aws.amazon.com/step-functions/

AWS Systems Manager – Gain Operational Insights and Take Action. Amazon Web

Services, Inc. (2021). Retrieved October 17, 2021, from

https://aws.amazon.com/systems-manager/

Azure Serverless. Microsoft Azure. (2021). Retrieved September 19, 2021, from

https://azure.microsoft.com/en-us/solutions/serverless/

Gursimran, S. (20 October, 2020). Azure Serverless Computing—Architecture,

Advantages and Tools. Retrieved September 19, 2021, from

https://www.xenonstack.com/blog/azure-serverless-computing/

Baisakhiya, N. (2017). Cloud Bleeding-Typos Leaking Your Information. 1.

117

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N.,

Muthusamy, V., Rabbah, R., Slominski, A., & Suter, P. (2017). Serverless

Computing: Current Trends and Open Problems. ArXiv:1706.03178 [Cs].

http://arxiv.org/abs/1706.03178

Bastida, J. (2021). Jorgebastida/gordon [Python].

https://github.com/jorgebastida/gordon (Original work published 2015)

Manor, E(July 24, 2018). Bringing the best of serverless to you. Google Cloud Platform

Blog. Retrieved September 30, 2021, from

https://cloudplatform.googleblog.com/2018/07/bringing-the-best-of-serverless-to-

you.html

Mishra, A. (2022, June 19). Open-source software conference - O’Reilly media. O'Reilly

Media - Technology and Business Training. Retrieved June 19, 2022, from

https://www.oreilly.com/conferences/oscon.html

Beswick, J. (2020, July 29). Building a serverless tokenization solution to mask sensitive

data. Amazon Web Services. https://aws.amazon.com/blogs/compute/building-a-

serverless-tokenization-solution-to-mask-sensitive-data/

Rehemägi, T. (2021, July 24). Can we solve serverless cold starts? Dashbird. Retrieved

June 19, 2022, from https://dashbird.io/blog/can-we-solve-serverless-cold-starts/

Sheridan, K. (2019, July 30). Capital one breach affects 100m US citizens, 6m

Canadians. Dark Reading. Retrieved June 5, 2022, from

https://www.darkreading.com/cloud/capital-one-breach-affects-100m-us-citizens-

6m-canadians

118

Capital One Reports Inside Job Data Breach. ITRC. (Aug 03, 2017). Retrieved January

23, 2022, from https://www.idtheftcenter.org/post/capital-one-reports-inside-job-

data-breach/

Bertram, A. (March 22, 2021). Choose the right Google Cloud serverless service.

Search Cloud Computing. Retrieved October 1, 2021, from

https://searchcloudcomputing.techtarget.com/answer/Choose-the-right-Google-

Cloud-serverless-service

Cimpanu, C. (2021). A crypto-mining botnet is now stealing Docker and AWS

credentials. ZDNet. Retrieved February 24, 2021, from

https://www.zdnet.com/article/a-crypto-mining-botnet-is-now-stealing-docker-and-

aws-credentials/

Cloud, P. A. (1998). Product introduction. In Engineering Procedures Handbook (pp.

10–18). Elsevier. https://doi.org/10.1016/B978-081551410-7.50006-4

Cloud Workload Protection Platform. Prisma. Palo Alto Networks. (2020). Retrieved

March 16, 2021, from https://www.paloaltonetworks.com/prisma/cloud/cloud-

workload-protection-platform

Shilkov, M. (Jan 05, 2021). Comparison of Cold Starts in Serverless Functions across

AWS, Azure, and GCP. Retrieved January 23, 2022, from

https://mikhail.io/serverless/coldstarts/big3/

Rice, L. (2021, December 17). Could zombie toasters ddos my serverless deployment?

The New Stack. Retrieved June 5, 2022, from https://thenewstack.io/zombie-

toasters-eat-startup/

119

McCumskey, G. (Oct 23, 2019). Creating, monitoring, and testing cron jobs on AWS.

Retrieved January 29, 2022, from http://serverless.com//blog/cron-jobs-on-aws

Datadog. (2020). Serverless Microservices: What It Is & How It Works. Datadog.

Serverless Microservices: What It Is & How It Works.

https://www.datadoghq.com/knowledge-center/serverless-

architecture/serverless-microservices/

David, D. E. (May 14, 2021). Unfolding Serverless: What is Serverless and Why it

Matters. Retrieved October 15, 2021, from

https://www.antstack.io/blog/unfolding-serverless-what-is-serverless-and-why-it-

matters/

Developer Tools. Microsoft Azure. (2021). Retrieved October 14, 2021, from

https://azure.microsoft.com/en-us/product-categories/developer-tools/

Mardesich, J. (2014, April 15). Developers, Check Your Amazon Bills For Bitcoin

Miners. Read Write. https://readwrite.com/2014/04/15/amazon-web-services-

hack-bitcoin-miners-github/

What is a DDoS Attack? Digital Attack Map. (2020). Retrieved April 1, 2021, from

https://www.digitalattackmap.com/understanding-ddos/

Tseggai , N. (2018, July 12). Disaster recovery in a serverless world - part 1. Stackery

RSS. Retrieved June 19, 2022, from https://www.stackery.io/blog/disaster-

recovery-in-a-serverless-world-1-of-2/

Disaster-recovery-introduction. IBM. (2019, September 6). Retrieved June 19, 2022,

from https://www.ibm.com/cloud/learn/disaster-recovery-introduction

120

Download Azure SDKs and Tools. Microsoft Azure. (2021). Retrieved October 14, 2021,

from https://azure.microsoft.com/en-us/downloads/

Duc, H. N. (2019, August 16). Going Serverless? Common Serverless Security Issues

and Best Practices by Aaron Chichioco. Hakin9 - IT Security Magazine.

https://hakin9.org/going-serverless-common-serverless-security-issues-and-best-

practices/

Staff, D. R. (2019, October 24). Eight-hour ddos attack struck AWS customers. Dark

Reading. Retrieved June 19, 2022, from

https://www.darkreading.com/cloud/eight-hour-ddos-attack-struck-aws-

customers/d/d-id/1336165

Features—Legacy. Alibaba Cloud Documentation Center. (2021). Retrieved October

14, 2021, from https://partners-intl.aliyun.com/help/doc-detail/140283.htm

Fission. Fission. (2019.-a). Retrieved October 12, 2021, from https://fission.io/

Fission: A Deep Dive into Serverless Kubernetes Frameworks (2). Alibaba Cloud

Community. (2021.-b). Retrieved October 12, 2021, from

https://www.alibabacloud.com/blog/fission-a-deep-dive-into-serverless-

kubernetes-frameworks-2_594902

Function Compute—Alibaba Cloud. Alibaba Cloud. (2021.-a). Retrieved October 3,

2021, from https://www.alibabacloud.com/product/function-compute

Function Compute—Alibaba Cloud. Alibaba Cloud. (2021-b). Retrieved October 14,

2021, from https://www.alibabacloud.com/product/function-compute

121

Garnaat, M. (2021). Kappa [Python]. https://github.com/garnaat/kappa (Original work

published 2014)

H., N. (2019, November 8). 6 key benefits of serverless architecture and Technology.

Geniusee. Retrieved June 19, 2022, from https://geniusee.com/single-

blog/serverless-architecture

GitHub—Faastjs/faast.js at thechiefio. GitHub. (2021). Retrieved October 15, 2021, from

https://github.com/faastjs/faast.js

Kovas, E. (October 19, 2020). Google Targeted in Record-Breaking 2.5 Tbps DDoS

Attack in 2017. SecurityWeek.Com. Retrieved March 3, 2021, from

https://www.securityweek.com/google-targeted-record-breaking-25-tbps-ddos-

attack-2017

Guzikowski, R. M., Chris. (2019, November 12). O’Reilly serverless survey 2019:

Concerns, what works, and what to expect. O’Reilly Media.

https://www.oreilly.com/radar/oreilly-serverless-survey-2019-concerns-what-

works-and-what-to-expect/

Hart, M. (2016, August 15). Introducing LambCI — a serverless build system. Medium.

https://hichaelmart.medium.com/lambci-4c3e29d6599b

Ahmed, A. (March 6, 2017). Have an account with Uber or FitBit? You Better Change

Your Password TODAY! Retrieved March 3, 2021, from

https://www.linkedin.com/pulse/have-account-uber-fitbit-you-better-change-your-

password-abdi-ahmed

122

Heath, N. (2019). Writing serverless code: The programming languages and everything

else you need to know. ZDNet. Retrieved February 23, 2021, from

https://www.zdnet.com/article/writing-serverless-code-the-programming-

languages-and-what-else-you-need-to-know/

Retter, M. (2021, June 6). History Of Serverless Computing: Where It Started. Dashbird.

Retrieved January 29, 2022, from https://dashbird.io/blog/origin-of-serverless/

Welcome to meteoroid documentation. Fiware. (2021). Retrieved June 19, 2022, from

https://fiware-meteoroid.readthedocs.io/en/latest/

Mittal, A. (Feb 07,2019). How to build a serverless backend with AWS Lambda.

Retrieved January 29, 2022, from https://pusher.com/tutorials/serverless-

backend-aws-lambda/#defining-the-first-rest-api-route

Arkhipov, A. (2020, July 14). How to Build Apps with Serverless Architecture-

TechMagic. https://www.techmagic.co/blog/how-to-build-apps-with-serverless-

architecture/

IBM Cloud. IBM Private Cloud. DNA IT Solutions Cloud Experts. DNA IT Solutions.

(2021). Retrieved October 3, 2021, from https://www.dnait.ie/cloud-

services/serverless-computing-with-knative-in-the-ibm-cloud/

IBM Cloud Foundry—Overview. (2021, February 11). Retrieved June 5, 2022, from

https://www.ibm.com/cloud/cloud-foundry

IBM Cloud Functions—Overview. (2021, July 20). https://www.ibm.com/cloud/functions

123

Aruljothi, V. (2021). Implementing Serverless Node.js Functions Using Google Cloud.

Toptal Engineering Blog. Retrieved October 1, 2021, from

https://www.toptal.com/nodejs/serverless-nodejs-using-google-cloud

Gillas, G. (2019, February 28). Injection attacks: Protecting your serverless functions.

Stackery RSS. Retrieved June 16, 2022, from

https://www.stackery.io/blog/protecting-serverless-functions/

Intelligent Threat Detection—Amazon GuardDuty–Amazon Web Services. Amazon Web

Services, Inc. (2022). Retrieved January 17, 2022, from

https://aws.amazon.com/guardduty/

Budzoń, P. (April 05,2017). Intrusion detection and prevention with AWS Lambda and

DynamoDB streams. Retrieved January 17, 2022, from

https://mysteriouscode.com/blog/intrusion-detection-and-prevention-with-aws-

lambda-and-dynamodb-streams/

Jegan, D. S., Wang, L., Bhagat, S., Ristenpart, T., & Swift, M. (2020). Guarding

Serverless Applications with SecLambda. ArXiv:2011.05322 [Cs].

http://arxiv.org/abs/2011.05322

Jindal, A., Gerndt, M., Chadha, M., Podolskiy, V., & Chen, P. (2021). Function Delivery

Network: Extending Serverless Computing for Heterogeneous Platforms.

Software: Practice and Experience, spe.2966. https://doi.org/10.1002/spe.2966

Google Cloud. (2021). Knative. Retrieved September 30, 2021, from

https://cloud.google.com/knative

Kubeless. (2021). Retrieved October 3, 2021, from https://kubeless.io/

124

Singh, G. (03, February 2012). Kubeless—Kubernetes Native Serverless Framework.

Retrieved June 19, 2022, from https://www.xenonstack.com/insights/kubeless

Lambdas—Gordon 0.7.0 documentation. (2015). Retrieved October 14, 2021, from

https://gordon.readthedocs.io/en/latest/lambdas.html

Ltd, O. (2021). Home. OpenFaaS - Serverless Functions Made Simple. Retrieved

October 7, 2021, from https://www.openfaas.com/

Ltd, P. (2018.-a). PureSec Reveals That 21% of Open Source Serverless Applications

Have Critical Vulnerabilities. Retrieved April 1, 2021, from

https://www.prnewswire.com/news-releases/puresec-reveals-that-21-of-open-

source-serverless-applications-have-critical-vulnerabilities-300624175.html

Ltd, P. (2018.-b). PureSec Reveals That 21% of Open Source Serverless Applications

Have Critical Vulnerabilities. Retrieved March 3, 2021, from

https://www.prnewswire.com/news-releases/puresec-reveals-that-21-of-open-

source-serverless-applications-have-critical-vulnerabilities-300624175.html

Lu, J. (2019). Assessing The Cost, Legal Fallout Of Capital One Data Breach.

Conger, K. (2017, February 24). Major cloudflare bug leaked sensitive data from

customers' websites. TechCrunch. Retrieved June 5, 2022, from

https://techcrunch.com/2017/02/23/major-cloudflare-bug-leaked-sensitive-data-

from-customers-websites/

Maissen, P., Felber, P., Kropf, P., & Schiavoni, V. (2020). FaaSdom: A Benchmark

Suite for Serverless Computing. Proceedings of the 14th ACM International

125

Conference on Distributed and Event-Based Systems, 73–84.

https://doi.org/10.1145/3401025.3401738

Many-faced threats to Serverless security. theburningmonk.com. (August 14, 2017).

Retrieved October 19, 2021, from https://theburningmonk.com/2017/08/many-

faced-threats-to-serverless-security/

Tozzi, C. (March 18, 2021). Microservices vs. Serverless architecture. Sumo Logic.

Retrieved January 29, 2022, from

https://www.sumologic.com/blog/microservices-vs-serverless-architecture/

midwayjs. (2018). Midway - a node.js serverless framework for front-end/full-stack

developers. build the application for next decade. works on AWS, Alibaba Cloud,

tencent cloud and traditional VM/container. Super Easy integrate with react and

Vue. - (midway). Open-Source Libs. Retrieved June 19, 2022, from

https://opensourcelibs.com/lib/midway

Tanasa, W. (2019, March 21). Mitigating serverless lock-in fears. Thought works.

Retrieved June 19, 2022, from https://www.thoughtworks.com/en-

us/insights/blog/mitigating-serverless-lock-fears

Mohanty, S. K., Premsankar, G., & di Francesco, M. (2018). An Evaluation of Open

Source Serverless Computing Frameworks. 2018 IEEE International Conference

on Cloud Computing Technology and Science (CloudCom), 115–120.

https://doi.org/10.1109/CloudCom2018.2018.00033

Elli, A. (2017, September 5). Morning coffee with the OpenFaaS CLI. Alex Ellis' Blog.

Retrieved June 19, 2022, from https://blog.alexellis.io/quickstart-openfaas-cli/

126

Khani, A. (March 11, 2021). Multi-Cloud Security Best Practices for Serverless

Functions. Cloud Health by VMware. Retrieved January 30, 2022, from

https://www.cloudhealthtech.com/blog/cloud-security-serverless-functions

Nayak, S. (2020, October 19). How to Build a Serverless Application using AWS

Chalice. Medium. https://towardsdatascience.com/how-to-build-a-serverless-

application-using-aws-chalice-91024416d84f

Node-lambda. Npm. (2021). Retrieved October 12, 2021, from

https://www.npmjs.com/package/node-lambda

Onelogin: Breach exposed ability to decrypt data. Krebs on Security. (2017, June 1).

Retrieved June 16, 2022, from https://krebsonsecurity.com/2017/06/onelogin-

breach-exposed-ability-to-decrypt-data/

Openfaas 8.0.4 · helm/openfaas. Artifact Hub. (2021). Retrieved October 7, 2021, from

https://artifacthub.io/packages/helm/openfaas/openfaas

Catalin C. (2019). Over 100,000 github repos have leaked API or cryptographic keys.

ZDNet. Retrieved June 5, 2022, from https://www.zdnet.com/article/over-100000-

github-repos-have-leaked-api-or-cryptographic-keys/

OWASP-Top-10-Serverless-Interpretation-en.pdf. (2017). Retrieved January 17, 2022,

from https://owasp.org/www-pdf-archive/OWASP-Top-10-Serverless-

Interpretation-en.pdf

Pauli, D. (2015). Dev put AWS keys on Github. Then BAD THINGS happened.

Retrieved October 19, 2021, from

127

https://www.theregister.com/2015/01/06/dev_blunder_shows_github_crawling_wi

th_keyslurping_bots/

Persson, P., & Angelsmark, O. (2017). Kappa: Serverless IoT deployment. 16–21.

https://doi.org/10.1145/3154847.3154853

Yagolnitze, Y. (2020, June 3). Preventing Injection Attacks on Serverless Applications.

Reblaze.com. Retrieved June 19, 2022, from

https://www.reblaze.com/blog/preventing-injection-attacks-on-serverless-

applications/

Williams, A. (2018, October 22). guide to serverless technologies. graphassets.

Retrieved from https://media.graphassets.com/pzLpSdoGRN67DipZUbI0

Rackerlabs. (2020). Rackerlabs/lambda-uploader—Githubmemory. (2020). Retrieved

October 14, 2021, from https://githubmemory.com/repo/rackerlabs/lambda-

uploader

Rahman, M. M., & Hasibul Hasan, M. (2019). Serverless Architecture for Big Data

Analytics. 2019 Global Conference for Advancement in Technology (GCAT), 1–5.

https://doi.org/10.1109/GCAT47503.2019.8978443

Rehemägi, T. (2021, November 16). How to Measure and Improve Your Serverless

Application’s Health. Medium. https://towardsaws.com/how-to-measure-and-

improve-your-serverless-applications-health-ae46f6a71138

Releases · aliyun/fcli. GitHub. (2020). Retrieved October 14, 2021, from

https://github.com/aliyun/fcli/releases

128

Rojas, D. A. (2020, August 11). Agnostic serverless functions using Kubeless.

QuintoAndar Tech Blog. https://medium.com/quintoandar-tech-blog/agnostic-

serverless-functions-using-kubeless-3e0198c123eb

Sampe, J., Garcia-Lopez, P., Sanchez-Artigas, M., Vernik, G., Roca-Llaberia, P., &

Arjona, A. (2021). Toward Multicloud Access Transparency in Serverless

Computing. IEEE Software, 38(1), 68–74.

https://doi.org/10.1109/MS.2020.3029994

Krish. (2018, June 20). Serverless And Vendor Lock-in: Does It Impact You?

Stacksense. Retrieved June 19, 2022, from

https://stacksense.io/krishnan/philosophy/on-serverless-and-lock-in/

Security Risks Arising from Serverless Technology. Haltdos.com. (Jan 21, 2021).

Retrieved January 17, 2022, from https://www.haltdos.com/blog/security-risks-

arising-from-serverless-technology

IBM cloud education. (20212, October 8). Serverless.

https://www.ibm.com/cloud/learn/serverless

IBM cloud education. (2021b, October 8). Serverless.

https://www.ibm.com/cloud/learn/serverless

Serverless Advantages and Use Cases. Dashbird. (2022). Retrieved January 29, 2022,

from https://dashbird.io/knowledge-base/basic-concepts/serverless-advantages-

and-use-cases/

Roberts, M. (22 May 2018). Serverless Architectures. Martinfowler.Com. Retrieved

January 23, 2022, from https://martinfowler.com/articles/serverless.html

129

Serverless CI/CD: Built for Serverless Applications. (2022). Retrieved January 29, 2022,

from http://serverless.com//ci-cd

Serverless Cloud Function Tencent Cloud. (2021). Retrieved October 8, 2021, from

https://intl.cloud.tencent.com/product/scf

Serverless Computing – Amazon Web Services. Amazon Web Services, Inc. (2022).

Retrieved January 30, 2022, from https://aws.amazon.com/serverless/

Serverless Debugging Guide. Lumigo. (2022). Retrieved January 23, 2022, from

https://lumigo.io/debugging-aws-lambda-serverless-applications/

Serverless for Kubernetes with Fission Functions as a Service. Platform9. (2021).

Retrieved October 12, 2021, from https://platform9.com/fission/

Serverless Framework—AWS Lambda Guide—Introduction. (2021). Retrieved

September 19, 2021, from

https://serverless.com/framework/docs/providers/aws/guide/intro

Serverless Framework—Azure Functions Guide—Testing. (2021). Retrieved

September 19, 2021, from

https://serverless.com/framework/docs/providers/azure/guide/testing

Ribenzaft, R. (2020, April 13). Serverless open-source frameworks: OpenFaas, Knative,

& More. Cloud Native Computing Foundation. Retrieved June 19, 2022,

from https://www.cncf.io/blog/2020/04/13/serverless-open-source-frameworks-

openfaas-knative-more/

130

Serverless Security for Serverless Containers and Functions. Aqua. (2022, January 3).

Retrieved January 17, 2022, from https://www.aquasec.com/products/serverless-

container-functions/

Rehemägi, T. (2021, December 1). Serverless security hazards and trends to consider.

Dashbird. Retrieved June 16, 2022, from https://dashbird.io/blog/serverless-

security-hazards/

Perris, R. (2021, April 8). Serverless security with Automated API Security testing. Stack

Hawk. Retrieved June 16, 2022, from

https://www.stackhawk.com/blog/serverless-security-api-testing/

Serverless Web IDE Tencent Cloud. (2021-04-12). Retrieved October 15, 2021, from

https://intl.cloud.tencent.com/document/product/583/39962

Chris. (2021). # serverless - from the beginning, using Azure Functions (azure portal),

part I. Serverless - from the beginning, using Azure functions (Azure portal), part

I. Retrieved June 16, 2022, from https://softchris.github.io/pages/serverless-

one.html#serverless-on-azure

Serverless Infrastructure Providers. Serverless. (2020). Retrieved February 23, 2021,

from https://serverless.com/framework/docs/providers/

Shafiei, H., Khonsari, A., & Mousavi, P. (2019). Serverless Computing: A Survey of

Opportunities, Challenges and Applications. ArXiv:1911.01296 [Cs].

http://arxiv.org/abs/1911.01296

131

Shankar, V., Krauth, K., Pu, Q., Jonas, E., Venkataraman, S., Stoica, I., Recht, B., &

Ragan-Kelley, J. (2018). numpywren: Serverless linear algebra.

ArXiv:1810.09679 [Cs]. http://arxiv.org/abs/1810.09679

DataArt. (2017, July 28). Should you use serverless architecture for your IOT solution?

IoT For All. Retrieved June 16, 2022, from https://www.iotforall.com/serverless-

architecture-iot-solution/

Sitapara, J. (2018, October 19). Real-time Data Processing with Serverless Computing.

DATAVERSITY. https://dev.dataversity.net/real-time-data-processing-serverless-

computing/

SiteSpirit. (2019, February 13). https://www.ibm.com/case-studies/sitespirit

Developer security: Develop fast. stay secure. Snyk. (2022, June 8). Retrieved June 16,

2022, from https://snyk.io/

Taibi, D., Spillner, J., & Wawruch, K. (2021). Serverless Computing-Where Are We

Now, and Where Are We Heading? IEEE Software, 38(1), 25–31.

https://doi.org/10.1109/MS.2020.3028708

Team, O. (2020, July 2). Serverless Development with Kubeless and Okteto.

https://okteto.com/blog/serverless-development-with-kubeless/

The 50 Most Preferred Open-Source Serverless Tools. Thechief.Io. (2021). Retrieved

October 15, 2021, from https://thechief.io/c/editorial/the-50-most-preferred-open-

source-serverless-tools/

The Ten Most Critical Risks for Serverless Applications v1.0. PureSec. (2022).

https://github.com/puresec/sas-top-10 (Original work published 2018)

132

Timmerman, G. (2020, October 26). Serverless Functions in Any Language. Google

Cloud - Community. https://medium.com/google-cloud/serverless-functions-in-

any-language-b44401c40859

Sollow, H. (2020, July 10). Top 4 reasons why serverless is secure. Check Point

Software. Retrieved June 16, 2022, from

https://blog.checkpoint.com/2020/07/13/top-4-reasons-why-serverless-is-secure/

Taylor, T. (2018a, August 24). Top 8 tools to use when working with serverless

computing. TechGenix. Retrieved June 16, 2022, from

https://techgenix.com/serverless-computing-tools/

Taylor, T. (2018b, August 24). Top 8 tools to use when working with serverless

computing. TechGenix. Retrieved June 16, 2022, from

https://techgenix.com/serverless-computing-tools/

Use fcli for the first time—Legacy Alibaba Cloud Documentation Center. (2020).

Retrieved October 14, 2021, from https://partners-intl.aliyun.com/help/doc-

detail/52995.htm

User, S. (2021). Security of Serverless Applications: Key Challenges and Best Practices

to Overcome Them. Apriorit. Retrieved March 16, 2021, from

https://www.apriorit.com/dev-blog/657-web-security-of-serverless-applications

Vijayan, J. (2021). Serverless vendor lock-in: Should you be worried? TechBeacon.

Retrieved October 19, 2021, from https://techbeacon.com/enterprise-

it/serverless-vendor-lock-should-you-be-worried

133

VISH. (2020, March 26). DDoS Defence—AWS Serverless Architecture. Medium.

https://medium.com/@IAMVISH/ddos-defence-aws-serverless-architecture-

e3027f85278e

Wang, A., Chang, S., Tian, H., Wang, H., Yang, H., Li, H., Du, R., & Cheng, Y. (2021).

FAASNET: Scalable and Fast Provisioning of Custom Serverless Container

Runtimes at Alibaba Cloud Function Compute. 16.

Wang, H., Niu, D., & Li, B. (2019). Distributed Machine Learning with a Serverless

Architecture. IEEE INFOCOM 2019 - IEEE Conference on Computer

Communications, 1288–1296. https://doi.org/10.1109/INFOCOM.2019.8737391

Web Application Firewall (WAF) Solutions. Reblaze. (2022, February 13). Retrieved

January 17, 2022, from https://www.reblaze.com/product/web-application-

firewall/

Werner, S., Girke, R., & Kuhlenkamp, J. (2020). An Evaluation of Serverless Data

Processing Frameworks. Proceedings of the 2020 Sixth International Workshop

on Serverless Computing, 19–24. https://doi.org/10.1145/3429880.3430095

Shivang. (2019, January 15). What Is Apache OpenWhisk? Why Use It? Everything You

Should Know About It. Scaleyourapp.Com. https://www.scaleyourapp.com/what-

is-apache-openwhisk-why-use-it-everything-you-should-know-about-it/

What is Function Compute. Alibaba Cloud (2018). Retrieved October 3, 2021, from

https://partners-intl.aliyun.com/help/doc-detail/52895.htm

134

What Is Serverless Computing? What are the Features of Serverless? - Alibaba Cloud.

(2021). Retrieved October 1, 2021, from

https://www.alibabacloud.com/knowledge/what-is-serverless

Johnson, J. (2019, April 30). Serverless scripting for URL redirection - stackpath blog.

Retrieved June 16, 2022, from https://blog.stackpath.com/serverless-redirect-

script/

What is the CIA triad? Forcepoint. (2021, May 5). Retrieved June 16, 2022, from

https://www.forcepoint.com/cyber-edu/cia-triad

Yegulalp, S. (2019, August 28). 7 open source tools that make AWS Lambda better.

InfoWorld. https://www.infoworld.com/article/3434007/7-open-source-tools-that-

make-aws-lambda-better.html

Yusuf, S. (2019, May 7). Using IoT with Serverless to Tackle Global Issues. Thundra.

https://medium.com/thundra/using-iot-with-serverless-to-tackle-global-issues-

9695a40d5d8d

Zhang, T., Xie, D., Li, F., & Stutsman, R. (2019). Narrowing the Gap Between

Serverless and its State with Storage Functions. Proceedings of the ACM

Symposium on Cloud Computing, 1–12.

https://doi.org/10.1145/3357223.3362723

