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Abstract 

This research proposes Real-time Deep Learning-based Face recognition algorithms 
using MATLAB and Python. Generally, Face recognition is defined as the process 
through which people are identified using facial images. This technology is applied 
broadly in biometrics, security information, accessing controlled areas, etc. The facial 
recognition system can be built by following two steps. In the first step, the facial 
features are picked up or extracted, then the second step involves pattern 
classification. Deep learning, specifically the convolutional neural network (CNN), 
has recently made more progress in face recognition technology. Convolution Neural 
Network is one among the Deep Learning approaches and has shown excellent 
performance in many fields, such as image recognition of a large amount of training 
data (such as ImageNet). However, due to hardware limitations and insufficient 
training datasets, high performance is not achieved. Therefore, in this work, the 
Transfer Learning method is used to improve the performance of the face-
recognition system even for a smaller number of images. For this, two pre-trained 
models, namely, GoogLeNet CNN (in MATLAB) and FaceNet (in Python) are used. 
Transfer learning is used to perform fine-tuning on the last layer of CNN model for 
new classification tasks. FaceNet presents a unified system for face verification (is 
this the same person?), recognition (who is this person?) and clustering (finds 
common people among these faces) using the method based on learning a 
Euclidean embedding per image using a deep convolutional network.  

Keywords: CNN, Face Recognition, Transfer Learning, GoogLeNet, FaceNet. 
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Chapter 1: Introduction 

The background and objectives of this study will be briefly reviewed in this 

chapter. This chapter will also outline the contents of this starred paper. 

1.1 Background  

Deep learning is a subdivision of machine learning, which is essentially a 

neural network with three or more layers. These neural networks attempt to imitate 

the behavior of the human brain by “learning” from large amounts of data, although 

not completely matching its ability. They do so through a combination of data 

inputs, weights and bias. These elements work together in order to accurately 

recognize, classify, and describe objects within the data.  

There are various types of neural networks to address specific problems or 

datasets. For example, Convolutional Neural Networks (CNNs) are used primarily 

in computer vision and image classification applications detect features and 

patterns within an image, enabling tasks, like object detection or recognition. 

Convolutional Neural Networks 

A Convolutional Neural Network (CNN) is a type of Neural Network that 

concentrates in image processing and classification. It basically takes the pixel 

values of an image in vector/matrix form as its input, runs it through a sequence of 

layers, and outputs a classification for the image. The Convolutional Neural Networks 

are mainly made of up four types of layers: 

1.           A Convolutional Layer takes patterns from the image by running its matrix 

through a set of learnable filters/kernels, which portray different visual features in the 

image. These filters slide over the image with respect to a specified number of 
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pixels, or strides. During these convolutions, each of the filters produce their own 

feature map; the final output of this layer is a transformation of the original image, 

consisting of all the feature maps placed on top of each other. 

2.          The Rectified Linear Unit Layer (ReLU) is a non-linear activation function f(x) = 

max(x,0). Without changing its shape, ReLU converts the elements of the output of 

the convolutional layer in the range from 0 to infinity, by replacing any negative 

values with zero. 

Figure 1 

Convolutional neural network architecture 

 

Note. This figure shows an example of a simple schematic representation of a basic 

CNN. (Ray et al., 2021). 

3.          A Pooling Layer regulates the width by height dimensions by reducing the input 

volume spatial dimensions for the next convolutional layer without changing the 

dimensional depth of the volume. The process performed by the pooling layer is 

otherwise known as down-sampling or sub-sampling because the reduction of size 
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results in simultaneous information loss that benefits the network. The reduction 

becomes less computational as the information moves to the next pooling layers, 

and it also works against over-fitting. The most common strategies employed in the 

pooling layer networks are max-pooling and average-pooling. In a comprehensive 

theoretical analysis of the max pooling and average pooling, it has been observed 

that max pooling can result in faster convergence of information, and that the 

network picks the high-ranking features in the image thus enhancing generalization. 

Also, pooling layer has other variations such as stochastic pooling spatial pyramid 

pooling, and def-pooling that serves marked purposes. 

4.          Fully-Connected Layer: The filters and neurons in this layer are connected to 

all the activation from the previous layers, resulting in full connections as their name 

implies. The calculations in this level are done through the multiplication of 

matrix   followed   by the   bias   o set. FC layer goes through a process which 

converts the 2D feature map to the 1D feature vector. In addition, the vector 

formed in this process is either classified as classes for classification or the feature 

vector undergoing further processing. 

1.2 Transfer Learning 

Transfer learning is a machine learning technique which uses knowledge 

from one domain to get better in another domain. Transfer learning reduces the 

need to recollect the training data for a specific domain. It allows the 

distributions, tasks, and domains to be different for the training and testing 

data. Transfer learning is driven by the fact that people can intelligently apply 

knowledge from previously learned solutions to solve new problems or find 

better solutions. For instance, it is easier to learn French if you already know 



12 
 

Latin. Yet another example is: if you already learned to ride a scooter then it 

will be easier to learn to ride a motorcycle. 

In the field of machine learning, transfer learning is often the same but it 

is meant to be used for sharing the weights of neural networks. The common 

approach is to train all the layers of one network and then copying the first n 

layers of this network to a second network. This step is known as pre-training of 

the network. When the layers are copied to the second network, the remaining 

layers of the second network can be randomly initialized and trained for the 

target task with a different dataset. There are two ways to use the pre-trained 

weights: The first way is to train these weights together with the weights of the 

last layers, the second approach is to not change the weights of the pre-trained 

layers. The weights are left frozen while training on the target task. This second 

approach is used in this starred paper. 

1.3 Face Recognition 

Face recognition is a modern security feature which deals with recognition 

and authentication of a face, and is a field that has been studied extensively for a 

long time. Face detection and tracking has been used for the purposes of 

surveillance, security, human computer interaction, etc. (Shah et al., 2016). Here, 

the Transfer learning technique is being used, which is commonly used in deep 

learning applications. One can take a pre-trained network and use it as a starting 

point to learn a new task. Fine-tuning a network with transfer learning is usually 

much faster and easier when compared to training a network with randomly 

initialized weights from scratch. The learned features can quickly be transferred to 

a new task using a smaller number of training images. 
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In the late 1980s, the development of computer technology and optical 

imaging technology was improved and the real entry into the application phase of 

face recognition occurred in the late 1990s. In early research on face recognition, 

the researcher mainly focused on methods called geometry methods to match 

simple features with image processing techniques. Later, the holistic methods such 

as principal component analysis (PCA) and linear discriminant analysis (LDA) 

became popular. Then, the feature-based method was developed for matching all 

the local features across face image. As time passed, a holistic and feature-based 

method was developed and then combined into hybrid methods. Hybrid methods 

stayed the state-of-the-art until recently when deep learning emerged as a leading 

approach to most applications of computer vision, including face recognition. 

Deep Learning is a machine learning technique that has got attention lately 

because it can achieve high accuracy when trained with large amounts of data. In 

addition, Convolutional Neural Networks (CNNs) is one of the most popular deep 

learning algorithms used for image classification problems. As a result, a CNN 

based deep transfer learning for face recognition using small datasets is proposed. 

Transfer learning is a popular deep learning approach where the knowledge gained 

from a related task is transferred to a new task. Compared with training deep 

neural networks from scratch, this proposed method can reduce training time.  

1.4 Outline 

Chapter 2 reviews the existing face detection and recognition algorithms. 

The related work on transfer learning and face recognition are briefly described 

in this chapter. Chapter 3 gives details on transfer learning using pre-trained 

models. This chapter also explains about Convolutional Neural Networks in 
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detail. Chapter 4 describes the models used to perform the experiments on 

face recognition. Chapter 5 gives the implementation details for face 

recognition and discusses its results. Chapter 6 provides conclusions and future 

scope.
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Chapter 2: Review of Existing Face Detection and Recognition Algorithms 

2.1 Introduction 

          Many robust algorithms have been developed to have accurate performance 

for tackling face detection and recognition problems. These algorithms or methods 

are the most successful and widely used ones in face detection and recognition 

applications. The algorithms are as follows: 

▪ Principle Component Analysis (PCA) 

- Eigenface  

▪ Linear Discriminant Analysis (LDA) 

- Fisherface  

▪ Skin color- based algorithm  

a. Red-Green-Blue (RGB) 

b. YCbCr (Luminance-Chrominance) 

c. Hue-Saturation Intensity (HSI) 

▪ Wavelet based algorithm  

- Gabor Wavelet 

▪ Artificial neural networks- based algorithm  

a. Fast Forward 

b. Back Propagation 

c. Radial Basis Function (RBF) 

2.2 Principle Component Analysis (PCA) 

    PCA is a method used to simplify the problem of selecting the representation 

of eigenvalues and the corresponding eigenvectors in order to obtain a consistent 

representation. This can be attained by reducing the dimension space of the 
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representation. The dimension space needs to be reduced in order to obtain fast 

and robust object recognition. PCA also reserves the original information of the 

data. The PCA basis is applied in the Eigenface based algorithm. 

  Eigenface Based Algorithm 

Eigenface based algorithm is the most widely used method to detect faces. 

This approach makes use of the presence of eyes, nose and mouth and the relative 

distances between them. This feature is called as Eigenfaces in the facial domain. 

This facial feature can be obtained by using a mathematical tool known as Principle 

Component Analysis (PCA). Any original image from the training set can be 

reconstructed by combining the Eigenfaces by using PCA. Usually, a face is 

classified by estimating the relative distance of the Eigenfaces. 

2.3 Linear Discriminant Analysis (LDA) 

LDA is otherwise known as Fisher’s Linear Discriminant (FLD). It decreases 

the dimension space by using the FLD technique. FLD technique uses within-class 

information, thus reducing variation within each class and maximizing the class 

separation. 

Fisherface Based Algorithm 

The Fisherface approach is also one of the most widely used feature extraction 

algorithms in facial images. This approach attempts to find the projection direction 

in which the images belonging to different classes are segregated maximally. 

     According to Shang-Hung Lin, Fisherface algorithm is an improvement of the 

eigenface algorithm in order to cater the variation in the illumination. It is reported 

that Fisherface algorithm performs better than eigenface when the lighting condition 

is changed. This method needs various training images for each face. Thus, this 
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algorithm cannot be applied to the face recognition applications where only one 

example image per person is at hand for training. 

2.4 Skin Color-Based Algorithm 

      Skin color is the most important feature of a human face. Human skin colors are 

set apart from different ethnic with respect to the intensity of the skin color, and not 

the chromatic features. One of the facial feature methods involves skin color-based 

processing method. In this algorithm, each pixel is classified as either skin color or 

non-skin color. For an input image, this method uses color space for the skin region 

as the criteria of classification. Threshold is applied to the mask of the skin region. 

Lastly, a bounding box is drawn to obtain the face from the input image. 

  According to Singh et al. (2003), the skin color processing method has a faster 

processing time when compared to other facial feature methods. However, Chae et 

al. (2008) has a different opinion that skin color method is time consuming. He felt 

so because the method scans the target image linearly, that involves a large space 

of scanning. Thus, a novel method using sub-windows scanning has been 

proposed instead of the standard linear scanning. This proposed method works by 

scanning the image sparsely on the basis of the facial color density by determining 

the horizontal and vertical intervals. 

   From the experiment, the results revealed that this proposed method was 

successful in detecting faces in a shorter period of time when compared to the 

standardized method. The sub-windows scanning method has a less 

computational time since it skips the sub-windows that do not comprise possible 

faces. The three most popular color spaces are RGB, YCbCr, and HSI.   
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RGB (Red-Green-Blue) 

       In RGB color space, a normalized color histogram is used in order to detect 

the pixels of skin color of an image and can be further normalized for intensity 

changes when dividing by luminance. This enables localization and detection of 

the face. However, this color space is not preferred for color-based detection 

methods when compared to YCbCr or HSI.  

YCbCr (Luminance-Chrominance) 

        This color space gives a good coverage for different human races. The 

responsible values in this color space are luminance (Y) and chrominance (C). It 

basically separates luminance and chrominance. This algorithm can only be carried 

out if the chrominance component is used. It eliminates the luminance as much as 

possible by selecting the Cb-Cr plane from the YCbCr color space. A pixel 

represents the skin tone if the values [Cr, Cb] lie within the thresholds. 

HSI (Hue-Saturation-Intensity) 

        On the basis of the studies performed by Zarit et al. (1999), HSI is said to yield 

the best performance for skin color approach. Skin color classification in the HSI 

color space is similar to the YCbCr color space, but the responsible values are hue 

(H) and saturation (S). Unfortunately, all of these algorithms become unsuccessful 

when there are regions other than the face such as arms, legs and other objects in 

background having the same color value. 

2.5 Wavelet based algorithm 

          In wavelet-based algorithm, each face image is characterized by a subset of 

band filtered images that contain wavelet coefficients. Wavelet transform likely 

provides a robust multi-scale method of analysis for an image. Wavelets are very 



19 
 

flexible. This is because several bases exist, from which the most suitable basis can 

be selected for an application. Gabor wavelet method is the most widely used 

wavelet method in image texture analysis. 

Gabor Wavelet 

          Gabor wavelet transform uses the spatial frequency structures and the 

orientation relation. This method is a kind of Gaussian modulated sinusoidal wave of 

the Fourier transform. Gabor wavelet approach detects the short lines, ending lines 

and sharp changes in curvature. These curves match well with the important 

features of human face such as mouth, nose, eyebrow, jaw line and cheekbone. 

Thus, Gabor wavelet is widely known for detecting features. 

2.6 Artificial neural network-based algorithm 

           Artificial neural network (ANN) is the most widely used method for the 

recognition process. ANN is  implemented once a face has been detected to 

identify, by calculating the weight of the facial information to recognize who the 

person is. 

           ANN imitates the human brain, i.e., the biological neuron system. A neuron 

basically receives a signal from the previous layer and then transmits the signal to all 

neurons of the next layer. Before transmitting the signal to the next layer, the signal 

gets multiplied with a separate multi weight value and then the weighted input is 

summed. 

           ANN can be divided into several categories namely: feed forward neural 

network, back propagation neural network and Radial Basis Function (RBF) network. 

These three networks are most commonly used in ANN. 
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Feed Forward 

           The simplest type of ANN is the feed forward network, which is otherwise 

known as a multilayer perceptron. A feed forward network has no cycles since the 

information moves forward in only one direction, i.e., from the input nodes to the 

output nodes via the hidden nodes. 

Back Propagation 

           Back propagation is the technique of estimating the error made in the output 

neuron and propagating them back to the inner neuron. This method is otherwise 

referred to as “learn by examples”. Thus, a learning set comprising the input 

examples for each case must be included. The output value and each of the 

examples in the training set are compared, and an error value is calculated. This 

error value is then propagated backwards to the neuron and is used to adjust the 

weights. The error value is reduced by making small changes to the weight value. 

This process is repeated until a pre-determined value is reached.  

           The back propagation neural network can be used to recognize and classify 

the different aspects of the image of a human’s face like the expression of the 

person in the image, o r  the orientation of the face in the image, or the presence of 

any accessories such as sunglasses, beard, etc. 

Radial Basis Function (RBF) 

           Radial Basis Function (RBF) is used for estimating the functions and 

identifying patterns. It applies the Gaussian potential functions whereby these 

functions are used in the networks.  RBF provides advantages such as localization, 

cluster modelling, functional approximation, interpolation and quasi-orthogonality. 
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Chapter 3: Transfer Learning From Pre-Trained Models 

3.1 Introduction 

  Deep learning is fast becoming popular in artificial intelligence applications. For 

instance, in areas such as computer vision, natural language processing, and speech 

recognition, deep learning has been bringing about remarkable results. Therefore, the 

interest in deep learning is growing. One of the areas where deep learning is 

exceptionally good is image classification. The goal in image classification is to 

categorize a specific picture according to a set of possible categories. A good 

example of image classification is to identify cats and dogs in a set of pictures. From 

a deep learning perspective, the image classification problem can be solved 

via transfer learning. Several state-of-the-art results in image classification are based 

upon transfer learning solutions.  

3.2 Convolutional Neural Networks 

A convolutional neural network (CNN) is a type of artificial neural 

network used in image recognition and processing that is especially designed to 

process pixel data. CNNs have their “neurons” arranged more like those of the 

frontal lobe, the area responsible for processing visual stimuli in humans and other 

animals. A CNN has one or more convolutional layers and are mainly used for image 

processing, classification, segmentation and also for other auto correlated data. 

Convolution refers to sliding of a filter over the input. The influence of nearby pixels is 

studied using something called a filter. A filter of a size specified by the user (a rule of 

thumb is 3x3 or 5x5) is taken and moved across the image from top left to bottom 

right. For each point on the image, a value is estimated based on the filter using a 

convolution operation.  
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A filter could be related to anything, like for pictures of humans, one filter could 

be associated with seeing noses, and the nose filter would indicate how strongly a 

nose seems to appear in the image, and how many times and in what locations they 

occur. This reduces the number of weights that the neural network must learn 

compared to a MLP, and also means that when the location of these features differs it 

does not throw the neural network off. 

Figure 2 

The Convolution Operation 

 

Note. A convolution is an integral that expresses the amount of overlap of one 

function (kernel or filter) as it is shifted over another function (input). (Kana, 2020).  

It may be wondered how the different features are learned by the network, and 

whether it is possible that the network will learn the same features i.e., having 10 

nose filters would be kind of redundant and is highly unlikely to happen. While 

building the network, random values are specified for the filters, which then 

continuously update themselves as the network is trained. It is very unlikely that two 

https://medium.com/@michel-kana?source=post_page-----93e5a5da1e8a--------------------------------
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filters that are the same will be produced unless the number of chosen filters is 

extremely large. Some examples of filters, or kernels, are given below: 

Figure 3 

Examples of Kernel Filters for CNN 

 

Note. Specific kernels can be used to extract edges from an image. We can have 

many of those filters to detect all the valuable features of the image. (Kana, 2020). 

 

After the filters pass over the image, a feature map is generated for each filter. 

These then go through an activation function, which decides whether a certain feature 

is present at a given location in the image. Then a lot of things can be done, such as 

adding more filtering layers and creating more feature maps, which become more and 

more abstract as a deeper CNN is created. We can also use pooling layers to select 

the largest values on the feature maps and then use these as inputs to subsequent 

layers. In theory, any type of operation can be carried out in pooling layers, but in 

practice, only max pooling is used in order to find the outliers - these are when our 

network spots the feature. 

 

https://medium.com/@michel-kana?source=post_page-----93e5a5da1e8a--------------------------------
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Figure 4 

An example of CNN 

 

Note. This figure shows a CNN with two convolutional layers, two pooling layers, and 

a fully connected layer which decides the final classification of the image into a 

particular category (Nigam, 2018). 

ReLU 

The most successful non-linearity for CNN’s is the Rectified Linear unit 

(ReLU), which combats the vanishing gradient problem occurring in sigmoids. ReLU 

is easy to compute and generates sparsity, which is not always beneficial. 

Comparison of Different Layers 

There are three types of layers in a convolutional neural network namely; 

convolutional layer, pooling layer, and fully connected layer. Each of these layers 

have different parameters that can be optimized to perform a different task on the 

input data. 
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Figure 5 

Features of a Convolutional Layer 

 

In the convolutional layers, the filters are applied to the original image, or to 

other feature maps in a deep CNN. Most of the user-specified parameters are there in 

these layers of the network. The most significant parameters are the number of 

kernels and the size of the kernels. 

Figure 6 

Features of a Pooling Layer 

 

Pooling layers, similar to convolutional layers perform a specific function such 

as max pooling, which takes the maximum value in a certain filter region, or average 
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pooling, which takes the average value in a filter region. These are essentially used to 

reduce the dimensionality of the network. 

Figure 7 

Features of a Fully Connected Layer 

 

Fully connected layers are located before the classification output of a CNN 

and are used to flatten the results prior to classification. 

3.3 Transfer Learning Process 

Transfer learning is a method in deep learning used to use an existing 

network as a starting point to learn a new task. This concept is used to perform face 

recognition. The various steps involved are shown in the following figure: 

Figure 8 

Transfer Learning Using Pretrained Network 

 

Note. This example shows how to fine-tune a pretrained GoogLeNet convolutional 

neural network to perform classification on a new collection of images. (MathWorks, 

2022). 
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Designing a new network, optimizing the architecture for maximum accuracy, 

specifying the effective initial weights of the hidden nodes is a time-consuming and 

lengthy process. If we go for transfer learning, we get an already optimized network 

ready to learn new features to perform new tasks. Transfer learning helps us get 

things done using a neural network with minimal effort. Hence, we can perform face 

recognition with minimal effort by modifying a convolutional neural network (CNN). 

3.4  Pre-Trained Models for Computer Vision 

Here are the four pre-trained networks one can use for computer vision tasks 

such as ranging from image generation, neural style transfer, image classification, 

image captioning, anomaly detection, and so on: 

1. VGG19 

2. Inceptionv3 (GoogLeNet) 

3. ResNet50 

4. EfficientNet 

VGG-19 

VGG is a convolutional neural network having a depth of 19 layers. It was built 

and trained by Karen Simonyan and Andrew Zisserman at the University of Oxford in 

2014.  

The VGG-19 network is trained on more than 1 million images from the 

ImageNet database. Naturally, one can import the model with the ImageNet trained 

weights. This pre-trained network can categorize up to 1000 objects. The network 

was trained on 224x224 pixels coloured images.  
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Figure 9 

An Illustration of the VGG-19 Network 

 

Note. A brief info about the size and performance of the VGG-19 Network: Size: 549 

MB, Top-1: Accuracy: 71.3%, Top-5: Accuracy: 90.0%, Number of 

Parameters: 143,667,240, Depth: 26 (Yalcin, 2020). 

Inceptionv3 (GoogLeNet) 

Inceptionv3 is a convolutional neural network having a depth of 50 layers. It 

was built and trained by Google.  

The pre-trained version of Inceptionv3 with the weights of ImageNet can 

classify up to 1000 objects. The image input size of this network is 299x299 pixels, 

that is larger than the VGG19 network.  
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Figure 10 

An Illustration of the Inceptionv3 Network 

 

Note. The brief summary of Inceptionv3 features is as follows: Size: 92 MB, Top-

1: Accuracy: 77.9%, Top-5: Accuracy: 93.7%, Number of Parameters: 23,851,784, 

Depth: 159 (Yalcin, 2020). 

ResNet50 (Residual Network) 

ResNet50 is a convolutional neural network having a depth of 50 layers. It was 

built and trained in 2015 by Microsoft. This model is trained on more than 1 million 

images from the ImageNet database.  

Just like VGG-19, it can classify up to 1000 objects and the network was 

trained on 224x224 pixels coloured images. If ResNet50 is compared to VGG19, it 

can be seen that ResNet50 actually outperforms VGG19 even though it has lower 

complexity.  
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Figure 11 

An Illustration of the ResNet50 Network 

 

Note.  A brief info about the size and performance of the ResNet50 Network: Size: 98 

MB, Top-1: Accuracy: 74.9%, Top-5: Accuracy: 92.1%, Number of 

Parameters: 25,636,712 (Yalcin, 2020). 

EfficientNet 

EfficientNet is a state-of-the-art convolutional neural network which was trained 

and released to the public by Google in 2019 with the paper “EfficientNet: Rethinking 

Model Scaling for Convolutional Neural Networks”.  

There are 8 alternative implementations of EfficientNet (B0 to B7) and even 

the simplest one, EfficientNetB0, is great. With 5.3 million parameters, it attains a 

77.1% Top-1 accuracy with respect to performance.  

 

 

 

  

https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/1905.11946.pdf
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Figure 12 

The Network Architecture of EfficientNet 

 

Note. The brief summary of EfficientNetB0 features is as follows: Size: 29 MB, Top-

1: Accuracy: 77.1%, Top-5: Accuracy: 93.3%, Number of Parameters: ~5,300,000, 

Depth: 159 (Yalcin, 2020). 
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Chapter 4: Design Methodology 

In this starred paper, face recognition is performed using two pretrained 

models and their performance is compared. These models are: 

1. GoogLeNet Convolutional Neural Network 

2. Google’s deep convolutional network - FaceNet 

4.1 Transfer Learning Using Pretrained GoogLeNet CNN 

For the evaluation of face recognition system using transfer learning, 

techniques with pre-trained CNN model will be presented in this work. 

The proposed system, of face recognition algorithm is implemented in MATLAB 

environment. In this, we are using the Deep Learning Toolbox GoogLeNet Network. 

We are creating a database to perform training, validation and testing on the 

proposed method. 

The images are captured using the inbuilt laptop webcam, and the resolution 

of the images for the same is 1280x720 pixels. The resolution of the images captured 

is 640x480 pixels and the average size of the faces in these images is 224x224 

pixels. 

4.1.1 Data Splitting 

The first step is to split the dataset into a few sets. In MATLAB, input images 

are stored inside data-store by using the “imageDatastore‟ function and the dataset 

is randomly split into two sets which are training and test set using the “split label ‟ 

function. Images from the training set are then randomly split into training and 

validation set for train and evaluate the model. The training set is used to train the 

network while the validation set is used to predict the accuracy of the trained model. 

The flow chart of the dataset splitting is shown in Figure 13. 
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4.1.2 Compose the model 

 

Figure 13 

Dataset Splitting 

 

In this proposed system, pre-trained CNN is used as a feature extractor and 

transfer learning by fine-tuning technique is used to transfer the extracted features 

from the pre-trained CNN model to a new task. In this section, the pre-trained CNN 

architecture and the fine-tuning pre- trained CNN architecture is described in detail. 

4.1.3 Pre-trained CNN Model as Feature Extractor 

GoogLeNet pre-trained CNN model is selected as the feature extractor in this 

proposed system. GoogLeNet has been trained on more than a million images from 

the ImageNet database and it can classify images into 1000 object categories with 

about 60 million parameters.  
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Features of GoogleNet 

The GoogLeNet architecture is very different from previous state-of-the-art 

architectures like AlexNet and ZF-Net. It uses different kinds of methods such 

as 1×1 convolution and global average pooling that enables it to create a deeper 

architecture. Some of the methods in the architecture are: 

1×1 Convolution. 1×1 convolution is used in the inception architecture. These 

convolutions are used to minimize the number of parameters (weights and biases) 

of the architecture. By reducing the parameters, the depth of the architecture is 

increased. An example of a 1×1 convolution is shown below: 

For instance, if one wants to perform 5×5 convolution having 48 filters without    

using 1×1 convolution as intermediate: 

Figure 14A 

An example of GoogLeNet Convolution Operation Without 1x1 Convolution 

 

Note. Total Number of operations: (14 x 14 x 48) x (5 x 5 x 480) = 112.9 M 

(GeeksforGeeks, 2021). 

 

 

 

 

 

https://media.geeksforgeeks.org/wp-content/uploads/20200429201100/without1x1.png
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With 1×1 convolution: 

Figure 14B 

An Example of GoogLeNet Convolution Operation with 1x1 Convolution 

 

Note. (14 x 14 x 16) x (1 x 1 x 480) + (14 x 14 x 48) x (5 x 5 x 16) is 1.5M + 3.8M = 

5.3M that is much smaller than 112.9M. (GeeksforGeeks, 2021). 

      Global Average Pooling. In the previous architecture such as AlexNet, the 

fully connected layers are utilized at the end of the network. These fully connected 

layers comprise the majority of parameters of many architectures that causes an 

increase in computation cost. In GoogLeNet architecture, there is a method called 

global average pooling that is used at the end of the network. This layer considers 

a feature map of 7×7 and averages it to 1×1. This also reduces the number of 

trainable parameters to 0 and enhances the top-1 accuracy by 0.6% 

      Inception Module. The inception module differs from previous architectures 

such as AlexNet, ZF-Net. In this architecture, the convolution size is fixed for each 

layer. In the Inception module 1×1, 3×3, 5×5 convolution and 3×3 max pooling 

performed parallelly at the input and the output of these are stacked together to 

generate the final output. The idea behind this is that convolution filters of different 

sizes will handle objects at multiple scale better. 

 

 

 

https://media.geeksforgeeks.org/wp-content/uploads/20200429201229/with1x1.png
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Figure 15A 

Inception Module             

 

Note. The inception module is different from previous architectures such as 

AlexNet, ZF-Net (GeeksforGeeks, 2021). 

Figure 15B 

Inception Module with Dimension Reductions 

 

Note. In the Inception module 1×1, 3×3, 5×5 convolution and 3×3 max pooling 

performed in a parallel way at the input and the output of these are stacked 

together to generated final output. (GeeksforGeeks, 2021). 

https://media.geeksforgeeks.org/wp-content/uploads/20200429201304/Incepption-module.PNG
https://media.geeksforgeeks.org/wp-content/uploads/20200429201304/Incepption-module.PNG
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      Auxiliary Classifier for Training. Inception architecture use some 

intermediate classifier branches in the middle of the architecture, these branches 

are used while training only. These branches comprise a 5×5 average pooling layer 

with a stride of 3, a 1×1 convolutions with 128 filters, two fully connected layers of 

1024 outputs and 1000 outputs and a softmax classification layer. The generated 

loss from these layers is added to total loss with a weight of 0.3. These layers help 

in withstanding gradient vanishing problem and also provide regularization. 

Model Architecture 

         The table below shows the layer-by-layer architectural details of GoogLeNet. 

Table 1 

Architectural Details of GoogLeNet 

 

Note. The overall architecture is 22 layers deep. (GeeksforGeeks, 2021).  

.         The architecture was designed keeping computational efficiency in mind. The 

idea behind this was that the architecture can be run on individual devices even 

with low computational resources. The architecture also comprises two auxiliary 

classifier layers connected to the output of Inception (4a) and Inception (4d) layers. 

           

https://media.geeksforgeeks.org/wp-content/uploads/20200429201421/Inception-layer-by-layer.PNG
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The architectural details of auxiliary classifiers are as follows: 

1. An average pooling layer of filter of size 5×5 and stride 3. 

2. A 1×1 convolution having 128 filters for dimension reduction and ReLU activation. 

3. A fully connected layer containing 1025 outputs and ReLU activation 

4. Dropout Regularization having dropout ratio = 0.7 

5. A softmax classifier with output of 1000 classes similar to the main softmax 

classifier. 

Figure 16 

Architecture of GoogLeNet CNN 

 

Note. This architecture considers image of size 224 x 224 with RGB color channels. 

(GeeksforGeeks, 2021). 

All the convolutions inside this architecture have Rectified Linear Units 

(ReLU) as their activation functions. 

4.1.4 Fine-tuning pre-trained CNN model 

In this, transfer learning by fine-tuning of a pre-trained CNN model is used to 

classify the images by using a smaller number of training images. Pre-trained CNN 

model has learned rich feature representations for a large scale of images. 

Therefore, transfer learning from the pre-trained CNN model is much faster and 
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easier than training a network from scratch. This proposed approach is using 

GoogLeNet pre-trained CNN architecture and transfer the layers to the new 

classification task by replacing the final layers: fully connected layer, and the 

classification output layer for a new task. 

Figure 17 

Flow Chart of Train and Evaluate the Model 

 

 

Training Process 

In transfer learning, training data with labels, fine-tune network, and training 

algorithm options were the three important things that need before train a 

network. Training data is   stored in an augmented data store and pre-processed 

while the fine-tuned network is the network that transfers learning from GoogLeNet 

CNN pre-trained network to perform a new task. For training algorithm options, it 

was the most important component in the training process as it can control the 

behavior of the training algorithm. In MATLAB, the “trainingoptions‟ function is used 
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to set up the training options such as optimizer uses, initial learning rate, mini-batch 

size, maximum epochs, optimizer, validation frequency, and many more should be 

specified before starting to train the model. In this proposed system, root mean 

square prop (RMSprop) optimizer is used as the solver for a training network, which 

can also accelerate gradient descent.  

Optimizer is updated the weight parameters to minimize the loss function. For 

the learning rate, it was the most important hyper-parameter when configuring the 

network as it controls the change of the model in response to the estimated error 

each time the model weights are updated. Choosing a learning rate is challenging as 

the value too small may result in a long training process that could get stuck, 

whereas the value too large may result in learning a sub-optimal set of weights too 

fast or an unstable training process. At first, I am fine-tuning the learning rate and 

choose a suitable learning rate for the network. A larger value such as 0.1 is started 

to try on the network then reduce the initial learning rate exponentially until 0.0001. 

Finally, the learning rate was set to a small value as 0.0001 to slow learning down, 

since the pre-trained CNN is used. Besides, the size of the mini-batched is set to 

30. In this study, different number of epochs are used to test the model until it 

reaches a good accuracy. The loss and gradient calculated for each mini-batched    

approximates the loss and gradient for the full training set. 

Evaluating on Trained Model 

In this, training accuracy, validation accuracy, testing accuracy, mini-batch 

loss, and validation loss are the evaluation parameters used for the experiments. For 

the training process, the validation set is used to evaluate and validate the 

performance of during training. In MATLAB, training progress can be plot using 
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“Plots‟ and “training-progress‟ function in training options. From the training 

progress, training accuracy, validation accuracy, training loss value, and validation 

loss value can be observed to prevent over-fitting. It happens if the training accuracy 

is greater than the validation accuracy and the validation loss value training loss 

value is greater than the training loss value. In the other hand, if the validation 

accuracy       is higher than the training accuracy and the validation loss value is lower 

than the training loss value, it was under-fitting. Apart from that, the confusion matrix 

table also used to observe the correct and error between the ground truth images 

and the predicted images. 

4.1.5 Test on final model 

Figure 18 

Flow Chart of Testing on Trained Model 

In this, training accuracy, validation accuracy, testing accuracy, mini-batch 

loss, and validation loss are the evaluation parameters used for the experiments. For 

the training process, the validation set is used to evaluate and validate the 

performance of during training. 

4.2 Face Recognition Using Google’s Deep Convolutional Network - FaceNet 
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FaceNet is a deep neural network used for obtaining features from an image 

of a person’s face. It was published by Google researchers Schroff et al in 2015. 

FaceNet employs two different core architectures: 

1. Zeigler & Fergus Style Network 

2. Inception Network  

Figure 19 

Facenet Model 

 

Note. FaceNet model takes an image of a face as input and outputs the embedding 

vector. (Dulčić, 2020). 

     FaceNet takes an image of the person’s face as input and outputs a vector of 128 

numbers which characterize the most important features of a face. In machine 

learning, this vector is known as embedding. Embedding is required because all the 

important information from an image is embedded into this vector. Basically, 

FaceNet takes a person’s face and flattens it into a vector of 128 numbers. Ideally, 

embeddings of similar faces are similar as well. 

FaceNet presents a unified system for face verification (is this the same 

person?), recognition (who is this person?) and clustering (finds common people 
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among these faces) using the method based on learning a Euclidean embedding 

per image using a deep convolutional network. The similarity of faces relates to 

the squared L2 distances of the embeddings of 128 dimensions learned using 

triplet loss function. 

Once these embedding are produced, then the next tasks become 

straight-forward: 

1. face verification simply refers to thresholding the distance between the two 

embeddings; 

2. recognition represents a k-NN classification problem; 

3. and clustering can be achieved with the help of off-the-shelf techniques like k-

means or agglomerative clustering. 

Embeddings are vectors and the vectors can be interpreted as points in the 

Cartesian coordinate system. This means one can plot an image of a face in the 

coordinate system by using its embeddings. FaceNet embedding vectors have 128 

numbers, i.e., they are 128-dimensional. Since we live in a 3-dimensional world, we 

cannot plot a 128-dimensional vector. It can be pretended that faces can be plotted 

in 2D for simplicity, the same logic applies for 2D and 128D, but unlike 128D, one 

can visualize 2D. 

One possible method of recognizing a person on an unseen image would be 

to estimate its embedding, calculate distances to images of known people and if the 

face embedding is close enough to embeddings of person A, one can say that this 

image contains the face of person A.  

Figure 20 

Architecture of FaceNet 
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Note. When the CNN architecture is treated as a blackbox, the most important 

aspect of FaceNet lies in the end-to-end learning of the system. (GeeksforGeeks, 

2022). 

FaceNet searches for an embedding f(x) from an image into feature space ℝd, 

such that the squared L2 distance between all face images (independent of imaging 

conditions) of the same identity is small, while on the contrary, the distance between 

a pair of face images from different identities is large. 

While the previously used losses encourage all faces of the same identity 

onto a single point in ℝd, the triplet loss additionally tries to impose a margin between 

each pair of faces from one person (anchor and positive) to all others’ faces. This 

margin applies discriminability to other identities. 

Figure 21  

Triplet-loss and learning  

Note. Generating triplets on every step on the basis of previous checkpoints and 

compute minimum and maximum on a subset of data. (GeeksforGeeks, 2022). 

Triplet Loss  

Triplet-loss training intends at learning score vector identity verification by 

comparing facial descriptors in Euclidean space. This is similar to “metric learning”, 

and, like many other metric-learning approaches, is used to learn a projection that is 

at the same time distinguishing and compact, achieving dimensionality reduction at 

the same time. The function is defined as, 
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Triplet Function  

Triplet loss is a loss function in artificial neural networks where a baseline 

(anchor) input is compared to a positive (truthy) input and a negative (falsy) input. The 

distance from the baseline (anchor) input to the positive (truthy) input is decreased, 

and the distance from the baseline (anchor) input to the negative (falsy) input is 

increased. Once the FaceNet model is trained, one can create the embedding for the 

face by feeding it into the model. In order to compare two images, the embedding is 

created for both images by feeding through the model separately. Then, the above 

formula can be used to find the distance, which will be lower for similar faces and 

higher for different faces. The formula for calculating the Euclidean distance between 

two points is as below, 

 

Triplet Selection 

Producing all possible triplets would result in many triplets that satisfy the 

distance condition mentioned above, thus not contributing towards learning and 

would also slow down the convergence. These triplets are referred to as Easy 

Triplets and will always give loss 0 as d(xa
i,xp

i)+α<d(xa
i,xn

i). 

Thus, to have faster convergence and better learning, those triplets which 

violate the triplet constraint (referred as Hard Triplets) i.e. d(xa
i,xn

i)<d(xa
i,xp

i) are 

required. 
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Choosing the triplets to be used plays an important role in achieving good 

performance. Inspired by curriculum learning, a novel online negative exemplar 

mining strategy is presented, which ensures consistently increasing complexity of 

triplets as the network trains. The two methods discussed were: 

1. Generate triplets offline 

For every n epochs, the embeddings on the subset of data are computed 

and only the hard triplets i.e argmaxxai(d(xa
i,xp

i)) and argminxai(d(xa
i,xn

i)) are 

selected. Evaluating offline triplet mining resulted in inconclusive results and is 

hence not very efficient. 

2. Generate triplets online 

This can be done by choosing the hard positive/negative exemplars from 

within a mini-batch. Instead of just the hardest positive (argmaxxai(d(xa
i,xp

i))), all 

anchor-positive pairs in a mini batch are chosen, while still selecting the hard 

negatives. There is no side-by-side comparison of hard anchor-positive pairs 

versus all anchor-positive pairs within a mini-batch, but it can be found in 

practice that all anchor-positive method was more stable and converged slightly 

faster during the beginning of training.  

Also, instead of choosing just hardest negative (argminxai(d(xa
i,xn

i))), the 

negative exemplars are selected in such a way that: d(xa
i,xp

i)<d(xa
i,xn

i). These are 

known as Semi-Hard Triplets and lie within a margin α. Selecting the hardest 

negatives can in practice cause bad local minima early on in training, specifically 

it can lead to a collapsed model (i.e., f(x)=0). 
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Figure 22 

Triplet Selection 

 

Note. Choosing which triplets to use turns out to be very important for achieving 

good performance and, inspired by curriculum learning, we present a novel 

online negative exemplar mining strategy which ensures consistently increasing 

difficulty of triplets as the network trains. (Abdullah, 2021).
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Chapter 5: Experiments and Results 

5.1 Implementation using Pretrained GoogLeNet CNN 

Initial steps 

    Preparing the Dataset. The dataset has been prepared manually. Following is the 

procedure to generate the dataset: 

Here the name of the dataset is 'Database.' Inside of this 'Database' folder, there are 

folders named by the person. Each of these folders have images of corresponding 

person. There is also a folder with faces of random people taken from the internet. It is 

saved as ‘Unknown’. 

Figure 23 

Dataset 

 

     Loading the Dataset. After preparing the dataset, the first step is to load the 

dataset. The dataset should then be split into training and validation set. In MATLAB, 

the function used to handle a large collection of images is ‘imageDatastore()’. This 

function needs the location of the image folder. The subfolders are included and the 

labels of the images are specified using this function. The code below shows the use of 

‘imageDatastore()’. 
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The dataset is inside the ‘Database’ folder. It is located in the working directory. 

That is ‘Database’ has been used as the first argument of the ‘imageDatastore()’ 

function. The data inside the dataset are arranged into different folders.  

To force the function to include the subfolder, ‘IncludeSubfolders’ should be set 

to ‘true’. The folder names refer to the labels of the categories of dataset.  

This is why ‘LabelSource’, ‘foldernames’ has been used as the argument to the 

function. Finally, the dataset is stored in a variable named ‘Dataset’. After organizing the 

dataset, it is split into training and validation set. In MATLAB, the ‘splitEachLabel()’ 

function is used to do it. This function needs two arguments. The first argument is the 

dataset one needs to split, and the second argument is the ratio of splitting. In the 

following code, the ratio is set to 7/10. It means that the data will be split into two groups 

wherein one group will have 70% of the data and other group will have 30% of the data.  

 

Here, the 70% data are stored in ‘Training_Dataset’ variable and rest of the 30% 

of the data are stored in ‘Validation_Dataset’ variable. The dataset loading part is now 

completed. Next, the pre-trained network must be loaded. 

5.1.1 Loading the Pre-Trained Network 

Loading the pre-trained network is the simplest step. Nothing is needed except 

calling the network. However, it should be made sure that it is installed in MATLAB. 
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Otherwise, one will not be able to call it. Using the following line, the ‘GoogleNet’ is 

called and stored in a variable named ‘net’: 

net = googlenet; 

This network needs to be modified. In order to do it, some idea about the 

structure of the network is required. The following code can be used to visualize the 

network: 

analyzeNetwork(net) 

It will depict the graphical structure of the network. It is a lengthy network; 

however, it is not required to analyze the entire network. The main focus is on the fully 

connected classification layer named as ‘loss3-classifier’. Apart from the classification 

layer, it is important to have idea about the input layer as well. The information about 

the input layer can be accessed using the following code: 

net.Layers(1) 

The name of the input layer of GoogleNet is ‘data’. The size of the input is 

224×224 pixels, and it considers images with three channels for example – RGB image. 

The size of the input layer is defined using the following code: 

Input_Size = net.Layers(1).InputSize; 

The line above will get the input size of the input layer and store it the 

‘Input_Size’ variable. This variable layer will be used. So, the pre-trained network is 

loaded. The next step is to replace the final layer. 
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5.1.2 Replacing the Layers 

It is needed to replace the layers of the GoogleNet which are trained to classify 

1000 objects with our own layers. However, before that one needs to find out which 

layers are the task specific layers. The following code can be used to find information 

about the network: 

Layer__Graph = layerGraph(net); 

The ‘layerGraph()’ function considers the network as an argument, inspects the 

architecture and returns general information like number of layers, input layer, output 

layer and number of connections. However, a more effective way to find out the layer 

one needs to replace is to use network analyzer. 

The network can be examined using network analyzer to find out which network 

layer is responsible for task specific feature learning and which layer is meant for 

classifying the objects. 

From the network analyzer, it can be seen that the layer no. 142 is the layer 

trained with task specific features. The name of this layer is known as ‘loss3-classifier’. 

Layer no. 144 is the classification layer. This layer is meant for classifying objects. 

These two layers must be replaced with new layers so that they can be trained to 

classify objects. One can get access to the layers 142 and 144 using the following two 

lines: 

Feature__Learner = net.Layers(142); 

Output__Classifier = net.Layers(144); 
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Now the layers to be replaced are stored in ‘Feature__Learner’ and 

‘Output__Classifier’ variable. Our new training dataset has 4 categories of data. This 

means that we are trying to classify images into 5 categories. Thus, the classifier layer 

will have 4 classes and the feature learner layer will have 5 fully connected layers. 

The ‘numel()’ function can be used to find out the number of classes present in 

our dataset. The ‘numel’ is the short form for ‘number of elements’ and it counts the 

number of elements. The number of classes in the training dataset can be found using 

the following code: 

Number__of__Classes = numel(categories(Training_Data.Labels)); 

The ‘numel()’ function has an argument called 

‘categories(Training_Data.Labels)’. The ‘Training_Data.Labels’ refers to the labels 

contained in the training dataset. The ‘categories()’ function returns the number of data 

categories. The ‘numel()’ function returns the number of categories present in the 

training data. 

Now, our own layers can be defined. First of all, the fully connected layer will be 

defined, which is stored in ‘Feature__Learner’ variable. The following block of code is 

used to improve a fully connected layer: 

New__Feature__Learner = fullyConnectedLayer(Number__of__Classes,… 

'Name','Facial Feature Learner', … 

'WeightLearnRateFactor',10, … 
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'BiasLearnRateFactor',10); 

The ‘fullyConnectedLayer()’ function is used to define a fully connected layer. 

The number of classes is the first argument of this function. The number of classes is 

stored in ‘Number__of__Classes’ variable. Then using three dots (…), one can jump to 

the next line. Here, the name of the layer is defined as ‘Facial_Feature_Learner’. Then, 

in the next line, the weighted learning rate is assigned to 10. After that, in the next line, 

the bias is set to 10. Both the learning rate and the bias values are weighted values, not 

the actual values. Now, the classification layer needs to be defined. To define the 

classification layer, a function named ‘classificationLayer()’ is used. Our new 

classification layer can be defined using the following code: 

New__Classifier__Layer = classificationLayer('Name', 'Face Classifier'); 

‘Face Classifier’ is the name of our new classification layer. 

So, the layers are defined. Now, the existing layers can be replaced by our 

redefined layers. To replace the layers, one uses ‘replaceLayer()’ function. The 

‘replaceLayer()’ function takes the layer-graph, new layer, and name of the existing 

layer as arguments. The following code shows the use of this function: 

Layer__Graph = replaceLayer(Layer__Graph, Feature__Learner.Name, 

New__Feature__Learner); 

‘Layer_Graph’ is the first argument of the function above. The entire graph of the 

network is stored in ‘Layer_Graph’ variable. This is why the ‘Layer_Graph’ is used as 

the first argument of the function. ‘Feature__Learner.Name’ is the second argument. 
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The existing feature learner layer is stored in ‘Feature_Learner’ variable. ‘Name’ is one 

of the objects of the ‘Feature_Learner’. When the ‘Feature_Learner.Name’ is passed as 

an argument to the ‘replaceLayer()’ function, the name of the layer to be replaced is 

specified. The last argument is the newly defined layer that is stored in 

‘New__Feature__Learner’ variable. 

The ‘replaceLayer()’ function is used to replace the layer and return the layer 

graph information about the new layer. This new information is stored in the existing 

‘Layer_Graph’ variable. Thus, the feature learner layer has been replaced. The next 

step is to replace the output classification layer. This is similar to the procedure of 

replacing the feature learner layer. The following code is used to replace the output 

layer: 

Layer__Graph = replaceLayer(Layer__Graph, Output__Classifier.Name, 

New__Classification__Layer); 

The output layers have thus been replaced with our self-defined layers. Now, one 

can start training these layers. However, before starting the training process, it is better 

to freeze few of the initial layers.  

5.1.3 Image Augmentation to Prevent Overfitting 

The input layer size of GoogleNet is 224x224x3. This means that the network 

accepts images with three channels (such as RGB or HSV) with 224×224 pixels. 

However, the dataset might contain images of different sizes. Thus, it is necessary to 

resize the image to an appropriate size for the network to accept the training images as 

input image.  
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In addition, it is better to randomly flip the images or stretch or shrink the images 

during the training process in order to prevent the network from overfitting. In MATLAB, 

the ‘imageDataAugmenter()’ is used to modify the images before training process. The 

following code shows the use of ‘imageDataAugmenter()’ function: 

1. Pixel__Range = [-30 30]; 

2. Scale__Range = [0.9 1.1]; 

3. Image__Augmenter = imageDataAugmenter( … 

 . ‘RandXReflection’,true, … 

A. ‘RandXTranslation’,Pixel_Range, … 

B. ‘RandYTranslation’,Pixel_Range, … 

C. ‘RandXScale’,Scale_Range, … 

D. ‘RandYScale’,Scale_Range); 

Here, on the first line, the pixel range is defined. The images are randomly 

translated up to 30 pixels. Then on the second line, the scale range is defined. The 

images are scaled up to 10%. On the third line, the ‘imageDataAugmenter()’ is used to 

modify the images. The arguments of this function come in the form of {‘Name’, Value} 

pair. This means that the first part of the argument is the name and the second part 

which is separated by comma is the value. For easier understanding, the arguments are 

specified in new lines. 

‘RandXReflection’ is the first argument and the value is ‘true’. When the 

‘RandXReflection’ becomes true, each image is reflected horizontally with probability of 

50%. ‘RandXTranslation’ is the next argument and ‘Scale_Range’ is the value of this 
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argument, which is set to [-30 30]. The pixels are randomly moved horizontally within 

the given range using this argument. ‘RandYTranslation’ is the next argument. 

‘Scale_Range’ is the value of this argument, which is [-30 30]. The pixels of an image 

are randomly shifted vertically within the defined range using this argument. On the 

3(A), ‘RandXScale’ is used and the value is set to ‘Scale_Range’. [0.9 1.1] is the 

‘Scale_Range’. 

On the next line, a similar thing is done. However, this time ‘RandYScale’ is used 

to stretch or shrink the image along vertical axis. The reason of setting the range from 

0.9 to 1.1 is to ensure that it allows both stretching and shrinking. If the value is in 

between 0.9 to 1.0, the image will shrink; while on the other hand, when the value is in 

between 1.0 to 1.1, the image is stretched. One can apply the augmentation using the 

following code: 

Augmented__Training__Image =  

augmentedImageDatastore(Input_Size(1:2),Training_Dataset, ...  

    'DataAugmentation',Image_Augmenter);  

Any type of augmentation can be applied using the ‘augmentedImageDatastore()’ 

function. In the code above, the first argument is ‘Input_Size(1:2)’, which is the required 

resolution of the GoogleNet input layer, i.e., 224 x 224 pixels. The 
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‘augmentedImageDatastore()’ function will resize every image to the size 224×224 

pixels. The next argument is the image where it is needed to apply the augmentation. 

‘Training_Dataset’ is the name of our dataset. Apart from resizing images, it is required 

to modify images as well. The behavior of the image modifier is defined and stored in 

‘Image_Augmenter’ variable. ‘DataAugmentation’ is the last argument of 

‘augmentedImageDatastore()’ and the value of this argument is ‘Image_Augmenter’ that 

holds the definition of our image modification. The same augmentation process can be 

applied to the validation dataset using the following code: 

Augmented_Validation_Image = 

augmentedImageDatastore(Input_Size(1:2),Validation_Dataset); 

However, the images have already been resized to the appropriate size. Thus, 

the image modification is not mandatory for validation process. Since the training and 

validation data are now ready, the training process can be initiated. 

5.1.4 Training the Face Recognition CNN 

To train a network in MATLAB, the ‘trainNetwork()’ function is used. The 

‘trainNetwork()’ function uses three arguments. These arguments are: 

1. Training Data 

2. The Architecture of the Network 

3. Training Options 

Training Data 

The training data is already prepared and stored in a variable named 

‘Augmented__Training__Image’. 
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The Architecture of the Network  

The entire network is not dealt with. Only the final layer and task specific feature 

learner layer is trained. In order to train these two layers, it is required to know the 

architecture of these two layers. The architecture is stored in the ‘Layer__Graph’ 

variable. 

Training Options 

There are many parameters related to the training process of a multilayer neural 

network. These parameters are known as training options. ‘trainingOptions()’ is the 

function used in MATLAB to specify the training options. The following block of code 

shows the use of ‘trainingOptions()’ function in the implementation: 

1. Size__of__Minibatch = 10; 

2. Validation__Frequency= 

floor(numel(Augmented_Training_Image.Files)/Size_of_Minibatch); 

3. Training__Options = trainingOptions(‘sgdm’, … 

 . ‘MiniBatchSize’,Size__of__Minibatch, … 

A. ‘MaxEpochs’,6, … 

B. ‘InitialLearnRate’,3e-4, … 

C. ‘Shuffle’,’every-epoch’, … 

D. ‘ValidationData’,Augmented_Validation_Image, … 

E. ‘ValidationFrequency’,Validation_Frequency, … 

F. ‘Verbose’,false, … 

G. ‘Plots’,’training-progress’); 
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The mini-batch method is used for training. This is why, the number of elements 

in per batch is defined at the first line. On the second line, the validation frequency is 

defined. Here, the total number of training image file is divided by the size of the mini-

batch. Then, the ‘numel()’ function is used to find the number of elements. Finally, the 

‘floor()’ function is used to convert fractions to integer. For instance, if we get floor(0.6), 

it will return 0, if we get floor(2.3), it will return 2 and so on. Finally, the value is stored in 

a variable named ‘Validation__Frequency’. 

On the third line, the training options is specified. To make it easier to 

understand, each of the arguments of the function and their corresponding values are 

presented in new line. The following list explains the role of the arguments used in the 

‘trainingOptions()’ function. 

sgdm: The term ‘sgdm’ refers to ‘Stochastic Gradient Descent with Momentum’. This is 

the first argument of the ‘trainingOptions()’ function and it defines the algorithm used to 

update the weights 

MiniBatchSize: With this argument, the size of the mini-batch is specified. The size of 

the mini-batch is stored in ‘Size__of__Minibatch’ variable. This is why, the 

‘Size__of__Minibatch’ variable is used as the value of the ‘MiniBatchSize’ argument. 

MaxEpochs: The maximum number of epochs is set as 6. 

InitialLearningRate: This specifies the initial learning rate required for the training 

process. Here, 0.0003 is the initial learning rate. In MATLAB, 0.0003 is written as 3e-4. 
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Shuffle: This argument controls the shuffling of the training data and validation data. 

The value of this argument is assigned to ‘every-epoch’. It means that in every epoch, 

the training and validation data will be shuffled. This helps in reducing overfitting. 

ValidationData: The validation data is specified using this argument. Our validation data 

is stored in ‘Augmented_Validation_Image’ variable. Thus, the value of this argument is 

‘Augmented_Validation_Image’ 

ValidationFrequency: The frequency of validation is specified using this argument. This 

is meant to indicate that after how many iterations, the trained network will be validated 

using the validation dataset. The frequency is already calculated and stored in a 

variable named ‘Validation__Frequency’. 

Verbose: The verbose shows the training progress information in the command window. 

It is not required to show the training related information during the training. So, the 

value of this argument is set to ‘false’. 

Plots: This argument is used to plot the training progress. The value of this property is 

set to ‘training-progress’ in order to see the training progress. 

Once the training options are defined, three arguments are passed to the 

‘trainNetwork()’ function as follows: 

net = trainNetwork(Augmented_Training_Image, Layer__Graph, Training__Options); 

Then, the ‘trainNetwork()’ function will train the newly added layers with the 

provided dataset. The ‘net’ variable will store the newly trained network. After the 

network is trained, the final step is to classify the validation images in order to check the 

performance of the network. 
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5.1.5 Testing the Face Recognition Network 

Figure 24 

Application Workflow 

 

First, the trained network is loaded. Connection to the camera is established. 

The captured image is resized to 224*224. This is because; the first layer, which is the 

image input layer, requires input images of size 224-by-224-by-3, where 3 represents 

the number of color channels.  

It is then fed as input to the network for face recognition. The network classifies 

amongst known faces and predicts the name of the person as label, along with the 

probability score. This score determines the probability of the prediction. It assigns the 

label as ‘Unknown’ if the face is not recognized. 
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The network has been trained to identify an unknown face. This is done by 

placing 10 face images in a folder called ‘Unknown’ in the prepared dataset. If the 

predicted label is unknown, an intruder email alert is sent from MATLAB. 

Logic for unrecognizable face 

Intruder Email Alert 

Figure 25 

Email setup 
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       The setpref function has two mail-related preferences: 

Email address: This preference sets the email address appearing on the message. 

SMTP server: This preference sets the outgoing SMTP server address, which can 

almost be any email server that either supports the Post Office Protocol (POP) or the 

Internet Message Access Protocol (IMAP). 

       Once email is configured properly in MATLAB, the sendmail function can be used. 

At least two arguments are required by the sendmail function: the recipient’s email 

address and the email subject. 

       Files can also be attached to the email. Here, the image of the unknown person is 

sent as an attachment in the email.  

Design of GUI using GUIDE 

GUIDE stands for Graphical User Interface Development Environment. It 

provides with the tools to design user interfaces and create custom apps. The GUI can 

be accessed by typing guide in the workspace. 

The components can be selected from the left pane and added to the 

workspace. Their size can be changed by dragging the edges. Changing the position 

can be done by double-clicking and dragging it. Three components have been used to 

design the GUI: 

Push Button: Its function is to call the callback function for the execution of different 

programs 

Axes: They are used to add images, charts, and plots to the GUI. They have no 

callback function  
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Static Text: It is used to add labels that remain unchanged in the GUI and has no 

callback 

Figure 26 

GUI Design 

 

Logic for Real-time Face Detection and Tracking 

 The following steps describe the procedure for real-time face detection and 

tracking. 

1. Create a ‘cam’ variable and initiate a ‘webcam()’ object 

2. After that, take a variable named ‘video_Frame,’ and we will use the ‘snapshot()’ 

function to read the frames one by one from the ‘cam’ object 

3. Now it is time to initiate the video player object. For that, create a variable named 
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‘video_Player,’ and assign the ‘video player’ object to it. The first argument of this object 

is the ‘Position.’ In the second argument, we define the position in a set of square 

brackets. The first two values are for the left and bottom corners. The second two 

values are the width and height of the video, respectively. 

4. Create another variable named ‘face-Detector’ and assign the ‘cascade object 

detection()’ object. We use this object to detect the face. 

5. To track the face, a point tracker object is needed.  Create a variable named 

‘point_Tracker’ and put the ‘point tracker object’ in it. 

6. Now, I am going to initiate three variables for the while loop. The first one is ‘run_loop’ 

equals true. The second one is ‘number of points’ equals 0, and the third is 

‘frame_Count’ equals 0. 

7. Now, declare a while loop. It will keep looping as long as run_loop is true and 

frame_Count is less than 400. If you want to run the webcam for longer, you can 

increase the number of frames. Then end this loop. Inside this loop, we are going to do 

the detection and tracking. 

8. First, inside the ‘video_Frame’ variable, we will store the frames from the ‘cam’ object 

using the ‘snapshot()’ function. Then using the ‘rgb2gray()’ function, we convert the 

frames into grayscale and store them in a variable named ‘gray_Frame.’ 

9. Then write, ‘frame_Counter = frame_Counter+1’ to increase the ‘frame_Counter’ by 1. 

10. Initiate an if condition when the ‘number of points is less than 10. 

11. At the beginning of this if condition, we locate the rectangle that encloses the face on 

‘gray_Frame’ using step function and faces ‘face_Detector’ object. 
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12. Now, if the ‘face_Rectangle’ is not empty, then using the ‘detect Min Eigen Features’ 

function, we will find the rectangle points. The first argument of this function is the frame 

where the image is located. In our case, it is the ‘gray_Frame.’ Then, we need to tell the 

function whether we are interested in getting the feature of the entire image or a 

particular region. We are interested in a particular region; we specify the region of 

interest or ‘ROI’ here. The ROI is the location where the ‘face_Rectangle’ is located. We 

are using this ‘one comma colon’ to get the Value of the first row of the ‘face rectangle’ 

matrix, which is the starting location of this rectangle. 

13. Next, create a variable named ‘xy_Points’ and write ‘points. Location’ to convert the 

points to ‘x y values.’ Now the x values of the ‘xy_Points’ variable have the number of 

points we need to initialize the point tracker. 

Figure 27 

Real-time Face Detection and Tracking 
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5.1.6 Results 

Figure 28A 

When a Known Person Comes in Front of the Webcam 

 

Note. Person 1: Predicted label -> name of the person.      

Figure 28B 

When another known person comes in front of the webcam 

 

Note. Person 2: Predicted label -> name of the person.      
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Figure 29  

Unknown Face Detected 

 

Note. When an unknown person comes in front of the webcam 

Figure 30 

Intruder Email Alert with Image of Unknown Person Attached 
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5.2 Implementation Using FaceNet 

This face recognition system is implemented on a pre-trained FaceNet model, 

thus achieving a state-of-the-art accuracy. The system comes with both Live 

recognition & Image recognition. It is trained on faces of some celebrities. 

Installing dependencies: 

1. For Anaconda users: conda install --file requirements.txt 

2. For python users: pip install -r requirements.txt 

(even Anaconda users can use this if they use anaconda prompt instead of terminal) 

 The requirements.txt file is as follows: 

 

 

 

 

5.2.1 Loading a FaceNet Model in Keras 

There are a number of projects which provide tools to train FaceNet-based 

models and use pre-trained models. 

The most prominent one is called OpenFace that provides FaceNet models, 

which are built and trained using the PyTorch deep learning framework.  

Another prominent project called FaceNet by David Sandberg provides FaceNet 

models built and trained by using TensorFlow.  

Keras FaceNet by Hiroki Taniai is a notable example. His project provides a 

script to convert the Inception ResNet v1 model from TensorFlow to Keras. A pre-

trained Keras model ready for use is also provided. 

 

  numpy==1.16.4 

Pillow==9.0.1   
matplotlib==3.1.0   
opencv-contrib-python==4.2.0.32   
scipy==1.2.1   
scikit-learn==0.21.2   
tensorflow==1.14.0   
Keras==2.2.4 

https://cmusatyalab.github.io/openface/
https://github.com/davidsandberg/facenet
https://github.com/nyoki-mtl/keras-facenet
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Here, the pre-trained Keras FaceNet model provided by Hiroki Taniai is used. 

It was trained on MS-Celeb-1M dataset, which expects input images to be color and 

to have their pixel values whitened, i.e., uniform across all three channels, and to 

have a square shape of 160×160 pixels. 

The Keras FaceNet Pre-Trained model file is downloaded and placed in our 

current working directory with the filename ‘facenet_keras.h5‘. One can load the 

model directly in Keras by using the load_model() function; for instance: 

# An example to load the keras facenet model 

from keras.models import load_model 

# loading the model 

model1 = load_model('facenet_keras.h5') 

# sum up the input and output shape 

print(model1.inputs) 

print(model1.outputs) 

Executing the above example loads the model and prints the shape of the 

input and output tensors. It can be seen that the model expects square color images 

as input with the shape 160×160, and outputs a face embedding as a 128-element 

vector. 

# [<tf.Tensor 'input_1:0' shape=(?, 160, 160, 3) dtype=float32>] 

# [<tf.Tensor 'Bottleneck_BatchNorm/cond/Merge:0' shape=(?, 128) dtype=float32>] 

Now that we have a FaceNet model, we can explore the use of it. 

https://github.com/nyoki-mtl
https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world/
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5.2.2 Detecting Faces for Face Recognition 

Before performing face recognition, we need to detect faces. The process of 

automatically locating faces in a photograph and localizing them by drawing a 

bounding box around their extent is known as Face detection. 

The CascadeClassifier class is provided by OpenCV. It can be used to create 

a cascade classifier for face detection. The constructor can take a filename as an 

argument, which specifies the XML file for a pre-trained model. A pre-trained model 

for frontal face detection is downloaded from the OpenCV GitHub project and placed 

in our current working directory with the filename 

‘haarcascade_frontalface_default.xml‘. Once downloaded, one can load the model 

as follows: 

# load the pre-trained model 

classifier1 = CascadeClassifier('haarcascade_frontalface_default.xml') 

Once loaded, face detection can be performed on a photograph using the 

model by calling the detectMultiScale() function. This function returns a list of 

bounding boxes for all the faces detected in the photograph. 

# perform face detection 

bboxes = classifier1.detectMultiScale(pixels) 

# print bounding box for each detected face 

for box in bboxes: 

 print(box) 

The detectMultiScale() function provides some arguments that help tune the 

usage of the classifier. Two parameters to be noted 

are scaleFactor and minNeighbors; for instance: 

https://machinelearningmastery.com/how-to-perform-face-detection-with-classical-and-deep-learning-methods-in-python-with-keras/
https://docs.opencv.org/3.4.3/d1/de5/classcv_1_1CascadeClassifier.html
https://docs.opencv.org/3.4.3/d1/de5/classcv_1_1CascadeClassifier.html#aaf8181cb63968136476ec4204ffca498
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# perform face detection 

bboxes = classifier.detectMultiScale(pixels, 1.1, 3) 

The scaleFactor controls the scaling of input image prior to detection, e.g., is it 

scaled up or down, that can help to better find the faces in the image. The default 

value is 1.1 (10% increase), although this can be decreased to values such as 1.05 

(5% increase) or increased to values such as 1.4 (40% increase). 

The minNeighbors determines how robust each detection must be, so that it 

can be reported, e.g., the number of candidate rectangles that located the face. The 

default is 3, but this can be reduced to 1 to detect a lot more faces and will probably 

increase the false positives, or increase to 6 or more to need a lot more confidence 

before a face is detected. 

The scaleFactor and minNeighbors often need tuning for a given image or 

dataset to best detect the faces. It may be useful to perform a sensitivity analysis 

across a grid of values and see what works well or best in general on one or many 

photographs. A fast strategy may be to reduce (or increase for small photos) the 

scaleFactor until all faces are detected, then increase the minNeighbors until all false 

positives vanish, or close to it. 

5.2.3 Create Face Embeddings 

The next task is to create a face embedding. A face embedding refers to a 

vector that represents the features obtained from the face. This can then be 

compared with the vectors produced for other faces. For example, a vector that is 

near, by some measure, may be the same person, whereas another vector that is far 

(by some measure) may be a different person. 
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The classifier model that we want to build takes a face embedding as input 

and predicts the identity of the face. The FaceNet model generates this embedding 

for a given image of a face. 

The FaceNet model can be used as part of the classifier itself, or can be used 

to pre-process a face to create a face embedding which can be stored and made use 

of as input to our classifier model. This latter approach is preferred since the 

FaceNet model is both large and slow for creating a face embedding. 

We can, thus, pre-compute the face embeddings for all faces of the train and 

test (formally ‘validation‘) sets in our 5 Celebrity Faces Dataset. 

First, our detected faces dataset can be loaded using the load() NumPy function 

# load the face dataset 

data1 = load('5-celebrity-faces-dataset.npz') 

trainX1, trainy1, testX1, testy1 = data1['arr_0'], data1['arr_1'], data1['arr_2'], 

data1['arr_3'] 

print('Loaded the dataset: ', trainX1.shape, trainy1.shape, testX1.shape, 

testy1.shape) 

Next, the FaceNet model ready for converting faces into face embeddings can 

be loaded. 

# loading the facenet model 

model1 = load_model('facenet_keras.h5') 

print('Loaded Model') 

Then, each face can be enumerated in the train and test datasets to predict an 

embedding. 

https://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html
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To predict an embedding, the pixel values of the image first need to be 

suitably prepared to meet the requirements of the FaceNet model. This specific 

implementation of the FaceNet model expects the pixel values to be standardized. 

# scaling of pixel values 

face__pixels = face__pixels.astype('float32') 

# standardizing pixel values across channels (global) 

mean, std = face__pixels.mean(), face__pixels.std() 

face__pixels = (face__pixels - mean) / std 

To make a prediction for one example in Keras, one must expand the 

dimensions such that the face array is one sample. 

# transforming face into one sample 

samples1 = expand_dims(face__pixels, axis=0) 

One can then use the model to make a prediction and obtain the embedding vector. 

# making prediction to get embedding 

yhat1 = model.predict(samples1) 

# get embedding 

embedding1 = yhat1[0] 

The get_embedding() function defined below applies these behaviors and 

returns a face embedding, given a single image of a face and the loaded FaceNet 

model. 

# obtain the face embedding for one face 

def get_embedding(model, face__pixels): 

 # scaling of pixel values 

 face__pixels = face__pixels.astype('float32') 
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 # standardizing pixel values across channels (global) 

 mean, std = face__pixels.mean(), face__pixels.std() 

 face__pixels = (face__pixels - mean) / std 

 # transforming face into one sample 

 samples1 = expand_dims(face_pixels, axis=0) 

 # making prediction to get embedding 

 yhat1 = model.predict(samples1) 

 return yhat1[0] 

5.2.4 Perform Face Classification 

Next, a model is developed to classify face embeddings as one of the known 

celebrities in the 5 Celebrity Faces Dataset. First, the face embeddings dataset must 

be loaded. 

# loading dataset 

data1 = load('5-celebrity-faces-embeddings.npz') 

trainX1, trainy1, testX1, testy1 = data1['arr_0'], data1['arr_1'], data1['arr_2'], 

data1['arr_3'] 

print('The Dataset: train=%d, test=%d' % (trainX1.shape[0], testX1.shape[0])) 

Next, the data needs some minor preparation before modeling. Normalizing 

the face embedding vectors is a good practice because the vectors are often 

compared to each other by using a distance metric. 

Here, vector normalization refers to scaling of the values until the length or 

magnitude of the vectors is 1 or unit length. This can be attained by using 

the Normalizer class in scikit-learn. It might be even more convenient to perform this 

step while the face embeddings are created in the previous step. 

https://machinelearningmastery.com/vector-norms-machine-learning/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html
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# normalizing input vectors 

in_encoder1 = Normalizer(norm='l2') 

trainX1 = in_encoder1.transform(trainX1) 

testX1 = in_encoder1.transform(testX1) 

Next, the string target variables need to be converted to integers for each celebrity 

name. This can be attained through the LabelEncoder class in scikit-learn. 

# labelling encode targets 

out_encoder1 = LabelEncoder() 

out_encoder1.fit(trainy1) 

trainy1 = out_encoder1.transform(trainy1) 

testy1 = out_encoder1.transform(testy1) 

Next, one can fit a model. 

Usually, a Linear Support Vector Machine (SVM) is used while working with 

normalized face embedding inputs. This is because the method is very efficient at 

separating the face embedding vectors. One can fit a linear SVM to the training data 

by using the SVC class in scikit-learn and setting the ‘kernel’ attribute to ‘linear‘. We 

may also want probabilities later while making predictions, that can be configured by 

setting ‘probability‘ to ‘True‘. 

# fitting model 

model1 = SVC(kernel='linear') 

model1.fit(trainX1, trainy1) 

Next, the model can be evaluated. This can be achieved using the fit model to 

make a prediction for each example of the train and test datasets and then calculate 

the classification accuracy. 

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://machinelearningmastery.com/support-vector-machines-for-machine-learning/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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# prediction 

yhat_train1 = model1.predict(trainX1) 

yhat_test1 = model1.predict(testX1) 

# score 

score_train1 = accuracy_score(trainy1, yhat_train1) 

score_test1 = accuracy_score(testy1, yhat_test1) 

# sum up 

print('Accuracy is: train=%.3f, test=%.3f' % (score_train*100, score_test*100)) 

Note: Faces with Unidentified labels are faces on which the model is not trained. 

5.2.5 Results 

Figure 31A 

Input Image 1 

  

Note. This figure shows an example image before facial recognition. (Goswami, 

2022). 
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Figure 31B 

Output Image 1 

 

Note. This figure shows the image after facial recognition for the example. 

(Goswami, 2022). 

Figure 32A 

Input Image 2 

 

Note. This figure shows a second example image before facial recognition. 

(Goswami, 2022). 
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Figure 32B 

Output Image 2 

  

Note. This figure shows the image after facial recognition for the second example. 

(Goswami, 2022). 

Figure 33A 

Input Image 3 

 

Note. This figure shows a third example image before facial recognition. (Goswami, 

2022). 
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Figure 33B 

Output Image 3 

 

Note. This figure shows the image after facial recognition for the third example. 

(Goswami, 2022). 

Figure 34A 

Input Image 4 

 

Note. This figure shows a fourth example image before facial recognition. (Goswami, 

2022). 
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Figure 34B 

Output Image 4 

 

Note. This figure shows the image after facial recognition for the fourth example. 

(Goswami, 2022). 
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Chapter 6: Conclusion 

           Facial Recognition was performed using two pretrained models, GoogLeNet 

Convolutional Neural Network and Google’s deep convolutional network – FaceNet. 

Transfer Learning was used to transfer the knowledge from existing network and is 

then modified according to the task (face recognition) to be accomplished. 

              The system was tested with faces inside and outside the dataset. When 

implemented upon pre-trained GoogLeNet Convolutional Neural Network, the 

accuracy of prediction was good, with probability score of 0.9 – 1 when image of 

database was shown and 0.75 – 0.86 when a different image was shown. At times, 

the network got confused, and gave out a wrong label. This could possibly be due to 

lack of clarity in the dataset images or while capturing. This was verifiable with the 

corresponding low probability score. 

           When implemented upon a pre-trained FaceNet, multiple faces could be 

recognized in a photograph. It was tested on different images of the same person, 

and the accuracy of prediction came out to be much good when compared to 

GoogLeNet Convolutional Neural Network. Yet another notable advantage was that, 

training the network required only one sample image for each person. 

              Through this research project, I learnt how to design a face recognition 

security system. It helped me get a good understanding of the working of a 

Convolutional Neural Network. It was interesting to learn the concept of Transfer 

Learning. I can improve the performance by analyzing errors (bad predictions) in the 

validation dataset or by inculcating Feature Engineering – a step to extract more 

information (features) from existing data. 
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