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Abstract 

 

We routinely encounter too much information in the form of social media posts, blogs, news 

articles, research papers, and other formats.  This represents an infeasible quantity of information 

to process, even for selecting a more manageable subset.  The process of condensing a large 

amount of text data into a shorter form that still conveys the important ideas of the original 

document is text summarization. Text summarization is an active subfield of natural language 

processing.  Extractive text summarization identifies and concatenates important sections of a 

document sections to form a shorter document that summarizes the contents of the original 

document.  We discuss, implement, and compare several unsupervised machine learning 

algorithms including latent semantic analysis, latent dirichlet allocation, and k-means clustering.   

ROUGE-N metric was used to evaluate summaries generated by these machine learning 

algorithms. Summaries generated by using tf-idf as a feature extraction scheme and latent 

semantic analysis had the highest ROUGE-N scores. This computer-level assessment was 

validated using an empirical analysis survey. 
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Chapter 1: Introduction 

Overview 

We routinely encounter too much information in the form of social media posts, blogs, 

news articles, research papers, and other formats. This represents an infeasible quantity of 

information to process, even for selecting a more manageable subset.  The process of 

computationally pruning any document into a shorter version in a manner that preserves as much 

information as possible and still conveys the overall idea of the original document is Text 

Summarization. Text summarization is an active subfield of natural language processing 

(NLP).  Two popular approaches used today to generate automatic text summarization are 

extractive text summarization and abstractive text summarization. In extractive text 

summarization, based on their statistical and linguistic features, sentences or paragraphs are 

extracted from a source document and concatenated (Moratanch and Chitrakala 1). Whereas in 

abstractive text summarization, advanced NLP techniques are used to understand the source text 

and generate a new shorter text that conveys the most pertinent information of the source text 

(Dalal and Malik 1).  

Objective 

The objective of this research is to implement an extractive text summarization system. This 

system when given a large input text data will generate an extractive summary. 
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Chapter 2: Background Research 

Overview 

This chapter provides background on the approaches that use machine learning algorithms 

to generate extractive text summaries. Artificial intelligence (AI) is a branch of computer science 

that deals with creating intelligent machines that can think, behave and be able to make decisions 

on their own like human beings. (Kumar 118). Machine learning (ML) is a subfield of AI that 

enables a system to learn from data without being explicitly programmed (IBM Cloud 

Education). There are several categories of ML algorithms such as supervised learning, 

unsupervised learning, and reinforcement learning. In supervised learning, there is an 

established set of data and a certain understanding of how that data is classified (IBM Cloud 

Education). An iterative process, where data is analyzed without human supervision or 

intervention is known as unsupervised learning (IBM Cloud Education). In reinforcement 

learning algorithms, a user is guided to the best outcome via data analysis or trial and error 

process (IBM Cloud Education). This research will primarily focus on generating summaries via 

unsupervised ML algorithms. 

Feature Engineering  

Feature extraction is one of the essential parts of all NLP systems. ML algorithms need 

numerical input, however, the data in this research is textual. To process text data using ML 

algorithms, transformations that create numerical representations of the given text data must be 

applied.  Three widely schemes used to create such transformations are bag of words (BOW), 

term frequency-inverse document frequency (TF-IDF), and word-embeddings.  A group of 

sentences or documents is usually called a corpus in the field of NLP. BOW approach creates a 

matrix where the rows represent the sentences in a corpus and the columns represent the 
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frequency of words in that corpus. For example, consider the following corpus Apple is good, 

Apple is apple, Apple is healthy. The BOW representation for this corpus is shown in Table 1. 

Table 1 

Bag Of Words Matrix 

 Apple Is Good Healthy 

Sentence1 1 1 1 0 

Sentence2 2 1 0 0 

Sentence 3 1 1 0 1 

 

Each row contains the frequency of words that appear in that sentence.  However, the 

problem with the BOW scheme is that common words that appear frequently throughout the 

entire corpus have higher weights. For example, the word apple appears in all three sentences, 

this technically does not distinguish those three sentences from one another, however it has a 

higher weight. To distinguish between those three sentences words such as good, and healthy 

should be up-weighted because they are less frequent than other words. TF-IDF scheme combats 

this issue by emphasizing rare words and down-weighting frequent words. The mathematical 

formulas used by the TF-IDF scheme are shown by equations 1-3. Table 2 shows the resultant 

matrix after applying TF-IDF transformation. 

𝑇𝐹 = 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡   ( 1 ) 

 

𝐼𝐷𝐹 =  𝑙𝑜𝑔(
1 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

1 + 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑎𝑙𝑙 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 
)   ( 2 ) 

 

𝑇𝐹 − 𝐼𝐷𝐹 =  𝑇𝐹 ∗ 𝐼𝐷𝐹     ( 3 ) 
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Table 1 

Term Frequency – Inverse Document Frequency Matrix  

 Apple Is Good Healthy 

Sentence1 -0.0969 0.0000 0.3010 0.0000 

Sentence2 -0.1938 0.0000 0.0000 0.0000 

Sentence 3 -0.0969 0.0000 0.0000 0.3010 

 

Table 2 shows that weights of rarely appearing words such as good and healthy are 

higher compared to weights of frequently appearing words such as apple. In trying to distinguish 

the effect of words, the TF-IDF scheme outperforms BOW scheme.  

Word-embedding approach allows words with similar meanings to have similar 

representations. Individual words are represented as a real-value vector in a predefined vector 

space using this scheme. At the core of this algorithm, each word is mapped to one vector and 

the values are learned using neural networks. Jain et al. have used per sentence word-embeddings 

to generate features for their text summarization project (3). However, word–embeddings have 

high computational requirements compared to the previously mentioned approaches. Doing 

sentence-level word embeddings would require even more time and computation resources. This 

approach does not seem feasible, given the scale of this research. Padmakumar et al. have used 

sentence-level word-embeddings in their research, however, their research uses supervised 

machine learning models with labeled datasets (2).  

Summarization using Latent Semantic Analysis 

Latent semantic analysis (LSA) is an unsupervised ML algorithm. LSA applies statistical 

computation to a corpus of text whereby extracting and representing the contextual usage of 
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words (Landauer et al. 2). LSA uses a method known as singular value decomposition (SVD) to 

decompose a single matrix into 3 different matrices. In LSA, a value k, meaning the number of 

concepts that will be kept must be specified. Then a matrix X of size m*n will be decomposed 

into 3 different matrices as shown by equation 4. 

𝑋 = 𝑈 ∗ 𝜎 ∗ 𝑉𝑇     ( 4 ) 

In equation 4, 𝑈 will be an m*k matrix whose elements row-wise indicate documents, and 

the columns indicate concepts (Padmakumar et al. 3). 𝜎 will be a k*k diagonal matrix, whose 

elements represent the amount of variation captured from each concept (Padmakumar et al. 3). 

𝑉𝑇 will be a k*n matrix whose elements row-wise will be concepts and columns will be words 

(Padmakumar et al. 3). Padmakumar et al. use the TF-IDF scheme to generate a feature matrix, 

then use LSA to decompose that matrix, and finally use the decomposed matrices to generate 

scores for all sentences in the given corpus using equation 5 (2) . The sentences with the highest 

scores are selected for the extractive text summary.    

𝑆𝑐𝑜𝑟𝑒 (𝑆𝑖) = √∑ 𝜎𝑗
2 𝑘 

𝑗=0 ∗ 𝑈𝑖
2       ( 5 ) 

Summarization using Latent Dirichlet Allocation 

Blei et al. proposed latent dirichlet allocation (LDA) in 2003 as an improvement over LSA 

(2). Unlike LSA, which is based on linear algebra, LDA is based on a probabilistic model. 

According to Blei et al., LDA is a three-level hierarchical Bayesian model, in which each item of 

a collection is modeled as a finite mixture over an underlying set of topics (1). Each topic is, in 

turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context 

of text modeling, the topic probabilities provide an explicit representation of a document. Like 

LSA, LDA assumes k concepts in a corpus, where these k concepts are distributed randomly i.e., 
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each word in the corpus is assigned a random concept.  LDA then assumes that each word in the 

corpus is assigned the wrong concept whereas other words are assigned correct concepts. Then 

based on a probabilistic model, this step is repeated. That probabilistic model is based on the 

number of concepts that exist in the corpus and the number of times a word had been assigned to 

a particular concept across the entire corpus. The iterative assignment stops when the concept 

reassignment process converges. Widjanarko et al. use LDA to generate an extractive text 

summary in their research (2). In their research, using LDA, concepts were identified, and 

sentences were selected for summary using the output of that LDA model. The basic idea in their 

paper is that they compute the probability of the sentence from the probabilities of words and 

concepts.  

Summarization using k-means Clustering 

One of the most widely used clustering algorithms, k-means uses distance measures to 

partition the data set into clusters (IBM Cloud Education). A cluster is a group of data that share 

a similarity. k-means is widely used as an unsupervised machine learning algorithm to categorize 

unlabeled data into groups/clusters represented by k. This algorithm partitions an input data set 

of size n into k separate groups, each described by the mean of data points in individual groups 

which are called centroids. This algorithm aims to choose centroids that attempt to minimize the 

inter-cluster sum of the squared criterion. Akter et al. use both LSA and k-means to generate 

automated text summaries (3). However, in this research both LSA and LDA are used for 

dimensionality reduction and then used as inputs to k-means clustering.  

Other Approaches 

Moratanch and Chitrakala discuss supervised machine learning algorithms for text 

summarization (2). In their paper, they train classification-based machine learning algorithms by 
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providing summary and non-summary sentences, then the trained ML model predicts whether a 

sentence is a summary or non-summary sentence. They also discuss unsupervised ML 

approaches such as the graph-based similarity approach where linear algebraic models determine 

the importance of a sentence (2). Then a graph is built whose nodes represent the sentences in the 

corpus and edges represent cosine similarity values. Chen and Zhuge have used recurrent neural 

networks to generate extractive text summaries in their research (2). 

Summary Evaluation 

The performance of the extractive text summarization system must be assessed. 

Traditionally, ML models have been evaluated using metrics such as accuracy, precision, recall, 

and f-measure. Visually, these metrics are all part of the confusion matrix. For instance, consider 

a corpus where each document has been labeled as being summary or non-summary. This dataset 

is then used to train a supervised ML algorithm. This trained model can now classify a document 

being either summary or non-summary. This model is an example of binary classification. Table 

3 shows an example of a confusion matrix that is used to evaluate a binary classifier model like 

this.  In Table 3, true positives are those documents that were labeled as summary by humans and 

classified as summary by a ML model as well. False positives are those documents that were 

labeled as non-summary by humans but classified as summary by the ML model. False negatives 

are those documents that were labeled as summary but classified as non-summary by the ML 

model. True negatives are those documents that were labeled as non-summary by humans and 

classified as non-summary by the ML model as well. 
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Table 2 

Binary Confusion Matrix 

 

Human Selected as  

summary 

Human Selected as 

non-summary 

ML model Selected as 

summary 

True Positives (TP) False Positive (FP) 

ML model Selected as  

non-summary 

False Negatives (FN) 

True Negatives 

(TN) 

 

The accuracy of an ML model indicates how often the model is correct. Equation 6 

shows the formula used to calculate accuracy. The precision of an ML model indicates how 

many identifications were correct. Equation 7 shows the formula used to calculate the precision. 

Recall of an ML model indicates how many actual positives were identified correctly. Equation 8 

shows the formula used to calculate recall. F-measure is the weighted average, or the harmonic 

mean of Precision and Recall. F-measure is typically used when a dataset is imbalanced. 

Equation 9 shows the formula used to calculate F-measure. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      ( 6 ) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                        ( 7 )  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
      ( 8 ) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
      ( 9 ) 
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These metrics have remained salient, especially in supervised ML algorithms used for 

classification. This is because the data used in supervised ML algorithms are labeled. However, 

unsupervised ML algorithms do not have labeled data, thus establishing evaluation metrics for 

these types of algorithms can be difficult. One of the popular metrics used today to evaluate 

automated text summaries is the ROUGE (Recall-Oriented Understudy for Gisting Evaluation) 

score. According to Lin, the ROUGE score includes measures to automatically determine the 

quality of a summary by comparing it to other (ideal) summaries created by humans (1). ROUGE 

measures the frequency of intersecting units such as n-gram, word sequences, and word pairs 

between the human-generated summary and the summary generated by computers (Lin 1). 

ROUGE-N gives n-gram recall between a computer generate summary and a reference summary 

generated by humans (Lin 1). Equation 10 shows the formula used to calculate ROUGE-N (Lin 

1).  

𝑅𝑂𝑈𝐺𝐸 − 𝑁 =
∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ𝑔𝑟𝑎𝑚𝑛∈ 𝑆 (𝑔𝑟𝑎𝑚)𝑛𝑆 ∈{𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠}

∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑔𝑟𝑎𝑚𝑛∈ 𝑆 (𝑔𝑟𝑎𝑚)𝑛𝑆 ∈{𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠}
   ( 10 ) 

In equation 10, 𝑛 stands for the length of n-gram, (𝑔𝑟𝑎𝑚)𝑛 is the maximum number of n-

grams co-occurring in the computer-generated summary and human-generated (reference) 

summary. Intuitively, in equation 10, the numerator is a count of true positives whereas the 

denominator is the count of true positives and false negatives. Therefore, Lin, describes 

ROUGE-N as being a recall-like measure since the denominator of the equation is the total sum 

of the number of n-grams in the human-generated summary (1). The downside of this evaluation 

metric is that the reference summary must be human-generated. During ML model tuning phase, 

for every corpus used in the evaluation of this model a reference summary must be created. 
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Chapter 3: Motivation 

Overview 

Application of text summarization ranges from scientific research, books, digest, stock 

market, and news to sporting events. During the background research phase of a research paper, 

normally abstracts of various reference articles are read for selection. However, if this research is 

to include the latest innovations and technologies, reading abstracts of multiple papers can be 

very tedious. Text summarization systems can be used to group multiple reference articles and 

generate a condensed abstract. Even teachers might not be able to frequently include recent 

technological trends in their teaching content. However, text summarizers can be used to 

generate a short document that conveys important ideas from multiple documents, which can 

then be easily included in classroom contents. In addition to that, as human beings, we might 

have some preconceived bias toward certain approaches, methods, topics, etc. However, the 

summarization algorithms are much less biased than human beings.  
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Chapter 4: Experiment Design 

Overview 

This chapter of the paper describes the steps proposed to create an automated text 

summarization system. As shown in Figure 1, first, an entire document (in pdf, word document, 

or other formats) will be read. Second, the text in the read document might contain unnecessary 

information which will be removed as part of text preprocessing. Third, using various 

mathematical transformations, relevant features will be extracted from the preprocessed text. 

Fourth, the extracted features will be used to train unsupervised ML algorithms to create ML 

models. Finally, the output of the ML models will be used to generate a summary of the 

document. 

 

Figure 1. Proposed steps involved in creating an Automatic Text Summarization system 
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Research Questions 

In addition to the methods discussed in background research, there might be other approaches 

used to generate better extractive summaries. The following research questions will be 

investigated along with the execution of the experiment design. 

a) RQ-1: What metrics exist to score semantic sentence similarities?  

LSA uses SVD to decompose a matrix into 3 different matrices. How can these 3 

matrices be used to define a mathematical model that can be used to generate a score for 

each document in the input corpus? 

b) RQ-2: How do n-grams impact extractive summary generation? 

During the feature extraction process, how does the co-occurrence range of words affect 

the outcome of the final summary? Are trigrams better than bigrams or a combination of 

all trigrams, bigrams, and unigrams must be used when generating BOW and TF-IDF 

weights? 

c) RQ-3: How effective is the word-embeddings approach in generating features? 

BOW and especially TF-IDF remain popular feature generation schemes in the field of 

NLP. However, rather than using these classical approaches, can word-embeddings 

scheme be used? Are the summaries generated using word-embeddings better than the 

ones generated by BOW and TF-IDF? 
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Overall Design  

The overall experiment design is depicted in the image below. Upcoming sections describe 

each step-in detail.  

 

 
Figure 2. Overall system design 
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Data Collection 

The data used in this research could be lab reports, research papers, and various essay-based 

assignments. An ideal corpus could be built by collecting research papers from various academic 

disciplines. One source could be the university’s graduate school online repository. However, for 

the given scale of research, Wikipedia articles are sufficient to demonstrate the idea. 

Text Preprocessing 

Text preprocessing is a very integral part of any NLP system. The steps involved in the text 

preprocessing part are shown in Figure 2.  

 

Figure 3. Proposed steps involved in Text Preprocessing 

a) Parsing HTML document (Web Scraping) 

The text in Wikipedia articles is contained inside HTML tags such as <p></p> 

etc. Those textual data must be parsed from HTML tags and put into a single string as 

part of preprocessing. Since the data used in this research is textual, images in Wikipedia 

articles will not be used. Beautiful Soup is a python library that is used for web scraping 

purposes to pull data out of HTML and XML files.  
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b) Sentence Level Tokenization 

Once the text from the Wikipedia article is extracted, the extracted text will be a 

single large string. This single large string should be divided into individual sentences. 

One way to accomplish this would be to break this large string on the period symbol 

delimiter. However, there might be occasional period symbols, in a single string, the 

previous approach would fail in this event. NLTK (Natural Language Toolkit), is a suite 

of libraries and programs for symbolic and statistical natural language processing written 

in Python programming language. NLTK provides means to divide a large corpus into 

text. This library is widely used in NLP and ML fields to accomplish a task. 

c) Noise Removal  

Wikipedia article might contain data that might skew results. This data or noise 

should be removed during preprocessing step. Some sources of noise include citation 

numbers, newline characters, whitespaces, and non-english characters. 

d) Word Level Tokenization 

At this stage, the data should be in the format of sentence tokens i.e., divided into 

individual sentences. However, for further preprocessing, each sentence must be broken 

down into individual words. One possible approach to accomplish this task would be to 

split a sentence on whitespace delimiter. However, the NLTK library that provided 

functionality for the earlier task of sentence-level tokenization also provides functionality 

for word-level tokenization. This word tokenization functionality will be used to 

accomplish this task. 
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e) Stopwords and Punctuation marks removal 

At this stage, the data should be in the format of sentence tokens and each 

sentence token should include word tokens. This step includes the removal of stop words 

and punction marks. Stopwords are simply a set of commonly used words in a language, 

which do not carry significant information. Examples of stop words are a, the, is, are, etc. 

In addition to removing stopwords, punctuation marks such as !, ?, @, %, etc. must also 

be removed. 

f) Lemmatization 

The English language has several variants of a single term. For example, consider 

the word change, its variations include changing, changes, changed, etc. However, these 

words, for the most part, convey the same meaning. To preserve the meaning of words, 

reducing variants to their root form is highly desired. This task can be accomplished by 

either a process called Stemming, or another process called Lemmatization. Stemming, 

without consideration for a word’s meaning crudely chops suffix such as ing, ed from all 

words. For example, consider variants of change: changing, changes, and changed. 

Stemming operation will change all the variants to the word chang. Lemmatization on the 

other hand uses vocabulary and morphological analysis of words to reduce variants to 

root form. For example, consider variants of the change: changing, changes, and 

changed. A lemmatization operation will change the variants to the word change. 

Stemming reduced variants to chang whereas lemmatization reduced variants to change. 

The result of lemmatization is more desirable in this case because the reduced output 

itself, i.e., change has actual meaning compared to chang which does not have any 

meaning. Based on these results, it could be inferred that lemmatization should be 
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preferred over stemming. However, lemmatization and stemming operations have 

tradeoffs. Lemmatization maintains a detailed dictionary to ensure correct mappings are 

produced; parsing through this dictionary takes a decent amount of time. Stemming on the 

other hand does not have any lookup operation, it simply chops off suffixes, hence 

stemming is faster than lemmatization. Therefore, stemming is widely used in scenarios 

where extremely large corpora are used. Lemmatization on the other hand is used on 

small corpora. This research uses a relatively small Wikipedia article, so lemmatization 

was considered over stemming. 

Feature Extraction 

As discussed earlier in background research, feature extraction schemes under consideration 

are BOW, TF-IDF, and word-embeddings. Before diving deep into the implementations, it is 

important to understand the meaning behind n-gram. While working with textual data, it is 

important to determine the meaning of words. For example, consider the following words I, ate, 

apple. Individually they have meaning but they might not convey the context of their meaning. 

However, those three words when grouped, not only convey the meaning of induvial words but 

provide context as well. Thus, during the feature extraction process, the selection of the number 

of contextual words is essential. If the meaning of the single word is considered then, it would 

indicate n=1 i.e., 1-gram features, similarly, if the meaning of two words is considered then, it 

would indicate n=2 i.e., 2-gram features, and so on. Consider the following corpus: I love 

reading books. Different n-gram features for this corpus would look like the following: 

1-Gram: I, love, reading, books 

2-Gram: I love, love reading, reading books 

3-Gram: I love reading, love reading books 
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The n-gram range can be specified in the feature extraction scheme such as BOW, TF-IDF, 

and word-embeddings. Scikit-learn is a free software machine learning library for python 

programming language. It provides functionality for feature extraction schemes such as BOW 

and TF-IDF which allow users to specify the n-gram range as a parameter. As for word-

embeddings we will use another library called genism. It is also an open-source library designed 

for NLP.  

Building Machine Learning Models 

As discussed earlier in background research, this research will heavily focus on using 

unsupervised ML algorithms. The generated/extracted features from the previous step are used to 

train machine learning algorithms like LSA, LDA, and k-means clustering. The outputs of these 

models are then used to select sentences for the summary. This section will discuss the inputs 

and outputs of these machine learning algorithms. 

a) Latent Semantic Analysis (LSA) 

First a preprocessed Wikipedia article is used by three extraction schemes BOW, 

TF-IDF, and word-embeddings to generate sentence-word vectors. These sentence-word 

vectors are used to train an LSA algorithm. The trained LSA model then finally produces 

sentence-topic, topic–topic and term-topic vectors. These three vectors will be then used 

to select sentences for the summary. This process is repeated for all three different feature 

extraction schemes and for each extraction scheme, the process is repeated for 5 different 

n-gram ranges (1-5).  Overall, this will produce 3 x 5 = 15 different summaries. 

b) Latent Dirichlet Allocation (LDA) 

First the preprocessed Wikipedia article is used by 3 extraction schemes BOW, 

TF-IDF, and word-embeddings to generate sentence-word vectors. This vector is used to 
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train the LDA model. The trained LDA model then finally produces sentence-topic and 

term-topic vectors. These two vectors will be then used to select sentences for the 

summary. This process is repeated for three different feature extraction schemes and for 

each extraction scheme, the process is repeated for 5 different n-gram ranges (1-5).  

Overall, this will produce 3 x 5 = 15 different summaries. 

c) k-means Clustering 

First the preprocessed Wikipedia article is used by 3 extraction schemes BOW, 

TF-IDF, and word-embeddings to generate sentence-word vectors. These sentence-word 

vectors are used to train the LSA model. The trained LSA model then finally produces 

sentence-topic vectors. This vector will be further used to train the k-means clustering 

model. The outputs of the k-means clustering model will be then used to select sentences 

for the summary. This process is repeated by replacing the LSA model with LDA. This 

process is repeated for three different feature extraction schemes and for each extraction 

scheme, the process is repeated for 5 different n-gram ranges (1-5).  Overall, this will 

produce 2 x 3 x 5 = 30 different summaries. 

Sentence Selection for Summary  

The final step will be to select sentences using the outputs of trained ML models. This 

section will discuss how outputs of individual ML models are used to rank and select sentences 

for the summary. 

a) Sentence selection using LSA 

The previous steps describe the outputs of the LSA model, those outputs will be then 

used with mathematical equation 5 discussed in the background section to select 

sentences for the summary.  
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b) Sentence selection using LDA 

The outputs of LDA are two vectors, sentence-topic, and topic-terms. The 

sentence selection will be done using sentence-topic vectors. The algorithm will be to 

divide sentences into topics, based on the probability values of topics in each sentence 

vector. Once the sentences are grouped into topics, the sentence that has the highest 

probability within the topic group will be selected as the winner within the topic group. 

The winning sentences will be selected for the summary.  

c) Sentence selection using k-means 

The outputs of k-means model will be cluster centers, often called centroids. The 

sentence selection will be done using these centroids. Centroids represent the arithmetic 

mean of their clusters. In terms of sentences, centroids can be thought of as those 

sentences that represent the most important idea within their group of sentences. 

However, centroids themselves are calculated as the arithmetic mean amount groups of 

sentences, so they do not represent a precise sentence. The idea would be to pick the 

sentences that have the closest Euclidean distance to the centroids. 

Evaluation 

The final step will be to evaluate the generated summaries. This section will discuss 

summary evaluation methods. Generated summaries will be compared to a reference summary 

using ROUGE-N metric. Based on the outputs of ROUGE-N metrics, 3 high-scoring summaries 

will be selected for empirical analysis. The empirical analysis will be done using a survey form, 

which will be sent out to participants from diverse backgrounds. This form will have participants 

read a Wikipedia article about Hurricane Irene, then they will be presented with 3 selected 

summaries. The participants will read the source text, then read the selected summaries and 
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finally evaluate them on some questionaries. The assessment will be done using Likert Scale as 

show by figure 4. 

 

Figure 4. Survey form Likert scale. 
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Chapter 5: Experiment Procedure 

Overview 

 

This chapter of the paper describes the steps proposed to create an automated summarization 

system.  As shown in Figure 1, First, an entire Wikipedia Article will be read. Second, the text in 

the read document might contain unnecessary information which will be removed as part of text 

preprocessing. Third, using various mathematical transformations, relevant features will be 

extracted from the preprocessed text. Fourth, the extracted features will be used to train 

unsupervised ML algorithms to create ML models. Finally, the output of the ML models will be 

used to generate a summary of the document. 

Algorithmic Steps for Research Questions 

a) RQ-1: What metrics exist to score semantic sentence similarities? 

LSA uses singular value decomposition (SVD) to decompose a matrix into 3 

different matrices. How can these 3 matrices use to define a mathematical model that can 

be used to generate a score for each document in the input corpus? 

Padmakumar et al., have used LSA to generate an extractive text summary (1).  The 

algorithmic steps are as follows: 

1. Generate feature matrix using TF-IDF feature extraction Scheme. 

2. Decompose feature matrix (X) into three matrices. X = 𝑈 ∗  𝜎 ∗  𝑉𝑇 ,  where 𝑈 will be 

an m*k matrix whose elements row-wise indicate documents, and the columns 

indicate concepts. 𝜎  will be a k*k diagonal matrix, whose elements represent the 

amount of variation captured from each concept. 𝑉𝑇 will be a k*n matrix whose 

elements row-wise will be concepts and columns will be words. 
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3. Use the decomposed matrices to score individual sentences using equation 5.  

4. Once all the scores have been generated, select N top-scoring sentences in descending 

order.  

5. Finally, concatenate the N sentences to form an extractive text summary. 

b) RQ-2: How do N-grams impact extractive summary generation? 

During the feature engineering process, how does the co-occurrence range of 

words affect the outcome of the final summary? Are trigrams better than bigrams or a 

combination of all trigrams, bigrams, and unigrams must be used when generating BOW 

and TF-IDF weights? 

The general idea is to generate a feature matrix for 1-gram, 2-gram, 3 -gram, and 

combinations. The algorithmic steps are as follows: 

1. Generate BOW and TF-IDF matrix for 1-gram, 2-gram, 3-gram, 4-gram, and 5-gram. 

2. Generate summaries for all the feature matrices generated from Step 1. 

3. Compare the summaries generated by these feature matrices using the ROUGE-N 

evaluation method. 

c) RQ-3: How effective is the word-embeddings approach in generating features? 

BOW and especially TF-IDF remain popular feature generation processes in the 

field of NLP. However, rather than using these classical approaches, can word 

embedding be used? Are the summaries generated via the use of word embeddings better 

than BOW and TF-IDF? 

The general idea is to use the weights generated by the word-embeddings scheme 

rather than, BOW and TF-IDF scheme. The algorithm steps that will be taken to 

accomplish this task are as follows: 
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1. Generate word embeddings for the corpus. 

2. Use the vocabulary generated by word embeddings as features. 

3. Generate a matrix that holds the average for each word’s embeddings, which are in 

the word embedding vocab. 

4. Based on the features, develop a feature matrix where if a sentence contains the word 

in word embedding vocab, use the average value for that word from step 3 as the 

weight, else assign that word value of 0. 

5. Generate summaries for all the feature matrices using steps discussed earlier in 

research question 1. 
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Implementation for Generating Summary Using LSA 

 

 
Figure 5. System design for generating summary using LSA 
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The following algorithmic steps were taken to execute the experiment design: 

 

1. Web scrape a Wikipedia Article using Beautiful Soup library, whereby extracting the text 

contents include <p>…</p> HTML tag.  

2. Preprocess the scaped text by removing whitespace, references, non-english words, stop 

words, and lemmatizing the remaining words. This step heavily relies on regular 

expressions, word, and sentence tokenizers, and wordnet lemmatizer.  

3. For exploratory data analysis, word clouds of raw and preprocessed text were generated 

using the word-cloud library. Figure 7 shows the code implementation of this step. 

4. BOW, TF-IDF, and word-embeddings features were extracted for the 1,2,3,4,5-gram 

range using APIs provided by sci-kit learn and genism respectively. 

5. Using LSA, feature matrices generated in step 4 were decomposed into 3 different 

matrices, sentence-topic (U), topic-topic (𝜎), and term-topic (VT). 

6. All sentences are scored using Equation 5, which uses the matrices from step 5. 

7. Sentences with the highest scores are selected for the summary. 

8. Wikipedia article about Hurricane Irene was sent out to a few colleges who then 

generated an extractive summary by reading the article. 

9. Using the reference summaries from step 6, the ROUGE-N metric was used to evaluate 

the automated summary. 
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Implementation for Generating Summary Using LDA 

 

 
Figure 6. System design for generating summary using LDA 
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The following algorithmic steps were taken to execute the experiment design: 

1. Web scrape a Wikipedia Article using Beautiful Soup library, whereby extracting the text 

contents include <p>…</p> HTML tag.  

2. Preprocess the scaped text by removing whitespace, references, non-english words, stop 

words, and lemmatizing the remaining words. This step heavily relied on regular 

expressions, word, and sentence tokenizers, and wordnet lemmatizer.  

3. For exploratory data analysis, word clouds of raw and preprocessed text were generated 

using the word-cloud library. Figure 7 shows the code implementation of this step. 

4. BOW, TF-IDF, and word-embedings features were extracted for the 1,2,3,4,5-gram range 

using APIs provided by sci-kit learn and genism respectively. 

5. Using LDA, feature matrices generated in step 4 were used to train LDA model. The 

output of the trained LDA model was a sentence-topic vector. 

6. Each sentence vector on sentence-topic matrix has probabilities for k Topics, a sentence 

would be assigned to the topic which has the highest probability value in that sentence 

vector. This was repeated for all sentences in sentence-topic matrix. 

7. Once the sentences were grouped by topics, sentences with the highest probability among 

each topic group were selected for the summary. 

8. Wikipedia article about Hurricane Irene was sent out to a few colleges who then 

generated an extractive summary by reading the article. 

9. Using the reference summaries from step 6, the ROUGE-N metric was used to evaluate 

the automated summary. 



36 
 

Implementation for Generating Summary Using K-means 

 

 
Figure 7. System design for generating summary using K-means 
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The following algorithmic steps were taken to execute the experiment design: 

1. Web scrape a Wikipedia Article using Beautiful Soup library, whereby extracting the text 

contents include <p>…</p> HTML tag.  

2. Preprocess the scaped text by removing whitespace, references, non-English words, stop 

words, and lemmatizing the remaining words. This step heavily relied on regular 

expressions, word, and sentence tokenizers, and wordnet lemmatizer.  

3. For exploratory data analysis, word clouds of raw and preprocessed text were generated 

using the word-cloud library. Figure 7 shows the code implementation of this step. 

4. BOW, TF-IDF, and word-embeddings features were extracted for the 1,2,3,4,5-gram 

range using APIs provided by sci-kit learn and genism respectively. 

5. Using LSA/LDA, feature matrices generated in step 4 were used to train LDA model. 

The output of the trained LDA model is a sentence-topic matrix. 

6. The sentence-topic vector was then used to train k-means clustering algorithm. 

7. The outputs of the trained k-means model were cluster centers, formally known as 

centroids. 

8. Distance between a centroid and all vectors in sentence-topic matrix were calculated. 

9. The sentence-topic vector with the smallest distance would be selected as a summary. 

10. Steps 8-9 were repeated for all centroids. This would eventually give one sentence per 

cluster. These sentences were then used to form the final summary. 

11. Wikipedia article about Hurricane Irene was sent out to a few colleges who then 

generated an extractive summary by reading the article. 

12. Using the reference summaries from step 6, the ROUGE-N metric was used to evaluate 

the automated summary. 
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Chapter 6: Results and Discussions 

Overview 

This chapter will list the results of the experiment procedure and then will further analyze 

those results. 

Results 

 

a) Word Cloud: Word cloud is widely used in the analysis of textual data. Typically, word 

clouds are used for exploratory data analysis purposes. The purpose of word-cloud in 

this research was just to ensure that unwanted data such as HTML tags do not go 

undetected during the preprocessing stage. 

 
Figure 8. Raw (left) and Preprocessed (right) Word clouds of article about Hurricane Irene. 
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b) Generated Summaries 

In this research a total of, the following methods were used to generate 

summaries: 

i) BOW and LSA  

ii) TF-IDF and LSA 

iii) Word-Embeddings and LSA 

iv) BOW and LDA  

v) TF-IDF and LDA 

vi) Word-Embeddings and LDA 

vii) BOW, LSA, and K-means.  

viii) TF-IDF, LSA, and K-means. 

ix) Word-Embeddings, LSA, and K-means. 

x) BOW, LDA, and K-means.  

xi) TF-IDF, LDA, and K-means. 

xii) Word-Embeddings, LDA, and K-means. 

 

In this research a total of 12 methods were used to generate summaries, each of 

those methods was repeated for the n-gram range from 1to 5. An overall total of 

12x5=60 summaries were generated. Rather than listing all the summaries, this section 

contains the evaluation of those summaries when compared to a human-generated 

summary using ROUGE-N F-measure scores. 

 

 
Figure 9. ROUGE-N F-measure scores for summaries generated using LSA. 
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Figure 10. ROUGE-N F-measure scores for summaries generated using LDA. 

 

 
Figure 11. ROUGE-N F-measure scores for summaries generated using LSA and K-

means. 
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Figure 12. ROUGE-N F-measure scores for summaries generated using LDA and K-

means. 

 

Figure 13. ROUGE-N F-measure scores among all generated summaries. 
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Figure 14. Empirical Analysis for summary generated using 1-gram TF-IDF and LSA. 



43 
 

 
Figure 15. Empirical Analysis for summary generated using 3-gram TF-IDF and LSA. 
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Figure 16. Empirical Analysis for summary generated using 3-gram TF-IDF and LSA. 
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Figure 17. Feedback from Empirical Analysis candidates 

 
Figure 18. End to End execution time of all models on google cloud virtual machine. 
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Discussion 

This subsection first answers the research questions identified during the preliminary 

research phase. Then this section will include further analysis of the results section. 

a) RQ-1: What metrics exist to score semantic sentence similarities?  

Equation 5 was used to generate scores for sentences in the corpus in the paper 

written by Padmakumar et al. (3). This equation used outputs of the LSA. In this 

equation, both matrices might have been squared to force all the values to be positive. 

Squares of Matrix U and S might have been multiplied to maximize the difference 

between high scores and low scores.  

b) RQ-2: How do n-grams impact extractive summarization generation?  

From figures 8-11, F-measure scores for BOW feature extraction schemes 

decreases as the n-gram range increases. If the BOW feature extraction scheme is to be 

used, then using 1-gram or 2-gram is probably a good idea. From figures 8-11, F-measure 

scores for TF-IDF fluctuates in a downward trend as n-gram range increases. If the TF-

IDF feature extraction scheme is to be used, then using either 1-Gram or 3-Gram is 

probably a good idea. From figures 8-11, f-measure scores for word-embeddings feature 

extraction schemes decrease as the n-gram range increases.  

c) RQ-3: How effective is the word-embeddings approach in generating features?  

These two schemes are still highly used, however, can modern schemes like 

word-embeddings perform better than TF-IDF and BOW?  

Word-embeddings work great when the machine learning models used are Neural 

Networks because no additional transformation is required to generate feature vectors. 

However, in this research, the outputs of the word-embeddings scheme were transformed 
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into a sparse feature vector.  Perhaps because of this sparsity, it can be inferred from 

figure 8-11, that BOW and TF-IDF scheme performed much better than word-

embeddings scheme. 

From Fig 8-11, it can be inferred that 1-gram summaries were the best performing 

summaries across all methods.  3-gram and 4-gram summaries also had satisfactory results 

across all methods. From figure 8, it can be inferred that when the summary was generated using 

LDA, TF-IDF worked as the best feature extraction scheme. From figure 9, when the summary 

was generated using LDA, the BOW feature extraction scheme worked as the best feature 

extraction scheme. From figure 10, when the summary was generated using LSA and k-means, 

TF-IDF worked as the best feature extraction scheme. Overall, figure 12 shows the comparison 

of the highest-scoring summaries. It can be inferred from figure 12 that, the method that had the 

highest rouge score was when the TF-IDF feature extraction scheme was used with LSA. 

Computer analysis allowed us to rapidly visualize summary performance, however, these 

summaries are eventually read by human beings. So, a human-level assessment of these 

summaries would provide an in-depth analysis of the performance of these models. This required 

empirical analysis of these summaries.  However, it was not feasible to have a human-level 

assessment of 60 different summaries. So, from computer level assessment, summaries generated 

using TF-IDF and LSA had the highest performance across 1-gram, 3-gram, and 4-gram features. 

So, a survey form containing these 3 summaries alongside the source text was sent out to be 

evaluated by people from various academic disciplines and professional backgrounds.  

This analysis was done in form of a survey form where participants first read the source 

Wikipedia article about Hurricane Irene. Then the participants were presented with three selected 



48 
 

summaries. The participants then evaluated those summaries based on the Likert Scale as shown 

in Fig 17.  

Figure 13 shows the survey results for the summary generated using 1-gram TF-IDF as 

the feature generation scheme and LSA as the ML model. 78% of participants agreed this 

summary had an appropriate length for a user to understand the source text. There were mixed 

responses to whether the summary contained redundant information. 67% of participants agreed 

this summary was coherent. 56% of participants agreed that this summary illustrated the main 

ideas from the source text. In addition to that, 34% of respondents strongly agreed that this 

summary illustrated the main ideas from the source text. Finally, 89% of participants agreed that 

reading this summary once, conveyed the main idea of the source text.  

Figure 14 shows the survey results for the summary generated using 3-gram TF-IDF as a 

feature generation scheme and LSA as the ML model. 56% of participants agreed this summary 

had an appropriate length for a user to understand the source text. There were mixed responses to 

whether the summary contained redundant information. However, the majority (56 %) of 

participants disagree with this summary not containing redundant information.  56% of 

participants agreed this summary was coherent. 67% of participants agreed that this summary 

illustrated the main ideas from the source text. Finally, 67% of participants agreed that reading 

this summary once, conveyed the main idea of the source text.  

Figure 15 shows the survey results for the summary generated using 4-gram TF-IDF as 

feature generation scheme and LSA as ML model. 78% of participants agreed this summary had 

an appropriate length for a user to understand the source text. A majority (56%) of participants 

disagreed with this summary not containing redundant information.  Mixed responses regarding 

whether this summary is coherent or not. 45% of participants agreed that this summary 
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illustrated the main ideas from the source text. Finally, 45% of participants agreed while the 

other 45% of participants disagreed that reading this summary once, conveyed the main idea of 

the source text.  

The code implementation and execution for this research was done on a google cloud 

virtual machine with CPU model: Intel(R) Xeon(R), CPU frequency: 2.30 GHz, number of CPU 

cores: 2, CPU family: Haswell, ram 12GB, and disk space: 25GB. Figure 18 shows the end-to-

end execution time for all the models created or used in this research. This end-to-end execution 

time is a measurement of time for a model to extract features from an input corpus, train and fit a 

ML algorithm and finally generate a summary. Since each model produces different summaries 

for the 1-5 gram range, figure 18 shows the average end-to-end execution time taken across that 

range.  From figure 18, it can be inferred that models, where k-means is used as the underlying 

ML algorithm, are the slowest. This is primarily because before using the feature vector to train 

the k-means model, the feature vector’s dimensions are reduced using LSA or LDA, finally, the 

dimension reduced feature vector is used to train the k-means model and generate a summary. 

Head-to-head comparisons of models that used LSA or LDA are faster than other models that 

use k-means. In general, Figure 18 also shows models that use LDA are overall slower than 

models that use LSA. From the perspective of the feature extraction scheme, models that use the 

BOW scheme are the fastest, followed closely by models that use TF-IDF. 

Computer level assessment based on ROUGE-N score shows the best performing models 

were the ones that used TF-IDF as feature extraction scheme and LSA as the underlying machine 

learning model. The empirical analysis results conform to the result generated by computer 

analysis which had the highest ROUGE-N score for this summary. The majority of participants 

disagreed with the statement that these summaries did not contain redundant information. This 
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shows that the TF-IDF scheme does allow redundant information, which is accurate to the fact 

that the TF-IDF scheme generates huge sparse matrices, which might not always contain relevant 

information. All summaries seemed to be coherent, this establishes a fact for extractive 

summary, coherent information can be expected. All summaries convey the main ideas from the 

source text, this shows that this system captures the most relevant information from source texts. 
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Chapter 7: Conclusion and Future Tasks 

Conclusion 

In extractive text summarization, import sections of a source document are identified and 

concatenated to form a summary. In this project, an extractive text summarization system was 

built and analyzed. This system can summarize any Wikipedia article via web scraping. This 

project made use of the regular expression, word, and sentence tokenizers and lemmatizers to 

preprocess web scraped Wikipedia articles. Features were extracted from the preprocessed 

Wikipedia article using BOW, TF-IDF, and word-embeddings scheme for various co-occurrence 

windows (1,2,3,4,5-gram range). From the results and analysis section, it can be confirmed that 

either 3-gram or 4-gram should be used for the co-occurrence window. Even though there was 

no, head to comparisons of LSA and LDA. LSA when used with a mathematical model 

performed much better than LDA. Both computer evaluation and empirical analysis showed the 

TF-IDF scheme to be better than the BOW and word-embeddings scheme within the context of 

this research. From figure 18, even though models that used BOW were slightly faster than the 

ones that used TF-IDF, they are not significantly faster, that a speed versus accuracy tradeoff 

argument could be established. Overall, models that used TF-IDF as the feature extraction 

scheme produced the best summaries. 

Future Tasks 

The ROUGE-N recall scores were still below par for the summaries generated by the current 

system. These scores could be improved by using advanced preprocessing techniques such as 

part of speech tagging. LSA and LDA might be a good starting point for topic modeling, 

however Recurrent Neural Nets based models such as Transformers, and BERT could be used to 

generate better summaries. 
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Appendix A: Recreating Results 

Overview 

This section shows how to recreate the summaries generated in this research. The first step 

would be to open the following GitHub link: 

https://github.com/splAcharya/Extractive_Text_Summarization/blob/main/ExTs.ipynb 

When the link above is clicked, the web browser should open the page as shown in the image 

below. Then click on the open in colab button highlighted by yellow in the image below. 

 
 

https://github.com/splAcharya/Extractive_Text_Summarization/blob/main/ExTs.ipynb
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Once the open in colab button is clicked, you see this project open in google collaboratory. 

To run this project in google colab, it will be necessary to sign in with a google email.  Once the 

sign in is completed, your web browser should show you google colab page as shown in the 

following section. 

Setting up environment 

Before trying to run the whole project, additional libraries would need to be installed, some 

libraries/packages are provided by default in google colab. Others have been coded into the 

project so no special care would be needed. The highlighted portion in the image below shows 

the commands that install additional packages. 
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Running the code 

To run each cell individually in google colab, one can either hover over that cell and press 

the play button as shown in the image below. Or press Shift + Enter key together. 

 
 

The above image shows how to run individual cells, however, if it is desired to run the 

entire project at once to see outputs. In the menu bar, then click runtime and click run all (see 

image below). This should automatically run the entire project at once. This step should take 4-5 

minutes to complete. After 4-5 minutes, one can simply scroll down the page to see details of 

this project. 
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