Marshall University
Marshall Digital Scholar

Determining the phylogenetic relationships among the northern pike (Esox lucius), the muskellunge (Esox masquinongy), and the silver pike

Steven W. Foster

Follow this and additional works at: https://mds.marshall.edu/etd
Part of the Aquaculture and Fisheries Commons, Biology Commons, and the Structural Biology

Recommended Citation

Foster, Steven W., "Determining the phylogenetic relationships among the northern pike (Esox lucius), the muskellunge (Esox masquinongy), and the silver pike" (2000). Theses, Dissertations and Capstones. 1619.
https://mds.marshall.edu/etd/1619

This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact zhangj@marshall.edu, beachgr@marshall.edu.

Determining the Phylogenetic Relationships Among the Northern Pike (Esox lucius), the Muskellunge (Esox masquinongy), and the Silver Pike.

Thesis Submitted to
The Graduate College of
Marshall University

In partial fulfillment of the
Requirements for the Degree of Masters of Science Program by

Steven W. Foster

Department of Biological Sciences
Marshall University
Huntington, WV 25704
10 April, 2000

This thesis was accepted on APRIC $\frac{10^{T H}}{\text { Month }}$
as meeting the research requirements for the master's degree.

Committee Member

Committee Member

Department of Biological Sciences

Dean of the Graduate College

ACKNOWLEDGEMENTS

I would like to thank Dr. Charles C. Somerville for his expertise and guidance throughout graduate school and this project. This thesis would not have been possible without his contributions. I must also thank him for all of his patience and one-on-one attention that he so willingly provided. I would also like to extend my appreciation to my graduate committee, Dr. Donald Tarter, Dr. Loren Miller, and Dr. Michael Little for their suggestions during the preparation of this manuscript. I would also like to thank Dr. Loren Miller for providing two silver pike samples and coming to Marshall University from the University of Minnesota for my oral exam and thesis defense.

I would like to thank Mr. Edward Theland of the Iowa Department of Natural Resources and the operators of the Marten River Lodge and guide Bill Tregenza for providing silver pike samples. I thank the Marshall University Graduate College and the NASA Grant Committee for funding.

I extend much love and thanks to my wife, Melissa, for her help and support through graduate school and preparation of this thesis. Special thanks to my daughter, Taylor, for providing much needed breaks to read her books, and to a good friend, Apple, for providing breaks from that. A deep appreciation is extended to my mother, Brenda, for her support, as well as providing a computer and quiet place to work, and to my father and step-mother, Steve and Janet, for their support during my academic career. To these persons, my sincere thanks.

TABLE OF CONTENTS

Chapter Page
Title Page i
Approval of Examining Committee ii
Acknowledgements iii
Table of Contents iv
List of Figures vi
List of Tables vii
Abstract 1
I. Introduction 2
II. Taxonomy and distribution 14
Taxonomy 14
Distribution 14
III. Materials and Methods 16
Primer design 16
DNA isolation 18
Amplification 18
Cloning 19
Specimen collection 22
IV. Results 23
V. Discussion 25
VI. Summary and Conclusion 30
Literature Cited 32
Appendix A 53
Appendix B 63
Appendix C. 73

LIST OF FIGURES

Figure Page
1 Silver pike compared to the northern pike, showing distinct color difference 39
2 Relation between interorbital width and standard length of normal and silver pike from Heming Lake, Manitoba (Lawler, 1960) 40
3 Distribution of silver pike 41
4 Sample of sequences used to analyze regions that would provided the most variability and still provided enough conservation for primer annealing 42
5 Phylogenetic tree of the family Cyprinidae showing accuracy of clustering obtained with the proposed amplicon 43
6 Sample collection locations 44
7 Neighbor joining phylogenetic tree of silver pike, northern pike, and muskellunge using sequenced data 45
8 Maximum parsimony phylogenetic tree of silver pike, northern pike, and muskellunge using sequenced data 46
9 Distance matrix phylogenetic tree using the Fitch program of silverpike, northern pike, and muskellunge sequence data...................... 4710 Distance matrix phylogenetic tree using the Kitsch program of silverpike, northern pike, and muskellunge sequence data48

LIST OF TABLES

Table Page
1 Materials used in laboratory experiments 49
2 Oligonucleotide Primers 51
3 Locations of specimen collection. 52

Determining the Phylogenetic Relationships Among the Northern Pike (Esox lucius), the Muskellunge (Esox masquinongy), and the Silver Pike.

Steven W. Foster, and Charles C. Somerville. Dept. Biological Sciences, Marshall University, 400 Hal Greer Blvd., Huntington, WV 25755

Keywords: Silver pike, northern pike (Esox lucius), muskellunge (E. masquinongy), mitochondrial 16 rRNA, phylogeny.

Prioritization of taxa has become a necessity due to limited resources available for conservation. Conservation efforts are often concentrated on those threatened and endangered species with the highest taxonomic importance. The silver pike is a rare game fish, often accounting for less than 1% of a total pike population where it is found. Although silver pike are normally found in association with northern pike, they have distinct morphological characteristics and have not been shown to hybridize with the northern pike. Still, many fisheries biologists consider the silver pike to be a color variant of the northern pike, and to date the silver pike has not been assigned to a taxonomic unit. This study employs the use of a molecular marker on the mitochondrial genome to determine the phylogenetic relationships between the northern pike, silver pike and muskellunge. Mitochondrial DNA was amplified from individual scales, cloned into the $\mathrm{pCR}^{\otimes} 2.1$ vector and sequenced at the Marshall Core Facility. The sequences were aligned using ClustalX (Thompson et al., Nuc. Acids Res. 22:4673), and phylogenetic distances and tree topologies were inferred using the programs of the PHYLIP package (Felsenstein, Cladistics 5:164). Sequence data was sufficient to distinguish between the northern pike and muskellunge. No sequence variation was found between the silver pike and northern pike. Resulting tree topologies were unable to distinguish between the silver pike and northern pike in all cases. Molecular data supports the hypothesis that the silver pike is a color variant of the northern pike and not a separate species.

CHAPTER I

INTRODUCTION

Silver Pike

The silver pike is a member of the family Esocidae and most closely resembles the northern pike (Esox lucius) in morphological characters. The silver pike is often referred to as a blue pike in Canada. This common name often leads to confusion with a subspecies of the walleye (Siizostedion vitreum glaucum) from the Great Lakes region, which is believed to be extinct. Few publications exist on the silver pike. The only peer reviewed journal article from Lawler (1960) stated that the silver pike is a color mutation of the northern pike. Scott and Crossman (1973), Eddy and Underhill (1974), and Becker (1983) briefly discuss the silver pike, mainly pointing out the obvious color difference between the two fish. The majority of citations originally stem from an earlier publication by Eddy and Surber (1943).

The correct common name is the silver pike rather than the silver muskellunge once used by Minnesota fisherman (Eddy and Underhill, 1974). The most distinct difference between the northern pike and the silver pike is that of color (Fig. 1). The northern pike has a basic color arrangement of light yellow to whitish bean shaped spots about as long as the diameter of the eye on a dark, brilliant green to olive background. The body has the appearance of being flecked with gold, caused by a tiny gold spot on the tip of the exposed edge of most body scales. The dorsal, caudal and anal fins are green to yellow and sometimes orange or pale red with large irregular black markings.

Paired fins are usually unmarked and buff to dusky (Scott and Crossman, 1973). The silver pike has deep blue color in the dorsal area, shading through lighter blue and gray devoid of bean shaped spots on the flanks, to white on the ventral surface. The flanks of the silver pike are more specifically dark silver or gray and sometimes flecked with gold. The fins appear to be almost clear with a tint of orange and red and may be speckled with black, particularly the ventral fins (Lawler, 1960). Occasionally, silver pike are found with faint spots on the caudal peduncle, similar to those found on the northern pike but less distinct (Eddy and Underhill, 1974). Silver pike are distinguishable from the northern pike even after death as their silver color intensifies rather than fades (Lawler, 1960).

Although coloration is the most obvious difference between silver pike and northern pike, there are several other subtle morphological differences. First, in a sample of 33 silver pike compared to 189 northern pike, two silver pike had a higher lateral line scale count than the maximum recorded for the northern pike (Lawler, 1960). Though this is not statistically significant, it supports anecdotal information from fisherman that suggest silver pike have finer scales than the northern pike, similar to a rainbow trout (Onkorhynchus mykiss). Silver pike have consistently narrow body width in individuals between 150 to 400 mm , while silver pike between 400 to 550 mm were not different from northern pike of the same size. Interorbital width was the most substantial morphological difference between the northern and silver pike. Although the diameter of the eye can not be measured as accurately as a bony structure, interorbital width confirmed that eye diameter was larger in the silver pike than in the northern pike
(Lawler, 1960). When interorbital distances were plotted arithmetically against the standard length, it was possible to draw a line through all the points above which only northern pike occurred and below which only silver pike occurred (Lawler, 1960; Fig. 2). In the same study, measurements of the mandible and maxillary of the silver pike were plotted against the standard lengths to show that 23 of the 28 silver pike had shorter mandibles than did northern pike. It was also shown that 24 of the 26 silver pike had shorter maxillary lengths than northern pike. This suggests that silver pike have a shorter snout length than do northern pike, though no statistical analysis was performed. Bernardo (1998) stated that silver pike have a caudal fin shape similar to that of the muskellunge, the tips being more pointed than those of northern pike, which are noticeably more rounded. This was also noted in observations made during the present study. Although the average size of the silver pike is similar to that of the northern pike, it rarely reaches the maximum sizes of the northern pike. Silver pike seldom exceed ten pounds (Eddy and Underhill, 1974), though larger fish have been reported. Lawler (1960) also noted that at each age the average length and weight of silver pike was greater than that of northern pike.

There are also morphological similarities between the silver pike and the northern pike. As is common with the northern pike, the opercle of the silver pike is only scaled on the upper half while the cheek is completely scaled. The submandibular pore count resembled that of the northern pike with five on both sides totaling ten (Lawler, 1960). Branchiastegal ray counts fell within the range of the counts for northern pike as did fin ray counts and average head lengths for all specimens observed. Stomach contents
showed that silver pike feed on foods similar to that of northern pike (Lawler, 1960). Food items included perch (Perca flavescens), common sucker (Castotomus commersoni), spottail shiner (Notropis hudsonius), nine spine stickleback (Pungitius pungitius), and troutperch (Percopsis omiscomaycus).

Silver pike captured and placed in aquaria appeared to be exceptionally hardy. One specimen went 22 days before eating, although ample food was supplied. The same fish was dipped twice in formaldehyde to kill Saprolegnia, and still lived for 47 days after capture (Lawler, 1960). In another account by Lawler (1960), a silver pike was caught, held by the eyes to dislodge a hook, placed on the deck of the boat where it remained for two hours before being placed in an aquarium, and survived without the appearance of ill effect. Scott and Crossman (1973) also reported that silver pike is similar to northern pike except for an apparent increased hardiness.

Several breeding experiments have been reported but not extensively documented. Silver pike specimens were incidentally obtained while collecting brood stock muskellunge for the Nevis Fish Hatchery from Lake Belletaine, Minnesota. These silver pike were propagated along with the true muskellunge and stocked in nearby lakes for several years. Breeding experiments at the Spirit Lake Hatchery, Iowa (Eddy and Underhill, 1974) found that silver pike breed true in that all offspring were similar to the parents. When silver pike were crossed with northern pike, the offspring had a peculiar black mottling similar to that of the black crappie (Pomoxis nigromaculatus) and subsequent generations could not be obtained (Runnström, 1949). This suggests that the offspring from a silver pike-northern pike cross are sterile. When the silver pike was
crossed with the muskellunge the resulting F1 generation resembled a tiger muskellunge which is a cross between the muskellunge and a northern pike. Since no specimens having the black mottled pattern of a silver pike-northern pike hybrid have been taken in the field, it is believed that the silver pike and northern pike do not hybridize in nature.

No research has been done on spawning times or behaviors of silver pike, although silver pike have been captured with spawning muskellunge (Eddy and Underhill, 1974) and spawning pike (Lawler, 1960). All members of the family Esocidae spawn in the same manner. In general, species within this family spawn in the spring in heavily vegetated flood plains. Eggs are scattered at random over the vegetation as large females and smaller males roll bringing vents into proximity while eggs and milt are extruded. Rapid thrusting of tails further scatter the settling eggs, which are not protected by either parent. Because the eggs of these species are scattered in such a manner, the presence of spawning silver pike in the general location of spawning northern pike would lead to an increased occurrence of the silver pike-northern pike hybrids. It is difficult to distinguish the difference between a silver pike-muskellunge and a northern pike-muskellunge hybrid, so occurrence of this hybrid would not be as easily detected. Due to the lack of parental care of fertilized eggs and fingerlings, and the fast growth rate of the northern pike fingerlings, subsequent spawning runs of other fish provide excellent forage for the voracious northern pike fingerlings. This is the fate of many muskellunge fry (Scott and Crossman, 1973) where the muskellunge and northern pike occur together, and may also be the fate of silver pike, explaining decreased population densities.

The most limiting factor on the research of the silver pike is its small population density in relation to the total pike population. Of the total pike population of Heming Lake in Manitoba, Canada, it was estimated that only 0.2 percent were silver pike (Lawler, 1960). From 1952 to 1958, 19,420 pike were taken from Heming Lake, of which only 42 were silver pike. Sixty pike were taken from Angler's Lake, Manitoba, in 1958. Only two of the 60 fish were silver pike. The following year the same ratio applied. In 1959 at Beaverlodge Lake in Mackenzie, Canada, one silver pike was caught out of 151 total pike (Lawler, 1960). From a small lake near the Marten River in Ontario, out of 104 pike caught, four were silver pike (personal observations). Early spawning times, faster growth, better food conversion, and early dominance of forage fish have been cited to explain the northern pike's domination of other Esocids where habitats overlaps (Scott and Crossman, 1973).

Discussions on the classification of the silver pike are clouded by confusion and misunderstanding among fisheries biologists. Becker (1983) stated that hybridization between the silver pike and muskellunge leads to offspring similar to muskellungenorthern pike hybrids, which is speckled like a crappie. The muskellunge-northern pike hybrid, known as the tiger muskellunge, is characterized by having a strong barring pattern on its sides (Page and Burr, 1991). Eddy and Surber (1943) stated that the muskellunge-silver pike hybrids do resemble muskellunge-northern pike hybrids, but it is the silver pike-northern pike hybrids that are characterized by having the crappie-like black mottling. Anecdotal reports from fisheries biologist have reported that silver pike are dominant where they are found and only occur in isolated areas. This contradicts
distribution described by Lawler (1960) and Eddy and Surber (1943) and adds to the confusion among fisheries scientists. The lack of research and familiarity with this fish has resulted in its being arbitrarily categorized as a color mutation of the northern pike based on distribution and morphological characteristics.

Molecular Chronometers

The use of molecules as "documents of evolutionary history," or "molecular chronometers" was first introduced in 1965 by Emile Zuckerandl and Linus Pauling (Wolfgang and Schleifer, 1999; Woese, 1987). The advent of molecular chronometers provides taxonomists with a powerful tool to complement phenotypic techniques. Genotypic information is more readily, reliably, and precisely interpreted than phenotypic patterns allowing for increased information on evolutionary relationships (Woese, 1987). In addition, molecular characters are less likely related to adaptive evolution than are morphological characters (Briolay et al., 1998). Despite the benefits inherent in phylogenies derived from sequence data, it is important to remember that genetic information yields hypotheses to be tested and either strengthened or rejected on the basis of other kinds of data (Woese, 1987). In cases where molecules and morphology disagree, provisional morphology-based constraints on the analysis of molecular data offer a practical means of integrating the two types of data (Normark et al., 1991).

Mitochondrial DNA (mtDNA) mutates at a rate that is ten times faster than that of nuclear DNA (Wiesner et al., 1991; Patarnello et al., 1993). This rapid mutation rate
makes mitochondrial DNA a powerful tool in estimating the degree of divergence between closely related species (Wilson et al., 1985; Avise et al., 1987). In addition, the ease with which mitochondrial genes can be isolated and sequenced coupled with special features of mitochondria such as lack of introns, maternal inheritance, absence of recombination events, and haploidy also contribute to its reputation as a reliable tracer of evolutionary history (Zardoya and Meyer, 1996). A marvel of genetic economy, the mitochondrial genome encodes 22 tRNAs, 13 mRNAs, and 2 rRNAs in a 16.5-to $17.5-\mathrm{kb}$ closed circular molecule (Digby et al., 1992; Lake, 1998).

Molecules whose sequences change randomly in time can be considered chronometers (Woese, 1987). In order to yield useful information, the clocklike behavior of molecular chronometers should measure, and be representative of, the overall rate of evolution. The amount of change within a sequence that accumulates (proportionate to genetic distance) is the product of the rate (in occurrence of fixed mutations) multiplied by the time over which these mutations occur. Because distance can not be measured from the original to final states of evolution due to the lack of original states, distances are measured between extant forms. The distance from original states can then be estimated given comparable rates of change in each line.

Ribosomal RNA has been termed the ultimate molecular chronometer (Woese, 1987) and was chosen for this study for several reasons. They are found in all organisms. Their large size provides several domains changing at varying rates; this allows for different levels of evolution to be evaluated. The functional constancy and genetic stability assures a relatively good clocklike behavior. The 16 S rRNA contains highly
variable regions that change fast enough to provide information on closely related species (Mangold et al., 1997). There has also been a large sequence database describing a wide spectrum of phylogenetically diverse organisms developed over the past decade.

Mitochondrial 16 S rRNA gene has developed the reputation of being a reliable tracer of evolutionary history. Another common molecule used for determining phylogenetic relationships is cytochrome b. Some studies indicate, however, that phylogenetic relationships among deep branching lineages are poorly resolved using cytochrome b sequences (Briolay et al., 1998). Patarnello et al. (1994) used 16 S rRNA gene sequence variation combined with that of cytochrome b to infer phylogeny of the brown trout (Salmo trutta). They found that the 16 S rRNA gene alone gave identical results to those of the combined sequences.

This study employs the use of the mitochondrial 16 S rRNA gene as a molecular chronometer to determine the phylogenetic relationships between the northern pike, silver pike and muskellunge. Comparison of mtDNA sequences has become a common way to establish phylogenetic relationships among closely related genera (Woese, 1987; Mangold et al., 1997; Parker and Kornfield, 1996; Normark et al., 1991; Ritchie et al., 1997; Patarnello et al., 1993; Danzmann and Ihssen, 1995; Matthee and Robinson, 1997; Murphy and Collier, 1997; Briolay et al., 1998; Gilles et al., 1998). The use of morphological characteristics such as body size, color, behavior, ecophysiology, and meristics alone to classify higher vertebrates is becoming more questionable, due to the phenotypic plasticity of many similar species. Adding the use of molecular chronometers to existing phenotypic techniques to distinguish between phenotypic variants, subspecies,
and true Linnean species may lead to fewer inappropriate taxonomic divisions.
In recent phylogenetic studies, DNA segments of $300-600$ base pairs have been found to be sufficient to infer evolutionary relationships (Kocher et al., 1989; Patarnello et al., 1993). For this study, a 370 bp region of the 16 S rRNA gene was used. The northern pike and muskellunge, two clearly distinct species, were used as a control to establish a phylogenetic distance sufficient to delineate species. According to Mangold et al. (1997), a difference of 1.3 percent was sufficient to delineate between two tick species Rhipicephalus sanguineus and R. turanicus. The high percentage of similarity between these two species suggests they recently diverged within the genus Rhipicephalus.

T Vectors

The use of T vectors allows the generation of unambiguous sequence data. T vectors are linearized plasmids containing single $5^{\prime} \mathrm{T}$ overhangs. This allows for the direct and efficient cloning of PCR products. This is possible due to the inherent activity of Taq polymerase to add a single dATP nucleotide to the 3 ' ends of PCR products under standard PCR conditions. Standard primer annealing sites (M13-20, M13 reverse, T3, and T7) on either side of the inserted amplicon in these vectors allow for efficient sequencing.

Sequence Analysis

Once sequence data have been collected and aligned their meaning or results
must be interpreted. The two most common and accepted ways to develop phylogenetic trees from sequence data, are known as distance matrix and maximum parsimony methods. The distance matrix technique considers all possible pair-wise alignments, i.e., it compares the fraction of positions that are different between the two sequences. The differences are then calculated into a distance and recorded in a matrix. Distance matrices often underestimate true distance due to the occurrence of multiple mutational events at a single site. This has been taken into account by algorithms, which increase the calculated distance as a function of increased sequence divergence. The programs FITCH, KITSCH, and NEIGHBOR are for dealing with data which come in the form of distance matrix. The FITCH and NEIGHBOR programs fit a tree which has the branch lengths unconstrained. The KITSCH program assumes that an "evolutionary clock" is valid, according to which the true branch lengths from the root of the tree to each tip are the same.

In contrast, maximum parsimony and maximum likelihood techniques analyze primary sequence data without the initial cluster analysis of matrices of binary distance values. Maximum parsimony treats each position individually, assuming that the most correct phylogenetic tree is the most stringent, in terms of differences between sequences. Tree topologies are determined directly from sequence alignments and are based on finding the shortest possible tree length. For each tree topology, parsimony methods calculate the minimum number of nucleotide changes that are required to explain the observed pattern. The number of changes are summed for each tree topology, and the topology having the smallest total number of changes is considered the best
estimate of phylogeny (Yang, 1996). Maximum parsimony is recommended when the rate of evolution is more or less constant among lineages and the amount of evolution is small (Yang, 1996).

This study employs the use of a 370 base pair sequenced region of the 16 S rRNA gene from the mitochondrial genome to determine the phylogenetic relationships between the northern pike, muskellunge, and the silver pike. Sequence data will be interpreted using both distance matrix and maximum parsimony methods.

CHAPTER II

TAXONOMY AND DISTRIBUTION

Taxonomy

Eukaryota: Chordata: Vertebrata: Osteichthyes: Actinopterygii: Teleostei: Esociformes: Esocidae: Esox: lucius.

Distribution

In 1897, E. E. Prince gave the first professional assessment of a fish collected from Sharbot Lake, Ontario that resembled a northern pike but lacked the characteristic coloration (Eddy and Surber, 1943). In 1930 biologists collected several specimens of what local fisherman called silver muskellunge from Lake Belletaine near Nevis, Minnesota while collecting brood stocks of muskellunge for the Nevis Fish Hatchery. This was the first time the silver pike appeared while collecting muskellunge at this sight, and local fisherman reported that it had not appeared in their catches until that year (Eddy and Underhill, 1974). For several years afterwards the silver pike was raised along with true muskellunge and stocked in nearby lakes, thus increasing its range throughout much of Minnesota. Years later a specimen was taken from Detroit Lake, where they were not introduced, suggesting silver pike were not confined to Lake Belletaine. In the summer of 1952, a silver pike was found in Manitoba from Heming Lake. Further collections of silver pike from this lake were intensely recorded for seven years. Lawler (1960) noted that the silver pike was also present in several lakes adjacent to Heming

Lake. In 1959 a silver pike was collected from Beaverlodge Lake in Mackenzie, Canada by a field party of the Arctic Unit of the Fisheries Research Board of Canada. This fish represented the northernmost known record of the silver pike range. The silver pike is not confined to North America. Runnström (1949) reported that G. Svärdson had accounts of a silver colored pike in Sweden on which he had performed breeding experiments. Since these early reports, the silver pike has been reported sporadically throughout much of the circum-polar distribution inhabited by the northern pike (Scott and Crossman, 1973). Scott and Crossman (1973) also indicated that the silver pike has been found only in conjunction with the northern pike (Fig. 3)

CHAPTER III

MATERIALS AND METHODS

Primer Design

The mitochondrial genome coding for the 12 S rRNA, 16 S rRNA, and $\mathrm{tRNA}-\mathrm{Val}$ genes of ten species, the fin whale (Balaenoptera physalus, Arnason et al., 1991), blue whale (Balaenoptera musculus, Arnason and Gullberg, 1993), cow (Bos taurus, Anderson et al., 1982), rat (Rattus norvegicus, Gadaleta et al., 1989), mouse (Mus musculus, Bibb et al., 1981), opossum (Didelphis virginiana, Janke et al., 1994), chicken (Gallus gallus, Desjardins and Morais, 1990), trout (Oncorhynchus mykiss, Zardoya et al., 1995), loach (Crossostoma lacusire, Tzeng et al., 1992), and carp (Cyprinus carpio, Chang et al., 1994) were obtained from GenBank and aligned using ClustalX (Thompson, 1994; Appendix A). Examination of the 16 S rRNA gene alignments revealed a number of hypervariable regions flanked by highly conserved sequences. This orientation is important because it allows for the construction of PCR primers to anneal to the adjacent conserved areas and amplify through hypervariable regions.

Once the 16 S rRNA gene sequence was chosen, 13 sequences from different genera in the family Cyprinidae were aligned using Clustal X (Thompson et al., 1994) along with one sequence from the northern pike (Appendix B). Sequences were then analyzed to find the region that provided the most variability and still provided enough conservation for primer annealing. Each base pair (bp) location along the 16 S rRNA gene (1722 bp long) was compared among all species and assigned a number. If all bases
were the same across all species the row was assigned a zero. If that location contained only two different bases (ex. A and G) that row was assigned a one, if there was three bases (ex. A, G, and T) the row was assigned a two, all four bases scored a three (Fig. 4). If a site within the sequence of the 16 S rRNA gene is capable of having any one of the four bases and still remains functional, the site is considered highly variable. Next, all sites that were completely conserved across all species for at least 18 consecutive bp were noted as possible primer locations. Then, the variability between primer sites was calculated. Two sites were found that contained highly variable regions flanked by good primer locations. The two sites were separated by a 23 bp conserved area. It was then decided to combine the two areas to provide a single 338 bp target region. This area had a 30 bp-conserved region on the 5^{\prime} end and a 45 bp conserved region on the 3^{\prime} end.

All possible permutations of the upstream and downstream primer sequences were analyzed using the Lazergene Primer Select program (DNAstar, Madison, WI). Of 20 potential primers, one forward primer and one reverse primer were found to have acceptably low self-annealing properties. These primer sequences were used to amplify the DNA from fish tissues. The forward primer was 5'-GGT AGC GCA ATC ACT TGT CT-3'. The reverse primer was 5'-TAT CCC TAG GGT AAC TTG GT-3'. Primers were synthesized at the Marshall University DNA Core Facility. Their designation and properties are listed in Tables 1 and 2. Sequences that would be amplified by the designed primers for members of the family Cyprinidae and the northern pike were then taken from GenBank and aligned using Clustal X (Thompson et al., 1994) to determine efficacy of this DNA region for phylogenetic reconstruction (Fig. 5).

DNA Isolation

DNA samples were prepared for the fish listed in Table 3. All tools used in preparation of fish scales for DNA amplification were first placed in 1 N HCl , rinsed with sterile water, placed in 10 N NaOH , rinsed with sterile water and soaked in 95 percent ethanol until used. All procedures were carried out under a laminar flow hood. Fresh fish specimens were prepared by first swabbing the area where a scale would be removed with 95 percent ethanol to minimize surface contamination. When the area was completely dry, a single scale was removed with a pair of flame-sterilized tweezers and placed in a 1.5 ml sterile centrifuge tube with $100 \mu \mathrm{l}$ of 5 percent chelex and $1 \mu \mathrm{l}$ of Proteinase K . Tubes were then placed in a dry bath at $56^{\circ} \mathrm{C}$ for at least 1.5 hours, preferably overnight. Following incubation at $56^{\circ} \mathrm{C}$, tubes were boiled for 8 min then immediately centrifuged at $16,200 x g$ for 5 min and stored at $-20^{\circ} \mathrm{C}$ until used. Scales were unavailable for silver pikes three and four, northern pikes two and three, and muskellunge four and five. In this case, muscle tissue was used and prepared in a similar manner. A sterile wooden applicator was used to obtain a very small amount of tissue from sample. By twisting the wooden applicator tip in the tissue sample, a small amount of tissue ($\sim 10 \mathrm{mg}$) could be obained. Subsequent procedures remained the same for both scales and tissue samples.

Amplification

Amplification mixtures were prepared using a PCR core kit as specified by the
manufacturer (Boehringer Mannheim, Germany). Taq DNA polymerase was not added until tubes were placed in the thermal cycler and heated to $94^{\circ} \mathrm{C}$ for a minimum of 1 min . Cycle one was 5 min at $94^{\circ} \mathrm{C}$ and allowed ample time for addition of Taq polymerase. Cycle two consisted of 1 min at $94^{\circ} \mathrm{C}$ for denaturation, 1 min at $37^{\circ} \mathrm{C}$ to allow primers to anneal, and 1 min at $72^{\circ} \mathrm{C}$ for primer extension and was repeated 30 times. Cycle three used the same denaturation and primer annealing times and temperatures but had a 6 min extension time. Upon completion of amplification tubes were stored at $-20^{\circ} \mathrm{C}$. Agarose gel electrophoresis was used to confirm the presence of an amplicon. To aid in determination of band size, one lane contained $0.5 \mu \mathrm{~g} / \mu \mathrm{l}$ of a 1 Kb DNA ladder (Promega, Madison, WI) in 4μ l water with $1 \mu \mathrm{l}$ of 10 X stop buffer (See Table 1). Gels were run with a FisherBiotech Electrophoresis Systems FB 105 voltage regulator and FB MSU-1 Small Horizontal Gel System. Gels were then viewed using a Spectroline ${ }^{\circledR}$ Transilluminator (Model TR-302, 302nm ultraviolet) and photographed using a Fisher Scientific Photo-Documentation Camera (FB-PDC-34), a Tiffen ${ }^{\otimes} 40.5 \mathrm{~mm}$ deep yellow filter with Polaroid type 667,3000 iso black and white film.

Cloning

Amplification products were cloned into either the $\mathrm{pCR}^{\circledR} 2.1$ (Invitrogen, Carlsbad, CA) vector or the pT-NOT vector (Max-Planck-Institut Für Immunbiologie, Freiburg, Germany; Table 3) using a protocol modified from the TA Cloning Kit ${ }^{(1)}$ (Invitrogen, Carlsbad, CA). Fresh amplification product was added to $12.5 \mathrm{ng} / \mu \mathrm{l}$ of $\mathrm{pCR}^{\oplus} 2.1$ vector in a weight ratio of $3: 1$ with $1 \mu \mathrm{l}$ of 10 X ligation buffer. The volume of
the mixture was then adjusted to $9 \mu \mathrm{l}$ with sterile dd water and $1 \mu \mathrm{l}$ of T4 DNA Ligase was added. Ligation reactions were incubated overnight at $14^{\circ} \mathrm{C}$ and stored at $-20^{\circ} \mathrm{C}$.

Plasmids were transformed using a modified protocol included in the TA Cloning $\mathrm{Kit}^{(\boxed{*}}$. Competent cells of $\mathrm{INV}_{\alpha} \mathrm{F}^{\prime}$ strain designation, $0.5 \mathrm{M} \beta$-mercaptoethanol (β-ME), and the ligation mixture were thawed on ice. After thawing, $2 \mu \mathrm{l}$ of $0.5 \mathrm{M} \beta-\mathrm{ME}$, and 5 $\mu \mathrm{l}$ of ligation reaction mixture were added to $25 \mu \mathrm{l}$ of competent cells and mixed gently by stirring with the pipette tip. Competent cells were then incubated on ice for 30 min before being heat shocked at $42^{\circ} \mathrm{C}$ for 30 sec . Trypticase soy broth (TSB) (1 ml) was added and competent cells were incubated for 1 hr at $37^{\circ} \mathrm{C}$. The cells were then spread on Luria Bertani (LB) agar plates containing $50 \mu \mathrm{~g} / \mathrm{ml}$ of ampicillin and $40 \mu \mathrm{l}$ of X-Gal (40 $\mathrm{mg} / \mathrm{ml}$) and incubated overnight at $37^{\circ} \mathrm{C}$.

The $\mathrm{pCR}^{\circledR}{ }^{\infty} 2.1$ vector contains the lacZ α gene. This allows for blue-white screening. Bacterial cells that contain an uninterrupted lac $\mathrm{Z} \alpha$ gene produce colonies that are blue in color. If bacteria take up plasmids that have a lac Z_{α} gene that has been interrupted by insertion of PCR amplicon, the colonies are white. Nine white colonies and one blue colony were transferred from LB plates to 5 ml TSB with $50 \mu \mathrm{~g} / \mathrm{ml}$ of ampicillin and incubated overnight at $37^{\circ} \mathrm{C}$ in a waterbath shaker. The cell suspension $(1.5 \mathrm{ml})$ was pelleted in a 1.5 ml microfuge tube by centrifuging 2 min at $10,000 \times \mathrm{g}$. The pellet was then resuspended in $200 \mu \mathrm{l}$ of cell resuspension buffer (Table 1) and lysed with $200 \mu \mathrm{l}$ of $\mathrm{NaOH}-\mathrm{SDS}$ for 3 min . The suspension was then neutralized with $200 \mu \mathrm{l}$
 min at $10,000 \times \mathrm{g}$. The supernatant was collected, 1 ml of 95 percent ethanol was added
and the sample was centrifuged at $16,000 \times g$ for 30 min at $4^{\circ} \mathrm{C}$. The supernatant was discarded and the pellet was then rinsed three times with 70 percent ethanol and one time with 95 percent ethanol. The pellet was dried and resuspended in $400 \mu \mathrm{l}$ of water and $200 \mu \mathrm{l}$ of 7.5 M Ammonium Acetate. This solution was incubated at room temperature for 10 min then centrifuged for 15 min at $16,000 \times \mathrm{g}$. The supernatant was collected, 1 ml of 95 percent ethanol was added and the sample was centrifuged at $16,000 \times \mathrm{g}$ for 30 \min at $4^{\circ} \mathrm{C}$. The supernatant was discarded and the pellet was then rinsed three times with 70 percent ethanol and one time with 95 percent ethanol. The pellet was dried and hydrated in 50μ l of water. Agarose gel electrophoresis was used to confirm the presence of plasmids containing an amplicon.

Samples containing plasmids with inserts were desalted using the Wizard ${ }^{\circledR}$ Plus Minipreps DNA Purification System (Promega, Madison,WI). Purified plasmids were sequenced at the Marshall University DNA Core Facility (Huntington, WV). Both strands were determined for all sequences to assure accuracy. Sequences were aligned using Clustal X (Thompson et al., 1994). Phylogenetic relationships were analyzed using distance matrix and maximum parsimony methods.

All phylogenetic analyses were performed using programs of the PHYLIP package (Felsenstein, 1989). Sequence alignments were bootstrapped using the SEQBOOT program. One hundred bootstrapped data sets were used to assess reproducibility. The resulting output file was analyzed first using DNAPAR. DNADIST was used to generate distance matrices for the NEIGHBOR, FITCH, and KITSCH treeing programs. The distance matrix file was then run in the NEIGHBOR, FITCH and the

KITSCH programs using global rearrangement, randomized input, and 100 multiple data sets with all other settings remaining as default. The resulting files were then run in CONSENSUS to determine the consensus tree topology and trees were visualized using Treeview (Page, 1996; Figs. 7,8,9, and 10). For all trees the four muskellunge sequences were set as outgroup taxa.

Specimen Collection

One northern pike sample was collected from the Great Miami River near Dayton, Ohio and three northern pike specimens were collected from Ramsey Lake in Ontario, Canada. Two northern pike were collected from the Marten River, also in Ontario, which also provided one silver pike. Muscle tissue from two silver pike from Young Lake, Minnesota was obtained from Dr. Loren Miller from the University of Minnesota. Two silver pike specimens were obtained from Mr. Ed Thelend at the Spirit Lake Fish Hatchery, Iowa. Three muskellunge samples were obtained from the Morehead Fish Hatchery, Kentucky and two were collected form the Green River near Cave City, Kentucky (Fig. 6, Table 3).

CHAPTER IV

RESULTS

Alignment of sequences within the Cyprinidae family amplified with designed primers were capable of distinguishing between genera in the same family (Fig. 5). High bootstrap values were found between specimens of the same species. The ability of the primers to distinguish between genera in the same family confirms the efficacy of the primers.

A total of 370 bp were sequenced from each of the 12 specimens. There was one variation observed among the five silver pike, a transversion at site 159. Three sites were not conserved between all northern pike, transitions at sites 143,207 , and 326 . There was also a single transition at site 197 found among the muskellunge. There were a total of 32 variable sites found among all species consisting of 21 transitions and 11 transversions. This high ratio of transition mutations to transversion mutations was also found in a study on mitochondrial 16 S rDNA sequence variation of brown trout (Patarnello et al., 1994). There were 28 variable sites between the pikes and the muskellunge with a mean sequence difference of 7.6 percent. Nucleotide divergence between the muskellunge and the pikes was calculated by dividing the number of substitutions by the total number of nucleotides examined (Patarnello et al., 1994). Neither the maximum parsimony or distance matrix programs separated the northern pike from the silver pike (Figs. 7,8,9, and 10). Low bootstrap values were found among the silver pike and the northern pike in all trees. The grouping of the silver pike with
northern pike was not consistent through all trees and varied from one tree to another.
No two silver pike or two northern pike were grouped together consistently.

CHAPTER V

DISCUSSION

This study uses mtDNA sequences in an attempt to classify the silver pike. In the eighteenth century, Carolus Linnaeus developed an order for classifying organisms which he termed taxonomy. Linnaeus described species in terms of their morphology. Physiology, biochemistry, life history, and behavior were soon accepted ways to classify organisms. The advent of DNA sequencing for use as a molecular chronometer gives biologist a powerful tool for classifying organisms. The problem comes when deciding what molecules are best or exactly how much divergence is necessary to reclassify an organism. As sequence databases grow and more organisms are examined this technique will grow in acceptance and the parameters will become more defined.

The first objective in primer design was to find a region within the mitochondrial genome that would provide sufficient variability for phylogenetic analysis and still be flanked by highly conserved areas for primer adhesion during the polymerase chain reaction (PCR). Although it was originally hoped to target intergenic regions for sequence determination and analysis, these regions proved to be too small to provide sufficient discriminatory information. The 16 S rRNA gene was chosen for analysis after comparison of the 12 S and 16 S rRNA and the tRNA valine genes. The 16 S rRNA gene provided functional constancy and genetic stability to assure a relatively good clocklike behavior, highly variable regions which mutate fast enough to provide information on
closely related species (Mangold et al., 1997), and a comprehensive sequence database describing a wide spectrum of phylogenetically diverse organisms.

Phylogenetic trees constructed from sequence data did not differentiate the silver pike from the northern pike. In all instances the four muskellunge samples were grouped together separate from all other samples (Figs. 7,8,9, and 10). The silver pike and the northern pike sequences were never grouped separate from each other but always intermingled. Low bootstrap numbers between silver pike and northern pike indicate the very low sequence variation between the two. By comparing sequences once they were aligned it was found that none of the differences between the northern pike and the silver pike were conserved throughout all the silver pike or all of the northem pike as was found in the muskellunge. Although there are significant differences between the northern pike and the silver pike in morphological characteristics, these differences are not apparent within the mitochondrial genome. Because the sequenced area was able to differentiate between the northern pike and the muskellunge, it contained enough variability to distinguish between two species within the same genus. This area was unable to differentiate between the northern pike and silver pike. Since none of the differences between the silver pike and northern pike occurred throughout all silver pike, the differences are not the result of divergence from the northern pike as a separate species, but instead are likely to be variations within a single population or individual. Use of specimens from several geographical locations removed the chance that variations among species are do to population varience and not speciation. The geographical distribution of specimens is a possible explanation for intraspecific sequence differences
at single sites. The phylogenetic trees developed in this study confirmed previous research based on morphological characteristics.

The minor sequence differences between the silver pike and the northern pike contrasts with the high degree of phenotypic variation and the inability of these fish to produce fertile hybrids. Similar situations have been reported in several species of fish. Despite at least three phenotypes with very different ecologies, the arctic char (Slavelinus alpinus) has very low genetic differentiation between these phenotypes (Vrijenhoek et al., 1987: Snorrason et al., 1988). In contrast, despite their similar morphological characteristics, brown trout from the River Brenta, Ireland, compared to brown trout from the Stura and Ripa Stream, Ireland, display an appreciable degree of genetic differentiation (Patarnello et al., 1994). Cichlid fishes have also displayed differing rates of morphological and molecular evolution (Meyer et al., 1990; Sturmbauer and Meyer, 1992). These studies, present included, further support the idea that phenotypic characteristics evolve at different rates among different species.

The silver or blue color phase of the silver pike may be a similar genetic variation found in other types of fish. In two species of fish, the northem pike and the walleye (Stizostedion vitreum) there is a blue color phase which is devoid of many dominant color traits. In addition to this color difference there appears to be other morphological differences, mainly the diameter of eye and overall size. From the late 1800's to the mid 1900's, a species known as the blue pike (Stizostedion glaucum) was extensively harvested from the great lakes. The blue pike was similar to the walleye in appearance except its characteristic blue coloration, larger eyes and smaller overall size, the same
characteristics found in the silver color phase of the northern pike. In 1926 Dr. Carl Hubbs classified the blue pike as a separate species of the walleye (Manns and Quinn, 1999). The blue pike, prized for its soft flesh and small size, was quickly fished to extinction. It was placed on the Endangered Species List in 1971 though it was believed to be extinct. As is the case with the silver pike, the blue pike has received little research. Several fish have been collected that appear to be blue pike resulting in research being done to compare archived samples to recently obtained samples. If the blue pike was fished to extinction, it is possible that the color mutation once again occurred, starting another population of the true breeding variant. If the mutation occurs frequently enough to cause repopulation of blue pike in the Great Lakes, it would explain the large range of the silver pike. Recently, the blue pike was reclassified as a subspecies of the walleye (Stizostedion vitreum glaucum).

The word species means "kind" or "appearance" in Latin. According to Campbell (1996) a biological species is defined by its reproductive isolation from other species in a natural environment. Mayr (1942) proposed that species are groups of actually or potentially interbreeding natural populations, which are reproductively isolated from other such groups. Although the silver pikes very little divergence from the northern pike in the present study, the inability for the two morphs to hybridize adheres to the basic definition of a species.

Although the silver pike is not considered a subspecies, nor does this study suggest that, it does display several characteristics consistent to a subspecies. The definition of a subspecies according to Campbell (1996) is a population or group of
populations that live in one area and have minor differences from conspecific populations found elsewhere in the species geographical range. Mayr (1953) views a subspecies as being geographically defined aggregates of local populations which differ taxonomically from other subdivisions of a species. Although geographical ranges do not separate the silver pike and northern pikes, they are separated by life history traits (i.e., possible spawning times or niche utilization).

Though no taxonomic importance would be achieved, to classify the silver pike as a sibling species of the northern pike would provide a classification status of the silver pike. A Sibling species according to Mayr (1942) is another class of difficulties caused by pairs of even larger groups of sympatric, related species which are so similar that they are consider as belonging to one species until a more satisfactory analysis clears up the mistake. Mayr (1942) also states that there is no reason to believe that sibling species evolve in a manner that is in the least different from that of other species. Biologist dedicate their lives to defining what amount of evolution constitutes a species, to try to sum it up in a single chapter would be foolish.

The present study concurs with past studies and places the silver pike as a color variant of the northern pike. Nonetheless, fisheries biologists are given a chance to study the exact point at which a new species is evolving from a current species. It is as though we are witnessing the silver pike in its evolutionary descent from the northern pike. Species that are destined not to survive are common, evolving species that die out unstudied because of how they are classified should not be.

CHAPTER VI

SUMMARY AND CONCLUSION

Summary

The silver pike is a member of the family Esocidae and most closely resembles the northern pike (Esox lucius) in morphological characteristics. The most distinct difference between the silver pike and the northern pike is color, though other more subtle differences do occur. Breeding experiments have been reported on the silver pike, though not well documented. The silver pike always breeds true when crossed with other silver pike. When the silver pike is crossed with the northern pike, the offspring that survive are unable to produce a F2 generation, suggesting their sterility. The F1 generation of silver pike, northern pike hybrids are mottled like a crappie, a color morph of that pike has not been documented in nature. This suggest that the silver pike and northern pike do not hybridize in nature. The silver pike has only been documented in sympatric populations with northern pike, where it is found it often accounts for less than one percent of the total pike population.

Molecular chronometers provide taxonomists with a powerful tool to complement phenotypic techniques. The rapid mutation rate of mitochondrial DNA provides a reliable tool in estimating the degree of divergence among closely related species. The 16 S ribosomal RNA gene has been termed the ultimate molecular chronometer due to its large size, genetic stability, highly variable regions, and large sequence database.

Conclusion

This study employed the use of a 370 base pair sequenced region of the 16 S rRNA gene from the mitochondrial genome to determine the phylogenetic relationships between the northern pike, muskellunge, and the silver pike. Sequence data was interpreted using both distance matrix and maximum parsimony methods. The sequenced area was able to delineate between the northern pike and the muskellunge though no differences were found between the northern pike and the silver pike sequences. Phylogenetic trees constructed from sequence data did not differentiate the silver pike from the northern pike. The silver pike and northern pike sequences were never grouped separate from each other but always intermingled. Low bootstrap numbers between the silver pike and northern pike indicate the very low sequence variation between the two. Although there are significant morphological differences between the silver pike and the northern pike in morphological characteristics, these differences are not apparent in the 16 S rRNA gene of the mitochondrial genome. The present study concurs with past studies and places the silver pike as a color variant of the northern pike.

LITERATURE CITED

Anderson, S., M.H. de Bruijn, A.R. Coulson, I.C. Eperon, F. Sanger, and I.G. Young. 1982. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J. Mol. Biol. 156:683-717.

Arnason, U., and A. Gullberg. 1993. Comparison between the complete mtDNA sequences of the blue and the fin whale, two species that can hybridize in nature. J. Mol. Evol. 37:312-322.

Arnason,U., A. Gullberg, and B. Widegren. 1991. The complete nucleotide sequence of the mitochondrial DNA of the fin whale, Balaenoptera physalus. J. Mol. Evol. 33:556-568.

Avise, J.C., J. Arnold, M. Ball, E. Bermingham., T. Lamb, J.E. Neigel, C.A. Reeb, and N.C. Sanders. 1987. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18:489-522.

Becker, G.C. 1983. Fishes of Wisconsin. The University of Wisconsin Press, Wisconsin, pp. 398.

Bernardo, G. 1998. The silver ghost, in search of the silver pike. In-Fisherman. 23:140142.

Bibb, M.J., R.A. Van Etten, C.T. Wright, M.W. Walberg, and D.A. Clayton. 1981. Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167-180.

Briolay, J., N. Galtier, R. Miguel Brito, and Y. Bouvet. 1998. Molecular phylogeny of Cyprinidae inferred from cytochrome b DNA sequences. Mol. Phylogenet. Evol. 9:100-108.

Cambell, N.A. 1996. Biology, Fourth Edition. The Benjamin/Cummings Publishing Company, Inc., pp. 436-439.

Chang, Y.S., F.L. Huang, and T.B. Lo. 1994. The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome. J. Mol. Evol. 38:138-155.

Danzmann, R.G., and P.E. Ihssen. 1995. A phylogenetic survey of brook charr (Salvelinus fontinalis) in Algonquin Park, Ontario based upon mitochondrial DNA variation. Mol. Ecol. 4:681-697.

Desjardins, P., and R.Morais. 1990. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J. Mol. Biol. 212:599-634.

Digby, T.J., M.W. Gray, and C.B. Lazier. 1992. Rainbow trout mitochondrial DNA: sequence and structural characteristics of the non-coding control region and flanking tRNA genes. Gene. 118:197-204.

Eddy, S., and T. Surber. 1943. Northern Fishes. Univ. of Minnesota Press, Minneapolis, Minnesota, pp. 276.

Eddy, S., and J.C. Underhill. 1974. Northern Fishes. Univ. of Minnesota Press, Minneapolis, Minnesota, pp. 202.

Felsenstein, J. 1989. PHYLIP 3.2 Manual. University of California Herbarium, Berkeley, California. Sci. Submitted (13-JAN-1998).

Gadaleta, G., G. Pepe, G. De Candia, C. Quagliariello, E. Sbisa, and C. Saccone. 1989. The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J. Mol. Evol. 28:497-516.

Gilles, A., G. Lecointre, E. Faure, R. Chappaz, and G. Brun. 1998. Mitochondrial phylogeny of the European Cyprinids: Implications for their systematics, reticulate evolution, and colonization time. Mol. Phylogenet. Evol. 10:132-143.

Janke, A., G. Feldmaier-Fuchs, W.K. Thomas, A. von Haeseler, and S. Paabo. 1994. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics 137:243-256.

Kocher, T.D., W.K. Thomas, A. Meyer, S.V. Edwards, S. Pääbo, F.X. Villablanca, and A.C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals. Proc Natl. Acad. Sci. 86:6196-6200.

Lake, J.A. 1998. Optimally recovering rate variation information from genomes and sequences: pattern filtering. Mol. Biol. Evol. 15:1224-1231.

Lawler, G. H. 1960. A mutant pike, Esox lucius. J. Fish. Res. Bd. Canada. 17:647-654.
Lopez, J.A., P. Bentzen, T.W. Pietsch, and C.J. Foote. 1998. Phylogenetics of esocoid fishes. Unpublished. Sequence data from Genbank, Accession AF060446. (Esox lucius).

Mangold, A.J., M.D. Bargues, S. Mas-Coma. 1997. Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixididae). Parasitol Res. 84:478-484.

Manns, R., and S. Quinn. 1999. Blending fishery science with everyday fishing. InFisherman. 23:14-15.

Matthee, C. A., and T. J. Robinson. 1997. Molecular phylogeny of the springhare, Pedetes capensis, based on mitochondrial DNA sequences. Mol. Biol. Evol. 14:2029.

Mayr, E. 1942. Systematics and the origin of species. Columbia University Press, New York, pp. 120.

Mayr, E., E. G. Linsley, and R. L. Usinger. 1953. Methods and principles of systematic zoology. McGraw-Hill Book Company Inc., New York, pp. 30.

Meyer, A., T.D. Kocher, P. Basasibwaki, and A.C. Wilson. 1990. Monophyletic origin of Victoria cichlid fishes suggested by DNA sequences. Nature. 347:550-553.

Murphy, W.J., and G.E. Collier. 1997. A molecular phylogeny for Aplocheiloid fishes (Atherinomorpha, Cyprinodontiformes): The role of vicariance and the origins of annualism. Mol. Biol. Evol. 14:790-799.

Normark, B.B., A.R. McCune, and R.G. Harrison. 1991. Phylogenetic relationships of Neopterygian fishes, inferred from mitochondrial DNA sequences. Mol. Biol. Evol. 8:819-834.

Page, R. D. M. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Comp. Appl. Biosci. 12: 357-358.

Page, L.M., and B.M. Burr. 1991. A field guide to freshwater fishes. Houghton Mifflin Company, Boston, pp. 61.

Parker, A., and I Kornfield. 1996. An improved amplification and sequencing strategy for phylogenetic studies using the mitochondrial large subunit rRNA gene. Genome. 39:793-797.

Patarnello, T., L. Bargelloni, F. Caldara, and L. Colombo. 1994. Cytochrome b and 16 S rRNA sequence variation in the Salmo trutta (Salmonidae, Teleostei) species complex. Mol. Phylgenet. Evol. 3:69-74.

Ritchie, P.A., S. Lavoué, and G. Lecointre. 1997. Molecular Phylogenetics and the evolution of Antarctic Notothenioid fishes. Comp. Biochem. Physiol. 118:10091025.

Runnstrom, S. 1949. Director's report for the year 1948. Annual report for the year 1948 and short papers. Rept. Inst. Freshwater Res. 29:5-28. Drottningholm. Sweden.

Scott, W.B., and E.J. Crossman. 1973. Freshwater fishes of Canada. Fisheries Research Bd. Canada, Ottawa, Canada, pp. 361.

Simons, A.M., and R.L. Mayden. 1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038473. (Gila coerulea1).
1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038474. (Gila coerulea2).
1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038482. (Lavinia exilicauda1).
1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038483. (Lavinia exilicauda2).
1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038488. (Orthodon microlepidotus 1).
\qquad 1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038489. (Orthodon microlepidotus2).
1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038491. (Platygobio gracilis).
> 1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038494. (Ptychocheilus oregonensis).

___ 1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038495. (Rhinichthys atratulus).
\qquad 1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038497. (Siphateles bicolor).
1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038498. (Snyderichthys copei).
___ 1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038487. (Notemigonus crysoleucas).
1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038490. (Phoxinus erythrogaster).
1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038492. (Phenacobius mirabilis).
1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from Genbank, Accession AF038493. (Phoxinus neogaeus).
1998. Phylogenetic Relationships of the Western North American Phoxinins (Actinopterygii: Cyprinidae) as Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences. Mol. Phylogenet. Evol. In press. Sequence Data from GenBank, Accession AF038496. (Relictus solitarius).

Snorasson, S.S., S. Skulason, O.T. Sandlud, H.J. Malmquist, B. Jonsson, and P.M. Jonasson. 1988. Shape polymorphism in sympatric Arctic charr, Salvelinus alpinus in Thingvallavatn, Iceland. Biol. J. Linn. Soc. 38:281-301.

Sternberg, D. 1992. Northern pike and muskie. Cowels Creative Publishing, Inc. Minnetonka, Minnesota, pp. 10.

Sturmbauer, C., and A. Meyer. 1992. Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature. 358:578-581.

Thompson, J. D., D. G. Higgins., and T. J. Gibson. 1994. Clustal W; improving the sensitivity of progressive multiple sequence alignment through sequence weighing, positions - specific gap penalties and weight matrix choice. Nucleic Acids Research. 22: 4673 - 4680 .

Tzeng, C.S., C.F. Hui, S.C. Shen, and P.C. Huang. 1992. The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Res. 20:4853-4858.

Vrijenhoek, R.C., G. Marteinsdottier, and R. Schenck. 1987. Genotypic and phenotypic aspects of niche diversification in fishes. In "Community and Evolutionary Ecology of North American Stream Fishes" (W.J. Matthews and D.C. Heins, Eds.) Univ. Oklahoma Press, Norman, pp. 245-250.

Wiesner, R. J., S. Hewson., and Z. Radovan. 1991. Purification of mitochondrial DNA from cellular DNA of small tissue samples. Gene. 98:277-281.

Wilson, A.C., R.L. Cann, S.M. Carr, M. George, U.B. Gyllensten, K.W. HelmBychowsky, R.G. Higuchi, S.R. Palumbi, E.M. Pranger, R.D. Sage, and M. Stoneking. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 26:375-400.

Woese,C.R. 1987. Bacterial evolution. Microbiol. Rev. 51:222-265.
Wolfgang, L. and K.H. Schleifer. 1999. Phylogeny of bacteria beyond the 16 S rRNA stantard. ASM News. 65:752-757.

Yang, Z. 1996. Phylogenetic analysis using parsimony and likelihood methods. J. Mol. Evol. 42:294-307.

Zardoya, R., A. Garrido-Pertierra, and J.M. Bautista. 1995. The complete nucleotide sequence of the mitochondrial DNA genome of the rainbow trout, Oncorhynchus mykiss. J. Mol. Evol. 41:942-951.

Zardoya, R. and A. Meyer. 1996. Phylogenetic performance of mitochondrial proteincoding genes in resolving relationships among vertebrates. Mol. Biol. Evol. 13:933942.

Figure 2. Relation between interorbital width and standard length of normal and silver pike from Heming Lake, Manitoba (Lawler, 1960)

Figure 3. Distribution of silver pike (Bernardo, 1998)

Figure 5. Phylogenetic tree of the family Cyprinidae showing accuracy of clustering obtained with the proposed amplicon.

Figure 6. Sample collection locations. Letters represent specimens (Table 3).

Figure 7. Neighbor joining phylogenetic tree of silver pike, northern pike, and muskellunge using sequenced data. Internal labels are bootstrap values after 100 replications. Muskellunge were set as outgroup.

Figure 8: Maximum parsimony phylogenetic tree of silver pike, northern pike, and muskellunge using sequenced data. Internal labels are bootstrap values after 100 replications. Muskellunge were set as outgroup.

Figure 9. Distance matrix phylogenetic tree using the Fitch program of silver pike, northern pike, and muskellunge sequence data. Internal labels are bootstrap values after 100 replications. Muskellunge were set as outgroup.

Figure 10. Distance matrix phylogenetic tree using the Kitsch program of silver pike, northern pike, and muskellunge sequence data. Internal labels are bootstrap values after 100 replications. Muskellunge were set as outgroup.

\downarrow วธิun［｜Pysnw
£ วธun［｜วysnn／

¢ әу！d шәцมо
Northern Pike 2
I ay！d uәцдо⿱

Silver Pike $4 \quad$ Young Lake，MN（d）
Silver Pike $3 \quad$ Young Lake，MN（c）
Silver Pike $2 \quad$ Okoboji Lake，IA（b）

N 91LE
NHLE
N 2 Z゙8ะ
Nてで8を
N LO O ${ }^{\circ}$
NLE＂9t
Nで9ヵ
Nてで9か
Nが 9 か

N6でを力
N8でき力
әрпи̣！̣า
（4） HO ＇тəл！！！ue！w teajo
（8）ервиеэ＇NO ‘Кәsurey әует
Marten River，ON，Canada（f）
uо！

APPENDIX A: The mitochondrial genome coding for the 12 S rRNA, 16 S rRNA, and tRNA-Val of ten species, the fin whale (Balaenoptera physalus, Arnason et al., 1991), blue whale (Balaenoptera musculus, Amason and Gullberg, 1993), cow (Bos taurus, Anderson et al., 1982), rat (Rattus norvegicus, Gadaleta et al., 1989), mouse (Mus musculus, Bibb et al., 1981), opossum (Didelphis virginiana, Janke et al., 1994), chicken (Gallus gallus, Desjardins and Morais, 1990), trout (Oncorhynchus mykiss, Zardoya et al., 1995), loach (Crossostoma lacustre, Tzeng et al., 1992), and carp (Cyprinus carpio, Chang et al., 1994) as determined from GenBank annotations and aligned using ClustalX (Thompson, 1994). Conserved base pairs through all species are indicated by *. Location of 12 S rRNA is bp 1-943, tRNA Valine 944-1014, and 16 S rRNA 1015-2754.

Fin Whale Blue Whale Cow Rat Mouse Loach Carp Trout Chicken opossum

Ein Whale Blue Whale Cow
Rat
Mouse
Loach
Carp
Trout
Chicken
opossum

Fin whale Blue Whale Cow
Rat
Mouse
Loach
Carp
Trout
Chicken
opossum

Fin Whale Blue whale Cow
Rat
Mouse
Loach
Carp
Trout
Chicken
Opossum

AAAAGGTtTGGTCCCAGCCTTTCTATTAGTTCTtAACAGACTtACACATGCAAGTATCCA AAAAGGTTTGGTCCCAGCCTTTCTATTAGTTCTTAACAAACTTACACATGCAAGCGTCTA AATAGGTTTGGTCCCAGCCTTCCTGTTAACTCTTAATAAACTTACACATGCAAGCATCTA AAAAGGTTTGGTCCTGGCCTTATAATtAATtGGAGGTAAGATTACACATGCAAACATCCA AAAAGGTTTGGTCCTGGCCTtATAATtAATtAGAGGTAAAATtACACATGCAAACCTCCA AAAAGGCTTGGTCCTGACTTTACTATCAGCCGTAGCACAACTTACACATGCAAGTCTCCG AAAAGGCATGGTCCCGACCTTATTATCAGCTCTAACTCAACTTACACATGCAAGTCTCCG AAAAGGCTTGGTCCTGACTTTACTATCAGCTCTAACTGAACTTACACATGCAAGTCTCCG AAAAGACTTAGTCCTAACCTtTCTATTGGTtTtTGCTAGACATATACATGCAAGTATCCG AATAGGTTTGGTCCTAGCCTTATtATtAGTTCTAATTAGACCTACACATGCAAGTTTCCG

10	10	20	30	40	50	60

CATCCCAGTGAGAACGCCCTCTAAA--TCATA--AAGATTAAAAGGAGCGGGTATCAAGC CATCCCGGTGAGAATGCCCTCTAAA--TCACA--AAGATCAAAAGGAGCAGGTATCAAGC CACCCCAGTGAGAATGCCCTCTAGG--TTATT--AAAACTAAGAGGAGCTGGCATCAAGC TAAACCGGTGTAAAATCCCTTAAAGATTTGCC--TAAAACTTAAGGAGAGGGCATCAAGC TAGACCGGTGTAAAATCCCTTAAACATTTACT--TAAAATTTAAGGAGAGGGTATCAAGC CAGCCCCGTGAGGATGCCCTTAATCCCTGC----CCGGGGACGAGGAGCGGGCATCAGGC CAACCCAGTGAATATGCCCTCAATCCCCCCA---CCCGGGACGAGGAGCGGGCATCAGGC CATTCCTGTGAGGATGCCCTTAATCCCTGC----CCGGGGACGAGGAGCCGGCATCAGGC CATCCCAGTGAAAATGCCCCCAAACCTTTCTTC-CCAAGCAAAAGGAGCAGGTATCAGGC CTACCCAGTGAGAATGCCCTTTAAGTCTtATAAATTAAGCAAAAGGAGCTGGTATCAGGC

Abstract

ACGCTAGCACTAGCAGCTCACAACGCCTCGCT-TAGCCACGCCCCCACGG-GACACAGCA ACGCTAGTACTAGCAGCTCACAACGCCTCGCT-TAGCCACACCCCCACGG-GACACAGCA ACACAC---CCTGTAGCTCACGACGCCTTGCT-TAACCACACCCC-ACGG-GAAACAGCA ACAT-A----ATATAGCTCAAGACGCCTTGCC-TAGCCACACCCCCACGG-GACTCAGCA ACATTA----AAATAGCTTAAGACACCTTGCC-TAGCCACACCCCCACGG-GACTCAGCA TCAATT--ATTT--AGCCCAAGACGCCTTGCC-ACGCCACACCCCCAAGGGAACTCAGCA ACAAAC--ATT---AGCC-AAGACGCCTAGCC-AAGCCACACCCCCAAGG-AATTCAGCA ACGCCC--AGGC--AGCCCACGACGCCTTGCT-AAGCCACACCCCCAAGGAAACTCAGCA ACACTC--AGCAGTAGCCCAAGACGCCTTGCTTAAGCCACACCCCCACGGGTACTCAGCA ACACAAA---ATGTAGCCGATAACACCTTGCT-TTACCACACCCCCACGG-GAGACAGCA

GTGATAAAAATTAAGCTATAAACGAAAG-TtCGACTAAGTCATG-TTAATTTAAGGGTG GTGATAAAAATTAAGCTATAAACGAAAG-TTTGACTAAGTTATG-TTAAT--AAGGGTTG GTGACAAAAATTAAGCCATAAACGAAAG-TTTGACTAAGTTATA-TTAATT--AGGGTTG GTGATAAATATTAAGCAATGAACGAAAG-TTTGACTAAGCTAG--TACCTCTCAGGGTTG GTGATAAATATTAAGCAATAAACGAAAG-TTTGACTAAGTTA---TACCTCTTAGGGTTG GTGATAAAAATTAAGCCATGAGCACTAAGCTTGACTTAGTTAGT-GTTAAG--AGGGCCG GTGATAAACATTAAGCCATAAGTGAAAA-CTTGACTCAGTTAGT-GTTAAG--AGGGCCG GTGATAAATATTAAGCCATAAGCGAAAG-CTTGACTTAGTTAAG-GTTAAG--AGGGCCG GTAATTAACCTTAAGCAATAAGTGTAAA-CTtGACTTAGCCATA-GCAACCC-AGGGTTG GTGATTAAAATTAAGCAATAAACGAAAG-TTTGACTAAGTCATAATTTACATTAGGGTTG

Fin Whale Blue Whale Cow
Rat Mouse Loach Carp Trout Chicken Opossum

Fin Whale Blue whale Cow Rat Mouse Loach Carp Trout Chicken opossum

Fin Whale Blue Whale Cow
Rat
Mouse
Loach
Carp Trout Chicken opossum

Fin Whale Blue whale Cow Rat Mouse Loach Carp Trout Chicken Opossum

Fin Whale Blue whale Cow
Rat
Mouse
Loach
Carp
Trout Chicken Opossum

GTAAACTTCGTGCCAGCCACCGCGGTCATACGATCGACCCAAATTAATAGAAGCACGGCG GTAAACTTCGTGCCAGCCACCGCGGTCATACGATTAACCCAAATTAATAGAAACACGGCG GTAAATCTCGTGCCAGCCACCGCGGTCATACGATTAACCCAAGCTAACAGGAGTACGGCG GTAAATTTCGTGCCAGCCACCGCGGTCATACGATTAACCCAAACTAATT-ATTTTCGGCG GTAAATTTCGTGCCAGCCACCGCGGTCATACGATTAACCCAAACTAATT-ATCTTCGGCG GTAAAACTCGTGCCAGCCACCGCGGTTATACGAGAGGCCCTAGTTGATAGGTG--CGGCG GTAAAACTCGTGACAGCCACCGCGGTTAGACGAGAGGCCCTAGTTGATATTACAACGGCG GTAAAACTCGTGCCAGCCACCGCGGTTATACGAGAGACCCTAGTTGATAACTAC-CGGCG GTAAATCTTGTGCCAGCCACCGCGGTCATACAAGAAACCCAAATCAATAGCTACCCGGCG GTCAATTTCGTGCCAGCCACCGCGGTCATACGATTAACCCAAATTAATAAATA-ACGGCG $241250 \quad 260$ 270 280 290

TAAAGAGTGTTAAGGAGCCACATGA-AA---TAAAGTCAAACCTTAATTAAGCTGTAAAA TAAAGAGTGTTAAGGAGTCTCATAG-AA---TAAAGTCAAACCTTAATTAAGCTGTAAAA TAAAACGTGTTAAAGCACCATACCA-AA---TAGGGTTAAATTCTAACTAAGCTGTAAAA TAAAACGTGCCAACTATAAATCTCATAA---TAGAATTAAAATCCAACTTATATGTGAAA TAAAACGTGTCAACTATAAATAAATAAA---TAGAATTAAAATCCAACTTATATGTGAAA TAAAGGGTGGTTAAGGAGAGCAAGAAT----TAAAGCCAAGGGACCTCTTGGCCGTCATA TAAAGGGTGGTTAAGGATAAACAAAAA----TAAAGTCAAATGGCCCCTTGGCCGTCATA TAAAGAGTGGTTATGGAAAATATTTAA----TAAAGCCGAACACCCCCTCAGCCGTCATA TAAAGAGTGGCCACATGTTATCTGCACCAGCTAAGATTAAAATGCAACCAAGCTGTCATA tAAAGAGTGTTTAAGTTATATACAAAAA---TAAAGTTAATAATTAACTAAACTGTAGCA

AGCCCTAATTAAAAT-TAAGCCAAACTACGAAAGTGACTT----TAAT-ATA---ATCTG AGCCATAATTAAAAT-TAAGCCAAACTACGAAAGTGACTT----TAAT-ATG---ATCTG AGCCATGATTAAAAT-AAAAATAAATGACGAAAGTGACCC----TACA-AT----AGCCG ATTCATTGTTAGGACCTAAGCCCAATAACGAAAGTAATTC----TAATCATT---TATAT ATTCATTGTTAGGACCTAAACTCAATAACGAAAGTAATTC----TAGTCATT---TATA-CGCTTCTGAGTATCC-AAAGCCA-AATACGAAAGTAGCTT----TAATAAAACCCACCTG CGCTTCTAGGAGTCC-GAAGCCCTAATACGAAAGTAACTT----TAATAAA-CCCACCTG CGCACCTGGGAGCAC-GAAGACCTACTGCGAAAGCAGCGT----TTAACTA---TGCCTG AGCCTAAGATCCACC-TAAACCC-AACCCAAATCCATCTTAGCCTCAACGA-TTAATTTT CGTTCTAGTTAATAT-TAAAATACATAATAAAAATGACTT----TAAT-AT----CACCG
$\begin{array}{llllll}361 & 370 & 380 & 390 & 400 & 410\end{array}$

ATCACACGACAGCTAAGATCCAAACTGGGATTAGATACCCCACTATGCTTAGTCGTAAAC ATCACACGACAGCTAAGATCCAAACTGGGATTAGATACCCCACTATGCTTAGCCATAAAC A-CGCACTATAGCTAAGACCCAAACTGGGATTAGATACCCCACTATGCTTAGCCCTAAAC AATGCACGATAGCTAAGACCCAAACTGGGATTAGATACCCCACTATGCTTAGCCCTAAAC - ATACACGACAGCTAAGACCCAAACTGGGATTAGATACCCCACTATGCTTAGCCATAAAC ACCCCACGAAAGCTGAGAAACAAACTGGGATTAGATACCCCACTATGCTCAGCTATAAAC ACCCCACGAAAGCTGAGAAACAAACTGGGATTAGATACCCCACTATGCTCAGCCGTAAAC ACCCCACGACAGCTAAGAAACAAACTGGGATTAGATACCC-ACTATGCCTAGCCGTAAAC AACCCACGAAAGCTAGGACCCAAACTGGGATTAGATACCCCACTATGCCTAGCCCTAAAT ACTACACGAAAACTAAGACACAAACTGGGATTAGATACCCCACTATGCTTAGTAATAAAC 421 430440450 460 470 480

CССAATAGTCACA-- AAACAAGACTATTCGCCAGAGTACTACTAGCAACA--GCCTAAAA CCCAGTAGTCACA--AAACAAGACTATTCGCCAGAGTACTACTAGCAACA--GCTTAAAA ACAGATAATTACAT-AAACAAAATTATTCGCCAGAGTACTACTAGCAACA--GCTTAAAA СТTAATAATTAAACCTA-CAAAATTATTTGCCAGAGAACTACTAGCTACA--GCTTAAAA СTAAATAATTAAATTTAACAAAACTATTTGCCAGAGAACTACTAGCCATA--GCTTAAAA CTAGACGTTTAATC-ACAACAA-ACGTCCGCCAGGGTACTACGAGCGTCA--GCTTAAAA TCAGACATCCAGCT-ACAATTAGATGTCCGCCAGGGTACTACGAGCATTA--GCTTAAAA CTTGATAGAAATAT-ACAATTG-ATATCCGCCAGGGAACTACAAGCGCCA--GCTTAAAA СTAGATACCTCCCA-TCACACATGTATCCGCCTGAGAACTACGAGCACAAACGCTTAAAA TAAAATAATTTAAC-AAACAAAATTATTCGCCAGAGAACTACTAGCAATT--GCTTAAAA

Fin Whale Blue Whale Cow
Rat
Mouse
Loach
Carp
Trout Chicken opossum

Fin Whale Blue whale cow
Rat
Mouse
Loach
Carp Trout Chicken opossum

Fin Whale Blue whale Cow
Rat
Mouse
Loach
Carp
Trout Chicken opossum

Fin Whale Blue Whale Cow
Rat
Mouse
Loach
Carp Trout Chicken opossum

Ein Whale Blue whale Cow
Rat
Mouse
Loach
Carp
Trout Chicken Opossum

CTCAAAGGACTTGGCGGTGCCTCATACCCATCTAGAGGAGCCTGTTCTGTAACCGATAAA CTCAAAGGACTTGGCGGTGCTTCATACCCCTCTAGAGGAGCCTGTTCTGTAACCGATAAA CTCAAAGGACTTGGCGGTGCTTTATATCCTTCTAGAGGAGCCTGTTCTATAATCGATARA CTCAAAGGACTTGGCGGTACTTTATATCCATCTAGAGGAGCCTGTTCTATAATCGATAAA CTCAAAGGACTTGGCGGTACTTTATATCCATCTAGAGGAGCCTGTTCTATAATCGATAAA CCCAAAGGACTTGGCGGTGCCTTAGACCCCCCTAGAGGAGCCTGTTCTAGAACCGATAAC CCCAAAGGACCTGACGGTGTCTCAGACCCCCCTAGAGGAGCCTGTTCTAGAACCGATAAC CCCAAAGGACTTGGCGGTGCCTCAGACCCACCTAGAGGAGCCTGTTCTAGAACCGATAAC CTCTAAGGACTTGGCGGTGCCCCAAACCCACCTAGAGGAGCCTGTTCTATAATCGATAAT CTCAAAGGACTTGGCGGTGCCCTAAACCCACCTAGAGGAGCCTGTTCTATAATCGATAAA

541	550	560	570	58	90	600

CCCCGATCAACCTCACCAACCCTTGCTACTTCAGTCTATATACCGCCATCTTCAGCAAAC CCCCGATTAACCTCACCAACCCTTGCTACTTCAGTCTATATACCGCCATCTTCAGCAAA.C CCCCGATAAACCTCACCAATTCTTGCTAATACAGTCTATATACCGCCATCTTCAGCAAAC CCCCGTTCTACCTTACCCCTTCTCGCTAATTCAGCCTATATACCGCCATCTTCAGCAAAC CCCCGCTCTACCTCACCATCTCTTGCTAATTCAGCCTATATACCGCCATCTTCAGCAAAC CCCCGTTAAACCTCACCACTTCTAGTCATCCCCGCCTATATACCGCCGTCGTCAGCTTAC CCCCGTTCAACCTCACCACTTCTAGCCACCCCAGCCTATATACCGCCGTCGTCAGCTTAC CCCCGTTCAACCTCACCACCCCTTGTTTTACCCGCCTATATACCACCGTCGTCAGCTTAC CCACGATTCACCCAACCACCCCTTGCCAGCACAGCCTACATACCGCCGTCGCCAGCCCAC CCCCGATAAACCAGACCTTATCTTGCCAATACAGCCTATATACCGCCATCGTCAGCTAAC

Abstract

C-CTA-AAGGGAGA---AAAGTAAGCATAACCATCCTACATAAAAACGTTAGGTCAAGGT C-CTA-AAAGGGAAC-GAAAGTAAGCATAATCATCCTACATAAAAACGTTAGGTCAAGGT C-CTA-AAAAGGAAA-AAAAGTAAGCGTAATTATGATACATAAAAACGTTAGGTCAAGGT C-CTA-AAAAGGCAC-TAAAGTAAGCACAAGAA-CAAACATAAAAACGTTAGGTCAAGGT C-CTA-AAAAGGTAT-TAAAGTAAGCAAAAGAATCAAACATAAAAACGTTAGGTCAAGGT C-CTG-TGAAGGCTC-AATAGTAAGCAAAGTGGGCACAACCCAAAACGTCAGGTCGAGGT C-CTG-TGAAGGTAATAAAAGTAAGCAAAATGGGCACAACCCAAAACGTCAGGTCGAGGT C-CTG-TGAAGGCCC-CATAGTA-GCAAAATGGGCAAAACC-AAAACGTCAGGTCGAGGT СTCTAATGAAAGAAC-AACAGTGAGCTCAATAGCCCCTCGCTAATAAGACAGGTCAAGGT СTTTA--AAAAGAAT-TACAGTAAGCAAAATCATACAACATAAAAACGTTAGGTCAAGGT | 661 | 670 | 680 | 690 | 700 | 710 | 720 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

GTAACCCATGGGTTGGGAAGTAATGGGCTACATTTTCTAAGCTAAGAACATCCCCTATAC GTAACCAATGGGTTGGGAAGAAATGGGCTACATTTTCTAAACTAAGAATATCCC-TATAC GTAACCTATGAAATGGGAAGAAATGGGCTACATTCTCTACACCAAGAGAATCAA--.... GTAGCCAATGAAGCGGAAAGAAATGGGCTACATTTTCTTTTCCCAGAGAACATT--...--GTAGCCAATGAAATGGGAAGAAATGGGCTACATtTTCTTATA--AAAGAACATT------GTAGCGTACGAAGTGGGAAGAGATGGGCTACATTTTCTATAAT---AGAATAAG------GTAGCGCATGAAGTGGGAAGAAATGGGCTACATTTTCTAATAT---AGAATATT------GTAGCGCATGAGGTGGGAAGAAATGGGCTACATTCTCTAAATT---AGAGCACT------ATAGCCTATGGGGTGGGA-GAAATGGGCTACATTTTCTAACAT---AGAACAA--------GTAGCATATGATAAGGAAAGTAATGGGCTACATTCTCTACTAT---AGAGCATA-------

				760	0	0
21	730	740	750	760	0	

TCACACGAAAG-TTTTTATGAAACTT-AAAAACTAAAGGAGGA-TTTAGTAGTAAATCAA --ACACGAAAG-TTTTTATGAAACTT-AAAAACCAAAGGAGGA-TTTAGTAGTAAATCAA - - GCACGAAAG - TTATTATGAAACC - AATAACCAAAGGAGGA-TTTAGCAGTAAACTAA ----ACGAAAC-C-TTTATGAAACT--AAAGGACAAAGGAGGA-TTTAGTAGTAAATTAA - -- - ACTATAC-CCTTTATGAAACT--AAAGGACTAAGGAGGA-TTTAGTAGTAAATTAA - -- ACGAATA-GCATCATGAAAACTTAATGCTTGAAGGAGGA-TTTAGTAGTAAAAAGG - -- ACGAACATGCACCATGAAAC---AATGCTTGAAGGAGGA-TTTAGTAGTAAAAGGG ----ACGAACC-ACGCTGTGAAATC--AGCGTCCGAAGGTGAAATTTAGCAGTAAACAGA - -- ACGAAAA-AGGATGTGAAACCC-GCCCTTAGAAGGAGGA-TTTAGCAGTAAAGTGA ----ACGAATC-ATATTATGAAACTAAAATGCTTGAAGGAGGA-TTTAGTAGTAAATTAA 781

790
800
810
820
830
840

Fin Whale Blue whale cow
Rat
Mouse
Loach
Carp
Trout
Chicken
opossum

Fin Whale Blue whale cow Rat Mouse Loach carp Trout Chicken opossum

Fin Whale Blue whale Cow Rat Mouse Loach Carp Trout Chicken opossum

Fin whale Blue whale Cow Rat
Mouse
Loach
Carp
Trout Chicken opossum

Fin Whale Blue Whale Cow Rat Mouse Loach Carp Trout Chicken opossum

GAGCAGAG----- TGCTT-GATTGAATAAGGCCATGAGGGCACGCACACACCGCCCGTC GAGCAGAG-----TGCTT-GATTGAATAAGGCCATGAAG-CACGCACACACCGCCCGTC GAATAGAG--.---TGCTT-AGTTGAATTAGGCCATGAAG-CACGCACACACCGCCCGTC GAATAGAG-----AGCTT-AATTGAATAGAGCAATGAAG-TACGCACACACCGCCCGTC GAATAGAG-----AGCTT-AATTGAATTGAGCAATGAAG-TACGCACACACCGCCCGTC AAATAGAG--..--TGTCC-TTTTGAACCCGGCTCTGAGG-CGCGTACACACCGCCCGTC AAGTAGAG-...--TGTCCCTTTTGAACCCGGCTCTGAGA-CGCGTACACACCGCCCGTC AAACAGAG-----AGTTC-TCTTGAAACTGGCTCTGAGG-CGCGCACACACCGCCCGTC GATCATACCCCCTAAGCTC-ACTTTAAGACGGCTCTGAGG-CACGTACATACCGCCCGTC $\underset{*}{\text { GAATAGAG-----AGCTT-AATTGAATTAGGCAAT-AGGGCGCGCACACACCGCCCGTC }}$

ACCCTCCTCAAGTACCCCAGCTATAAACCCCAGTTC-GTTAACTCAGGCCAAGCAA-TTA ACCCTCCTCAAGTACCCCAGCTA-AAGCCACAGTTC-ATTAACTCAGGCCAAGCAACTTA ACCCTCCTCAAATAGATTCAGTGCATCTAACCCTAT-TTAAACGCA---CTAGC----TA ACCCTCCTCAAAT---TAGATTGACATTCACATATACATAATTTCA---CTA-ACAAATT ACCCTCCTCAAAT---TAAATTAAACTTAACATAAT--TAATTTCT---AGACATCCGTT АСТСТС--СССТ----GTAATA--GCAATCAATGTAAATAACAACA---AAGCA----CC АСтСтС--СССт----GTCAAAACGCACCAAAAATACATAATACAA---CAGCA…--CT ACTCTC--CCCAA---GTTCAA--CCTGTCCTTCTAACTAAGAAGT---TAACC----GA ACCCTCTTCACAA---GCCATCAACATCAATAAATATATACTTCCC---CTCCC----GG AСССтССТСААСА----TAATA----ATCCAACATACCTAATACAA---TTATT----CA ** *** * $\begin{array}{llllll}901 & 910 & 920 & 930 & 940 & 950\end{array}$

TACGAGAGGAGACAAGTCGTAACAAGGTAAGCATACCGGAAGGTGTGCTTGGACAAA--A TACGAGAGGAGACAAGTCGTAACAAGGTAAGCATACCGGAAGGTGTGCTTGGACAAA--A CATGAGAGGAGACAAGTCGTAACAAGGTAAGCATACTGGAAAGTGTGCTTGGATAAA--T TATGAGAGGAGATAAGTCGTAACAAGGTAAGCATACTGGAAAGTGTGCTTGGAATAA--T TATGAGAGGAGATAAGTCGTAACAAGGTAAGCATACTGGAAAGTGTGCTTGGAATAA--T AACAAGGGGAGGCAAGTCGTAACATGGTAAGTGTACCGGAAGGTGCACTTGGATCAAACC GACAAGGGGAGGCAAGTCGTAACACGGTAAGT-TACCGGAAG-TGCACTTGGATCAAACC ACAAAGGGGAGGCAAGTCGTAACATGGTAAGTGTACCGGAAGGTGCGCTTGGAATAA--C CTAAAGACGAGGCAAGTCGTAACAAGGTAAGTGTACCGGAAGGTGCACTTAGACTA---C TTAAAGAGGAGAAAAGTCGTAACACGGTAAGTGTACTGGAAAGTGCACTTGGAATA----
$961970 \quad 980 \quad 1000 \quad 1010 \quad 1020$

CAAGATATAGCTTAA----ACAAAGCATGTAGTTTACACCTAGAAGATTCCACAG---CC CAAGATATAGCTTAA----ACAAAGCATCTAGTTTACACCTAGAAGATTCCACAG---CC CAAGATATAGCTTAA----ACAAAGCATCCAGTTTACACCTAGAAGACTTCATTC---AT CACAGTGTAGCTTAAT--CACAAAGCATCTGGCCTACACCCAGAAGAATTCATAA---AA CATAGTGTAGCTTAAT--ATTAAAGCATCTGGCCTACACCCAGAAGATTTCATGA---CC CAGGGCGTGGCTGAGAT-AGTTAAGCACCTCCCTTACACCGAGAAGACATCCATG-CGAG CAGGGTGTGGCTGAGTT-AGTCAAGCATCTCACTTACACCGAGAAGACATCCATG-CAAA CAGAGTGTAGCTAAAAT-AGGAAAGCACCTCCCTTACACCGAGAAGACATCCGTG-CAAA CAAGGCGTAGCTATAAC-TTCAAAGCATTCAGCTTACACCTGAAAGATACCCTCAACAGA CAAAATGTAGCTTGATTTATTAAAGCATTTAGTTTACACCTAAAAGATTTCAGTC--TAA

CGTGTATATCTTGA---ACTAGCC--CTAGCCC-ACACCCTC--CC-------CACCTCT
 TATGAATATCTTGA---ACTAGAC--CTAGCCC-AAAGATAC--CCT----CTCGACTAA
 AATGAACACTCTGA---ACTAATC--CTAGCCCTAGCCCTAC--AC…....-AAATATA CTGGATCGCCCTGA---GCCAAACAGCTAGCTTAACAACCTAG-ACAACTAAACAACATA TTGGATCGCCCTGA---GCCAAACAGCTAGCTTAACTACTTA--ATAACTAAACAATATA TCGGGTCACCCTGA---GCTGACTAGCTAGCCAACATATTTGGTCCAACACCACAACATA CAAGGTCGCCTTGACTTGCCCCCCCTCTAGCCCGACAAACTCGTAC…-CCTTAACATA TCTGACCATTTTGA---ACTAACC--ACAGCCCTAAAATCAT--........-ATCAAATTA

*		100	110	1120	1130	1140
1081	090	1100		1120		

Fin Whale Blue whale Cow
Rat
Mouse
Loach Carp Trout Chicken opossum

Fin Whale Blue whale Cow
Rat
Mouse
Loach
Carp
Trout
Chicken
opossum

Ein Whale Blue Whale Cow Rat Mouse Loach Carp Trout Chicken opossum

Fin Whale Blue Whale Cow
Rat
Mouse Loach
Carp
Trout Chicken opossum

Fin Whale Blue whale Cow
Rat
Mouse
Loach
Carp
Trout
Chicken
opossum

ACTACCACAAATCAA--- TCAAATAAAACATTTACCATCCCTTCAA---AGTATAGGAG AСTACCATAGACCAA----TCAAATAAAACATTCACCAACCTTCTAA---AGTATAGGAG ACAACCAAGATAGAA--- TAAAACAAAACATTTAATCCCAATTTAA---AGTATAGGAG ACTAA-ACCCCCACA----TAAACTAAAACATTTAACTCA----AAA---AGTATTGGAG ATTAT-ACTATTATA--- TAAATCAAAACATTTATCCTAC--TAAA---AGTATTGGAG AATAAAACAACAAAA-CCTTAAAAAATAAACTAAACCATTTTTCCACCTTAGTACGGGCG AATAAAACAAAATAAGCCTGACACCAAAAACTAAACCATTTTTTTTACCTGAGTATGGGAG CATACCCCAATAAAACTTAGAATTAAGTCAACAAACCATTTTTCCACCTTAGTAGGGGCG AAAAACTTACCTCCCCCTCTTAACCAAAACATTATAAATTGTCCC-----AGTATAGGCG ACTAA--СTACTTTT----TCAATTTAAACCATTTTAATTATCCT-----AGTATAGGTG

$$
\begin{array}{lllllll}
1141 & 1150 & 1160 & 1170 & 1180 & 1190 & 1200
\end{array}
$$

ATAGAAATT--TAAATATCAGTGGCGCTATAGA----GATAGTACCGTAAGG-AAA-GAT ATAGAAATT--TAAACATCAGTGGCGCTATAGA----AATAGTACCGTAAGGGAAA-GAT ATAGAAATC--TAAGTAC----GGCGCTATAGA----GAAAGTACCGCAAGGGAAC-GAT AAAGAAATT--TACTTACCA--AGAGCTATAGA----GAAAGTACCGCAAGGGAAATG今 AAAGAAATTCGTACAT-CTA--GGAGCTATAGA----ACTAGTACCGCAAGGGAAA-GAT ACGGAAAAGGATCCGA----TTAAGCGATAGA----AAAAGTACCGCAAGGGAAA-GCT ACAGAAAAGGTTCC-A-----CAAAGCGATAGA----AATAGTACCGCAAGGGAAA-GCT ACCGAAAAGGAGATAA-----TTGAGCAACAGA----AAAAGTACCGCAAGGGGAA-GCT ATAGAAAAGACTACCC-----CGGCGCAATAGAGGCTAACTGTACCGCAAGGGAAA-GAT ATAGAAAAG-ATATAATA----GGAGCTATAGT---TTATAGTACCGCAAGGGAAA-AAT

GAAAGAAAAAC-CT---.--- AAAAGTAATAAAAAG-CAAAGCTTACCACTTGTACCT GAAAGAAAAAC-CC-------AAAAGTAATAAAAAG-CAAAGCTTACCCCTTGTACCT GAAAGAAAAAAACT--....--AAAAGTATAAAAAAG-CAAAGATTACCCCTTGTACCT GAAAGACTAAT--T--------TAAAGTAAAAACAAGACAAAGATTAAACCT-GTACCT GAAAGACTAAT - T--..-.-- AAAAGTAAGAACAAG-CAAAGATTAAACCTTGTACCT GAAAAAGAAATGAAACAACCCATATAAGCACCACAAAG-CAGAGACACAACCTCGTACCT GAAAGAGAAATGAAATAACCCATATAAGCACTAAAAAG-CAAAGATTAAACCTCGTACCT GAAAGAGAATTGAAATAACCCATTTAAGCCTAGAGAAG-CAGAGATTAAATCTCGTACCT GAAATAGCAATGAAA--ACC---ATAAGCAAAAAACAG-CAAAGACCAACCCTTGTACCT GAAAGATAAAT-...-.-.--- TATAGTAATTAAAAG-CAAAGATTAACTCTTGTACCT

TTTGCATAATGACTTAACTAGTAATA-AATtAGCAAAGAGACCTTAAGTTAAATTACCCG TTTGCATAATGACTTAACTAGTAATA-ACTTAGCAAAGAGACCTTAAGTTAAACTACCCG TTTGCATAATGAATTAACTAGTATAAGACTTAACAAAATGAATTTTAGCTAAGCAGCCCG TTTGCATAATGAATTAACTAG-AAAATCCTTAACAAAAAGAATTTAAGCTAAGAACCCCG TTTGCATAATGAACTAACTAG-AAAACTTCTAACTAAAAGAATTACAGCTAGAAACCCCG TTTGCATCATGATTTAGCCAGAACAC--CCAAGCAAAGAGACCTTTAGTTTGAAACCCCG TTTGCATCATGATTTAGCCAGTACAC--CCAAGCAAAGAGACCTTTAGTTTGAAACCCCG TTTGCATCATGATTTAGCCAGCACAC--CTGAGCAAAGAGAACTTTAGTTTAGGCCCCCG TTTGCATCATGATTTAGCAAGAACAA--CCAAGCAAAGTGAGCTAAAGTTTGCCTTCCCG TTTGCATAATGATTTAGCCAGTCAAC--ACGGACAAAAAGAA-TTATGCCCGACATCCCG

AAACC-AGACGAGCTACTTATGAGCAGC--ACCTA-GAACGAACTCATCTATGTGGCAAA AAACC-AGACGAGCTACTTATGAGCAGT--ACCTA-GGACGAACTCATCTATGTGGCAAA AAACC-AGACGAGCTACTCACAAACAGTTTACCAA-GAACTAACTCATCTATGTGGCAAA AAACC-AAACGAGCTACCTAAAAACAAT--TTCAT-GAATCAACCCGTCTATGTAGCAAA AAACC-AAACGAGCTACCTAAAAACAAT--TTTAT-GAATCAACTCGTCTATGTGGCAAA AAACC-AAGTGAGCTACCCCGGGACCGCCAAC-AT-GGGCCAACCCATCTCTGTGGCAAA AAACC-AGGTGAGCTACCCCGAGACAGCCTATTAT-GGCCCACCCCGTCTCTGTGGCAAA AAACT-AGACGAGCTACTCCGGGACAGCCTATTGTAGGGCCAACCCGTCTCTGTGGCAAA AAACCCAAGCGAGCTACTTGCGAGCAGCTAAAATTTGAGCGAACCCGTCTCTGTTGCAAA AAATT-AAGTGAGCTACTATAAGACAGT-TACTAATGAACCAACTCATCTATGTAGCAAA

Fin Whale Blue whale Cow
Rat
Mouse
Loach
Carp
Trout
Chicken opossum

Fin Whale Blue Whale Cow Rat Mouse Loach Carp Trout Chicken opossum

Fin Whale Blue Whale Cow
Rat
Mouse
Loach
Carp
Trout
Chicken
opossum

Fin whale Blue whale Cow
Rat
Mouse
Loach
Carp
Trout
Chicken
opossum

Fin Whale
Blue Whale Cow
Rat
Mouse
Loach
Carp
Trout Chicken opossum

ATAGTGAGAAGACTTATAAGTAGAGGTGAAAAGCCTAACGAGCCTGGTGATAGCTGGTTG ATAGTGAGAAGACTTATAAGTAGAGGTGAAAAGCCTAACGAGCCTGGTGATAGCTGGTTG ATAGTGAGAAGATTTGTAAGTAGAGGTGACATGCCTAACGAGCCTGGTGATAGCTGGTTG AtAGTGGGAAGATTTTTAGGTAGAGGTGAAAAGCCTATCGAGCTTGGTGATAGCTGGTtG ATAGTGAGAAGATTTTTAGGTAGAGGTGAAAAGCCTAACGAGCTTGGTGATAGCTGGTTA AGAGTGGGGAGAGCCCCGGGTAGAGGTGATAGACCTACCGAACTTGGTGATAGCTGGTTG AGAGTGGGAAGAGCTCCGGGTAGAAGTGACAGACCTACCGAACCTGGTGATAGCTGGTTG AGAGTGGGACGAGCCCCGAGTAGAGGTGATAAACCTATCGAGCCTAGTTATAGCTGGTTG AGAGCGGGATGACTTGCCAGTAGAGGTGAAAAGCCTACCGAGCTGGGTGATAGCTGGTTA $\underset{\star}{A_{*} T A G T G A G A A G A T T T T A T A G T A G A A G T G A A A A A C C T A T C G A A C T T A A T G A T A G C T G G T T A ~}$

TCCCTGAAAAGAATCTCAGTTCAACATTAAATAATACT------AAAAGCCCATG----C TCCATGAAAAGAATCTCAGTTCAACATTAAATGATACT------AAAAGCC-ATG----C TCCAGAAAATGAATCTAAGTTCAGCTTTAAA-GATACC------AAAAATTCAAA--.-T CCCAAAAAA-GAATTTCAGTTCAAACTTTAA-GCTTCC--..--ATCAGAACAA......-C CCCAAAAAATGAATTTAAGTTCAATTTTAAA-CTTGCT------AAAAAAACAA-.---C TCTGGGAAATGAATAGAAGTTCAGCCTCGCACCCCTTGAGTTAAATAAGAAACACTCTAA CCTAAGAAATGAATAGAAGTTCAGCCTCGTGCACCTC-----AAATCACACAAAC---AA CTTAGGAAATGAATAGAAGTTCAGCCCCCCGGCTTTCTTAGGACCTTAAGGTAAAACTAA CCTGTCAAACGAATCTAAGTTC--CCCCTTAACCCACCCCCTAAAGACACCCACCTTTGT TCCAAAAAA-GAATTTAAGTTCAACTTTAAGTCCTATT------ACAATGCCTAT----T

1501	1510	1520	1530	1540	1550	1560

CAAG--CCTTAACGTATA-TTTAACTGTTAATCTAAAAAGGTACAGCTTTTTAGAAA-TG CAAG--CCTTGACGTACA-TTTAACTGTTAGTCTAAAAAGGTACAGCTTTTTAGATA-TG AAAC--CCC-ACTGTAGC-TTTAAAAGTTAGTCTAAAAAGGTACAGCCTTTTAGAAA-CG AAA---TCAAAATGTAAA-CTTAAAATATAGCCAAAAGAGGGACAGCTCTTTAGGAAACG AAAA--TCAAAAAGTAAG-TTTAGATTATAGCCAAAAGAGGGACAGCTCTTCTGGAA-CG CATAACACAAAAAGAGAAACGCGAGAGTTAGTCAAAGGGGGTACAGCCCCTCTGATAAAG AACAAGACTAAGAGAAACACATGAGAGTTAGTTAAAGGGGGTACAGCCCCTTTAACAAAG TATT-GTCCCAAAGAAAC-CAGGAGAGTTAGTCAAAGGAGGTACAGCTCCTTTGAACAAG CAACCTTGAGAACGTTGGGGTTAAGAGCAATTCGATGGGGGTACAGCTCCATCGAAAAAG CAAA--GCACACAATAAG-CTTAAAAGTTAGTCAAAGAAGGGACAACTTCTTTGACCAAG $\begin{array}{lllllll}1561 & 1570 & 1580 & 1590 & 1600 & 1610 & 1620\end{array}$

GGTACAACCTTGACTAG-AGAGTAA--AATCAAACA--------TAAAC-ATAGTTGG GGTACAACCTTCACTAG-AGAGTAA--AACCAAACA…............tACACCATAGTTGG GATACAACCTTGACTAG-AGAGTAA--AATTTAACA--.-------CTACC-ATAGTAGG GAAAAAACCTTAAATAG-TGAATAAACAACTACA-AT------CACTTAACCATTGTAGG GAAAAAACCTTTAATAG-TGAATAATTAACAAAACAG-----CTTTTAACCATTGTAGG AATACAACCTTAGCCAGGAGGATAAGGATCATACTTAACAAAACACGTCGTCTCAGTGGG GACACAACCTTT-CCAGGAGGATAAAGATCATAATACATAAAACATACTGTTCTAGTGGG GACACAACCTTA-ACAGGCGGCTAAGGATCATAGTTC-CAAGGTAACCTGTTACAGTGGG AACACAACCTCCTCCAG-CGGATAATAATCACCCCTC................CCCGCACTGTGGG

21	1630	1640	1650	1660	1670	1680
21	1630	1640				

CСTAAAAGCA-GCCATCAA-TTAAGAAAGCGTTCAAGCTCGACAACAAAATAATGTTTTA ССTAAAAGCA-GCCATCAA-TTAAGAAAGCGTTCAAGCTCGACAATAAAACAATGTTTTA CCTAAAAGCA-GCCATCAA-TTAAGAAAGCGTTAAAGCTCAACAACAAAA-ATTAAATAG СTTAAAAGCAAGCCATCAA-TAAAGAAAGCGTCAAGCCACATCATCTTACACACACACTA ССTAAAAGCA-GCCACCAA-TAAAGAAAGCGTTCAAGCTCAACAT--AAAATTTCAATTA CCCAAAAGCA-GCCATCTG-ATCAGAAAGCGTTAAAGCTCAAACGACACAAAGTTTATT-ССTAAAAGCA-GCCATCTA-AACAGAAAGCGTTAAAGCTCAGACAGAAAAAAGTTTATT-ССTAAGAGCA-GCCACCTG-CACAGAAAGCGTTAAAGCTCAGACAGATACAAACCTCTT-ССTTCAAGCA-GCCACCAACAAAAGAGTGCGTCAAAGCTCCCTCATTAAAAAATCTAAA-CTTAAAAGCA-GCCATCAA-CTAAGAAAGCGTTAAAGCTCAAACTC-ACATTCCAATTTA

Fin Whale Blue whale Cow
Rat
Mouse
Loach
Carp
Trout
chicken
opossum

Fin Whale Blue whale Cow Rat Mouse Loach Carp Trout Chicken opossum

Fin Whale Blue Whale Cow Rat Mouse Loach Carp Trout Chicken opossum

Fin Whale Blue whale Cow
Rat
Mouse
Loach
Carp
Trout
Chicken Opossum

Fin Whale Blue Whale Cow Rat
Mouse
Loach
Carp
Trout Chicken opossum

ATtCCAACATTAAGTAAATCAACTCCTAGCCTGACTATTGGACTAA-TCTATACAAATAT ATTCCAACATTAGACAAATCAACTCCTAGCATGATTATTGGACTAA-TCTATATAAACAT ATTCCAACAACAAATGA-TTAACTCCTAGCCCCAATACTGGACTAA-TCTATTATAGART АТ TCCACAAACCTCAAA--AA-TTCCAAAATTACAAATTGGGCTAAATCTATGATCCTAG ATTCCATAATTTACACC--AACTTCCTAAACTTAAAATTGGGTTAA-TCTATAACTTTAT ATTCTGATAAACAATCC--CACTCCCCTAAA--ATTACCAGACTAT-TCCATGCCCCCAT ATCCCGATAAAAAATCT--TACTCCCCTAAAT-ACTATTAGGCCAR-CCCATGCCCCCAT ATCCTGATAAGAAATCC--CACCCCCCTAAC--CGTACTAAGCCGT-TCCATGCCCCCAT ACCCT--.-.---ATTT--GACTCCCTCAAC--CAAAGCAGGTTAA-CCTATGAC--AAT ATACCATAAAAAAACTA--AAACCCCTAAAAT-ACTATTGGATGAT-TCTATGATATTAT

1741	1750	1760	1770	1780	1790	1800

AGAAGCAATACTGTtAATATGAGTAACAAGAAA----T--TtTtctcctagcacangct-AGAAGCAACACTGTTAATATGAGTAACAAGAAA----T--TTTTCTCCTAGCACGAGCT-AGAAGCAATAATGTTAATATGAGTAACAAGAAA----AA-TTTTCTCCTTGCATAAGTC-TGA----ATACTGTTAATATGTG-AACAAGAA------CCAATCCACCAAGCACAAGTGC AGATGCAACACTGTTAGTATGAGTAACAAGAAT----TCCAATTCTCCAGACATACGCG-GGAAGAAACTATGCTAAAATGAGTAACAAGGGGGTCATGGCCCCCTCCCGGCACAAGTG-GGAAGAGATTATGCTAAAATGAGTAACAAGAAGGCCCGCCCTTCTTCCAAGAACAAGTG-GGAAGAGATTATGCTAGAATGAGTAATAAGAGAGTACAA-CTCTCTCCCAGCACATGTG-AGAAGAATCAATGCTAAAATGAGTAATCTGGAA--CCTA---TCCTCC................. AGAATACATAATGCTAAAATTAGTAATAAGAAC-...-CCCGTTCTCCTCGCACAAGCC-

1801	1810	1820	1830	1840	1850	1860

TATATTAGTAA--CTGATAATATACTAATAATTAA-CAGCAAATAAATA-A-...............
TAAGTCAGTGC--CTGATAATACTCTGACCACTAA-CAGTCAATAAAAA-T $-\ldots \ldots$
TAAGACAAC----CGGATAAC-CATTGTTAATTATTGAATC-ATAGGCA-T-..........-
TATAACAACT---CGGATAAC-CATTGTTAGTTAATCAGACTATAGGCAAT-..............
TAAGCCAGAC---CGGACCCACCACTGGCAATTAACGAACCCAAAAAAAGAGGGATGCAT
TAAGCCAAAC---CGGACCAACCATTGGCAACTAACGAACTCAATCAAAGAGAGCAATGT
TAAGTCGGAC---CGGACCCCCCACCGACAAATAACGAACCCAAACCAAGAGGGAACTGT
TAAGTTAGAATAACGGATATCCCACTAATAGTTAACAAAAACATAATAA…..............
*
1861
1870
1880
1890
1900
1910
1920

AACCCAACACTA-......- AATTATTTATTAAA-ATAC---TGTTAACCCAACACAGGC AATCTAACACTA-..-----GACTATTTATTAAG-ACAC---TGTTAACCCAACACAGGA AATCCAACAATA…........AACAATTTATTGATTATAC---TGTTAACCCAACACAGGA AACCCAACAATAG-....-- AATTACCTATCCCTAACTC----GTTAGCCCAACACAGGC ААТСАСАСТАТА…..-- - AATAATCCACCTATAACTTCTCTGTTAACCCAACACCGGA GGAAGACAAAAAA--CCAAGAAAACCCCATGTTATAACAATC-GCTAACCCCACACTGGA GAATTACAAAAAAACCCAAGAAAAATCCACAACTAAGCTATC-GTTACCCCCACACTGGA AGGCCAGAACAAACACCAAGAAAAACCTACACCA-ACAAATC-GTTACCCCCACACAGGA ACCCCCACACTAA--C-AAGCAATACGTATTCCT---CAATCTGTTAAGCCAACCCAGGA САТтСATCAACC-..---- AGCCTCTTATACAAAATTT---TGTTAATCCAACACAGGT $\begin{array}{lllllll}1921 & 1930 & 1940 & 1950 & 1960 & 1970 & 1980\end{array}$

GTGCAT - TAAGGAAAGATTAAAAAAAGTAAAAGGAACTCGGCAAACACAAACCCCGCCTG GTGCAT-TAAGGAAAGATTAAAAAAAGTAAAAGGAACTCGGCAAACACAAACCCCGCCTG GTGCATCTAAGGAAAGATTAAAAGAAGTAAAAGGAACTCGGCAAACACAAACCCCGCCTG GTGCTT-TAAGGAAAGTTTAAAAAAGT--AAAGGAACTCGGCAAACACGAACCCCGCCTG ATGCCT-AAAGGAAAGATCCAAAAAGATAAAAGGAACTCGGCAAACAAGAACCCCGCCTG GTGCCCCCA-GGAAAGACTAAAAGAAAAGGAAGGAACTCGGCAAACATAAGCCTCGCCTG GTGCCCTAAAGGAAAGACTAAAAGAAAAGGAAGGAACTCGGCAAACACAAGCCTCGCCTG GTGCCCCAAGGGAAAGACCCAAAGGAAGAGAAGGAACTCGGCAAACACAAGCCTCGCCTG GCGCCCACA--GGATGATTAAAACCTACAGAAGGAACTCGGCAAACCAAAGACCCGACTG GTGCATTAAAGGAAAGATATAAAAGAACAAAAGGAACTCGGCAAACATGAACCCCGCCTG

Fin Whale Blue Whale Cow Rat Mouse Loach Carp trout Chicken opossum

Fin Whale Blue whale Cow Rat Mouse Loach Carp Trout Chicken Opossum

Fin Whale Blue Whale Cow Rat Mouse Loach
Carp
Trout
Chicken opossum

Fin whale Blue Whale Cow
Rat
Mouse
Zoach
Carp
Trout
Chicken opossum

Fin Whale Blue Whale Cow
Rat
Mouse
Loach
Carp
Trout
Chicken
opossum
tTtaccanaancatcacctctagcatancc---Agtattagag-cactgcctgcccegtg
 tTtaccanaincatcacctccagcattccc---Agtattgeaggcattgcctgcccagtg tTtaccanaiacatctcctctagcatanca---Agtattagtegcatcccctgcccagtg TTTACCAAAAACATCACCTCTAGCATTACA---AGTATTAGAGGCACTGCCTGCCCAGTG TTTACCAAAAACATCGCCTCCTGCAAACCACGAAGTATAGGAGGTCCAGCCTGCCCAGTG TTTACCAAAAACATCGCCTCCTGCAACGAACCAAGTATAGGAGGTCCAGCCTGCCCAGTG TTTACCAAAAACATCGCCTCTTGCAAATCA--AAACATAG-AGGTCC-GCCTGCCCTGTG tTtcccananacatagccttcagctancanc-AAGtattgang tgatgcetgcccagtg TTTACCAAAAACATCACCTCTAGCATTACA---AGTATTAGAGGCACTGCCTGCCCAGTG

ACT--AATCGTTAAACGGCC--GCGGT-ATCCTGACCGTGCAAAGGTAGCATAATCACTT ACT--AATCGTTAAACGGCC--GCGGT-ATCCTGACCGTGCAAAGGTAGCATAATCACTT AC---AACTGTTTAACGGCC--GCGGT-ATCCTGACCGTGCAAAGGTAGCATAATCATTT ACT--AAA-GTTCCACGGCC--GCGGT-ATCCCGACCGTGCAAAGGTAGGATAATCACTT ACT--AAA-GTTTAACGGCC--GCGGT-ATCCTGACCGTGCAAAGGTAGCATAATCACTT ACC-TACAAGTTCAACGGCC--GCTGT-ATTTTGACCGTGCAAAGGTAGCGCAATCACTT AC--TACAAGTTCAACGGCCCGGCGGTTATTTTGACCGTGCAAAGGTAGCGCAATCACTT AC-- TATGGGTTTAACGGCC--GCGGT-ATTTTGACCGTGCGAAGGTAGCGCAATCACTT ACCCCCAAAGTTCAACGGCC--GCGGT-ATCCTAACCGTGCGAAGGTAGCGCAATCAATT AAT--AAACTTTTAACGGCC--GCGGT-ATCCTGACCGTGCAAAGGTAGCATAATCACTT
 $\begin{array}{lllllll}2101 & 2110 & 2120 & 2130 & 2140 & 2150 & 2160\end{array}$
 GTTCTCTAATTAAGGACTTGTATGAACGGCCACACGAGGGTTTTACTGTCTCTTACTTTT GTtCTCTAAATAAGGACTTGTATGAATGGCCGCACGAGGGTTTTACTGTCTCTTACTTCC GTTCCTTAATTAGGGACTAGAATGAATGGCTAAACGAGGGTCCAACCGTCTCTTACTTGC GTTCCTTAATTAGGGACTAGCATGAACGGCTAAACGAGGGTCCAACTGTCTCTTATCTTT GTCTTTTAAATAAAGACCTGTATGAATGGCCAAACGAGGGCTTAACTGTCTCCCCTTTCA GTCTTTTAAATAGAGACCTGTATGAATGGCTAAACGAGGGCTTAACTGTCTCCCCtTtcA GTCTTTTAAATGAAGACCTGTATGAATGGCATCACGAGGGCTTAGCTGTCTCCTCTTCCA GTCCCGTAAATtGAGACTTGTATGAATGGCTAAACGAGGTCTTAACTGTCTCCTGTAGGT GTCTCCTAAATAGGGACTTGTATGAATGGCATAACGAGGGTTCAACTGTCTCTTTTTCTT ** ******* * ***** *** ****** *****
2161
2170
2180
2190
2200
2210
2220

AATCAGTGAAATTGACCTCTCCGTGAAGAGGCGGAGATAACAAAATAAGACGAGAAGACC AATCAGTGAAATTGACCTCCCCGTGAAGAGGCGGGGATAACAAAATAAGACGAGAAGACC AATCAGTGAAATTGACCTTCCCGTGAAGAGGCGGGAATGCACAAATAAGACGAGAAGACC AATCAGTGAAATTGACCTTCCAGTGAAGGGGCGGACTCATAATAA-AAGACGAGAAGACC AATCAGTGAAATTGACCTTTCAGTGAAGAGGCTGAAATATAATAATAAGACGAGAAGACC AGTCAGTGAAATTGATCTGCCCGTGCAGAAGCGGACATAAACCTACAAGACGAGAAGACC AGTCAGTGAAATTGATCTACCCGTGCAGAAGCGGGTATAATACTACAAGACGAGAAGACC AGTCAATGAAATTGATCTGCCCGTGCAGAAGCGGACATAAGCACATAAGACGAGAAGACC AATCTATGAAATTAGTATTCCCGTGCAAAAACGAGAATGTGAACATAAGACGAGAAGACC AATCAATGAAATTGACCTACCCGTGCAGAGGCGGGTATATTAATATAAGACGAGAAGACC

2221	2230	2240	2250	2260	2270	2280

CTATGGAGCTTCAATTAATCAACCCA--AAAACCATAACCTTAAA--CCACCAAGGGATA СTATGGAGCTTCAATTAATCAACCCA--AAAATCACAACCTTAAA--CCACCAAGGGATA CTATGGAGCTTTACCTAACCAACCCA--AAGAGAATAGATTTAA---CCATTAAGGAATA CTATGGAGCTTTAATTTACTAATTT--CAATTTATATAAAAAAAC--CTAATGGGCGAAA CTATGGAGCTTAAATTATATAACTTATCTATTTAATTTATTAAAC--CTAATGGCCCAAA СTTTGGAGCTTAAGGTACAAACC-..-CAACCACGTCAAGCAACC…-ACATAAATGGCA CTTTGGAGCTTAAGGTACAAAACT---CAACCACGTTAAGCAACT---CAATAAAAAGCA CTATGGAGCTTTAGACACCAGGC----AGATCACGTCAAGCAACCTTGAATTAACAAGTA СTGTGGAACTTTAAAATCACGACCACCTTACAACCTTACACAGCC---CCACTGGGTCCA CTGTGGAGCTTAAGATTAATAACTTA--AATAAAACTAGTACAAA---CCCTAGGGAATA $\begin{array}{cccccc}* * * * * * * * * * \\ 2281 & 2290 & 2300 & 2310 & 2320 & 2330\end{array}$

Fin Whale Blue Whale Cow
Rat
Mouse
Loach
Carp
Trout
Chicken opossum

Fin Whale Blue whale Cow
Rat
Mouse
Loach
Carp
Trout Chicken opossum

Fin Whale Blue Whale cow Rat Mouse Loach Carp Trout Chicken opossum

Fin Whale Blue Whale Cow Rat Mouse Loach Carp Trout Chicken opossum

Ein Whale Blue Whale cow
Rat
Mouse
Loach
Carp
Trout
Chicken opossum

ACAAAACCTTATAT---GGGCTGACAAT--TTCGGTTGGGGTGACCTCGGAGTACAAAA-ACAAAATTTTATAT---GGGCTGACAAT--TTCGGTTGGGGTGACCTCGGAGCACAAAA-ACAACAATCTCCAT~--GAGTTGGTAGT--TTCGGTTGGGGTGACCTCGGAGAATAAAA-ACAACAAAATTATG---AACTACCAAAT--TtCGGTtGGGGTGACCTCGGAGAATAAAA-A--ACTATAGTAT----AAGTTTGAAAT--TTCGGTTGGGGTGACCTCGGAGAATAAAA-TAAAATTAGTGAGTAGTGGAATTTTAC---TtcGGTTGGGGCGACCACGGAGAAAAAAA-AAAACCTTGTGGATCATGAGATTTTACC--TTCGGTTGGGGCGACCACGGAGGAAAGAAAAAACGCAGTAGACCCCTAGCCCATATGTCTTTGGTTGGGGCGACCGCGGGGGGAAAATT CCCACACA-TAAACCCCTGGTCGACATTT-TtCGGTTGGGGCGACCTTGGAGAAAAAAA-

| 2341 | 2350 | 2360 | 2370 | 2380 | 2400 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 AATCCTCCGA-...--ATGATT--ATAACCG-......-.-AGTCGGTAACCGTGTCCGA
 GATCCTCCGA-GTGGACTGAGCCAACAAGCTTAA--AACTACGAAAAACATTTCTTTCTC AAGCCTCCAG-GTGGACTGGGAAAACCTCCT-AA--AACCAAGAGAGACATCTCTAAG-C AAGCCCCCACTGTGGACTGGGGGGCACTGCCCCACCAGCCGAGAGCTACAGCTCTAAGCA AATCСTCCAA-ACCCACAGACCACAACTCTT-CA----CTAAGACCAACTCCTCAAAGTA
 2401

2410
2420
2430
2440
2450
2460
-CTAGCCAAAGTACAAT-ATCACTTATTGATCCAATCCT---TTGATCAACGGAACAAGT -CTAGCCAAAGTGTAAT-ATCACTTATTGATCCAATCTC---TtGATCAACGGAACAAGT -CAAGTCAAATCACTCT-ATCGCTCATTGATCCAAAAAC---TTGATCAACGGAACAAGT CCCAGTCAAGTAATACTAATATCTTATTGACCCAATTAT----TGATCAACGGACCAAGT CAAAGTAAAATCA-AC--ATATCTTATTGACCCAGATATATTTTGATCAACGGACCAAGT TCTATCC--CTCTGACC-AAATATGATCCGACCTATAAA--GTCGATCAACGAACCAAGT ACAGAAC--ATCTGACC-AAATATGATCCGGCTAACACATAGCCGATCAACGAACCAAGT CCAGAAT--ATCTGACC-AAATATGATCCGGCGAACGCAT------TCAACGGACCGAGT
 CCAAGTG----CACAAAAGCCAGTAATTGACCCAAATAT----TGATCAACGGAACAAGT
$24612470 \quad 2480 \quad 2490 \quad 2500 \quad 2520$
taccctagg atancagcgcantcctattctagagtccatatcgacant--aggatttac tACCCTAGGGATAACAGCGCAATCCTATTCTAGAGTCCATATCGACART--AGGGTTTAC tACCCTAGGGATAACAGCGCAATCCTATTCAAGAGTCCATATCGACAAT--AGGGTTTAC TACCCTAGGG-TAACAGCGCGA-CCTATTTAAGAGTTCATATCGACAATT-AGGGTTTAC taccctagg gatancagcgcantcctatttangagttcatatcgacant -agg tttac tACCCTAGGGATTACAGCGCAATCCTCTCCCAGAGTCCATATCGACGAG--AGGGTTTAC TACCCTAGGGATAACAGCGCAATCCTCTCCCAGAGTCCATATCGACGAG--GGGGTTTAC tACCCTAGGGATAACAGCGCAATCCTCTCCCAGAGTCCCTATCGACGAG--GGGGTTTAC taccccagg gatancagc ccantctcctccangagcccatatcgacang--gaggtttac tACCCCAGGGATAACAGCGCAATCCTATTTAAGAGCCCATATCGAAAATCTAGGGTTTAC

GACCTCGATGTTGGATCAGGACATCCTAATGGTGCAGCTGCTATTAAGGGTTCGTTTGTT GACCTCGATGTTGGATCAGGACATCCTAATGGTGCAGCCACTATTAAGGGTTCGTTTGTT GACCTCGATGTTGGATCAGGACATCCTGATGGTGCAACCGCTATCAAAGGTTCGTTTGTT GACCTCGATGTTGGATCAGGACATCCCAATGGTGCAGAAGCTATTAATGGTTCGTTTGTT GACCTCGATGTTGGATCAGGACATCCCAATGGTGTAGAAGCTATTAATGGTTCGTTTGTT GACCTCGATGTTGGATCAGGACATCCTAATGGTGCAGCCGCTATTAAGGGTTCGTTTGTT GACCTCGATGTTGGATCAGGACATCCTAATGGTGCAGCCGCTATTAAGGGTTCGTTTGTT GACCTCGATGTTGGATCAGGACATCCTAATGGTGCAGCCGCTATTAAGGGTTCGTTTGTT GACCTCGATGTTGGATCAGGACAACCTAATGGTGCAACCGCTATTAAGGGTTCGTTTGTT GACCTCGATGTTGGATCAGGACATCCTAATGGTGCAACCGCTATTAAAGGTTCGTTTGTT

2581	2590	2600	2610	2620	2630	2640

Fin Whale Blue Whale Cow Rat Mouse Loach Carp Trout Chicken Opossum

Fin Whale Blue Whale Cow
Rat
Mouse
Loach
Carp
Trout
Chicken
opossum

Ein Whale Blue Whale Cow
Rat
Mouse
Loach
Carp
Trout
Chicken
opossum

Ein Whale Blue Whale Cow
Rat
Mouse
Loach
Carp
Trout Ch1cken opossum

CAACGATTAA-AGTCCTACGTGATCTGAGTTCAGACCGGAGTAATCCAGGTCGGTTTCTA CAACGATTAA-AGTCCTACGTGATCTGAGTTCAGACCGGAGTAATCCAGGTCGGTTTCTA CAACGATTAA-AGTCCTACGTGATCTGAGTTCAGACCGGAGTAATCCAGGTCGGTTTCTA CAACGATTAA-AGTCCTACGTGATCTAAGT-----CCGG--CAATCCAGGTCGGTTTCTA CAACGATTAA-AGTCCTACGTGATCTGAGTTCAGACCGGAGCAATCCAGGTCGGTTTCTA CAACGATTAA-AGTCCTACGTGATCTGAGTTCAGTCTGGTGTAATCCAGGTCAGTTTCTA CAACGATTAA-AGTCCTACGTGATCTGAGTTCAGACCGGAGCAATCCAGGTCAGTTTCTA. CAACGATTAA-AGTCCTACGTGATCTGAGTTCAGACCGGAGTAATCCAGGTCAGTTTCTA CAACGATTAACAGTCCTACGTGATCTGAGTTCAGACCGGAGCAATCCAGGTCGGTTTCTA CAACGATTAA-AGTCCTACGTGATCTGAGTTCAGACCGGAGAAATCCAGGTCGGTTTCTA
 $26412650 \quad 2660 \quad 2680 \quad 2700$
TCTATTA-CGCATTTCTCCCAGT-ACGAAAGGACA-AGAGAAATAAGGCCAA--CTTCAA
TCTATTA-CGCATTTCTCCTAGT-ACGAAAGGACA-AGAGAAATAAGGCCAA--CTTCAA
TCTATTA-CGTATTTCTCCCAGT-ACGAAAGGACA-AGAGAAATAAGGCCAA--CTTTAA
TCTATTT-ACAATTTCTCCCAGTTACGAAAGGACA-AGAGAAATGGAG--AC--CAACCA
TCTATTT-ACGATTTCTCCCAGT-ACGAAAGGACA-AGAGAAATAGAGCCAC--CTTACA
TCTGTAACGTTACTTTTCCTAGT-ACGAAAGGAACCGGAAAAGAAGGGCCAACACTAAA-
TCTGTAACGCTACTTTTCCTAGT-ACGAAAGGATC-GGAAAAGAGGGGCCCATACTTAA-
TCTATGAAGTGATGTTTCCTAGT-ACGAAAGGACC-GGAAAGAAGGGGCCCATGCTTGA-
TCTATG--GACACTCCTCCTAGT-ACGAAAGGACC-GGAGAAGTGGGGTCAATACCACTG
TCTATATATTAATTTCTCCCAGT-ACGAAAGGACC-AGAGAAATAGGGCCAA--CATTA-
2760

A-CAAGCGCCTTCAAAC-AATTAATGA-CCTAGTCTCAACTTAATAATTAAGCGCAAACA A-CAAGCGCCTTCAAAT-AATTAATGA-CCTAGTCTCAACTTAATAACCAAGCGCAAACA ATCAAGCGCCTTAAGAC-AACCAATGA-TAACATCTCAACTGACAA---.----CACAAA ATCCTAGGCTTCCAACC-AATTTAG----AAAAACTTAATAAAGTA--TATATGTACAAT AATAAGCGCTCTCAACTTAATTTATGAATAAAATCTAAATAAAATA--TATACGTACACC AGTGCGCCCTACCC--CTAATTAATGA-AACCAACTAAATTAAGCAAAGGTAGAACCCC-AGCACGCCCCACCC--CTAATTTATGA-AAACAAATAAATAAAATAAAGGGAGAGCCAAA GGCACGCCCCACCC--CCACCTGATGA-AGGCAACTAAAACAGACAAGGGGGCACACCAA AGCACACCCCAACCTTCTAAGCAATGA-ATACAACTCAACTGCCAAGAACCCCTCCCCCA TCTATGCGCCCTCATAA-AATTAATGAAATATATCTAAATTAAACC----ATTTAAACT

2671	2680	2690	2700	2710	2720	2730

AACCTGCCCA---AGACCAGGGCC AGTATGCCCA---AGACCAGGGCC ACCCTGCCCT---AGAACAGGGCT AAATAACCTT---AGACCCAAGTT СтСTAACCT----AGAGA-AGGTT - - СTCTACTG-CCAAAATAAGGCC ATCCCAGCTGGCCAAAATAAGGAC -----GATTGCCTAAAAGAACGGC CACCCGAACTCCTAGAA-AAGGAT TTATCCACT--CTAGATAAGAGCC * *

750

APPENDIX B: Sequence alignment of mitochondrial 16 S rRNA for members in the family Leuciscidae (N.therinoides, Platygobio gracilis, Rhinichthys atratulus, Orthodon microlepidotus, Ptychocheilus oregonensis, S.bicolor, R.solitarius, P.erythrogaster, P.neogaeus, Notemigonus crysoleucas, S.copei, and Phenacobius mirabilis, with a partial sequence for the northern pike (Esox lucius). Conserved base pairs through all species are indicated by *
N. therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster P.neogaeus
N.crysoleucas
S.copei
P.mirabilis Esox lucius

TGCAAATTGGGTCGCCCTGAGCCAACCAGCTAGCTTAATCACCAGTATAATTCAACAATA TGCAAATTGGATCACCCTGAGCTAACCAGCTAGCTTAATCATCACTATAATTTAACAATA TGCAAGTTGGATCACCCTGAGCTAACCAGCTAGCTTGACTACTAATATAACTAAACTTTA TGCAAGTTGGATCACCCTGAGCCAAACAGCTAGCTTAATTACTAATATAACCCAACAATG TGCAAGTTGGATCACCCTGAGCCAAACAGCTAGCTTAATTACTAATATAACCCAACAATG TGCAAATTGGGTCGCCCTGAGCCAAACAGCTAGCTTAATTACTAATATAATTCAACAATA TGCAAATTGGATCACCCTGAGCCAAACAGCTAGCCTAATTACTGATATAATTCAACAATA TGCAAATTGGGTCACCCTGAGCCAAACAGCTAGCTTAATTACTAATATAATTCAACAATA TGCAAATTGGATTACCCTGAGCCAAACAGCTAGCTTAGCCATCAATATAATTCAACAATG TGCAAGTTGGATTACCCTGAGCCAAACAGCTAGCTTAACTACCAATATAATTCAACAATG TGCAAATTGGATCACCCTGAGCCAACCAGCTAGCTTGATTATTAATATAATTTAACAATA TGCAAATTGGATCACCCTGAGCCGACCAGCTAGCCTGATTATTAATATAATTTAACAATA TGCAAATTGGATCACCCTGAGCCAACCAGCTAGCTTAACTAAAAATATAATGTAGCACTG

TTTATAACAAAACAAGACCTAACCCTACAAACTAAACCATTTTTTTACCTGAGTATGGGA TTTATAACAACACAAGACTTAACCCCACAAACTAAACCATTTTTTTACCTGAGTATGGGA TTCATAACAAAACAAAACCCAATGCCACAAACTAAACCATTTTTTTACCTAAGTATGGGA TTCATAACAAAACATGACCTGACACCATAAACTAAACCATTTTTTTACCTAAGTACGGGA TTCATAACAAAACATGACCTGACACCATAAACTAAACCATTTTTTTACCTAAGTACGGGA TTTATAACAAAACATGGCCTAACACCATAAACTAAACCATTTTTTTACCTAAGTACGGGA TTCATAACAAAACATGGCCTAACACCATAAACTAAACCATTTTTTTACCTGAGTACGGGA TTTATAACAAAACATAACCTAACACCATAAACTAAACCATTTTTTTACCTAAGTACGGGA TTCATAACAAAACATGGCCCAATATTATAAACTAAACCATTTTTTTACCTAAGTACGGGA TTCATAACAAAACATGACCTAATATTATAAATTAAACCATTTTTTTACCTAAGTACGGGA TTCATAACAAAACATGGCTTAACATTACAAACTAAACCATTTTTTTGCCTAAGTACGGGA TTTATAACAAAACACGGCCTAACGCCACAAATTAAACCATTTTTTTACCTGAGTATGGGA TTTATAACCAACCAAGACCTAACCCCACCAACTAAACCATTTTTTTACCTAAGTATGGGA

**	** **		***************************			
	70	80	90	100	110	120

N.therinoides
P.gracilis
R.atratulus
O.microlepidotusi
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius P.erythrogaster P.neogaeus N.crysoleucas S.copei P.mirabilis Esox lucius
N.therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius P.erythrogaster P.neogaeus N.crysoleucas S.copei P.mirabilis Esox lucius
N. therinoides P.gracilis R.atratulus O.microlepidotusi O.microlepidotus 2
p.oregonensis s.bicolor R.solitarius P.erythrogaster P.neogaeus N.crysoleucas S.copei P.mirabilis Esox lucius

GACAGAAAAGGTTCA-CCTAGAGCAATAGAGAAAGTACCGCAAGGAAAGCTGAAFGAGAA GACAGAAAAGGTTCA-CCCAAAGCAATAGAGAAAGTACCGCAAGGAAAGCTGAAAGAGAA GACAGAAAAGGTTCAACCCFAAGCGATAGAGAGAGTACCGCAAGGAAAGCTGAFAGAGAA GACGGAAAAGGTTCAATCTAGAGCGATAGAGAAAGTACCGCAAGGAAAGCTGAAAGAGAA GACGGAAAAGGTTCAATCTAGAGCGATAGAGAAAGTACCGCAAGGAAAGCTGAAAGAGAA GACGGAAAAGGTTCAACCTAAAGCAATAGAGAAAGTACCGCAAGGAFİGCTGAZAGAGAA GACGGAAAAGGTTCAACCTAGAGCAATAGAGAAAGTACCGCAAGGAAAGCTGAAAGAGAA GACGGAAAAGGTTCACCCTAAAGCAATAGAAAAAGTACCGCAAGGAAAGCTGAAAGAGAA GAC GGAAAAGGTCCATTATAAAGCAATAGAAAAAGTACCGCAAGGAAAGCTGAAAGAGAA GACGGAAAAGGTCCACTATAAAGCCATAGAAAAAGTACCGCAAGGAAAGCTGAAAGAGAA GACGGAAAAGGTTCAACTTAAAGCAATAGAGAAAGTACCGCAAGGAFAGCTGAAAGAGAA GACAGAAAGGGTTCACCCCAGAGCAGTAGAGAAAGTACCGCAAGGAAAGCTGAAAGAGAA GACAGAAAGGGCTCA-CCTGAAGCAATAGAAAAAGTACCGCAAGGAAAGCTGAAAGFGAA

ATGAAACAACCCATATAAGCACTAAAAAACAAAGACTAAACCTTGTACCTTTTGCATCAT ATGAAATAACCCATATAAGCACTGAAAAACAAAGACTAAACCTTGTACCTTTTGCATCAT GTGAAACAACCCATATAAGCACTGAGAAACAAAGATTAAACCTTGTACCTTTTGCATCAT ATGAAACAACCCATATAAGCACTAAAAAACAAAGACTAAACCTTGTACCTTTTGCATCAT ATGAAACAACCCATATAAGCACTAAAAAACAAAGACTAAACCTTGTACCTTTTGCATCAT ATGAAACAACCCATATAAGCACCAAGAAACAAAGACTAAACCTTGTACCTTTTGCATCAT GTGAAACAACCCATATAAGCACTAAGAAACAAAGACTAAACCTTGTACCTTTTGCATCAT ATGAAACAACCCATATAAGCACTAAGAAACAAAGACTAAACCTTGTACCTTTTGCATCAT ATGAAACAACCCATATAAGCACTGAAAAACAAAGACTAAACCTTGTACCTTTTGCATCAT ATGAAACAACCCATATAAGCACTAAAAAACAAAGACTAAACCTTGTACCTTTTGCATCAT ATGAAATAACCCATATAAGCAATGAAAAACAAAGACTAAACCTTGT-CCTTTTGCATCAT GTGAAATAACCCATATAAGTACCAAAAAACAAAGACTAGACCTTGTACCTTTTGCATCAT ATGAAATAATCCATATAAGCACTAAAAAACAAAGACTAAACCTTGTACCTTTTGCATCAT

GATTTAGCCAGTACCCTCAAGCAAAGAGATCTTTAGTTTGATACCCCGAAACCAGGTGAG GATTTAGCCAGCACCCTCAAGCAAAGAGATCTTTAGTTTGATACCCCGAAACCAGGTGAG GATTTAGCCAGTACCCTCAAGCAAAGAGACCTTTAGTTTGATACCCCGAAACCAGGTGAG GATTTAGCCAGCACCCTCAAGCAAAGAGACCTTTAGTTTGACGCCCCGAAACCAGGTGAG GATTTAGCCAGCACCCTCAAGCAAAGAGACCTTTAGTTTGACGCCCCGAAACCAGGTGAG GATTTAGCCAGCACCCTCAAGCAAAGAGACCTTTAGTTTGAAACCCCGAAACCAGGTGAG GATTTAGCCAGCACCCTCAAGCAAAGAGACCTTTAGTTTGAAACCCCGAAACCAGGTGAG GATTTAGCCAGCACCCTCAAGCAAAGAGACCTTTAGTTTGGAACCCCGAAACCAGGTGAG GATTTAGCCAGCACCCTCAAGCAAAGAGACCTTTAGTTTGGATCCCCGAAACCAGGTGAG GATTTAGCCAGCACCCTCAAGCAAAGAGACCTTTAGTTTGGAACCCCGAAACCAGGTGAG GATTTAGCCAGTACCCTCAAGCAAAGAGACTTT--GTTTGACGCCCCGAAACCAGGTGAG GATTTAGCAAGTACCCTCAAGCGAAGAGACCTTTAGTTTGAAACCCCGAAACCAAGTGAG GATTTAGCCAGCACCCTCAAGCGAAGAGACCTTTAGTTTGATACCCCGAAACCAGGTGAG

$* *$	$* *$	$* * * * *$
241	250	260

N. therinoides
P.gracilis
R.atratulus
O.microlepidotusi
O.microlepidctus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P.neogaeus
N.crysoleucas
S.copei
P.mirabilis

Esox lucius
N.therinoides
P.gracilis
R.atratulus
O.microlepidotus1
O.microlepidotus2
P.oregonensis
s.bicolor
R.solitarius
P.erythrogaster
P. neogaeus
N.crysoleucas
S.copei
P.mirabilis

Esox lucius

AAGAGCTCCGGGTAGAAGTGACAGACCTACCGAACCTGGTGATAGCTGGTTGCCTAAGAA AAGAGCTCCGGGTAGAAGTGACAGACCTACCGAACCTGGTGATAGCTGGTTGCCTGGGAA AAGAGCTCCGGGTAGAAGTGACAGACCTACCGAACCTGGTGATAGCTGGTTGCCTGAGAA AAGAGCTCCGGGTAGAAGTGACAGACCTACCGAACCTGGTGATAGCTGGTTCTCTGAGAA AAGAGCTCCGGGTAGAAGTGACAGACCTACCGAACCTGGTGATAGCTGGTTCTCTGAGAA AAGAGCTCCGGGTAGAAGTGACAGACCTACCGAACCTGGTGATAGCTGGTTATCTGAGAA AAGAGCTCCGGGTAGAAGTGACAGACCTACCGAACCTGGTGATAGCTGGTTGTCTGAGAA AAGAGCTCCGGGTAGAAGTGACAGACCTACCGAACCTGGTGATAGCTGGTTGTCTGAGAA AGGAGCTCCGGGTAGAAGTGACAGACCTACCGAACCTGGTGATAGCTGGTTATCTGAGAA AAGAGCTCCGGGTAGAAGTGACAGACCTACCGAACCTGGTGATAGCTGGTTATCTGAGAA AAGAGCTCCGGGTAGAAGTGACAGACCTACCGAACCTGGTGATAGCTGGTTGCCTGAGAA AAGAGCTCCGGGTAGAAGTGACAGACCTACCGAACTTGGTGATAGCTGGTTGCCTGAGAA ATGAGCTCCGGGTAGAAGTGATAAACTTACCGAACCTGGTGATAGCTGGTTGCCTAAGAA

361
370
380
390
400
410
420
N. therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.microlefidotus2
P. oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P. neogaeus
N.crysoleucas
S.copei
P.mirabilis

Esox lucius

ATGAATAGAAGTTCAGCCTCGCACGCCCT-TAATCAAGAAATACATCATCAAGATA-T-T ATGAATAGAAGTTCAGCCTCGCACACCCT-TAATCAAGAAACATACCGTCAAGACA-T-T ATGGATAGAAGTTCAGCCTCGCACCCCCC-GAATCAAAAGAAGTATCACCAAGATGCT-T GTGGATAGAAGTTCAGCCTCATACGCCCC-AAATCAACATGTATATTATTAAGATACC-A GTGGATAGAAGTTCAGCCTCATACKCCCC-AAATCAACATGTATATTATTAAGATACC-A GTGGATAGAAGTTCAGCCTCATACGCCCC-AGATCAATACGTATGTTATTAAGATACTCA GTGGATAGAAGTTCAGCCTCATTCACCCC-AAATCAAGA-----TTATTAAGATACT-A GTGGATAGAAGTTCAGCCTCATACCCCCC-AAGTCAACA--TATATTATTAAGATGTT-C GTGGATAGAAGTTCAGCCTCATGTACCCC-AAGTCAAGGAAGATATTATTAAGATACT-A CTGGATAGAAGTTCAGCCTCATACACCCCCAAATCAAGGAATATATTATGAAGATATT-A ATGGATAGAAGTTCAGCCTCGTATTACCCCAAACCAAAGAACATATCACTAAGGTAAT-T GTGGATAGAAGTTCAGCCTTATGCCCCCC-GGATCAAAGAATATATTATTAAGATACT-C ATGAATAGAAGTTCAGCCTCGTCCACCCT-TTGTCAGGAAATATACTACTAAGACACC--

$* * * * * * * * * * * * * * * *$	$* *$	$* *$		$* * *$	
421	430	440	450	460	470

N.therinoides
P. gracilis
R.atratulus
O.microlepidotusl
o.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius P.erythrogaster P.neogaeus N. crysoleucas S.copei P.mirabilis Esox lucius
N.therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius
R.erythrogaster
P. neogaeus
N.crysoleucas
S.copei
P.mirabilis

Esox lucius
N.therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P.neogaeus
N.crysoleucas
S.copei
P.mirabilis

Esox lucius

ATGGATATATACGAGAGTTAGTTGAAGGGGGTACAGCCCCTTTAACAAAGGATACAACCT ATGGAAAAATACGAGAGTTAGTTGAAGGGGGTACAGCCCCTTTAACAAAGGATACAACCT AAGGGAAAGTGCGAGAGTTAGTTGAAGGGGGTACAGCCCCTTCAACAAAGGATACAACCT GGAGAAATATATGAGAGTTAGTTAAAAGGGGTACAGCCCTTTTAACAAAGGATACAACCT GGAGAAATATATGAGAGTTAGTTAAAAGGGGTACAGCCCTTTTAACAAAGGATACAACCT AGGGAGATACATGAGAGTTAGTTGAAAGGGGTACGGCCCTTTTAACAAAGGATACAACCT TGGGAAATATATGAGAGTTAGTTGAAAGGGGTACAGCCCTTTTAACAAAGGATACAACCT AGGGAAATATATGAGAGTTAGTTGAAAGGGGTACAGCCCTTTTAACAAAGGATACAACCT AGGGAAACATATGAGAGTTAGTTAAAAGGGGTACAGCCCTTTTAACAAAGGATACAACCT AGGGCGACATATGAGAGTTAGTTAAAAGGGGTACAGCCCTTTTGACAAAGGATACAACCT AGAGATACATACGAGAGTTAGTTAAAGGGGGTACAGCCCCTTTAACAAAGGATACAACCT TGGGCGATACGTGAGAGTTAGTTGAAGGGGGTACAGCCCCTTTAACAAAGGATACA.ACCT TTGGAAATACACGAGAGTTAGTTTAAGGGGGTACAGCCCCTTTAACAAAGGATACAACCT
$481590 \quad 500 \quad 520 \quad 530 \quad 540$

TA-ACAGGAGGATAAAGATCATAATTAATAAAATATACTGTTCTAGTGGGCCTGAAAGCA TT-ACAGGAGGATAAAGATCATAATATATAAAATATACTGTTCTAGTGGGCCTGAAAGCA TC-CCAGGAGGATAAAGATCATAATACATAAGACACACTGTTCTAGTGGGCCTGAAAGCA TC-ACAGGAGGATAAAGATCATAATATATAAAACATACTGTTTTAGTGGGCCTAAAAGCA TC-ACAGGAGGATAAAGATCATAATATATAAAACATACTGTTTTAGTGGGCCTAAAAGCA TT-ACAGGAGGATAAAGATCATAATATATAAAACATACTGTTTTAGTGGGCCTAAAAGCA TTTACAGGAGGATAAAGATCATAATATATAAAACATACTGTTTTAGTGGGCCTAAAAGCA TT-ACAGGAGGATAAAGATCATAATATATAAAACATACTGTTTTAGTGGGCCTAAAAGCA TCTACAGGAGGATAAAGATCATAATATATAAAATATACTGTTTTAGTGGGCCTGAAAGCA TC-ACAGGAGGATAAAGATCATAATATATAAAATATACTGTTTTAGTGGGCCTGAAAGCA TT-ACAGGAGGATAAAGATCATAATATATAAAACATACTGTTCTAGTGGGCCTAAAAGCA TC-ACAGGAGGATAAAGATCATAATATACAAGACATACTGTTCTAGTGGGCCTGAAAGCA TC-ACAGGAGGATAAAGATCATAATTAATAAAACCTACTGTTCTAGTGGGCCTGAAAGCA

.

GCCATCTAAACAGAAAGCGTTAAAGCTCGGACAGAACGAAGTTTATTATCCCGATAA-AA GCCACCTAAACAGAAAGCGTTAAAGCTCGGACAGAAGGAAGTTTATTATACCGATAA-AA GCCATCTAAGCAGAAAGCGTTAAAGCTCAGACAGAAGTAAATTTATTATACCGATAA-AC GCCATCTAAATAGAAAGCGTTAAAGCTCAGACAGAAAGAAGTTTATTATACCGATAG-AA GCCATCTAAATAGAAAGCGTTAAAGCTCAGACAGAAAGAAGTTTATTATACCGATAG-AA GCCACCTAAATAGAAAGCGTTAAAGCTCAGACAGAAAGAAGTTTATTATACCGATAA-AA GCCATCTAAATAGAAAGCGTTAAAGCTCAGACAGAAAGAAGTTTATTATACCGATAA-AA GCCACCTAGATAGAAAGCGTTAAAGCTCAGGCAGAAGGAAGTTTATTATACCGATAAGAA GCCACCTAATTAGAAAGCGTTAAAGCTCGGACAGACGGAAGTTTATTATACCGATAA-AA GCCACCTAAATAGAAAGCGTTAAAGCTCGGACAGAAAGAAGTTTATTATACCGATAA-AA GCCACCTAAACAGAAAGCGTTAAAGCTCAGACAGAAAAAAGTTTATTATACCGATAA-AA GCCACCTAAGCAGAAAGCGTTAAAGCTCAGACAGAGAGAAGTTTATTATACCGATAA-GT GCCACCTAATTAGAAAGCGTTAAAGCTCAGACAGGAAAAAGTTTATTATACCAATAAAAA

N.therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P.neogaeus
N.crysoleucas
s.copei
P.mirabilis

Esox lucius
N.therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius
p.erythrogaster
P.neogaeus
N.crysoleucas
S.copei
P.mirabilis

Esox lucius
N.therinoides
P.gracilis
R.atratulus
O.microlepidotusi
o.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P.neogaeus
N.crysoleucas
S.copei
P.mirabilis

Esox lucius

AATCTTACTCCCCTAACTGTATTAGGCCAACCCATGCCTACATGGGTGAGACTATGCTAA AATCTTACTCCCCTAATTGTATCAGGCCAACCCATGCCCACATGGATGAGACTATGCTAA AATCTTACTCCCCTAATTGTATCAGGCCGACCCATGCCCGCATGGAAGAGATTATGCTAA AATCTTACTCCCCTAATTATATCAGATCAACCCATGCCCACATGGAAGAGATTATGCTAA AATCTTACTCCCCTAATTATATCAGATCAACCCATGCCCACATGGAAGAGATTATGCTAA AATCTTATTCCCCTAATTATATCAGATCAACCCATGCCCACATGGAAGAGATTATGCTAG AATCTTATTCCCCTAATTATATCAGATCAACCCATGCCCACATGGAAGAGATTATGCTAG AATCTTATTCCCCTAATTATATCAGATCAACCCATGCCCCCATGGAAGAGATTATGCTAG AATCTTACTCCCCTAATTATATCAGATTAACCCATGCCTACATGGAAGAAATTATGCTAA AATCTTATTCCCCTAATTGTATCAGATTAACCCATGCCTACATGGAAGAAATTATGCTAA AATCTTACTCCCCTAATTATATCAGGCCAGCCCATGCCAACATGGGAGAGATTATGCTAA AATCTTATTCCCCTAACTGTATCAGACCAACCCATGCCTGCATG-AAGAGATTATGCTAA AATCTTACTCCCCTAACTATATTAGGCTAACCCATACTTCTATGGGTGAAACTATGCTAA $\begin{array}{llll}* * * * * * * * * * * * * * * * * * * & * * * * * & * * & * * * \\ 661 & 670 & 680 & 690\end{array}$

AATGAGTAACAAGAAGACTCGATCTTCTCCCGCCACAAGTGTAAACCAGATCGGACTAGC AATGAGTAACAAGAAGACCTGATCTTCTCCCGCCACAAGTGTAGACCAGATCGGACCAAC AATGAGTAACAAGAAGACCTGATCTTCTCCCGCCACAAGTGTAAACCAGATCGGACCAAC AATGAGTAACAAGAAGACCTGCTCTTCTCCTAGCACAAGTGTAAGCCAGATCGGACAAAC AATGAGTAACAAGAAGACCTGCTCTTCTCCTAGCACAAGTGTAAGCCAGATCGGACAAAC AATGAGTAACAAGAAGACCTGCGCTTCTCCTTGCACAAGTGTAAACCAGATCGGACAAAC AATGAGTAACAAGAAGTCCCGCGCTTCTCCTTGCACAAGTGTAAACCAGATCGGACAAGC AATGAGTAACAAGAAGACTTGCACTTCTCCTTGCACAAGTGTAAACCAGATCGGACAAGC AATGAGTAACAAGAAGACCTGCTCTTCTCCTGGCACAAGTGTAAACCAGATCGGACAAGC AATGAGTAACAAGAAGACCTGCTCTTCTCCTAGCACAAGTGTAAGCCAGATCGGACAAAC AATGAGTAACAAGAAGACCTGCTCTTCTCCCAGCACAAGTGTAAACCAGATCGGACAAAC AATGAGTAACAAGAAGACCTGCTCTTCTCCCGGCACAAGTGTAAACCAGATCGGACCAAC AATGAGTAATAAGAAGACCTGATCTTCTCCTGGCACAAGTGTAAACCAGATCGGACTAGC

CGCTGGAATTTAACGAGCCCAACCAAAGAGGGCATTGCGAATAATAAAG-ACCTCAGGAA CACTGGAATTTAACGAGCCCAACTAAAGAGGGCATTGTGAATAATAAAG-ACCTCAAGAA CGCTGGAACTTAACGAACCCAACTCAAGAGGGCAATGTGAATAATAAAG-ACCCCAAGAA CACTGGAAATTAACGAGCCCAACCCAAGAGGGCAATGTGAACAACAAAG-ACCCCAAGAA CACTGGAAATTAACGAGCCCAACCCAAGAGGGCAATGTGAACAACAAAG-ACCCCAAGAA CACTGGAACTTAACGAACCCAACCCAAGAGGGCAATGTGAACAACAAAA-ATCTCAAGAA CGCTGGAACTTAGCGAACCCAACCCAAGAGGGCAATGTGAACAACAAAA-ATCTCAAGAA CACTGGAACTTAACGAACCCAACCCAAGAGGGCAATGTGAGCAACAAAG-ATATCAAGAA CGCTGGAACTTAACGAACCCAACCCAAGAGGGTAATGTGAACAATAGAGGACCCCAAGAA CACTGGAACTTAACGAACCCAACCTAAGAGGGCAATGTGAACAGTAAAG-ACTTCAAGAA CGCTGGAACTTAACGAACCCAACCCAAGAGGGTAATGTGAATAATATTAGACCTCAGGAA CACTGGAAATTAACGAACCCAACCCAAGAGGGTACTGTGAACAATATAA-ACCTCAAGAA CGCTGGGATTCAACGACCCCAACCAAAGAGGGCATTGTGATTAATAAAA-ACCTCAAGGA

N.therinoides
P.gracilis
R.atratulus
O.microlepidotusi
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius P.erythrogaster P.neogaeus N.crysoleucas S.copei P.mirabilis Esox lucius

GAGCCCGCAATTAAC-TGATCGTTAACCCCACACTGGAGTGGCATTTT--AAGGGAAAGA GAACTCACACTAAA--TGATCGTTAACCCCACACTGGAGTGCCATATT--AAGGGAAAGA GAACTCACAACTAAA-TGATCGTTAACCCCACACTGGAGTGCCATTTT--AAGGGAAAGA GAACTCACAAGTAAGCT-ATCGTTAACCCCACACTGGAGTGCCATTTTATAAAGGAAAGA GAACTCACAAGTAAGCT-ATCGTTAACCCCACACTGGAGTGCCATTTTATAAAGGAAAGA GAACTCACAGTTAAACTGATCGTTAACCCCACACTGGAGTGCTATTTTATAAAGGAAAGA AAATTCACAATTAAAC--ATCGTTAATCCCACACTGGAGTGCTATTTTATAAAGGAAAGA GAATTCACAAT-AAACTAATCGTTAACCCCACACTGGAGTGCTATATTATAAAGGAAAGA GAACTCACAACGCA----TCGTTAACCCCACACTGGAGTGCTGTTTT-TAAAGGAAAGA GAACTCACAATTGAAT - -ATCGTTAACCCCACACTGGAGTGCTGTTTT-TAAAGGAAAGA AAACTCACATCTGAA-TAATCGTTAACCCTACACTGGCGTGCTACTTT--AAGGGAAAGA GACCTCACAATCAAGC-AATCGTTAACCTCACACTAGCGTGCCGTTTT--AAGGGAAAGA GAGCTCACAATTAAG-TAATCGTTACCCCCACACTGGAGTGCCATTT---AAAGGAAAGA

СTAAAAGA-AGGGGAAGGAACTCGGCAAACACAAGCCTCGCCTGTYTACCAAAAACATCG CTAAAAGA-AGGGGAAGGAACTCGGCAAACACAAGCCTCGCCTGTTTACCAAAAACATCG CTAAAAGA-AAGGGAAGGAACTCGGCAAACACAAGCCTCGCCTGTTTACCAAAAACATCG CTAAAAGA-GAGGGAAGGAACTCGGCAAACACAAGCCTCGCCTGTTTACCAAAAACATCG CTAAAAGA-GAGGGAAGGAACTCGGCAAACACAAGCCTCGCCTGTTTACCAAAAACATCG CTAAAGGA-TAGGGAAGGAACTCGGCAAACACAAGCCTCGCCTGTTTACCAAAAACATCG СTAAAGGA-TAGGAAAGGAACTCGGCAAACACAAGCCTCGCCTGTTTACCAAAAACATCG CTAAAAGG-TGGGAAAGGAACTCGGCAAACACAAGCCTCGCCTGTTTACCAAAAACATCG CTAAAAGA-AAGGGAAGGAACTCGGCAAACACAAGCCTCGCCTGTTTACCAAAAACATCG CTAAAAGATAAGGGAAGGAACTCGGCAAACACAAGCCTCGCCTGTTTACCAAAAACATCG CTAAAAGA-AGGGGAAGGAACTCGGCAAACACAAGCCTCGCCTGTTTACCAAAAACATCG CTAAAAGA-AGGGGAAGGAACTCGGCAAACACAAGCCTCGCCTGTTTACCAAAAACATCG СTTAAAGA-GGAGGAAGGAACTCGGCAAACAAAAGCCTCGCCTGTTTACCAAAAACATCG

901
1 *
910920
930
940
950 960
N. therinoides P.gracilis R.atratulus o.microlepidotusl
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P.neogaeus
N.crysoleucas
S.copei
P.mirabilis

Esox Iucius
N. therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius P.erythrogaster P. neogaeus N.crysoleucas S. copei P.mirabilis Esox lucius

$$
310
$$

930 -
\qquad
N.therinoides
P.gracilis
R.atratulus
O.micrclepidotusi
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius P.erythrogaster
P.neogaeus
N.crysoleucas
S.copei
P.mirabilis Esox lucius
N.therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P.neogaeus
N. crysoleucas
S.copei
P.mirabilis

Esox lucius
N.therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P.neogaeus
N.crysoleucas
S.copei
P.mirabilis Esox lucius

START PRIMER \rightarrow
GCCGCGGTATATTGACCGTGCAAAGGTAGCGCAATCACTTGTCTTTTAAATAGAGACCTG GCCGCGGTATATTGACCGTGCAAAGGTAGCGCAATCACTTGTCTTTTAAATAGAGACCTG GCCGCGGTATTTTGACCGTGCAAAGGTAGCGCAATCACTTGTCTCTTAAATAGAGACCTG GCCGCGGTATTTTGACCGTGCAAAGGTAGCGCAATCACTTGTCTCYTAAATAGAGACCTG GCCGCGGTATTTTGACCGTGCAAAGGTAGCGCAATCACTTGTCTCTTAAATAGAGACCTG GCCGCGGTATTTTGACCGTGCAAAGGTAGCGCAATCACTTGTCTCTTAAATAGAGACCTG GCCGCGGTATTTTGACCGTGCAAAGGTAGCGCAATCACTTGTCTCrTARATAGAGACCTG GCCGCGGTATTTTGACCGTGCAAAGGTAGCGCAATCACTTGTCTCTTAAATAGAGACCTG GCCGCGGTATTTTGACCGTGCAAAGGTAGCGCAATCACTTGTCTCTTAAATAGAGACCYG GCCGCGGTATTTTGACCGTGCAAAGGTAGCGCAATCACTTGTCTCTTAAATAGAGACCTG GCCGCGGTATTTTGACCGTGCAAAGGTAGCGCAATCACTTGTCTCTTAAATAGAGACCTG GCCGCGGTATTTTGACCGTGCAAAGGTAGCGCAATCACTTGTCTCTTAAATAGAGACCTG GCCGCGGTATATTGACCGTGCAAAGGTAGCGCAATCACTTGTCTTTTAAATAGAGACCTG GCCGCGGTATTTTAACCGTGCGAAGGTAGCGCAATCACTTGTCTTTTAAATGAAGACCTG $1021103010401050 \quad 1060 \quad 10701080$

TATGAATGGCTAGACGAGGGCTTAACTGTCTCCCCCCTCCAGTCAGTGAAATTGATCTAT TATGAATGGCTAGACGAGGGCTTAACTGTCTCCCCCCTCCAGTCAGTGAAATTGATCTAT TATGAATGGCTAGACGAGGGCTTAACTGTCTCCCCCTYCCAGTCAGTGAAATTGAPCTAT TATGAATGGCTAGACGAGGGCTTAACTGTCTCCCCCCTTAAGTCAGTGANATTGATCTAT TATGAATGGCTAGACGAGGGCTTAACTGTCTCCCCCCTTAAGTCAGTGAAATTGATCTAT TATGAATGGCTAGACGAGGGCTTAACTGTCTCCCCTATCAAGTCAGTGAAATTGATCTAT TATGAATGGCTAGACGAGGGCTTAACTGTCTCCCCTATCAAGTCAGTGAAATTGATCTAT TATGAATGGCTAGACGAGGGCTTAACTGTCTCCCCTACCAAGTCAGTGAAATTGATCTAT TATGAACGGCTAGACGAGGGCTTAACTGTCTCCCCCCTCCAGTCAGTGAAATTGATCTAT TATGAATGGCTAGACGAGGGCTTAACTGTCTCCCCCCTCCAGTCAGTGAAATTGATCTAT TATGAATGGCTAGACGAGGGCTTAACTGTCTCCCCCCTCCAGTCAGTGAAATTGATCTAT TATGAATGGCTAGACGAGGGCTTAACTGTCTCCCCCCTCCAGTCAGTGAAATTGATCTAT TATGAATGGCTAGACGAGGGCTTGACTGTCTCCCCCCTCCAGTCAGTGAAATTGATCTGC TATGAATGGCATCACGAGGGCTTAGCTGTCTCCTCTTTCAAGTCAATGAAATTGATCTGC
$1081 \quad 1090 \quad 1100 \quad 1120 \quad 1130 \quad 1140$

CCGTGCAGAAGCGGGTATAGTACtACAAGACGAGAAGACCCTTTGGAGCTtAAGGTACAG CCGTGCAGAAGCGGGTATAACAGTACAAGACGAGAAGACCCTTTGGAGCTTAAGGTACAA CCGTGCAGAAGCGGGTATAATAGTACAAGACGAGAAGACCCTTTGGAGCTTAAGGTACAA CCGTGCAGAAGCGGGTATGACCATACAAGACGAGAAGACCCTTTGGAGCTTAAGGTACAA CCgTGCAGAAGCGGGTATGACCATACAAGACGAGAAGACCCTTTGGAGCTTAAGGTACAA CCgtgcagangcggatatgactatacangacgagnagaccctttggagcttangetacan CCGTGCAGAAGCGGGTATGACTCTACAAGACGAGAAGACCCtTtGGAGCTtAAGGTACAA CCGTGCAGAAGCGGGTATGACCATACAAGACGAGAAGACCCTTTGGAGCTTAAGGTACAA CCGTGCAGAAGCGGGTATAACtATACAAGACGAGAAGACCCtTtGGAGCTtAAGGTACAA CCGTGCAGAAGCGGGTATAATTATACAAGACGAGAAGACCCTTTGGAGCTTAAGGTACAA CCGTGCAGAAGCGGGTYTAACTATACAAGACGAGAAGACCCTTTGGAGCTTAAGGTACAA CCGTGCAGAAGCGGGTGTAAATATACAAGACGAGAAGACCCTTTGGAGCTTAAMGTACAA CCGTGCAGAAGCGGACATAAAACTACAAGACGAGAAGACCCTATGGAGCTTTAAGGTACAA CCGTGCAGAAGCGGACATAAGAACATAAGACGAGANGACCCtATGGAGCTTTPAGACACCC

1141	1150	1160	1170	1180	1190	1200

N.therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.micrclepidotus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P.neogaeus
N.crysoleucas
S.copei
P.mirabilis

Esox lucius
N. therinoides
P.gracilis
R.atratulus
o.microlepidotusi
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P.neogaeus
N.crysoleucas
S.copei
P.mirabilis

Esox lucius
N.therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.microlepidctus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P.neogaeus
N.crysoleucas
s.copei
P.mirabilis Esox lucius

AATTCAGCCACGTTAAGCAACTCCATAAACAG-CAAGAACTTAGTGGTC-ATGAAAT-TT GACTCAGCCACGTHAAACAACTCCGTAGAAAG-CAAGAACTTAGTGGCC-ATGAAAC-TT AATTCAGCCACGTTAAACGACTCCTTAAGAAG-CAAGAACTTAGTGGCC-GTGAAAT-TT AATTTAATCACGTTAAACAACTTCATANAAAG-TGAGAACTTAGTGACAGATAAAAT-TT AATtTAATCACGTtAAACAACTTCATAAAAAG-TGAGAACTTAGTGACAGATAAAAT-TT A-TTTACCCACGTTAAACAACTCCATAAAAAG-TAAGAACTTAGTGGCAGATAAAAT-TT A-TrTATCCACGTCAAACAACTCCATAAAAAG-TAAGAACTTAGTGGCXAATGAAAT-TT tGTrtacccacgttanachacttcatanarag-canganctragtgecagatangac-rt A-tttagccacettanacaictctataganag-tangancttagrggacagtgacat-tt A-TTTAGCCACGTCAAACAACTCTATAGAAAG-TAAGAACTTAGTGGACAGTAACAT-TT Agttcanccacgttanacgactacachanang-cangancttagtgecgagtganat-tt GATTCAGCCGCGTTAAACAACTCCCTAAAAAG-CAAGAACTTAGTGGCATATGAAAT-TT AACTTAACCACGTTAAACGACTCTTTCAAAAG-CAAGAACCTAGTGGCC-CTAAAGT-CT GGCAGACCCT-GTTAAGTAACTGAACTATCAGATTAAAACAAAGCGGCCCCTGGCCTACA

1201	1210	1220	1230	1240	1250	1260

taccttcgettggegcgaccgcgeagganangcangcctccengtgeactggeccgagac tACCTTCGGTtGGGGCGACCACGGAGGAAAAACAAGCCTCCGAGTGGACTGGGCCAAAAC TACCTTCGGTTGGGGCGACCACGGAGGAAAAATGAGCCTCCGAGTGGATTGGGCCAAACC TACCTTCGGTTGGGGCGACCGCGGAGGAAAAGCAAGCCTCCGAGTGGACTGGGCCAAACC TACCTTCGGTTGGGGCGACCGCGGAGGAAAAACAAGCCTCCGAGTGGACTGGOCCAAACC taccttcgettgeggcgaccgcgenggananachagcctccgagtgeactggeccanacc TACCTTCGGTTGGGGCGACCGGGGAGGAAAAACGAGCCTCCGAGTGGACTGGGCCAAACC TACCTTCGGTTGGGGCGACCACGGAGGAGAAACGAGCCTCCGAGTGGACTGGGGCAAACC TACCTTCGGTTGGGGCGACCACGGAGGAAAAACAAGCCTCCGAGTGGACTGGGCCAAATC tACCTTCGGTTGGGGCGACCGCGGAGGAAAAACGAGCCTCCGAGTGGACTGGGCCAAA-C thCCTTCGGTTGGGGCGACCACGGAGGAGAAAAGAGCCTCCGAGTGGACTGGGCCAAATC taccttcgattgggecgaccgeggageanangtangcctccgagtganctggacgana-c TACCTtCGGTTGGGGCGACCACGGAGGAAACTAAGCCTCCGAGEGGAATGGG-TAATC tGTCTYCGGTTGGGGCGACCACGGGGGAAACAAAGCCCCCACGAGGATTAAGGAAAACC

1261	1270	1280	1290	1300	1310	1320

> -CC-TAAAGCCAAGAGAAACATCTTCAAGCCGCAGAACATCTGACCAATAATGATCCGGC -CCCTAAAGCCAAGAGAGACATCTTTAAGCCGCAGAACATCTGACCAATAATGATCCGGC -CC-TAAAGCCAAGAGAAACATCTCTAAGCCGCAGAATATCTGACCAATAATGATCCGAC -CC-TAAAGCTAACAGAGACACCTGTAAGCCGCAGAATATCTGACCAAAAGTGATCCGAC -CC-TAAAGCTAACAGAGACACCTGTAAGCCGCAGAATATCTGACCAAAAGTGATCCGAC -CC-TAAAGCTAATAGAGACATTTATAAGCCGCAGAATATCTGACCAAAAATGATCCGAC -CC-TAAAGCTAATAGAAACATCTATAAGCCGCAGAATATCTGACCAAAAATGATTCGAC -CC-TAAAGCTAGTAGAAACATCTATAAGCCGCAGAATATCTGACCAAAGATGATCCGAC -CC-TAAAGCTAATAGGAACACCTATAAGCCGCAGAATTTCTGACCAAAAATGATCCGGC -CC-TAAAGCTAATAGGTACACCTATAAGCCTCAGAATTTCTGACCAATAATGATCCGAC -CC--AAAGCCAATAGATACATCTATAAGCCGCAGAACATCTGACCAATAATGATCCGGC -CC-TAAAGCCGAGAGAGACATCTCTAGGCCGCAGAATATCTGACCAATAATGATCCGGC -CC-TAAAGCCAAAAGAGACATCTTTAAGCCGCAGAACATCTGACCAACAATGATCCGGC TCCTTATAACCACGAGCGACAGCTCTAANTCTCAGAACTTCTGACCAAAAA-GATCCGAC
N.therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius P.erythrogaster P. neogaeus N.crysoleucas S.copei P.mirabilis Esox lucius
N.therinoides
P.gracilis R.atratulus O.microlepidotusl
o.microlepidotus2
p.oregonensis
S.bicolor
R.solitarius P.erythrogaster P.neogaeus N.crysoleucas S.copei P.mirabilis Esox lucius
N. therinoides
P.gracilis
R.atratulus
O.microlepidotusi
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P.neogaeus
N.crysoleucas
S.copei
P.mirabilis

Esox lucius
\leftarrow STOP PRIMER
TAG-AAAGCCGATCAACGGACCAAGTTACCCTAGGGATAACAGCGCAATCCTCTCCCAGA TAAYAAAGCCGATCAACGAACCAAGTTACCCTAGGGATAACAGCGCAATCCTCTCCCAGA TAA-AAAGTCGATCAACGAACCAAGTTACCCTAGGGATAACAGCGCAATCCTCTCCCAGA CACAAGAGTCđATCAACGGACCAAGTTACCCTAGGGATAACAGCGCAATCCCCTCCCAGA CACAAGAGTCGATCAACGGACCAAGTTACCCTAGGGATAACAGCGCAATCCCCTCCCAGA CACAGTGATCGATCAACGAACCAAGTTACCCTAGGGATAACAGCGCAATCCCCTCCCAGA CACAGGGGTCGATCAACGAACCAAGTTACCCTAGGGATAACAGCGCAATCCCCTCCCAGA CTTAGCAGTCGATCAACGGACCAAGTTACCCTAGGGATAACAGCGCAATCCCCTCCCAGA ---AAAAGTCGATCAACGAACCAAGTTACCCTAGGGATAACAGCGCAATCCCCTCCCAGA ---AGAAGTCGATCAACGGACCAAGTTACCCTAGGGATAACAGCGCAATCCCCTCCCAGA -TGAAAAGGC-ATCAACGAACCAAGTTACCCTAGGGATAACAGCGCAATCCTCTCCCAGA C--GGAAGCCGATCAACGGACCAAGTTACCCTAGGGATAACAGCGC मATCCTCTCCCAGA T-CTAGGGCCGATCAACGAACCAAGTTACCCTAGGGATAACAGCGCAATCCTCTCCCAGA ---ACCAGTCGATCAACGGACCAAGTTACCCTAGGGATAACAGCGCAATCCCCTCCCAGA
$1381 \quad 1390 \quad 1400 \quad 1410 \quad 14300$

GCCCATATCGACGAGGGGGTTTACGACCTCGATGTTGGATCAGGACATCCTGGTGGTGCA GCCCATATCGACGAGGGGGTTTACGACCTCGATGTTGGATCAGGACATCCTGGTGGTGCA GCCCATATCGACGAGGGGGTTTACGACCTCGATGTTGGATCAGGACATCCTAATGGTGCA GTCCATATCGACGAGGGGGTTTACGACCTCGATGTTGGATCAGGACATCCTAATGGTGCA GTCCATATCGACGAGGGGGTTTACGACCTCGATGTTGGATCAGGACATCCTAATGGTGCA GTCCATATCGACGAGGGGGTTTACGACCTCGATGTTGGATCAGGACATCCTAATGGTGCA GTCCATATCGACGAGGGGGTTTACGACCTCGATGTTGGATCAGGACATCCTAATGGTGCA GTCCATATCGACGAGGGGGTTTACGACCTCGATGTTGGATCAGGACATCCTAATGGTGCA GGCCATATCGACGAGGGGGTTTACGACCTCGATGTTGGATCAGGACATCCTAATGGTGCA GGCCATATCGACGAGGGGGTTTACGACCTCGATGTTGGATCAGGACATCCTAATGGTGCA GTCCATATCGACGAGGGGGTTTACGACCTCGATGTTGGATCAGGACATCCTAATGGTGCA GCCCGTATCGACGAGGGGGTTTACGACCTCGATGTTGGATCAGGACATCCTAATGGTGCA. GCCCATATCGACGAGGGGGTTTACGACCTCGATGTTGGATCAGGACATCCTAATGGTGCA GTCCCTATCGACGAGGGGGTTTACGACCTCGATGTTGGATCAGGACATCCTAATGGTGCA

$*$	$* *$	$* *$	$* * * * * * *$			
1441	1450	1460	1470	1480	1490	1500

GCCGCTATTAAGGGTTCGTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACC GCCGCTATTAAGGGTTCGTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACC GCCGCTATTAAGGGTTCGTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACC GCCGCTATTAAGGGTTCGTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACC GCCGCTATTAAGGGTTCGTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACC GCCGCTATTAAGGGTTCGTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACC GCCGCTATTAAGGGTTCGTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACC GCCGCTATTAAGGGTTCGTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACC GCCGCTATTAAGGGTTCGTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACC GCCGCTATTAAGGGTTCGTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACC GCCGCTATTAAGGGTTCGTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACC GCCGCTATTAAGGGTTCGTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACC GCCGCTATTAAGGGTTCGTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACC

[^0]N. therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P.neogaeus
N.crysoleucas
s.copei
P.mirabilis

Esox lucius
N.therinoides
P.gracilis
R.atratulus
O.microlepidotusl
O.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P.neogaeus
N.crysoleucas
s.copei
P.mirabilis Esox lucius
N. therinoides
P.gracilis
R.atratulus
o.microlepidotusi
o.microlepidotus2
P.oregonensis
S.bicolor
R.solitarius
P.erythrogaster
P.neogaeus
N.crysoleucas
s.copei
P.mirabilis

Esox lucius

GgAGCAATCCAGGTCAGTTTCTATCTGTAACGCTACTTTTCCCAGTACGAAAGGATCGGA GGAGCAATCCAGGTCAGTTTCTATCTGTAACGCTACTTTTCCTAGTACGAAAGGATCGGA GGAGCAATCCAGGTCAGTTTCTATCTGTAACGCTACTTTTCCCAGTACGAAAGGATCGGA GGAGCAATCCAGGTCAGTTTCTATCTGTAACGCTACTTTTCCTAGTACGAAAGGATTGGA GGAGCAATCCAGGTCAGTTTCTATCTGTAACGCTACTTTTCCTAGTACGAAAGGATTGGA GGAGTAATCCAGGTCAGTTTCTATCTGTAACGCTACTTTTCCTAGTACGAAAGGATTGGA GGAGTAATCCAGGTCAGTTTCTATCTGTAACGCTACTTTTCCTAGTACGAAAGGATTGGA GGAGTAATCCAGGTCAGTTTCTATCTGTAACGCTACTTTTCCTAGTACGAAAGGATTGGA GGAGTAATCCAGGTCAGTTTCTATCTGTAACGCTACTTTTCCTAGTACGAAAGGATTGGA GGAGTAATCCAGGTCAGTTTCTATCTGTAACGCTACTTTTCCTAGTACGAAAGGATTGGA GGAGCAATCCAGGTCAGTTTCTATCTGTAGCGCTACTTTTCCTAGTACGAAAGGATCGGA GGAGTAATCCAGGTCAGTTTCTATCTGTAACGCTACTTTTCCTAGTACGAAAGGATCGGA GGAGTAATCCAGGTCAGTTTCTATCTGTAACGCTACTTTTCCTAGTACGAAAGGATCGGA

$15611570 \quad 1580 \quad 1600 \quad 1610 \quad 1620$

AAAGAGGGGCCTATACTTAACGCATGCCCCACCCCTAATTCATGAAAACAAATAAATCAA AAAGAGGGGCCCATACTTAGAGCATGCCCCACCCCTAATTCATGAAAACAAATAAATTAA AAAGAGGGGCCTATGCTTAAGGCATGCCCCGCCCCTAATTGATGAAAACAAATAAATTAA AAAGAGGGGCCTATACCTCAGGCACGCCCCGCCCCAAATTAATGAAAACAAATAAATTAA AAAGAGGGGCCTATACCTCAGGCACGCCCCGCCCCAAATTAATGAAAACAAATAAATTAA AAAGAGGGGCCCATGCTTAAGGCACGCCCCGCCCCAAATTGATGAAAACAAATAAATTAA AAAGGGGGGCCCATGCTTAAGGCACGCCCCGCCCCAAATTAATGAAAACAAATAAATTAA AAAGAGGGGCCCATGCTTAAGGCACGCCCCGCCCCAAATTAATGAAAACAAACAAATTAA AAAGCGGGGCCCATACTTAGAGCACGCCCCGCCCCTAATTAATGAAAACAAATAAATTGA AAAGCGGGGCCCATACTTAAAGCACGCCCCGCCCCTAATTAATGAAAACAAATAAATTGA AAAGAGGGGCCTATACTTTAGGCATGCCCCACCCCTAATTGATGAAAACAAATAAATTAA AAAGAGGGGCCTATGCTCAAAGCATGCCCCGCCCCTAATTGATGAGGACAAATAAATTAA AAAAGGGGGCCTATGCTTAAAGCACGCCCCACCCCTAATTTATGAAACCAAATAAATTAA

AT-AAGGGAGGGCCAAAACCCCTGCCGCCCAAGATAAGGGCA AT-AAGGGAGGGCCAGAACCCCTGCCGCCCAAGTTAAGGGCA GTGAAGGGAGGGCCAAAACCCCTACCGCCCGATAGAAGGGCA GTAAAGGGAGGGCCAAAACCCCTGCCGTTCAAGATAAGGACA GTAAAGGGAGGGCCAAAACCCCTGCCGTTCAAGATAAGGACA GTAAAGGGAGGGCCAAAACCCCTGCCGTTCAAGATAAGGACA GTAAAGGGAGGGCCAAAACCCCTGCCGTTCAAGATAAGGACA GTAAAGGGAGGGCTAAAACCCCTACCGCTCAAGATAAGGGAA GTAAAGGGAGGGCCTAAACCCCCGCCGCCCAAGAGAAGGGCA GTAAAGGGTGGGCCAAAACCCCCGCCGCCCAAGAGAAGGGCA GTAAAGGGAGGGCTAAAACCCCTACCGTCCGAAATAAGGACA GCAAAGGGAGGGCC-AAAGCCCTACCGTCCGAAATAAGGACA AC-AAGGGCGGGCC--AAACCCTGCCGCCCAAAATAAGGGCA

APPENDIX C: The sequenced area of the 16 S rDNA from the silver pike, northern pike, and muskellunge.

Silver Pike 1
Silver Pike 2
Silver Pike 3 Silver Pike 4 Silver Pike 5 Northern Pike Northern Pike Northern Pike Muskellunge 1 Muskellunge 2 Muskellunge 4 Muskellunge 5

Silver Pike 1 Silver Pike 2 Silver pike 3 Silver Pike 4 Silver Pike 5 Northern Pike Northern Pike Northern pike Muskellunge 1 Muskellunge 2 Muskellunge 4 Muskellunge 5

Silver Pike 1 Silver Pike 2 Silver Pike 3 Silver Pike 4 Silver Pike 5 Northern Pike Northern Pike Northern Pike 5 Muskellunge 1 Muskellunge 2 Muskellunge 4 Muskellunge 5

Silver Pike 1
Silver Pike 2
Silver Pike 3
Silver Pike 4
Silver Pike 5 Northern Pike Northern Pike Northern Pike Muskellunge 1 Muskellunge 2 Muskellunge 4 Muskellunge 5

GGTAGCGCAATCACTTGTCTTTTAAATGAAGACCTGTATGAATGGCATCACGAGGGCTTA GGTAGCGCAATCACTTGTCTTTTAAATGAAGACCTGTATGAANGGCATCACGAGGGCTTA GGTAGCGCAATCACTTGTCTTTTAAATGAAGACCTGTATGAATGGCATCACGAGGGCTTA ***
1
10
20
30
40
50
60

GCTGTCTCCTCTTTCAAGTCAATGAAATTGATCTGCCCGTGCAGAAGCGGACATAAGAAC GCTGTCTCCTCTTTCAAGTCAATGAAATTGATCTGCCCGTGCAGAAGCGGACATAAGAAC GCTGTCTCCTCTNTCAAGTCAATGAAATTGATCTGCCCGTGCAGAAGCGGAC弓TAAGAAC GCTGTCTCCTCTTTCAAGTCAATGAAATTGATCTGCCCGTGCAGAAGCGGACATAAGANC GCTGTCTCCTCTTTCAAGTCAATGAAATTGATCTGCCCGTGCAGAAGCGGACATAAGAAC GCTGTCTCCTCTTTCAAGTCAATGAAATTGATCTGCCCGTGCAGAAGCGGACATAAGAAC GCTGTCTCCTCTTTCAAGTCAATGAAATTGATCTGCCCGTGCAGAAGCGGACATAAGAAC GCTGTCTCCTCTTTCAAGTCAATGAAATTGATCTGCCCGTGCAGAAGCGGACATAAGAAC GCTGTCTCCTCTTTCAAGTCAATGAAATTGATCTGCCCGTGCAGAAGCGGACATAAGAAC GCTGTCTCCTCTTTCAAGTCAATGAAATTGATCTGCCCGTGCAGAAGCGGACATAAGAAC GCTGTCTCCTCTTTCAAGTCAATGAAATTGATCTGCCCGTGCAGAAGCGGACATAAGAAC GCTGTCTCCTCTTTCAAGTCAATGAAATTGATCTGCCCGTGCAGAAGCGGACATAAGAAC

$* * * * * * * * * * *$	$* ~$	*		
61	70	80	90	100

ATAAGACGAGAAGACCCTATGGAGCTTTAGACACCCGGCAGACCCTGTTAAGTAGCTGAA ATAAGACGAGAAGACCCTATGGAGCTTTAGACACCCGGCAGACCCTGTTAAGTAGCTGAA ATAAGACGAGAAGACCCTATGGAGCTTTAGACACCCGGGAGACCCTGTTAAGTAGCTGAA ATAAGACGAGAAGACCCTATGGAGCTTTAGACACCCGGCAGACCCTGTTAAGTAGCTGAA ATAAGACGAGAAGACCCTATGGAGCTTTAGACACCCGGCAGACCCTGTTAAGTAGCTGAA. ATAAGACGAGAAGACCCTATGGAGCTTTAGACACCCGGCAGACCCTGTTAAGTAGCTGAA ATAAGACGAGAAGACCCTATGGGGCTTTAGACACCCGGCAGACCCTGTTAAGTAGCTGAA ATAAGACGAGAAGACCCTATGGAGCTTTAGACACCCGGCAGACCCTGTTAAGTAGCTGAA ATAAGACGAGAAGACCCTATGGAGCTTTAGACACCCGGCAGACCATGTCAAGTAACCCTG ATAAGACGAGAAGACCCTATGGAGCTTTAGACACCCGGCAGACCATGTCAAGTAACCCTG ATAAGACGAGAAGACCCTATGGAGCTTTAGACACCCGGCAGACCATGTCAAGTAACCCTG ATAAGACGAGAAGACCCTATGGAGCTTTAGACACCCGGCAGACCATGTCAAGTAACCCTG

$* 21$	130	140	150	160	170

СTATCAGATTAAAACAAAGCGGCCCCTGGCCTACATGTCTTCGGTTGGGGCGACCACGGG CTATCAGATTAAAACAAAGCGGCCCCTGGCCTACATGTCTTCGGTTGGGGCGACCACGGG СтATCAGATTAAAACAAAGCGGCCCCTGGCCTACATGTCTTCGGTTGGGGCGACCACGGG СтATCAGATTAAAACAAAGCGGCCCCTGGCCTACATGTCTTCGGTTGGGGCGACCACGGG СтАTCAGATTAAAACAAAGCGGCCCCTGGCCTACATGTCTTCGGTTGGGGCGACCACGGG СTATCAGATTAAAACAAAGCGGCCCCTGGCCTACATGTCTTCGGTTGGGGCGACCACGGG СTATCAGATTAAAACAAAGCGGCCCCTGGCCTACATGTCTTCGGTTGGGGCGACCACGGG СTATCAGATTAAAACAAAGCGGCCCCCGGCCTACATGTCTTCGGTTGGGGCGACCACGGG TTATTGGATTAAAACAAAACGGCTCCTGGCCCACATGTCTTCGGTTGGGGCGACCACGGG TTATTGGATTAAAACAAAACGGCTCCTGGCCCACATGTCTTCGGTTGGGGCGACCACGGG TTATTGGATTAAAACAAAACGGCTCCTGGCCCACATGTCTTCGGTTGGGGCGACCACGGG TTATTGGATTAAAACAGAACGGCTCCTGGCCCACATGTCTTCGGTTGGGGCGACCACGGG

$* * *$	$* *$					
181	190	200	210	220	230	240

Silver Pike 1 Silver Pike 2 Silver Pike 3 Silver Pike 4 Silver pike 5 Northern Pike 2 Northern Pike Northern Pike 5 Muskellunge 1 Muskellunge 2 Muskellunge 4 Muskellunge 5

Silver pike 1 Silver Pike 2 Silver Pike 3 Silver Pike 4 Silver Pike 5 Northern Pike Northern Pike Northern Pike Muskellunge 1 Muskellunge 2 Muskellunge 4 Muskellunge 5

Silver Pike 1
Silver Pike 2
Silver Pike 3
Silver Pike 4 Silver Pike 5 Northern Pike Northern Pike 3 Northern Pike 5 Muskellunge 1 Muskellunge 2 Muskellunge 4 Muskellunge 5

GGAAAACAAAGCCCCCACGAGGATTAAGGAAAACCTCCTTATAACCACGAGCGACFGCTC GGAAAACAAAGCCCCCACGAGGATTAAGGAAAACCTCCTTATAACCACGAGCGACAGCTC GGAAAACAAAGCCCCCACGAGGATTAAGGAAAACCTCCTTATAACCACGAGCGACAGCTC GGAAAACAAAGCCCCCACGAGGATTAAGGAAAACCTCCTTATAACCACGAGCGACAGCTC GGAAAACAAAGCCCCCACGAGGATTAAGGAAAACCTCCTTATAACCACGAGCGACAGCTC GGAAAACAAAGCCCCCACGAGGATTAAGGAAAACCTCCTTATAACCACGAGCGACAGCTC GGAAAACAAAGCCCCCACGAGGATTAAGGAAAACCTCCTTATAACCACGAGCGACAGCTC GGAAAACAAAGCCCCCACGAGGATTAAGGAAAACCTCCTTATAACCACGAGCGACAGCTC GGAAAATATAGCCCCCATGCGGACTAAGGGTAACACCCTTATAACCATGAACTACAGCTC GGAAAATATAGCCCCCATGCGGACTAAGGGTAACACCCTTATAACCATGAACTACAGCTC GGAAAATATAGCCCCCATGCGGACTAAGGGTAACACCCTTATAACCATGAACTACAGCTC GGAAAATATAGCCCCCATGCGGACTAAGGGTAACACCCTTATAACCATGAACTACAGCTC $\pi \star * * * \pi *$

TAAGTCTCAGAACTTCTGACCAAAAAGATCCGACACCAGTCGATCAACGGACCAAGTTAC TAAGTCTCAGAACTTCTGACCAAAAAGATCCGACACCAGTCGATCAACGGACCAAGTTAC TAAGTCTCAGAACTTCTGACCAAAAAGATCCGACACCAGTCGATCAACGGACCAAGTTAC TAAGTCTCAGAACTTCTGACCAAAAAGATCCGACACCAGTCGATCAACGGACCAAGTTAC TAAGTCTCAGAACTTCTGACCAAAAAGATCCGACACCAGTCGATCAACGGACCAAGTTAC TAAGTCTCAGAACTTCTGACCAAAAAGATCCGACACCAGTCGATCAACGGACCAAGTTAC TAAGTCTCAGAACTTCTGACCAAAAGGATCCGACACCAGTCGATCAACGGACCAAGTTAC TAAGTCTCAGAACTTCTGACCAAAAAGATCCGACACCAGTCGATCAACGGACCAAGTTAC TAAGTCTCAGAAATTCTGACCAAAAAGATCCGACACCCGTCGATCAFCGGACCAAGTTAC TAAGTCTCAGAAATTCTGACCAAAAAGATCCGACACCCGTCGATCAACGGACCAAGTTAC TAAGTCTCAGAAATTCTGACCAAAAAGATCCGACACCCGTCGATCAACGGACCAAGTTAC TAAGTCTCAGAAATTCTGACCAAAAAGATCCGACACCCGTCGATCAACGGACCAAGTTAC $\begin{array}{ccccc}\star * & * \\ 301 & 310 & 320 & 330 & 340\end{array}$

CCTAGGGATA CCTAGGGATA CCTAGGGATA CCTAGGGATA CCTAGGGATA CCTAGGGATA CCTAGGGATA CCTAGGGATA CCTAGGGATA CCTAGGGATA CCTAGGGATA CCTAGGGATA **********
361
370

[^0]: $15011510 \quad 1520 \quad 1530 \quad 1540 \quad 1550$

