
as meeting the research requirements for the master's degree.

Committee Member \qquad
Thomas K. Pauley, Ph. D. Department of Biology

Dean of the Graduate School

GEOGRAPHIC VARIATION OF SOREX CINEREUS IN WEST VIRGINIA

A Thesis
Presented to the
Faculty of the Graduate School
Marshall University,
Huntington, West Virginia
In Partial Fulfillment
of the Requirements for the
Degree of Master of Science
by
Lisa Jane Gatens
9 December 1996

Abstract

The morphological and geographical diversity of Sorex cinereus is evident in West Virginia. In an attempt to identify patterns of morphological variation relative to age, sex, and geographic locality, and to clarify taxonomic status of the West Virginia soricids by defining diagnostic characters applicable to this area, a sample of 288 specimens representing three taxa were analyzed statistically. Standard external measurements were recorded, and a series of 12 cranial and dental characters were measured and recorded for each specimen. Morphological variation due to age was found in S. c. cinereus, but not in the smaller reference samples of S. c. fontinalis and S. I. longirostris. No sexual dimorphism was found in any of the taxa studied. Diagnostic characters found to separate S. I. longirostris from S. c. cinereus were rostral shape and relative sizes of the third unicuspid. Clear defining characters were not found for S. c. fontinalis, although this taxa resembles a smaller version of S. c. cinereus with shorter, broader rostra. These data and analyses did not reveal any presence of S. c. fontinalis additional to two documented specimens from Hampshire County. Although the presence of S. I. Iongirostris in West Virginia is likely, these analyses were inconclusive.

I would like to dedicate this to my mother, Macel Williams, who would have been so proud to see me finish.

TABLE OF CONTENTS

ACKNOWLEDGMENTS viii
LIST ix
LIST OF FIGURES x
INTRODUCTION 1
Taxonomic Review 2
Nomenclatorial History 3
General Morphology 5
Range and Distribution 6
Objectives 7
MATERIALS AND METHODS 11
Specimens Examined 11
Morphological characters 13
Age Classes 13
Sex 14
Statistical Analysis 14
Sexual dimorphism 14
Age variation 15
Morphometric variation among S. c. cinereus, S. c. fontinalis and S. I. Iongirostris. 15
Geographic variation within S. c. cinereus in West Virginia 18
RESULTS 22
Age Variation Within Taxa 22
Variation Among Taxa 22
Principal components analysis. 22
Canonical discriminant analysis 27
Multiple analysis of variance 31
Diagnostic characters 32
Variation within Sorex c. cinereus 35
Principal components analysis 35
Multiple analysis of variance among populations 36
Stepwise bivariate regression 39
Canonical discriminant analysis 39
Multiple analysis of variance 44
DISCUSSION 48
Age and sex variation 48
Diagnostic characters 49
Taxonomic status and geographic variation 50
Geographic variation within West Virginia S. c. cinereus 52
Conclusions and Summary 59
Literature Cited 61
APPENDIXI 64
APPENDIX II 74

I wish to thank my advisor, Dr. Mary Etta Hight, for her patience and unwavering confidence in me. She possesses a wealth of knowledge and incomparable dedication to her discipline. I am thankful for the opportunity to have worked with her in the field, in the museum, in the classroom, and in the kitchen. Much have I learned from her in all areas.

My committee members, Drs. Dan K. Evans and Thomas K. Pauley, have provided encouragement and assistance whenever needed, and were incredibly patient with me. Both have served me well, not just on my committee, but as biologists and instructors. I am so very grateful for all I have learned from them and the other members of the biology department faculty.

Absolutely, the person without whom this endeavor would not only have been impossible, but would not even have been considered, Dr. Kerry S. Kilburn, I thank you! Thank you for recognizing in me something worth cultivating and caring enough to act on it.

My family deserves my deepest heartfelt gratitude for all of their help and sacrifices. I am thankful for my mother's encouraging smile, which gave me the strength to push on. Thank you, my sisters, Peggy Sayre, Pam Griffith, and Lorrie Williams, for believing in me, supporting me, and babysitting, even when you probably would rather have not. My thanks and apologies go to my wonderful children, Jerod and Maridith, who undoubtedly think all families eat sandwiches and canned soup most nights for dinner.

I am very grateful to be one of the few TAs to have gotten to know Susan Weinstein. I am grateful not only for all I learned from her while teaching labs, but even more so for her friendship. Thank you, Susan, for your calming presence and for opening your home to me.

Bart Paxton has been a wonderful friend and a tremendous help.
Perhaps I could have muddled through all the new computer programs somehow on my own, but I am so glad to have had his help and encouragement. The extraordinary field and museum experiences we've shared have helped me appreciate his knowledge, skill, and wit all the more. Thank you, Barton, I couldn't have done it without you.

Only due to limited space do I collectively thank the following for all they've done: Kathy Armstrong, Jeff Bailey, Katie Daniels, Tanya Dolin and the staff of Natural Wonders, Chris Gatens, Ginger Kees, Maryanne Kraynanski, Linda Ordiway, Alison Rogers, Tina Savage, Dale Suiter, and all the incredible staff of the University Computer Center.

The few words l've written on this page can not begin to express the gratitude I feel for all that has been done along the way to bring this to completion. I have truly been blessed.

LIST OF TABLES

Table Title Page

1. Description of characters used for analysis 12
2. Definition of age classes used in this study. 14
3. Description of OTUs including their letter identifications, county location, elevation, and number of specimens represented in analysis. 19
4. Results of the MANOVA for morphological differences in age classes of S. c. cinereus and S. c. fontinalis. 24
5. Eigenvalues of the correlation matrix from the principal components analysis for among taxa variation, and eigenvectors of $\mathrm{PCl}, \mathrm{PCII}$, and PCIII. 25
6. Canonical correlation and eigenvalues from the canonical discriminant analysis for among taxa, and total canonical structure of canonical correlates CANI, and CANII. 29
7. MANOVA results for differences among taxa for the characters that loaded most heavily on PCI, PCII, PCIII, CANI, and CANII. 33
8. Measurement ranges of sixteen characters of S. c. cinereus, S. c. fontinalis, and S. I. longirostris. 34
9. Eigenvalues of the correlation matrix from the principal components analysis for within West Virginia S. c. cinereus, and eigenvectors of PCI, PCII, and PCIII. 37
10. Results of MANOVA for effect of age on position of points along the PC axes. 40
11. Canonical correlation and eigenvalues from the canonical discriminant analysis for within West Virginia S. c. cinereus, and total canonicalstructure of canonical correlates CANI, CANII, and CANIII.43
12. Results of MANOVA for differences among West Virginia S. c. cinereus populations, showing only the populations representing the two highestand lowest mean values for each significantly different variable.47

LIST OF FIGURES

Figure Title
Page

1. Ranges of S. c. cinereus, S. c. fontinalis, and S. I. longirostris 8
2. Counties in West Virginia from which specimens were measured 9
3. Dorsal, lateral, and palatal views of S. c. cinereus skulls showing where measurements were made 16
4. Age classes as recognized in this study are: 1 new adult, 2 adult, and 3 old adult 17
5. Elevational and latitudinal extreme populations of S. c. cinereus in West Virginia relative to important geographic features 20
6. Plots of first three principal components from the PCA for among taxa variation for S. c. cinereus, S. c. fontinalis, and S. I. longirostris. 26
7. Plot of first two canonical variates from the CDA for among taxa variation for S. c. cinereus, S. c. fontinalis, and S. I. longirostris. 30
8. Plots of the first three principal components from the PCA for variation within West Virginia S. c. cinereus 38
9. Plots of regression analysis for effect of elevation on PCl scores and effect of latitude on PCI scores 41
10. Plots of first three canonical variates from the CDA for West Virginia S. c. cinereus. 45
11. Distribution of individuals from the geographically extreme populations of S. c. cinereus in West Virginia on the first two axes of the PCA scatter plot 55
12. Dendogram of expected similarities and differences for 7 biogeographically significant populations of S. c. cinereus in West Virginia57
13. Plot of 7 biogeographically significant West Virginia S. c. cinereus populaitons along the first two axes of the PCA 58

INTRODUCTION

The long-tailed shrews (Insectivora: Soricidae: Sorex) are geographically and morphologically diverse. Studying this group of small mammals is difficult due partly to their elusiveness in the field but even more so to their extensive overlap in ranges of standard taxonomic and morphological characters. During early research when identification and taxonomic status were confusing for most mammalian species, the complexities of studying the soricids was appreciated (Rudd, 1955). Jackson (1928, pg. 1) wrote,

> "No other group of American mammals having a wide distribution, and in many localities an abundance of individuals, is so little known ... as the long-tailed shrews... And probably no other group of mammals offers so many difficulties and problems in the way of taxonomic study."

Because of the small size of these animals, any slight error in measurements can be significant relative to size. Jackson (1928) also reported that shrews are seemingly more prone to cranial and dental variation and abnormalities than are other small mammals. Bole and Moulthrop (1942) reported a Cleveland Museum of Natural History S. c. cinereus specimen, CMNH 16206, having only four unicuspid teeth in an otherwise symmetrical skull. French (1980) also reported tooth anomalies involving the upper unicuspids in several S. I. Iongirostris specimens from Alabama and Indiana.

Members of this group known to occur in West Virginia included in this study are the Masked Shrew, Sorex cinereus cinereus Kerr (Hall, 1981), the Maryland Shrew, Sorex cinereus fontinalis Hollister (two specimens, Kirkland and Levengood, 1987), and the Southeastern Shrew, Sorex longirostris longirostris

Bachman (one specimen, French, 1977). The purpose of this study was to evaluate the variation of West Virginia Sorex c. cinereus and to more accurately define the status and probable distribution of S. c. fontinalis and S. I. longirostris in the state.

Taxonomic Review

Sorex cinereus cinereus Kerr

Sorex arcticus cinereus Kerr, 1792:206. Type locality, Fort Severn, Ontario.
Sorex persontus I Geoffroy St-Hilaire,1827:122. Type locality, eastern United States.

Sorex fimbripes Bachman,1837:391. Type locality, Drury Run, Pennsylvania. Sorex cinereus cinereus Jackson, 1925:56.
(Jackson, 1928 lists 42 synonyms)
Sorex cinereus fontinalis Hollister
Sorex fontinalis Hollister, 1911:378. Type locality, Cold Spring Swamp, Prince Georges Co., Maryland.

Sorex cinereus fontinalis Poole, 1937:96.
(Hall, 1981 lists no other synonyms)
Sorex longirostris longirostris Bachman
Sorex personatus I Geoffroy St-Hilaire, 1827:122. Type locality, eastern United States.

Sorex longirostris Bachman, 1837:370. Type locality, Cat Island, mouth Santee River, South Carolina.

Sorex personatus Baird, 1857:30. Type locality unknown.
(Handley and Varn, 1994, list six synonyms)

Nomenclatorial History

In 1772 J . R. Forster described but did not name several species of shrews from the Fort Severn, Ontario, area of the Hudson Bay region. Robert Kerr reviewed these Hudson Bay shrews in 1792 and described them as Sorex arcticus and Sorex arcticus cinereus (Jackson, 1925). In 1827 I. Geoffroy StHilaire published species descriptions for these specimens, citing the United States as type locality, under the name Sorex personatus (Handley and Varn, 1994; Jackson, 1928). In the early 1800s Bachman's work in the southeast resulted in his naming seven new species and redescribing six others (Handley and Varn, 1994). Among these were Sorex cinereus, and Sorex longirostris.

In the later 1800s G. S. Miller Jr., S. F. Baird and C. H. Merriam also reviewed the specimens from eastern North America. During these reviews S. personatus was variously synonymized with S. I. longirostris (by Baird), S. cooperi (by Merriam), and S. cinereus Bachman (= Cryptotis parva floridana) (by Miller). In the meantime, Miller redescribed S. longirostris Bachman, the first unequivocal use of that name for the long-tailed shrew of the southeastern United States (Handley and Varn, 1994).

Jackson $(1925,1928)$ revised much of the taxonomy of the genus Sorex. Based on early written descriptions, Jackson (1925) determined that S. richardsonii Bachman was equivalent to, and therefore a junior synonym of, S.
arcticus Kerr. With equal certainty he synonymized S. personatus I. Geoffroy St-Hilaire with S. a. cinereus Kerr. As a consequence, S. richardsonii Bachman became S. arcticus Kerr and S. personatus I. Geoffroy St-Hilaire became S. cinereus Kerr. Note that S. cinereus Bachman therefore became a homonym (Jackson, 1925). In his 1928 taxonomic review, Jackson assigned the southeastern S. cinereus populations to S. c. cinereus.

In reviewing Bachman's original taxonomic work, Handley and Varn (1994) determined that synonymies of Baird, Miller and Merriam for S. personatus were unreliable because none had examined the holotype, written descriptions were not definitive, and pertinent comparisons could not have been made. Furthermore, because the location and even existence of the holotype is uncertain, and the absence of a definitive type locality, they concluded that S. personatus I. Geoffroy St-Hilaire is unidentifiable. With the binomial S. personatus unavailable, S. longirostris Bachman took priority as the proper taxonomic designation for long-tailed shrews from the southeast (Handley and Varn, 1994).

In 1911 N. Hollister named the Maryland shrew Sorex fontinalis. Jackson, in his 1928 revision of soricid shrews, maintained support for full specific rank for S. fontinalis, but stated that availability of specimens from areas where intergradation with S. c. cinereus would likely occur might warrant reclassification in the future. Upon review of specimens from the lowlands east of the Appalachians, Poole (1937) found the intergradation predicted by Jackson and thus reduced the taxon to a subspecies of S. cinereus. Based on an extensive
analysis re-evaluating its taxonomic status, Kirkland (1977) supported Poole's original designation, but declined to offer a formal name change pending further study. In the most comprehensive study to date, van Zyll de Jong and Kirkland (1989) argued against specific status for S. c. fontinalis.

General Morphology

Measuring 71 to 111 mm total length and weighing 3.4 to 5.5 g , Sorex cinereus is one of the smallest soricid shrews. Length of tail vertebrae measures from 25 to 50 mm . Pelage is brown dorsally with a silvery tint ventrally. Eyes and ears are minute and not easily visible. The snout is long and pointed with many long vibrissae (Hall, 1981).

Though slightly smaller, S. c. fontinalis and S. I. Iongirostris are equally difficult to distinguish from S. c. cinereus. Pelage color for all taxa is described in varying shades of brown on the dorsum, lighter hairs on sides blending into silver to gray tones ventrally (Jackson, 1928). The type specimen of S. c. fontinalis measures 90 mm total length and 31 mm tail vertebrae, well within the range of S. c. cinereus (Jackson, 1928). Jackson listed the total and tail lengths for S. c. fontinalis as 86 to 98 mm and 33 to 37 mm respectively; pelage is darker brown both dorsally and ventrally, and the tail is distinctly bicolored. Reported external measurements of Sorex l. longirostris are total length 68 to 94 mm (French, 1980) and 79 to 108 mm (Hall, 1981), tail length 24 to 37 mm (French, 1980) and 27 to 40 mm (Hall, 1981). The tail of S. I. longirostris is indistinctly bicolored (Jackson, 1928).

Skull and dental characters are generally used as diagnostic tools.

Though there is overlap in measurement ranges of some characters, cranial and dental morphology can be more accurately assessed than external anatomical characters.

The skull of S. c. cinereus has a relatively high and rounded braincase rising above the relatively long and narrow rostrum. The teeth of S. c. cinereus are narrow and the third unicuspid is usually larger than the fourth (Hall, 1981). The condylobasal length usually measures between 15.0 and 16.5 mm though extreme measurements of 13.8 to 17.0 mm have been recorded from the periphery of its range (French, 1980; Junge and Hoffmann, 1981).

The skull of S. c. fontinalis is smaller than that of S. c. cinereus, with a shorter broader rostrum, relatively flatter braincase and shorter unicuspid toothrow. Condylobasal length ranges from 14.6 to 15.2 mm (Junge and Hoffmann, 1981).

Sorex I. longirostris generally measures 13.8 to 15.6 mm in condylobasal length. It also has a flatter and broader braincase than S. cinereus and a shorter rostrum with a more crowded unicuspid toothrow. The third unicuspid tooth is smaller than or subequal to the fourth unicuspid (Junge and Hoffmann, 1981).

Range and Distribution

Figure 1, based on an adaptation from Hall (1980), illustrates the geographic ranges of the S. c. cinereus, S. c. fontinalis, and S. I. longirostris. As indicated, Sorex c. cinereus is among the most widespread of all small mammals. Its range extends over all of Canada and Alaska and south throughout northern forests with extensions reaching southward into the Rockies
and Appalachian Mountains (Hall, 1981). Distributed throughout much of West Virginia (Fig. 2), S. cinereus has been found in a variety of habitats and from elevations of approximately 600 to above 4000 feet.

The range of S. c. fontinalis is limited to the Delmarva Peninsula and southeastern Pennsylvania (Hall. 1981). The only documented occurrence of S. c. fontinalis in West Virginia is two specimens from Romney, Hampshire County (Kirkland and Levengood, 1987).

Sorex longirostris is found throughout a large portion of the southeastern United States, as far west as Missouri and northward up the Mississippi River to northern Illinois, southeastward through Indiana, into Kentucky and east to Virginia (Hall, 1981). In West Virginia S. I. longirostris has been documented by a single specimen from near Walton, Roane County (French, 1977).

Objectives

As a result of the West Virginia Mammal Survey and other projects seeking to catalog mammalian and other vertebrate fauna in the state, a large number of presumed S. c. cinereus have recently been collected over a wide

Figure 1. Ranges of S. c. cinereus, S. c. fontinalis, and S. I. longirostris.

Figure 2. Counties in West Virginia from which S. c. cinereus specimens were measured are Monongalia, Preston, Tucker, Pendleton, Randolph, Pocahontas, Webster, Greenbrier, Monroe, Mercer, Fayette, Raleigh, Putnam, and Mason. The only S. c. fontinalis recorded from West Virginia are from Hampshire County. The West Virginia record for S. I. longirostris is Roane County.

area of the state. Most of these are cataloged in the Marshall University Mammal Collection. Others are housed at the Carnegie Museum of Natural History.

The purpose of this study was to:

1. Determine the effect of age on morphology of S. c. cinereus, S. c. fontinalis, and S. I. longirostris.
2. Evaluate the influence of sex on morphologic variation in S. c.
cinereus, S. c. fontinalis, and S. I. longirostris.
3. Reevaluate the taxonomic status of some West Virginia shrews, specifically potential S. I. longirostris from Mason and Mercer Counties and French's (1977) S. I. longirostris from Roane County, by comparing them, within the context of geographic variation, to known specimens of S. c. fontinalis and S. I. longirostris from other states.
4. Define diagnostic characters for S. c. cinereus, S. c. fontinalis, and S. I. longirostris applicable to West Virginia specimens.
5. Assess the pattern and extent of geographic variation in S. c. cinereus in the state by examining, in particular, populations representing extremes of latitude, elevation, and geographical and ecological isolation.

MATERIALS AND METHODS

Specimens Examined

More than 400 specimens representing localities from West Virginia (including definitive and putative S. c. cinereus, S. c. fontinalis, and S. longirostris); Pennsylvania, Maryland, Virginia (definitive S. c. fontinalis and one putative S. I. longirostris); and Virginia, South Carolina, and Georgia (definitive S. 1. Iongirostris) were examined. Specimens from outside of West Virginia were included as regionally relevant reference specimens. Definitive identifications are those of the curators at the museums from which specimens were obtained. Those individuals based their identifications on a combination of morphological characters and geographic distribution.

Specimens on which few measurements could be made or specimens lacking pertinent catalog data were not included for analysis. Two anomalous specimens, MUMC 5390 and 5834, totally lacking the fifth unicuspid, were also omitted from analysis. A series of sixteen measurements from 288 (223 S. c. cinereus, 25 S. c. fontinalis, and 40 S. I. longirostris) of the most complete specimens were recorded for analysis. Note that sample sizes vary among statistical analyses due to the software's handling of missing values.

Most specimens observed for this study are housed in the mammal collection in the vertebrate museum at Marshall University (MUMC). The collection, subsequent processing, and age and sex determinations of some of the MUMC specimens were conducted personally. Data were also collected on

Table 1. Description of characters used for analysis. The abbreviations shown will be used to refer to these characters throughout this paper.

Skull length	SL	One caliper point was placed at anterior medial point of premaxillaries between first incisors, and the other at posterior most point at midline of occipital.
Cranial width	CW	Caliper arms were positioned on either side of cranium at broadest point of brain case.
Cranial height	CH	Ventral or palatal surface of cranium was placed on microscope slide. The measurement was made with one caliper arm on the bottom of the slide and the other on highest point of brain case. The recorded measurement was minus thickness of the slide.
Interorbital constriction	IC	Viewing the skull dorsally the micrometer lines were positioned at smallest distance across rostrum at location of orbits.
Length of maxillary plate	MP	Line of ocular micrometer dissected toothrow between third incisor and canine, at alveolar dip. Reading was made parallel to toothrow, not axis of skull, at posterior border of palate.
Width across second molars	M2- M2	Lines of ocular micrometer were positioned at broadest points on labial side of second molars.
Width across first incisors	I1-I1	Lines of ocular micrometer were positioned at widest point on labial side of first incisors.
Unicuspid toothrow	UT	Line of ocular micrometer intersected toothrow just posterior to first incisor. Reading was made parallel to axis of skull at posterior most point of fifth unicuspid.
Length of molariform toothrow	P4-	Line of ocular micrometer intersected toothrow anterior to first molariform tooth. Reading was made parallel to axis of skull at posterior most point of last molar.
Width of third unicuspid	U3	Lines of ocular micrometer were projected on either side of third unicuspid at alveolar dip. Measurement was made along axis of tooth, not necessarily toothrow or axis of skull.
Width of fourth unicuspid	U4	Lines of ocular micrometer were projected on either side of fourth unicuspid at alveolar dip. Measurement was made along axis of tooth, not necessarily toothrow or axis of skull.
Width of fifth unicuspid	U5	Lines of ocular micrometer were projected on either side of fifth unicuspid at alveolar dip. Measurement was made along axis of tooth, not necessarily toothrow or axis of skull.
Shape of rostrum	RO	Calculated measurement: ratio of UT+(P4-M3)/M2-M2.

specimens from Carnegie Museum of Natural History (CMNH), Smithsonian Institution National Museum of Natural History (USNM), and Cornell University (CU). A complete list of specimens used is in Appendix I.

Morphological characters

The standard external measurements of total length (TotL), tail length (TalL), length of hind foot (HF) and weight (Hall, 1981) were taken from skin tags or catalog data. The first three cranial measurements were made with Helios dial calipers and recorded to nearest 0.1 mm . The other nine cranial and dental measurements were made with the aid of an ocular micrometer in a Cambridge Instruments Stereozoom 4 dissecting microscope at 0.7 power and recorded to 0.1 micrometer. These measurements were then converted to the nearest 0.01 mm . The final measurement (RO) is a ratio created from three of the other measurements. Table 1 and Figure 3 describe and illustrate the measurements used.

Age Classes

Each specimen was assigned to one of three age classes based on a modification of Pruitt's (1954) and Diersing's (1980) aging techniques. Due to the lack of complete reproductive data, age classes were based solely on dental conditions. For this reason subadults may have been included in class 1 because of difficulty in distinguishing them from new adults. The difficulty in distinguishing subadults is noted by Jones et al (1991) who also included them in their data set. Although obviously immature specimens were not included in this study, Levengood (1987) found few statistically significant differences between
subadults and young adults and combined the two for analysis. The age classes are defined in Table 2 and illustrated in Figure 4.

Table 2. Definition of age classes used in this study.	
Age Class	Description
1 New adult	Teeth unworn, all cutting edges sharp, cingulum of first incisor appressed against alveolus.
2 Adult	Teeth showing wear, cutting edges blunted, first incisor beginning to curve down exposing root.
3 Old adult	Teeth extremely worn, cutting edges reduced to base, first incisor greatly dropped exposing considerable root.

Sex
In soricids, determination of sex based solely on external morphology is extremely difficult (Rudd, 1955). It is also hindered by rapid deterioration of dead shrews; sex, therefore, is often missing from specimen data. Accurate sexual identification of one relatively large series of West Virginia S. c. cinereus (Populations H and I), was obtained through direct examination of internal morphology of fresh specimens. For the other specimens included, sex was recorded from skin tags or catalog data when available.

Statistical Analysis

Sexual dimorphism. Because determining sex based on external anatomy is difficult, the subset of S. c. cinereus specimens known to have been sexed by internal examination of fresh specimens was used. On this subset of 25 females and 34 males, a t-test was used to assess differences between
sexes for all characters. A Bonferroni adjustment was used to control for the effects of multiple comparisons by setting the significance level to $p=0.05 / 17=0.003$. No statistically significant differences were found; sexes were therefore combined for all analyses.

Age variation. To assess morphometric variation among age classes within taxa, a three-way multiple analysis of variance (MANOVA) was performed for each taxon. Student-Newman-Keuls multiple comparison test (SNK) was used to identify groups for which significant differences were found. Although some statistically significant differences were found among age classes for all taxa (see Results), age classes were grouped for the among-taxon comparisons to increase sample size. Note that each taxon includes representatives of all age classes.

Morphometric variation among S. c. cinereus, S. c. fontinalis and S. 1. longirostris. Three complementary techniques were used. Principal components analysis (PCA) was used to visualize morphometric relationships and detect any linear relationships among individuals. The results of this analysis were plotted along three axes with principal component I (PCI) represented by the X axis, PCII the Y axis, and PCIII the Z axis. The usefulness of this test lies in its ability to derive the linear combinations, or principal components, of the set of variables while retaining most of the original information in the variables. The assumption is that individuals from the same taxon, because they are more similar

Figure 3. Dorsal, lateral and palatal views of S. c. cinereus skulls showing where measurements were made. The measurements are: $1 \mathrm{SL}, 2 \mathrm{CW}, 3 \mathrm{CH}, 4 \mathrm{IC}, 5$ MP, 6 M2-M2, 7 I1-I1, 8 UT, 9 P4-M3, $10 \mathrm{U} 3,11 \mathrm{U4}$, and 12 U 5 . The widths cross U3, U4, and U5 were measured on the same side of the skull as UT, P4I3, and MP but are shown on the opposite side for clarity. The regions of the skull are: 1 anterior rostral, 2 posterior rostral, 3 precranial, and 4 cranial; as indicated by the numbered sections at the bottom of the diagram.

Figure 4. Age classes as recognized in this study are: 1 new adult, 2 adult, and 3 old adult.

Mime, 4468 ancrucras...

Momese of 4 Wumatis

morphologically, will cluster together. Although PCA accurately represents morphological distances among groups (operational taxonomic units or OTUs), it may fail to elucidate subtle differences between individuals in adjacent clusters (Sneath and Sokal, 1973). Therefore, canonical discriminant analysis (CDA) was also used. The results were also plotted along three dimensional axes, CANI, CANII, and CANIII. Characters are weighted in this type of analysis such that differences among pre-defined OTU centroids are maximized. This intrinsic bias is useful for detecting the morphometric differences that may be obscured by the PCA (Jones et al, 1991; Sneath and Sokal, 1973). Because neither PCA nor CDA permits it, a three-way MANOVA was performed to identify those characters that differed significantly among OTUs.

Geographic variation within S. c. cinereus in West Virginia. Specimens of S. c. cinereus from Monongalia, Preston, Tucker, Pendleton, Randolph, Pocahontas, Webster, Greenbrier, Monroe, Mercer, Summers, Raleigh, Fayette, Putnam, and Mason counties and possible S. I. longirostris from Mason and Mercer counties were used in this analysis. Specimens from within small geographic areas and elevational ranges of 500' were grouped into a total of 23 OTUs and analyzed using the same procedures as described above. Three OTUs were not included in the PCA and CDA due to missing values.

Figure 5 illustrates the position of the geographically extreme populations and their proximity to the nearest populations relative to important geographic features. Population A in Monongalia County represents the northern most

Table 3. Description of OTUs including their letter identifications, county location, elevation, and number of specimens represented in analysis.

OTU	Locality	Elevation (ft)	N
A	Monongalia	2100	20
B	Preston	1500	2
C	Preston	2540	3
D	Randolph	2320	8
E	Tucker	3100	8
G	Pendleton	4862	1
H	Randolph/Pocahontas	$3860-4300$	58
I	Randolph/Pocahontas	$3650-3850$	3
J	Pendleton	3840	2
L	Webster	2400	1
M	Greenbrier	2200	7
N	Monroe	$2400-2500$	13
O	Fayette	1840	7
P	Raleigh	$2360-2600$	16
Q	Fayette	1240	4
R	Fayette/Raleigh	$1600-1840$	4
S	Putnam	700	6
T	Mason	620	13
X	Mercer	$2550-2980$	11
Y	Mercer	$3050-3450$	8

Figure 5. Elevational and latitudinal extreme populations of S. c. cinereus in West Virginia relative to important geographic features. Populations H and T represent the highest and lowest elevations, respectively, and populations A, X, and Y the northern and southern most latitudes.

population, populations X and Y in Mercer County the southern most. Population G in Pendleton County was from the highest elevation in West Virginia. However, because this population was represented by a single specimen, population H in Pocahontas and Randolph Counties was chosen to represent the high elevation extreme in analysis. Mason County had the lowest elevation represented by population T.

Two additional analyses were used to clarify patterns of geographic variation. A MANOVA of PCI, PCII, and PCIII scores by age class, for four populations, was used to assess the effect of age on the distribution of individual points on scatter plots. A stepwise bivariate regression was used to evaluate the effect of latitude and elevation on morphological variation as reflected by the PCl scores. All statistics were performed using the Statistical Analysis System (SAS Institute, 1988).

RESULTS

Age Variation Within Taxa

In S. c. cinereus four of the sixteen variables differed significantly among the age classes at the level of $p<0.0001$. Adults and old adults, age classes 2 and 3 , differed from young adults, age class 1 , for total length. Significant variation was found for cranial height and rostral shape between young adults and the other two age classes. Adults and young adults varied significantly from old adults for unicuspid toothrow. S. c. fontinalis showed a significant difference among age classes for only two characters. As with S. c. cinereus, young adults showed significant difference from adults and old adults for cranial height ($p<0.0073$). Young adults varied from old adults and adults for length of skull ($p<0.0194$). Sorex I. Iongirostris showed no significant difference for any characters. Table 4 shows the results of this analysis.

Variation Among Taxa

Principal components analysis. Table 5 and Figure 6 contain the results of the PCA of 248 specimens.

Principal component I (PCI) explained 40.4% of the total variation among individuals. Because 14 of the 16 characters loaded positively on PCl , this axis was a reflection of overall size. The characters that loaded most heavily on PCI , in descending order, were: length of skull, tail length, rostral shape, U3, and unicuspid toothrow. Individuals with high PCI scores, therefore, are generally large with long skulls and relatively long, narrow rostra, have a relatively wide U3, and are long-tailed.

The amount of total variation accounted for by PCII is 12.1%. Half of the characters loaded positively on PCII making it as much a representation of shape as of size. Characters that loaded most heavily on PCII are interorbital constriction, width across second molars, length of molariform toothrow, U5, and U3. Of these U3 had a negative loading. Individuals with high PCII scores have a relatively long and wide molariform region, and a small U3.

Only 9.3% of the variation was explained by PCIII. This axis described variation in shape, with 8 of the 16 characters loading negatively. The most heavily loading characters on PCIII were unicuspid toothrow, U5, rostral shape, cranial width, and hind foot. Individuals with high PCIII scores have a long narrow rostrum, particularly anteriorly, a relatively narrow cranium, and small feet. Because no significant differences were found among taxa for U5 (see Table 7), any influence of this character on the positioning of points on the scatter plots along axes PCII and PCIII was not considered.

Principal component I largely separated S. I. longirostris from S. c. cinereus and S. c. fontinalis. Sorex longirostris clustered at the low end of this axis indicating an overall smaller size than the other two taxa. Along PCl S. c. cinereus clustered highest, completely encompassing S. c. fontinalis. One individual S. c. fontinalis from Maryland (USNM 76587) scored lower on PCI than any other of this taxon. Because of their generally small body size and

Table 4. Results of the MANOVA for morphological differences in age classes of S. c. cinereus and S. c. fontinalis. The characters shown are the ones for which significant differences were found. Age classes with the same superscript for the same character are not signifcantly different.
S. c. cinereus

age	mean(\pm SD)	N	age	mean(\pm SD)	N
TotL (p<0.0011)			$\mathrm{CH}(\mathrm{p}<0.0001)$		
$2^{\text {a }}$	94.88(4.13)	46	$1^{\text {a }}$	5.01(0.24)	90
$3^{\text {a }}$	94.81(3.08)	83	$2^{\text {b }}$	4.74(0.33)	48
$1^{\text {b }}$	90.93(3.02)	86	$3^{\text {b }}$	4.67(0.25)	86
UT (p<0.0001)			RO (p<0.0001)		
$2^{\text {a }}$	2.02(0.10)	48	$1^{\text {a }}$	3.02(0.07)	90
$1^{\text {a }}$	2.02(0.07)	90	$2^{\text {a }}$	3.02(0.10)	48
$3^{\text {b }}$	1.93(0.07)	86	$3^{\text {b }}$	2.92(0.07)	86
S. c. fontinalis					
SL (p<0.0194)			$\mathrm{CH}(\mathrm{p}<0.0073)$		
$1^{\text {a }}$	15.28(0.45)	6	$1^{\text {a }}$	4.62(0.29)	6
$3^{\text {b }}$	14.87(0.39)	8	$2^{\text {b }}$	4.31(0.19)	15
$2^{\text {b }}$	14.76(0.27)	16	$3^{\text {b }}$	4.26(0.25)	8

Table 5. Eigenvalues of the correlation matrix from the principal components analysis for among taxa variation, and eigenvectors of $\mathrm{PCI}, \mathrm{PCII}$, and PCIII .

	PRINI	PRINII	PRINIII	
Eigenvalue	6.46665	1.94278	1.49083	
Difference	4.52388	0.45195	.	
Proportion	0.404166	0.121424	0.093177	
Cumulative	0.404166	0.525589	0.618766	
Variables		Eigenvectors		
TotL	0.283463	-0.052341	-0.227658	
TalL	0.328138	-0.030085	-0.227658	
HF	0.216194	-0.184688	-0.278665	
SL	0.353018	0.112189	-0.144246	
CW	0.287177	0.199779	-0.337292	
CH	0.217343	0.207644	-0.276567	
IC	-0.064605	0.545916	-0.138112	
MP	0.284660	0.181967	0.108684	
M2-M2	-0.115860	0.537256	0.118972	
I1-I1	0.168146	-0.103286	-0.050578	
UT	0.294862	-0.054841	0.419273	
P4-M3	0.206520	0.363783	0.142471	
U3	0.307350	-0.211546	0.086428	
U4	0.215994	-0.033292	0.237368	
U5	0.113625	0.219549	0.388202	
RO	0.316828	-0.082318	0.377545	

Figure 6. Plots of first three principal components from the PCA for among taxa variation for S. c. cinereus, S. c. fontinalis, and S. I. Iongirostris.

$$
\begin{aligned}
& \triangle \\
& \Delta^{2}-2
\end{aligned}
$$

short skull with short and broad rostra, two S. c. cinereus from Putnam County (MUMC 2519 and 2520) scored even lower than this outlying S. c. fontinalis and fell within the range of S. I. longirostris.

Individual scores from all taxa overlapped along PCII. Sorex I. longirostris, though, clustered most tightly toward the high end of PCII, was represented by inidividuals along most of this axis. Sorex c. cinereus spread out along PCII, but did not score as high as S. I. longirostris and clustered toward the center of the axis. The more northern specimens of S. I. longirostris from western Virginia and west-central West Virginia (USNM 283624 and 290472, CMNH 80163) clustered at the low end of PCII. The more southern South Carolina S. I. longirostris clustered at the high end of PCII indicating that these individuals have a relatively long and broad molariform toothrow, yet short and crowded anterior rostra, than do more northern individuals. The two Putnam County outliers fell nearest the northern S. I. longirostris.

Sorex c. fontinalis clustered along the mid to low range of PCII, generally within the lower half of the S. c. cinereus cluster. The highest scoring S. c. fontinalis on PCII (CMNH 37296 and 39154), having a longer and wider molariform toothrow, were from the more northern part of the range.

Sorex l. Iongirostris fell completely within the range of S. c. cinereus along PCIII. Within the cluster of S. c. cinereus, S. c. fontinalis individuals were positioned toward the high end of PCIII reflecting a relatively long rostrum and narrow cranium.

Canonical discriminant analysis. Table 6 contains the results of the CDA
of 248 specimens. Because 100% of the variation was described by the first two canonical variates, figure 7 displays the two dimensional plot of these results.

Canonical axis I (CANI) explained 93% of the total variation. As with PCA, 14 of the 16 characters loaded positively on this axis making it a general size axis. The characters that loaded most heavily, in descending order, are U3, rostral shape, width across second molars, unicuspid toothrow, and length of skull. Individuals with high CANI scores have generally large skulls that are long, have a long narrow rostrum and a wide U3.

The remainder of total variation, 7%, is accounted for by CANII. This axis also represented size as all characters loaded positively. The characters that loaded most heavily were: cranial height, cranial width, length of skull, tail length, and interorbital constriction. Individuals with high CANII scores have large skulls with wide rounded crania, relatively wide rostra, and a long tail.

As with PCI, S. I. longirostris was segregated from S. c. cinereus and S. c.fontinalis along CANI. The only individual separated from the otherwise tight cluster was French's (1977) Roane County specimen (CMNH 80163) which was larger than the S. I. longirostris specimens from out of state. Sorex c. fontinalis clustered within the range of S. c. cinereus on this axis. The two Putnam County specimens (MUMC 2519 and 2520) again clustered along the small end of the

Table 6. Canonical correlation and eigenvalues from the canonical discriminant analysis for among taxa, and total canonical structure of canonical correlates CANI, and CANII.

	CANI	CANII
Eigenvalue	3.8069	0.2845
Proportion	0.9305	0.0695
Cumulative	0.9305	1.0000
Characters	Total Canonical Structure	
TotL	0.499154	0.358040
TalL	0.601306	0.510652
HF	0.465885	0.276084
SL	0.622432	0.600302
CW	0.460730	0.741032
CH	0.245646	0.796627
IC	-0.514772	0.384660
MP	0.428046	0.230545
M2-M2	-0.657111	0.053478
I1-I1	0.577938	0.007399
UT	0.623024	0.033688
P4-M3	0.233549	0.117466
U3	0.836909	0.030318
U4	0.505594	0.070449
U5	0.029392	0.185312
RO	0.705281	0.037090

Figure 7. Plot of first two canonical variates from the CDA for among taxa variation for S. c. cinereus, S. c. fontinalis, and S. I. longirostris.

scatter plot near the Roane County S. I. longirostris and with small S. c. fontinalis. The more northern specimens of S. c. fontinalis clustered on the high end of CANI (CMNH 33756, 37258). From the more southern end of the geographical range Maryland specimens (CMNH 45704 and 45705) clustered high on CANI. The Hampshire County S. c. fontinalis specimens (CU 11965 and 11966) clustered near the middle of the CDA plot, within the upper end of the S. c. fontinalis cluster.

Though separated along CANI, S. I. longirostris clustered entirely within the range of S. c. cinereus along CANII. Sorex c. fontinalis clustered toward, and exceeded, the low end of S. c. cinereus. The smallest S. c. fontinalis was a Pennsylvania specimen (CMNH 33756). The largest was a southern specimen from Maryland (CMNH 45704) .

Multiple analysis of variance. The results of this analysis are included in Table 7. Significant differences were found in fifteen of the sixteen characters. Note that U5, which showed no significant differences among taxa, loaded heavily on PCII and PCIII. Eight of the sixteen characters (total length, tail length, hind foot, length of skull, cranial height, interorbital constriction, maxillary plate, and rostral shape) were found to be significantly different among all taxa. Only for cranial width did S. c. cinereus differ significantly from S. c. fontinalis and S. I. longirostris. For the remaining six characters (width across M2, width across I1, unicuspid toothrow, molariform toothrow, U3, and U4). Sorex c. cinereus and S. c. fontinalis did not differ significantly from each other; however, both differed significantly from S. I. longirostris.

For thirteen of the fifteen characters showing significant differences, S. c. fontinalis was intermediate between S. c. cinereus and S. I. longirostris. Sorex c. cinereus had the largest mean cranial height, followed by S.I. longirostris then S. c. fontinalis. For interorbital constriction S. c. cinereus was the intermediate between S. I. Iongirostris and S. c. fontinalis. Table 8 shows the minimum, mean, and maximum values for each character measured for all taxa.

Diagnostic characters

The most obvious clusters on the PCA and CDA are a result of the segregation of S. I. longirostris from S. c. cinereus along PCI and CANI respectively. That the third unicuspid (U3), rostral shape (RO), width across second molars (M2-M2), unicuspid toothrow length (UT), skull length (SL) and tail length (TaIL) were all found to be significantly different between S. I. longirostris and S. c. cinereus by the MANOVA for among taxa comparisons, indicates that these are good diagnostic characters and further explains the patterns on the PCA and CDA.

The PCA and CDA reflect and support the subspecific status of S. c. fontinalis. On both scatterplots S. c. fontinalis clustered toward the low end of S. c. cinereus along the second axes. The CDA revealed tighter clustering of S. c. fontinalis but not significant segregation from S. c. cinereus along the second axis.

Table 8. Measurement ranges of sixteen character of S. c. cinereus, S. c. fontinalis, and S. longirostris.									
	S.c.c cinereus (n=294)			S. c. Tontinalis (n=30)			S. longiostris ($\mathrm{n}=40$)		
characties	maan(\$SD)	max	min		max	min	$\operatorname{mana}(\pm 5 \mathrm{D})$	max	min
Toll	93,35(7.68)	113	74	89,54.49)	98	81	82.614.49)	90	74
Tall	38.21(3.75)	45	28	34.18(2.11)	${ }^{38}$	30	30.92(2.17)	34	25
HF	$11.71(0.92)$	14	6	11.21(0.50)	12	10	10.350.0.3)	12	9
St	15.45(0.48)	16.7	14.1	14.88(0.39)	15.5	14	14.350.37)	15.2	13.4
cw	7.6660.24)	8.4	7	7.3(0,18)	7.6	6.9	$7.25(0.21)$	7.8	6.7
CH	4.82(0.17)	5.8	4	4.370.24)	4.9	3.9	4.55(0.23)	5.1	3.9
18	$2.71(0.13)$	3.17	1.8	$2.61(0.10)$	2.87	2.36	2.8550.26)	3.19	1.43
MP	4.7330.17)	5.09	3.51	4.65(0, 11)	4.94	4.4	4.490.20)	4.86	3.64
M2-M2	3.650.09)	3.9	3.41	$3.660(0.14)$	4.29	3.4	3.84(0.13)	4.04	3.54
$11-11$	1.2330.06)	1.43	0.91	1.2230.05)	1.34	1.1	1.130.07)	1.43	0.91
UT	$1.98(0.13)$	2.29	1.57	1.93(0.12)	2.14	1.57	1.71(0.12)	1.9	1.43
P4-M3	3.650.10)	3.93	3.43	$3.62(0.06)$	3.73	3.49	3.56(0.11)	3.77	3.31
U3	0.43(0.03)	0.51	0.29	0.42(0.04)	0.56	0.38	0.3110.03)	0.37	0.26
44	0.390.03)	0.46	0.29	0.380(0.03)	0.46	0.31	0.34(0.03)	0.4	0.29
us	0.28(0.03)	0.37	0.14	0.2600.03)	0.3	0.17	$0.27(0.04)$	0.36	0.2
Rо	2.98(0.13)	3.29	2.58	2.87(0.36)	3.15	0.93	2.60(0.30)	2.82	0.93

Variation within Sorex c. cinereus

Principal components analysis. The results of this analysis are shown in Table 9 and Figure 8.

Principal component I (PCI) explained 31.4% of the total variation. This axis is a representation of overall size. All characters loaded positively. The characters that loaded most heavily on PCl were length of skull, tail length, maxillary plate, cranial width, and rostral shape. Individuals with high PCl scores are generally large, have long, wide skulls and long tails. As shown above significant age variation was found for rostral shape within S. c. cinereus.

The amount of variation explained by PCII was 12.2%. Half of the sixteen characters loaded negatively on PCII. Principal component II was, therefore, as much a reflection of shape as of size. The characters that loaded most heavily on PCII were unicuspid toothrow, rostral shape, hind foot, tail length, and total length. Individuals scoring high on PCII are relatively small and have a long narrow rostrum. Three of the characters that loaded heavily on this axis (unicuspid toothrow, rostral shape, and total length) were found to differ significantly among age classes within S. c. cinereus.

Principal component III explained 10.6% of the variation. Seven of the sixteen characters loaded negatively on this axis, resulting in PCIII representing size more so than shape. The highest loading characters on PCIII are width across 11, width across M2, molariform toothrow, U3, and unicuspid toothrow. Two of the highest loading characters (U3 and unicuspid toothrow) loaded negatively on this axis. High PCIII scores reflect individuals with wide, anteriorly
short but posteriorly long rostra, with small U3. Significant age variation was found within S. c. cinereus for unicuspid toothrow.

Though none segregate without any overlap, Putnam (S) and Mason (T) County OTUs cluster toward the low end of PCI . Along the low to mid range of the axis, Mercer County OTUs (X, Y) clustered with considerable overlap.

Clustering near the center of PCl , the Monroe County OTU (N) was completely contained within the clusters of Monongalia (A) and Pocahontas/Randolph Counties (H). Spreading from the low-mid range to the highest along $\mathrm{PCI}, \mathrm{OTU}$ H represented the widest spread, but also the largest individuals. Other OTUs represented in the upper range of PCl are Preston (C and B),

Randolph/Pocahontas (I), Pendleton (J), Greenbrier (M), Monroe (N), Raleigh (P), and Fayette (Q) Counties.

Showing even more overlap than along PCI , OTUs were not clearly segregated along PCII. Representing small individuals, OTUs T and S clustered furthest from the origin of the axis reflecting high PCII scores. Clustering along the center toward the high range of PCII were OTUs X, Y and N. The other OTUs did not cluster along this axis.

Only OTUs represented by small numbers, C (Preston) and J (Pendleton), seemed to cluster on PCIII. No segregation was noticeable along this axis.

Multiple analysis of variance among populations. The results of this

Table 9. Eigenvalues of the correlation matrix from the principal components analysis for within West Virginia S. c. cinereus, and eigenvectors of PCI, PCII, and PCIII.

	PCI	PCII	PCIII
Eigenvalue	5.02690	1.95946	1.69881
Difference	3.06744	0.26065	
Proportion	0.314181	0.122466	0.106176
Cumulative	0.314181	0.436648	0.542823
Characters	Eigenvectors		
TotL	0.274958	-0.294772	-0.102116
TalL	0.330753	-0.323908	-0.124478
HF	0.148453	-0.330211	-0.02992
SL	0.385079	-0.155004	0.047326
CW	0.305222	-0.270514	0.169588
CH	0.241779	-0.162496	0.021849
IC	0.119880	-0.036301	0.278170
MP	0.322008	0.090862	0.088927
M2-M2	0.124890	0.282434	0.460464
11-11	0.051655	0.013033	0.499409
UT	0.271597	0.413028	-0.292260
P4-M3	0.265842	0.198211	0.374761
U3	0.261969	-0.019456	-0.295817
U4	0.169861	0.218812	-0.056011
U5	0.170190	0.279699	0.011218
RO	0.293004	0.386864	-0.279911

Figure 8. Plots of the first three principal components from the PCA for variation within West Virginia S. c. cinereus. The symbols represent the populations with coordinating letter designations. $A=$ Monongalia, $B=P r e s t o n, ~ C=P r e s t o n, ~$ $\mathrm{D}=$ Randolph, $\mathrm{E}=$ Tucker, $\mathrm{G}=$ Pendleton, $\mathrm{H}=$ Randolph/Pocahontas, I=Randolph/Pocahontas, $\mathrm{J}=$ Pendleton, $\mathrm{L}=$ Webster, $\mathrm{M}=$ Greenbrier, $\mathrm{N}=$ Monroe, $\mathrm{O}=$ Fayette, $\mathrm{P}=$ Raleigh, $\mathrm{Q}=$ Fayette, $\mathrm{R}=$ Fayette/Raleigh, $\mathrm{S}=$ Putnam, $\mathrm{T}=$ Mason, $X=$ Mercer, $Y=$ Mercer.

analysis are depicted in Table 10. No significant differences were found among age classes for any of the PC axes in population A (Monongalia). On PCl in population H (Pocahontas/Randolph), young adults and adults were found to vary significantly from old adults. Old adults and adults were found to differ significantly from young adults in population N (Monroe) on PCII. Population P (Raleigh) showed significant variation on PClI with adults and young adults varying from old adults. Also in this population adults and old adults showed no differences between the two, old adults and young adults showed no significant differences between the two, but adults and young adults differed significantly from each other.

Stepwise bivariate regression. Figure 8 shows the results of this analysis. Both elevation and latitude significantly and positively correlated with PCl scores. This correlation is described by the equation: $\mathrm{PCI}=0.0011$ (elevation) + 0.0121 (latitude) -30.9281 . All three intercepts were significantly different from zero (intercept and elevation $p<0.0001$, latitude $p<0.0003$). These two factors explained 32% of the variation shown in the PCA. Elevation explained 27% and latitude 5% of the total 32% variation.

Canonical discriminant analysis. Results of this analysis are contained in Table 11 and Figure 9. Canonical correlate I explained 47.0% of the variation. Fifteen of sixteen characters loaded positively on CANI. This is a general size axis. The characters that loaded most heavily on CANI were tail length, length of skull, total length, cranial width, and U3. Consistent with PCI, individuals with

Table 10. Results of MANOVA for effect of age on position of points along the PC axes. The figures are for populations and PC axes where significant differences were found. Age classes with same superscript from the same populations are not significantly different.

Population H on $\mathrm{PCl}_{(p<0.0001)}$		
Age Class	Mean(\pm SD)	N
$1^{\text {a }}$	2.4116(1.63)	19
$2^{\text {a }}$	1.9732(2.51)	8
$3^{\text {b }}$	0.4294(1.28)	31
Population N on PCII (p<0.0023)		
$3^{\text {a }}$	0.5416(1.22)	3
$2^{\text {a }}$	0.4179(1.05)	4
$1^{\text {b }}$	-0.7002(0.86)	6
Population P on PCII ($p<0.0003$)		
$2^{\text {a }}$	2.0016(3.71)	2
$1^{\text {a }}$	0.8812(2.35)	5
$3^{\text {b }}$	-1.3544(1.75)	9
Population P on PCIII (p<0.0619)		
$2^{\text {a }}$	0.9135(1.62)	2
$3^{\text {ab }}$	-0.3511(0.76)	9
$1^{\text {b }}$	-0.9945(1.02)	5

Figure 9. Plots of regression analysis for effect of elevation on PCl scores and effect of latitude on PCl scores.

high CANI scores are large and have long wide skulls with a relatively wide U3.
The amount of variation explained by CANII is 13.0%. Because nine of sixteen characters loaded negatively, CANII was a reflection of shape. Characters that loaded heavily on this axis were: U3, unicuspid toothrow, rostral shape, cranial width, and I1-I1. Loading negatively on this axis were U3, unicuspid toothrow, and rostral shape. High scoring individuals along this axis have short wide rostra and a wide braincase.

The amount of variation explained by CANIII is 10%. Four of the characters loaded negatively. Canonical correlate III was a general size axis. The characters that loaded most heavily on CANIII were U5, interorbital constriction, $11-11, \mathrm{M} 2-\mathrm{M} 2$, and hind foot. The only character that loaded negatively on CANIII was hind foot. Individuals with high CANIII scores have wide rostra with a relatively wide U 5 , and small feet.

Clustering patterns along PCl were clarified by CANI. Though overlapping, OTUs S (Putnam) and T (Mason) clustered tightly to the right of the graph reflecting low CANI scores, thus small individuals. The plots of OTUs X and Y (Mercer) clustered tightly at the low-mid range of CANI and, although they overlapped each other, were more segregated from the other OTUs. In the mid to high range along this axis, OTUs A (Monongalia) and N (Monroe) clustered tightly, greatly overlapped, and fell mostly within the low range of the OTU H (Pocahontas/Randolph) cluster.

Table 11. Canonical correlation and eigenvalues from the canonical discriminant analysis for within West Virginia S. c. cinereus, and total canonical structure of canonical correlates CANI, CANII, and CANIII.

	CANI	CANII	CANIII	
Eigenvalue	3.2047	0.8895	0.6860	
Proportion	0.4698	0.1304	0.1006	
Cumulative	0.4698	0.6002	0.7008	
Characters		Total Canonical Structure		
TotL	0.745722	-0.240290	0.240303	
TalL	0.867193	-0.259198	0.06290	
HF	0.478934	-0.051311	-0.283180	
SL	0.852711	0.005530	0.163970	
CW	0.738695	0.407102	-0.059178	
CH	0.495613	0.377247	-0.240526	
IC	0.216773	0.054060	0.372796	
MP	0.497390	-0.013187	0.268655	
M2-M2	-0.011698	0.065085	0.296406	
I1-11	0.012918	0.393940	0.348032	
UT	0.119642	-0.433076	0.239183	
P4-M3	0.300479	0.035566	0.149313	
U3	0.510399	-0.528254	-0.138888	
U4	0.225144	-0.080789	0.038295	
U5	0.194186	-0.039101	0.576769	
RO	0.177075	-0.420106	0.207103	
			0	

Scoring low on CANI and mid to high on CANII, OTUs S and T (Putnam and Mason Counties) represented the smallest individuals. The X and Y (Mercer County) clusters spread more along CANII but were representative of small to medium shrews. No further resolution was seen along this axis nor along CANIII.
.Multiple analysis of variance. Table 12, summarizes the results of this analysis. Eleven of the seventeen characters were found to differ significantly among populations. The Student-Newman-Keuls multiple comparison test (SNK) revealed that most populations did not vary significantly for most variables. The SNK groupings showed that for any given variable only the extreme populations varied significantly from the rest. The populations

Figure 10. Plot of first three canonical variates from the CDA for West Virginia S. c. cinereus.

representing the highest means varied with the characters. However, the population representing Putnam County, (OTU S) had one of the two lowest means for eleven characters.

Table 12. Results of MANOVA for differences among West Virginia S. c. cinereus populations, showing only the populations representing the two highest and lowest mean values for each significantly different variable. Means with the same superscripts are not significantly different.												
High							Low					
var	Pop	mean(\pm SD)	N									
TotL	G	100.00 ${ }^{\text {a }}$ (79.27)	1	I	100.50 ${ }^{\text {a }}$ (39.63)	4	T	$83.00^{\text {b }}$ (20.48)	15	S	$80.00^{\text {b }}$ (30.36)	6
Tall	G	45.00 ${ }^{\text {a }}$ (44.00)	1	K	42.00 ${ }^{\text {a }}$ (44.00)	1	T	$31.27^{\text {b }}$ (11.36)	15	S	29.670 ${ }^{\circ} 17.96$)	6
SL	K	$16.50^{\circ}(5.50)$	1	C	$13.03^{8}(3.18)$	3	T	$14.78^{\text {b }}$ (1.53)	13	S	14.47 ${ }^{\circ}$ (2.25)	6
CW	K	$8.00^{\circ}(2.59)$	1	D	$7.90^{\circ}(0.91)$	8	L	$7.40^{\circ}(2.25)$	1	S	$7.28{ }^{\circ}(1.10)$	6
CH	Q	5.35 ${ }^{\text {a }}$ (1.41)	4	D	5.09 ${ }^{\text {a }} 1.00$)	8	S	$4.28^{\circ}(1.15)$	6	G	$4.00^{\text {b }}$ (2.83)	1
MP	K	5.00 ${ }^{\text {a }}$ (1.32)	1	C	$4.90{ }^{\text {ab }}(0.76)$	3	0	$4.60{ }^{\text {ab }}(0.50)$	7	S	$4.51^{\text {b }}$ (0.54)	6
1111	1	$1.31{ }^{19}(0.21)$	4	K	1.29 ${ }^{\text {a }}$ (0.41)	1	E	$1.17^{\text {ab }}(0.41)$	1	L	$1.14{ }^{\text {b }}$ (0.41)	1
UT	K	2.29 ${ }^{\circ}$ (1.12)	1	C	$2.18^{\mathrm{a}}(0.65)$	3	R	$1.88^{\circ}(0.50)$	5	S	1.78 ${ }^{\text {b }}(0.46)$	6
U3	F	$0.51{ }^{10}(0.31)$	1	G	0.49 ${ }^{\text {a }}$ (0.31)	1	S	0.38 ${ }^{\text {b }}(0.13)$	6	T	$0.36^{\mathrm{b}}(0.08)$	15
U5	C	$0.33^{\text {a }}(0.14)$	3	1	0.30 ${ }^{\circ}(0.25)$	1	R	$0.23{ }^{\text {b }}$ (0.11)	5	F	$0.19^{\text {b }}(0.25)$	1
RO	K	3.29 ${ }^{\text {a }}$ (1.19)	1	C	$3.17^{\text {a }}(0.68)$	3	R	$2.87^{\text {b }}(0.53)$	5	S	2.75 ${ }^{\circ}(0.48)$	6

DISCUSSION

Age and sex variation

That soricid skulls flatten with age has been well documented (Crowcroft and Ingles, 1959; Jackson, 1928; Levengood, 1987; Pruitt, 1954; Pucek, 1963; Rudd, 1955). It was not surprising that a significant difference was found in cranial height among age classes for S. c. cinereus and S. c. fontinalis. In both taxa the height of the skulls decreased with age. Although no significant differences were found among age classes for S. I. longirostris for any character, young adults had the greatest cranial height. Interestingly, adults, not old adults, represented the smallest cranial height. The differences among age classes for S. I. longirostris were evident but not significantly different.

The unicuspid toothrow and rostral shape differences found among age classes in S. c. cinereus may be a function of tooth wear. The relationship between the size and shape of the individual teeth and toothrows, and overall size is consistent throughout the life of soricids (Junge and Hoffman, 1981). However, excessive tooth wear associated with old age can obscure this relationship.

In S. c. cinereus, young adults may have differed from, and measured less than the other two ages for total length, because of the accidental acceptance of subadult specimens into the data set. However, because the external measurements are usually obtained from a skin tag or preparator's catalog data, they are not made by the same person who made the cranial and dental measurements. The fact that, in such a study as this, there may be nearly
as many different preparators as specimens allows for a great deal of inherent human error.

Junge and Hoffman (1981) reported measuring skull length, by placing one caliper point on the anterior medial point on the premaxillary and the other point on the posterior end of the skull at midline, as was done in this study, is a good way to avoid the effects of tooth wear and aging. This is not reflected by the significant differences among age classes in S. c. fontinalis for skull length. Researchers exploring morphological variation associated with age in shrew skulls have reported differences in cranial width and cranial height, but not skull length (Junge and Hoffman, 1981; Levengood, 1987; Pucek, 1963; Rudd, 1955).

No sexual dimorphism was found for any of the taxa studied. This is consistent with findings of other researchers.

Diagnostic characters

The size of the third unicuspid is often used as diagnostic character for S.

1. longirostris. One advantage in using U3 as an identifying character is that its size, relative to skull size, does not change with age. However, the dependability of this character as a diagnostic tool may vary within the geographic range of S. I. Iongirostris (Junge and Hoffman, 1981). French (1980) also reported that U3 may be equal in size to $U 4$ in 20% of the individuals within a population.

The usefulness of rostral shape as a diagnostic character is supported by others (Junge and Hoffman, 1981; van Zyll de Jong, 1980). The width across the second molars and the length of the unicuspid toothrow, both components of the rostral shape ratio, also figured prominently as diagnostic characters in these
analyses.
Consistent with published descriptions of S. c. cinereus (Hall, 1981; Junge and Hoffman, 1981), the West Virginia S. c. cinereus were found to be large and long-tailed, with long skulls, long narrow rostra, and relatively large U3. Also based on these analyses, S. I. longirostris have short skulls with short, broad rostra, a small third unicuspid and a small tail, similar to the published descriptions of this taxon (French, 1980; Junge and Hoffman, 1981). In West Virginia, therefore, S. I. longirostris can presumably be distinguished from S. c. cinereus using characters applicable in other areas of sympatry. Though none of the characters describing clustering patterns on the PCA and CDA scatter plots can be used as good diagnostics to distinguish S. c. fontinalis from S. c. cinereus, they can help demonstrate the morphological differences between these taxa. The prediction made by Jackson (1928), and later substantiated by Poole (1937), that S. fontinalis would prove to be a small race of S. cinereus was further supported by these analyses.

Taxonomic status and geographic variation

Junge and Hoffman (1981) reported the occurance of extreme character measurements in soricids from the periphery of their geographic ranges. Many studies involving morphological variation in shrews have revealed patterns of geographic or clinal variation, generally exhibiting a decrease in size from northern to southern localities (Huggins and Kennedy, 1989; Jackson, 1928; Junge and Hoffman, 1981; Levengood, 1987). The wide range in character measurements shown in the specimens used in this study reflects these
tendencies.
West Virginia lies near the northern border of distribution of S. I. longirostris. Northern specimens were found to have more narrow rostra and interorbital constriction than southern specimens. And though all specimens of S. I. Iongirostris were generally smaller than the S. c. cinereus specimens, the rostral shape of the northern ones was more like that of small S. c. cinereus or S. c. fontinalis.

The position of the Roane County S. I. Iongirostris (French, 1977) near the Virginia specimens and the Putnam County S. c. cinereus on the PCA scatter plot indicates that these specimens are more like small S. c. cinereus and less like the typical southern S. I. longirostris. That one of these Virginia S. I. longirostris (USNM 283624) originally had been designated S. c. fontinalis demonstrates the systematic and taxonomic difficulties of these confusing taxa. Other Virginia specimens have undergone similar reclassifications (French, 1977; Handley, 1981). However, in the CDA, which serves to maximize differences between taxa, French's (1977) S. I. longirostris was even further removed on the scatter plot from the S. I. longirostris cluster; this suggests that the only documented S. I. Iongirostris from WV may have been misidentified.

The fairly wide range in size shown in S. I. longirostris may have been due to the specimens representing a wide geographic area (Junge and Hoffman, 1981; Pucek, 1963). Generally, southern specimens are represented by individuals with a long and wide molariform region and short anterior rostrum. They also have relatively large fifth unicuspids and small third unicuspid. The
short, crowded anterior rostrum is typical for this taxon (Caldwell and Bryan, 1982; French, 1980; Junge and Hoffman, 1980) The more northern specimens are represented by individuals with shorter, narrower molariform region than the southern specimens but still have shorter more crowded anterior rostral regions than S. c. cinereus or S. c. fontinalis.

No clear patterns of geographic or clinal variation were made visible by either the PCA or CDA for S. c. fontinalis. This may be due, in part, to their relatively restricted geographic range.

Geographic variation within West Virginia S. c. cinereus

The significant differences among age classes and PC scores for the populations tested indicate that at least some of the observed morphological variation within S. c. cinereus is a consequence of age. More importantly, the regression analysis demonstrates significant clinal variation along both elevational and, to a lesser extent, latitudinal gradients. In general, individuals from higher elevations and northern latitudes are larger than those from lower elevations and more southern latitudes, a finding consistent with those of Jackson (1928) and others (Huggins and Kennedy, 1989; Levengood, 1987). Such a pattern of clinal variation is illustrated in Figure 11. The West Virginia populations representing geographical extremes are Mason County (OTU T) at mid latitude, but lowest elevation, Mercer County (OTUs X and Y) furthest south and at relatively high elevation, Pocahontas/Randolph Counties (OTU H) at mid latitude and highest elevation, and Monongalia County (OTU A) furthest north and also at a relatively high elevation. Mercer County individuals,
from both populations, were represented in the analyses by very small individuals with short skulls having narrow crania and short relatively wide rostra. The Mason County population was morphologically similar to the Mercer County shrews. The high elevation Pocahontas/Randolph Counties population were represented by the largest individuals. These specimens have the longest skulls with widest crania and long narrow rostra. Monongalia County individuals fell within the range of the large, high elevation population H shrews and are generally larger than individuals from the other populations discussed.

From about the same latitude and only slightly higher elevation than the Mason County population, individuals representing Putnam County were the smallest specimens observed. The Monroe County population (N), from a fairly southern latitude and high elevation, geographically similar to Mercer County, was represented by individuals more similar to the Monongalia and Pocahontas/Randolph County individuals than to the Mercer County shrews. In addition to the clinal patterns of morphological variation, the data reveal patterns attributable to other biogeographical processes and influences. In the south, populations X and Y (Mercer County) lie close to population N (Monroe County), but are separated from it by the Bluestone and New River systems. These river systems separate three salamander species complexes (Green and Pauley, 1987) and may be a barrier to gene flow between the Mercer and Monroe County shrews. Mayr (1963) stated that rivers are effective geographical barriers to small mammal dispersal.

Populations T and S (Mason and Putnam Counties) are geographically
separated from all other populations by numerous barriers including two Interstate Highways, Kanawha and Ohio Rivers and the absence of conspecific populations across the central portion of the state. In contrast, populations A, H and N (Monongalia, Pocahontas/Randolph, and Monroe Counties) are joined by contiguous conspecific populations along the eastern mountain region of the state.

Based on this distribution, the expected pattern of morphological similarities and differences would be that illustrated in Figure 12. Populations A and H (Monongalia and Pocahontas/Randolph Counties) should be more similar to each other than they are to any other population. Population N (Monroe County) should be more similar to A and H than any others because latitude proved to be less of an influence on variation than elevation, N is similar in elevation to A, and N is part of the contiguous populations along the eastern mountains. Populations X and Y (Mercer County) should be more similar to

Figure 11. Distribution of individuals from the geographically extreme populations of S. c. cinereus in West Virginia on the first two axes of the PCA scatter plot. The extreme populations are low elevation Mason County (T), high elevation Pocahontas/Randolph Counties (H), southern latitude Mercer County (X and Y), and northern latitude Monongalia County (A).
each other than to any other populations. The predicted morphological similarity between X and Y and the N, A, and H populations would be due to elevation. Populations S and T (Putnam and Mason Counties) are predicted to be similar to each other but not to any other population due to the low elevations and geographical isolation.

As Figure 13 shows, and as was predicted, S and T are most distinct and form tight separate clusters with no overlap. Mercer County populations, X and Y, cluster together with some, but not extensive, overlap with Monroe, Monongalia, and Pocahontas/Randolph Counties populations, N, A and H. Populations X and Y do not exhibit morpological similarities to populations A, H, and N as would be expected based on elevation. This may be a consequence of genetic or geographic isolation (Mayr, 1963). The extensive overlap shown by populations N, A, and H may be due to elevational influence.

Figure 12. Dendogram of expected similarities and differences for 7 biogeographically significant populations of S. c. cinereus in West Virginia. The populations are: $\mathrm{A}=$ Monongalia, $\mathrm{H}=$ Pocahontas/Randolph, $\mathrm{N}=$ Monroe, S=Putnam, $T=$ Mason, and X and $Y=$ Mercer Counties.

Figure 13. Plot of 7 biogeographically significant West Virginia S. c. cinereus populations along the first two axes of the PCA. The populations represented are Monongalia (A), Pocahontas/Randolph (H), Monroe (N), Putnam (S), Mason (T), and Mercer (X, Y) Counties.

Conclusions and Summary

Consistent with other research, (Huggins and Kennedy, 1989; Jones et al., 1991; Levengood, 1987; Rudd, 1955;) no sexual dimorphism was found in any of the taxa studied.

As was expected some age variation was found. Sorex c. cinereus showed most age variation, S. c. fontinalis, and S. I. longirostris none. Age clearly had an effect on PCl scores and should be considered by future investigators using principal components analysis. Also, since the largest population with the best representation of age classes showed significant differences along PCI, it is reasonable to suspect age has some effect on morphological variation in other populations.

Diagnostic characters found to separate S. I. longirostris from S. c. cinereus were rostral shape and skull length. These characters should also be useful in distinguishing S. I. longirostris from S. c. fontinalis should an individual be found in an area where the two occur in sympatry. However, young S. c. cinereus may be difficult to distinguish from S. I. longirostris. Reported S. I. Iongirostris from Giles County, Virginia (Odum, 1944) were later identified as young S. c. cinereus by French (1977). Pagels and Handley (1989) reported S. 1. Iongirostris from Montgomery County, Virginia, but indicated an apparent upper elevational limit in distribution in the more northern extensions of its range. They also suggested that the Blue Ridge Mountains provide a formidable barrier to northward and westward expansion. Biochemical studies on specimens from the southeastern part of the state, near the Virginia border, may help resolve
conflicts. Additional studies in the southeastern part of West Virginia will likely reveal the occurance of S. I. longirostris there.

French's (1977) S. I. longirostris may have been misidentified. Because no other Roane County specimens are available further collections from Roane County and additional morphometric, biochemical and genetic studies are needed to clarify the taxonomic status of this and any future Roane County specimens. Putnam County individuals are equally problematic. And, as with Roane County, additional collections and analyses are needed.

Sorex c. cinereus from West Virginia show considerable variation and in patterns similar to what has been reported elsewhere (Huggins and Kennedy, 1989; Levengood, 1987; van Zyll de Jong and Kirkland, 1989). Pattems of morphometric variation are clearly more complex as a consequence of biogeography. West Virginia is complex biogeographically. This complexity is reflected in the morphological variation of the soricids.

Literature Cited

Bole, B. P. and P. N. Moulthrop. 1942. The Ohio recent mammal collection in the Cleveland Museum of Natural History. Scientific Pub. of C. M. N. H., 5:83-181.

Caldwell, R. S. and H. Bryan. 1982. Notes on distribution and habitats of Sorex and Microsorex (Insectivora: Soricidae) in Kentucky. Brimleyana, 8:91100.

Crowcroft, P. and J. M. Ingles. 1959. Seasonal changes in the brain-case of the common shrew (Sorex araneus L.). Nature, 183:907-908.

Diersing V. E. 1980. Systematics and evolution of the Pygmy Shrews (subgenus Microsorex) of North America. J. Mamm., 61:76-101.

French, T. W. 1977. The first record of the southeastern shrew, Sorex longirostris, in West Virginia. Proc. West Virginia Acad. Sci., 48:120-122.

French, T. W. 1980. Sorex longirostris. Mammalian Species, 143:1-3.
Green, N. B., and T. K. Pauley. 1987. Amphibians and reptiles in West Virginia. Univ. Of Pittsburgh Press, Pittsburgh. 241pp.

Hall, E. R. 1981. The mammals of North America. John Wiley \& Sons, New York. 690 pp.

Handley, C. O. 1981. Deletion of Sorex cinereus fontinalis from taxa known to occur in Virginia. J. Mamm., 63:319.

Handley, C. O. and M. Varn. 1994. Identification of the Carolinian shrews of Bachman 1837. Special Pub. Carnegie Mus. of Nat. Hist., 18:393-406.

Huggins, J. A. and M. L. Kennedy. 1989. Morphologic variation in the masked shrew (Sorex cinereus) and the smoky shrew (Sorex fumeus). Am. Mid. Nat., 122:11-25.

Jackson, H. H. T. 1925. The Sorex arcticus and Sorex arcticus cinereus of Kerr. J. Mamm., 6:55-56.

Jackson, H. H. T. 1928. Taxonomic review of the North American long-tailed shrews (genera Sorex and Microsorex). North American Fauna, 51:1-238.

Jones, C. A. , S. R. Humphrey, T. M. Padgett, R. K. Rose, and J. F. Pagels. 1991. Geographic variation and taxonomy of the southeastern shrew (Sorex longirostris). J. Mamm., 72:263-272.

Junge, J. A. and R. S. Hoffman. 1981. An annotated key to the long-tailed shrews (genus Sorex) of the United States and Canada, with notes on Middle American Sorex. Occas. Papers Mus. Nat. Hist., Univ. Kansas, 94:1-48.

Kirkland, G. L. 1977. A re-examination of the subspecific status of the Maryland shrew, Sorex cinereus fontinalis Hollister. Proc. Penn. Acad. of Sci., 51:43-46.

Kirkland, G. L. and J. M. Levengood. 1987. First record of the Maryland shrew (Sorex fontinalis) from West Virgina. Proc. Penn. Acad. of Sci., 61:35-37. Levengood, J. M. 1987. Patterns of morphological variation in six species of eastern North American shrews. Unpubl. Master's Thesis, Shippensburg University, Shippensburg, PA. 74 pp.

Mayr, E. 1963. Animal species and evolution. Harvard University Press,

Cambridge. 797 pp.
Odum, E. P. 1944. Sorex longirostris at Mountain Lake, Virginia. J. Mamm., 25:196.

Poole, E. L. 1937. Pennsylvania records of Sorex cinereus fontinalis. J. Mamm., 18:96.

Pagels, J. F., and C. O. Handley, Jr. 1989. Distribution of the Southeastern Shrew, Sorex longirostris Bachman, in Western Virginia. Brimleyana, 15:123-131.

Pruitt, W. O. 1954. Aging in the masked shrew, Sorex cinereus cinereus Kerr. J. Mamm., 35:35-39.

Pucek, Z. 1963. Seasonal changes in the braincase of some representatives of the genus Sorex from the palearctic. J. Mamm., 44:523-536.

Rudd, R. L. 1955. Age, sex, and weight comparisons in three species of shrews. J. Mamm., 36:323-338.

SAS Institute Inc. 1988. SAS/STAT guide for personal computers. Version 6 ed. SAS Institute Inc., Cary, North Carolina, 378 pp.

Sneath, P. H. A., and R. R. Sokal. Numerical taxonomy. W. H. Freeman and company, San Francisco. 573 pp.
van Zyll de Jong, C. G. and G. L. Kirkland. 1989. A morphometric analysis of the Sorex cinereus group in central and eastern North America. J. Mamm., 70:110-122.

APPENDIXI

List of specimens used in this study

七0て8	SG8E	029	$\forall W M$ כ！！u！IOJW	NOS $\forall W$		100900 OWกW	snəəแ！00 xajos				
†028	G58E	029	$\forall W M$ O！$\downarrow!1 O O W$	NOS $\forall W$	e！u！̣⿺𠃊！ 1 lsaM	000900 JWกW	snวəวu！ 0 xajos				
7028	¢58E	029	$\forall W M$ ग！u！loつW	NOS $\forall W$		666500 JWกW	snวјวu！ 0×2.05				
7028	Sc8E	029	$\forall W M$ O！\dagger ！ 1 OOW	NOS＊W		\downarrow ¢8S00 JWกW	snวjau！o 0 xajos				
ヤ028	\dagger ¢8E	009	$\forall W M$ O！	NOS $\forall W$	e！u！bu！＾ISəM	$89 \varepsilon 500$ כWกW	snaдวu！0 $0 \times 2 i 0 s$				
七028	¢ 98ε	029	$\forall W M$ כ！ıu！⿰丁W	NOS $\forall W$	е！u！bu！ 1 ISəM	L9ES00 JWกW	snəjau！ 0 xajos				
ヤ0¢8	G¢8E	009	$\forall W M$ ग！u！lOOW	NOS $\forall W$	R！u！bנ！\wedge lSəM	998500 JWกW	snəjau！o $0 \times 2 i 0 S$				
ヤ028	\downarrow ¢8E	009	$\forall W M$ O！	NOS＊W	R！u！bנ！ 1 1SəM	Sc\＆s00 OWnW	snวjau！o 0 xaノOS				
S028	9¢8E	029	$\forall W M$ כ！！u！｜OOW	NOS $\forall W$		$6 \downarrow \varepsilon \dagger 00$ OWกW	snวjau！0ं xajos				
7028	¢98E	029	$\forall W M$ כ！u！IOOW	NOS＊W	e！！u！b！\wedge łSəM	ち0ZZ00 JWกW	snaرau！ 0×210 S				
2008	て08\＆	002Z	EjO2N	¢ヨا¢8®Nヨヨy	е！u！ธ！\wedge lSəM	て16180 HNWO					
2008	て08E	002Z	elozn	¢ヨ188Nヨヨy9	E！u！6נ！$\ 152 \mathrm{M}$	116180 HNWO	sпวјวu！0 \％xajos				
2008	て08\＆	0022	eloan	とヨ188Nヨヨู9		OL6L80 HNWO	snajau！ 0 xajos				
2008	Z08E	00ZZ	Elozn	とヨ1＞8Nヨヨบจ	e！u！bin \wedge lSoM	606180 HNWO	sпәјวu！ 0 xəرOS				
2008	Z08\＆	00ZZ	eloan		R！u！bj！\downarrow lsam	806180 HNWO	snวjau！0こ xəjOS				
2008	て08\＆	002Z	ejozn		E！u！bi！\wedge Is ${ }^{\text {a }}$	L06180 HNWO	snวjəu！0．0 xəjos				
2008	て08E	$002 Z$	elozn	¢ヨ1\％8ㅋㅋํ	R！u！6！$\$ ISaM & 906180 HNWO & snวjวu！0 0×2 ¢						
2008	て08\＆	00ZZ	elozn	とヨ189Nヨヨชจ	е！u！b！$\$ lsəM & S06L80 HNWO & sna」au！o 0 xajos \hline 2008 & て08E & 002Z & ejozn & ¢ヨإ89Nヨヨบ9 & & 706180 HNWO & snəjəu！0＇0 xəjos \hline LZ08 & $\checkmark \square \angle \varepsilon$	00てZ	IS Jə！̣quəวข	¢ヨاy9Nヨヨบจ		عZSs00 OWกW	snวرวu！ 0 xəjos
1018	LSLE	0091	tuow！uu！	$\exists 1 \perp \exists$ 人 $\forall ป$	R！u！ 5 ！\wedge ISOM	68\＆500 OWกW	snaљวu！ 0 xaios				
t018	£S $\angle \varepsilon$	0ヵて1	әәцриəソวW	3 $1 \perp \exists$ 人 $\forall \mathcal{J}$	E！u！$\overline{\text { ！}} \wedge 1$ lsaM	91Lャ00 OWOW	snəjəu！0 0 xajos				
¢018	$\varepsilon S \angle \varepsilon$	0ャて1	วәıpuəyวW	$\exists \perp \perp \exists$ 人 $\forall 寸$	е！u！б！！$\$ 2SOM & عL8E00 ОWกW & snวдวu！う 0 xajos \hline 七018 & ESLE & Oもてし & әәлpuəソ｜ & ヨ $11 \exists$ 人 $\forall \pm$		0L8E00 OWกW	snajau！o \％xajos			
¢018	£SLE	0ヵて1	әәцриәサ्रכW	$3 \perp \perp \exists$ 人 $\forall \mathcal{A}$		$698 \varepsilon 00$ OWกW	snวлวน！ 0 xajos				
ع018	†08\＆	0ヶ81		ヨ113人＊＇	E！u！	$608 \varepsilon 00$ OWกW	snajau！ $0 \times 2 \mathrm{OS}$				
E018	†08E	0781	ว1！＾อ川əイе」	ヨ11ヨ入Vヨ	E！u！6נ！ 1 2SaM	808800 OWกW	snaرaulo 0×2105				
ع018	†08\＆	0781		311ヨ入トコ	e！u！ 6 ！$\$ ISaM & L08800 OWกW & snajaulo 0×2105						
ع018	ع08E	0781	U！ełunow Kıneag		R！u！ 6 ！ 1 lSaM	08Lヤ00 OWกW	snajauio 0 xajos				
ع018	ヤ08\＆	0ヤ81	U！！è unow Kineag	ヨ 113 人 $\forall=$	е！u！ 6 ！ 1 lsam	จ $\angle 6 E 00$ JWกW	snajau！ $0 \cdot 0$ xaرos				
ع018	†08\＆	0ヶ81	u！eıunow Kınneag	ヨ11 3 人 $\forall \mathcal{J}$	R！u！bu！\triangle ISOM	عL6E00 OWกW	snajau！ 0 xajos				
ع018	ع08\＆	0ヤ81	U！ȩ̇unow Kineag	3113人 $\forall 3$	E！u！	68ャを00 כWกW	snajau！ $0 \cdot 0 \times 2 i 05$				
ع018	ヤ08\＆	O¢81	u！ejunow Kıneag		е！u！bu！ 1 15\％M	0LLZOO JWחW	snəəวu！ 0 xajos				
วрпи̣6u07	Opn！！	U0！1e＾e｜3	র人！！e007	Kıunoう	әjeis	Jequnu 6olejeo	U0xe1				

OS6L	Oヤ6\＆	OOLZ	Y00y $\mathrm{s}_{\text {dadoo }}$	$\forall 17 \forall O N O N O W$		6£6ャ00 כWกW	
OG6L	Oヤ6\＆	0012	Y00y s_{1} 」2do0う	$\forall 17 \forall O N O N O W$	е！u！бл！＾ఫSəM	8ع6ヶ00 OWחW	
OG6L	Oヤ6\＆	0012	Yフoy ${ }^{\text {d，}}$ ， 2 dooj	VI7VONONOW	е！！u！bu！＾\downarrow SəM	Lع6ャ00 OWกW	snวมวu！৩＂xəios
OS6L	Oヤ6\＆	0012		$\forall 17 \forall O N O N O W$	е！	จع6ь00 OWกW	
OG6L	0ヤ6\＆	0012	Yכoy s，1ədooう	$\forall 17 \forall O N O N O W$		1ع6ャ00 כWกW	
OG6L	0ヤ6\＆	0012	Yooy s，dədooう	$\forall 17 \forall O N O N O W$	e！u！bı！ 1 1SəM	9Z6ャ00 כWกW	snajau！ 0×2 ¢
OG6L	0ヤ6\＆	0012	Yooy s，1ədoo	$\forall 17 \forall O N O N O W$	e！u！6！！ 1 ！ 5 M	七て6ャ00 OWกW	
OG6L	0ヤ6\＆	001て	Yooy s，dadooう	$\forall 17 \forall O N O N O W$		£16180 HNWO	
†S08	6LLE	686ε	ulepunow dan！y ise	とヨコソヨW	E！u！ $\mathrm{D}!\wedge 1$ 1SวM	Lع8900 OWกW	snajau！o $0 \times 2 \mathrm{OS}$
†S08	6LLE	0682		とヨコบヨW	e！u！6！！＾1SəM	988900 OWกW	snajau！o 0 xajos
†S08	61LE	06ヶ¢	u！ełunow Jə＾！！ISEヨ	とヨコソヨW	е！u！6נ！ 1 ISəM	818900 OWกW	sna」au！o 0 xaıos
tS08	6レLE	06ヵ¢	u！efunow Jo＾！！lseg	とヨコ】ヨW		$\varepsilon 18900$ OWกW	snajau！o $0 \times 2 i 0 s$
ฤS08	6L 2 ¢	0GヤE		とヨコyヨW	е！u！bu！\wedge lSəM	108900 OWกW	snajau！${ }^{\circ} \mathrm{O}$ xajoS
ฤS08	6LLE	0¢ヶ¢	u！ejunow dan！y lse	とヨコ】ヨW	е！u！bu！\downarrow \SəM	008900 OWกW	snaرau！ 0 ¢ xajos
¢ 908	6LLE	OSヤ¢	u！plunow dan！y lseg	บヨコ】ヨW	e！u！bu！lisom	$66 \angle 900$ JWกW	snaرวu！0．0 xaıOS
〉S08	612ε	080\＆		บヨコ¢ ${ }^{\text {c }}$		8LL900 OWกW	snəرวu！0＇0 xəرOS
†508	61LE	OSOE	uielunow dan！y lseg	¢ヨコ¢ヨW		ILL900 OWחW	snəృวu！৩＂xaノos
\downarrow ¢08	6LLE	0862	u！equnow Jan！y lseg	ソヨフ¢ヨW		599900 OWกW	
†¢08	6レLE	S16Z	u！epunow Jan！y lseg	¢ヨコ¢ヨW		609900 OWกW	snəjəulo 0 xajos
$\square 508$	61LE	SZ8Z	U！！epunow dan！y tseg	¢ \exists ¢ ${ }^{\text {a }}$		995900 OWกW	snasau！0：0 xajos
7908	6LLE	SLLZ	Uiepunow dan！y ise	ฯヨコบヨW	R！u！ $\mathrm{B}!\Lambda 1$ lSaM	$8 \downarrow 5900$ OWกW	sпวృวu！0\％xajos
$\square 508$	6LLE	SLLZ	u！epunow dan！y lseg	¢ ${ }^{\text {d }}$		$\varepsilon \searrow ¢ 900$ OWกW	snәjau！0 0 xajos
\downarrow ¢08	6レLE	SZLZ	u！ejunow don！y lseg	บヨつ¢ヨW	e！u！ $6!\dagger 1$ 1SəM	LLS900 OWnW	snajauio 0 xajos
\dagger ¢08	6LLE	sZLZ	u！epunow dan！y 758	とヨコ¢ヨW		919900 OWกW	snajau！ 0 ¢ xajos
ฤS08	6レLE	0992	u！etunow jon！y ise	¢ ${ }^{\text {d }}$	E！u！b！！ $175 \geqslant \mathrm{M}$	68ャ900 OWกW	snajaulo 0 xajos
\dagger ¢08	6LLE	0992	u！̣ełunow don！y fseg	¢ヨ0¢ ${ }^{\text {d／}}$	E！u！$\overline{1}!\wedge \downarrow$ ISaM	S8ャ900 OWחW	snajauio j xajos
－S08	6ILE	0ع9Z	u！ełunow dan！y lseg	¢ヨOบヨW	е！u！ 6 נ！ISOM	L9ャ900 OWกW	
¢508	6LLE	OG¢Z	u！̣punow dan！y lse	とヨコ¢ヨw	е！u！6נ！ 1 ISOM	Sst900 OWกW	snajau！${ }^{\text {co }}$ xajos
ャ0て8	G¢8E	029	\forall WIM כ！！u！	NOS $\forall W$	е！u！bu！ 153 M	LL1900 OWกW	
ゅ028	S98E	029	$\forall W M M$ ग！	NOS \forall W	E！u！bu！ 1 ISOM	SLL900 OWחW	snวرวu！0\％xajos
†028	¢98E	029	$\forall W M$ O！	NOS＊W		ャLL900 OWחW	snaıวu！0．0 xajos
†0Z8	Sc8\＆	0Z9	$\forall W M$ O！	NOSVW	R！u！ 6 ！$\wedge 150 \mathrm{M}$	عLL900 OWกW	snajau！0 0 xajos
¢028	¢58\＆	029	$\forall W M$ O！！	NOS $\forall W$	e！u！ $6 \pm!\wedge 15 O M$	ZL1900 OWחW	snasau！o＇0 xajos
өpn！！6u07	วpпl！		K1！！｜е007	Kıuno	olels	jaqunu 6olejeo	U0xe 1

¢ع6L	てヤ8\＆	0ヤ8¢	ә｜！	NO1ヨ70Nヨd		LL6180 HNWO	snวдวu！0 $0 \times 10 \mathrm{~S}$
SE6L	てヤ8を	0ヤ8\＆		NO1ヨ70Nヨd	R！u！bu！ 7 7\％M	916180 HNWO	
1208	LELE	0		GOyNOW	е！u！bu！ 150 M	¢¢9901 HNWO	snajau！o 0×20 S
1208	LELE	0	$\forall \mathrm{JHd}$ aye 7 anoouow	GOyNOW		Es9901 HNWO	snaرau！ 0 xə10S
1208	LELE	0	\forall JHd วYe 7 anoouow	GOyNOW		2s9901 HNWO	
1208	LELE	0		GOyNOW		159901 HNWO	
1208	LELE	0		GOyNOW	е！u！bu！ISəM	OG9901 HNWO	
1208	LELE	0		Joynow	R！u！	679901 HNWO	snวjau！ 0×2 ¢0s
1208	LELE	0		Joynow		8ヶ9901 HNWO	
1208	LELE	0		GOyNOW		Lt9901 HNWO	snajauio xajos
1208	LELE	0	$\forall \pm H \mathrm{~d}$ 2хе7 anoouow	GOyNOW	R！u！	979901 HNWO	
1208	LELE	0	$\forall \mathrm{AHd}$ ว\e7 anoouow	GOYNOW	R！u！	St9901 HNWO	snajau！${ }^{\text {a }}$ xajos
1208	LELE	0		BOZNOW		カャ9901 HNWO	snaرau！${ }^{\text {a }}$－${ }^{\text {a }}$
1208	LعLE	0		GOYNOW	е！u！bi！	£ヶ9901 HNWO	sпวлau！
1208	LELE	0		JOYNOW	R！u！bu！$\$ isəM & で99901 HNWO & \hline 0ヤ08 & SZLE & 00ヶて & & GOXNOW & е！u！bu！！！${ }^{\text {a }}$ M	S16180 HNWO	snajau！ 0×20 ¢
0ヤ08	sZLE	00ヵて	$\forall \mathrm{HHd}$ әуеך әлоэuow	ヨOyNOW	R！u！bu！ఫ¢	จ16180 HNWO	snajau！0＇0 xajos
0962	0ヶ68	0012	Yooy s，izdoos	$\forall 17 \forall O N O N O W$	R！u｜bu！ IS $^{\text {a }}$ M	100500 JWกW	snajau！${ }^{\text {a }}$－$\times 105$
OS6L	0ャ6を	0012	Yooy s，1adoos	$\forall 17 \forall O N O N O W$	R！u！bu！ 150 M	686ヤ00 JWกW	snajau！ 0 ¢2jos
OS6L	0ャ6\＆	0012	yooy sadooo	$\forall 17 \forall O N O N O W$	е！u！bu！ 250 M	S86t00 JWกW	
OS6L	0ヶ6と	0012	yooy s，dədoos	$\forall I T \forall O N O N O W$	R！u！bin 152 M	286ち00 JWNW	snajau！ $0 \times 2 \mathrm{OS}$
0S6L	0ヤ68	0012	yooy s，adoos	VITVONONOW	E！u！ $5!\Lambda 152 \mathrm{M}$	086ヤ00 JWNW	snajaulo \times xajos
0962	0ャ6を	0012	yooy shadoos	$\forall I 7 \forall O N O N O W$		6L6ャ00 OWNW	sпәauio ${ }^{\text {ajajos }}$
OS6L	－ヤ6¢	0012	Yooy srladoo	$\forall 17 \forall D N O N O W$		696700 JWกW	snajauio xajos
OG6L	0ヤ6\＆	0012	Yooy sradooj	VITVONONOW	R！u！	896700 JWกW	snajaulo
OS6L	－ヤ6¢	0012	yooy stadoos	VITVONONOW	8！u！bu！\uparrow 259M	$¢ 96 \downarrow 00$ OWกW	snajaulo xajos
DS6L	－† 6ε	0012	yooy s，1ədoos	$\forall I T \forall$ ONONOW	elu｜bu！ 1 IsaM	عs6ャ00 JWกW	
OS6L	－ヤ6¢	0012	Yooy s，radoos	VITVONONOW	¢！u！bu！ 1 ISวM	Lヵ6t00 JWNW	
OG6L	－ $0 \downarrow 6 \varepsilon$	OOLZ	Yooy s，12doos	VITVONONOW	e！u！bin 7 SaM	St6700 JWกW	snajaulo $\times 2 \mathrm{jos}$
OS6L	0ヤ6\＆	0012	yooy s， 1 doos	VITVONONOW	R！u！6u！ 159 M	ャワ6ヤ00 כWnW	snajaulo xajos
OS6L	0ヤ6\＆	0012	yooy s， 12 dooj	$\forall 17 \forall O N O N O W$		عャ6ャ00 OWกW	
OS6L	0ャ6を	0012	Yooy sradoos	VITVONONOW	R！u！bu！ 1 ISaM	てヤ6ヶ00 OWกW	shajaulo $0 \times 20 \mathrm{~S}$
	0ャ6を	0012	yooy s，dadoos	$\forall I 7 \forall$ ONONOW	R！u！bu！ 1750 M	Oヤ6ヤ00 JWกW	snajallo $0 \times 2 \mathrm{jos}$
－pп！！ 1 ¢u07	әрn！！！e7		K！！e507	Kıunos	ajels	Jequnu boletes	$\underline{40 \times 81}$

S96L	8Z8\＆	002ヵ	uny रәро	S \forall INOHVOOd	R！u！bu！ 1 1S ${ }^{\text {a }}$ M	6とャワ00 OWกW	
SS6L	8Z8\＆	002ち	uny кәро	S $\forall 1$ NOH ${ }^{\text {d }}$		8\＆ヤto0 JWกW	snaдวu！ 0 xajos
S96L	8Z8\＆	002ヵ	unप्y イәро	S $\forall 1$ NOH \forall OOd	е！u！j！ 152 M	\＆とゅt00 OWกW	
996L	8Z8\＆	002ヵ	uny кәро	S $\forall 1$ NOH $V O O d$	е！u！	てعヤャ00 JWกW	snวдวu！${ }^{\text {a }}$ xalos
ES6L	0ع8ะ	000t		SVINOH ${ }^{\text {SVOd }}$		ع10800 JWnW	
ES6L	0¢88	000 ${ }^{\text {b }}$	Y 10.315117	S $\forall 1$ NOH \forall OOd		Z10800 JWnW	snajauio xajos
ES6L	0¢8\＆	000＊		SV1NOHVOOd	е！u！bu！isam	OLOE00 JWกW	snajauio xajos
ES6L	0¢8\＆	000\％	Y $10 \pm$ ISI！	S $V \perp$ NOH \forall OOd		LOOEOO JWNW	snajau！o xajos
ES6L	0ع8\＆	000t		SVINOH SOOd $^{\text {d }}$	е！u！	$900 \varepsilon 00$ JWกW	sпəдวu！ 0 xajos
ES6L	0¢8ะ	000t		S $\forall 1$ NOH \forall OOd		S00800 JWNW	snajau！
ES6L	0ع8¢	000t	Y $10 \pm 151!$	S $\forall 1$ NOHVJOd	ย！u！	Z00800 JWNW	snajau！${ }^{\text {a }}$－${ }^{\text {ajas }}$
ES6L	088ε	000\％	Y $10 \pm$ IS	S $\forall 1$ NOHVOOd	е！u！bi！I ISoM	100800 JWกW	snajau！
0	0	00ع์	sapers Kuaqueso	S $\forall 1$ NOHVOOd		8 ± 1080 HNWO	snajau！o xajos
S96L	8288	002t	qoury pieg	SVINOHVOOd	R！u！bu！ 7 ISaM	1عャt00 כWกW	snajau！
S96L	878 ¢	002t	qoury pieg	S $\forall 1$ NOH $V O O d$	R！u！bu！\səM	0ε 0tb0 JWกW	snajau！o xajos
LS6L	LZ8ะ	00\＆\downarrow	qouy pleg	S $\forall 1$ NOH \forall OOd		6レカヤ00 JWกW	snajau！
LS6L	LZ8E	008t	qoury pieg	SVINOH \forall OOd	R！u！bu！ $15 \times \mathrm{M}$	8Lヵャ00 JWNW	snajaulo
LS6L	L288	00¢	qoury pieg	SVINOHVOOd		LIDt00 JWNW	
LS6L	LZ8E	00\＆t	qouripleg	SVINOH甘OOd	е！u！bu！ISaM	91ヵt00 OWกW	
LS6L	LZ8¢	00\＆	qoux pleg	SVINOHVOOd	е！u！udin ISaM	SLロカ00 JWกW	snajau！ 0 xajos
LS6L	LZ8\＆	00\＆t	qoux pleg	S $\forall 1$ NOHVOOd		$\varepsilon เ \triangleright \vdash 00$ OWกW	snajaulo
LS6L	LZ8ะ	00と \downarrow	qour pieg	SVINOHVOOd		でヤt00 JWNW	
LS6L	LZ8\＆	00\＆ち	qour pleg	SVINOHVOOd	E！u！bu！ 250 M	Lレヤヤ00 JWกW	snajaulo xajos
LS6L	LZ8E	00\＆${ }^{\text {b }}$	qoux pieg	S $V 1$ NOHVOOd		OLDヤO0 JWกW	sпコдコ！
LS6L	LZ8E	00\＆t	qoux pieg	SVINOHVOOd	R！u！bu！ 152 M	$80 \square \square 00$ OWNW	snajaulo xajos
LS6L	LZ8E	008ち	qoury pieg	SVINOHVJOd	е！U！ $6 \pm!\Lambda$ isam	LOtヤ00 JWกW	snaдวuio o xajos
LS6L	LZ8E	00\＆b	qoux pleg	SVINOHVOOd	е！u！	SObt00 JWกW	snajauio ${ }^{\text {a }}$ xajos
$\frac{2962}{}$	LZ8E	O0¢	qouy pleg	SVINOHVJOd	E！u！bu！lisam	†0ttoo OWกW	
LS6L	LZ8E	O0\＆	qourpieg			£0ャヤ00 JWกW	
LS6L	LZ8E	00¢t	qoux pieg	SVINOHVOOd		ع0ヶv00 כWnW	snaj2uio 0×20 S
LS6L	LZ8E	008ち	qoux pleg	S $\forall 1$ NOH ${ }^{\text {d }}$		ZOtt00 JWNW	
LS6L	LZ8E	00Et	qoux ples	S $\forall 1$ NOHVOOd	E！u！ $6 \pm!\Lambda$ ISOM	LOヤt00 JWNW	snajau！o $0 \times 2 \mathrm{OS}$
2¢6L	てヤ8¢	298t		NO1770N3d	E！u！bin 1 ISOM	عZ6180 HNWO	2najauio 0 xajos
	$\frac{\text { ¢ } \downarrow \text { ¢ }}{}$	0ヶ98	ว1！＾ข1！	NO1ヨ70Nヨd	E！u！ 6 ！\wedge ISOM	Z26180 HNWO	snaдəu！
	apn！！！e7	บо！pena！	Kı！！	Kıunos	2jels	sequmu bolejes	H0xe1

$8 \varepsilon 18$	$9 \nabla \angle \varepsilon$	0092	рue｜łəM s，əәе久	HOIヨ｀｜Vy		Z89200 OWกW	sпə」วu！		
8ع18	$9 \downarrow \angle \varepsilon$	0092	риеןəəM s，əұеу	HอIヨ｀｜Vy		189200 OWกW			
七018	OSLE	09をZ	dS Mə！＾pue」の	H〇Iヨ7＊d	е！u！6נ！ 1 lsəM	198500 OWกW			
ャO18	OSLE	00ヶて	dS Mə！＾pue」Э	H⿹IJ7＊d	R！u！bi！\downarrow lsə	$\varepsilon \varepsilon 8500$ OWกW			
ャ018	$6 \downarrow$ LE	00ャて	dS Mə！＾pue」の	HつIヨ7＊y	e！u！bu！\downarrow ISəM	1ع8S00 OWกW			
7018	6SLE	09EZ	dS Mə！＾pue」จ	HอIヨ 78 d	e！！u！b！\wedge łsaM	8 88900 JWกW	snəرวu！ $0 \times$ xalos		
7018	6SLE	09EZ	dS Mə！＾pu®」つ		e！u！bi！ 1 lsam	LZ8500 JWกW			
¢018	LSLE	00ヶて	dS Mə！＾pueıの	HอIヨ7＊d	E！u！6נ\＾7sam	86t¢00 כWกW	snวرวu！0\％x2رOS		
7018	LSLE	00ヤて	dS Ma！＾pueıつ	HอIヨ7＊y	e！u！bu！\downarrow ךSəM	L6ヤع00 כWกW			
2018	$9 \downarrow \angle \varepsilon$	0281	पәә」ว әреןつ	HอIヨา 8 d	е！u！6！\wedge lsəM	805800 OWกW	snว」วบ！0 ○ xajos		
2018	$9 \triangleright<\varepsilon$	0281	ฯәә」つ әре1ऽ	HOIヨ7	elu！b！\wedge lSOM	LOSE00 OWกW	snaŋวu！0 ○ xajos		
9508	SヤLE	0091	youesg sille」	HOIヨ7＊d	e！u！6！\wedge lsam	¢86800 JWกW	snajau！ 0 xajos		
9508	StLE	0091	पวue」日 sille」	HOIヨ7＊d		\＆86800 כWกW	snajau！0 0×2 ¢0s		
¢518	8\＆8を	002	ole»ng	$W \forall N \perp \cap \mathrm{~d}$	e！u！bi！\downarrow łsam	816Z00 OWกW	snวมวu！ 0 xajos		
¢ 518	8\＆8£	00L	olejnng	$W \forall N \perp \cap \mathrm{~d}$	E！！！6！！＾7SวM	S16Z00 OWחW	snวノəu！ 0 xaıos		
¢S18	8\＆8を	OOL	oleynng	$W \forall N \perp \cap \mathrm{nd}$		LZsZ00 OWกW	sпว」əu！0\％$\times 210 \mathrm{~S}$		
ฤS18	8\＆8\＆	OOL	olejng	$W \forall N \perp \cap \mathrm{nd}$	E！u！6u！\downarrow lSəM	OZSZ00 JWกW	snaرau！ 0 xajos		
\downarrow ¢18	8ع8\＆	00L	이eyng	$W \forall N \perp \cap \mathrm{~d}$	e！u！ibu！$\$ lsəM & 6 65Z00 JWกW & \hline 8 86L & 乙\＆6を & OちSZ & duems əl！ısəuejo & NO＾Sヨyd & e！u！6u！ 1 ISaM & 626180 HNWO & snaرəu！う。 xalos \hline 8Z6L & てع6E & OヤSZ & duems əl！ısauejo & NO1S ${ }^{\text {d }}$ dd	e！u！6נ！\uparrow 7saM	LZ6180 HNWO	snajau！ $0 \cdot 0$ xaıOS	
8て6L	て\＆6\＆	OヤGZ	duems əl！！＾səue」ว	NO1Sヨyd		926180 HNWO			
ヤャ6L	レヤ6を	OOS 1	Yooy s，12doos	NO1S3yd	R！u！6！！ 1 lSaM	GZ6180 HNWO			
$t \square 6 L$	レヤ6を	0051	Yo0y $\mathrm{s}^{\text {，Jedoo }}$	NO\＆Sヨyd	e！u！6נ！＾7səM	ゅて6180 HNWO	snajau！ 0 xa」os		
LS6L	9Z8E	098\＆		S $\forall \perp$ NOH ${ }^{\text {d }}$	E！u！bj！\downarrow lsam	6でャ00 JWกW			
LS6L	9Z8\＆	098E	Y10才 S，12八EUS	S $\forall \perp$ NOH \forall OOd	E！u！6］！ 1 lSaM	8ても七00 JWกW			
LS6L	9Z8E	098E	Y10－」 S，10＾E4S	S $\forall \perp$ NOH \forall OOd		LZヤャ00 OWกW	snaرวu！${ }^{\text {co }}$ xajos		
LG6L	9Z8E	098E	Yı0才 s，laneप	S $\triangle \perp$ NOHVOOd	E！u！ 6 ！$\$ lSOM & 9てヤャ00 OWกW & \hline LG6L & 9Z8\＆ & 098\＆ & & S $\forall \perp$ NOH \forall OOd	e！u！6נ！$\$ ISOM & Sでゅ七0 OWกW & snaرau！ 0 xajos \hline LS6L & 9Z8\＆ & 0988 & & S $\triangle \perp$ NOHVOOd	E！u！6u！ 750 M	ャてャャ00 ОWกW	snajoulo 0 xajos
LS6L	9Z8\＆	098\＆		S $\quad \perp$ NOHVOOd	E！u！6］！ $15 \times \mathrm{M}$	とてヤち00 OWnW			
GS6L	8Z8\＆	00ても	uny Kəpo	S $\triangle \perp$ NOH $V O O d$	e！u！6נ！ 1 7soM	\＆ャャャ00 OWกW	snajauio		
GS6L	8Z8を	00ても	uny Кәро	S $\triangle \perp$ NOHVOOd	E！u！6נ！ 159 M	てゅ七七00 OWกW	snojaulo		
GS6L	8て8を	00ても	uny KарO	S $\triangle \perp \mathrm{NOH} \forall O O \mathrm{~d}$	e！u！$\underline{1}!\wedge$ 1saM	0ヤtナ00 OWחW			
－pm！！6u07	əрп！！ア7	，U0！1e＾əəコ	Kı！	Kıunoう	－1els	Jequnu 6oleteo	U0XE 1		

						Snə」コ！！○ xajos							snวرวu！ว ग xəرOS																				（1）
									3 \vdots \vdots 0 0 0 0 0 0 0 0		3 \vdots \vdots \vdots 0 0 \vdots 0 0				3 \vdots \vdots 0 0 0 0 0 \mathbf{N}		3 c \vdots \vdots 0 0 0 0 0 n n n	3 \vdots \vdots \vdots 0 0 0 0 0		3 c \vdots \vdots 0 0 0 \sim 0 1 ω		3 \vdots \vdots 3 0 0 0 0 0 0 0 0 0	3 \vdots \vdots \vdots 0 0 0 0 9	3 c \vdots \vdots 0 0 0 0 0 0 ∞	3 c \vdots \vdots 0 0 0 0 	$\begin{gathered} 3 \\ c \\ \mathbf{c} \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \hline \end{gathered}$		3 \vdots \vdots 3 0 1 7 7	3 5 3 0 0 0 1 1 \vdots			2 \vdots \vdots \vdots 0 0 0 0 0 0 0	
						e！u！b！！\wedge łรว			e！u！b！！\wedge ISaM		\sum_{0}^{0} 0 \vdots \vdots \vdots \vdots	$\left\{\begin{array}{l} \sum_{0} \\ \frac{0}{2} \\ \vdots \\ \vdots \\ \vdots \end{array}\right.$																					$\xrightarrow{\frac{0}{0}}$
$\begin{aligned} & 2 \pi \\ & D \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$				2 2 0 0 0 $\frac{1}{1}$ $\frac{0}{1}$		$\begin{aligned} & 1 \\ & \mathbf{z} \\ & 0 \\ & 0 \\ & \frac{0}{0} \\ & 1 \end{aligned}$	$\begin{array}{l\|l\|} 0 & \pi \\ 3 & 2 \\ 2 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 \end{array}$	$\begin{array}{l\|l} 0 \\ 0 & 0 \\ 2 & 2 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{array}$	20 2 0 0 0 1		$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 0 \\ & 1 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 8 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$			$\begin{aligned} & \pi \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		$\left\{\begin{array}{l} 0 \\ \frac{8}{2} \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{array}\right.$		$\begin{aligned} & \frac{2}{8} \\ & \frac{2}{0} \\ & 0 \\ & \frac{1}{0} \\ & \hline \end{aligned}$					$\begin{aligned} & \frac{2}{2} \\ & \frac{2}{2} \\ & \frac{0}{2} \\ & \frac{1}{1} \end{aligned}$		$\left\{\begin{array}{c} \frac{2}{2} \\ \frac{m}{n} \\ \hline \end{array}\right.$	$\begin{array}{\|c} \frac{\pi}{8} \\ \frac{m}{\mathrm{I}} \\ \frac{1}{2} \end{array}$	$\begin{array}{\|c} \frac{D}{2} \\ \frac{m}{I} \end{array}$	$\begin{gathered} 2 \\ \\ \frac{2}{2} \\ \frac{2}{1} \\ \hline \end{gathered}$	$$	$\begin{array}{\|} \hline \frac{0}{8} \\ \stackrel{m}{m} \\ \frac{0}{1} \\ \hline \end{array}$		
						$\begin{array}{\|l} \hline \mathrm{O} \\ \mathrm{C} \\ \mathrm{O} \\ \mathrm{I} \end{array}$				\circ $\stackrel{O}{0}$ 0 0 0 0 0 0 0 0	$\begin{aligned} & 0 \\ & \overrightarrow{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 . \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$																						
$\left\|\begin{array}{c} N \\ \mathbf{N} \\ 0 \end{array}\right\|$	$\begin{gathered} n \\ \stackrel{N}{+} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\rightharpoonup}{\mathrm{~A}} \\ & \hline \end{aligned}$		$\begin{array}{l\|l\|} 0 & \omega \\ 0 \\ 0 & 0 \\ \hline \end{array}$	$\begin{array}{l\|l} 0 \\ 0 \\ 0 & \stackrel{\rightharpoonup}{\mathrm{~N}} \\ \hline \end{array}$	$\begin{aligned} & \omega \\ & \mathrm{H} \\ & \mathrm{O} \end{aligned}$	$\begin{array}{l\|l} 0 \\ n \\ \\ \hline \end{array}$	$\begin{array}{c\|c} \stackrel{\rightharpoonup}{\mathrm{O}} \\ \stackrel{\rightharpoonup}{\mathrm{O}} \end{array}$	$\frac{ \pm}{\mathrm{N}}$	$\stackrel{\Delta}{n}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\rightharpoonup}{n}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\rightharpoonup}{\mathrm{O}} \stackrel{\rightharpoonup}{\mathrm{~N}}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	뭉	$\begin{aligned} & \hat{\mathbf{O}} \\ & \mathrm{O} \end{aligned}$	合	$\stackrel{\rightharpoonup}{\circ}$	눙	응	$\stackrel{\rightharpoonup}{\mathrm{O}}$	$\begin{gathered} \omega \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \text { co } \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{l\|l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{l\|c} n \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{l\|l\|} \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{l\|l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$		$\begin{array}{l\|l\|} \hline \\ 0 \\ 0 \\ \hline 0 \\ \hline \end{array}$	$\begin{array}{l\|c} 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$		¢
$\left\|\begin{array}{c} \omega \\ 0 \\ 0 \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \infty \\ & \infty \end{aligned}\right.$	$\begin{array}{l\|l\|} 0 & \omega \\ 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{c\|c} \omega & \omega \\ 0 & 0 \\ 0 & 0 \\ 0 & \end{array}$	$\begin{array}{l\|l} 0 & \omega \\ 0 \\ 0 & 0 \\ n \\ \hline \end{array}$	$\begin{gathered} \omega \\ \mathbf{\infty} \\ \boldsymbol{u} \end{gathered}$	$\left\lvert\, \begin{aligned} & w_{0}^{\infty} \\ & Q_{0} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty_{u}^{\infty} \\ & \underbrace{}_{1} \end{aligned}\right.$		$\left\|\begin{array}{l} \mathbf{w} \\ \mathbf{o} \\ \mathbf{c} \\ \mathbf{v} \end{array}\right\|$		$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & c_{0} \\ & \hline \end{aligned}\right.$	$\begin{aligned} & \mathbf{\infty} \\ & \mathbf{\infty} \\ & \mathbf{v} \end{aligned}$	$\begin{array}{c\|c\|c} 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{l\|l\|} \infty & \omega \\ 0 & \infty \\ \sim & 0 \\ u \end{array}$	\mathfrak{c}	$\mathbf{l}_{\substack{\infty \\ \underset{y}{2} \\ \hline}}$	$\left\lvert\, \begin{gathered} \infty \\ \infty \\ \underset{y}{\infty} \end{gathered}\right.$	$\mathbf{N}_{\mathbf{N}}^{\mathbf{\omega}}$	$\begin{gathered} \omega \\ \omega_{0} \end{gathered}$		$\begin{aligned} & \infty \\ & 0_{0}^{\infty} \\ & y^{2} \end{aligned}$			$0 \begin{gathered} \infty \\ 0 \\ 0 \\ \hline \end{gathered}$				＋		－${ }_{\text {a }}^{\text {a }}$			\sim_{0}^{\sim}
$\stackrel{\substack{0 \\ \hline \\ \hline}}{ }$	$\stackrel{\rightharpoonup}{0}$		$\begin{array}{l\|l\|} \hline 0 \\ \hline & 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{l\|l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \mathbf{8} \\ & \mathbf{\omega} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ N \end{gathered}$	$\begin{aligned} & 7 \\ & 0 \\ & \omega \\ & \hline \end{aligned}$	$\begin{array}{l\|l\|} \hline 0 & 0 \\ 0 \\ 0 & \\ \hline \end{array}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{\omega} \\ & \hline \end{aligned}$	$\begin{array}{\|c} 1 \\ 0 \\ 0 \\ \omega \end{array}$	$\begin{array}{\|l\|} 1 \\ 0 \\ 0 \\ \omega \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & \omega \\ & \omega \end{aligned}$	$\begin{array}{l\|l} 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{c\|c} 1 \\ 0 \\ 0 \\ \hline & 0 \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} 1 \\ 0 \\ \omega \\ \omega \end{gathered}\right.$	$\begin{array}{\|c\|c\|c\|} \hline \\ 0 \\ 5 \\ 0 \end{array}$	$\begin{array}{\|c} 1 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & c \\ & \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & n_{0} \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & y \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{l\|l} 8 \\ \Omega \\ \Omega \\ \hline \end{array}$	$\begin{array}{l\|l} \infty \\ \stackrel{\infty}{0} \\ \hline \end{array}$	$?$	$\underset{\sim}{\infty} \underset{\sim}{\infty}$		$\begin{array}{c\|c} \infty \\ \underset{\sim}{\infty} \\ \underset{\sim}{0} \\ \hline \end{array}$	$\underset{\sim}{\infty} \underset{\sim}{\infty}$		W

0	0	00t	amoruว	yヨıSヨHO	e！uen\Ksuuəd	\＆ยL6£0 HNWつ	S！jeutuof 0 xajos
0	0	0	6uluds Kpues		pueknew	LL9981 WNSก	s！｜eu！uol $0 \times 20 \mathrm{~S}$
0	0	0	prıne7		purgkew	とャ8てレレ WNSก	s！／eunuof 0 xajos
0	0	0	ə！！＾SमEKH		puekKew	60L9L0 WNSत	s！／eu！iuof 0 xajos
0	0	0			puekKew	ع659LO WNSก	S！｜eupuof 0 хәлОS
0	0	0	əı！ısıeরН		puekNew	L8G9LO WNST	S！｜euliuliof o xalos
0	0	0	epsaytag	人צヨWOO 1 NOW	puejKiew	SOLS $\dagger 0$ HNWO	s！／eulpuof 0×2 ¢
0	0	0	epsəutag	人પヨWOOLNOW	pue｜Kıew	ちOLSカO HNWO	s！／eu！puof 0 xajos
6108	0ヤ8\＆	0	dS Jə＾！¢ Kı0Н	¢ヨ1S8ヨM	e！！u！d！\wedge łsəM	Sc990L HNWO	snaرวu！ $0 \times 210 s$
¢Z6L	8988	0292	u！qeう ә！！＾əuе7	yヨソОกค	e！u！bi！\wedge lsəM	8ャ6180 HNWO	sna」วu！0 0 xajos
ฤZ6L	8S8E	0292	u！qeว ә！！＾əuе7	yヨหวกค．		976180 HNWO	snวıวu！0＇0 xajos
七て6L	898£	0292	u！qeว ว！！＾əue7	yヨソวก 1	E！u！bu！ 1 1SวM	$6 \varepsilon 6180$ HNWO	snə」วu！0 \％xajos
七26L	898\＆	OZ9Z	u！qeว ə！！＾əuе7	צヨYOD 1		8 86180 HNWO	Snว」วu！うこ xalos
616L	906ε	001ع	uny әреio	צヨソวกค	e！u！б！！\wedge ls ${ }^{\text {em }}$	จレعS00 כWกW	snajau！ $0.0 \times 210 S$
6L6L	906ε	001ع	uny әре！甲	צヨหフค		てเعG00 כWกW	sпəコวu！
616L	906を	001ε	uny ape！ワ	¢ヨソ〇〇 1	e！u！b！\wedge lsə ${ }^{\text {a }}$	OLES00 OWกW	
616L	906を	0018	uny әрeis	y 3×1	elu！bu！＾lsəM	$60 \varepsilon 500$ JWกW	snวлว！ $0 \cdot 0 \times 2105$
816L	$\downarrow 06 \varepsilon$	OG6£	spos K\｜00	yヨyOn	e！u！6נ！\wedge lS 2 M	Sャ6180 HNWO	snəววu！ $0 \times$ xajos
816L	ヤ06\＆	OG6E	spos Kılod	צヨหОค	E！	て76180 HNWつ	snəرau！ $0 \times$ xajos
816L	$\bigcirc 06 \varepsilon$	0¢6を	spos K\｜O］	צヨyОค1		$\downarrow \downarrow 6180$ HNWO	
816L	ヤ06\＆	0G6E	spos K！lod	y 3 YOก 1		076180 HNWO	snajau！ 0 xaıos
LZ6L	て06\＆	0ヤてを	dS Kə川ß＾uerues	yヨxOn	R！u！6！！$\ 150 \mathrm{M}$	จレLZOO OWกW	sпวرวu！ $0 \cdot 0 \times 20$ S
LZ6L	て06E	0ヵてを	dS Kə\｜e＾ueruej	¢ヨYOП，	E！u！6！\wedge lsə ${ }^{\text {l }}$	LOLZOO OWกW	snวдau！0．0 xajos
LZ6L	て06E	0ヤてを	dS Kane＾ueeueg	¢ヨソО 1		90LZ00 JWกW	snəرau！0．0 xajos
LZ6L	て06\＆	0ヤてを	dS Kone＾ueeuej	บヨイフก1	E！u！ $6!!1$ lSOM	†0LZ00 JWกW	
LZ6L	Z06E	0ヶてを	dS Kə川e＾ueeuej	צヨYOก1	R！u！bi！ 1 lsว	ع0LZOO OWกW	snaرวบ！0 0 xajos
LZ6L	Z06E	0ヵてを	dS Kə川行 UReueว	צヨ习习1		Z0LZ00 JWกW	snajauio 0 xajos
GS6L	と\＆8ะ	089を		Hdר0anva		で6200 OWกW	snajallio：xajos
9E6L	898E	0ことて	уәәコ Јəب़	Hd700N 8 y		8ع6L80 HNWO	sпวлau！ 0 xajos
$986 L$	858E	OZ\＆Z	уəコ」 」ə川О	Hd700N 88		LE6180 HNWO	snaرวu！ 0 ¢ xalos
9ع6L	898E	OZ\＆Z		HdרOON $\forall 8$		986180 HNWO	snaرวu！${ }^{\text {cho }}$ xajos
986L	898\＆	OZEZ	yวaJ Jano	Hd700N $\forall 8$	R！u！ 6 ！\wedge 15 ${ }^{\text {a }}$	Sع6180 HNWO	sпวлวu！\％${ }^{\text {chajos }}$
986L	898\＆	OZEZ		Hd700N＊8		七¢6180 HNWO	
әрп！！6u07	өрп！！e7	，u0！1e＾əəヨ	Kı！ 1 ¢007	Ķunoう	atels	jaqunu 6olejeo	u0xe \perp

ャて18	¢ $¢ 8 \varepsilon$	OZL	uot｜eM	ヨNVOY	R！u！bu！ 1 İəM	E91080 HNWO	
0	0	0		XVAप्రIV	E！u！bu！	S0699S WNS	
0	0	0			R！u！bi！\uparrow	t06s9s WNST	S！
0	0	0		XVJપVIVJ	е！и！б！！！	E0699S WNS 1	
0	0	0		XVJdiva		006999 WNSn	
0	0	0		X 3 SS ${ }^{\text {a }}$	ع！u！	8ع89ZS WNSก	s！\dagger sonfuol $1 \times 2 \mathrm{x}$
0	0	0		X 3 SS	民！u！！	se892S WNSn	S！ 1 Sontiol $1 \times 2 \lambda 0$ S
0	0	0		पヨddヨdากว	е！uб！и	80ヤ0Zを WNSก	
0	0	0		V17ヨW＊	е！иб！ил	Escs9 WNSn	
0	0	0		VI7ヨWV	е！u！	LGGs9z WNSก	
0	0	0	dN पеориеuәчS		ع！u！	£Lt062 WNSก	S！
0	0	0	dN Yeopueuays			ZLヤ062 WNSत	suısonf6uol $1 \times 2 \mathrm{OS}$
0	0	0	dN पeopueuays		E！u！	†Z988Z WNSก	
0	0	0	1salo」 plemas		е！и！	G08992 WNSก	Slisombuol 1×205
0	0	0	2Sejo」 plemas			t0E992 WNSत	
0	0	0	exaue7	ІNヨY M ${ }^{\text {a }}$	อ！	$6 \mathrm{Sc090}$ HNWO	s！ 1 ¢
0	0	0	younuo sille		¢！	$061 \angle 80$ WNSत	sill
0	0	0	aying		е！	E898LZ WNST	s！1／soul6uol $1 \times 2 \mathrm{las}$
0	0	0		$77 \exists 9$ dWVO	е！¢！$¢$	$8980 \angle 0$ HNWO	
0	0	0	Jəл！	77ヨMN ${ }^{\text {¢ }}$	euplorej uinos	E09260 HNWO	sulisontiol 1×2105
0	0	0	jos！y yeuutaes	$77 \exists M N 8 \forall 8$	euilodej uinos	109260 HNWO	
0	0	0	jon！y पeuиenes	$77 \exists M N Y \forall 8$	euiloses uinos	669260 HNWO	s！ıfsoll 6 uol I $\times 2105$
0	0	0	den！y yeuuenes	$77 \exists M N \not \subset V 8$	euiloues uinos	869 Z60 HNWO	sinsombuol $1 \times 2 \mathrm{jos}$
0	0	0	дәл！	$77 \exists M N 8 \forall 8$	eu！lojes uinos	L69Z60 HNWO	slıs
өрпı！ 6	әрпи！！e7	，uо！！e＾a！	K！！	Kıunoう	2lets	jaqunu 6olejeg	U0xE

II XIONヨdd \forall

0	0	0	$\angle S^{\circ} \varepsilon$	カレ＇て	$67^{*} 1$	$\angle S^{\prime} \varepsilon$	$98^{\circ} \downarrow$	LLZ	15	1.8	9．91	0	0	0	0	98－｜nr－82	I		\pm	686180 HNWJ	－0．0 5
$1 \varepsilon^{\circ} 0$	$\angle \varepsilon^{\circ} 0$	$97^{\circ} 0$	$69^{\circ} \varepsilon$	LLて	でし	$99^{\circ} \varepsilon$	$8{ }^{\circ} \downarrow$	LL＇Z	G S	1.8	て＇91	8 ＇ε	$\varepsilon 1$	カワ	ヶO1	98－бn $\forall-\varepsilon$	乙		W	8ع6180 HNWつ	0.0 .2
£＇0	$\angle \varepsilon^{\circ} 0$	$97^{\circ} 0$	$\downarrow 8^{\circ} \varepsilon$	カレて	しモレ	$1 \angle \varepsilon$	ع0＇9	ャLて	8 －\downarrow	6.2	91	9	て，	8ε	ヤO1	98－｜n Γ－ 1ε	ε		\pm	Lع6180 HNWO	$0 \cdot 0.2$
$6 \chi^{\circ} 0$	カ0	カャo	$9{ }^{\circ} \mathrm{E}$	どて	LL＇	$9{ }^{\circ} \mathrm{E}$	$\dagger 9 \downarrow$	ヤL゙て	Z．9	6.2	9， 51	0	て1	カワ	101	98－1n Γ－L	\downarrow			986180 HNWO	0.0 .5
LEO	Eャワ	\＆ャ0	$\angle S^{\prime} \varepsilon$	LL＇Z	Lでし	9 9	$\varepsilon L \cdot \downarrow$	L8＇Z	\dagger ¢	$1 \cdot 8$	91．	0	て1	てt	L6	98－1n -1 －	\downarrow		W	¢ع6180 HNWO	0.02
LEO	Eto	970	6L＇	9でて	七で1	9 ${ }^{\circ} \mathrm{E}$	L6＇t	LL＇Z	ガャ	$L 2$	6．91	ε	レレ	6E	88	98－6n \forall－t	乙		\pm	七¢6180 HNWO	$0 \cdot 0 \cdot 2$
$6 \chi^{\circ} 0$	とが0	9＊＊	$6 L^{\circ} \mathrm{E}$	どて	しでし	$98^{\circ} \varepsilon$	$96 \downarrow$	16%	G	8	6．91	\dagger	11	てヤ	88	98－1n $¢$－LE	ε		1	عย6180 HNWO	－0．0
LEO	$9 \varepsilon^{\circ} 0$	$97^{\circ} 0$	$9{ }^{\circ} \varepsilon$	レレて	カで1	$69^{\circ} \mathrm{E}$	LL＇\downarrow	L＇乙	$\varepsilon \cdot \mathrm{S}$	8.2	S＇S1	9 9	て1	Ot	86	98－1n Γ－0¢	1		W	Z£6180 HNWO	－0．05
$62^{\circ} 0$	$\varepsilon ャ 0$		$\varepsilon L \cdot \varepsilon$	ع0＇Z	9て1	LL \mathcal{L}	$L L \cdot \downarrow$	L9＇Z	L＇S	$L L$	8．91	$9{ }^{\circ} \mathrm{E}$	21	8ε	S6	98－In「－6Z	1		1	Lع6L80 HNWO	－0．0．
$\varepsilon \cdot 0$	$\varepsilon ャ 0$	とナ0	\underline{L}	91.2	とて＇1	$6 L$ ¢	カL゙ゅ	6L＇Z	97	$8{ }^{\circ} \mathrm{L}$	6．91	\downarrow カ	い1	6ε	68	98－un「－b	1		\pm	626180 HNWO	$0 \cdot 0 \cdot 2$
610	$6 \varepsilon^{\circ} 0$	$15^{\circ} 0$	69 ${ }^{\circ}$	10＇Z	91．	LS	\checkmark L＇\downarrow	\checkmark L＇Z	L＇t	9.1	S＇S1	0	0	0	0	98－In $\mathrm{H}-82$	Z			826180 HNWO	0.05
$\angle \varepsilon^{\prime} 0$	$1 ⿻ 上 丨^{\circ} 0$	カャ＊	LL＇ \mathcal{L}	LL＇Z	LZ＇1	LL＇	96＇t	98° Z	L＇t	9%	6．91	$8 \cdot \downarrow$	21	で	LOL	98－un¢－$\frac{1}{}$	ε		W	LZ6180 HNWO	0.05
LEO	とャワ	970	98＇ε	しでて	9で1	$\varepsilon 8^{\circ} \varepsilon$	5	99 ${ }^{\prime}$	6 －\downarrow	L：	\＆＇91	L＇t	て1	ても	七01	98－un「－を	ε		W	926180 HNW	0.05
$\varepsilon{ }^{\circ} 0$	$\downarrow \underbrace{\circ} 0$	96\％	ES	\＆61	61し	$69^{\circ} \mathrm{E}$	†9	97	9.7	S\％	6 －\downarrow	$\varepsilon \downarrow$	21	6ε	16	98－KeW－レを	ε		W	9Z6180 HNWO	0.0 .5
$6 \chi^{\circ} 0$	－0	とャ＇0	$68^{\circ} \varepsilon$	E0＇Z	してし	LS＇ε	$\angle L \cdot \square$	$19^{\circ} \mathrm{Z}$	8 －\dagger	9\％	Z＇S1	でゅ	1.	SE	96	98－KeW－62	ε		W	๑Z6180 HNWO	0.05
\＆＇0	$\varepsilon \downarrow 0$	670	$69^{\circ} \varepsilon$	ャ0て	LL＇	$\varepsilon L \cdot \varepsilon$	$68{ }^{\circ} \mathrm{\square}$	L8＇Z	\dagger	け！	9＇S1	$9{ }^{\circ} \mathrm{E}$	て1	St	OLレ	98－｜n「－61	ε		1	£Z6180 HNWO	0.05
LZ＇0	1＊O	－ 0	LL＇	$10^{\circ} \mathrm{Z}$	と＇し	9L＇${ }^{\text {c }}$	LL＇\dagger	七レ＇乙	9%	12	\downarrow－¢	8＇ε	て1	で	でレ	98－｜n Γ－61	ε		\pm	ZZ6180 HNWO	0.05
0	0	0	$\varepsilon \downarrow$ 洔	98.1	Lてし	$79 . \varepsilon$	6で \downarrow	ε	て＇S	S\％	\rightarrow－	$9{ }^{9} \mathrm{Z}$	11	1ε	6 L	98－｜n「－91	1		W	LL6180 HNWO	$0 \cdot 0.5$
$62^{\circ} 0$	1ナO	カナ＊	L \angle 友	60°	カでし	$\varepsilon L \cdot \varepsilon$	ヤL＇巿	98° Z	$8{ }^{\text {® }}$		と＇SL	ヤャ	21	6ε	$\downarrow 6$	98－ın $\mathrm{H}-91$	ε		N	916180 HNWO	0.0 .5
0	0	0	S＇ε	Z	しでし	とがと	$\left.\angle S^{\prime}\right\rangle$	1L＇Z	L＇V	8.	ガG1	S＇Z	て1	$1 \downarrow$	58	98－6n $\forall-て \downarrow$	1		N	G16180 HNWO	0.0 .2
0	0	0	LS＇${ }^{\prime}$	$乙$	カレ゙レ		$\angle S^{\prime} \dagger$	LLZ	$1 \cdot 9$	$\dagger^{\circ} \mathrm{L}$	E＇S1	Z	11	8ε	82	98－6n \forall－レレ	1		N	ヤL6180 HNWO	$\frac{0.0-2}{0.5}$
180	$\downarrow \underbrace{\circ} 0$	\＆ャ0	9L＇$\frac{1}{}$	$10^{\circ} \mathrm{Z}$	6で1	$99^{\circ} \mathrm{E}$	9L＇t	L＇Z	$9{ }^{\circ} \mathrm{t}$	L＇L．	LSL	$8{ }^{\circ}$	LI	9ε	L6	98－KeW－8Z	ε		N	E16180 HNWO	0.0 .5
6 6＊0	$1+0$	$\pm \square^{\circ}$	¢＇ε	90° Z	9で1	$\varepsilon L \mathcal{L}$	8.7	69° Z	$8{ }^{\circ} \mathrm{t}$	$9^{\circ} \mathrm{L}$ ．	LSL	\square	21	8ε	ZO1	98－6n \forall－6	ε	W	N	216180 HNWO	0.0 .2
$62^{\circ} 0$	$6 \varepsilon^{\circ} 0$	レ＊O	૬＇غ	$10^{\circ} \mathrm{Z}$	6で1	LS＇ε	$\angle S^{\prime} \dagger$	¢＇Z	$8{ }^{\circ}$	$9^{\circ} \mathrm{L}$	て＇S1	ε	21	LE	16	98－6n \forall－6	1		，	1．6180 HNWO	0.0 .2
$62^{\circ} 0$	$9 \varepsilon^{\circ} 0$	Eャ0	† L＇ε	10 ＇	カで1	$6 G^{\circ} \varepsilon$	96＇t	E9＇Z	$9{ }^{\circ} \downarrow$	$\mathrm{S}^{\circ} \mathrm{L}$	L＇SL	\dagger	21	8ε	Z6	98－6n \forall－8	ε	W		OL6180 HNWO	0.025
LE＇0	$\checkmark 0$	$\varepsilon \neq 0$	LLE	レレて	6で1	$\varepsilon L^{\prime} \varepsilon$	L9＇t	6L＇Z	$\underline{L} \downarrow$	$\mathrm{S}^{\circ} \mathrm{L}$	L＇G1	s＇Z	て1	Lt	S6	98－6n \forall－8	Z	W		606180 HNWO	0.0 .2
$6 \mathrm{Cl}^{\circ}$	$1 * 0$	カナ0	t9 ${ }^{\circ}$	レレて	6で1	LL＇ \mathcal{L}	6s＇t	$19^{\circ} \mathrm{Z}$	6．t	$9{ }^{\circ} \mathrm{L}$	6．91	ε	21	で	001	98－6n $\forall-6$	1	\square		806180 HNWO	$\frac{.0 .0 .2}{} 0.0 .2$
6で0	$1 \rightarrow 0$		\dagger ¢ $¢$	カレ゙Z	9て＇	LS＇ \mathcal{L}	98.7	LL＇Z	$8 \cdot \downarrow$	$9{ }^{\circ} \mathrm{L}$	L＇SL	ε	\＆1	$\square \nabla^{\circ}$	001	98－бn \forall－L	1	W		L06180 HNWO	$\frac{0.0 .2}{}$
0	0	0	LS＇ \mathcal{L}	ャレて		LL＇${ }^{\text {c }}$	LS＇\dagger	98^{\prime} Z	8.7	0	S＇S1	ε	$\varepsilon 1$	$0\rangle$	$\downarrow 6$	98－6n \forall－9	2	1	9	906180 HNWO	$\frac{0.0 .2}{0.0 .2}$
0	0	0	LLE	ャレて	しでし	$\angle S^{\prime}$＇	LL＇V	L＇Z	9.7	$L \cdot L$	0	ε	Z1	$\varepsilon \nabla$	58	98－6n \forall－ 9	2	W		906180 HNWO	0.0 .5
$\square \varepsilon^{\circ} 0$	$\angle \varepsilon^{\prime} 0$	$\varepsilon ャ 0$	$\downarrow 9^{\circ} \varepsilon$	Z	Lでし	$L \cdot \varepsilon$	カ9＊	68 ＇	9	6.2	G＇S1	ε	Z1	Ot	06	98－6n \forall－L	乙	\pm		706180 HNWO	$\frac{.0 .0 .2}{0.0 .2}$
0	0	0	LL®	$6 て ゙ 2$	6て＇1	LL＇ \mathcal{L}	S	98^{\prime} Z	6.7	8	S．91	8．ε	L1	てt	$\angle 6$	19－100－1	，			8ャ1080 HNWO	$\cdots{ }^{0.0} 5$
Sก	$\dagger \cap$	$\varepsilon \cap$	EWヤd	$1 \cap$	HLI	ZWZW	dW	31	HO	MO	7 S	$1 M$	HH	$7 \mathrm{IP} \perp$	7101		26 V	xəs		qunu 6olełe	U0xe 1

$\begin{array}{l\|l} \hline \Omega & 0 \\ \infty & \varsigma \\ \Omega & \varsigma \end{array}$	$\begin{array}{l\|l} \hline \Omega & 0 \\ \Omega & \ddots \\ \Omega & \vdots \end{array}$		$\begin{array}{\|l\|} \hline \infty \\ \Omega \\ \Omega \\ \hline \end{array}$	$\begin{array}{l\|l} \hline & 0 \\ \Omega & 5 \\ \Omega & \varsigma \end{array}$	$\begin{array}{\|l\|l} \hline \Omega & 0 \\ 0 & 8 \\ \Omega & s \\ \hline \end{array}$			0 Ω 0 $?$ 0 0		$\begin{array}{l\|c} \hline \sigma & \Omega \\ \therefore & \Omega \\ \Omega & \Omega \end{array}$	n \sim Ω Ω Ω	0 0 0 0 0 0 Ω	0 0 0 0 Ω 0	$\begin{array}{l\|l} \hline \Theta & \ddots \\ \Omega & \Omega \\ \Omega & \Omega \end{array}$	$\begin{array}{l\|l} \hline \Omega & \Omega \\ \Omega & \Omega \\ \Omega & \Omega \end{array}$	0 0 s 0 0 0	n－5	Ofors	の気	｜can	｜ca｜	｜c｜	｜c｜	$\left\lvert\, \begin{aligned} & \text { ¢ } \\ & 0 \\ & 0\end{aligned}\right.$	¢S｜cr		c｜chars	On 0 0 0 \bigcirc	c｜cos	c｜c｜c	
			3 \vdots \vdots \vdots 0 0 0 0 0																							0 0 \vdots 1 2 0 0 $\frac{\infty}{9}$ 0 $\frac{0}{\circ}$ 0					
3	3	3	3	3	3	3	3	37	7		37	73	$3 \leq$	$3 \leq$	$3 \leq$	$3 \leq$	3	71	3	3	37	3	32	3			T	3		7 $\begin{array}{r}\text { che } \\ 0 \\ \times\end{array}$	C \times \times \times
ω	ω	ω	ω	ω	ω	ω	ω	$\omega \omega$	ωN	N	$\omega \omega$	ω－	$\rightarrow \omega$	ω	\rightarrow	－	\rightarrow						－	\rightarrow			\rightarrow			－	合
$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	M 0 0 ∞ ∞ 0 0 ∞ ∞ ∞	$\begin{gathered} n \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$		$\begin{gathered} N \\ y_{1} \\ 0 \\ \mathbf{n} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} N \\ 1 \\ y_{0} \\ 0 \\ 1 \\ 0 \\ 0 \end{gathered}$				$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{+}}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ \frac{1}{i} \\ \frac{1}{0} \\ \\ \hline \end{gathered}$	$\begin{array}{lll} N & 0 \\ 1 & 1 \\ & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$		$\left\{\begin{array}{c} \vec{c} \\ \frac{1}{c} \\ \frac{c}{1} \\ 0 \\ \hline \end{array}\right.$	$\begin{gathered} \vec{v} \\ c \\ c \\ \frac{1}{0} \\ 0 \end{gathered}$	$\begin{aligned} & \vec{f} \\ & \stackrel{1}{c} \\ & \underline{c} \\ & \dot{c} \\ & 0 \end{aligned}$		$\stackrel{\rightharpoonup}{t}$ $\stackrel{c}{c}$ $\stackrel{c}{1}$ \dot{c} 0	c \vdots \vdots 0 0 0	$\left\lvert\, \begin{gathered} i \\ \frac{1}{c} \\ \frac{1}{6} \\ 0 \end{gathered}\right.$			$\stackrel{\rightharpoonup}{c}$ $\stackrel{c}{c}$ $\stackrel{1}{\dot{0}}$ 0						$\left\lvert\, \begin{gathered} N \\ f \\ i \\ c \\ c \\ \mathbf{\infty} \\ \infty \end{gathered}\right.$			
－	\bigcirc	-	∞	$\begin{gathered} \infty \\ \infty \\ \hline \end{gathered}$	∞	0	∞	$\mathbf{\infty}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	\bigcirc	$\stackrel{\rightharpoonup}{\mathrm{B}}$	8	$\begin{aligned} & \infty \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{O}}$	$\begin{gathered} \infty \\ \hline \end{gathered}$	$\stackrel{\rightharpoonup}{\mathrm{a}}$	\bigcirc	0	$\begin{array}{\|c\|c\|} \hline \\ \infty \\ \hline \end{array}$	$\|\stackrel{\rightharpoonup}{\vec{\omega}}\| \underline{c}$	$\circ \stackrel{\rightharpoonup}{\mathrm{c}}$	$\stackrel{\rightharpoonup}{\overrightarrow{\mid}}$	0			－	cor	$\stackrel{-1}{\text { 굴 }}$
$\stackrel{\omega}{\sim}$	$\begin{gathered} \infty \\ \infty \\ \hline \end{gathered}$	t	$\underset{\sim}{\omega}$	$\stackrel{\omega}{0}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\omega}$	$\stackrel{\omega}{-}$	N	N	${ }_{0}$	\pm	A	$\begin{aligned} & \omega \\ & \infty \end{aligned}$	$\hat{0}$	$\begin{aligned} & \infty \\ & \hline \end{aligned}$	$\hat{0}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\omega}{\boldsymbol{o}}$	A	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\underset{\sim}{6}$	$\begin{gathered} \infty \\ \infty \end{gathered}$	\pm	$\begin{array}{l\|l} \omega \\ \infty & 0 \\ 0 \end{array}$	${ }_{\infty}^{\infty} \pm$	$\stackrel{\sim}{6}$	$\stackrel{\sim}{0} \stackrel{\sim}{N}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	令	$\frac{-1}{\frac{-1}{\Gamma}}$
$\stackrel{\rightharpoonup}{\text { N }}$	穴	\vec{N}	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\rightharpoonup}{ \pm}$		穴	\pm	\pm	$\stackrel{\rightharpoonup}{0}$	ω	0	$\stackrel{\rightharpoonup}{\mathrm{N}}$	云	穴	\pm	\pm	片	\pm	\pm	$\stackrel{\rightharpoonup}{0}$	\pm	$\stackrel{\rightharpoonup}{\square}$	\pm	二	\pm		$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	T
O	0	O	으	O	0	0	O	\bigcirc	\bigcirc	O	$\begin{gathered} n \\ 0 \\ \hline \end{gathered}$	－	A	\cdots	ω	ω	ω	0	0	－	A	0	c	ω	ค	ω ，ω	$\begin{aligned} & \omega \\ & \omega \\ & \omega \end{aligned}$	$\begin{array}{l\|l} \omega & \omega \\ i n & N \end{array}$	$\begin{array}{l\|l\|} \omega & \omega \\ N & \omega \\ \hline \end{array}$	ω	
$\stackrel{\rightharpoonup}{\mathrm{O}}$	$\begin{aligned} & \vec{c} \\ & \mathrm{~N} \end{aligned}$	\vec{v}		$\stackrel{\square}{\mathrm{u}}$	$\stackrel{\rightharpoonup}{\vec{n}}$			$\stackrel{\rightharpoonup}{\boldsymbol{\rightharpoonup}}$	$\begin{array}{\|} \vec{\rightharpoonup} \\ \boldsymbol{\sigma} \end{array}$	$\begin{aligned} & \vec{a} \\ & \dot{\sigma} \end{aligned}$	$\begin{array}{l\|l} 1 & \stackrel{\rightharpoonup}{\sigma} \\ \Delta & \stackrel{n}{n} \\ \hline \end{array}$	$\begin{gathered} \vec{~} \\ \stackrel{\rightharpoonup}{c} \\ \dot{\omega} \end{gathered}$	$\left\lvert\, \begin{aligned} & \vec{~} \\ & \Delta \end{aligned}\right.$	$\begin{aligned} & \vec{n} \\ & n \\ & i \end{aligned}$		$\begin{aligned} & \vec{n} \\ & n \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \vec{~} \\ & \mathrm{c} \\ & \mathrm{c} \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{C}}$	$\left\|\begin{array}{c} \vec{c} \\ \omega \end{array}\right\|$	$\left\lvert\, \begin{gathered} \mathrm{c} \\ \mathrm{c} \\ \mathrm{c} \end{gathered}\right.$	$\begin{aligned} & \vec{e} \\ & \omega \end{aligned}$	$\begin{gathered} \overrightarrow{9} \\ \omega \end{gathered}$	$\begin{gathered} \vec{c} \\ 0 \end{gathered}$	$\begin{aligned} & \overrightarrow{\mathrm{c}} \\ & \mathrm{in} \end{aligned}$	$\left\lvert\, \begin{array}{c\|c} \overrightarrow{e r} \\ \rightarrow & 0 \\ 0 \end{array}\right.$			$\begin{array}{c\|c} \vec{C} & \vec{N} \\ 0 & \dot{O} \end{array}$	$\begin{array}{l\|l} \vec{g} & \vec{v} \\ a & \mathrm{v} \\ \hline \end{array}$		
$\begin{aligned} & \mathrm{V} \\ & \mathrm{~N} \end{aligned}$	\checkmark	i	$\begin{array}{l\|l} 1 \\ d & \sim \end{array}$	ir	$\begin{array}{l\|l} \lambda \\ & \mathbf{\omega} \\ \hline \end{array}$	$\begin{array}{ll} \mathrm{N} \\ \mathrm{w} \\ \hline \end{array}$	$\begin{array}{l\|l} N \\ i & \end{array}$	$\begin{array}{l\|l} N \\ N & N \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N} \end{aligned}$	$\begin{array}{lll} v \\ v \\ \omega \end{array}$	$\begin{array}{l\|l\|} \hline & \infty \\ \hline & \\ \hline \end{array}$	i	$\begin{aligned} & N \\ & i \end{aligned}$	$\begin{aligned} & 1 \\ & i \\ & i v \end{aligned}$	$\begin{array}{ll} N \\ \sim & V \\ \hline \end{array}$	$\begin{array}{l\|l} \mathrm{V} \\ \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & n \\ & i \\ & i \end{aligned}$	の	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & V \\ & 0 \end{aligned}$	V	er	\pm		in		$\begin{array}{l\|l} N \\ i \end{array}$	0	or \checkmark	iv	\％
os	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{i}$	\checkmark	\pm	in	$\begin{aligned} & A \\ & \sim \end{aligned}$	$\stackrel{\rightharpoonup}{i}$	$\stackrel{\rightharpoonup}{\boldsymbol{\omega}} \text { : }$	$\stackrel{\rightharpoonup}{t}$	$\stackrel{\rightharpoonup}{v}$	$\stackrel{A}{2}$	$\sqrt{\circ}$	$\stackrel{A}{i}$	$\begin{gathered} \stackrel{A}{i n} \\ \hline \end{gathered}$	$\begin{array}{c\|c} \Delta & \pi \\ i n & 9 \end{array}$	π	$\begin{array}{l\|l} \wedge \\ \hline \end{array}$	$\stackrel{r}{\sigma}$	$\stackrel{A}{i}$	$\stackrel{\sim}{\square}$	$\stackrel{ \pm}{2}$	$\stackrel{\rightharpoonup}{i n}$	＋	$\begin{gathered} \mathrm{c} \\ \mathrm{~N} \end{gathered}$			09	$\stackrel{\sim}{\square}$	${ }_{\sim}^{+}$Cr	cr $\stackrel{+}{0}$	O
$\begin{aligned} & N \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & \end{aligned}$	$\begin{array}{l\|l\|} \hline \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & N \\ 0 & \infty \\ 0 & -1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sigma}{\mathrm{o}} \\ & \hline \end{aligned}$	0	$\begin{array}{l\|l} v \\ y_{1} & 8 \\ \hline \end{array}$	$\begin{array}{l\|l} 3 \\ \underset{\sim}{n} \\ \underset{N}{2} \end{array}$	$\begin{array}{c\|c} N \\ \sim \\ \sim \end{array}$	$\begin{array}{c\|c} N \\ 0 & \infty \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & \infty \\ & \hline \end{aligned}$	$\begin{array}{\|c\|c\|} N \\ 0 \\ \infty \\ 0 \\ \hline \end{array}$		$\begin{array}{l\|l} 0 \\ 0 \\ 0 \\ \hline \end{array}$		$\begin{array}{l\|l} v \\ 0 & N \\ c \end{array}$			$\stackrel{N}{\mathrm{~N}}$	$\stackrel{N}{N}$	$\begin{array}{\|c} N \\ \infty \\ 0 \\ \hline \end{array}$	$\stackrel{N}{\mathrm{~N}}$	$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$		$\begin{aligned} & N \\ & \sigma \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & 0 \\ & \infty \\ & \hline \end{aligned}$		$\begin{array}{l\|l} N & N \\ \infty & \infty \\ \infty & 0 \\ \hline \end{array}$		$\sqrt[v]{ } \omega$	$\omega \stackrel{\sim}{\sim}$	$\stackrel{v}{2}-\overline{0}$
$\begin{aligned} & + \\ & 0 \\ & 0 \end{aligned}$	I	$\begin{aligned} & \stackrel{r}{1} \\ & \text { in } \\ & \hline \end{aligned}$	π	$\begin{aligned} & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{l\|l} \therefore & \underset{\sim}{\circ} \\ 0 & \text { on } \end{array}$	$\begin{gathered} A \\ \Omega \\ 0 \\ 0 \end{gathered}$		$\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{array}{l\|l} \stackrel{\rightharpoonup}{\bullet} \\ \stackrel{9}{c} \end{array}$			$\begin{array}{c\|c} n \\ 0 \\ \infty \\ 0 \\ 0 \end{array}$				$\begin{aligned} & \stackrel{\rightharpoonup}{\sigma} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & a \\ & A \end{aligned}$	$\left\lvert\, \begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}\right.$	家	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & 0 \end{aligned}\right.$	$\stackrel{+}{\underset{\sim}{a}}$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\omega} \end{aligned}\right.$					$\begin{array}{l\|l} \hat{A} & \underset{ }{\infty} \\ \infty & 1 \\ \hline \end{array}$	3
$\begin{aligned} & \omega \\ & c \\ & c \end{aligned}$	$\begin{aligned} & \omega \\ & c \\ & \dot{c} \\ & \hline \end{aligned}$		$\underset{\sim}{\infty}$	$\begin{gathered} \omega \\ c \\ 0 \end{gathered}$		$\begin{array}{l\|l} \omega & \omega \\ \underset{\sim}{2} & \dot{\sigma} \end{array}$		$\begin{array}{l\|l\|} \omega & \omega \\ -1 \\ \hline \end{array}$	$\begin{gathered} 0 \\ \\ \hline \end{gathered} \begin{gathered} \omega \\ 0 \end{gathered}$	$\begin{array}{l\|l} \omega \\ \Delta & \stackrel{\rightharpoonup}{\omega} \\ \hline \end{array}$	$\begin{array}{l\|l\|} \omega & \omega \\ \omega & \underset{\sim}{n} \\ \hline \end{array}$			$\begin{array}{l\|l\|} 0 & \omega \\ & 0 \\ y & \\ \hline \end{array}$	$\begin{array}{l\|l} \omega & \omega \\ i v & \omega \\ \hline \end{array}$		$\begin{array}{l\|l} \omega & \omega \\ \boldsymbol{j} & \mathbf{y} \\ \hline \end{array}$	$\begin{aligned} & \omega \\ & n_{0} \\ & 0 \end{aligned}$	$\begin{array}{l\|l\|} \omega \\ 0 \\ 0 \end{array}$	0	$\begin{aligned} & \omega \\ & 0 \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \omega \\ 0 \\ 0 \\ 0 \end{gathered}$		$\left\|\begin{array}{l} \omega \\ e \\ j \\ \infty \end{array}\right\|$	u		ω	－	e ${ }_{0}{ }^{-}$	$\stackrel{\omega}{\omega}$	$\begin{array}{l\|l} \omega & \frac{3}{n} \\ \\ \frac{1}{n} \\ \hline \end{array}$
$\stackrel{\rightharpoonup}{\boldsymbol{\rightharpoonup}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{ll} 0 \\ y_{n} \\ \hline \end{array}$		$\stackrel{\rightharpoonup}{\mathrm{v}}$	$\stackrel{\rightharpoonup}{U} \mid \stackrel{\rightharpoonup}{N}$	$\stackrel{\rightharpoonup}{\mathrm{N}} \underset{\stackrel{\rightharpoonup}{\mathrm{~A}}}{ }$	$\begin{array}{l\|l} \stackrel{\rightharpoonup}{\Delta} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{0} \mid \vec{N}$			$\underset{\sim}{\Delta} \underset{\sim}{c}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{*}} \underset{\stackrel{\rightharpoonup}{\boldsymbol{A}}}{\stackrel{\rightharpoonup}{*}}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\bullet}}$	$\begin{array}{l\|l} \stackrel{\rightharpoonup}{\mathrm{N}} \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{N}$	$\begin{array}{l\|l} \stackrel{\rightharpoonup}{n} & \stackrel{\rightharpoonup}{\mathrm{~N}} \\ \hline \end{array}$	$\underset{\sim}{u} \mid \stackrel{\rightharpoonup}{N}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\sim}}$			－	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{a}} \mid$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	N	$\stackrel{\sim}{\sim}$	－	兴	N	N0	N
$\begin{array}{\|c} N \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{l\|l} 0 \\ 0 & \stackrel{\rightharpoonup}{\infty} \\ 0 \end{array}$		$\stackrel{\rightharpoonup}{\sim}$	$\begin{array}{l\|l} \stackrel{\rightharpoonup}{2} & \stackrel{\rightharpoonup}{\omega} \\ \hline \end{array}$		$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\rightharpoonup}{\mathrm{v}} \mathrm{v}$	$\begin{array}{l\|l} \stackrel{\rightharpoonup}{\circ} \\ \stackrel{y}{n} \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{\Delta}: \stackrel{\rightharpoonup}{\dot{a}}$	$\stackrel{\rightharpoonup}{c}$				$N \mid \stackrel{\rightharpoonup}{\infty}$	$\begin{array}{l\|l} \infty & \stackrel{\rightharpoonup}{\infty} \\ \stackrel{c}{0} \\ \hline \end{array}$			$\begin{array}{l\|l} 0 \\ \mathbf{c} & \stackrel{\rightharpoonup}{0} \\ 0 \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{\infty}$	N		$\checkmark \stackrel{N}{\sim}$	\cdots	N	N	$\left\|\begin{array}{c} \mathrm{N} \\ \overrightarrow{\mathrm{~A}} \end{array}\right\|$	$\stackrel{N}{N}$	$\stackrel{N}{N} \underset{\sim}{\vec{A}}$	$\underset{\sim}{N} \underset{\sim}{N}$	$\underset{\sim}{\mathrm{N}} \underset{-1}{ }$
$\begin{gathered} \omega \\ \hat{c} \\ \nu \end{gathered}$	$$	$\begin{array}{l\|l} \omega & \omega \\ 0 & g_{0} \\ \hline \end{array}$		$\begin{array}{l\|l} 0 & \omega \\ \underset{\sim}{n} & \dot{8} \\ \hline \end{array}$	$\begin{array}{c\|c} \omega \\ \boldsymbol{p} \\ \hline & 8 \\ \hline \end{array}$	$\begin{array}{l\|l} \omega & \omega \\ \text { g } & \text { A } \end{array}$	$\begin{array}{l\|l} \omega & \omega \\ A & \alpha \\ \hline \end{array}$	$$	$\begin{array}{l\|l} \omega & \omega \\ \Omega & i \\ \hline \end{array}$	$\begin{gathered} \omega \\ \omega \\ 0 \\ \hline \end{gathered}$	$\begin{array}{l\|l} \omega & \omega \\ \boldsymbol{o} & \dot{8} \\ \hline \end{array}$				$\begin{array}{l\|l} \omega & \omega \\ c & 0 \\ 0 & A \\ \hline \end{array}$	$\begin{array}{l\|l} \omega & \omega \\ s & \omega \\ \hline \end{array}$	$\begin{array}{c\|c} 0 \\ 0 \\ 0 & \\ \hline \end{array}$		$\begin{array}{l\|c} \omega & \omega \\ \mathbf{A} & \dot{\alpha} \\ \hline \end{array}$	$\begin{array}{l\|l\|l} \omega \\ n \\ n \\ 0 \\ \hline \end{array}$	$\begin{array}{c\|c} \omega \\ \vdots \\ \vdots \\ \hline \end{array}$		$\begin{array}{c\|c} \omega & \omega \\ \Omega & \stackrel{\omega}{c} \\ \hline \end{array}$	$\begin{array}{c\|c} \omega \\ \omega & 0 \\ \hline & 8 \\ \hline \end{array}$	$\begin{array}{l\|l\|} 0 \\ \Delta \\ 0 & \omega \\ \hline \end{array}$	$\stackrel{\omega}{\omega}$	ω	$\begin{aligned} & \omega \\ & \infty \\ & \infty \end{aligned}$	ω	$\begin{aligned} & \omega \\ & \underset{\sim}{v} \\ & u \end{aligned}$	$\begin{gathered} \omega \\ \dot{v} \\ \frac{1}{c} \\ \frac{1}{\omega} \end{gathered}$
$\begin{aligned} & \mathbf{o} \\ & \dot{+} \\ & \mathbf{o} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 0 \\ n \\ \stackrel{\rightharpoonup}{\omega} \\ \hline \end{array}$					$\begin{array}{l\|l} 0 & 0 \\ i & A \\ \hline \end{array}$							$\begin{array}{l\|l} 0 \\ \stackrel{\rightharpoonup}{2} \\ \hline \end{array}$		$\begin{array}{l\|l} 0 & 0 \\ \stackrel{\rightharpoonup}{\sigma} & 0 \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ 0 & i \\ \hline \end{array}$							$\begin{array}{l\|l} 0 \\ \hline \end{array}$			－	0	0	0	0	－ $\bar{\omega}$
$\left\lvert\, \begin{aligned} & 0 \\ & \mathbf{\omega} \\ & \mathbf{c} \end{aligned}\right.$	$\begin{array}{\|l\|l\|} \hline & 0 \\ 0 & \dot{\omega} \\ \hline \end{array}$					$\begin{array}{l\|l} 0 & 0 \\ 0 & \omega \\ \hline & 0 \\ \hline \end{array}$		$\begin{array}{l\|l} 0 & 0 \\ 0 & \omega \\ \hline & 0 \\ \hline \end{array}$				$\begin{array}{l\|l} 0 & 0 \\ \mathbf{D} & \mathbf{\omega} \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ \omega & \dot{\omega} \\ \hline \end{array}$		$\begin{array}{ll} 0 \\ \pm & 0 \\ \pm \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ \omega & \omega \\ 0 & 0 \end{array}$								$\begin{array}{l\|l} 0 & 0 \\ 0 & \omega \\ \hline \end{array}$	$\begin{array}{l\|l\|} \hline 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \hline \end{array}$		O	0	O	0	0
$\begin{array}{\|c} \hline \\ \hline \end{array}$	$\begin{array}{l\|l\|} \hline \\ 0 & 0 \\ 0 & 0 \\ \hline \end{array}$							$\begin{array}{l\|l} 0 & 0 \\ N & \mathbf{N} \\ \hline & 0 \\ \hline \end{array}$	$\begin{array}{l\|l} 0 \\ \mathbf{n} & \mathbf{N} \\ \hline 0 & \mathbf{N} \\ \hline \end{array}$	$\begin{array}{ll} 0 \\ \hat{\omega} & 0 \\ \hline \end{array}$	$\begin{array}{l\|c} 0 \\ 0 & \text { Nu} \\ \hline & 0 \\ \hline \end{array}$	0 0 0 0 0 0			$\begin{array}{l\|l} 0 & 0 \\ \text { N } & 0 \\ 0 \\ \hline \end{array}$				$\begin{array}{l\|l} 0 & 0 \\ 0 & \dot{\omega} \\ \hline \end{array}$	$$	0		$\begin{array}{l\|l} 0 & 0 \\ & \mathbf{\omega} \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ \omega & \\ 0 \\ \hline \end{array}$	$\begin{array}{l\|l} 0 \\ 0 & 0 \\ 0 \\ \hline \end{array}$		O		－	0	$0 \bar{v}$

\begin{tabular}{|c|}
\hline \[
\begin{array}{l|l}
\hline \& c \\
\Omega \& \Omega \\
\Omega \& \Omega
\end{array}
\] \& \[
\begin{array}{l|l}
\hline \& 0 \\
\Omega \& \Omega \\
\Omega \& 8
\end{array}
\] \& \& \[
\begin{array}{|l|l|}
\hline \& 0 \\
\Omega \& 0 \\
0 \& 0 \\
\hline
\end{array}
\] \& \& \[
\begin{array}{l|l}
\hline \& \Omega \\
\Omega \& \Omega \\
\Omega \& 0
\end{array}
\] \& \[
\begin{array}{l|l}
\hline 0 \& \Omega \\
\Omega \& \Omega \\
\Omega \& 0
\end{array}
\] \& \[
\begin{array}{l|l}
\hline \Omega \& \Omega \\
\therefore \& 0 \\
\Omega \& 0
\end{array}
\] \& \& \[
\begin{array}{l|l}
\hline \Omega \& n \\
\Omega \& \Omega \\
\Omega \& \Omega \\
\hline
\end{array}
\] \& \& \& \[
\begin{array}{l|l}
\hline \Omega \& \Omega \\
\Omega \& \Omega \\
\Omega \& \Omega \\
\hline
\end{array}
\] \& \begin{tabular}{c|c}
0 \\
0 \& 0 \\
0 \& \\
0
\end{tabular} \& \begin{tabular}{l|l}
0 \\
0 \& \\
0 \\
0
\end{tabular} \& \begin{tabular}{l|l}
\(n\) \\
\(n\) \& 0 \\
\(n\) \\
\(\sim\)
\end{tabular} \& \& Sos

0
0
0 \& の的 \& ｜c｜ \& $\left\lvert\, \begin{aligned} & 0 \\ & n \\ & 0\end{aligned}\right.$ \& \& ｜c｜ \& ¢ \& an
n
\square \& On \& OS \& Of \& ｜c｜ \& a
0
0
0 \& （1） \& \&

\hline \&

\hline 7 \& 7 \& 7 \& 7 \& \& 3 \& \& \& \& \& \& \& \& \& 7 \& \& \& ＜ \& $3 \leq$ \& 37 \& 73 \& 3 \& \& \& \& \& \& 3 \& 3 \& 7 \& \& \& ＋

\hline \rightarrow \& \rightarrow \& \rightarrow \& ω \& \rightarrow \& \rightarrow \& － \& \rightarrow \& \rightarrow \& \rightarrow \& \rightarrow \& \& \& \& \& \sim \& \rightarrow－ \& $\omega{ }^{\omega}$ \& ω \& $\mathrm{N} \rightarrow$ \& －ω \& $\omega \rightarrow$ \& \& \& \& \& $\stackrel{\rightharpoonup}{ }$ \& \cdots \& \bigcirc \& ω \& \& ， | \square |
| :---: |
| 0 |
| 0 | \&

\hline \& $\vec{~}$
$\stackrel{\rightharpoonup}{c}$
$\stackrel{\rightharpoonup}{3}$
\vdots
0

0 \& $$
\begin{gathered}
0 \\
0 \\
\frac{1}{2} \\
\frac{1}{1} \\
0 \\
0
\end{gathered}
$$ \& c

c
c
\vdots
\vdots

0 \& \& \& \& \& \& \& \& \& \& $$
\left|\begin{array}{c}
N \\
\vec{n} \\
0 \\
0 \\
\\
\dot{0} \\
0 \\
0
\end{array}\right|
$$ \& \[

$$
\begin{aligned}
& N \\
& 1 \\
& 0 \\
& \frac{1}{7} \\
& 0 \\
& 0
\end{aligned}
$$
\] \& \& N

\vdots
0
0
\vdots
0
0
0 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline ¢ \& $$
\underset{\omega}{\infty}
$$ \& 9 \& $\stackrel{\square}{9}$ \& \[

$$
\begin{aligned}
& \infty \\
& \infty
\end{aligned}
$$

\] \& \[

\infty

\] \& \[

8

\] \& \[

\underset{\sim}{\infty}

\] \& \[

\infty

\] \& \[

\underset{\sim}{\infty}

\] \& \[

$$
\begin{gathered}
\infty \\
N
\end{gathered}
$$

\] \& \[

\underset{\sim}{\infty}

\] \& \[

\wp

\] \& \[

0

\] \& \[

$$
\begin{array}{|l|}
\infty \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{ll}
\infty \\
N
\end{array}
$$

\] \& \[

\stackrel{\leftrightarrow}{N}

\] \& \[

$$
\begin{array}{l|l}
\infty & \alpha \\
\sim & 0 \\
0
\end{array}
$$

\] \& \[

\infty

\] \& On \& \[

\underset{\sim}{\infty} \mid

\] \& \[

0 \mid 8

\] \& \[

$$
\begin{array}{c|c|c}
\infty \\
\infty & \infty \\
\hline
\end{array}
$$

\] \& \[

\underset{\sim}{\infty}
\] \& $\stackrel{\infty}{\square} \stackrel{0}{\omega}$ \& 0 \& $)_{0} \stackrel{\rightharpoonup}{\circ}$ \& $\stackrel{\rightharpoonup}{\circ} \mathrm{O}$ \&

\hline N \& $\stackrel{\rightharpoonup}{\omega}$ \& \[
\stackrel{A}{\mathrm{~N}}

\] \& ${ }_{\infty}^{\infty}$ \& $\stackrel{\omega}{\dagger}$ \& $\stackrel{\text {－}}{-}$ \& \[

$$
\begin{aligned}
& \infty \\
& \infty
\end{aligned}
$$

\] \& \sim_{V}^{\sim} \& \[

\left|$$
\begin{array}{c}
\boldsymbol{\omega}
\end{array}
$$\right|

\] \& \[

\underset{\omega}{\omega} \mid \underset{N}{N}

\] \& \[

$$
\begin{gathered}
\mathbf{N} \\
\hline
\end{gathered}
$$

\] \& $\stackrel{\omega}{v}$ \& \[

$$
\begin{gathered}
\omega \\
\omega
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|c|}
\infty \\
\hline
\end{array}
$$

\] \& \[

\stackrel{\omega}{\omega}

\] \& \[

$$
\begin{aligned}
& \boldsymbol{\omega} \\
& \boldsymbol{p}
\end{aligned}
$$

\] \& $\stackrel{\omega}{\sim}$ \& \[

\omega

\] \& \[

\omega

\] \& \[

\left\lvert\, $$
\begin{aligned}
& \omega \\
& \infty
\end{aligned}
$$\right.

\] \& \[

\left\lvert\, $$
\begin{gathered}
\infty \\
\infty
\end{gathered}
$$\right.
\] \& $\stackrel{\omega}{0}$－ \& $\stackrel{\rightharpoonup}{\omega}$ \& $\stackrel{\omega}{\omega}$ \& $\stackrel{\omega}{\sim}$ \& \pm \& ${ }_{\sim}^{*} \sim$ \& $\underset{\sim}{\omega}$ \& $\stackrel{\omega}{4} \stackrel{\sim}{u}$ \& \sim_{0}^{ω} \& ${ }_{\sim}^{\omega}$ \& ${ }_{0}^{\omega}$ \& $\stackrel{\rightharpoonup}{\mathrm{O}}$

\hline $\stackrel{\rightharpoonup}{\mathrm{N}}$ \& $\stackrel{\rightharpoonup}{N}$ \& $\stackrel{\rightharpoonup}{\omega}$ \& \[
\vec{N}

\] \& \[

\pm

\] \& \[

\stackrel{\rightharpoonup}{\mathrm{N}}

\] \& \[

\vec{N}

\] \& \[

\vec{N}

\] \& \[

\stackrel{\rightharpoonup}{\mathrm{a}}

\] \& \[

\vec{N}

\] \& \[

\vec{N}

\] \& $\stackrel{\rightharpoonup}{\omega}$ \& $\stackrel{\rightharpoonup}{\mathrm{N}}$ \& $\stackrel{\rightharpoonup}{N}$ \& $\stackrel{\rightharpoonup}{N}$ \& \[

\vec{\rightharpoonup}

\] \& \[

\overrightarrow{\mathrm{N}}

\] \& $\stackrel{\rightharpoonup}{\text { N}}$ \& $\stackrel{\rightharpoonup}{\omega}$ \& \[

\pm

\] \& \[

\vec{N}

\] \& $\stackrel{\rightharpoonup}{\mathrm{N}}$ \& \[

\vec{\Delta}

\] \& \[

\pm

\] \& \[

\vec{N}

\] \& \[

\stackrel{\rightharpoonup}{\mathrm{N}}

\] \& \[

\overrightarrow{\mathrm{N}} \mid \overrightarrow{\mathrm{N}}
\] \& $\stackrel{\rightharpoonup}{N}$ \& N \& N \& $\stackrel{\text { N }}{ }$ \& $\stackrel{\rightharpoonup}{\sim}$ \& $\frac{7}{7}$

\hline $$
\begin{gathered}
\omega \\
\infty \\
\infty
\end{gathered}
$$ \& \[

\underset{\omega}{\omega}

\] \& \[

$$
\begin{aligned}
& \omega \\
& N
\end{aligned}
$$

\] \& \[

\left.$$
\begin{gathered}
\mathbf{N} \\
\mathbf{N}
\end{gathered}
$$ \right\rvert\,

\] \& \[

$$
\begin{gathered}
N \\
0 \\
\hline
\end{gathered}
$$

\] \& 0 \& － \& 0 \& 0 \& 0 \& 0 \& 0 \& O \& － \& ㅇ． \& O \& 0 \& \bigcirc \& 0 \& \[

$$
\begin{gathered}
\mathrm{N} \\
\mathrm{c}: \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& \infty \\
& \infty
\end{aligned}
$$
\] \& 0 \& 0 \& － \& 0 \& O \& 0 \& － \& 0 \& 0 \& － \& 015 \& \leq

\hline $$
\begin{aligned}
& \overrightarrow{e r} \\
& \mathrm{c}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \vec{\sigma} \\
& \omega
\end{aligned}
$$

\] \& \[

\stackrel{\rightharpoonup}{\sigma}

\] \& \[

$$
\begin{array}{l|l|}
\vec{n} \\
0 & 0 \\
0
\end{array}
$$

\] \& \[

$$
\begin{array}{|c}
\vec{u} \\
i \\
i n
\end{array}
$$

\] \& \& \[

$$
\begin{aligned}
& \overrightarrow{e r} \\
& \text { cn }
\end{aligned}
$$

\] \& $\stackrel{\rightharpoonup}{\mathrm{m}}$ \& \[

\left\lvert\, $$
\begin{gathered}
\vec{\Delta} \\
\dot{\sigma}
\end{gathered}
$$\right.

\] \& \[

\stackrel{\rightharpoonup}{9}

\] \& \[

\stackrel{\rightharpoonup}{\Delta}

\] \& \[

$$
\begin{gathered}
\overrightarrow{9} \\
0
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \vec{v} \\
& \hdashline v \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \overrightarrow{+} \\
& \infty
\end{aligned}
$$

\] \& \[

\stackrel{\rightharpoonup}{\mathrm{t}}

\] \& \[

\left\lvert\, $$
\begin{gathered}
\vec{A} \\
\infty \\
\infty
\end{gathered}
$$\right.

\] \& \& \[

\left|$$
\begin{array}{c}
\vec{~} \\
\omega \\
\omega
\end{array}
$$\right|

\] \& $\stackrel{\rightharpoonup}{\square}$ \& \[

$$
\begin{gathered}
\overrightarrow{\mathrm{c}} \\
\mathrm{\omega}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\vec{c} \\
\infty
\end{gathered}
$$

\] \& $\stackrel{\square}{\infty}$ \& \[

\left|$$
\begin{array}{c}
\vec{v} \\
\infty
\end{array}
$$\right|

\] \& \[

$$
\begin{array}{|c}
\vec{v} \\
\mathrm{~N}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
\vec{~} \\
\mathrm{~N}
\end{gathered}
$$

\] \& \[

\stackrel{\rightharpoonup}{\boldsymbol{\sigma}}

\] \& \[

\left|$$
\begin{array}{c}
\vec{e} \\
\mathrm{c}
\end{array}
$$\right|

\] \& \[

\left|$$
\begin{array}{c}
\overrightarrow{e r} \\
\omega
\end{array}
$$\right|

\] \& \[

$$
\begin{array}{|c}
\overrightarrow{9} \\
\dot{0}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
\vec{v} \\
\omega
\end{gathered}
$$
\] \& \& crar \& $\stackrel{\sim}{\square}$

\hline $$
v
$$ \& \[

\underset{\sim}{\infty}

\] \& ∞ \& ∞ \& \[

$$
\begin{aligned}
& \mathrm{N} \\
& \dot{\sigma}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{l|l|}
1 \\
y \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& \infty
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& v \\
& i \\
& \hline
\end{aligned}
$$

\] \& \[

\stackrel{\rightharpoonup}{i}

\] \& \[

$$
\begin{aligned}
& \mathrm{N} \\
& 0
\end{aligned}
$$

\] \& \[

\underset{N}{n}
\] \& ∞ \& ∞ \& ¢ \& N

$\stackrel{\rightharpoonup}{\omega}$ \& \[
$$
\begin{aligned}
& 1 \\
& \omega
\end{aligned}
$$

\] \& \[

$$
\begin{array}{l|l|}
\hline & -1 \\
0 & 0 \\
\hline
\end{array}
$$

\] \& ∞ \& 0 \& \[

$$
\begin{aligned}
& +1 \\
& \infty
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& V \\
& \dot{x}
\end{aligned}
$$

\] \& ف－ \& \[

$$
\begin{array}{|l|}
\hline \\
\hline
\end{array}
$$

\] \& \checkmark \& \[

$$
\begin{aligned}
& 1 \\
& \infty \\
& \infty
\end{aligned}
$$

\] \& － \& iv： \& \[

$$
\begin{array}{|l|}
1 \\
\sigma
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{1} \\
& \dot{\sigma}
\end{aligned}
$$
\] \& \& － \& －1 \& $\frac{2}{3}$

\hline $$
|\underset{\rightarrow}{c \pi}|
$$ \& \[

$$
\begin{aligned}
& 0 \\
& 0 r
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
c \\
\omega \\
\omega
\end{gathered}
$$

\] \& \square \& cr \& \[

\stackrel{\stackrel{1}{\infty}}{0}

\] \& cr \& \[

0

\] \& \[

\stackrel{\uparrow}{\infty}

\] \& \[

\underset{\infty}{\stackrel{\rightharpoonup}{\infty}}

\] \& \[

\underset{\infty}{\stackrel{\rightharpoonup}{\infty}}

\] \& \[

$$
\begin{aligned}
& 0 \\
& i \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
c \\
i v
\end{gathered}
$$

\] \& \[

$$
\begin{array}{ccc}
c \\
0 & 0
\end{array}
$$

\] \& O \& \[

\sqrt{\stackrel{\rightharpoonup}{0}}

\] \& cr \& \& A \& \[

0

\] \& \[

\mid \underset{\infty}{\sim}

\] \& \％ \& \[

0

\] \& 0 \& \[

$$
\begin{gathered}
c r \\
i
\end{gathered}
$$
\] \& c

ω \& $$
\stackrel{f}{6}
$$ \& $\stackrel{0}{4}$ \& G \& in \& A \& － \& 은

\hline $$
\left|\begin{array}{l}
N \\
\underset{\sim}{9}
\end{array}\right|
$$ \& \[

$$
\begin{aligned}
& N \\
& 0 \\
& 8 \\
& 8
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{N} \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{array}{l|l}
1 & N \\
0 & \infty \\
0 & \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
N \\
0
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
N \\
\underset{\sim}{N}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& N \\
& \underset{N}{N}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& \mathbf{o} \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& \vdots \\
& g
\end{aligned}
$$

\] \& \[

$$
\begin{array}{l|l}
N \\
\underset{n}{n} \\
0
\end{array}
$$

\] \& \[

\stackrel{\rightharpoonup}{\infty}

\] \& \[

$$
\begin{gathered}
\mathrm{N} \\
\mathrm{o} \\
\hline
\end{gathered}
$$

\] \& \[

0

\] \& \[

$$
\begin{array}{c|c}
N \\
0 \\
0 & \\
\hline
\end{array}
$$

\] \& \& \[

$$
\begin{array}{l|l}
N \\
\stackrel{N}{2} \\
\underset{\omega}{2}
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l}
N \\
N \\
N \\
\sim
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l|}
N \\
N \\
0 \\
\omega
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l|}
\hline & N \\
\infty & \infty \\
0 & 0 \\
\hline
\end{array}
$$

\] \& \[

\xrightarrow[\sim]{N}

\] \& \[

\underset{v}{N}

\] \& N \& \[

$$
\begin{gathered}
N \\
- \\
\omega
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
N \\
\infty \\
\omega_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{N} \\
& \mathrm{y}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
N \\
0 \\
0
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
N \\
0 \\
\square
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{N} \\
& \mathrm{~g}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
n \\
\infty \\
\omega
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|c|c}
N \\
0 \\
i & 1 \\
i
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& 0 \\
& 0
\end{aligned}
$$
\] \& $\bar{\square}$

\hline $$
\left|\begin{array}{r}
\stackrel{\rightharpoonup}{8} \\
\underset{c}{2}
\end{array}\right|
$$ \& \[

\underset{c}{c}

\] \& \[

$$
\begin{aligned}
& f \\
& z
\end{aligned}
$$

\] \& \[

y

\] \& \[

\] \& \[

$$
\begin{aligned}
& \wedge \\
& \stackrel{n}{8} \\
& \hline
\end{aligned}
$$

\] \& ज \& \[

9

\] \& \[

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\omega} \\
& \stackrel{\rightharpoonup}{\omega}
\end{aligned}
$$

\] \& \[

\stackrel{A}{2}

\] \& \[

\stackrel{\underset{\sim}{2}}{\stackrel{1}{2}}

\] \& \[

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\infty} \\
& \underset{\sim}{\infty} \\
& \hline
\end{aligned}
$$

\] \& $\stackrel{+}{\square}$ \& n|c \& \[

\mathfrak{N} \mid \stackrel{\underset{ }{A}}{ }

\] \& \[

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{2} \\
& \mathbf{0}
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \mathrm{A} \\
& \mathrm{~S} \\
& \mathrm{c}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& A \\
& \underset{y}{0} \\
& \hline
\end{aligned}
$$

\] \& \[

\stackrel{c}{0}

\] \& \[

$$
\begin{aligned}
& \stackrel{s}{n} \\
& i
\end{aligned}
$$

\] \& in \& \[

$$
\begin{aligned}
& \vec{A} \\
& -y
\end{aligned}
$$

\] \& \[

\stackrel{r}{i}

\] \& \[

\stackrel{+}{0}

\] \& \[

\stackrel{f}{0}

\] \& \& $\stackrel{+}{\square}$ \& $\stackrel{+}{6}$ \& \[

\stackrel{\rightharpoonup}{n}

\] \& \[

$$
\begin{gathered}
A \\
c \\
A
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A \\
& \underset{\sigma}{2} \\
& \hline
\end{aligned}
$$
\] \& 边

\hline $$
\stackrel{\omega}{\omega}
$$ \& \[

$$
\begin{aligned}
& \omega \\
& \dot{\sigma} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{l|l|}
\hline & \omega \\
1 & 0 \\
\hline
\end{array}
$$

\] \& \& \[

$$
\begin{array}{l|l}
0 \\
0 \\
n & \omega \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{c|c}
\omega \\
\sim \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l|}
\omega & \omega \\
0 & \dot{0} \\
n &
\end{array}
$$

\] \& \[

$$
\begin{array}{c|c}
\omega \\
& \omega \\
0
\end{array}
$$

\] \& \[

\left|$$
\begin{array}{c}
\omega \\
c \\
y
\end{array}
$$\right|

\] \& \[

$$
\begin{array}{c|c}
\omega \\
& \omega \\
0 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \omega \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{l|l|}
\omega \\
\Delta \\
\vdots \\
0 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l}
\omega \\
0 & \omega \\
0 & 9 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{l|c|}
\omega & \omega \\
3 & c \\
\hline & \\
\hline
\end{array}
$$

\] \& \& \[

$$
\begin{array}{c|c}
\omega \\
& \omega \\
\hline
\end{array}
$$

\] \& \& \[

$$
\begin{array}{l|l|}
\omega & \omega \\
\Delta & \dot{\omega} \\
\hline
\end{array}
$$

\] \& \& \[

$$
\begin{array}{r|c|c}
\omega \\
\underset{\sim}{c} \\
i
\end{array}
$$

\] \& \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \omega \\
& \hline
\end{aligned}
$$

\] \& \[

\left\lvert\, $$
\begin{aligned}
& \omega \\
& c \\
& c
\end{aligned}
$$\right.

\] \& \[

$$
\begin{gathered}
\omega \\
c \\
A
\end{gathered}
$$

\] \& \[

\stackrel{\omega}{\dot{A}}

\] \& \[

$$
\begin{aligned}
& \omega \\
& \underset{\sim}{\omega}
\end{aligned}
$$

\] \& \[

\left|$$
\begin{array}{c}
\omega \\
\infty
\end{array}
$$\right|

\] \& \[

$$
\begin{gathered}
\omega \\
o \\
\rho \\
f
\end{gathered}
$$

\] \& \& \[

$$
\begin{aligned}
& \omega \\
& \dot{8}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \omega \\
& \dot{c} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{l|l|}
0 & \omega \\
\vdots \\
\boldsymbol{c} \\
\hline
\end{array}
$$

\] \& \[

0 $$
\begin{gathered}
n \\
\frac{N}{n} \\
\hline
\end{gathered}
$$
\]

\hline $$
\left\lvert\, \begin{aligned}
& \stackrel{\rightharpoonup}{n} \\
& \underset{c}{2}
\end{aligned}\right.
$$ \& \[

\stackrel{\rightharpoonup}{n}

\] \& \[

\stackrel{\rightharpoonup}{n}

\] \& \[

$$
\begin{array}{l|l}
\stackrel{\rightharpoonup}{N} & \stackrel{\rightharpoonup}{n} \\
\hline
\end{array}
$$

\] \& \& \[

\stackrel{\rightharpoonup}{\mathrm{a}} \mathrm{\sim}

\] \& \[

\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{0}}

\] \& \[

$$
\begin{array}{c|c}
\stackrel{\rightharpoonup}{\mathrm{v}} \\
\stackrel{\rightharpoonup}{2} \\
\hline
\end{array}
$$

\] \& O \& \[

\stackrel{\rightharpoonup}{\mathrm{N}}

\] \& \[

\stackrel{\rightharpoonup}{\mathrm{N}}

\] \& \[

$$
\begin{array}{l|l}
3 \\
\hline & \stackrel{n}{0} \\
\hline
\end{array}
$$

\] \& $\stackrel{\rightharpoonup}{\text { N }}$ \& － \& \& \[

\underset{\sim}{u}

\] \& \[

$$
\begin{array}{l|l}
\vec{~} & \stackrel{\rightharpoonup}{N} \\
\hline
\end{array}
$$

\] \& $\stackrel{\rightharpoonup}{\sim}$ \& $\stackrel{\rightharpoonup}{\sim}$ \& $\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\nu}}$ \& \[

\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{n}}

\] \& 文 \& $\stackrel{\rightharpoonup}{\mathrm{N}}$ \& \[

\mid \stackrel{\rightharpoonup}{N}
\] \& － \& ω \& $\stackrel{\rightharpoonup}{N}$ \& $\stackrel{\text { N }}{ }$ \& $\stackrel{\rightharpoonup}{\sim}$ \& $\stackrel{\rightharpoonup}{\bullet}$ \& $\stackrel{\rightharpoonup}{ \pm}$ \& N \& 三

\hline $$
|\stackrel{\rightharpoonup}{\infty}|
$$ \& \[

\left|$$
\begin{array}{c}
\stackrel{\rightharpoonup}{\infty} \\
\boldsymbol{\omega}
\end{array}
$$\right|

\] \& \[

$$
\begin{array}{|c|c|}
\hline \\
0 \\
0 & \stackrel{\rightharpoonup}{0} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l}
\stackrel{\rightharpoonup}{\infty} \\
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l}
1 \\
\infty \\
\infty \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l}
\infty \\
\infty & \stackrel{\rightharpoonup}{\infty} \\
\hline 1
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l|}
\hline \\
\infty & \stackrel{N}{a} \\
\stackrel{\rightharpoonup}{\sigma}
\end{array}
$$

\] \& \& \[

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{a} \\
& \stackrel{y}{c}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{l|l}
+ \\
\mathbf{N} \\
0
\end{array}
$$

\] \& \& \[

$$
\begin{array}{l|l}
0 \\
\nu & \stackrel{\rightharpoonup}{A} \\
\hline
\end{array}
$$

\] \& \& \& \[

\stackrel{\rightharpoonup}{e} \stackrel{\rightharpoonup}{e}

\] \& \[

$$
\begin{array}{l|l}
\stackrel{\rightharpoonup}{0} \\
\hline 0 \\
\hline
\end{array}
$$

\] \& \[

\stackrel{\rightharpoonup}{\omega}

\] \& \[

$$
\begin{array}{l|l}
U & \stackrel{\rightharpoonup}{\Delta} \\
\stackrel{\rightharpoonup}{\Delta} \\
\hline
\end{array}
$$

\] \& \[

\stackrel{\rightharpoonup}{v}

\] \& \[

$$
\begin{array}{r}
\stackrel{\rightharpoonup}{*} \\
\mathbf{0}
\end{array}
$$

\] \& \& \[

$$
\begin{array}{l|l|}
\hline \\
\infty \\
\infty \\
\infty \\
\hline
\end{array}
$$

\] \& \[

\stackrel{N}{\vec{A}}

\] \& \[

\stackrel{\rightharpoonup}{\oplus}

\] \& \[

$$
\begin{aligned}
& \mathrm{N} \\
& \mathrm{O}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& N \\
& O
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 0 \\
& 1 \\
& i \\
& i
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& N \& \[

\stackrel{\rightharpoonup}{\omega}

\] \& \& \[

\stackrel{\rightharpoonup}{\infty} \mid \subseteq
\]

\hline $$
\left|\begin{array}{l}
\omega \\
\dot{\omega} \\
\stackrel{1}{2}
\end{array}\right|
$$ \& \[

$$
\begin{array}{|l|l|}
\hline \\
0 \\
0 \\
0 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l}
\omega & \omega \\
\Delta & \dot{8} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l}
\omega \\
\underset{\sim}{\circ} & \underset{\sim}{n} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l}
\omega \\
\mathbf{1} \\
\mathbf{y} & 0 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l}
\omega \\
\stackrel{\omega}{\square} & \stackrel{\rightharpoonup}{\sigma}
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l}
\omega & \omega \\
\underset{\sim}{n} & \underset{\sim}{n} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l}
\omega & \omega \\
\vdots \\
0 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l}
0 \\
n & \omega \\
0 &
\end{array}
$$

\] \& \& \& \& \& \& \[

$$
\begin{array}{l|l}
\omega & \omega \\
c & \omega \\
i & i v
\end{array}
$$

\] \& \& \[

$$
\begin{array}{l|l}
\omega & \omega \\
0 & 0 \\
\hline
\end{array}
$$

\] \& \& \& \& \[

$$
\begin{array}{c|c}
\omega & \omega \\
\underset{\sim}{n} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l}
\omega & \omega \\
\vdots & \stackrel{\rightharpoonup}{\omega} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \omega \\
& \dot{o} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \omega \\
& \boldsymbol{\omega}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\omega \\
0 \\
\hline
\end{gathered}
$$

\] \& \& \[

$$
\begin{aligned}
& \omega \\
& \dot{\nu} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{c|c}
\omega \\
\hdashline \\
\hline & 0 \\
\hline
\end{array}
$$

\] \& \& $\stackrel{\sim}{\sim}$ \& \[

$$
\begin{gathered}
\omega \\
\stackrel{\rightharpoonup}{\omega}
\end{gathered}
$$

\] \& \& \[

$$
\begin{array}{l|l}
\omega & \begin{array}{l}
0 \\
c \\
\\
\hline
\end{array} \\
\hline
\end{array}
$$
\]

\hline $$
\begin{aligned}
& 0 \\
& \pm \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{array}{l|l}
0 \\
i \\
i
\end{array}
$$

\] \& \& \& \[

$$
\begin{array}{|c|c}
\hline 0 \\
\hline & 0 \\
\hline
\end{array}
$$

\] \& \& \& \& \[

$$
\begin{array}{l|l}
0 \\
\hline
\end{array}
$$

\] \& \& \& \[

$$
\begin{array}{l|l}
0 \\
\hline
\end{array}
$$

\] \& \& \& \& \& \& \& \& \& \& \[

$$
\begin{array}{l|l}
0 \\
\dot{A} & \stackrel{1}{\omega} \\
\hline
\end{array}
$$

\] \& \[

0

\] \& \[

$$
\begin{aligned}
& 0 \\
& - \\
& \hline
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \text { o } \\
& \text { i }
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\mathbf{n} \\
\mathbf{c} \\
\hline
\end{gathered}
$$

\] \& \& \[

$$
\begin{array}{ll}
0 \\
A & 0 \\
A
\end{array}
$$

\] \& \& \& \& \[

$$
\begin{array}{l|l}
0 \\
\dot{\omega} & \underset{\omega}{\omega}
\end{array}
$$
\]

\hline $$
\left\lvert\, \begin{aligned}
& 0 \\
& \pm \\
& \hline
\end{aligned}\right.
$$ \& \[

$$
\begin{array}{|l|l|}
\hline \\
\hline \\
\dot{\alpha} \\
\hline
\end{array}
$$

\] \& \& \& \[

$$
\begin{array}{l|l}
0 \\
\stackrel{\rightharpoonup}{0} \\
\hline 0
\end{array}
$$

\] \& \& \& \& \[

$$
\begin{array}{l|l}
0 \\
0 \\
0 \\
\vdots \\
\hline
\end{array}
$$

\] \& \& \& \& \& \& \& \& \& \& \[

\dot{\omega}

\] \& \& \& \& \[

\underset{\sim}{0}

\] \& \[

$$
\begin{aligned}
& 0 \\
& \omega \\
& 0
\end{aligned}
$$

\] \& \& \& \& \& \& \& \& \[

$$
\begin{array}{lll}
0 & 0 \\
i & i
\end{array}
$$

\] \& \[

\stackrel{0}{ \pm} \underset{\perp}{C}
\]

\hline ¢ \& $$
\begin{array}{l|l}
2 \\
\end{array}
$$ \& \& \[

$$
\begin{array}{l|l}
0 & 0 \\
0 & \text { Nu } \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l}
0 \\
0 & 0
\end{array}
$$

\] \& \& \[

$$
\begin{array}{l|l}
0 \\
\hline & 0 \\
\hline
\end{array}
$$

\] \& \& \[

$$
\begin{aligned}
& 0 \\
& \underline{n} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& \\
& \hline
\end{aligned}
$$

\] \& \& \[

0

\] \& \& \& \& \[

$$
\begin{array}{l|l}
0 & 0 \\
& \text { Nu } \\
\hline
\end{array}
$$

\] \& \& \& \& \& \[

$$
\begin{array}{l|l}
0 & 0 \\
\text { A } \\
\hline 0 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{c|c}
0 & 0 \\
0 \\
0 \\
0
\end{array}
$$

\] \& \[

$$
\begin{gathered}
\circ \\
0 \\
\hline 1 \\
\hline 1
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \stackrel{0}{N} \\
& \text { N }
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\stackrel{\rightharpoonup}{n} \\
\hline
\end{gathered}
$$

\] \& \[

\mathfrak{\omega}

\] \& \& 0 \& \[

\] \& \& \& \[

$$
\begin{array}{l|l}
0 & 0 \\
\hdashline 10 ~ \\
\hline 1
\end{array}
$$

\] \& \[

$$
\begin{array}{ll}
0 \\
i \\
0 & c \\
0
\end{array}
$$
\]

\hline
\end{tabular}

			$\begin{array}{l\|l} \hline & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{l\|c} \hline \sigma & 0 \\ \Omega & 0 \\ \Omega & 0 \end{array}$	$\begin{array}{l\|l} \hline \sigma & \Omega \\ \Omega & \Omega \\ \Omega & \Omega \\ \hline \end{array}$	$\begin{array}{l\|l} \hline \Omega & \Omega \\ \Omega & \Omega \\ \Omega & \Omega \end{array}$	$\begin{array}{l\|l} \hline 6 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$		c｜c 0 0 0		0 0 n 0 0 0	a 0 0 0 0	¢｜cos	cos 0 0 0 0		G） 0 0 0 0 0		¢for	のn 0	｜ca	｜c｜	の的	（S）	¢	$\begin{aligned} & \infty \\ & n \\ & \rho \end{aligned}$	¢	¢	an	¢｜cos	¢	－	
																												3 c \vdots 0 0 0 1 \vdots 0 0				
7	$3 \leq$	3	7	717	7	7	7 T	T1	T	37	717	$7 \leq$	$3 \leq$	3	3	T	$3 \leq$	$3 \leq$	3	3	73		3	3	37					T	（0 0 \times	0
ω	ω	\rightarrow	\rightarrow	N	\rightarrow	ω	－	$\rightarrow 0$	ω N	N	$\rightarrow-$	$\rightarrow \mathrm{N}$	N ω	ω	ω	ω	N	N0	ω							$\xrightarrow{+}$				$-$	－	
$\left\lvert\, \begin{gathered} 0 \\ 1 \\ \substack{2 \\ \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0} \end{gathered}\right.$				$\begin{aligned} & \omega \\ & \underset{c}{c} \\ & \underset{c}{c} \\ & \dot{c} \end{aligned}$	ω $\stackrel{\omega}{c}$ $\frac{C}{1}$ \vdots 0	$\begin{gathered} \omega \\ \stackrel{\omega}{c} \\ \frac{c}{2} \\ \mathbf{c} \\ \hline \end{gathered}$						$\begin{array}{\|c\|c} N & 0 \\ 0 & 0 \\ & 0 \\ 0 & 0 \\ \vdots & 0 \\ 0 & 0 \end{array}$	∞ $\frac{0}{2}$ $\frac{c}{3}$ \vdots \dot{c} 0	$\begin{aligned} & 0 \\ & \frac{1}{2} \\ & \frac{c}{2} \\ & \dot{c} \end{aligned}$	$\begin{gathered} N \\ \hline \\ 2 \\ \frac{1}{2} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \vec{~} \\ \stackrel{\rightharpoonup}{2} \\ \frac{c}{1} \\ \dot{0} \\ \hline \end{gathered}$	$\stackrel{\rightharpoonup}{2}$ $\stackrel{\rightharpoonup}{1}$ \vdots 0	$\begin{gathered} \vec{~} \\ \stackrel{c}{c} \\ \frac{1}{i} \\ 0 \end{gathered}$				$\bar{\sigma}$										
0	$\stackrel{\rightharpoonup}{\omega}$	¢	－	$\stackrel{セ}{+}$	$\stackrel{9}{1}$	$\stackrel{\rightharpoonup}{\omega}$	N0	$\underset{-}{\oplus}$	$\begin{aligned} & \overrightarrow{0} \\ & \infty \end{aligned}$	O）	\varnothing	8	$\stackrel{\rightharpoonup}{8}$	0	合	0	\bigcirc	\|	Cir		${ }_{\infty}^{\infty}$		9	$\stackrel{\sim}{\sim}$	0	$\stackrel{1}{2}$			$\underset{\omega}{\infty}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{-1}{\circ}$	
ω	$\pm{ }_{\sim}^{\sim}$	W	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\omega}{\omega}$	N	$\stackrel{\rightharpoonup}{\omega}$	＋	$\stackrel{\omega}{\omega}$	$\stackrel{N}{N}$	$\frac{A}{n}$	ω	$\stackrel{\rightharpoonup}{c}$	$\stackrel{n}{c}$	$\stackrel{\text { a }}{ }$	\pm	${ }_{0}$	$\stackrel{A}{0}$	$\left\lvert\, \begin{gathered} \omega \\ \hline \end{gathered}\right.$	－	\hat{N}	＋	A	\pm	$\stackrel{\omega}{\omega}$	$\stackrel{A}{\mathrm{O}} \mathrm{~N}$	N		ω	（ 0	¢	$\pm \stackrel{-1}{\underline{0}}$	$\stackrel{-1}{\underline{1}}$
$\stackrel{\rightharpoonup}{\mathrm{N}}$	\vec{N}	$\stackrel{\rightharpoonup}{\omega}$	\vec{N}	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\rightharpoonup}{N}$	$\underset{~}{\mathrm{I}}$	\pm	$\vec{\omega} \mid$	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\omega}$	$\overrightarrow{\mathrm{N}} \overrightarrow{\mathrm{c}}$	$\vec{\omega}$	$\vec{\Delta}$	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	د	\pm	\vec{N}	$\stackrel{\rightharpoonup}{\omega}$	－	A	＋	A	$\stackrel{\rightharpoonup}{ \pm}$		$\pm \stackrel{\rightharpoonup}{\mathrm{N}}$	N	$\stackrel{\rightharpoonup}{\mathrm{N}}$ 云	$\stackrel{\rightharpoonup}{\mathrm{N}}$－	$\stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\omega}$	T
0	0	0	0	ω	N	$\mid \underset{i}{A}$	$\begin{gathered} \omega \\ 0 \\ \hline \end{gathered}$	ω	$\begin{aligned} & \hat{0} \\ & \dot{\theta} \end{aligned}$	$\underset{\infty}{\omega}$	$\begin{array}{l\|l} \omega & 0 \\ A & 0 \\ \hline \end{array}$	$\begin{gathered} \omega \\ \omega \\ \omega \end{gathered}$	$\hat{\mathrm{N}}$	－	0	$\stackrel{f}{o}$	A	A	$\stackrel{+}{\circ}$	$\stackrel{A}{\mathrm{~N}}$	$\begin{array}{l\|l} \omega & \dot{d} \\ \boldsymbol{A} & \dot{c} \\ \hline \end{array}$	$\stackrel{+}{\infty}$	N	－	$\left\lvert\, \begin{gathered} \omega \\ \dot{\sigma} \\ \hline \end{gathered}\right.$	＋ 0	$\begin{gathered} \omega \\ \infty \\ \hline \end{gathered}$	$\begin{array}{l\|c} w & e \\ c & v \\ \hline \end{array}$	$\begin{array}{l\|c} \omega \\ i n & \omega \\ \hline \end{array}$	$\begin{array}{c\|c} \omega & \omega \\ \omega & \omega \\ \hline \end{array}$	$\left.\begin{gathered} \omega \\ i \end{gathered} \right\rvert\, \leq$	\sum
$\left\lvert\, \begin{gathered} \vec{\rightharpoonup} \\ \omega \\ \hline \end{gathered}\right.$	$\begin{gathered} \overrightarrow{\mathrm{c}} \\ \mathrm{\sigma} \end{gathered}$	$\begin{gathered} \vec{c} \\ 0 \end{gathered}$	$\left\lvert\, \begin{gathered} \vec{~} \\ \sigma \\ \sigma \end{gathered}\right.$		$\begin{gathered} \vec{M} \\ 0 \end{gathered}$	$\begin{gathered} \vec{c} \\ \infty \end{gathered}$	$\begin{aligned} & \vec{a} \\ & c \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{c}$	$\stackrel{\rightharpoonup}{\sigma}$	$\stackrel{\rightharpoonup}{\boldsymbol{\sigma}} \underset{\sim}{\boldsymbol{A}}$	$\begin{aligned} & \vec{a} \\ & \stackrel{\rightharpoonup}{\wedge} \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{a}}$		$\begin{aligned} & \vec{v} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \omega \end{aligned}$	$\begin{array}{l\|c} \vec{r} & \stackrel{\rightharpoonup}{v} \\ 0 & \underset{v}{2} \\ \hline \end{array}$	$\begin{array}{l\|l} \vec{n} \\ \vec{r} \\ \stackrel{\rightharpoonup}{n} \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{n}$	$\stackrel{\rightharpoonup}{\text { a }}$	｜r	$\left\lvert\, \begin{gathered} c \\ v \end{gathered}\right.$	$\stackrel{\rightharpoonup}{a}$	$\begin{gathered} \overrightarrow{0} \\ \mathrm{t} \end{gathered}$	$\stackrel{\rightharpoonup}{\text { a }}$	$\begin{aligned} & \vec{\sigma} \\ & \mathrm{N} \end{aligned}$	$\begin{gathered} \vec{a} \\ \omega \\ \omega \end{gathered}$	$\begin{aligned} & \overrightarrow{0} \\ & \dot{v} \end{aligned}$	$\begin{array}{\|c} \vec{r} \\ \infty \\ \hline \end{array}$	$\begin{array}{c\|l} \vec{c} & 0 \\ i & 0 \\ \hline \end{array}$	$\begin{array}{l\|l} \vec{\sigma} & \vec{\sigma} \\ \dot{\sigma} & \overrightarrow{-} \end{array}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\rightharpoonup}{\mathrm{O}} \mathrm{a}$	
i	$\begin{aligned} & V \\ & e \end{aligned}$	$\begin{aligned} & v \\ & \pi \end{aligned}$	$\begin{aligned} & V \\ & \hline \end{aligned}$	$\begin{aligned} & V \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \infty \\ \omega \end{gathered}$	$\begin{aligned} & \lambda \\ & 0 \end{aligned}$	N	$\begin{aligned} & 7 \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} N \\ i \end{array}\right\|$	∞	0	∞	0	$\begin{array}{lll} N \\ V \end{array}$	\checkmark	$\underset{\infty}{n}$	$\begin{aligned} & \mathrm{ol} \\ & \mathrm{v} \end{aligned}$	$\begin{array}{l\|l} \mathbf{y} \\ \boldsymbol{n} \\ \hline \end{array}$	$\begin{array}{l\|l\|} 1 & 1 \\ 0 & \infty \\ \hline \end{array}$	$\stackrel{N}{\infty}$	∞	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{y} \\ & i \end{aligned}$	1	∞	∞	∞		∞	$\stackrel{\infty}{\infty}$	\cdots	
in	$\stackrel{\rightharpoonup}{v}$	$\stackrel{\rightharpoonup}{\circ}$	cr	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & n \\ & A \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\infty}$	ar	$\begin{gathered} \sim \\ \omega \\ \omega \end{gathered}$	$\stackrel{A}{v}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{v} \\ & \hline \end{aligned}$	$\begin{array}{lll} \pi \\ \pi \end{array}$	$\begin{aligned} & n \\ & \omega \\ & \hline \end{aligned}$	$\begin{array}{lll} \pi & A \\ \omega & \infty \\ \hline \end{array}$	$\begin{array}{l\|l\|} \hline & \stackrel{+}{\infty} \\ \hline \end{array}$	$\begin{aligned} & A \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & A \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{+}{0} \\ & 0 \\ & \hline \end{aligned}$	a or	\cdots	$\stackrel{+}{\square}$	$\stackrel{c}{\omega}$	$\stackrel{\rightharpoonup}{i}$	$\stackrel{\rightharpoonup}{v}$	$\stackrel{\rightharpoonup}{0}$	$\begin{gathered} a \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} c \\ i \end{gathered}$	$\stackrel{\pi}{\square}$	Gic	$\begin{array}{l\|c} c \\ c i n \end{array}$	$\begin{array}{lll} e & 0 \\ N & 0 \\ \hline \end{array}$	er in	옾
$\begin{gathered} \mathrm{N} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} N \\ \sigma \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{c} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{l\|l\|} 0 & N \\ 2 & - \\ 0 & 0 \end{array}$	N	$\begin{aligned} & N \\ & N \\ & \sim \end{aligned}$	$\begin{aligned} & N \\ & N \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & n \\ & N \\ & n \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{c} \\ & \mathrm{C} \end{aligned}$	$\begin{array}{l\|l} N \\ \\ \hline \end{array}$		$\begin{aligned} & N \\ & N \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \sim \\ & \\ & \sim \end{aligned}$	$\begin{array}{l\|l} \mathrm{N} \\ \mathrm{~N} \\ \mathrm{O} \\ \hline \end{array}$	$\begin{array}{l\|l\|} 0 & N \\ n & \infty \\ -1 \end{array}$	$\begin{gathered} 0 \\ 0 \\ \hline \\ \hline \end{gathered}$	$\begin{array}{l\|l\|} N \\ 0 \\ o \\ o \end{array}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{C} \\ & \hline \end{aligned}$		$\begin{gathered} N \\ \infty \\ o \end{gathered}$	$\begin{aligned} & N \\ & \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{gathered} N \\ \infty \\ \infty \end{gathered}$	$\underset{\sim}{N}$	$\begin{gathered} N \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & N \\ & \infty \\ & 0 \end{aligned}$			$\begin{aligned} & N \\ & 9 \\ & 2 \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \mathrm{O} \\ \hline \end{gathered}$	－
$\stackrel{\rightharpoonup}{i}$	$\stackrel{\rightharpoonup}{\sim}$	$\begin{array}{r} \infty \\ \infty \end{array}$	$\begin{array}{r} + \\ \dot{0} \end{array}$		$\begin{gathered} \infty \\ \infty \\ \hline \end{gathered}$	8	$\begin{aligned} & +\quad+ \\ & \hline 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\underset{c}{2}}{\substack{2}}$	$\begin{gathered} 1 \\ 0 \\ 0 \\ \hline \end{gathered}$	Cos		$\begin{array}{l\|c} A & v \\ 0 & 0 \\ \hline & \\ \hline \end{array}$				$\begin{array}{l\|l\|} \mathbf{n} \\ \boldsymbol{3} \\ \hline \end{array}$	$\begin{array}{l\|r} \Delta & \stackrel{\rightharpoonup}{9} \\ \stackrel{y}{9} \\ \hline \end{array}$	$\begin{array}{l\|l} \Delta \\ 0 & \underset{1}{0} \\ \hline \end{array}$	$\begin{array}{\|c} A \\ \infty \\ \hline \end{array}$	$\begin{array}{\|l} + \\ \infty \\ 0 \end{array}$	$\left\lvert\, \begin{gathered} \hat{i} \\ i \end{gathered}\right.$	$\begin{aligned} & \hat{+} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & + \\ & \infty \end{aligned}$	$\left\lvert\, \begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & \stackrel{+}{6} \\ & \hline \end{aligned}$	V	$\stackrel{A}{\infty}$	\cdots		$\begin{array}{\|c} \hat{\infty} \\ \infty \\ \omega \end{array}$	$\frac{3}{7}$
8	$\begin{aligned} & \omega \\ & \alpha \\ & \infty \\ & \hline \end{aligned}$	$\begin{gathered} \omega \\ i n \end{gathered}$		$\begin{array}{l\|c} 0 & \omega \\ 8 & 0 \\ 0 & 0 \\ \hline \end{array}$	$\begin{gathered} \omega \\ \dot{\sigma} \end{gathered}$		$\begin{array}{l\|c\|} \hline \\ \underset{\sim}{2} & \omega \\ \hline \end{array}$	$\begin{array}{l\|l} \omega \\ \omega \\ \hline \end{array}$	$\begin{aligned} & \omega \\ & \dot{\sigma} \\ & \hline \end{aligned}$	$\begin{array}{l\|l} \omega \\ \boldsymbol{\sim} & \underset{\sim}{\alpha} \\ \hline \end{array}$		$\begin{array}{l\|l} \boldsymbol{\omega} \\ \boldsymbol{n} & \underset{\sim}{2} \end{array}$	$\begin{array}{l\|l} \omega & \omega \\ \nu & \dot{\omega} \end{array}$	$\begin{array}{l\|c} \omega & \omega \\ \omega & \\ \hline \end{array}$		$\begin{array}{c\|c} \omega \\ \omega & \omega \\ 0 & \omega \\ \hline \end{array}$	$\begin{array}{c\|c} \omega \\ \omega & \omega \\ \omega \\ \hline \end{array}$		$\begin{array}{l\|l} \omega \\ \omega & \omega \\ \dot{\Phi} \\ \hline \end{array}$	$\begin{aligned} & \omega \\ & \omega \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \omega \\ & \alpha \\ & \underset{\sim}{\omega} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \omega \\ & \perp \\ & \nu \end{aligned}\right.$	ω	ω 0 \sim	$\left\lvert\, \begin{aligned} & \omega \\ & \dot{\omega} \\ & \omega \end{aligned}\right.$	$\begin{aligned} & \omega \\ & o \\ & \dot{A} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \omega \\ & \mathbf{o} \end{aligned}\right.$	$\begin{gathered} \omega \\ \underset{y}{c} \end{gathered} \text {. }$		（ ω	$\begin{array}{l\|l\|} \omega \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{lll} \omega & \vec{n} \\ \mathbf{n} \\ \hline \end{array}$
	$\stackrel{\rightharpoonup}{\mathrm{N}}$	11	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\begin{array}{l\|l\|} \hline & \stackrel{N}{\omega} \\ \hline & \\ \hline \end{array}$	$0 \vec{N}$	$\begin{aligned} & \vec{N} \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{u}} \mathrm{i}$		$\stackrel{\rightharpoonup}{n}$	$\stackrel{\rightharpoonup}{u}: \stackrel{\rightharpoonup}{\omega}$	$\begin{array}{l\|l} \stackrel{\rightharpoonup}{\mathrm{N}} \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{N}$	$\stackrel{\rightharpoonup}{\rightharpoonup} \mid \vec{N}$	$\stackrel{\rightharpoonup}{\mathrm{v}} \mathrm{\rightharpoonup}$		$\underset{\sim}{\omega}$			$\bigcirc \stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\omega}$	$\vec{N} \mid$	$\left\lvert\, \begin{gathered} \vec{n} \\ \mathbf{C} \end{gathered}\right.$	$\stackrel{\rightharpoonup}{\omega}$	\vec{n}	$\mid \vec{n}$	\vec{N}	$\stackrel{\rightharpoonup}{\bullet}$	N	N	烒	令	$\stackrel{\text { S }}{ }$
N	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & 0 \\ & \omega \end{aligned}$	$\begin{aligned} & N \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\cup \stackrel{N}{\stackrel{\rightharpoonup}{A}}$	$\begin{array}{l\|l} \stackrel{N}{ \pm} \\ \hline \end{array}$	$\stackrel{N}{u}$	$\begin{array}{l\|l} U & \stackrel{N}{\stackrel{\rightharpoonup}{A}} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\rightharpoonup}{\mathrm{~A}} \\ & \hline \end{aligned}$	$\begin{array}{l\|l} \mathrm{N} \\ \mathbf{N} & \mathrm{~N} \\ \hline \end{array}$	$\begin{array}{l\|c\|} \hline & 1 \\ 0 & 0 \\ 0 & \end{array}$	N	\checkmark		$\dot{\square}$				$$	$\stackrel{\rightharpoonup}{i}$	$\begin{array}{\|c} N \\ 0 \\ \omega \\ \hline \end{array}$	涋	$\vec{\varphi}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\circ}}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & N \\ & 0 \\ & \end{aligned}$	$\overrightarrow{0}$	$\underset{\sim}{\infty} \stackrel{\rightharpoonup}{\infty}$		0	$\begin{array}{l\|l} \overrightarrow{0} & \vec{\infty} \\ 0 \\ \hline \end{array}$	∞
$\left\lvert\, \begin{aligned} & 8 \\ & 8 \end{aligned}\right.$	$\begin{aligned} & 0 \\ & 0 \\ & 9 \end{aligned}$	\cdots	$\underset{\omega}{\omega}$	$\begin{array}{l\|c} \omega & \omega \\ \omega & \dot{\omega} \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & \omega \\ \underset{\sim}{n} \\ \hline \end{array}$	$\begin{array}{c\|c\|} \omega \\ \nu & 0 \\ \hline & \omega \\ \hline \end{array}$	$\begin{array}{c\|c} \omega & \omega \\ \infty & 0 \\ \hline & \mathbf{\omega} \\ \hline \end{array}$		$$	$\begin{array}{c\|c} \omega & \omega \\ 0 \\ \hline & 0 \\ \hline \end{array}$	$\begin{array}{l\|l\|} \omega & \omega \\ \stackrel{\rightharpoonup}{\Delta} & \dot{\omega} \\ \hline \end{array}$	$\begin{array}{l\|l\|} \omega \\ \mathbf{y} & \underset{\sim}{c} \\ \hline \end{array}$	$$						$\begin{array}{l\|l} \omega & \omega \\ 0 \\ \underset{\sim}{2} & y \\ \hline \end{array}$	$\begin{array}{l\|l\|} \omega & \omega \\ \underset{\sim}{n} \\ \hline \end{array}$	ω	$\begin{gathered} \omega \\ 0 \\ \omega \end{gathered}$	$\begin{gathered} \omega \\ \dot{\sigma} \end{gathered}$		ω	0	$\begin{aligned} & \omega \\ & v \\ & y \end{aligned}$		$\begin{array}{l\|l} \omega \\ 3 \\ 0 & 0 \\ \hline & 0 \\ \hline \end{array}$	$\begin{aligned} & \omega \\ & 0 \\ & 0 \end{aligned}$	$\underset{\sim}{\omega}$	$\stackrel{\omega}{\rightharpoonup} \stackrel{\stackrel{\rightharpoonup}{2}}{\omega}$
\pm	$\stackrel{A}{A}$		0		$\begin{array}{l\|l} 0 \\ \hline \end{array}$			$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{\rightharpoonup}{\omega} \\ & \hline \end{aligned}$											$\begin{array}{l\|l} 0 & 0 \\ A & A \\ \hline \end{array}$	$\begin{array}{lll} 0 \\ \stackrel{1}{\omega} \\ \hline \end{array}$	$\begin{array}{l\|l\|} \hline & 0 \\ 0 & A \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{+} \end{aligned}$	$\begin{aligned} & \text { P } \\ & i \\ & i \end{aligned}$	$\begin{array}{l\|l} 0 & 0 \\ A & \text { a } \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ \stackrel{\rightharpoonup}{\circ} & 0 \\ \hline \end{array}$		$\begin{array}{ll} 0 \\ i \\ i \\ \hline \end{array}$			$\begin{array}{l\|l} 0 \\ 0 & 1 \\ i \end{array}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{A} \\ & \hline \end{aligned}$
ω	çor	$\begin{array}{l\|l\|} \hline 0 \\ \hline \end{array}$	$\begin{aligned} & \circ \\ & \hline \end{aligned}$	$\begin{array}{l\|l} 0 \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ 0 & -1 \\ \hline \end{array}$			$\begin{array}{l\|l} 0 & 0 \\ 0 & \underset{\sim}{1} \\ \hline \end{array}$							$\begin{array}{l\|l} 0 & 0 \\ \omega & \mathbf{A} \\ \hline \end{array}$				$\begin{array}{l\|l} 0 & 0 \\ \pm & \omega \\ \hline & 0 \\ \hline \end{array}$		$\begin{array}{l\|l} 0 \\ 1 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{\omega} \\ & \hline \end{aligned}$								$\begin{array}{ll} 0 & 0 \\ i & i \end{array}$		$\begin{aligned} & \text { O} \\ & \dot{\omega} \\ & 0 \end{aligned} \underset{A}{1}$
	$\underset{\sim}{n}$		$\begin{array}{l\|l\|} \hline \\ \hline 1 \\ \mid \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ \stackrel{\rightharpoonup}{\circ} & \text { Nু } \end{array}$			$\begin{array}{l\|l} 0 \\ \mathrm{y}^{\prime} & \underset{0}{0} \\ \hline \end{array}$	$\begin{array}{l\|l\|} \hline \\ \hline & \stackrel{1}{\mathrm{\omega}} \\ \hline \end{array}$		$\begin{array}{l\|l} 0 \\ 0 & 0 \\ \omega \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ \omega & \hat{N} \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ u \\ 0 & 0 \\ \hline \end{array}$		$\begin{array}{l\|l} 0 & 0 \\ \text { y } & \text { N } \\ \hline \end{array}$	$\begin{array}{l\|c} 0 & 0 \\ \text { N\|c } \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ \underset{\omega}{\omega} & \underset{y}{u} \\ \hline \end{array}$		$\begin{array}{l\|l} 0 \\ \underset{y}{y} & 0 \\ \hline \end{array}$	$\begin{array}{l\|l} 0 \\ \underset{y}{u} & 0 \\ \hline \end{array}$	$\begin{array}{l\|l} 0 \\ \substack{0 \\ \\ \hline \\ \hline} \end{array}$	$\begin{array}{c\|c} 0 \\ 0 & 0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$		ω	$\begin{aligned} & 0 \\ & \underset{\omega}{\omega} \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \underset{\omega}{0} \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & \underset{\sim}{0} \end{aligned}$		$\begin{array}{l\|l} 0 & 0 \\ \dot{\omega} & \underset{\sim}{\omega} \end{array}$	$\begin{array}{l\|l} 0 \\ \omega & 0 \\ \hline & \omega \\ \hline \end{array}$	$\begin{array}{\|c} 0 \\ \omega \\ \hline \end{array}$

$\begin{array}{l\|l} \hline \Omega & \Omega \\ 0 & 0 \\ -\infty & 0 \end{array}$	$\begin{array}{l\|l} \hline \Omega & \Omega \\ 0 & \Omega \\ \Omega & \Omega \end{array}$	$$					$\begin{array}{cc}0 & 9 \\ 0 & \\ \bigcirc & \\ 0\end{array}$	$\begin{array}{l\|l} \hline & \Omega \\ \Omega & \Omega \\ \Omega & \Omega \end{array}$	$\begin{array}{l\|l} \hline \Omega & \Omega \\ \Omega & \Omega \\ \Omega & \Omega \\ \hline \end{array}$	ज合	の－6	$\begin{array}{l\|l\|} \hline & \infty \\ n & \Omega \\ 0 & 0 \end{array}$	$\begin{array}{l\|l\|} \hline \infty & 6 \\ 0 & \Omega \\ 0 & \Omega \end{array}$	क｜c	の｜cs	5 0 0 0	｜c｜	ज¢	en \vdots n n n	｜c｜	｜c｜	号	｜c｜		C｜c	¢ 0	C｜c		can	c｜c	（1010	
																									3 c \vdots \vdots 0 0 0 0 0							
3	$3<$	3	$3 \leq$	3 S	3 ？	3 －	3	3	$3 \leq$	3		33	33	33	$3 \backslash$	33	3	T	3	3				3	3	3	3	T	7		｜l｜	
$\omega \omega$	ω N	N	No	$\omega \mathrm{N}$	N ω	ω N	N	$\omega \omega$	$\omega \mathrm{N}$	No	$\omega \mathrm{N}$	N ω	$\omega \omega$							ω－						\rightarrow	－	ω	N	－ω	，	
		N 0 0 3 0 0 0 1			$\begin{array}{c\|c} \omega & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ i & 0 \\ 0 & 0 \end{array}$										$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & i \\ & 0 \\ & p \end{aligned}$																	
¢	$\stackrel{\infty}{\circ}$	\bigcirc	∞	9	$\stackrel{\sim}{+}$	$\stackrel{0}{8}$	$\underset{\omega}{\infty}$	∞	$)^{\infty}$	$\underset{\sim}{\infty}$	\bigcirc	$)^{\infty}$		∞_{0}^{∞}	$\stackrel{\sim}{\square}$	8			$\underset{\sim}{\infty}$	$\begin{array}{\|l\|c\|} \infty & c \\ 0 & c \\ \hline \end{array}$			$\underset{\sim}{\infty}$		$\underset{\omega}{\infty}$	∞	$\begin{array}{l\|l} \infty & \infty \\ \sim & \\ \hline \end{array}$	$\begin{array}{l\|l\|} \infty & \stackrel{\rightharpoonup}{0} \\ \hline \end{array}$	－	$\stackrel{\square}{0}$	$\stackrel{\rightarrow}{9} 9$	
$\stackrel{\omega}{\circ}$	$\underset{\sim}{\omega}$	$\stackrel{\omega}{\circ}$	${ }_{\infty}^{\infty}$	A		${ }_{\sim}^{\omega}$	$\stackrel{\omega}{\sim}$	$\stackrel{\omega}{+}$	$\stackrel{\omega}{\dagger}$	$\stackrel{\omega}{\omega}_{\sim}^{\sim}$	\bigcirc	$\stackrel{\omega}{\omega}$	$\stackrel{\omega}{\sigma}_{\sim}^{\sim}$	$\stackrel{\omega}{\perp}$	${ }_{\sim}^{\omega}$	$\begin{array}{\|c} \omega \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	${ }_{\square}^{\omega}$	$\left\|\begin{array}{c\|c} \omega \\ \infty \end{array}\right\|$	$\underset{\sim}{\omega}$ ¢ ${ }_{\sim}^{\omega}$	$\stackrel{\omega}{\omega}$	N	N	¢ ${ }_{0}$	$\stackrel{\sim}{\Delta}$ ¢ ${ }_{\sim}^{\omega}$	${ }_{\sim}^{\omega}$ O	$\omega_{0}{ }_{\sim}^{\omega}$	$\stackrel{\sim}{N}$	$\stackrel{\sim}{\sim}$	\cdots	$\pm \stackrel{\stackrel{\rightharpoonup}{0}}{\sim}$	
$\stackrel{\rightharpoonup}{N}$	$\stackrel{\rightharpoonup}{\boldsymbol{a}}$	$\stackrel{\rightharpoonup}{\boldsymbol{\prime}}$	$\vec{\nabla}$	$\stackrel{\rightharpoonup}{N}$	二	二	二	\mid	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{N}$	$\stackrel{\rightharpoonup}{\text { N }}$	\rightarrow	د	\pm	$\stackrel{\rightharpoonup}{N}$	\rightarrow	\pm	\pm	\pm	－	\rightarrow	$\stackrel{\rightharpoonup}{\mathrm{N}}$			$\stackrel{\rightharpoonup}{0}$－	$\pm \pm$	\pm	$\stackrel{\rightharpoonup}{\vec{\omega}}$	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\text {－}}$	$\stackrel{\rightharpoonup}{+} \frac{T}{T}$	$\frac{7}{7}$
A	－	cr	－	$\begin{array}{\|c} \stackrel{\rightharpoonup}{i n} \end{array}$	－	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	－	f	＋	－	$\begin{aligned} & \mathbf{n} \\ & i n \end{aligned}$	u	A	$\stackrel{A}{i}$	－	in	$\begin{array}{\|c\|} \hline \text { A } \\ \hline \end{array}$	$\begin{array}{\|c} \omega \\ i \end{array}$	cr	－	ω	ω	－		ω v	0 O	\bigcirc	\bigcirc	or ${ }^{\text {or }} \omega$	ω	$0 \leq$	
$\begin{aligned} & \vec{~} \\ & \dot{e} \end{aligned}$	$\stackrel{\rightharpoonup}{c}$	$\begin{aligned} & \vec{v} \\ & \mathbf{N} \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{C}}$	$\begin{gathered} \vec{v} \\ \mathrm{~N} \\ \hline \end{gathered}$	$\stackrel{\rightharpoonup}{\text { c }}$	$\overrightarrow{\mathrm{c}}$	$\begin{aligned} & \vec{n} \\ & \stackrel{\rightharpoonup}{c} \\ & \hline \end{aligned}$		$\begin{aligned} & \vec{\infty} \\ & \infty \\ & \mathbf{e} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \overrightarrow{\mathbf{A}} \\ \mathbf{A} \end{array}$	$\underset{A}{M}$	$\begin{gathered} \vec{v} \\ \dot{\sigma} \end{gathered}$	$\begin{array}{\|c} \vec{v} \\ \mathrm{n} \\ \hline \end{array}$	$\vec{\infty}$	$\stackrel{+}{\infty}$	cr	$\vec{~}$	$\stackrel{\rightharpoonup}{\vec{v}}$	$\begin{aligned} & \vec{\infty} \\ & 0 \end{aligned}$	$\begin{gathered} \vec{v} \\ \omega \\ \hline \end{gathered}$	$\left\lvert\, \begin{aligned} & \vec{\rightharpoonup} \\ & \mathbf{o} \end{aligned}\right.$	O	$\stackrel{\rightharpoonup}{+}$	$\begin{aligned} & \mathrm{a} \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{0}$	$\begin{array}{l\|l} \vec{A} \\ \stackrel{\rightharpoonup}{\infty} \\ \hline \end{array}$		$\begin{array}{\|c\|c} \hline \vec{v} \\ i & 0 \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{c}$	\pm	M	
in	$\begin{aligned} & \mathrm{V} \end{aligned}$	$\underset{i}{\prime}$	i	$\begin{gathered} 1 \\ i n \\ \hline \end{gathered}$	$\xrightarrow{\text { I }}$	$\begin{aligned} & \mathrm{V} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \lambda \\ & n \\ & \omega \end{aligned}$	$\begin{array}{lll} N \\ N & \underset{\sim}{n} \\ \hline \end{array}$	$\begin{array}{ll} 1 \\ \Delta \\ \hline \end{array}$	$\begin{array}{l\|l} \lambda \\ i \\ \hline \end{array}$	\checkmark	iv	in	\checkmark	\pm	$\stackrel{V}{0}$	in	\checkmark	in		\xrightarrow{N}	＋	$\stackrel{\rightharpoonup}{\omega}$	$\begin{aligned} & + \\ & i \end{aligned}$	$\begin{aligned} & 1 \\ & i \end{aligned}$	$\begin{aligned} & 7 \\ & \sigma \end{aligned}$	$\stackrel{N}{\text { N }}$	a，	Nicis	$\stackrel{\sim}{\omega}$	\checkmark	
$\stackrel{+}{i}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{\sigma}$	\pm	$\stackrel{\rightharpoonup}{v}$	$v>$	$\stackrel{\perp}{\mathrm{V}}$	$\stackrel{\text { in }}{ }$	$\stackrel{A}{N}$	$\begin{array}{l\|l} A \\ u & \stackrel{1}{0} \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{v}$	$\stackrel{+}{\infty}$	v	$\begin{array}{ll} A \\ \hline \end{array}$	$\stackrel{I}{1}$	v	$\stackrel{+}{\infty}$	$\stackrel{\rightharpoonup}{A}$	∞	or	$\begin{aligned} & + \\ & \infty \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\sigma}$	$\stackrel{F}{0}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \end{aligned}$	$\stackrel{\rightharpoonup}{1}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{i}$	$\underset{i}{ }$	$\left\|\begin{array}{r} 1 \\ \infty \end{array}\right\|$	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{ }$	$\stackrel{\square}{6}$	
$\begin{aligned} & N \\ & \vdots \\ & \AA \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & N \\ & c \\ & \infty \end{aligned}\right.$	$\begin{array}{c\|c} 1 & \mathrm{~N} \\ 0 & \sigma \\ \hline \end{array}$	$\begin{aligned} & N \\ & \cdots \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{l\|l} N \\ N \\ \underset{\sim}{n} \end{array}$	$\stackrel{N}{N}$	$\begin{array}{l\|l} N \\ \stackrel{N}{N} \\ \hline \end{array}$	$\begin{aligned} & u \\ & N \\ & \mathbf{N} \\ & \hline \end{aligned}$	$\begin{array}{c\|c\|} \hline \\ 0 & N \\ \hline & 0 \\ \hline \end{array}$	$\begin{array}{l\|l\|} N \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{array}{l\|l} 0 & N \\ 1 & 0 \\ 0 & \end{array}$	$\begin{array}{l\|l} 0 \\ 0 \\ \sim \\ A \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~A} \end{aligned}$	\xrightarrow{N}	N	$\begin{array}{\|c} N \\ 0 \\ i \end{array}$	N	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & n \\ & N \\ & 0 \end{aligned}$	N	N	N	N	N	$\begin{array}{\|l\|l} N & 1 \\ 0 & 2 \\ 0 & 0 \\ \hline \end{array}$	N	$\left\lvert\, \begin{array}{l\|l} \mathrm{N} \\ -1 \\ 0 \end{array}\right.$	$\begin{aligned} & \mathrm{N} \\ & y \end{aligned}$	N	$\stackrel{N}{\mathrm{~N}}$	$\bar{\square}$
	$\underset{\sim}{\sim}$	$\begin{aligned} & \omega \\ & \mathrm{c} \\ & \\ & \hline \end{aligned}$	$\sqrt{5}$			0	$\begin{array}{l\|l} 18 & \stackrel{r}{o} \\ \hline \end{array}$		$\begin{array}{l\|l} \stackrel{\rightharpoonup}{A} & \underset{\omega}{\infty} \\ \hline \end{array}$	$\begin{array}{l\|l} \mathbf{\infty} & \stackrel{\rightharpoonup}{\infty} \\ \hline & 8 \\ \hline \end{array}$	$\begin{aligned} & \hat{8} \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{1} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} 7 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \mathbf{r} \\ & \dot{o} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \hline \end{aligned}$	$\begin{array}{l\|l} \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{2} \\ \hline \end{array}$	$\underset{\infty}{+}$	$\begin{aligned} & \vec{a} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{l\|l\|} \hline 0 \\ 3 & 0 \\ 0 & 0 \end{array}$		$\stackrel{r}{a}$	$\stackrel{i}{y}$		$\begin{array}{\|c} A \\ 0 \\ 0 \end{array}$	$\underset{\sim}{\underset{\sim}{2}}$	$\begin{aligned} & x \\ & y \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{o} \\ & \mathbf{\omega} \end{aligned}$	$\begin{aligned} & \mathbf{r} \\ & \mathbf{o} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{8}{8} \\ & 8 \end{aligned}$	$\stackrel{+}{\stackrel{1}{0}}$	$\stackrel{\stackrel{\rightharpoonup}{9}}{9}$	
$\begin{gathered} \omega \\ c \\ A \end{gathered}$	$\begin{array}{l\|l} \omega \\ \underset{\sigma}{\sigma} \end{array}$	$\begin{array}{l\|l} 0 & \omega \\ \lambda & \underset{\sim}{n} \end{array}$	$\underset{\sim}{N}$		$\begin{array}{c\|c} \omega & \omega \\ \Omega & 0 \\ 0 & 0 \end{array}$	$\begin{array}{l\|l} \omega & \omega \\ & \underset{\sim}{0} \\ \hline \end{array}$	$\begin{array}{l\|c} 1 & \omega \\ 0 & \sigma \\ \hline \end{array}$		$$	$\begin{array}{c\|c} \omega \\ \omega \\ \omega \\ \omega \\ \hline \end{array}$	$\underset{\sim}{I}$	$\begin{array}{l\|l} \omega \\ 0 & 0 \\ 0 & 0 \\ \hline \end{array}$	$\begin{array}{l\|l\|} \omega & \omega \\ B & \omega \\ \hline & 0 \end{array}$	$\begin{aligned} & \omega \\ & -y \\ & - \end{aligned}$				$\boldsymbol{\omega} \mathbf{\omega} \mathbf{\omega} \mathbf{\omega}$	$\begin{array}{l\|l} \omega & \omega \\ \underset{a}{s} \\ \underset{A}{2} \end{array}$	$\begin{array}{l\|l\|} \omega \\ v \\ v i n \end{array}$	$\underset{n}{n}$	$\begin{aligned} & \omega \\ & i \\ & \omega \\ & \hline \end{aligned}$	$\begin{array}{\|c} \omega \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \omega \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} \omega \\ \infty \\ \omega \\ \omega \end{gathered}\right.$	$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{A} \end{aligned}$	$\left\lvert\, \begin{aligned} & \omega \\ & \vdots \\ & \omega \end{aligned}\right.$	0	$\left\|\begin{array}{l} \infty \\ \infty \\ - \end{array}\right\|$	$\begin{array}{l\|l} \omega \\ \infty & \omega \\ \infty \\ \hline \end{array}$	$\begin{array}{l\|l\|l} \omega & \omega \\ \omega & \omega \\ \hline \end{array}$	
$\stackrel{\rightharpoonup}{\vec{\sigma}}$	$\stackrel{\rightharpoonup}{n}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$		$\stackrel{\rightharpoonup}{n}$		$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\omega}}$	$\begin{aligned} & \vec{n} \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$		$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\underset{\sim}{u}$		$\stackrel{\rightharpoonup}{\Delta} \mid \vec{N}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$		$\stackrel{\sim}{\square}$	$\stackrel{\rightharpoonup}{*} \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{ \pm}}$	$\stackrel{\rightharpoonup}{\text { N }}$		$\stackrel{\rightharpoonup}{\text { a }}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{2}}$	$\stackrel{\rightharpoonup}{\text { a }}$	$\stackrel{\rightharpoonup}{\omega}$		$\stackrel{\rightharpoonup}{\text { a }}$	$\stackrel{\text { N }}{\sim}$	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\rightharpoonup}{\vec{v}}$	$\stackrel{\rightharpoonup}{\rightharpoonup} \mid \stackrel{\rightharpoonup}{N}$	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\rightharpoonup}{\text { a }}$
$\mid 9$	$\begin{array}{l\|l} \stackrel{\rightharpoonup}{0} \\ 0 & \\ \hline \end{array}$	$\begin{array}{l\|l\|} \stackrel{\rightharpoonup}{0} \\ 0 \\ 0 \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\rightharpoonup}{\infty} \stackrel{\rightharpoonup}{\infty}$		$\begin{array}{l\|l} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{2} \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{\infty}$		$\left.\stackrel{\rightharpoonup}{\bullet}\right\|_{N}$	\cdots	N		$\underbrace{}_{0}$							$\begin{aligned} & u \\ & \vdots \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$				$\stackrel{\rightharpoonup}{\bullet}$	$\begin{array}{l\|l\|} \hline N \\ 0 \\ 0 \\ \hline \end{array}$	$\vec{\omega}$	$\|\vec{e}\|$	$\begin{array}{l\|l} \hline \\ \hline \end{array}$	$\begin{array}{l\|l\|} \hline \\ 0 \\ 0 & 0 \\ \hline \end{array}$	$\begin{array}{l\|l\|} \stackrel{\rightharpoonup}{\infty} \\ \stackrel{\rightharpoonup}{0} \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\omega}}$	$\stackrel{\rightharpoonup}{\circ}$
\dot{v}	$\begin{array}{l\|l\|} \stackrel{\omega}{\omega} \\ \underset{\sim}{2} \\ \hline \end{array}$		$$	$$	$\begin{array}{c\|c} \omega \\ 0 \\ 0 \\ \vdots \end{array}$	$\begin{array}{l\|l} \omega & \omega \\ \boldsymbol{a} \\ \hline \end{array}$			$\begin{array}{l\|l} \omega & \omega \\ \stackrel{\rightharpoonup}{\omega} & \underset{\sim}{2} \end{array}$		$\begin{array}{l\|l} \omega \\ \nu & \omega \\ \dot{p} \end{array}$	$\begin{array}{l\|l} \omega & \omega \\ \infty & \infty \\ \hline & 0 \\ \hline \end{array}$		$1 \mathrm{~V}$						$\begin{array}{l\|c} \omega \\ -1 & \omega \\ \hline \end{array}$				－	$\left.\begin{array}{l\|l\|} \omega \\ \Delta & \omega \\ \dot{\omega} \end{array} \right\rvert\,$		$\begin{array}{l\|l} \omega \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{l\|l\|} \omega \\ s \\ 0 & 0 \\ 0 & \end{array}$		$\begin{array}{l\|l} \omega \\ \omega & \omega \\ \dot{\sigma} \\ \hline \end{array}$	$\begin{array}{l\|l} \omega & \omega \\ i & 0 \\ A & \end{array}$	$\begin{array}{l\|l} \omega \\ \dot{n} & \stackrel{1}{z} \\ \hline \end{array}$
$\left\lvert\, \begin{aligned} & 0 \\ & A \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & A \end{aligned}\right.$	$\begin{aligned} & 0 \\ & i \end{aligned}$	$\begin{array}{\|c\|c} \circ \\ \hline & \underset{\sim}{\omega} \\ \hline \end{array}$			8	$\begin{array}{l\|l} \hline 0 & 0 \\ A & \text { or } \\ \hline \end{array}$		$\begin{array}{l\|l} 0 \\ 0 & 0 \\ A & A \end{array}$			$\begin{array}{l\|l} 0 & 0 \\ i & \text { in } \\ \hline \end{array}$		A		$\pm \begin{aligned} & 0 \\ & i \end{aligned}$				$\begin{array}{lll} 0 & 0 \\ 0 & 0 \\ \hline \end{array}$				$\begin{array}{c\|c} 0 \\ \omega & 0 \\ \omega \\ \hline \end{array}$		$\begin{array}{l\|l\|} \hline & 0 \\ \underset{\sim}{c} & \underset{\sim}{0} \\ \hline \end{array}$	$\begin{array}{c\|c} 0 & 0 \\ \underset{\sim}{0} & \underset{y}{\omega} \\ \hline \end{array}$	$\begin{array}{l\|l} 0 \\ \underset{y}{u} & 0 \\ \hline \end{array}$				$\begin{aligned} & 0 \\ & \stackrel{A}{A} \\ & \hline \end{aligned}$
$\left\lvert\, \begin{aligned} & 0 \\ & -1 \end{aligned}\right.$			$\begin{array}{l\|l} 0 \\ \omega & 0 \\ 0 & \omega \\ \hline \end{array}$		$\begin{array}{l\|l} 0 & 0 \\ \underset{\omega}{\omega} & \underset{1}{\omega} \\ \hline \end{array}$				$\begin{array}{l\|l} 0 & 0 \\ \omega & 0 \\ 0 & i \end{array}$																	$\begin{array}{l\|l} 0 \\ 0 & 0 \\ 0 & 0 \\ \hline \end{array}$		$\begin{array}{\|c\|c} 0 \\ 0 & 0 \\ \dot{\omega} \\ \hline \end{array}$		$\begin{array}{l\|l} 0 \\ 0 & 0 \\ i \\ i \end{array}$		$\stackrel{\circ}{\mathbf{o}} \underset{\substack{0}}{\substack{0}}$
b			$\begin{array}{l\|l} 0 & 0 \\ N & 0 \\ \hline \end{array}$		$\begin{array}{l\|l} 0 & 0 \\ \underset{y}{N} \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ \mathrm{o}^{\prime} & \text { co } \\ \hline \end{array}$							$\begin{array}{l\|l} 0 & 0 \\ & \dot{\omega} \\ \hline \end{array}$			$\begin{array}{l\|l} 0 & 0 \\ \text { Nu } & \text { Non } \end{array}$					$\begin{array}{l\|l} 0 \\ N \\ 0 & N \\ \hline \end{array}$	N	N / N	$\begin{array}{l\|l} 0 \\ \underset{y}{u} & 0 \\ \hline \end{array}$		$\begin{array}{c\|c} 0 \\ 0 & 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ 0 & \text { N } \\ \hline \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ N & \text { Nu } \\ \hline \end{array}$		$\begin{array}{l\|l} 0 \\ \mathrm{~N} & 0 \\ \mathrm{~N} \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ \text { N } \\ \text { N } \\ \hline \end{array}$	

