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Abstract

The number of decays from four distinct nuclear disintegration processes were recorded over a

long succession of counting intervals, converted into sequences of binary outcomes based on

parity, and examined as a discrete two-state Markov process.   The difference in single-step

transition probabilities was found to be null to within an uncertainty of order 10-3, supporting the

proposition that quantum particles decay at random unaffected by their past history.
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1. Introduction:  Quantum Decay as a Stochastic Process

A fundamental prediction of quantum theory is that spontaneous quantum transitions are

random events independent of the previous history of the particle (nucleus, atom, molecule, etc.)

undergoing the transition.  One cannot predict which particle of an ensemble of quantum particles

will be the next to undergo a transition or precisely when such a transition will occur.  Only the

statistics of the aggregate transitions occurring within a system can be known (i.e. calculated).

Although the predictions of quantum theory have been tested in many ways over the past

three quarters of a century, there have been surprisingly few investigations of quantum processes

specifically for randomness, and these have generally focussed on measuring the distribution of

time intervals between two sequential nuclear decays [1].   We have recently reported the results of

a new series of tests of quantum behaviour based on the measurement of long temporal sequences

of nuclear alpha, beta, and electron-capture decays which we analysed by means of the theory of

runs [2,3].  A run of length k is an uninterrupted sequence of k identical events in a series of binary

outcomes (like heads H and tails T in a coin toss).  Someone unfamiliar with the laws of

probability might intuitively expect a random sequence to give rise to short runs {for example,

sequences like ...HTH...HTTTH....HTTTH....), but an overabundance of such reversals

between binary outcomes signifies a departure from statistical control.  By contrast, the occurrence

of long runs (for example ...THHHHHHT...) in a data sequence may seem to signify an

underlying order or regularity, but in fact is a natural and calculable outcome of a perfectly random

process and occurs with greater probability the larger the number of trials.     In short, the intuitive

perception of what is random can be greatly misleading, and one must rely on mathematically

objective tests of randomness.

It is worth noting at the outset that investigations of nonlinear dynamics and algorithmic

complexity theory have shown that no finite sequence can in principle be random [4,5].  Thus,

since every experiment having a beginning and an end must necessarily yield a finite number of

data, one cannot with certainty demonstrate empirically that a particular stochastic process is

random.  Nevertheless, if a data sequence generated by a stochastic process is sufficiently long, it
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will appear for all practical purposes to be a random sequence.  Nonrandom behaviour unrelated to

sequence length, therefore, should signify that the underlying process is not random—or, in

statistical parlance that there is an “assignable cause” to the results.  Moreover, no matter how

many tests of randomness a stochastic process passes, there may yet be one more test that it fails—

and it takes only one unproblematic failure to demonstrate that a process is not random6.  Hence

the necessity for subjecting quantum processes to a variety of complementary tests.

In the present Letter we report a new series of tests of the randomness of quantum decay by

examining the disintegration of nuclei as a two-state discrete Markov process [7]—i.e. a stochastic

process in which the state of the system at one time is determined by its history through a chain of

antecedent states.   In contrast to our previous run tests, where the question at issue was basically

“How many times in succession is the outcome of a Bernoulli trial the same?”, the essential

question in our Markov-chain test is this:  Given that a system is initially in a particular state εi ,

what is the probability of finding the system n  time intervals later in the same state εi  (retention

probability) or in another state ε j  (transition probability)?  If the single-step retention and transition

probabilities differ, then the probability of finding the system in a given state at time n  will depend

on n .  According to quantum theory, which we elaborate below, this probability should be

independent of n .

We have tested for Markoffian behaviour four distinct nuclear processes:

(a) alpha decay of 241Am (half-life 432.2 years)

95
241Am → 93

237Np + 2
4He , (1a)

(b) beta decay of 137Cs  (half-life 30.4 years)

55
137Cs → 56

137Ba +  β– , (1b)

(c) electron-capture decay of 54Mn (half-life: 312.3 days)

25
54Mn + e–  →   24

54Cr , (1c)

and (d) beta decay of 214Bi  (half-life 19.9 minutes) followed by alpha decay of 214Po  (half-life

164.3 µs)
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83
214Bi → 84

214Po +  β_

84
214Po → 82

210Pb + 2
4He

. (1d)

The transmutation of americium (1a) and polonium (1d) produce alpha particles of mean

energies 5485.6 keV and 7687 keV respectively.  The transmutation of cesium and manganese give

rise to gamma rays of mean energies 661.7 keV and 834.8 keV respectively.  Our experimental

procedure  is to count the numbers of alphas or gammas in a long sequence of time intervals, each

interval (a “bin”) of 100 ms duration.  Details of the alpha and gamma spectrometers are given in

References 2 and 3.  In the course of our experiments the activity of each radioactive source was

effectively constant, either because the lifetime of the source was much greater than the duration of

the experiment (as in the case of 241Am, 137Cs , and 54Mn) or as a result of the secular

equilibrium [8] of a short-lived nuclide with a much longer-lived parent nuclide (as in the

continuous regeneration of 214Bi  and 214Po  from 226Ra  [half-life 1620 years]).

Nuclear counting was performed under experimental conditions of (a) high mean count per

bin (µ  >> 1) and (b) low mean count per bin (µ  << 1), and the temporal sequence of digital counts

{ x i , i = 1...N } for each disintegration process was converted to a sequence {ε i , i = 1...N } of

binary outcomes by replacing each x i  with ε i  = 0 for an even parity count and with ε i  = 1 for an

odd parity count.  In this way, the nuclear disintegration data were modeled as a 2-state Markov

process of chain length N  .  For the low count rate configuration (b) there was never more than one

count per bin, and therefore the two Markoffian states εi (xi = 0) = 0  and εi (xi = 1) = 1 correspond

directly to the two nuclear basis states “no decay” and “decay” of a Schrödinger’s cat experiment.

2. Markov Chain Model

Let ξn  be a binary random variable with values 0 or 1.  We denote the single-step transition

probability pij  as the probability that the system is in state ε j  at time n   if it was in state εi  at time

n −1, i.e.

pij = Pr{ξn = j|ξn−1 = i}, (2a)

from which follows the single-step transition matrix [9]
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P =
p00 p01
p10 p11

 
 
  

 
. (2b)

Conservation of probability requires that

p00 + p01 = p11 + p10 = 1. (3)

The eigenvalues of P  are 1 and d, in which

d = p00 − p10 = p11 − p01 = p11 + p00 −1 = 1− ( p01 + p10 ). (4)

[The equivalence of the various expressions for d follow from use of Eq. (3).]

We further denote pij(n) as the probability that the system is in state ε j  at time n  if it was

initially in state εi  at time n  = 0

pij(n) = Pr{ξn = j|ξ0 = i}, (5a)

from which follows the two Markov chain recursion relations:

pi0 (n) = pi0(n −1)p00 + pi1(n − 1)p10
pi1(n) = pi0 (n −1)p01 + pi1(n −1)p11

(5b)

expressible succinctly as a single matrix relation

ui(n) = ui (n −1)P (5c)

in which

ui(n) = pi0 (n), pi1(n)( ) (5d)

is a row vector giving the state of the system at time n.

The solution to Eq. (5b) or (5c) is

ui(n) = ui (0)Pn (6a)

where the n th  power of P  takes the explicit form [10]

Pn =
1

1 − d
p10 + p01dn p01 1− dn( )
p10 1− dn( ) p01 + p10dn

 

 
 

 

 
 =

1− p01
1− dn

1− d
 
 
  

 
 p01

1− dn

1− d
 
 
  

 
 

p10
1− dn

1 − d
 

 
  

 
 1 − p10

1 − dn

1 − d
 

 
  

 
 

 

 

 
 
 

 

 

 
 
 

. (6b)

Suppose, for example, that the initial state of the system is ε0 = 0.  It then follows from Eqs. (5d)

and (6b) that
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p00(n) =
p10 + p01dn

p10 + p01
(7a)

p01(n) =
p01 1 − dn( )
p10 + p01

. (7b)

In the case of a symmetric transition matrix with p00 = p11 and p01 = p10 , the eigenvalue d

—which for this special case we designate ∆ —is simply the difference between the single-step

state retention and transition probabilities.   Eqs. (7a) and (7b) then reduce to the expressions

p00(n) = p11(n) = 1
2 1 + ∆n( ) (8a)

p01(n) = p10(n) = 1
2 1 − ∆n( ) (8b)

in which

∆ = pii − pij       ( i ≠ j) (8c)

reflects the extent to which the system, once in state 0 or state 1, tends to persist in that state rather

than undergo a transition to the opposite state.

3. Quantum Predictions

According to quantum mechanics, the probability p  that a radioactive nucleus decays

within a time interval ∆t  is p = λ∆ t , where λ  is the decay constant; p  is consequently

independent of the past history of the nucleus.  Under the conditions (ordinarily characteristic of a

nuclear counting experiment) that p << 1 and that the number of nuclei   N  greatly exceeds the

number k decaying within a specified time interval, the probability of k decays in ∆t  is given by a

Poisson distribution [2]

pµ (k) =
µ ke−µ

k !
(9)

where   µ = N λ ∆t  is the mean count.

(a) Consider first the case where µ >>1.  It then follows from Eq. (9) that the probability

Pe(µ) of obtaining an even number of counts within ∆t  is
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Pe(µ) = p2k(µ)
k =0

∞

∑ = e−µ coshµ . (10a)

Similarly, the probability Po (µ ) of obtaining an odd number of counts within ∆t  is

Po (µ ) = p2 k−1(µ)
k =1

∞

∑ = e−µ sinhµ . (10b)

Since the number of nuclei decaying within the interval ∆t  is predicted to be independent

of the number of disintegrations within an earlier interval, the elements of the single-step transition

matrix become

 
p00 = p10 = Pe(µ)
p11 = p01 = Po (µ ) (11)

and it follows from Eq. (4) that d  = 0.   The n-step transition probabilities then reduce to

p00(n) = p10 (n) =
1

1+ tanh µ
 µ >>1 →     1

2
(12a)

p11(n) = p01(n) =
tanh µ

1 + tanh µ
 µ > >1 →     1

2
. (12b)

Figure 1 shows the variation of Pe(µ) and Po (µ ) with µ .  In the limiting case, in which the mean

count per bin µ  is well in excess of unity ( µ  ranged from about 60-125 counts depending on the

source), the probability of obtaining an even or odd count is 0.5, and the n -step transition matrix

reduces to

PQM
n = PQM =

1
2

1
2

1
2

1
2

 

 
  

 
 . (12c)

(b) Consider next the case µ <<1.   One deduces from Eq. (9) that the single-step transition

probabilities and the probabilities P0 (µ ) and P1(µ) of obtaining respectively 0 or 1 count within

∆t  are related by

p00 = p10 = P0 (µ) = e−µ (13a)

p11 = p01 = P1(µ) = µe−µ (13b)

in which case d = 0 again and the n -step transition matrix becomes
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PQM
n = PQM =

1
1+ µ

µ
1+ µ

1
1+ µ

µ
1+ µ

 

 

 
 

 

 

 
 . (14)

4. Experimental Analyses

We have experimentally determined the probabilities pij(n) (i = 0,1; j = 0,1) for each of the

four nuclear decay processes described in Section 1 by decomposing each full data string of N  bins

into temporal units of length m which we call “m -bins” ( 2 ≤ m ≤ 20). For the configuration with

µ >>1, the value of N  for each nuclide was NAm  = 720,896, NCs  = NPo  = 1,048,576, and NMn

= 524,288.   For the configuration with µ <<1, we had NCs  = 29,032,448 and NMn  =

3,359,528.  To determine p0i (n) , for example, we counted the number N0 (m)  of m-bins

(m = n + 1) whose first element was 0, and of these counted the numbers N00(m), N01(m) of m-

bins whose m th  element was 0, 1 respectively.  By the strong form of the law of large numbers

[6], the probabilities are then given by the respective quotients p00(m) = N00(m) N0 (m) and

p01(m) = N01(m) N0 (m).  In the same way the probabilities p1i (m) were determined.  We

consider respectively the results for µ >>1  and µ <<1.

(a) High count rate configuration

Table 1 shows a sample of results for 137Cs  (µ ~60 ) over the range 2 ≤ m ≤ 10.  (The full data

set spanned 2 ≤ m ≤ 20.)   Figures 2, 3, 4, and 5 show plots of p00(m) and p01(m)  vs. m  for
241Am (µ ~125 ), 137Cs , 54Mn (µ ~100 ), and 214Po  (µ ~ 70), respectively.  Corresponding

plots of p1i (m) are graphically similar and statistically equivalent and are not presented here for

economy of space.

The uncertainty (± one standard deviation σ p ) associated with each point p , which is a

ratio of counts of the form p = N1 N2 , is given by

σ p =
1
N1

+
1
N2

p . (15)
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Eq. (15)  follows from the general relation

σ f =
∂ f
∂xi

 
 
  

 
 

i=1

N

∑
2

σ xi
2 . (16)

for the standard deviation of a function f (x1, x2 ,... xN ) of independent random variables { xi }

(i = 1...N) .

              Table 1:  137Cs   m-Bin Counts ( µ > > 1)

m N0 N00 N01 N1 N10 N11

2 262,010 131,230 130,780 262,278 130,795 131,483
3 174,642 87,523 87,119 174,862 87,101 87,761
4 131,017 65,459 65,558 131,127 65,573 65,554
5 105,079 52,727 52,352 104,617 52,337 52,280
6 87,311 43,612 43,699 87,441 43,681 43,760
7 74,961 37,446 37,515 74,831 37,529 37,302
8 65,454 32,718 32,736 65,618 32,751 32,867
9 58,240 29,190 29,050 58,240 29,066 29,174

10 52,510 26,309 26,201 52,322 26,217 26,105

The difference in single-step transition probabilities ∆  was obtained by a least-squares fit

of Eq. (8a) to the plots p00(m) and of Eq. (8b) to the plots p01(m).  [Recall that m = n −1.]

Although Eqs. (8a, b) are not linear in ∆ , it is possible to convert the nonlinear difference

equations into a set of linear difference equations, and thereby obtain a closed-form analytical

expression for ∆ , in the following way.   Define the functions Fm

Fm =

2 p00 (m) − 1 =  ∆m−1

1− 2 p01(m ) =  ∆m−1          (m ≠1)

1                                          (m = 1)

 

 
 

 
 

(17)

It then follows from Eq. (15) that  F2 = ∆ F1 , F3 = ∆ F2 , .... , FM = ∆ FM −1  where M is the

length of the longest m-bin.  Upon minimising the error E = Fm − ∆ Fm −1( )2

m= 2

M

∑  by solving

dE
d∆

= 0, we obtain the least-square value
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∆ ls = FmFm−1
m=2

M

∑ Fm−1( )2

m=2

M

∑ . (18)

The uncertainty in ∆ ls  is obtained by applying Eq. (16) to Eq. (18) and is given approximately by

σ∆ ≈
2σ p

F2
∆ls  where σ p  (approximately the same for all m  ≥ 2) is given by Eq. (15).    The exact

expression, which is cumbersome and need not be given here, was used in reduction of all data.

Table 2 summarises the results of the four quantum decay processes.

           Table 2:  Least-Squares Determination of ∆  ( µ > > 1)

Nucl ide p00 p01 p11 p10

241Am ∆ - 1 . 9 0  ( - 0 3 )- 1 . 9 0  ( - 0 3 )- 6 . 0 6  ( - 0 4 )- 6 . 0 6  ( - 0 4 )
σ∆ 4 . 1 0  ( - 0 3 ) 4 . 1 1  ( - 0 3 ) 4 . 1 4  ( - 0 3 ) 4 . 1 5  ( - 0 3 )

137Cs ∆ 1 . 6 6  ( - 0 3 ) 1 . 6 6  ( - 0 3 ) 2 . 6 6  ( - 0 3 ) 2 . 6 6  ( - 0 3 )
σ∆ 3 . 4 0  ( - 0 3 ) 3 . 4 0  ( - 0 3 ) 3 . 4 0  ( - 0 3 ) 3 . 3 9  ( - 0 3 )

54Mn ∆ - 2 . 9 7  ( - 0 4 )- 2 . 9 7  ( - 0 4 )- 2 . 6 9  ( - 0 3 )- 2 . 6 9  ( - 0 3 )
σ∆ 4 . 8 2  ( - 0 3 ) 4 . 8 2  ( - 0 3 ) 4 . 8 0  ( - 0 3 ) 4 . 8 2  ( - 0 3 )

214Po ∆ 2 . 7 0  ( - 0 4 ) 2 . 7 0  ( - 0 4 ) 3 . 5 2  ( - 0 4 ) 3 . 5 2  ( - 0 4 )
σ∆ 3 . 3 9  ( - 0 3 ) 3 . 3 9  ( - 0 3 ) 3 . 3 9  ( - 0 3 ) 3 . 3 9  ( - 0 3 )

(b) Low count rate configuration

For this configuration the single-step transition matrix is not symmetric ( p00 ≠ p11, p10 ≠ p01),

but we can reduce the data by the same procedure as that of part (a), without having to determine

simultaneously any of the elements pij , by noting [from Eqs. (4) and (6b)] that

p01(n) + p10(n) = 1 − dn .   In analogy, therefore, to relation (17), we define the function Fm

(n = m −1)

Fm =
1 − p01(m) − p10(m) =  dm−1         (m ≠ 1)
1                                                    (m = 1)

 
 
 

(19)
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from which the least-squares solution dls  follows from an equation of the same form as (18) with

standard deviation σd ~ σ p01 (2)
2 + σ p10 (2)

2  ; σ pij (2)
2  is given by Eq. (15).  

Figure 6 shows plots of p00(m) and p01(m)  vs. m  for 137Cs  (µ ~.05 ); a corresponding

plot for 54Mn (µ ~.013 ) is graphically similar and not presented here.  The plots suggest visually,

and least-squares analysis confirms, that dls  = 0 to within ±1 standard deviation for both beta

decay processes.  For d = 0, as predicted by quantum mechanics, Eqs. (7ab) [or Eq. (14)] and

measurements of the elements of Pn  directly yield the value of µ  according to

µ =
1− p00(n)

p00 (n)
=

p01(n)
1− p01(n)

. (20)

This result is interesting in its own right, for, together with the sample mass and counting interval

∆t , it enables one to determine the nuclear decay constant or half-life under conditions where

direct temporal measurement of a decay transient is not convenient or possible.

Table 3 summarises the low count rate measurements of d  and µ .

          Table 3: Least-Squares Determination of d  ( µ << 1 )

    
Nucl ide dls σd µ( p00 ) µ( p01)

137Cs – 1 . 5 7  ( - 0 4 ) 1 . 6  ( - 0 3 ) .0486±.009 .0486±.002
54Mn – 2 . 9 4  ( - 0 3 ) 9 . 5  ( - 0 3 ) 0.0132±.003 .0132±.0002

5.  Conclusions

In keeping with the foundations of quantum theory (qt) which hold that the spontaneous

decay of a particle occurs randomly and is uninfluenced by its past history, we find that the

difference in Markoffian single-step retention and transition probabilities is zero to within an

uncertainty of the order of 10−3  for all of the nuclear decay processes we have examined under

both high count rate and low count rate conditions.
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To our knowledge there is at present no viable alternative to qt to explain how correlations

could come into play were qt actually to fail these tests.   In the absence of theoretical guidance, the

experimental examination of quantum decay under conditions of both high and low counting rates

provides complementary information.  For example, for µ  >> 1 it is conceivable (although our

tests have shown this not to be the case within present experimental uncertainties) that a high rate

of nuclear disintegration in one time interval may lead to a diminished or enhanced rate in the

following interval if qt-violating correlations were somehow dependent on sample size (i.e.

number of decaying particles).  By contrast, for µ  << 1, the rare occurrence of a distintegration

after a long period of nuclear quiescence might modify the decay probability of a subsequent

particle if qt-violating correlations were somehow sensitive to proximity.  In such a case, a

violation of qt would be more noticeable within a counting interval containing at most one particle

than a hundred particles.

We also stress that the results reported here (as well as those of Refs. 2 and 3) are distinct

from—and provide a test more fundamental than—measurements of the exponential character of

nuclear decay.  The two features attributed to quantum transmutation processes (randomness and

exponential decay) are frequently confounded, but that is incorrect.  Although experimental tests of

which we are aware confirm the exponential decay law for nuclei [11], in all rigour qt predicts

variations from this law at very short and long times [12], and such variations have been seen in

non-nuclear systems [13].  Furthermore, particles (e.g. atoms and molecules) that decay from a

linear superposition of energy eigenstates give rise to a harmonically modulated exponential decay

law [14]  (the phenomenon of “quantum beats”); individual decays, however, are expected to occur

at random.

Although the Markov chain analysis, in contrast to application of the theory of runs,

provides a simple and direct way to determine d  analytically, it is worth emphasising that the

distribution of runs is also very sensitive to d .  As a consistency check and as a way of gauging

the sensitivity of our statistical procedures to any underlying regularity (or assignable cause) in

nuclear decay, we simulated a string of 106  Bernoulli trials with a random number generator,
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assigning a “bias” ∆ in the single-step transition probabilities in the following way.  For a total

range 1 ≤ r ≤ R of the random number r  (with R  = 50,000 in our simulations), we assigned

single-step probabilities pii  = Rii R  and pij  = Rij R  where Rii + Rij = R .  That is, if the state at

time n  was εn  = 0 and the next trial yielded a random number in the range 1 ≤ r ≤ Rii , the state

remained unchanged, εn+1  = 0.  If r  fell within the range (Rii + 1)≤ r ≤ R , the state underwent a

transition, εn+1  = 1.  Thus, by adjusting the subrange limit Rii  with fixed R , we determined the

distribution of runs of 0’s or 1’s for different values of the bias ∆ = Rii − Rij( ) R .

In Figure 7 is plotted ∆ rk = rk
expt − rk

theory , the difference between the experimental (i.e.

simulated) and theoretical numbers of runs of 0’s of length k obtained in 106 trials, as a function of

k  for a bias ∆  = 0.005.  The theoretical relations for random runs (i.e. with no bias) are given in

References 2 and 3.    The positive bias signifies a higher probability for remaining in a state than

for transition ( pii > pij ), in which case one would expect a smaller than random number of short

runs.  The pronounced negative deviation of ∆ rk  from zero for k = 1 and 2 bears out this

expectation.  There is, as well, a visibly larger than random number of runs of length k = 3.

Of particular interest here is the fact that for a number of Bernoulli trials (106 ) of the same

order as the number of counting intervals in our nuclear data the simulated distributions of runs

showed a recognisably nonrandom pattern for ∆ as small as approximately .001—i.e. in complete

accord with the limits of detection of ∆  inferred from the Markov chain analysis.  To place a more

stringent limit on any difference in single-step transition probabilities—and therefore on the history

dependence of quantum decay—would require increasing the number of bins either by shortening

the counting interval ∆t  or lengthening the total counting time.   We are presently looking into both

possibilities.
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Figures

Figure 1 Variation of probabilities Pe(µ) and Po (µ ) as a function of mean count µ for a

stochastic process (nuclear decay) following a Poisson distribution.

Figure 2 Variation of single-step transition probabilities (a) p00(m) and (b) p01(m) as a

function of m-bin length m  for the alpha decay of 241Am (µ ~125 ).

Figure 3 Variation of single-step transition probabilities (a) p00(m) and (b) p01(m)  for the

beta decay of 137Cs  (µ ~60 ).

Figure 4 Variation of single-step transition probabilities (a) p00(m) and (b) p01(m) for the

electron capture decay of 54Mn (µ ~100 ).

Figure 5 Variation of single-step transition probabilities (a) p00(m) and (b) p01(m) for the

beta decay of  214Bi  followed by alpha decay of 214Po  (µ ~ 70).

Figure 6 Variation of single-step transition probabilities (a) p00(m) and (b) p01(m) for the

beta decay of 137Cs  (µ ~.05 )

Figure 7 Simulated distribution of runs  of 0’s for 106 Bernoulli trials (with binary outcome

0 or 1) with bias parameter ∆  = .005.  The plot shows the difference between experimental (i.e.

simulated) and theoretical (∆ = 0) values of the numbers of runs of length k as a function of k.
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