
St. Cloud State University St. Cloud State University

The Repository at St. Cloud State The Repository at St. Cloud State

Culminating Projects in Electrical Engineering Department of Electrical and Computer
Engineering

8-2022

Real-Time Deep Learning-Based Face Recognition System Real-Time Deep Learning-Based Face Recognition System

Aarthi Rajagopalan

Follow this and additional works at: https://repository.stcloudstate.edu/ece_etds

Recommended Citation Recommended Citation
Rajagopalan, Aarthi, "Real-Time Deep Learning-Based Face Recognition System" (2022). Culminating
Projects in Electrical Engineering. 8.
https://repository.stcloudstate.edu/ece_etds/8

This Starred Paper is brought to you for free and open access by the Department of Electrical and Computer
Engineering at The Repository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in
Electrical Engineering by an authorized administrator of The Repository at St. Cloud State. For more information,
please contact tdsteman@stcloudstate.edu.

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/ece_etds
https://repository.stcloudstate.edu/ece
https://repository.stcloudstate.edu/ece
https://repository.stcloudstate.edu/ece_etds?utm_source=repository.stcloudstate.edu%2Fece_etds%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/ece_etds/8?utm_source=repository.stcloudstate.edu%2Fece_etds%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

Real-Time Deep Learning-Based Face Recognition System

by

Aarthi Rajagopalan

A Starred Paper

Submitted to the Graduate Faculty

of

Saint Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

in Electrical Engineering

August, 2022

 Starred Paper Committee:
Dr. Yi Zheng, Chairperson

Dr. Ling Hou
Dr. Aiping Yao

2

Abstract

This research proposes Real-time Deep Learning-based Face recognition algorithms
using MATLAB and Python. Generally, Face recognition is defined as the process
through which people are identified using facial images. This technology is applied
broadly in biometrics, security information, accessing controlled areas, etc. The facial
recognition system can be built by following two steps. In the first step, the facial
features are picked up or extracted, then the second step involves pattern
classification. Deep learning, specifically the convolutional neural network (CNN),
has recently made more progress in face recognition technology. Convolution Neural
Network is one among the Deep Learning approaches and has shown excellent
performance in many fields, such as image recognition of a large amount of training
data (such as ImageNet). However, due to hardware limitations and insufficient
training datasets, high performance is not achieved. Therefore, in this work, the
Transfer Learning method is used to improve the performance of the face-
recognition system even for a smaller number of images. For this, two pre-trained
models, namely, GoogLeNet CNN (in MATLAB) and FaceNet (in Python) are used.
Transfer learning is used to perform fine-tuning on the last layer of CNN model for
new classification tasks. FaceNet presents a unified system for face verification (is
this the same person?), recognition (who is this person?) and clustering (finds
common people among these faces) using the method based on learning a
Euclidean embedding per image using a deep convolutional network.

Keywords: CNN, Face Recognition, Transfer Learning, GoogLeNet, FaceNet.

3

Acknowledgement

I would like to express my sincere gratitude to my advisor, Dr. Yi Zheng for his

constant support, help and guidance throughout my academic career. His immense

knowledge and passion towards engineering has always inspired me. I would like to

thank my committee members, Dr. Ling Hou and Dr. Aiping Yao for their

encouragement, insightful comments, and questions. I am extremely grateful to my

parents for their love and support throughout my endeavors.

4

Table of Contents

Page

List of Tables………………………………………………………………………………. 6

List of Figures……………………………………………………………………………….7

Chapter

1: Introduction

 Background…………………………………………………………………………….9

 Transfer Learning…………………………………………………………………….11

 Face Recognition…………………………………………………………………….12

 Outline…………………………………………………………………………………13

2: Review of Existing Face Detection and Recognition Algorithms

 Introduction……………………………………………………………………………15

 Principle Component Analysis (PCA)………………………………………………15

 Linear Discriminant Analysis (LDA)………………………………………………...16

 Skin Color-Based Algorithm…………………………………………………………17

 Wavelet Based Algorithm……………………………………………………………18

 Artificial Neural Network-Based Algorithm………………………………………...19

3: Transfer Learning From Pre-Trained Models

 Introduction…………………………………………………………………………....21

 Convolutional Neural Networks……………………………………………………. 21

 Transfer Learning Process…………………………………………………………. 26

 Pre-Trained Models for Computer Vision…………………………………………. 27

5

Chapter Page

4: Design Methodology

 Transfer Learning Using Pretrained GoogLeNet CNN…………………………. 32

 Face Recognition Using Google’s Deep Convolutional Network – FaceNet…. 41

5: Experiments and Results

 Implementation Using Pretrained GoogLeNet CNN……………………………. 48

 Implementation Using FaceNet…………………………………………………….69

6: Conclusion……………………………………………………………………………….82

References………………………………………………………………………………....83

6

 List of Tables

Table Page

1: Architectural details of GoogLeNet ... 37

7

List of Figures

Figure Page

1: Convolutional neural network architecture…………………………………………...10

2: The Convolution operation ... 22

3: Examples of kernel filters for CNN ... 23

4: An example of CNN .. 24

5: Features of a convolutional layer.. 25

6: Features of a pooling layer ... 25

7: Features of a fully connected layer... 26

8: Transfer Learning using Pretrained Network .. 26

9: An illustration of the VGG-19 Network .. 28

10: An illustration of the Inceptionv3 Network .. 29

11: An illustration of the ResNet50 Network ... 30

12: The network architecture of EfficientNet ... 31

13: Dataset splitting .. 33

14A,14B: An example of GoogLeNet convolution operation………………………34,35

15A,15B: Inception module .. 36

16: Architecture of GoogLeNet CNN .. 38

17: Flow Chart of Train and Evaluate the Model .. 39

18: Flow Chart of Testing on Trained Model .. 41

19: FaceNet model ... 42

20: Architecture of FaceNet .. 43

21: Triplet-loss and learning ... 44

8

Figure Page

22: Triplet Selection.. 47

23: Dataset ... 48

24: Application Workflow .. 61

25: Email setup ... 62

26: GUI Design ... 64

27: Real-time Face Detection and Tracking ... 66

28A-B: Result 1 - when known people come in front of the webcam 67

29: Result 2 - Unknown face detected.. 68

30: Result 2 – Intruder Email Alert with image of unknown person attached 68

31A,31B: Implementation using FaceNet: Results - Example #1………………….77,78

32A,32B: Implementation using FaceNet: Results - Example #2…………………78,79

33A,33B: Implementation using FaceNet: Results - Example #3…………………79,80

34A,34B: Implementation using FaceNet: Results - Example #4…………………80,81

9

Chapter 1: Introduction

The background and objectives of this study will be briefly reviewed in this

chapter. This chapter will also outline the contents of this starred paper.

1.1 Background

Deep learning is a subdivision of machine learning, which is essentially a

neural network with three or more layers. These neural networks attempt to imitate

the behavior of the human brain by “learning” from large amounts of data, although

not completely matching its ability. They do so through a combination of data

inputs, weights and bias. These elements work together in order to accurately

recognize, classify, and describe objects within the data.

There are various types of neural networks to address specific problems or

datasets. For example, Convolutional Neural Networks (CNNs) are used primarily

in computer vision and image classification applications detect features and

patterns within an image, enabling tasks, like object detection or recognition.

Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of Neural Network that

concentrates in image processing and classification. It basically takes the pixel

values of an image in vector/matrix form as its input, runs it through a sequence of

layers, and outputs a classification for the image. The Convolutional Neural Networks

are mainly made of up four types of layers:

1. A Convolutional Layer takes patterns from the image by running its matrix

through a set of learnable filters/kernels, which portray different visual features in the

image. These filters slide over the image with respect to a specified number of

10

pixels, or strides. During these convolutions, each of the filters produce their own

feature map; the final output of this layer is a transformation of the original image,

consisting of all the feature maps placed on top of each other.

2. The Rectified Linear Unit Layer (ReLU) is a non-linear activation function f(x) =

max(x,0). Without changing its shape, ReLU converts the elements of the output of

the convolutional layer in the range from 0 to infinity, by replacing any negative

values with zero.

Figure 1

Convolutional neural network architecture

Note. This figure shows an example of a simple schematic representation of a basic

CNN. (Ray et al., 2021).

3. A Pooling Layer regulates the width by height dimensions by reducing the input

volume spatial dimensions for the next convolutional layer without changing the

dimensional depth of the volume. The process performed by the pooling layer is

otherwise known as down-sampling or sub-sampling because the reduction of size

11

results in simultaneous information loss that benefits the network. The reduction

becomes less computational as the information moves to the next pooling layers,

and it also works against over-fitting. The most common strategies employed in the

pooling layer networks are max-pooling and average-pooling. In a comprehensive

theoretical analysis of the max pooling and average pooling, it has been observed

that max pooling can result in faster convergence of information, and that the

network picks the high-ranking features in the image thus enhancing generalization.

Also, pooling layer has other variations such as stochastic pooling spatial pyramid

pooling, and def-pooling that serves marked purposes.

4. Fully-Connected Layer: The filters and neurons in this layer are connected to

all the activation from the previous layers, resulting in full connections as their name

implies. The calculations in this level are done through the multiplication of

matrix followed by the bias o set. FC layer goes through a process which

converts the 2D feature map to the 1D feature vector. In addition, the vector

formed in this process is either classified as classes for classification or the feature

vector undergoing further processing.

1.2 Transfer Learning

Transfer learning is a machine learning technique which uses knowledge

from one domain to get better in another domain. Transfer learning reduces the

need to recollect the training data for a specific domain. It allows the

distributions, tasks, and domains to be different for the training and testing

data. Transfer learning is driven by the fact that people can intelligently apply

knowledge from previously learned solutions to solve new problems or find

better solutions. For instance, it is easier to learn French if you already know

12

Latin. Yet another example is: if you already learned to ride a scooter then it

will be easier to learn to ride a motorcycle.

In the field of machine learning, transfer learning is often the same but it

is meant to be used for sharing the weights of neural networks. The common

approach is to train all the layers of one network and then copying the first n

layers of this network to a second network. This step is known as pre-training of

the network. When the layers are copied to the second network, the remaining

layers of the second network can be randomly initialized and trained for the

target task with a different dataset. There are two ways to use the pre-trained

weights: The first way is to train these weights together with the weights of the

last layers, the second approach is to not change the weights of the pre-trained

layers. The weights are left frozen while training on the target task. This second

approach is used in this starred paper.

1.3 Face Recognition

Face recognition is a modern security feature which deals with recognition

and authentication of a face, and is a field that has been studied extensively for a

long time. Face detection and tracking has been used for the purposes of

surveillance, security, human computer interaction, etc. (Shah et al., 2016). Here,

the Transfer learning technique is being used, which is commonly used in deep

learning applications. One can take a pre-trained network and use it as a starting

point to learn a new task. Fine-tuning a network with transfer learning is usually

much faster and easier when compared to training a network with randomly

initialized weights from scratch. The learned features can quickly be transferred to

a new task using a smaller number of training images.

13

In the late 1980s, the development of computer technology and optical

imaging technology was improved and the real entry into the application phase of

face recognition occurred in the late 1990s. In early research on face recognition,

the researcher mainly focused on methods called geometry methods to match

simple features with image processing techniques. Later, the holistic methods such

as principal component analysis (PCA) and linear discriminant analysis (LDA)

became popular. Then, the feature-based method was developed for matching all

the local features across face image. As time passed, a holistic and feature-based

method was developed and then combined into hybrid methods. Hybrid methods

stayed the state-of-the-art until recently when deep learning emerged as a leading

approach to most applications of computer vision, including face recognition.

Deep Learning is a machine learning technique that has got attention lately

because it can achieve high accuracy when trained with large amounts of data. In

addition, Convolutional Neural Networks (CNNs) is one of the most popular deep

learning algorithms used for image classification problems. As a result, a CNN

based deep transfer learning for face recognition using small datasets is proposed.

Transfer learning is a popular deep learning approach where the knowledge gained

from a related task is transferred to a new task. Compared with training deep

neural networks from scratch, this proposed method can reduce training time.

1.4 Outline

Chapter 2 reviews the existing face detection and recognition algorithms.

The related work on transfer learning and face recognition are briefly described

in this chapter. Chapter 3 gives details on transfer learning using pre-trained

models. This chapter also explains about Convolutional Neural Networks in

14

detail. Chapter 4 describes the models used to perform the experiments on

face recognition. Chapter 5 gives the implementation details for face

recognition and discusses its results. Chapter 6 provides conclusions and future

scope.

15

Chapter 2: Review of Existing Face Detection and Recognition Algorithms

2.1 Introduction

 Many robust algorithms have been developed to have accurate performance

for tackling face detection and recognition problems. These algorithms or methods

are the most successful and widely used ones in face detection and recognition

applications. The algorithms are as follows:

▪ Principle Component Analysis (PCA)

- Eigenface

▪ Linear Discriminant Analysis (LDA)

- Fisherface

▪ Skin color- based algorithm

a. Red-Green-Blue (RGB)

b. YCbCr (Luminance-Chrominance)

c. Hue-Saturation Intensity (HSI)

▪ Wavelet based algorithm

- Gabor Wavelet

▪ Artificial neural networks- based algorithm

a. Fast Forward

b. Back Propagation

c. Radial Basis Function (RBF)

2.2 Principle Component Analysis (PCA)

 PCA is a method used to simplify the problem of selecting the representation

of eigenvalues and the corresponding eigenvectors in order to obtain a consistent

representation. This can be attained by reducing the dimension space of the

16

representation. The dimension space needs to be reduced in order to obtain fast

and robust object recognition. PCA also reserves the original information of the

data. The PCA basis is applied in the Eigenface based algorithm.

 Eigenface Based Algorithm

Eigenface based algorithm is the most widely used method to detect faces.

This approach makes use of the presence of eyes, nose and mouth and the relative

distances between them. This feature is called as Eigenfaces in the facial domain.

This facial feature can be obtained by using a mathematical tool known as Principle

Component Analysis (PCA). Any original image from the training set can be

reconstructed by combining the Eigenfaces by using PCA. Usually, a face is

classified by estimating the relative distance of the Eigenfaces.

2.3 Linear Discriminant Analysis (LDA)

LDA is otherwise known as Fisher’s Linear Discriminant (FLD). It decreases

the dimension space by using the FLD technique. FLD technique uses within-class

information, thus reducing variation within each class and maximizing the class

separation.

Fisherface Based Algorithm

The Fisherface approach is also one of the most widely used feature extraction

algorithms in facial images. This approach attempts to find the projection direction

in which the images belonging to different classes are segregated maximally.

 According to Shang-Hung Lin, Fisherface algorithm is an improvement of the

eigenface algorithm in order to cater the variation in the illumination. It is reported

that Fisherface algorithm performs better than eigenface when the lighting condition

is changed. This method needs various training images for each face. Thus, this

17

algorithm cannot be applied to the face recognition applications where only one

example image per person is at hand for training.

2.4 Skin Color-Based Algorithm

 Skin color is the most important feature of a human face. Human skin colors are

set apart from different ethnic with respect to the intensity of the skin color, and not

the chromatic features. One of the facial feature methods involves skin color-based

processing method. In this algorithm, each pixel is classified as either skin color or

non-skin color. For an input image, this method uses color space for the skin region

as the criteria of classification. Threshold is applied to the mask of the skin region.

Lastly, a bounding box is drawn to obtain the face from the input image.

 According to Singh et al. (2003), the skin color processing method has a faster

processing time when compared to other facial feature methods. However, Chae et

al. (2008) has a different opinion that skin color method is time consuming. He felt

so because the method scans the target image linearly, that involves a large space

of scanning. Thus, a novel method using sub-windows scanning has been

proposed instead of the standard linear scanning. This proposed method works by

scanning the image sparsely on the basis of the facial color density by determining

the horizontal and vertical intervals.

 From the experiment, the results revealed that this proposed method was

successful in detecting faces in a shorter period of time when compared to the

standardized method. The sub-windows scanning method has a less

computational time since it skips the sub-windows that do not comprise possible

faces. The three most popular color spaces are RGB, YCbCr, and HSI.

18

RGB (Red-Green-Blue)

 In RGB color space, a normalized color histogram is used in order to detect

the pixels of skin color of an image and can be further normalized for intensity

changes when dividing by luminance. This enables localization and detection of

the face. However, this color space is not preferred for color-based detection

methods when compared to YCbCr or HSI.

YCbCr (Luminance-Chrominance)

 This color space gives a good coverage for different human races. The

responsible values in this color space are luminance (Y) and chrominance (C). It

basically separates luminance and chrominance. This algorithm can only be carried

out if the chrominance component is used. It eliminates the luminance as much as

possible by selecting the Cb-Cr plane from the YCbCr color space. A pixel

represents the skin tone if the values [Cr, Cb] lie within the thresholds.

HSI (Hue-Saturation-Intensity)

 On the basis of the studies performed by Zarit et al. (1999), HSI is said to yield

the best performance for skin color approach. Skin color classification in the HSI

color space is similar to the YCbCr color space, but the responsible values are hue

(H) and saturation (S). Unfortunately, all of these algorithms become unsuccessful

when there are regions other than the face such as arms, legs and other objects in

background having the same color value.

2.5 Wavelet based algorithm

 In wavelet-based algorithm, each face image is characterized by a subset of

band filtered images that contain wavelet coefficients. Wavelet transform likely

provides a robust multi-scale method of analysis for an image. Wavelets are very

19

flexible. This is because several bases exist, from which the most suitable basis can

be selected for an application. Gabor wavelet method is the most widely used

wavelet method in image texture analysis.

Gabor Wavelet

 Gabor wavelet transform uses the spatial frequency structures and the

orientation relation. This method is a kind of Gaussian modulated sinusoidal wave of

the Fourier transform. Gabor wavelet approach detects the short lines, ending lines

and sharp changes in curvature. These curves match well with the important

features of human face such as mouth, nose, eyebrow, jaw line and cheekbone.

Thus, Gabor wavelet is widely known for detecting features.

2.6 Artificial neural network-based algorithm

 Artificial neural network (ANN) is the most widely used method for the

recognition process. ANN is implemented once a face has been detected to

identify, by calculating the weight of the facial information to recognize who the

person is.

 ANN imitates the human brain, i.e., the biological neuron system. A neuron

basically receives a signal from the previous layer and then transmits the signal to all

neurons of the next layer. Before transmitting the signal to the next layer, the signal

gets multiplied with a separate multi weight value and then the weighted input is

summed.

 ANN can be divided into several categories namely: feed forward neural

network, back propagation neural network and Radial Basis Function (RBF) network.

These three networks are most commonly used in ANN.

20

Feed Forward

 The simplest type of ANN is the feed forward network, which is otherwise

known as a multilayer perceptron. A feed forward network has no cycles since the

information moves forward in only one direction, i.e., from the input nodes to the

output nodes via the hidden nodes.

Back Propagation

 Back propagation is the technique of estimating the error made in the output

neuron and propagating them back to the inner neuron. This method is otherwise

referred to as “learn by examples”. Thus, a learning set comprising the input

examples for each case must be included. The output value and each of the

examples in the training set are compared, and an error value is calculated. This

error value is then propagated backwards to the neuron and is used to adjust the

weights. The error value is reduced by making small changes to the weight value.

This process is repeated until a pre-determined value is reached.

 The back propagation neural network can be used to recognize and classify

the different aspects of the image of a human’s face like the expression of the

person in the image, o r the orientation of the face in the image, or the presence of

any accessories such as sunglasses, beard, etc.

Radial Basis Function (RBF)

 Radial Basis Function (RBF) is used for estimating the functions and

identifying patterns. It applies the Gaussian potential functions whereby these

functions are used in the networks. RBF provides advantages such as localization,

cluster modelling, functional approximation, interpolation and quasi-orthogonality.

21

Chapter 3: Transfer Learning From Pre-Trained Models

3.1 Introduction

 Deep learning is fast becoming popular in artificial intelligence applications. For

instance, in areas such as computer vision, natural language processing, and speech

recognition, deep learning has been bringing about remarkable results. Therefore, the

interest in deep learning is growing. One of the areas where deep learning is

exceptionally good is image classification. The goal in image classification is to

categorize a specific picture according to a set of possible categories. A good

example of image classification is to identify cats and dogs in a set of pictures. From

a deep learning perspective, the image classification problem can be solved

via transfer learning. Several state-of-the-art results in image classification are based

upon transfer learning solutions.

3.2 Convolutional Neural Networks

A convolutional neural network (CNN) is a type of artificial neural

network used in image recognition and processing that is especially designed to

process pixel data. CNNs have their “neurons” arranged more like those of the

frontal lobe, the area responsible for processing visual stimuli in humans and other

animals. A CNN has one or more convolutional layers and are mainly used for image

processing, classification, segmentation and also for other auto correlated data.

Convolution refers to sliding of a filter over the input. The influence of nearby pixels is

studied using something called a filter. A filter of a size specified by the user (a rule of

thumb is 3x3 or 5x5) is taken and moved across the image from top left to bottom

right. For each point on the image, a value is estimated based on the filter using a

convolution operation.

22

A filter could be related to anything, like for pictures of humans, one filter could

be associated with seeing noses, and the nose filter would indicate how strongly a

nose seems to appear in the image, and how many times and in what locations they

occur. This reduces the number of weights that the neural network must learn

compared to a MLP, and also means that when the location of these features differs it

does not throw the neural network off.

Figure 2

The Convolution Operation

Note. A convolution is an integral that expresses the amount of overlap of one

function (kernel or filter) as it is shifted over another function (input). (Kana, 2020).

It may be wondered how the different features are learned by the network, and

whether it is possible that the network will learn the same features i.e., having 10

nose filters would be kind of redundant and is highly unlikely to happen. While

building the network, random values are specified for the filters, which then

continuously update themselves as the network is trained. It is very unlikely that two

https://medium.com/@michel-kana?source=post_page-----93e5a5da1e8a--------------------------------

23

filters that are the same will be produced unless the number of chosen filters is

extremely large. Some examples of filters, or kernels, are given below:

Figure 3

Examples of Kernel Filters for CNN

Note. Specific kernels can be used to extract edges from an image. We can have

many of those filters to detect all the valuable features of the image. (Kana, 2020).

After the filters pass over the image, a feature map is generated for each filter.

These then go through an activation function, which decides whether a certain feature

is present at a given location in the image. Then a lot of things can be done, such as

adding more filtering layers and creating more feature maps, which become more and

more abstract as a deeper CNN is created. We can also use pooling layers to select

the largest values on the feature maps and then use these as inputs to subsequent

layers. In theory, any type of operation can be carried out in pooling layers, but in

practice, only max pooling is used in order to find the outliers - these are when our

network spots the feature.

https://medium.com/@michel-kana?source=post_page-----93e5a5da1e8a--------------------------------

24

Figure 4

An example of CNN

Note. This figure shows a CNN with two convolutional layers, two pooling layers, and

a fully connected layer which decides the final classification of the image into a

particular category (Nigam, 2018).

ReLU

The most successful non-linearity for CNN’s is the Rectified Linear unit

(ReLU), which combats the vanishing gradient problem occurring in sigmoids. ReLU

is easy to compute and generates sparsity, which is not always beneficial.

Comparison of Different Layers

There are three types of layers in a convolutional neural network namely;

convolutional layer, pooling layer, and fully connected layer. Each of these layers

have different parameters that can be optimized to perform a different task on the

input data.

25

Figure 5

Features of a Convolutional Layer

In the convolutional layers, the filters are applied to the original image, or to

other feature maps in a deep CNN. Most of the user-specified parameters are there in

these layers of the network. The most significant parameters are the number of

kernels and the size of the kernels.

Figure 6

Features of a Pooling Layer

Pooling layers, similar to convolutional layers perform a specific function such

as max pooling, which takes the maximum value in a certain filter region, or average

26

pooling, which takes the average value in a filter region. These are essentially used to

reduce the dimensionality of the network.

Figure 7

Features of a Fully Connected Layer

Fully connected layers are located before the classification output of a CNN

and are used to flatten the results prior to classification.

3.3 Transfer Learning Process

Transfer learning is a method in deep learning used to use an existing

network as a starting point to learn a new task. This concept is used to perform face

recognition. The various steps involved are shown in the following figure:

Figure 8

Transfer Learning Using Pretrained Network

Note. This example shows how to fine-tune a pretrained GoogLeNet convolutional

neural network to perform classification on a new collection of images. (MathWorks,

2022).

27

Designing a new network, optimizing the architecture for maximum accuracy,

specifying the effective initial weights of the hidden nodes is a time-consuming and

lengthy process. If we go for transfer learning, we get an already optimized network

ready to learn new features to perform new tasks. Transfer learning helps us get

things done using a neural network with minimal effort. Hence, we can perform face

recognition with minimal effort by modifying a convolutional neural network (CNN).

3.4 Pre-Trained Models for Computer Vision

Here are the four pre-trained networks one can use for computer vision tasks

such as ranging from image generation, neural style transfer, image classification,

image captioning, anomaly detection, and so on:

1. VGG19

2. Inceptionv3 (GoogLeNet)

3. ResNet50

4. EfficientNet

VGG-19

VGG is a convolutional neural network having a depth of 19 layers. It was built

and trained by Karen Simonyan and Andrew Zisserman at the University of Oxford in

2014.

The VGG-19 network is trained on more than 1 million images from the

ImageNet database. Naturally, one can import the model with the ImageNet trained

weights. This pre-trained network can categorize up to 1000 objects. The network

was trained on 224x224 pixels coloured images.

28

Figure 9

An Illustration of the VGG-19 Network

Note. A brief info about the size and performance of the VGG-19 Network: Size: 549

MB, Top-1: Accuracy: 71.3%, Top-5: Accuracy: 90.0%, Number of

Parameters: 143,667,240, Depth: 26 (Yalcin, 2020).

Inceptionv3 (GoogLeNet)

Inceptionv3 is a convolutional neural network having a depth of 50 layers. It

was built and trained by Google.

The pre-trained version of Inceptionv3 with the weights of ImageNet can

classify up to 1000 objects. The image input size of this network is 299x299 pixels,

that is larger than the VGG19 network.

29

Figure 10

An Illustration of the Inceptionv3 Network

Note. The brief summary of Inceptionv3 features is as follows: Size: 92 MB, Top-

1: Accuracy: 77.9%, Top-5: Accuracy: 93.7%, Number of Parameters: 23,851,784,

Depth: 159 (Yalcin, 2020).

ResNet50 (Residual Network)

ResNet50 is a convolutional neural network having a depth of 50 layers. It was

built and trained in 2015 by Microsoft. This model is trained on more than 1 million

images from the ImageNet database.

Just like VGG-19, it can classify up to 1000 objects and the network was

trained on 224x224 pixels coloured images. If ResNet50 is compared to VGG19, it

can be seen that ResNet50 actually outperforms VGG19 even though it has lower

complexity.

30

Figure 11

An Illustration of the ResNet50 Network

Note. A brief info about the size and performance of the ResNet50 Network: Size: 98

MB, Top-1: Accuracy: 74.9%, Top-5: Accuracy: 92.1%, Number of

Parameters: 25,636,712 (Yalcin, 2020).

EfficientNet

EfficientNet is a state-of-the-art convolutional neural network which was trained

and released to the public by Google in 2019 with the paper “EfficientNet: Rethinking

Model Scaling for Convolutional Neural Networks”.

There are 8 alternative implementations of EfficientNet (B0 to B7) and even

the simplest one, EfficientNetB0, is great. With 5.3 million parameters, it attains a

77.1% Top-1 accuracy with respect to performance.

https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/1905.11946.pdf

31

Figure 12

The Network Architecture of EfficientNet

Note. The brief summary of EfficientNetB0 features is as follows: Size: 29 MB, Top-

1: Accuracy: 77.1%, Top-5: Accuracy: 93.3%, Number of Parameters: ~5,300,000,

Depth: 159 (Yalcin, 2020).

32

Chapter 4: Design Methodology

In this starred paper, face recognition is performed using two pretrained

models and their performance is compared. These models are:

1. GoogLeNet Convolutional Neural Network

2. Google’s deep convolutional network - FaceNet

4.1 Transfer Learning Using Pretrained GoogLeNet CNN

For the evaluation of face recognition system using transfer learning,

techniques with pre-trained CNN model will be presented in this work.

The proposed system, of face recognition algorithm is implemented in MATLAB

environment. In this, we are using the Deep Learning Toolbox GoogLeNet Network.

We are creating a database to perform training, validation and testing on the

proposed method.

The images are captured using the inbuilt laptop webcam, and the resolution

of the images for the same is 1280x720 pixels. The resolution of the images captured

is 640x480 pixels and the average size of the faces in these images is 224x224

pixels.

4.1.1 Data Splitting

The first step is to split the dataset into a few sets. In MATLAB, input images

are stored inside data-store by using the “imageDatastore‟ function and the dataset

is randomly split into two sets which are training and test set using the “split label ‟

function. Images from the training set are then randomly split into training and

validation set for train and evaluate the model. The training set is used to train the

network while the validation set is used to predict the accuracy of the trained model.

The flow chart of the dataset splitting is shown in Figure 13.

33

4.1.2 Compose the model

Figure 13

Dataset Splitting

In this proposed system, pre-trained CNN is used as a feature extractor and

transfer learning by fine-tuning technique is used to transfer the extracted features

from the pre-trained CNN model to a new task. In this section, the pre-trained CNN

architecture and the fine-tuning pre- trained CNN architecture is described in detail.

4.1.3 Pre-trained CNN Model as Feature Extractor

GoogLeNet pre-trained CNN model is selected as the feature extractor in this

proposed system. GoogLeNet has been trained on more than a million images from

the ImageNet database and it can classify images into 1000 object categories with

about 60 million parameters.

34

Features of GoogleNet

The GoogLeNet architecture is very different from previous state-of-the-art

architectures like AlexNet and ZF-Net. It uses different kinds of methods such

as 1×1 convolution and global average pooling that enables it to create a deeper

architecture. Some of the methods in the architecture are:

1×1 Convolution. 1×1 convolution is used in the inception architecture. These

convolutions are used to minimize the number of parameters (weights and biases)

of the architecture. By reducing the parameters, the depth of the architecture is

increased. An example of a 1×1 convolution is shown below:

For instance, if one wants to perform 5×5 convolution having 48 filters without

using 1×1 convolution as intermediate:

Figure 14A

An example of GoogLeNet Convolution Operation Without 1x1 Convolution

Note. Total Number of operations: (14 x 14 x 48) x (5 x 5 x 480) = 112.9 M

(GeeksforGeeks, 2021).

https://media.geeksforgeeks.org/wp-content/uploads/20200429201100/without1x1.png

35

With 1×1 convolution:

Figure 14B

An Example of GoogLeNet Convolution Operation with 1x1 Convolution

Note. (14 x 14 x 16) x (1 x 1 x 480) + (14 x 14 x 48) x (5 x 5 x 16) is 1.5M + 3.8M =

5.3M that is much smaller than 112.9M. (GeeksforGeeks, 2021).

 Global Average Pooling. In the previous architecture such as AlexNet, the

fully connected layers are utilized at the end of the network. These fully connected

layers comprise the majority of parameters of many architectures that causes an

increase in computation cost. In GoogLeNet architecture, there is a method called

global average pooling that is used at the end of the network. This layer considers

a feature map of 7×7 and averages it to 1×1. This also reduces the number of

trainable parameters to 0 and enhances the top-1 accuracy by 0.6%

 Inception Module. The inception module differs from previous architectures

such as AlexNet, ZF-Net. In this architecture, the convolution size is fixed for each

layer. In the Inception module 1×1, 3×3, 5×5 convolution and 3×3 max pooling

performed parallelly at the input and the output of these are stacked together to

generate the final output. The idea behind this is that convolution filters of different

sizes will handle objects at multiple scale better.

https://media.geeksforgeeks.org/wp-content/uploads/20200429201229/with1x1.png

36

Figure 15A

Inception Module

Note. The inception module is different from previous architectures such as

AlexNet, ZF-Net (GeeksforGeeks, 2021).

Figure 15B

Inception Module with Dimension Reductions

Note. In the Inception module 1×1, 3×3, 5×5 convolution and 3×3 max pooling

performed in a parallel way at the input and the output of these are stacked

together to generated final output. (GeeksforGeeks, 2021).

https://media.geeksforgeeks.org/wp-content/uploads/20200429201304/Incepption-module.PNG
https://media.geeksforgeeks.org/wp-content/uploads/20200429201304/Incepption-module.PNG

37

 Auxiliary Classifier for Training. Inception architecture use some

intermediate classifier branches in the middle of the architecture, these branches

are used while training only. These branches comprise a 5×5 average pooling layer

with a stride of 3, a 1×1 convolutions with 128 filters, two fully connected layers of

1024 outputs and 1000 outputs and a softmax classification layer. The generated

loss from these layers is added to total loss with a weight of 0.3. These layers help

in withstanding gradient vanishing problem and also provide regularization.

Model Architecture

 The table below shows the layer-by-layer architectural details of GoogLeNet.

Table 1

Architectural Details of GoogLeNet

Note. The overall architecture is 22 layers deep. (GeeksforGeeks, 2021).

. The architecture was designed keeping computational efficiency in mind. The

idea behind this was that the architecture can be run on individual devices even

with low computational resources. The architecture also comprises two auxiliary

classifier layers connected to the output of Inception (4a) and Inception (4d) layers.

https://media.geeksforgeeks.org/wp-content/uploads/20200429201421/Inception-layer-by-layer.PNG

38

The architectural details of auxiliary classifiers are as follows:

1. An average pooling layer of filter of size 5×5 and stride 3.

2. A 1×1 convolution having 128 filters for dimension reduction and ReLU activation.

3. A fully connected layer containing 1025 outputs and ReLU activation

4. Dropout Regularization having dropout ratio = 0.7

5. A softmax classifier with output of 1000 classes similar to the main softmax

classifier.

Figure 16

Architecture of GoogLeNet CNN

Note. This architecture considers image of size 224 x 224 with RGB color channels.

(GeeksforGeeks, 2021).

All the convolutions inside this architecture have Rectified Linear Units

(ReLU) as their activation functions.

4.1.4 Fine-tuning pre-trained CNN model

In this, transfer learning by fine-tuning of a pre-trained CNN model is used to

classify the images by using a smaller number of training images. Pre-trained CNN

model has learned rich feature representations for a large scale of images.

Therefore, transfer learning from the pre-trained CNN model is much faster and

39

easier than training a network from scratch. This proposed approach is using

GoogLeNet pre-trained CNN architecture and transfer the layers to the new

classification task by replacing the final layers: fully connected layer, and the

classification output layer for a new task.

Figure 17

Flow Chart of Train and Evaluate the Model

Training Process

In transfer learning, training data with labels, fine-tune network, and training

algorithm options were the three important things that need before train a

network. Training data is stored in an augmented data store and pre-processed

while the fine-tuned network is the network that transfers learning from GoogLeNet

CNN pre-trained network to perform a new task. For training algorithm options, it

was the most important component in the training process as it can control the

behavior of the training algorithm. In MATLAB, the “trainingoptions‟ function is used

40

to set up the training options such as optimizer uses, initial learning rate, mini-batch

size, maximum epochs, optimizer, validation frequency, and many more should be

specified before starting to train the model. In this proposed system, root mean

square prop (RMSprop) optimizer is used as the solver for a training network, which

can also accelerate gradient descent.

Optimizer is updated the weight parameters to minimize the loss function. For

the learning rate, it was the most important hyper-parameter when configuring the

network as it controls the change of the model in response to the estimated error

each time the model weights are updated. Choosing a learning rate is challenging as

the value too small may result in a long training process that could get stuck,

whereas the value too large may result in learning a sub-optimal set of weights too

fast or an unstable training process. At first, I am fine-tuning the learning rate and

choose a suitable learning rate for the network. A larger value such as 0.1 is started

to try on the network then reduce the initial learning rate exponentially until 0.0001.

Finally, the learning rate was set to a small value as 0.0001 to slow learning down,

since the pre-trained CNN is used. Besides, the size of the mini-batched is set to

30. In this study, different number of epochs are used to test the model until it

reaches a good accuracy. The loss and gradient calculated for each mini-batched

approximates the loss and gradient for the full training set.

Evaluating on Trained Model

In this, training accuracy, validation accuracy, testing accuracy, mini-batch

loss, and validation loss are the evaluation parameters used for the experiments. For

the training process, the validation set is used to evaluate and validate the

performance of during training. In MATLAB, training progress can be plot using

41

“Plots‟ and “training-progress‟ function in training options. From the training

progress, training accuracy, validation accuracy, training loss value, and validation

loss value can be observed to prevent over-fitting. It happens if the training accuracy

is greater than the validation accuracy and the validation loss value training loss

value is greater than the training loss value. In the other hand, if the validation

accuracy is higher than the training accuracy and the validation loss value is lower

than the training loss value, it was under-fitting. Apart from that, the confusion matrix

table also used to observe the correct and error between the ground truth images

and the predicted images.

4.1.5 Test on final model

Figure 18

Flow Chart of Testing on Trained Model

In this, training accuracy, validation accuracy, testing accuracy, mini-batch

loss, and validation loss are the evaluation parameters used for the experiments. For

the training process, the validation set is used to evaluate and validate the

performance of during training.

4.2 Face Recognition Using Google’s Deep Convolutional Network - FaceNet

42

FaceNet is a deep neural network used for obtaining features from an image

of a person’s face. It was published by Google researchers Schroff et al in 2015.

FaceNet employs two different core architectures:

1. Zeigler & Fergus Style Network

2. Inception Network

Figure 19

Facenet Model

Note. FaceNet model takes an image of a face as input and outputs the embedding

vector. (Dulčić, 2020).

 FaceNet takes an image of the person’s face as input and outputs a vector of 128

numbers which characterize the most important features of a face. In machine

learning, this vector is known as embedding. Embedding is required because all the

important information from an image is embedded into this vector. Basically,

FaceNet takes a person’s face and flattens it into a vector of 128 numbers. Ideally,

embeddings of similar faces are similar as well.

FaceNet presents a unified system for face verification (is this the same

person?), recognition (who is this person?) and clustering (finds common people

43

among these faces) using the method based on learning a Euclidean embedding

per image using a deep convolutional network. The similarity of faces relates to

the squared L2 distances of the embeddings of 128 dimensions learned using

triplet loss function.

Once these embedding are produced, then the next tasks become

straight-forward:

1. face verification simply refers to thresholding the distance between the two

embeddings;

2. recognition represents a k-NN classification problem;

3. and clustering can be achieved with the help of off-the-shelf techniques like k-

means or agglomerative clustering.

Embeddings are vectors and the vectors can be interpreted as points in the

Cartesian coordinate system. This means one can plot an image of a face in the

coordinate system by using its embeddings. FaceNet embedding vectors have 128

numbers, i.e., they are 128-dimensional. Since we live in a 3-dimensional world, we

cannot plot a 128-dimensional vector. It can be pretended that faces can be plotted

in 2D for simplicity, the same logic applies for 2D and 128D, but unlike 128D, one

can visualize 2D.

One possible method of recognizing a person on an unseen image would be

to estimate its embedding, calculate distances to images of known people and if the

face embedding is close enough to embeddings of person A, one can say that this

image contains the face of person A.

Figure 20

Architecture of FaceNet

44

Note. When the CNN architecture is treated as a blackbox, the most important

aspect of FaceNet lies in the end-to-end learning of the system. (GeeksforGeeks,

2022).

FaceNet searches for an embedding f(x) from an image into feature space ℝd,

such that the squared L2 distance between all face images (independent of imaging

conditions) of the same identity is small, while on the contrary, the distance between

a pair of face images from different identities is large.

While the previously used losses encourage all faces of the same identity

onto a single point in ℝd, the triplet loss additionally tries to impose a margin between

each pair of faces from one person (anchor and positive) to all others’ faces. This

margin applies discriminability to other identities.

Figure 21

Triplet-loss and learning

Note. Generating triplets on every step on the basis of previous checkpoints and

compute minimum and maximum on a subset of data. (GeeksforGeeks, 2022).

Triplet Loss

Triplet-loss training intends at learning score vector identity verification by

comparing facial descriptors in Euclidean space. This is similar to “metric learning”,

and, like many other metric-learning approaches, is used to learn a projection that is

at the same time distinguishing and compact, achieving dimensionality reduction at

the same time. The function is defined as,

45

Triplet Function

Triplet loss is a loss function in artificial neural networks where a baseline

(anchor) input is compared to a positive (truthy) input and a negative (falsy) input. The

distance from the baseline (anchor) input to the positive (truthy) input is decreased,

and the distance from the baseline (anchor) input to the negative (falsy) input is

increased. Once the FaceNet model is trained, one can create the embedding for the

face by feeding it into the model. In order to compare two images, the embedding is

created for both images by feeding through the model separately. Then, the above

formula can be used to find the distance, which will be lower for similar faces and

higher for different faces. The formula for calculating the Euclidean distance between

two points is as below,

Triplet Selection

Producing all possible triplets would result in many triplets that satisfy the

distance condition mentioned above, thus not contributing towards learning and

would also slow down the convergence. These triplets are referred to as Easy

Triplets and will always give loss 0 as d(xa
i,xp

i)+α<d(xa
i,xn

i).

Thus, to have faster convergence and better learning, those triplets which

violate the triplet constraint (referred as Hard Triplets) i.e. d(xa
i,xn

i)<d(xa
i,xp

i) are

required.

46

Choosing the triplets to be used plays an important role in achieving good

performance. Inspired by curriculum learning, a novel online negative exemplar

mining strategy is presented, which ensures consistently increasing complexity of

triplets as the network trains. The two methods discussed were:

1. Generate triplets offline

For every n epochs, the embeddings on the subset of data are computed

and only the hard triplets i.e argmaxxai(d(xa
i,xp

i)) and argminxai(d(xa
i,xn

i)) are

selected. Evaluating offline triplet mining resulted in inconclusive results and is

hence not very efficient.

2. Generate triplets online

This can be done by choosing the hard positive/negative exemplars from

within a mini-batch. Instead of just the hardest positive (argmaxxai(d(xa
i,xp

i))), all

anchor-positive pairs in a mini batch are chosen, while still selecting the hard

negatives. There is no side-by-side comparison of hard anchor-positive pairs

versus all anchor-positive pairs within a mini-batch, but it can be found in

practice that all anchor-positive method was more stable and converged slightly

faster during the beginning of training.

Also, instead of choosing just hardest negative (argminxai(d(xa
i,xn

i))), the

negative exemplars are selected in such a way that: d(xa
i,xp

i)<d(xa
i,xn

i). These are

known as Semi-Hard Triplets and lie within a margin α. Selecting the hardest

negatives can in practice cause bad local minima early on in training, specifically

it can lead to a collapsed model (i.e., f(x)=0).

47

Figure 22

Triplet Selection

Note. Choosing which triplets to use turns out to be very important for achieving

good performance and, inspired by curriculum learning, we present a novel

online negative exemplar mining strategy which ensures consistently increasing

difficulty of triplets as the network trains. (Abdullah, 2021).

48

Chapter 5: Experiments and Results

5.1 Implementation using Pretrained GoogLeNet CNN

Initial steps

 Preparing the Dataset. The dataset has been prepared manually. Following is the

procedure to generate the dataset:

Here the name of the dataset is 'Database.' Inside of this 'Database' folder, there are

folders named by the person. Each of these folders have images of corresponding

person. There is also a folder with faces of random people taken from the internet. It is

saved as ‘Unknown’.

Figure 23

Dataset

 Loading the Dataset. After preparing the dataset, the first step is to load the

dataset. The dataset should then be split into training and validation set. In MATLAB,

the function used to handle a large collection of images is ‘imageDatastore()’. This

function needs the location of the image folder. The subfolders are included and the

labels of the images are specified using this function. The code below shows the use of

‘imageDatastore()’.

49

The dataset is inside the ‘Database’ folder. It is located in the working directory.

That is ‘Database’ has been used as the first argument of the ‘imageDatastore()’

function. The data inside the dataset are arranged into different folders.

To force the function to include the subfolder, ‘IncludeSubfolders’ should be set

to ‘true’. The folder names refer to the labels of the categories of dataset.

This is why ‘LabelSource’, ‘foldernames’ has been used as the argument to the

function. Finally, the dataset is stored in a variable named ‘Dataset’. After organizing the

dataset, it is split into training and validation set. In MATLAB, the ‘splitEachLabel()’

function is used to do it. This function needs two arguments. The first argument is the

dataset one needs to split, and the second argument is the ratio of splitting. In the

following code, the ratio is set to 7/10. It means that the data will be split into two groups

wherein one group will have 70% of the data and other group will have 30% of the data.

Here, the 70% data are stored in ‘Training_Dataset’ variable and rest of the 30%

of the data are stored in ‘Validation_Dataset’ variable. The dataset loading part is now

completed. Next, the pre-trained network must be loaded.

5.1.1 Loading the Pre-Trained Network

Loading the pre-trained network is the simplest step. Nothing is needed except

calling the network. However, it should be made sure that it is installed in MATLAB.

50

Otherwise, one will not be able to call it. Using the following line, the ‘GoogleNet’ is

called and stored in a variable named ‘net’:

net = googlenet;

This network needs to be modified. In order to do it, some idea about the

structure of the network is required. The following code can be used to visualize the

network:

analyzeNetwork(net)

It will depict the graphical structure of the network. It is a lengthy network;

however, it is not required to analyze the entire network. The main focus is on the fully

connected classification layer named as ‘loss3-classifier’. Apart from the classification

layer, it is important to have idea about the input layer as well. The information about

the input layer can be accessed using the following code:

net.Layers(1)

The name of the input layer of GoogleNet is ‘data’. The size of the input is

224×224 pixels, and it considers images with three channels for example – RGB image.

The size of the input layer is defined using the following code:

Input_Size = net.Layers(1).InputSize;

The line above will get the input size of the input layer and store it the

‘Input_Size’ variable. This variable layer will be used. So, the pre-trained network is

loaded. The next step is to replace the final layer.

51

5.1.2 Replacing the Layers

It is needed to replace the layers of the GoogleNet which are trained to classify

1000 objects with our own layers. However, before that one needs to find out which

layers are the task specific layers. The following code can be used to find information

about the network:

Layer__Graph = layerGraph(net);

The ‘layerGraph()’ function considers the network as an argument, inspects the

architecture and returns general information like number of layers, input layer, output

layer and number of connections. However, a more effective way to find out the layer

one needs to replace is to use network analyzer.

The network can be examined using network analyzer to find out which network

layer is responsible for task specific feature learning and which layer is meant for

classifying the objects.

From the network analyzer, it can be seen that the layer no. 142 is the layer

trained with task specific features. The name of this layer is known as ‘loss3-classifier’.

Layer no. 144 is the classification layer. This layer is meant for classifying objects.

These two layers must be replaced with new layers so that they can be trained to

classify objects. One can get access to the layers 142 and 144 using the following two

lines:

Feature__Learner = net.Layers(142);

Output__Classifier = net.Layers(144);

52

Now the layers to be replaced are stored in ‘Feature__Learner’ and

‘Output__Classifier’ variable. Our new training dataset has 4 categories of data. This

means that we are trying to classify images into 5 categories. Thus, the classifier layer

will have 4 classes and the feature learner layer will have 5 fully connected layers.

The ‘numel()’ function can be used to find out the number of classes present in

our dataset. The ‘numel’ is the short form for ‘number of elements’ and it counts the

number of elements. The number of classes in the training dataset can be found using

the following code:

Number__of__Classes = numel(categories(Training_Data.Labels));

The ‘numel()’ function has an argument called

‘categories(Training_Data.Labels)’. The ‘Training_Data.Labels’ refers to the labels

contained in the training dataset. The ‘categories()’ function returns the number of data

categories. The ‘numel()’ function returns the number of categories present in the

training data.

Now, our own layers can be defined. First of all, the fully connected layer will be

defined, which is stored in ‘Feature__Learner’ variable. The following block of code is

used to improve a fully connected layer:

New__Feature__Learner = fullyConnectedLayer(Number__of__Classes,…

'Name','Facial Feature Learner', …

'WeightLearnRateFactor',10, …

53

'BiasLearnRateFactor',10);

The ‘fullyConnectedLayer()’ function is used to define a fully connected layer.

The number of classes is the first argument of this function. The number of classes is

stored in ‘Number__of__Classes’ variable. Then using three dots (…), one can jump to

the next line. Here, the name of the layer is defined as ‘Facial_Feature_Learner’. Then,

in the next line, the weighted learning rate is assigned to 10. After that, in the next line,

the bias is set to 10. Both the learning rate and the bias values are weighted values, not

the actual values. Now, the classification layer needs to be defined. To define the

classification layer, a function named ‘classificationLayer()’ is used. Our new

classification layer can be defined using the following code:

New__Classifier__Layer = classificationLayer('Name', 'Face Classifier');

‘Face Classifier’ is the name of our new classification layer.

So, the layers are defined. Now, the existing layers can be replaced by our

redefined layers. To replace the layers, one uses ‘replaceLayer()’ function. The

‘replaceLayer()’ function takes the layer-graph, new layer, and name of the existing

layer as arguments. The following code shows the use of this function:

Layer__Graph = replaceLayer(Layer__Graph, Feature__Learner.Name,

New__Feature__Learner);

‘Layer_Graph’ is the first argument of the function above. The entire graph of the

network is stored in ‘Layer_Graph’ variable. This is why the ‘Layer_Graph’ is used as

the first argument of the function. ‘Feature__Learner.Name’ is the second argument.

54

The existing feature learner layer is stored in ‘Feature_Learner’ variable. ‘Name’ is one

of the objects of the ‘Feature_Learner’. When the ‘Feature_Learner.Name’ is passed as

an argument to the ‘replaceLayer()’ function, the name of the layer to be replaced is

specified. The last argument is the newly defined layer that is stored in

‘New__Feature__Learner’ variable.

The ‘replaceLayer()’ function is used to replace the layer and return the layer

graph information about the new layer. This new information is stored in the existing

‘Layer_Graph’ variable. Thus, the feature learner layer has been replaced. The next

step is to replace the output classification layer. This is similar to the procedure of

replacing the feature learner layer. The following code is used to replace the output

layer:

Layer__Graph = replaceLayer(Layer__Graph, Output__Classifier.Name,

New__Classification__Layer);

The output layers have thus been replaced with our self-defined layers. Now, one

can start training these layers. However, before starting the training process, it is better

to freeze few of the initial layers.

5.1.3 Image Augmentation to Prevent Overfitting

The input layer size of GoogleNet is 224x224x3. This means that the network

accepts images with three channels (such as RGB or HSV) with 224×224 pixels.

However, the dataset might contain images of different sizes. Thus, it is necessary to

resize the image to an appropriate size for the network to accept the training images as

input image.

55

In addition, it is better to randomly flip the images or stretch or shrink the images

during the training process in order to prevent the network from overfitting. In MATLAB,

the ‘imageDataAugmenter()’ is used to modify the images before training process. The

following code shows the use of ‘imageDataAugmenter()’ function:

1. Pixel__Range = [-30 30];

2. Scale__Range = [0.9 1.1];

3. Image__Augmenter = imageDataAugmenter(…

 . ‘RandXReflection’,true, …

A. ‘RandXTranslation’,Pixel_Range, …

B. ‘RandYTranslation’,Pixel_Range, …

C. ‘RandXScale’,Scale_Range, …

D. ‘RandYScale’,Scale_Range);

Here, on the first line, the pixel range is defined. The images are randomly

translated up to 30 pixels. Then on the second line, the scale range is defined. The

images are scaled up to 10%. On the third line, the ‘imageDataAugmenter()’ is used to

modify the images. The arguments of this function come in the form of {‘Name’, Value}

pair. This means that the first part of the argument is the name and the second part

which is separated by comma is the value. For easier understanding, the arguments are

specified in new lines.

‘RandXReflection’ is the first argument and the value is ‘true’. When the

‘RandXReflection’ becomes true, each image is reflected horizontally with probability of

50%. ‘RandXTranslation’ is the next argument and ‘Scale_Range’ is the value of this

56

argument, which is set to [-30 30]. The pixels are randomly moved horizontally within

the given range using this argument. ‘RandYTranslation’ is the next argument.

‘Scale_Range’ is the value of this argument, which is [-30 30]. The pixels of an image

are randomly shifted vertically within the defined range using this argument. On the

3(A), ‘RandXScale’ is used and the value is set to ‘Scale_Range’. [0.9 1.1] is the

‘Scale_Range’.

On the next line, a similar thing is done. However, this time ‘RandYScale’ is used

to stretch or shrink the image along vertical axis. The reason of setting the range from

0.9 to 1.1 is to ensure that it allows both stretching and shrinking. If the value is in

between 0.9 to 1.0, the image will shrink; while on the other hand, when the value is in

between 1.0 to 1.1, the image is stretched. One can apply the augmentation using the

following code:

Augmented__Training__Image =

augmentedImageDatastore(Input_Size(1:2),Training_Dataset, ...

 'DataAugmentation',Image_Augmenter);

Any type of augmentation can be applied using the ‘augmentedImageDatastore()’

function. In the code above, the first argument is ‘Input_Size(1:2)’, which is the required

resolution of the GoogleNet input layer, i.e., 224 x 224 pixels. The

57

‘augmentedImageDatastore()’ function will resize every image to the size 224×224

pixels. The next argument is the image where it is needed to apply the augmentation.

‘Training_Dataset’ is the name of our dataset. Apart from resizing images, it is required

to modify images as well. The behavior of the image modifier is defined and stored in

‘Image_Augmenter’ variable. ‘DataAugmentation’ is the last argument of

‘augmentedImageDatastore()’ and the value of this argument is ‘Image_Augmenter’ that

holds the definition of our image modification. The same augmentation process can be

applied to the validation dataset using the following code:

Augmented_Validation_Image =

augmentedImageDatastore(Input_Size(1:2),Validation_Dataset);

However, the images have already been resized to the appropriate size. Thus,

the image modification is not mandatory for validation process. Since the training and

validation data are now ready, the training process can be initiated.

5.1.4 Training the Face Recognition CNN

To train a network in MATLAB, the ‘trainNetwork()’ function is used. The

‘trainNetwork()’ function uses three arguments. These arguments are:

1. Training Data

2. The Architecture of the Network

3. Training Options

Training Data

The training data is already prepared and stored in a variable named

‘Augmented__Training__Image’.

58

The Architecture of the Network

The entire network is not dealt with. Only the final layer and task specific feature

learner layer is trained. In order to train these two layers, it is required to know the

architecture of these two layers. The architecture is stored in the ‘Layer__Graph’

variable.

Training Options

There are many parameters related to the training process of a multilayer neural

network. These parameters are known as training options. ‘trainingOptions()’ is the

function used in MATLAB to specify the training options. The following block of code

shows the use of ‘trainingOptions()’ function in the implementation:

1. Size__of__Minibatch = 10;

2. Validation__Frequency=

floor(numel(Augmented_Training_Image.Files)/Size_of_Minibatch);

3. Training__Options = trainingOptions(‘sgdm’, …

 . ‘MiniBatchSize’,Size__of__Minibatch, …

A. ‘MaxEpochs’,6, …

B. ‘InitialLearnRate’,3e-4, …

C. ‘Shuffle’,’every-epoch’, …

D. ‘ValidationData’,Augmented_Validation_Image, …

E. ‘ValidationFrequency’,Validation_Frequency, …

F. ‘Verbose’,false, …

G. ‘Plots’,’training-progress’);

59

The mini-batch method is used for training. This is why, the number of elements

in per batch is defined at the first line. On the second line, the validation frequency is

defined. Here, the total number of training image file is divided by the size of the mini-

batch. Then, the ‘numel()’ function is used to find the number of elements. Finally, the

‘floor()’ function is used to convert fractions to integer. For instance, if we get floor(0.6),

it will return 0, if we get floor(2.3), it will return 2 and so on. Finally, the value is stored in

a variable named ‘Validation__Frequency’.

On the third line, the training options is specified. To make it easier to

understand, each of the arguments of the function and their corresponding values are

presented in new line. The following list explains the role of the arguments used in the

‘trainingOptions()’ function.

sgdm: The term ‘sgdm’ refers to ‘Stochastic Gradient Descent with Momentum’. This is

the first argument of the ‘trainingOptions()’ function and it defines the algorithm used to

update the weights

MiniBatchSize: With this argument, the size of the mini-batch is specified. The size of

the mini-batch is stored in ‘Size__of__Minibatch’ variable. This is why, the

‘Size__of__Minibatch’ variable is used as the value of the ‘MiniBatchSize’ argument.

MaxEpochs: The maximum number of epochs is set as 6.

InitialLearningRate: This specifies the initial learning rate required for the training

process. Here, 0.0003 is the initial learning rate. In MATLAB, 0.0003 is written as 3e-4.

60

Shuffle: This argument controls the shuffling of the training data and validation data.

The value of this argument is assigned to ‘every-epoch’. It means that in every epoch,

the training and validation data will be shuffled. This helps in reducing overfitting.

ValidationData: The validation data is specified using this argument. Our validation data

is stored in ‘Augmented_Validation_Image’ variable. Thus, the value of this argument is

‘Augmented_Validation_Image’

ValidationFrequency: The frequency of validation is specified using this argument. This

is meant to indicate that after how many iterations, the trained network will be validated

using the validation dataset. The frequency is already calculated and stored in a

variable named ‘Validation__Frequency’.

Verbose: The verbose shows the training progress information in the command window.

It is not required to show the training related information during the training. So, the

value of this argument is set to ‘false’.

Plots: This argument is used to plot the training progress. The value of this property is

set to ‘training-progress’ in order to see the training progress.

Once the training options are defined, three arguments are passed to the

‘trainNetwork()’ function as follows:

net = trainNetwork(Augmented_Training_Image, Layer__Graph, Training__Options);

Then, the ‘trainNetwork()’ function will train the newly added layers with the

provided dataset. The ‘net’ variable will store the newly trained network. After the

network is trained, the final step is to classify the validation images in order to check the

performance of the network.

61

5.1.5 Testing the Face Recognition Network

Figure 24

Application Workflow

First, the trained network is loaded. Connection to the camera is established.

The captured image is resized to 224*224. This is because; the first layer, which is the

image input layer, requires input images of size 224-by-224-by-3, where 3 represents

the number of color channels.

It is then fed as input to the network for face recognition. The network classifies

amongst known faces and predicts the name of the person as label, along with the

probability score. This score determines the probability of the prediction. It assigns the

label as ‘Unknown’ if the face is not recognized.

62

The network has been trained to identify an unknown face. This is done by

placing 10 face images in a folder called ‘Unknown’ in the prepared dataset. If the

predicted label is unknown, an intruder email alert is sent from MATLAB.

Logic for unrecognizable face

Intruder Email Alert

Figure 25

Email setup

63

 The setpref function has two mail-related preferences:

Email address: This preference sets the email address appearing on the message.

SMTP server: This preference sets the outgoing SMTP server address, which can

almost be any email server that either supports the Post Office Protocol (POP) or the

Internet Message Access Protocol (IMAP).

 Once email is configured properly in MATLAB, the sendmail function can be used.

At least two arguments are required by the sendmail function: the recipient’s email

address and the email subject.

 Files can also be attached to the email. Here, the image of the unknown person is

sent as an attachment in the email.

Design of GUI using GUIDE

GUIDE stands for Graphical User Interface Development Environment. It

provides with the tools to design user interfaces and create custom apps. The GUI can

be accessed by typing guide in the workspace.

The components can be selected from the left pane and added to the

workspace. Their size can be changed by dragging the edges. Changing the position

can be done by double-clicking and dragging it. Three components have been used to

design the GUI:

Push Button: Its function is to call the callback function for the execution of different

programs

Axes: They are used to add images, charts, and plots to the GUI. They have no

callback function

64

Static Text: It is used to add labels that remain unchanged in the GUI and has no

callback

Figure 26

GUI Design

Logic for Real-time Face Detection and Tracking

 The following steps describe the procedure for real-time face detection and

tracking.

1. Create a ‘cam’ variable and initiate a ‘webcam()’ object

2. After that, take a variable named ‘video_Frame,’ and we will use the ‘snapshot()’

function to read the frames one by one from the ‘cam’ object

3. Now it is time to initiate the video player object. For that, create a variable named

65

‘video_Player,’ and assign the ‘video player’ object to it. The first argument of this object

is the ‘Position.’ In the second argument, we define the position in a set of square

brackets. The first two values are for the left and bottom corners. The second two

values are the width and height of the video, respectively.

4. Create another variable named ‘face-Detector’ and assign the ‘cascade object

detection()’ object. We use this object to detect the face.

5. To track the face, a point tracker object is needed. Create a variable named

‘point_Tracker’ and put the ‘point tracker object’ in it.

6. Now, I am going to initiate three variables for the while loop. The first one is ‘run_loop’

equals true. The second one is ‘number of points’ equals 0, and the third is

‘frame_Count’ equals 0.

7. Now, declare a while loop. It will keep looping as long as run_loop is true and

frame_Count is less than 400. If you want to run the webcam for longer, you can

increase the number of frames. Then end this loop. Inside this loop, we are going to do

the detection and tracking.

8. First, inside the ‘video_Frame’ variable, we will store the frames from the ‘cam’ object

using the ‘snapshot()’ function. Then using the ‘rgb2gray()’ function, we convert the

frames into grayscale and store them in a variable named ‘gray_Frame.’

9. Then write, ‘frame_Counter = frame_Counter+1’ to increase the ‘frame_Counter’ by 1.

10. Initiate an if condition when the ‘number of points is less than 10.

11. At the beginning of this if condition, we locate the rectangle that encloses the face on

‘gray_Frame’ using step function and faces ‘face_Detector’ object.

66

12. Now, if the ‘face_Rectangle’ is not empty, then using the ‘detect Min Eigen Features’

function, we will find the rectangle points. The first argument of this function is the frame

where the image is located. In our case, it is the ‘gray_Frame.’ Then, we need to tell the

function whether we are interested in getting the feature of the entire image or a

particular region. We are interested in a particular region; we specify the region of

interest or ‘ROI’ here. The ROI is the location where the ‘face_Rectangle’ is located. We

are using this ‘one comma colon’ to get the Value of the first row of the ‘face rectangle’

matrix, which is the starting location of this rectangle.

13. Next, create a variable named ‘xy_Points’ and write ‘points. Location’ to convert the

points to ‘x y values.’ Now the x values of the ‘xy_Points’ variable have the number of

points we need to initialize the point tracker.

Figure 27

Real-time Face Detection and Tracking

67

5.1.6 Results

Figure 28A

When a Known Person Comes in Front of the Webcam

Note. Person 1: Predicted label -> name of the person.

Figure 28B

When another known person comes in front of the webcam

Note. Person 2: Predicted label -> name of the person.

68

Figure 29

Unknown Face Detected

Note. When an unknown person comes in front of the webcam

Figure 30

Intruder Email Alert with Image of Unknown Person Attached

69

5.2 Implementation Using FaceNet

This face recognition system is implemented on a pre-trained FaceNet model,

thus achieving a state-of-the-art accuracy. The system comes with both Live

recognition & Image recognition. It is trained on faces of some celebrities.

Installing dependencies:

1. For Anaconda users: conda install --file requirements.txt

2. For python users: pip install -r requirements.txt

(even Anaconda users can use this if they use anaconda prompt instead of terminal)

 The requirements.txt file is as follows:

5.2.1 Loading a FaceNet Model in Keras

There are a number of projects which provide tools to train FaceNet-based

models and use pre-trained models.

The most prominent one is called OpenFace that provides FaceNet models,

which are built and trained using the PyTorch deep learning framework.

Another prominent project called FaceNet by David Sandberg provides FaceNet

models built and trained by using TensorFlow.

Keras FaceNet by Hiroki Taniai is a notable example. His project provides a

script to convert the Inception ResNet v1 model from TensorFlow to Keras. A pre-

trained Keras model ready for use is also provided.

 numpy==1.16.4

Pillow==9.0.1
matplotlib==3.1.0
opencv-contrib-python==4.2.0.32
scipy==1.2.1
scikit-learn==0.21.2
tensorflow==1.14.0
Keras==2.2.4

https://cmusatyalab.github.io/openface/
https://github.com/davidsandberg/facenet
https://github.com/nyoki-mtl/keras-facenet

70

Here, the pre-trained Keras FaceNet model provided by Hiroki Taniai is used.

It was trained on MS-Celeb-1M dataset, which expects input images to be color and

to have their pixel values whitened, i.e., uniform across all three channels, and to

have a square shape of 160×160 pixels.

The Keras FaceNet Pre-Trained model file is downloaded and placed in our

current working directory with the filename ‘facenet_keras.h5‘. One can load the

model directly in Keras by using the load_model() function; for instance:

An example to load the keras facenet model

from keras.models import load_model

loading the model

model1 = load_model('facenet_keras.h5')

sum up the input and output shape

print(model1.inputs)

print(model1.outputs)

Executing the above example loads the model and prints the shape of the

input and output tensors. It can be seen that the model expects square color images

as input with the shape 160×160, and outputs a face embedding as a 128-element

vector.

[<tf.Tensor 'input_1:0' shape=(?, 160, 160, 3) dtype=float32>]

[<tf.Tensor 'Bottleneck_BatchNorm/cond/Merge:0' shape=(?, 128) dtype=float32>]

Now that we have a FaceNet model, we can explore the use of it.

https://github.com/nyoki-mtl
https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world/

71

5.2.2 Detecting Faces for Face Recognition

Before performing face recognition, we need to detect faces. The process of

automatically locating faces in a photograph and localizing them by drawing a

bounding box around their extent is known as Face detection.

The CascadeClassifier class is provided by OpenCV. It can be used to create

a cascade classifier for face detection. The constructor can take a filename as an

argument, which specifies the XML file for a pre-trained model. A pre-trained model

for frontal face detection is downloaded from the OpenCV GitHub project and placed

in our current working directory with the filename

‘haarcascade_frontalface_default.xml‘. Once downloaded, one can load the model

as follows:

load the pre-trained model

classifier1 = CascadeClassifier('haarcascade_frontalface_default.xml')

Once loaded, face detection can be performed on a photograph using the

model by calling the detectMultiScale() function. This function returns a list of

bounding boxes for all the faces detected in the photograph.

perform face detection

bboxes = classifier1.detectMultiScale(pixels)

print bounding box for each detected face

for box in bboxes:

 print(box)

The detectMultiScale() function provides some arguments that help tune the

usage of the classifier. Two parameters to be noted

are scaleFactor and minNeighbors; for instance:

https://machinelearningmastery.com/how-to-perform-face-detection-with-classical-and-deep-learning-methods-in-python-with-keras/
https://docs.opencv.org/3.4.3/d1/de5/classcv_1_1CascadeClassifier.html
https://docs.opencv.org/3.4.3/d1/de5/classcv_1_1CascadeClassifier.html#aaf8181cb63968136476ec4204ffca498

72

perform face detection

bboxes = classifier.detectMultiScale(pixels, 1.1, 3)

The scaleFactor controls the scaling of input image prior to detection, e.g., is it

scaled up or down, that can help to better find the faces in the image. The default

value is 1.1 (10% increase), although this can be decreased to values such as 1.05

(5% increase) or increased to values such as 1.4 (40% increase).

The minNeighbors determines how robust each detection must be, so that it

can be reported, e.g., the number of candidate rectangles that located the face. The

default is 3, but this can be reduced to 1 to detect a lot more faces and will probably

increase the false positives, or increase to 6 or more to need a lot more confidence

before a face is detected.

The scaleFactor and minNeighbors often need tuning for a given image or

dataset to best detect the faces. It may be useful to perform a sensitivity analysis

across a grid of values and see what works well or best in general on one or many

photographs. A fast strategy may be to reduce (or increase for small photos) the

scaleFactor until all faces are detected, then increase the minNeighbors until all false

positives vanish, or close to it.

5.2.3 Create Face Embeddings

The next task is to create a face embedding. A face embedding refers to a

vector that represents the features obtained from the face. This can then be

compared with the vectors produced for other faces. For example, a vector that is

near, by some measure, may be the same person, whereas another vector that is far

(by some measure) may be a different person.

73

The classifier model that we want to build takes a face embedding as input

and predicts the identity of the face. The FaceNet model generates this embedding

for a given image of a face.

The FaceNet model can be used as part of the classifier itself, or can be used

to pre-process a face to create a face embedding which can be stored and made use

of as input to our classifier model. This latter approach is preferred since the

FaceNet model is both large and slow for creating a face embedding.

We can, thus, pre-compute the face embeddings for all faces of the train and

test (formally ‘validation‘) sets in our 5 Celebrity Faces Dataset.

First, our detected faces dataset can be loaded using the load() NumPy function

load the face dataset

data1 = load('5-celebrity-faces-dataset.npz')

trainX1, trainy1, testX1, testy1 = data1['arr_0'], data1['arr_1'], data1['arr_2'],

data1['arr_3']

print('Loaded the dataset: ', trainX1.shape, trainy1.shape, testX1.shape,

testy1.shape)

Next, the FaceNet model ready for converting faces into face embeddings can

be loaded.

loading the facenet model

model1 = load_model('facenet_keras.h5')

print('Loaded Model')

Then, each face can be enumerated in the train and test datasets to predict an

embedding.

https://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html

74

To predict an embedding, the pixel values of the image first need to be

suitably prepared to meet the requirements of the FaceNet model. This specific

implementation of the FaceNet model expects the pixel values to be standardized.

scaling of pixel values

face__pixels = face__pixels.astype('float32')

standardizing pixel values across channels (global)

mean, std = face__pixels.mean(), face__pixels.std()

face__pixels = (face__pixels - mean) / std

To make a prediction for one example in Keras, one must expand the

dimensions such that the face array is one sample.

transforming face into one sample

samples1 = expand_dims(face__pixels, axis=0)

One can then use the model to make a prediction and obtain the embedding vector.

making prediction to get embedding

yhat1 = model.predict(samples1)

get embedding

embedding1 = yhat1[0]

The get_embedding() function defined below applies these behaviors and

returns a face embedding, given a single image of a face and the loaded FaceNet

model.

obtain the face embedding for one face

def get_embedding(model, face__pixels):

 # scaling of pixel values

 face__pixels = face__pixels.astype('float32')

75

 # standardizing pixel values across channels (global)

 mean, std = face__pixels.mean(), face__pixels.std()

 face__pixels = (face__pixels - mean) / std

 # transforming face into one sample

 samples1 = expand_dims(face_pixels, axis=0)

 # making prediction to get embedding

 yhat1 = model.predict(samples1)

 return yhat1[0]

5.2.4 Perform Face Classification

Next, a model is developed to classify face embeddings as one of the known

celebrities in the 5 Celebrity Faces Dataset. First, the face embeddings dataset must

be loaded.

loading dataset

data1 = load('5-celebrity-faces-embeddings.npz')

trainX1, trainy1, testX1, testy1 = data1['arr_0'], data1['arr_1'], data1['arr_2'],

data1['arr_3']

print('The Dataset: train=%d, test=%d' % (trainX1.shape[0], testX1.shape[0]))

Next, the data needs some minor preparation before modeling. Normalizing

the face embedding vectors is a good practice because the vectors are often

compared to each other by using a distance metric.

Here, vector normalization refers to scaling of the values until the length or

magnitude of the vectors is 1 or unit length. This can be attained by using

the Normalizer class in scikit-learn. It might be even more convenient to perform this

step while the face embeddings are created in the previous step.

https://machinelearningmastery.com/vector-norms-machine-learning/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html

76

normalizing input vectors

in_encoder1 = Normalizer(norm='l2')

trainX1 = in_encoder1.transform(trainX1)

testX1 = in_encoder1.transform(testX1)

Next, the string target variables need to be converted to integers for each celebrity

name. This can be attained through the LabelEncoder class in scikit-learn.

labelling encode targets

out_encoder1 = LabelEncoder()

out_encoder1.fit(trainy1)

trainy1 = out_encoder1.transform(trainy1)

testy1 = out_encoder1.transform(testy1)

Next, one can fit a model.

Usually, a Linear Support Vector Machine (SVM) is used while working with

normalized face embedding inputs. This is because the method is very efficient at

separating the face embedding vectors. One can fit a linear SVM to the training data

by using the SVC class in scikit-learn and setting the ‘kernel’ attribute to ‘linear‘. We

may also want probabilities later while making predictions, that can be configured by

setting ‘probability‘ to ‘True‘.

fitting model

model1 = SVC(kernel='linear')

model1.fit(trainX1, trainy1)

Next, the model can be evaluated. This can be achieved using the fit model to

make a prediction for each example of the train and test datasets and then calculate

the classification accuracy.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://machinelearningmastery.com/support-vector-machines-for-machine-learning/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

77

prediction

yhat_train1 = model1.predict(trainX1)

yhat_test1 = model1.predict(testX1)

score

score_train1 = accuracy_score(trainy1, yhat_train1)

score_test1 = accuracy_score(testy1, yhat_test1)

sum up

print('Accuracy is: train=%.3f, test=%.3f' % (score_train*100, score_test*100))

Note: Faces with Unidentified labels are faces on which the model is not trained.

5.2.5 Results

Figure 31A

Input Image 1

Note. This figure shows an example image before facial recognition. (Goswami,

2022).

78

Figure 31B

Output Image 1

Note. This figure shows the image after facial recognition for the example.

(Goswami, 2022).

Figure 32A

Input Image 2

Note. This figure shows a second example image before facial recognition.

(Goswami, 2022).

79

Figure 32B

Output Image 2

Note. This figure shows the image after facial recognition for the second example.

(Goswami, 2022).

Figure 33A

Input Image 3

Note. This figure shows a third example image before facial recognition. (Goswami,

2022).

80

Figure 33B

Output Image 3

Note. This figure shows the image after facial recognition for the third example.

(Goswami, 2022).

Figure 34A

Input Image 4

Note. This figure shows a fourth example image before facial recognition. (Goswami,

2022).

81

Figure 34B

Output Image 4

Note. This figure shows the image after facial recognition for the fourth example.

(Goswami, 2022).

82

Chapter 6: Conclusion

 Facial Recognition was performed using two pretrained models, GoogLeNet

Convolutional Neural Network and Google’s deep convolutional network – FaceNet.

Transfer Learning was used to transfer the knowledge from existing network and is

then modified according to the task (face recognition) to be accomplished.

 The system was tested with faces inside and outside the dataset. When

implemented upon pre-trained GoogLeNet Convolutional Neural Network, the

accuracy of prediction was good, with probability score of 0.9 – 1 when image of

database was shown and 0.75 – 0.86 when a different image was shown. At times,

the network got confused, and gave out a wrong label. This could possibly be due to

lack of clarity in the dataset images or while capturing. This was verifiable with the

corresponding low probability score.

 When implemented upon a pre-trained FaceNet, multiple faces could be

recognized in a photograph. It was tested on different images of the same person,

and the accuracy of prediction came out to be much good when compared to

GoogLeNet Convolutional Neural Network. Yet another notable advantage was that,

training the network required only one sample image for each person.

 Through this research project, I learnt how to design a face recognition

security system. It helped me get a good understanding of the working of a

Convolutional Neural Network. It was interesting to learn the concept of Transfer

Learning. I can improve the performance by analyzing errors (bad predictions) in the

validation dataset or by inculcating Feature Engineering – a step to extract more

information (features) from existing data.

83

References

Abdullah, M. (2021). Notes on “FaceNet: A Unified Embedding for Face Recognition

 and Clustering”. https://hackmd.io/@ABD/SJa0J7_Od#Notes-by-Muhammed

Abdullah

Dulčić, L. (2020). Face Recognition with FaceNet and MTCNN. Arsfutura.

 https://arsfutura.com/magazine/face-recognition-with-facenet-and-mtcnn/

Chae, Y.N., Chung, J.N., & Yang, H.S. (2008). Color filtering-based efficient face

 detection. 2008 19th International Conference on Pattern Recognition, 1-4.

GeeksforGeeks. (2021). Understanding GoogLeNet Model – CNN Architecture.

 https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-

architecture/

GeeksforGeeks. (2022). FaceNet – Using Facial Recognition System.

https://www.geeksforgeeks.org/facenet-using-facial-recognition-system/

Goswami, A. (2022). Face-Recognition-using-FaceNet. Github.

 https://github.com/TheAnkurGoswami/Face-Recognition-using-FaceNet

Kana, M. (2020, May 18). How AI Can See Better Than Your Eyes Do. Medium.

 https://medium.com/dataseries/how-ai-can-see-better-than-your-eyes-do-

93e5a5da1e8a

MathWorks. (2022). Transfer Learning Using Pretrained Network.

 https://www.mathworks.com/help/deeplearning/ug/transfer-learning-using-

pretrained-network.html

Nigam, V. (2018, September 10). Understanding Neural Networks. From neuron to

RNN, CNN, and Deep Learning. Medium. https://medium.com/analytics-

https://github.com/ABD-01
https://hackmd.io/@ABD/SJa0J7_Od#Notes-by-Muhammed Abdullah
https://hackmd.io/@ABD/SJa0J7_Od#Notes-by-Muhammed Abdullah
https://arsfutura.com/magazine/face-recognition-with-facenet-and-mtcnn/
https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architecture/
https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architecture/
https://www.geeksforgeeks.org/facenet-using-facial-recognition-system/
https://github.com/TheAnkurGoswami/Face-Recognition-using-FaceNet
https://medium.com/@michel-kana?source=post_page-----93e5a5da1e8a--------------------------------
https://www.mathworks.com/help/deeplearning/ug/transfer-learning-using-pretrained-network.html
https://www.mathworks.com/help/deeplearning/ug/transfer-learning-using-pretrained-network.html
https://medium.com/analytics-vidhya/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90

84

vidhya/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-

cd88e90e0a90

Ray, S., Alshouiliy, K., & Agrawal, D.P. (2021). Dimensionality Reduction for Human

 Activity Recognition Using Google Colab. Information 2021,12, 6.

 https://doi.org/10.3390/info12010006

Shah, A.A., Zaidi, Z.A., Chowdhry, B.S., & Daudpoto, J. (2016). Real time face

 Detection/Monitor using raspberry pi and MATLAB. 2016 IEEE 10th

 International Conference on Application of Information and Communication

 Technologies (AICT), 1-4.

Singh, S.K., Chauhan, D.S., Vatsa, M. & Singh, R. (2003). A robust skin color

 based face detection algorithm. Tamkang Journal of Science and Engineering,

 6(4), 227-234.

Yalcin, O.G. (2020, September 23). 4 Pre-Trained CNN Models to Use for Computer

Vision with Transfer Learning. Towards Data Science.

https://towardsdatascience.com/4-pre-trained-cnn-models-to-use-for-computer-

vision-with-transfer-learning-885cb1b2dfc

Zarit, B.D., Super, B.J., & Quek, F.K.H. (1999). Comparison of five color models in

 skin pixel classification. Proceedings International Workshop on Recognition,

 Analysis, and Tracking of Faces and Gestures in Real-Time Systems, 58-63.

https://medium.com/analytics-vidhya/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90
https://medium.com/analytics-vidhya/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90
https://doi.org/10.3390/info12010006
https://towardsdatascience.com/4-pre-trained-cnn-models-to-use-for-computer-vision-with-transfer-learning-885cb1b2dfc
https://towardsdatascience.com/4-pre-trained-cnn-models-to-use-for-computer-vision-with-transfer-learning-885cb1b2dfc

	Real-Time Deep Learning-Based Face Recognition System
	Recommended Citation

	tmp.1659559083.pdf.foL9f

