
University of Portland University of Portland

Pilot Scholars Pilot Scholars

Business Undergraduate Publications,
Presentations and Projects Pamplin School of Business

Fall 2021

Agile Literature Review Agile Literature Review

Kevin Cochran Jr.

Follow this and additional works at: https://pilotscholars.up.edu/bus_studpubs

 Part of the Management Information Systems Commons, Software Engineering Commons, and the

Technology and Innovation Commons

Citation: Pilot Scholars Version (Modified MLA Style) Citation: Pilot Scholars Version (Modified MLA Style)
Cochran, Kevin Jr., "Agile Literature Review" (2021). Business Undergraduate Publications, Presentations
and Projects. 7.
https://pilotscholars.up.edu/bus_studpubs/7

This Student Project is brought to you for free and open access by the Pamplin School of Business at Pilot
Scholars. It has been accepted for inclusion in Business Undergraduate Publications, Presentations and Projects by
an authorized administrator of Pilot Scholars. For more information, please contact library@up.edu.

https://pilotscholars.up.edu/
https://pilotscholars.up.edu/bus_studpubs
https://pilotscholars.up.edu/bus_studpubs
https://pilotscholars.up.edu/bus
https://pilotscholars.up.edu/bus_studpubs?utm_source=pilotscholars.up.edu%2Fbus_studpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=pilotscholars.up.edu%2Fbus_studpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=pilotscholars.up.edu%2Fbus_studpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=pilotscholars.up.edu%2Fbus_studpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pilotscholars.up.edu/bus_studpubs/7?utm_source=pilotscholars.up.edu%2Fbus_studpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@up.edu

Agile Literature Review

Senior Honors Project

Kevin Cochran Jr.

BUS 452H

Project Management (Honors)

Dr. Gary Mitchell

20 December 2021

Abstract
Background: Over the last 20 years the software development community has implemented agile

techniques over the traditional approach to software development. Agile methods require less

upfront costs and increase project flexibility; however, agile methodology is not infallible.

Objective: This research seeks to validate the assumption that there is a lack of robust research

regarding agile project management and its use in the software development industry. This

extensive review of existing literature on the topic will serve as a basis for new research on areas

with existing ambiguity. Method: The search engines used to identify relevant literature from 1987

to 2021 on the topic were Business Source Premier and Google Scholar. The procedure used to

narrow the search queries was the use of deliberate keywords and phrases such as “agile software

development” and “cost of requirement errors”. All results were cross-referenced on both search

engines to validate the accuracy of each source. Results: 76 papers containing relevant information

to agile project management within the software community have been identified: 55 academic

journals, 1 book, 1 conference paper, 1 magazine article, 7 periodicals, 10 professional journals,

and 1 textbook. 35 papers are critical of Agile methodology, 16 focus mostly on its strengths, 12

focus mainly on its weaknesses, and 13 contain relevant information regarding the cost of

requirement errors.

Introduction and Literature Review
As the dependence on quality software increases with an increasing demand from global

infrastructure, the reliance on a precise yet efficient software development process also increases

(Luong, 2019). There are several methods of developing software. The two most common are the

waterfall-based development cycle, the more traditional approach which defines costs and

requirements clearly upfront, and agile software development, a more expeditious path to

achieving a goal with partially defined preconditions (Vigden, 2009). Since many organizations

think of agile differently, Richard Vigden devised a framework to define “enablers and inhibitors

of agility and the emergent capabilities of agile teams” (Vigden, 2009). This served as the

groundwork for identifying the advantages and disadvantages for using agile software

development over the waterfall approach. Figure 1 is a diagram of the first team observed by

Vigden who used an agile methodology while Figure 2 represents the second team that used the

waterfall approach. The layout of the Figure 2 reveals the accurate terminology used to describe

the software approach since it cascades like a waterfall.

Figure 1 – Development Life Cycle of the Pongo Team

Note. Adapted from Vigden and Wang 2006. A flow following the dotted arrow may happen, but less often.

Figure 2 – Development Life Cycle of the SysCheck Team

Note. Adapted from Wang and Vigden 2007.

A critical journal that serves as a foundation for future research on agile software development is

from Barry Boehm and Philip Papaccio titled “Understanding and Controlling Software Costs”.

Boehm found that “rework typically consumes 30% - 50% of a typical project budget” (Boehm

and Papaccio, 1988). This quantification of the impact rework has on project costs plays a large

role in influencing the decision organizations must execute when beginning a new software

development cycle. If there is a large margin for error when defining requirements at the beginning

of a software development project, it may be reasonable to use the waterfall method and clearly

define the project scope to reduce future costs of rework. Dean Leffingwell was able to conclude

in his book Managing Software Requirements: A Unified Approach that “requirements errors can

easily consume 25% - 40% of the total project budget” (Leffingwell and Widrig 2000). This builds

upon Boehm’s research and further supports the assertion that a high probability of requirements

errors will likely increase project costs. Gursimran Walia defined a way of identifying

requirements errors using the Error Abstraction Process (EAP) and Requirement Error Taxonomy

(RET). The EAP was able to increase productivity while the RET was “useful for improving

software quality” (Walia, 2006). Figure 3 presents an accurate organization of requirement errors

that arise during a software development life cycle. This RET assists software developers as a

catalog of potential errors they may produce within their projects. The first step to solving any

problem is by clearly identifying its existence and defining it precisely.

Figure 3 – Requirement Error Classification

By 2015, Pawan Chaurasia recognized the vast number of tools and methods established by

researchers to enhance the quality of software development by identifying the possible errors

which occur during the project life cycle. First, Chaurasia detailed the stages that lead to failure

and focused his paper on the cause of that failure which he refers to as “faults” as shown in Figure

4 (Chaurasia, 2015). He went a step further than Walia and defined an extensive list of all potential

errors within a project and a clear description of each as shown in Figure 5 (Chaurasia, 2015). For

researchers and developers seeking ways to correct their errors, Chaurasia provides a reference to

the academic journal which addresses each possible error. His reference numbers can be found

below Figure 5. All articles cited within this review are located in the Agile Literature Directory.

Figure 4 – Failure Life Cycle

Figure 5 – Requirement Error Taxonomy

SN Types of Errors Description Reference

1
Communication

Errors

Insufficient project communication 6

Requirement editing is not communicated 7

Lack of communication between developers and users 24

Poor communication between developers team 11

Poor communication between development process 25

Lack of communication information not reach between peoples 26

2 Participation errors

Involvement of users at requirement level 5

Participate only selected users 27

Do not involve all the neutrals 7

3
Domain knowledge

errors

Lack of domain knowledge 10, 28

Complexity of problem 11, 12

Lack of appropriate proper knowledge and information 29

Lack of proper training 6

Misunderstanding due to complexity 28

4
Specific

application errors

Knowledge of hardware and software specification 31

Knowledge of input, output and process mappings 32

Errors in expected output 15

Requirements are interpreted or predict while solving conflict

problems
9

Knowledge of software interface module 30

5
Process execution

errors

Errors in sequence of execution or requirement process 33, 34

Storage problem, sequence order of stages and missing stages 34, 28

6
Human knowledge

errors

Lack of situation awareness problem 14. 26

Environmental conditions 25

7 Inadequate method

Incomplete knowledge for achieving goals 28

Errors in achieving goals 28

Selection of wrong method 36

Transcription error 8

8 Management errors
Poor management of people & resources 29

Lack of leadership 13

9 Specification errors
Missing conditions 10

Errors while documenting requirements 36

10
Organizational

requirement errors

Poor organization of requirement 6

Errors in organizing requirements 22

11
Requirement

analysis errors

Selection of incorrect model 35

Misuse of error solution process 24

Unsolved issues and problems 10

Errors while analyzing requirement use cases 24, 37, 38

12
Requirement

simulation errors

Inadequate requirement gathering process 10

Lack of information for source of resources 29

[1] Nikora, A. P.; Lyu, M. R. Software reliability

measurement experience. Handbook of Software

Reliability Engineering, Lyu, M. R. Ed.;McGraw-

Hill: New York, 1996; 255–301.

[2] P. Fusaro, F. Lanubile, G. Visaggio, A replicated

experiment to assess requirements inspection

techniques, Journal of Empirical Software

Engineering 2(1) (1997) 39– 57.

[3] F. Lanubile, F. Shull, V.R. Basili, Experimenting

with error abstraction in requirements documents,

in: Proceedings of Fifth International Software

Metrics Symposium, METRICS’98, IEEE

Computer Society, Bethesda, MD, 1998, pp. 114–

121.

[4] S. Basu, N. Ebrahimi, Estimating the number of

undetected errors: Bayesian model selection, in:

Proceedings of the Ninth International

Symposium on Software Reliability Engineering,

IEEE Computer Society, Paderborn,

Germany,1998, pp. 22–31.

[5] D.N. Card, Learning from our mistakes with defect

causal analysis, IEEE Software 15 (1) (1998) 56–

63.

[6] R.B. Grady, Software failure analysis for high-

return process improvement, Hewlett–Packard

Journal 47 (4) (1996) 15–24.

[7] J. Jacobs, J.V. Moll, P. Krause, R. Kusters, J.

Trienekens, A. Brombacher, Exploring defect

causes in products developed by virtual teams,

Journal of Information and Software Technology

47 (6) (2005) 399–410.

[8] R.G. Mays, C.L. Jones, G.J. Holloway, D.P.

Studinski, Experiences with defect prevention,

IBM Systems Journal 29 (1) (1990) 4–32.

[9] T. Nakashima, M. Oyama, H. Hisada, N. Ishii,

Analysis of software bug causes and its

prevention, Journal of Information and Software

Technology 41 (15) (1999) 1059–1068.

[10] Bhandari, M. Halliday, E. Tarver, D. Brown, J.

Chaar, R. Chillarege, A case study of software

process improvement during development, IEEE

Transactions on Software Engineering 19 (12)

(1993) 1157–1170.

[11] S. Beecham, T. Hall, C. Britton, M. Cottee, A.

Rainer, Using an expert panel to validate a

requirements process improvement model, The

Journal of Systems and Software 76 (3) (2005)

251–275.

[12] G.J. Browne, V. Ramesh, Improving information

requirements determination: a cognitive

perspective, Journal of Information and

Management 39 (8) (2002) 625–645.

[13] C. Debou, A.K. Combelles, Linking software

process improvement to business strategies:

experiences from industry, Journal of Software

Process: Improvement and Practice 5 (1) (2000)

55–64.

[14] M.R. Endsley, Situation awareness and human

error: designing to support human performance,

in: Proceedings of the High Consequence Systems

Surety Conference, SA Technologies,

Albuquerque, NM, 1999, pp. 2–9.

[15] D.A. Norman, Design rules based on analyses of

human error, Communications of the ACM 26 (4)

(1983) 254– 258

[16] D.A. Norman, Steps towards a cognitive

engineering: design rules based on analyses of

human error, Communications of the ACM 26 (4)

(1981) 254–258.

[17] C. Trevor, S. Jim, C. Judith, K. Brain, Human

Error in Software generation Process, University

of Technology, Loughborough, England, 1994.

[18] Endres, An analysis of errors and their causes in

system programs, IEEE Transactions on Software

Engineering 1 (2) (1975) 140–149.

[19] T.E. Bell, T.A. Thayer, Software requirements:

are they really a problem?, in: Proceedings of

Second International Conference on Software

Engineering, IEEE Computer Society Press, Los

Alamitos, CA, 1976, pp 61–68.

[20] T. Berling, T. Thelin, A case study of reading

techniques in a software company, in:

Proceedings of the 2004 International Symposium

on Empirical Software Engineering (ISESE’04),

IEEE Computer Society, 2004, pp. 229–238.

[21] B. Freimut, C. Denger, M. Ketterer, An industrial

case study of implementing and validating defect

classification for process improvement and

quality management, in: Proceedings of the 11th

IEEE International Software Metrics Symposium,

IEEE Press, 2005.

[22] P.C. Cacciabue, A methodology of human factors

analysis for systems engineering: theory and

applications, IEEE Transactions on System, Man

and Cybernetics – Part A: Systems and Humans

27 (3) (1997) 325–329.

[23] Endres, An analysis of errors and their causes in

system programs, IEEE Transactions on Software

Engineering 1 (2) (1975) 140–149.

[24] S.H. Kan, V.R. Basili, L.N. Shapiro, Software

quality: an overview from the perspective of total

quality management, IBM Systems Journal 33 (1)

(1994) 4–19.

[25] D. Batra, Cognitive complexity in Data

modelling: causes and recommendations,

Requirements Engineering Journal 12 (4) (2007)

231–244. [26] K. Sasao, J. Reason, Team errors:

definition and taxonomy, Journal of Reliability

Engineering and System Safety 65 (1) (1999) 1–

9.

[27] D.A. Gaitros, Common errors in large software

development projects, The Journal of Defense

Software Engineering 12 (6) (2004) 21–25.

[28] J. Galliers, S. Minocha, A. Sutcliffe, A causal

model of human error for safety critical user

interface design, ACM Transactions on

Computer–Human Interaction 5 (3) (1998) 756–

769.

[29] J. Coughlan, D.R. Macredie, Effective

communication in requirements elicitation: a

comparison of methodologies, Requirements

Engineering Journal 7 (2) (2002) 47–60.

[30] P. K Chaurasia, Software Reliability Chain

Model, International Journal of Software and

Web Services (IJSWS), Vol 1, Issue 8, pp 46-50.

[31] R.R. Lutz, Analyzing software requirements

errors in safety-critical, embedded systems, in:

Proceedings of the IEEE International

Symposium on Requirements Engineering, IEEE

Computer Society Press, San Diego, CA, USA,

1993, pp. 126–133.

[32] S. Sakthivel, A survey of requirement verification

techniques, Journal of Information Technology 6

(2) (1991) 68–79.

[33] B. Cheng, R. Jeffrey, Comparing inspection

strategies for software requirement inspections,

in: Proceedings of the 1996 Australian Software

Engineering Conference, IEEE Computer

Society, Melbourne, Australia, 1996, pp. 203–

211.

[34] P.M. Fitts, R.E. Jones, Analysis of factors

contributing to 460 ‘pilot error’ experiences in

operating aircrafts control, in: Proceedings of

Selected Papers on Human Factors in the Design

and Use of Control Systems, Dover Publications

Inc., New York, 1961, pp. 332–358.

[35] A.J. Ko, B.A. Myers, Development and

evaluation of a model of programming errors, in:

Proceedings of IEEE Symposium on Human

Centric Computing Languages and

Environments, IEEE Computer Society, 2003, pp.

7–14.

[36] Swain, H. Guttman, Handbook of Human

Reliability Analysis with Emphasis on Nuclear

Power Plant Applications, Nuclear Regulatory

Commission, Washington, DC, 1983.

[37] P. K Chaurasia, How Accountability Improves

Software Reliability?, International Journal of

Computer Science and Technology (IJCSET),

Vol 5, Issue 9, pp 868-871.

[38] S.T. Shorrock, B. Kirwan, Development and

application of a human error identification tool for

air traffic control, Journal of Applied Ergonomics

33 (4) (2002) 319–336.

	Agile Literature Review
	Citation: Pilot Scholars Version (Modified MLA Style)

	tmp.1665525168.pdf.Euf_7

