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Abstract 

Here we present an ecological risk assessment for a specific type of microplastic in the San 

Francisco Bay. There has been an increased interest in understanding and managing the 

impacts that microplastics may have on ecological systems because recent studies have shown 

that plastic particles are widespread in the environment and that exposure to these particles has 

toxicological effects. Until now, an ecological risk assessment for microplastics that meets the 

current standards for risk assessment, has not been completed. This study lays the groundwork 

for future ecological risk assessments of microplastics and identifies key uncertainties that need 

to be addressed. Using a Bayesian network relative risk model (BN-RRM), we determined the 

risk tire wear particles present to juvenile Chinook salmon and Northern anchovy. In past 

studies, BN-RRM has been a successful framework for regional scale ecological risk 

assessments of multi-stressor systems, allowing for the creation of a model with predictive 

capability and adaptive potential as new data become available. The BN-RMM is parameterized 

for each risk region with tire wear particle environmental concentration data collected by the San 

Francisco Estuary Institute, plastic particle toxicity data generated by Oregon State University, 

and site-specific water quality, chemical, and land use data from regional databases. Relative 

risk was then calculated for each risk region and spatial gradients of risk were determined. 

Results indicate a relatively low risk for juvenile Chinook salmon and Northern anchovy at 

current tire wear particle concentrations in the San Francisco Bay. This risk assessment 

confirms that, with the data that is currently available, a quantitative, spatially specific risk 

assessment is possible. Additionally, Bayesian networks are an excellent tool for modeling the 

complex and uncertain nature of microplastics. This study is funded by the National Science 

Foundation Growing Convergence Research Grant (1935018) program. 
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1. Introduction  

1.1  Ecological risk assessment and microplastics 

Microplastics are an emerging contaminant that is widespread in the environment. Growing 

public concern around microplastics has resulted in an increased interest in understanding and 

managing the impacts that microplastics may have on ecological systems. An ecological risk 

assessment is the only way to determine the actual risk of microplastics to the environment and 

support the creation of management goals to mitigate risk. The National Academy of Sciences, 

Engineering, and Medicine (NASEM) committee on gene drive research in non-human defines 

ecological risk assessment as the, “probability of an effect on a specific endpoint or set of 

endpoints due to a specific stressor or set of stressors” (NASEM 2016). The data that is 

currently available on microplastics has yet to be applied to management strategies of 

microplastics in the environment. As jurisdictions begin to regulate microplastics, geographically 

specific risk assessment such as this one, provide critical information on risk to endpoints of 

interest. The goal of this project was to conduct an ecological risk assessment for microplastics 

in the San Francisco Bay. This study also lays the groundwork for future ecological risk 

assessments of microplastics and will identify key uncertainties that need to be addressed. 

 

1.2 Introduction to Microplastics  

1.2.1 Definition of Microplastics 

Currently, there is not an agreed-upon definition for microplastics, however it is important that a 

single definition is used for the purposes of this risk assessment. I will define microplastics in 

accordance with the San Francisco Estuary Institute’s (SFEI) definition developed for their 

recent microplastic monitoring study in San Francisco Bay. In this definition, they distinguish 

between microparticles and microplastics. Microparticles are smaller than 5 millimeters in at 

least one dimension. Particles that are smaller than 0.1 micrometers are considered 
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nanoparticle. In order to confirm whether the microparticle is a microplastics, Raman or Fourier 

Transform Infrared (FTIR) spectroscopy must be used to determine if the composition is a 

synthetic polymer of anthropological origin (Sutton et al. 2019). Examples of synthetic polymers 

that are included in this definition are polyethylene, polypropylene, polyamide, polystyrene, 

polyethylene terephthalate, and polyvinyl chloride, just to name a few. Synthetic rubber from 

sources such as tire wear particles is also included in this definition. Shapes are also specified 

and include fragments, sphere/pellets, films, foams, and fibers. Naturally derived particles, even 

if they have been modified with synthetic additives of anthropogenic origin (e.g., synthetic dyes), 

will not be considered plastic particles (Sutton et al. 2019). I will refer to microparticles, 

microplastics, and tire wear particles (TWP) throughout this document as they related to the 

above definitions. I will use microplastics as a more general term that includes TWP and will 

only delineate between the two when it becomes necessary.  

 

California is one of the first jurisdictions to officially approve a definition for microplastics. I have 

chosen to use the SFEI definition for microplastics rather than California’s definition because the 

monitoring data use for this risk assessment was collected and analyzed by SFEI. The definition 

being used for this thesis differs from the State of California’s Definition of Microplastics in 

Drinking Water (CSWRCB 2020) in two ways: 

• The California State Water Resources Control Board definition specifies that the plastic 

particles must be smaller than five millimeters in all three dimensions whereas the SFEI 

definition specifies that they must be smaller in at least one dimension  

• The California State Water Resources Control Board definition specifies that particles 

that are derived naturally but have been chemically modified are considered 

microplastics. In contrast, SFEI specifies that naturally derived particles that have been 

chemically modified with synthetic additives, are not considered microplastics. 
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1.2.2 Characteristics  

Plastic is a synthetic polymer that is most commonly made with large chains of hydrocarbons 

formed from petroleum products. However, manufacturers will often add other chemicals into 

the plastic to allow it to have different properties (e.g., adding colorants to achieve different 

colors or fire retardants to reduce flammability)(Andrady and Neal 2009). Microplastics come in 

wide variety of shapes, sizes, colors, and composition all of which can impact exposure and 

toxicity (Jeong et al. 2016, Fisner et al. 2017, Gray and Weinstein 2017). These properties may 

also affect degradation, sorption of contaminants, and the likelihood of ingestion. Effects of 

water quality parameters such as temperature (Kolomijeca et al. 2020), pH (Bakir et al. 2014), 

and salinity (Hartmann et al. 2017) have also been shown to affect concentrations and types of 

chemicals that leach out of microplastics. Other environmental effects such as degradation, 

could change microplastic toxicity and bioavailability (Hartmann et al. 2017). This includes 

photo, mechanical (Kolomijeca et al. 2020), and biotic degradation. Any model that is used for 

microplastic risk assessments must include the characteristics of microplastics and the effects 

from the environment mentioned above. These characteristics are currently included in the 

conceptual model (Figure 1) used as framework for this risk assessment case study. 

 

1.2.3 Abundance  

Increased awareness of microplastics has prompted more monitoring studies to begin looking 

for them all over the world. Results of these studies suggest that microplastic are present near 

both urban and non-urban areas (Yonkos et al. 2014). Microplastics have been identified in a 

wide range of environments including freshwater (Alimi et al. 2018, Li et al. 2018), marine (Auta 

et al. 2017), and terrestrial ecosystems (He et al. 2018). TWP in particular have been identified 

as a higher percentage of the microplastics found in a several field studies (Sutton et al. 2019, 

Goßmann et al. 2021). Estimates indicate that TWP are being released into the environment 

from roadways in large concentrations (Wagner et al. 2018). The abundance would suggest that 
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the opportunities for exposure between organisms and TWP may be quite high. Increased 

exposure of aquatic organisms to TWP also increases the likelihood of human exposure through 

seafood (Rochman et al. 2015).  

 

 
 
Figure 1. Broad conceptual model micro in the San Francisco Bay.  

 

1.2.4 Effects 

Toxicity caused by TWP may occur through different routes of exposure including ingestion and 

respiration. Additives leach out TWP into the water, sediment, or organism. Exposure to either 

the particle or the leachate causes toxicity.  For some organism, such as Coho salmon, the 

leachate is the primary cause of toxicity and has a significant impact on survival (Tian et al. 

2022). Other organisms do not appear to be as sensitive to the leachate (McIntyre et al. 2021). 

For these organisms, both the particles and leachate cause toxicity (Cunningham et al. 2022) 
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but it is relatively minimal when compared with Coho salmon. Chemicals and microbes can sorb 

to microplastics. In this way, microplastics can act as vectors for both biotic and abiotic 

contaminants (Bakir et al. 2014, Hartmann et al. 2017, Yeo et al. 2020). Although there is 

debate about the degree to which this these contaminants  affect toxicity, it is an important 

factor that must continue to be explored and included in risk assessments where possible. 

Most toxicity studies on TWP, expose organisms to plastic leachates and relatively few have 

exposed organisms directly to particles. Additionally, techniques for measuring the effects of 

microplastic exposure have also varied immensely, making it difficult to draw conclusions about 

the toxicity of TWP to organisms.  

 

1.3 Previous Risk Assessments for Microplastics  

Although several studies have been published that purport to be microplastic risk assessments, 

they fall short of the requirements for an ecological risk assessment defined in National 

Academies of Sciences, Engineering, and Medicine. A risk assessment must be probabilistic, 

use regional values and management goals to determine endpoints, and include an evaluation 

of the uncertainty involved in model (NASEM 2016). 

 

 Wik and Dave (2009) conducted a risk assessment for TWP using limited data on toxicity, 

environmental concentrations, and exposure. Everaert et al. (2018) used modeled 

concentrations of microplastics in the marine environment to determine the present and future 

global impact of buoyant microplastics given various plastic waste production scenarios. 

Everaert et al. (2020) used measured concentrations to assess percentage of risk to the global 

oceans’ surface from buoyant microplastics. Tamis et al. (2021) focused on TWP, and other 

contaminants associated with road runoff using estimated and measured concentration in 

European waters. Wik and Dave (2009), Everart et al. (2018), Everart et al. (2020), and Tamis 

et al. (2021) all used a non-probabilistic approach to conduct their assessments. Variability and 
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uncertainty are minimally considered and reported when they are included at all. Adam et al. 

(2018, 2021) performed a probabilistic risk assessment for microplastics in marine waters 

however probability distributions were only included in a small portion of the overall analysis. 

 

 All five studies concluded presently a low impact from microplastics with the exception of areas 

that have acted as sinks for microplastics. However, they all used the quotient method to 

estimate risk which relies on predicted no-effect concentrations and/or species sensitivity 

distributions. Quotients are not probabilistic, they use of a single number either as a 

denominator or numerator underrepresents variability and may not adequately describe an 

exposure-response relationship (Dale et al. 2008). Even when probabilistic data is used for 

quotients, variability and probability distributions are immediately reduced to a single number or 

a range or numbers. Additionally, the use of the Species Sensitivity distribution assumes that 

the hazardous concentration for five percent of the species (HC5) is a meaningful attribute. 

Although widely used to approximate impact, the HC5 lacks specificity. Species Sensitivity 

distribution were originally developed for determining water quality benchmarks parameters and 

are limited in their usefulness for risk assessments (Fox et al. 2021). 

 

 These studies also conducted their assessments on global or continental-scale which makes it 

nearly impossible to consider microplastic concentrations gradients that may exhibit contagion 

in the distribution (Everart et al. 2020). The uncertainty in the exposure estimation is likely to be 

underestimated. In addition, because there is no single regulatory body for these large spatial 

areas, these studies neglected to focus on specific management goals and endpoints when 

considering risk of impact. Xu et al. (2018) also conducted an assessment for measured 

concentrations of microplastics in the Changjiang Estuary in China. Their study is 

geographically constrained which allowed them to conduct a finer grain assessment however, 

they never actually calculated risk. Instead, they performed a hazard assessment to compare 
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the relative concentrations of microplastics in the Changjiang Estuary to that of the adjacent 

sea. A difference in exposure does not necessarily mean an increase in risk depending on the 

exposure to the key endpoints specific to that habitat. A hazard assessment is a useful initial 

step, but it does not constitute a comprehensive risk assessment. Although attempts have been 

made, an ecological risk assessment has not yet been conducted for microplastics up to the 

standards outlined by NASEM. 

 

1.4  Case Study: San Francisco Bay  

The study site selected for this ecological risk assessment is the San Francisco Bay. This site 

was selected because of the availability of microplastic data from recent monitoring studies 

(Sutton et al 2016, Sutton et al. 2019) conducted through the SFEI. I have generously been 

granted access to this data and have worked closely with the researchers at SFEI. Data on 

contaminants, water quality, habitat, and species parameters are also prevalent for a large 

temporal and spatial range for the San Francisco Bay area through databases such as the 

California Environmental Data Exchange Network (CEDEN) and California Surface Water 

(SURF). Data availability is critical in formulating a comprehensive and accurate model, 

therefore, a site that is rich in relevant data is ideal. 

 

San Francisco Bay, located just north of central California (Figure 2), is one of the largest 

estuaries on the west coast of the United States (CSCC 2010). Approximately forty percent of 

the fresh water moving through California goes through the San Francisco Bay, draining from 

Sierra Nevada Mountain range into the Sacramento-San Joaquin River Delta before gathering 

in the bay (SFBCDC 2020). The San Francisco Bay is also connected to the Pacific Ocean, 

allowing for transfers of nutrients, organisms, and contaminants between the two bodies of 

water. The Bay is made up of 4 major basins referred to as the South Bay, Central Bay, San 

Pablo Bay, and Suisun Bay.  
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Figure 2. A map of the study site divided into risk regions. Boundaries for risk regions were developed 
based on hydrological unit code 8 watershed boundaries. 

 

1.4.1 Wildlife and Habitats 

The San Francisco Bay provides critical habitat and migration routes for a wide range of 

organisms. Two-thirds of California’s salmon pass through the bay as they migrate to and from 

their spawning grounds in the creeks and tributaries of the Sacramento-San Joaquin River Delta 

(USEPA About the Watershed). This includes chinook salmon, steelhead trout, and sturgeon. A 

variety of fish and invertebrates, such as the native Olympia Oysters and California mussels, 



 9 

use the San Francisco Bay as a year-round habitat. Dungeness crab, California halibut, and 

other important fishery organisms use the bay as nurseries, allowing young organisms to grow 

and feed in the relative safety of the bay (CSCC 2010). These fish and invertebrates also 

provide food for larger marine mammals and fish such as seals, sharks, porpoises, and gray 

whales. San Francisco Bay is a critical wintering stop on the Pacific Flyway, where migrating 

birds can rest and eat before they continue their journey (SFBCDC 2020). Many unique habitats 

are present in the San Francisco Bay, including tidal marshes and salt ponds, provide critical 

locations for wildlife to grow, feed, and nest (CSCC 2010).  

 

1.4.2 Human activities and inputs 

San Francisco Bay is a major urban, industrial, marine, and recreational hub. Nine counties and 

more than 40 cities containing approximately 7.75 million people in total, surround the San 

Francisco Bay (SFBCDC 2020).  These diverse communities rely on the San Francisco Bay for 

a wide variety of ecosystem services including food, transportation, jobs, tourism, recreation, 

and cultural interests. Land use around the bay includes high density and suburban housing, 

agriculture, public and protected lands, and industrial and commercial infrastructure (SFBCDC 

2020). The combination of community, industrial, agricultural, and environmental interests that 

merge around the San Francisco Bay results in a diverse set of stakeholders and interest 

groups with converging and diverging goals.  

 

1.4.3 Sources of Microplastics  

There are many potential sources of microplastics in the San Francisco Bay. Water bodies in 

close proximity to high density urban and industrial centers are likely to have higher 

concentrations of microplastics than more rural areas (Yonkos et al. 2014). Recent 

biomonitoring studies for microplastics have confirmed their presence in San Francisco Bay 

water, sediment, prey fish (Sutton et al. 2019) and bivalves (Miller et al. 2017). Many of the 
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concentrations were found to be higher than other urban locations in North America (Sutton et 

al. 2016). Studies looking for potential sources have identified microplastics in wastewater 

effluent discharging directly or indirectly into the San Francisco Bay (Mason et al. 2016, Sutton 

et al. 2016). Microplastics in wastewater treatment plant discharge has been recorded in other 

studies (Carr et al. 2016). Sutton et al. (2019) identified urban stormwater runoff as another 

large source of microplastics in the San Francisco Bay. They found that the majority of 

microplastics entering the San Francisco Bay were black rubber that were likely TWP. Although 

not yet confirmed, other likely sources of microplastics into the San Francisco Bay include 

precipitation/atmospheric fallout (Dris et al. 2016), delta/other freshwater inlets (Vermaire et al 

2017, Alimi et al. 2018), and spills/dumps (Galafassi et al. 2019). The Pacific Ocean might also 

be a source of microplastics in San Francisco Bay due to ambient concentrations of 

microplastics in the open ocean (Pan et al. 2019).  

 

1.5 Ecological Risk Assessment  

Ecological risk assessment was developed to create tools that use data-driven models to help 

guide decision-makers when making management and regulatory decisions. They used 

scientific data and modeling to calculate the impact on predetermined endpoints. Endpoints are 

derived from cultural and social values that are linked to the ecosystem of interest and 

connected to regionally specific ecosystem management goals (Landis and Weigers 2005). 

Ecological risk assessments as defined in the 1993 and 1998 USEPA framework (USEPA 1993) 

and guidelines (USEPA 1998), have been used to analyze the relationship between a stressor 

and an endpoint in a contaminated ecological structure. However, the approach outlined in the 

USEPA framework has some limitations when the assessment of risk is taking place at a larger 

scale with multiple stressors. Ecological structures are often much more spatially complex, 

containing multiple stressors, receptors, and habitats in one region. Therefore, there was a need 

to develop a method of ecological risk assessment for multiple stressors in complex ecological 
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structures. Wiegers et al. (1998, Landis and Wiegers 1997) developed the Relative Risk Model 

(RRM) in which a study area is broken down into smaller subregions and risk is determined for 

the whole study using rankings (Landis 2021). Landis and Ayre (2012) further refined this 

method into a framework called the Bayesian network relative risk model (BN-RRM) for 

assessing risk at a regional scale using Bayesian networks rather than ranks. I have chosen to 

use the BN-RMM because the large scale of the San Francisco Bay requires a method that is 

able to consider multiple habitats, stressors, and endpoints.  

 

1.5.1 Bayesian Networks 

The Bayesian network relative risk model framework uses Bayesian network (BN) models to 

calculate probabilistic risk. They are a powerful tool for understanding relationships between 

variables in complex systems using probability distributions. BNs are acyclic graphs made up of 

nodes linked by probability relationships represented as arrows between the nodes (McCann et 

al. 2006). The relationships are informed by conditional probability tables (CPT) that represent 

dependent relationships between variables (Ayre and Landis 2012). BNs are particularly useful 

for modeling the complex causal relationships between variables in ecological structures 

(McCann et al 2006). Although BNs have been used widely for many years in fields, such as 

medicine and artificial intelligence (Barton et al 2012), their use in the environmental science is 

relatively new (Aguilera et al. 2011). Even more recently Bayesian networks have been applied 

to ecological risk assessments in a wide range of subjects (Kaikkonen et al. 2021). Bayesian 

networks are a uniquely good choice for ecological risk assessments because different types of 

information can be included in them without increasing the uncertainty of the model (Kaikkonen 

et al. 2021). Values can be entered into the Bayesian Networks that are different than those 

found in the actual data to hypothesize potential affect. States in the output nodes can be 

selected to represent various management or mitigation scenarios and the required input can be 

determined. They also allow for the inclusion of new information and data as they become 
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available, increasing their usefulness as a long-term management and decision-making tools. 

All variables and relationships in a Bayesian network model are clearly defined and illustrated in 

the model, allowing for transparent and unambiguous communication of results (Chen and 

Pollino 2012).   

 

1.5.2 Bayesian Network Relative Risk Model 

The BN-RMM is a probabilistic, spatially specific framework for assessment ecological risk. It 

was designed to consider risk at a large spatial scale where multiple habitats, endpoints, and 

stressors are involved in complex ecological systems. Although one stressor may be the focus 

of an assessment, in this case, TWP, additional stressors can be included if they have an effect 

on the endpoint or the stressor of interest. The BN-RRM has the capability to consider variation 

in risk over large temporal and spatial ranges. After a study area is chosen, a conceptual model 

is developed that outlines the causal relationships between stressors and impacts on 

management endpoints. A Bayesian network is then constructed based on the initial conceptual 

model and available data for the study area. The selected study area is then divided into smaller 

region down called risk regions that are based on natural (e.g., watersheds, habitats) and 

socially constructed (e.g., management areas, landownership) boundaries. The Bayesian 

network is then parameterized with data from each risk region so that spatial variations in risk 

can be assessed. The BN-RRM has successfully been used as an ecological risk assessment 

and management tool in a wide variety of applications since its development in 2012 (Landis 

2021). 

 

1.5.3 Convergence in Ecological Risk Assessment 

Ecological risk assessment relies on the knowledge and data of many other fields of study. A 

robust risk assessment will combine data and expertise from toxicology, chemistry, 

environmental science, statistics, ecology, and data science just to name a few, with the goal of 
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supporting decision-makers and regulatory bodies. The BN-RRM is an ideal framework for 

supporting and highlighting convergence in the risk assessment process as each node in the 

model can represents data and knowledge from many different fields and the arrows represent 

the converging relationships (Landis 2021).  

 

1.6 Study Objectives  

The main objectives of this study are: 

• Conduct an ecological risk assessment for microplastics using the San Francisco Bay as 

a case study. 

• Create a framework for microplastic risk assessment that can be used for future case 

studies in other regions. 

• Identify the uncertainties and data gaps involved in determining the risk of microplastics 

in the San Francisco Bay.  

• Show that it is possible to perform a spatially specific, quantitative ecological risk 

assessment for microplastics given the data that is currently available  

 

1.7 Summary of Findings 

A broad summary of the findings from this study are: 

• A  spatially specific, quantitative ecological risk assessment for microplastics is possible 

given the data that are currently available. 

• TWP present a relatively low risk to out-migrating Chinook salmon and juvenile Northern 

anchovy in the San Francisco Bay. 

• Season is more important to output in the fish affected nodes than TWP concentration. 

•  In high concentration scenarios, acute exposure still had a relatively minimal effect on 

the fish output node.  
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• Future microplastic and nanoplastic toxicity studies should prioritize data collection 

sufficient to for dose-response modeling. 

2. Methods 

2.1 Study Area 

The study area includes the South Bay, Lower Bay, Central Bay, San Pablo Bay and Suisun 

Bay basins. The outer boundary of the study area follows the California State Water Resources 

Control Board Region 2 boundaries (Figure 2). The only exception to this is along the eastern 

portion of the study area where the study area boundary uses the Hydrological Unit Code (HUC) 

level 8 sub-basin boundaries. I chose this outer boundary because HUC boundaries represents 

a large watershed boundary, and the California State Water Resources Control Board Region 2 

boundaries represent a regional regulatory boundary. Both types of boundaries are important 

when considering a region-scale analysis of risk. The study area was then broken down into 

four risk regions based on HUC level 8 sub-basin boundaries: Suisun Bay, San Pablo Bay, San 

Francisco Bay, and Coyote Creek (Figure 2). These boundaries were chosen because 

watershed characteristics such as size, land use type, and so on. have the potential to effect 

microplastic abundance and type (Su et al. 2020). 

 

2.2 Conceptual Model  

The first step in model construction is to use the framework of the BN-RRM to create a 

conceptual model that places the stressor into context within the system (Figure 3). More 

specifically, the framework for the conceptual model illustrates the causal relationships between 

the sources of the stressor, characteristics of the stressor, habitat of the endpoint, effects from 

the stressor to the endpoints, and impacts to endpoints. 
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Figure 3. Box and arrow conceptual model used to build the Bayesian network model. The 
framework from the broader conceptual model (Figure 1) is retained in this figure. Beige colored 
boxes represent input and output variables. The input variables are sources, and the output 
variables are impacts on the endpoints. The yellow box represents stressor concentrations. The 
purple box represents habitat of the endpoints. The blue boxes represent fish toxicity 
responses, and the green boxes represent invertebrate toxicity responses. 
 

2.2.1 Sources and Stressors 

I determined sources of MP based on studies specific to the study site. These sources include 

wastewater treatment plants (WWTP) (Sutton et al. 2016, Sutton et al. 2019, Zhu et al. 2021) 

and stormwater runoff (Sutton et al. 2019, Werbowski et al. 2021, Zhu et al. 2021). Additional 

sources were added based on studies that were not specific to the study site but other likely 

sources of MPs into similar regions.  These sources include atmospheric deposition (Dris et al. 

2016, Wright et al. 2020), agriculture (Grbić et al. 2020), industry (Zhou et al. 2020), freshwater 

tributaries (Leads and Weinstein 2019), transportation (Unice et al. 2019), spills/dumps (Lusher 

and Pettersen 2021), and trophic transfer (Carbery et al. 2018, Nelms et al. 2018). Additionally, I 

included the ocean as a potential source given that the San Francisco Bay is directly connected 

to the ocean through a large channel. 
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Microplastics are a complex group of contaminants, requiring an approach that considers the 

many variables that may affect the overall risk they present to endpoints. Therefore, I have 

included particle characteristics, sorbed contaminants, and water quality parameters in the 

conceptual model. Particle characteristics such as size (Jeong et al. 2016, Gray and Weinstein 

2017, An et al. 2021), shape (Gray and Weinstein 2017), composition (Renzi et al. 2019), 

degradation (Zou et al. 2020), and biofilm (Johansen et al. 2019) all have the potential to affect 

the toxicity, transport, and uptake of the microplastic particles. Contaminants such as pesticides 

(Wang et al. 2020), pharmaceuticals (Puckowski et al. 2021), and metals (Guo et al. 2020) can 

sorb and desorb to microplastics and may affect the overall toxicity. Additionally, it is important 

to consider the environment and how this could affect exposure and toxicity. Some of these 

environmental factors include water quality parameters such as temperature (Bakir et al. 2014, 

Kolomijeca et al. 2020), pH (Bakir et al. 2014), and salinity (Hartwell et al. 2000). Finally, 

contaminants and water quality parameters may also indirectly impact the effects of microplastic 

exposure by changing an organism’s prevalence in that environment or exposure response 

ability.  

 

2.2.2 Effects 

The effects were chosen for this conceptual model based on observed and hypothesized effects 

in microplastic literature. Direct acute and chronic toxicity are the most common types of studied 

effect. Alteration of habitat has been examined in a handful of laboratory studies (Green et al. 

2017, Corinaldesi et al. 2021) but has yet to be tested in the field. Trophic transfer has been 

demonstrated in laboratory experiments (Athey et al. 2020, Hasegawa and Nakaoka 2021, 

Stienbarger et al. 2021) and has been hypothesized in the field (Nelms et al. 2018). 

Bioaccumulation (Goswami et al. 2020) has been recorded in tissues in organisms and 
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biomagnification has been hypothesized for organisms based on result of trophic transfer 

studies (Farrell and Nelson 2013). 

 

2.2.3 Endpoints  

Endpoints can be broken down into entities, the valued ecological organism or service, and 

attributes, the characteristic of the entity that risk is being assessed for (USEPA 1998). Entities 

and attributes are chosen based on ecosystem resources that are considered important to 

stakeholder and decision makers within the study area. Two fish species were selected as the 

entities, Chinook salmon and Northern anchovy. The attributes are any toxic effects to these fish 

caused by TWP exposure. These fish species spend time in the San Francisco Bay during 

critical life stages and have substantial importance to the region. Additionally, both species are 

migratory and spend much of their life outside of the San Francisco Bay region. Therefore, 

impacts to these fish populations that occur within the San Francisco Bay have the potential to 

effect populations outside the study area as well. Chinook salmon and Northern anchovy are 

historical, ecological, commercial, cultural, and economic significance in the region. 

 

Chinook salmon migrate through the San Francisco Bay to and from their spawning grounds in 

the San Juaquin and Sacramento rivers and tributaries. Historically there have been four runs of 

Chinook salmon: fall, late fall, winter, and spring. However, currently most of the migrating fish 

are part of the fall-run (Jahn 2011). Specifically, I will be evaluating risk to juvenile out-migrating 

Chinook salmon because recent analysis suggests that outmigration survival through the San 

Francisco estuary might have a larger influence on overall population dynamics and success 

than variables effecting adults in their marine environment (Michel 2019). Chinook Salmon were 

chosen as endpoint because of their considerable historical and present importance to the 

culture, economy, (Yoshiyama 1999) and ecosystems in the San Francisco Bay.  

 



 18 

There are three subpopulations of Northern anchovy along the west coast of North America. 

The central subpopulation ranges from Point Reyes, California to Punta Baja, Baja California 

(Kuriyama et al. 2021) which includes the study area. As the most abundant fish species in the 

San Francisco Bay, Northern anchovy were chosen primarily because of their importance as 

forage fish, supporting a diverse ecosystem as a primary food source for many organisms. 

Northern anchovy and other small planktivore fish, make up approximately 48% of Chinook 

salmon diet by weight (Default et al. 2009). Additionally, while demand for Northern anchovy is 

relatively low compared to historical numbers, they are still caught for bait, human consumption, 

and fish meal (Kuriyama et al. 2021).  

 

 

 

 

 

 

 

 

 

 

Figure 4. Bayesian network model for tire wear particles in the San Francisco Bay. Beige 
colored nodes indicate input and output nodes. Yellow nodes are environmental concentrations 
parameterized with SFEI microplastic monitoring data. Green node are invertebrate toxicity 
nodes and blue nodes are fish toxicity nodes parameterized with OSU toxicity data. Purple 
nodes are fish abundance nodes parameterized with CDFW data converted to CPUE.  
 

2.3 Development of the Bayesian Network Relative Risk Model 

In this step, the conceptual model developed for the stressor is used to guide the development 

of a Bayesian network model (Figure S22) using Netica 6.07 Software (Norsys Software Corp 
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2020). Ideally, all variables included in the conceptual model would also be included in the 

Bayesian network model, however this is generally not possible. Data availability is the limiting 

factor and is often not available for many of the variables included in the conceptual model. 

Below I will discuss which variables were included and how the Bayesian network model was 

parameterized with available data. I have chosen to create two Bayesian network models: one 

for TWP and one for all other plastics. This is due to likely differences in sources, toxicity, and 

transport. In this report, I focus on the tire wear particle Bayesian network (TWP-BN)(Figure 4). 

 

2.3.1 Parameterizing the TWP-BN 

2.3.1.1 Environmental Concentrations 

Data collected by SFEI were used to parameterize the nodes representing environmental 

concentration of TWP in the environment. Data were collected in five different environmental 

compartments across the study area: stormwater runoff, wastewater effluent, surface water, 

sediment, and prey fish. Samples were counted and a subset of particles were analyzed using 

FTIR or Raman spectroscopy to chemical composition. The resulting report (Sutton et al. 2019) 

from the SFEI study contains further information about methods and results. The SFEI was 

unable to confirm that any particles were from tires, however, they were able to determine that 

some particles were composed of rubber or potential rubber. Data from these two categories 

were added together and used to parametrize the TWP Bayesian network for each 

environmental compartment. Samples from prey fish were not included in this model because 

only a single rubber or potential rubber particle was found in any of the prey fish samples. While 

this could indicate an actual lack of ingestion of these particles, there is evidence to suggest that 

fish in similar environments do ingest TWP at low concentrations (Parker et al. 2020). 

Additionally, sampling data for prey fish were only available for two of the four risk regions and 

therefore a spatial analysis of risk for the whole study area would not be possible. Given the 

possibility that particle counts of TWP in prey fish were estimated too low in this study and a 
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general lack of data on fish ingestion outside of the laboratory setting, I chose to take the 

approach that assumes that fish ingest all potential particles coming into the ecosystem.  

 

SFEI also collected data on season for the surface water samples and wastewater treatment 

type for the wastewater treatment effluent samples. I have included this as part of the model to 

show how these variables might also influence risk. The data was input into the model using 

casefile learning, which is a feature in Netica that allows CPT to be populated using a dataset 

(Norsys Software Corp 2020). Uncertainty can also be incorporated using this method. 

 

Sediment data was collected in grams per liter dry weight, but I have converted it to particles per 

milliliter using the conversion factor 0.5 kilograms per liter. This was the sediment conversion 

factor suggested by the SFEI (D. Lin, personal communication, February 16, 2022). 

 

2.3.1.2 Effects 

The toxicity data used to construct the toxicity nodes were produced by the Harper and Brander 

laboratories at Oregon State University in collaboration for this risk assessment. The species 

used for toxicity testing were Daphnia magna, zebrafish (Danio rerio), inland silverside (Menidia 

beryllina), and mysid shrimp (Americamysis bahia). The data represented in this model are from 

acute exposures to tire particles in the microparticle scale. Particles in this section will be 

referred to as tire particles (TP) rather than TWP because they were produced via cryomilling 

rather than natural tire wear. Only responses that showed a clear concentration-response 

relationship with TP concentration were included in the model and discussed in this paper.  

 

Cunningham et al. (2022) exposed zebrafish embryos to twelve TP concentrations ranging from 

1.0 × 104 to 1.29 × 106 particles/ml or approximately 0.63 to 81.18 mg/L. Exposures occurred up 

to 120 hours post fertilization (hpf) and behavioral and developmental endpoints were assessed 
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at 24 hpf and 120 hpf. The only response that showed a clear concentration-response 

relationship was for spontaneous movement at 24 hpf. They also exposed neonatal D. magna to 

six TP concentrations ranging from 1.3 ×105 to 8.59 ×105 micro particles/ml or approximately 

8.18 to 54.05 mg/L. Exposures took place for 48 hours and mortality and immobilization were 

recorded at 24 and 48 hours. The only response that showed a clear concentration-response 

relationship was for mortality at 48 hours.  

 

Siddiqui et al. (2022) exposed silversides and mysid to three different concentration of TP for 

seven days and ninety-six hours respectively. The three different concentrations were 60, 6000, 

and 60000 particles/mL or 0.0038, 0.378 and 3.778 mg/L. Behavioral endpoints and aspect ratio 

were measured at the end of the exposure time. For both silversides and mysids, the only 

response that showed a clear concentration-response relationship was aspect ratio of the 

organisms.  

 

Using the data from Cunningham et al. (2022) and Siddiqui et al. (2022), I created concentration 

response models using the drc package in R Version 4.0.5 (RStudio 2021) for each species and 

the associated response. The selection of the model type was determined based on which 

model makes the most sense given the type of data being modeled. The lowest Akaike 

information criterion values derived using the mselect function in R studio, was used to help 

further determine which model would be the best choice. I then fit a model to the data, derived 

the equation for each model, and inputted them into their associated toxicity node in the 

Bayesian network. Netica is then able to use the equation to develop a CPT for the node that 

allows the Bayesian network to calculate specific outputs give various inputs.  

 

I converted final aspect ratio data for mysids and silverside to growth reduction percentages. 

Growth reduction is an easier metric to interpret and can be used to predict impact to fecundity 
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and survival success. To calculate growth reduction, I first determined the average final aspect 

ratio for the control groups for each organism. I then created an equation that uses the model 

output at zero particles per liter to divide final aspect ratios in the test concentration groups. This 

value can then be subtracted by one to determine a value for growth reduction in decimal form. I 

then multiplied by one hundred to convert to a percentage. This is represented in Eq. 1: 

 

Growth Reduction=100 (1-
Final AR

Average AR of controls
) 

 

To input this into Netica, Eq. 1 was modified to use the concentration-response relationship 

equation for final aspect ratio for each organism. Eq. 2 shows the concentration-response model 

for silverside final aspect ratio and TP. Eq 1. was combined with Eq. 2 to create Eq. 3. Eq 3 was 

input into Netica to calculate growth reduction for Silversides where the average of controls was 

0.480667. 

 

F(x)=0.321372 +(0.480667-0.321372)*(exp (-
X

119.773263
) 

 

Growth Reduction=100 (1-
0.321372 +(0.480667-0.321372)*(exp (-

X
119.773263

)

0.480667
) 

 

In Netica, the additive value of TWP concentrations from the environmental concentration nodes 

are input for X and growth reduction can be calculated. 

 

Next, I summarize the toxic effects in the intermediate nodes. Intermediate nodes are useful in 

Bayesian networks because they help to reduce the number of input nodes going into 

(1) 

(2) 

(3) 
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downstream nodes allowing smaller and more comprehensible CPTs (Chen and Pollino 2012). 

To summarize the toxicity information, I used weighted values to modify the effect response as 

in Liu et al. (2013) who weighted different responses in zebrafish to illustrate relative importance 

to biological impact. The weighing included spontaneous movement which was weighted at 0.2 

out of 1 and mortality which was weighted 1 at 24 hpf and 0.95 at 120 hpf. Based off this paper, 

I weighed zebrafish spontaneous movement at 0.2 and daphnia mortality at 0.95. Similarly, I 

elicited expert judgment from Dr. Stacey Harper (S. Harper, personal communication, March 23, 

2022) to weigh the other responses values used in the model out of 1. Growth reduction was 

weighed at 0.2 for both mysid and silversides. Reduction in food as a measurement of 

invertebrate effect was weighed at 0.1.   

 

2.3.1.3 Endpoints 

Data from the California Department of Fish and Wildlife (CDFW and IEP 2021) was used to 

parameterize the species abundance nodes for our chosen endpoints. Fish catch data was 

available from otter trawls and midwater trawls. I corresponded with Kathryn Hieb, a senior 

marine biologist with the CDFW, and she advised that only midwater trawl data should be used 

because it is more accurate than otter trawl data for pelagic and strongly schooling fish species 

(S. Harper, personal communication, December 2, 2021). Data was queried for Chinook salmon 

and Northern anchovy from January 1st, 2015 to July 27th, 2021 from the midwater trawl dataset. 

For Northern anchovy, total catch data is available as well as data broken down by age of fish. 

The included age categories are age 0, fish above the minimum length but less than a year old, 

and age one plus, all fish caught that were not in the age 0 category. For Chinook Salmon, data 

was only available for total catch of out-migrating smolt. The CDFW recommends that catch 

data be converted to catch-per-unit-effort (CPUE) when comparing fish abundance temporally 

or spatially (CDFW 2021). To calculate CPUE, I used the equation suggested by the CDFW for 

midwater trawl data: 
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CPUE = (
# caught

tow volume
) * 10,000  

 

Season was added in as a variable to model fish abundance by using the month the fish sample 

was collected. November through April were selected as part of the wet season and May 

through October   were selected as part of the dry season. Months were determined to be wet 

or dry based on average precipitation across the last 10 years (NOAA 2022). The fish 

abundance nodes were parameterized using the casefile learning function in Netica. 

 

2.3.1.4 Node Discretization 

Before parameterizing the nodes, discrete states must be created for the continuous data. This 

is usually done based on regulatory values and effect concentrations. Currently, there are no 

regulatory values, management goals, or benchmarks for microplastics of any type for our study 

area or any other regions. Therefore, I used effect concentrations for the most and least 

sensitive responses. I also used the high estimate for floating microplastics in the ocean in 2100 

from Everart et al. (2018) and the highest concentration found in the study site. For the fish 

abundance and fish affected nodes states, a log-scale was chosen for the discretization 

because it would allow variability in the lower states to be more visible.  

 

2.4 Risk Calculation  

Risk is calculated by comparing different exposure scenarios of the stressor to the management 

goals for each endpoint organisms. Most management goals are related to population scale 

effects. The current scope of this model does not capture changes at the population scale for 

the endpoint organisms, therefore it is not possible to determine how different exposure 

scenarios may affect populations scale goals. Additionally, management goals for Chinook 

salmon and Northern anchovy in the San Francisco Bay are complex and often unspecific. 
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Therefore, I have chosen to calculate risk based on large changes in the distributions in the fish 

affected nodes.  

 

2.5 Sensitivity Analysis  

I performed a sensitivity analysis using the feature in Netica called Sensitivity to Findings. This 

feature allows the user to select a specific node and then calculate which upstream nodes have 

the most effect on the selected nodes output. The metric used to evaluate sensitivity is mutual 

information, a measurement of mutual dependence between two variables. Mutual information 

can then be compared between nodes across the model to determine relative mutual 

information as a percent for each node. Netica can also calculate sensitive for various model 

configurations by selecting states in different nodes. I calculated and compared sensitivity for 

each risk region for the Chinook Salmon Affected node, the Northern Anchovy Affected node, 

and the Fish Toxicological Effects node. 

 

2.6 Counterfactual analysis  

In a counterfactual analysis, values are entered into the model that are different than those 

found in the actual data to hypothesize potential affect. In this case, I selected states in the TWP 

environmental concentration nodes to see how this would affect probability distributions in the 

Chinook Salmon Affect node and the Northern Anchovy Affect node. I decided to have three 

scenarios: lowest, current, and highest. In the lowest scenario, states in all environmental 

concentration nodes are select at the lowest concentrations, 0 to 4.88e-5. In the current 

scenario, none of the states in the environmental concentration nodes are selected. This allows 

for the comparison of the current environmental concentrations with the higher and lower 

scenarios. In the highest scenario, states in all environmental concentration nodes are select at 

the highest concentration in the nodes, 0 to 1.98e6.  
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2.7 Uncertainty Analysis  

I used the definitions of uncertainty outlined in Regan et al. (2002, 2003) to document 

uncertainty in this case study. There are two types of uncertainty that are important to recognize 

in an ecological risk assessment: epistemic and linguistic. Epistemic uncertainty can be further 

broken down into four categories: measurement error, model uncertainty, systematic error, and 

natural variation (Regan et al. 2002). 

 

 To quantify epistemic uncertainty, I used quantitative measurements where possible and 

qualitative communication where quantitative measurements are not an option. Quantitative 

uncertainty is described for every step of the model and quantified as part of the distribution in 

the final output nodes. Uncertainty is also recorded qualitatively in the results section of this 

thesis. Linguistic uncertainty arises during communication of methods and results of the model. 

This can include specificity, vagueness, context dependence, unclear terminology, and 

ambiguity (Regan et al. 2002). I address linguistic uncertainty by communicating model methods 

and results in a manner that is transparent and appropriate to the audience. I also communicate 

all uncertainties and limitations associated with the model. 

 

3. Results 

3.1 Understanding the Model Output 

The Bayesian Network model can produce four useful types of output. The first is observing the 

variation in risk by selecting different inputs to determine how this affects the probability 

distributions in the downstream nodes. The second is the sensitivity analysis, which shows 

which nodes are most important to the output. The third is the counterfactual analysis where 

values that are not present in the data are selected as input in the model and distribution 
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upstream or downstream are analyzed. The fourth is the uncertainty analysis which quantifies 

uncertainty and indicates where it is present in the model.   

 

3.2 Variation in Risk  

The endpoint nodes in this model are Chinook Salmon Affected and Northern Anchovy Affected 

(Figure 1). These nodes represent the relative abundance of each fish species modified by the 

effect distribution in the fish toxicity node. Different input nodes in the model can be selected to 

see how the output in the impact nodes change. Slight variations may not be indicative of real 

impact because of high uncertainty in the model however, large changes in the node 

distributions could indicate real affects from TWP concentrations or other variables such as 

season and risk region. I selected each state in the risk region node and season node to see 

how it would affect the distributions in the fish affected nodes.  

 

3.2.1 Spatial Variations of Risk  

There is no substantial variation in risk across risk regions for Chinook salmon. By selecting 

each risk region, distributions in the fish affected node for Chinook shift minimally (Figure S8). 

The distribution for Coyote Creek is shifted slightly towards a higher number of fish affected. 

 

The risk varied more clearly by risk region for Northern anchovy (Figure S8). Distributions are 

similar in San Francisco Bay and Coyote Creek. Both risk regions have the highest percent fish 

affect in the 1 to 10 state. In both San Pablo Bay and Suisun Bay, the distributions are skewed 

towards the lowest states with Suisun Bay having 49.7 percent and San Pablo Bay having 28.4 

percent of fish affected in the 0 to 1 range. When different seasons are selected within each risk 

region, clear seasonal changes in distributions appear in some risk regions.  

 

3.2.2 Seasonal Variations of Risk  
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When the season variable is added in, the degree to which the distributions in the fish affected 

node differs depending on risk region and organism. For Chinook salmon, there is no clear 

difference between the wet season and the dry season in number of fish affected (Figure S9). 

For Northern anchovy, distributions in all four risk regions are skewed lower in the wet season 

than they are in the dry season (Figure S10). This seasonal effect is most apparent in Suisun 

Bay and San Pablo Bay.  

 

3.3 Sensitivity Analysis 

I performed the sensitivity analysis using mutual information as a measurement of entropy 

reduction to determine the relative importance each variable in the model has on the two fish 

affected nodes: Chinook Salmon Affected and Northern Anchovy Affected. I then selected each 

risk region to see how the relative importance of variable changes across the study area. 

Percent mutual information is the measurement used to evaluate dependence between two 

nodes. Higher mutual information indicates a higher level of dependency between that node and 

the node that the sensitivity analysis was performed for.  

 

3.3.1 Chinook Salmon Sensitivity Analysis 

In all four risk regions, season was either the most important or second most important variable 

in the analysis (Figure S13). The season variable was the highest for San Pablo Bay. Season 

was less important in Coyote Creek and Suisun Bay.  

 

Of the toxicity responses, zebrafish spontaneous movement had the highest mutual information 

in Coyote Creek and Suisun Bay and the second highest in San Francisco Bay and San Pablo 

Bay (Figure S13). In all risk regions, Silverside growth reduction and Daphnia mortality had the 

following highest mutual information.  
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Of the TWP environmental sample matrices nodes, stormwater has the highest percent mutual 

information followed by sediment, effluent, and surface water respectively (Figure S14). In San 

Francisco, this pattern is slightly less clear because the mutual information is very low in all four 

sample matrices.  

 

Wastewater treatment plant treatment type has the lowest percent mutual information in all risk 

regions (Figure S13).  

 

3.3.2 Northern Anchovy Sensitivity Analysis 

In all four risk regions, season has the highest mutual information in the analysis (Figure S15). 

When compared to Chinook salmon, mutual information is higher for season for the Northern 

Anchovy Affected node and this is maintained across every risk region.  

 

The percent mutual information for toxicity response nodes (Figure S15) in the Northern 

anchovy sensitivity analysis have the same pattern found for Chinook salmon sensitivity 

analysis. Zebrafish spontaneous movement has the highest mutual information followed by 

Daphnia mortality, silverside growth reduction, and mysid growth reduction.  

 

The sample matrix nodes (Figure S16) also follow a similar pattern to the Chinook salmon 

analysis where stormwater has the highest mutual information and sediment, effluent, and 

surface water follow respectively. The only exception is in San Francisco Bay where sediment 

has the highest mutual information. 

 

3.3.3 Sensitivity Analysis for Fish Toxicological Effects Node 

I performed a sensitivity analysis for the Fish Toxicological Effects node to determine how 

important input variables, such as season and risk region are to the output in this node. All 
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patterns from this sensitivity analysis are the same as in the previous sensitivity analyses for 

Northern anchovy and Chinook salmon apart from the season node (Figure S17). The season 

node has zero percent mutual information in all four risk regions.  

 

3.3.4 Overview of Sensitivity Analysis 

For both organism there is a clear pattern between risk regions where the mutual information 

from each node apart from season, is proportionally similar, but the magnitude differs. For 

Chinook salmon in San Francisco Bay, the mutual information for all nodes is very small 

whereas in Coyote Creek it is much larger (Figure S13 & S14). This is similar for Northern 

anchovy, however the variation in magnitude is less pronounced between risk regions (Figure 

S15 & S16) .  

 

3.4 Counterfactual Analysis 

For Chinook salmon, changes in concentration scenarios do not appear to have any substantial 

effect on probability distributions in the Chinook Salmon Affect node (Figure S11). This is true 

for all four risk regions. Only very small increases, in most cases less than a percentile, are 

observed in the highest concentration scenario when compared with the current or lowest 

scenarios. Patterns seen in other the risk variation results (Figure S8) appear in the results of 

this analysis as well. Coyote Creek continues to have distributions with a slightly lower 

frequency of values in the 0 to 1 state. 

 

For Northern anchovy, changes in concentration scenarios have a much more pronounced 

effect on probability distributions (Figure S12). These changes also are variable by risk region. 

The lowest concentration scenario is very similar to the current scenario. Patterns in the 

distributions within risk region are maintained between the lowest and current scenario with a 

slightly higher frequency of values falling into higher states in the current scenario. In the 
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highest concentration scenario, probability distributions are all skewed higher than in the current 

and lowest concentration scenarios.   

 

3.5 Uncertainty Analysis 

In the next sections I detail the types of uncertainty involved in this risk assessment and the 

varying degrees to which uncertainty impacts the results of the model. As described in the 

methods section of this paper, I am using the definitions for uncertainty from Regan et al. (2002, 

2003). 

 

3.5.1 Epistemic Uncertainty 

I used probability distributions for each variable in the model to quantify measurement and 

systematic error. By including the full distributions rather than a single number, variability that is 

the result of different types of uncertainty can be delineated. The uncertainty within each 

probability distribution is carried through the model to the final nodes, Chinook Salmon Affected 

and Northern Anchovy Affected. The distributions in the final nodes quantify the measurement 

and systematic uncertainty for the entire model. Probability distribution also demonstrate the 

uncertainty from natural variation in TWP and fish abundance. This is further illustrated using 

risk region and season to assess temporal and spatial variations. Model uncertainty is an 

additional type of epistemic uncertainty.  

 

3.5.1.1 Model Uncertainty 

A lack of microplastic data from every sample matrix in each risk regions is a primary cause of 

model uncertainty. Where sample numbers are relatively small, uncertainty is higher.  In Coyote 

Creek, there are relatively few data for fish abundance because there are only two CDFW 

stations in that risk region. The result is an undue influence of states not represented in the 

data. This is illustrated in the Chinook Salmon abundance node in Coyote Creek (Figure S8). 
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Because all the values are zero and there are low sample numbers for this risk region, the 

distribution in the other states in the node are relatively high, therefore over representing the 

number of fish in that risk region. In this case, additional fish data for Coyote Creek, if available, 

could be added to the model to reduce uncertainty.  

 

Similarly, for the microplastic dataset samples sizes were very small across all risk regions and 

sample matrixes. Uncertainty is represented as larger values in states above actual 

concentrations of TWP found in the study region. In the model this appears as even 

percentages in the higher states (Figure S9). This value varies by risk region and sample matrix 

because there are different numbers of samples and therefore different levels of uncertainty. For 

example, stormwater samples from Coyote Creek have some of the highest uncertainty 

because there were only two sample collected from that risk region.  

 

 Finally, in some cases there are no data present.  For example, there were no stormwater 

samples collected in Suisun Bay (Figure S9). This is illustrated in the model by creating an 

equal distribution across all states in the stormwater concentration node to indicate that the 

model does not have knowledge to create a distribution. In both cases, more sampling within 

that risk region (e.g., Suisun Bay) for the specific sample matrix (e.g., stormwater) will decrease 

model uncertainty.  

 

A major source of model uncertainty is insufficient data on the actual ingestion of TWP by the 

fish in this study meaning I was unable to derive a dose-response relationship.  This is true both 

in the laboratory toxicity studies as well as the field samples. In the laboratory data used for this 

study, organisms are exposed to varying concentrations of tire particles in the surrounding 

water. Intake of particles was visually confirmed in all organisms however, a link was not drawn 

between the water concentrations and actual dose for every organism (Cunningham et al. 2022, 
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Siddiqui et al. 2022). Therefore, is unclear what the actual dose is and how water 

concentrations may affect toxicity simply by effecting dose. In the field microplastic data, fish 

samples were analyzed for particle concentrations but only one rubber particle was found in all 

prey fish samples. These data were excluded, and no other data was available to indicate field 

exposure to our study organisms.  

 

Particles from the San Francisco Estuary Institute microplastic monitoring study were analyzed 

for composition but none of the particles could be confirmed to be from tires. Therefore, for this 

study I have had to assume that all particles categorized as rubber or potentially rubber are 

TWP. It is possible that particles in these categories were not all from tires adding uncertainty to 

the environmental concentrations.  

 

An additional source of model uncertainty arises from using model laboratory organisms to 

extrapolate effects to different endpoint organism. The field data use for fish abundance were 

also from a different the age class than those used for laboratory tire particle toxicity tests. 

Although this is not an uncommon practice in risk assessment, there is always inherit 

uncertainty when this is done. All organisms tested in the lab were either in eggs or recently 

hatched neonates and larvae (Cunningham et al. 2022, Siddiqui et al. 2022). In the study area, 

Chinook salmon are not present is this age class and are generally out-migrating smolt when 

they pass through the San Francisco Bay. Northern anchovies are present in the study area in 

multiple age classes including the eggs and larval stages. The Northern anchovy data used to 

parameterize this model is for fish estimated by the CDFW to be greater than or equal to the 

minimum length for the Age 0 age class based on length. I have had to extrapolate laboratory 

toxicity results for age classes not represented in the CDFW fish abundance data used to 

parameterize this model. As more toxicity studies are conducted for tire particle exposure on 
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other fish species in a variety of age classes, the model can be updated with this data and 

uncertainty can be reduced.  

 

In the laboratory toxicity testing, cryomilled TP were used instead of TWP from roadways. 

Particles generated from actual road wear can be a different shape than particles generated 

from a cyromilling (Wagner et al. 2018). On average, particles from laboratory generation were 

also smaller than those collected in the field (Figure S4) because of limitations of collection 

devices. Differences in microplastic shape (Gray and Weinstein 2017) and size (Cunningham et 

al. 2022) can affect toxicity and uptake therefore, this is a source of uncertainty in the model. 

Additionally, new tires were used rather than used tires for toxicity testing. Halle et al. (2021) 

found that particles from new tires were more toxic than used tire particles. Since most tires in 

the environment are from used tire, this adds model uncertainty.  

 

3.5.2 Linguistic Uncertainty  

There are several sources of possible linguistic uncertainty present in the model. The use of 

CPUE as the measurement for fish abundance and affect may make it difficult for an audience 

to understand how it relates to actual numbers of fish. Additionally, epistemic uncertainty in the 

model can be difficult to communicate. When epistemic uncertainty in a model is incorrectly 

understood it can result in confusion in interpreting and understanding the model results. Finally, 

communicating risk to Chinook salmon and Northern anchovy carries a degree of linguistic 

uncertainty because management goals for these organisms in the San Francisco Bay are 

somewhat ambiguous. This means that level of risk may be misunderstood or interpreted 

differently depending on the stakeholder group.  
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4. Discussion 

4.1 Variation in Risk 

4.1.1 Spatial Variation of Risk 

The distribution for Coyote Creek is shifted slightly towards higher number of fish affected 

because of high levels of uncertainty calculated by the model. This is a result of an extremely 

low sample number for Chinook salmon abundance in that risk region (Figure S4). There are 

only two CDFW sampling stations in that risk region. When the sample number is low, 

uncertainty can be high because the system is known to be dynamic and two samples is 

unlikely to represent these dynamics. 

 

The patterns in Northern anchovy risk variation by risk region can be explained by the relative 

abundance distributions of Northern anchovy in each risk region. Suisun Bay has the lowest 

number of Northern anchovies (Figure S5). San Pablo Bay and San Francisco Bay have the 

highest.  Where there are more fish present, there are more fish available to be affected by the 

presence of TWP. It is important to also note that the Fish Affected node states are discretized 

in log scale which may make it difficult to see smaller variations in states with higher values 

(Figure S4).  

 

4.1.2 Seasonal Variations of Risk  

Selecting different seasons in the model does not change the risk in each risk region for 

Chinook salmon. This would indicate that season is not an important factor for out-migrating 

salmon in the San Francisco Bay however, Jahn (2011) found that most outmigration took place 

in the dry season. I defined season based on the last ten years of precipitation data for the 

study area however precipitation in California is unpredictable in certain months (NOAA 2022). It 

is possible that the seasonality of out-migrating salmon does not fit distinctly into the wet and 

dry seasons that I identified. At this time, numbers of chinook salmon are relatively low 
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compared to other species, therefore some variation could be hidden, making it difficult to see 

seasonal patterns.  

 

The seasonal changes in abundance for Northern anchovy are most apparent in Suisun Bay 

and San Pablo Bay (Figure S5). During the wet season there is an increase in freshwater flow 

from the Sacramento-San Joaquin River Delta resulting in a decrease in salinity in these two 

risk regions (Cloern et al. 2017). In the San Francisco Bay, Northern Anchovy have responded 

to a decrease in prey caused by the introduction of Potamocorbula amurensis, an invasive clam 

species from Asia, by shifting their range into higher salinities where primary producers are 

more abundant (Cloern et al. 2017). Therefore, it is likely that the seasonal changes in Northern 

anchovy abundance are related to salinity changes in the San Francisco Bay. 

 

4.2 Sensitivity analysis  

4.2.1 Chinook Salmon Sensitivity Analysis 

For Chinook salmon, the importance of season in the sensitivity analysis diverges from the 

findings in the risk variation section where season has no impact on the Chinook salmon 

endpoint node. This result is possible because a sensitivity analysis determines relative 

importance compared to other variables in the model. Therefore, while season has little effect 

on the Chinook salmon endpoint node it has more of an effect that most other variables.  

 

For the toxicological response nodes, zebrafish spontaneous movement had the highest mutual 

information. The driving factor in the high mutual information of the Zebrafish Spontaneous 

Movement node is that the concentration response curve model (Figure S19) for this response. 

It includes higher percentage effected than the growth response models (Figure S18 & S21) 

which only go up to approximately thirty percent. It is higher than Daphnia mortality (Figure S20) 

because it is directly connected to the Fish Toxicological Effects node whereas the invertebrate 
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node is an intermediate node that reduces the influence has on the fish affected nodes (Figure 

S4). 

 

Patterns in the sample matrix nodes were similar across all four risk regions (Figure S14). The 

highest concentrations of TWP were found in sediment and stormwater runoff (Figure S2) 

therefore it makes sense that these two sample matrices have the highest mutual information. 

However, small sample sizes for sediment and stormwater samples in each risk region (Table 

S1) could mean that high levels of uncertainty are also driving this result.  

 

TWP numbers are very low in wastewater effluent data (Figure S2). This limits the importance of 

effluent treatment type to the fish affected nodes in the sensitivity analysis. Particle types that 

are more prevalent in wastewater treatment effluent may see greater variation based on 

wastewater effluent treatment type.  

 

4.2.2 Northern Anchovy Sensitivity Analysis 

The varying importance of season to the Northern Anchovy Affected node in the sensitivity 

analysis can be explained by variations in freshwater flow affecting salinity. This agrees with my 

previous analysis in the risk variation section that seasonal changes in primary producers 

caused by salinity changes is an important factor in Northern anchovy abundance in the San 

Francisco Bay.  

 

For the sample matrix nodes, San Francisco Bay deviates from the other risk regions because 

percent mutual information is highest for sediment (Figure S15). In all other risk regions, 

stormwater has the highest percent mutual information. In San Francisco Bay the stormwater 

node does not have the highest uncertainty of all the sample matrices. The sediment node has 

the highest uncertainty for that risk region. In contrast, for all other risk regions, stormwater has 
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the highest uncertainty. This is driving the mutual information up for sediment in San Francisco 

Bay because the higher uncertainty leads to higher percent likelihood that the concentrations 

are in the higher states.  

 

 4.2.3 Sensitivity analysis for Fish Toxicological Effects Node 

The mutual information for season is zero in the sensitivity analysis for the Fish Toxicological 

node (Figure S17). This suggests that season plays an important role in fish abundance but not 

in TWP concentration. The only TWP concentration data with a seasonal component is surface 

water sample data. Therefore, most of the changes in distribution caused by season were due 

to changing abundance of fish and not changing concentrations in TWP concentrations. 

Seasonal sampling for each sample matrix could change the influence of season in the model. If 

seasonal sampling data were available for stormwater, it is likely that season would play a more 

important role in the Fish Toxicological Effects node. 

 

4.2.4 Overview of Sensitivity Analysis 

While there are differences in the sensitivity analysis results for Chinook salmon and Northern 

anchovy, many patterns are retained between species. The model does not include factors to 

account for potential differences in Chinook salmon and Northern anchovy sensitivity or likeness 

to the model organism used, therefore this result is expected. However, future iterations of this 

model could include variables to represent differences in exposure or sensitivity for each 

species. Currently, this is not possible given limited data on these topics.  

 

For all sensitivity analyses performed, the toxicity response nodes had higher mutual 

information than the sample matrix nodes. The sample matrix nodes are further downstream 

than the toxicity response nodes and therefore have less influence on the final output in the fish 

affected nodes (Figure S4).  
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Magnitude changes in mutual information for nodes between risk regions can be attributed to 

the varying number of fish in each risk region. Fewer fish results in a reduction in magnitude of 

influence from all the model variables but it does not change which variables have the highest 

mutual information in each risk region. There are the fewest salmon in Coyote Creek (Figure 

S4) however low sample numbers from that risk region, cause uncertainty to be high. This 

skews the probability in the Chinook salmon abundance nodes into the higher states resulting in 

the appearance of higher abundance in the model. Suisun Bay has the highest number of out-

migrating salmon smolt followed by San Pablo Bay and San Francisco Bay. As fish swim farther 

into the marine part of the estuary their abundance decreases. For Northern Anchovy the 

pattern is less apparent because their relative abundance is higher in every risk region (Figure 

S5). This results in lower uncertainty and more normally distributed distributions in the northern 

anchovy abundance nodes in the model (Figure S6).  

 

4.4 Counterfactual Analysis 

There are very few changes from the lowest concentration scenario to the current concentration 

scenario for both fish species (Figure S9 & S10). This is because the current scenario has very 

low concentrations of TWP and is very similar to the lowest concentration scenario. The highest 

concentrations scenario produces more of a change because it is many times higher than either 

the lowest or current concentration scenario. Variations in all scenarios are more apparent for 

Northern anchovy than Chinook salmon because the number of Chinook salmon is much lower 

than Northern anchovy.  

 

4.5 Uncertainty in the Model 

There are many sources of uncertainty in this risk assessment. Uncertainty is inherent to any 

ecological model because it is an imperfect representation of a stochastic system. Additionally, 
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microplastics present their own unique challenges to model. Much of this uncertainty can be 

attributed to how new the field of microplastics is, how difficult and expensive it is to conduct 

microplastic environmental monitoring studies, and a lack of quality microplastic toxicity data. 

The Next Steps sections will outline some ways in which microplastic monitoring and toxicity 

studies can reduce uncertainty in future iterations of this model or other models built for 

microplastic risk assessment.  

 

4.6 Summary of conclusions 

At the concentrations found in the San Francisco Bay, TWP present a relatively low risk to out-

migrating Chinook salmon and juvenile Northern anchovy. Environmental variables such as 

season play a larger role in the output of the fish affected nodes than TWP concentration did. At 

concentrations many times higher than currently found in the environment, acute exposure still 

had a relatively minimal effect on the fish output node. Higher numbers of Northern anchovy 

were affected when compared to Chinook salmon. Although uncertainty is high throughout the 

model a quantitative, spatially specific risk assessment is possible given the current microplastic 

data that is available. Future microplastic toxicity studies need to focus on developing data for 

dose-response modeling. Future monitoring studies need to consider how their data will be used 

in a risk assessment and what entities they are interested in predicting risk for.  

 

4.7 Contributions 

This study gives perspective and context to a contaminant of growing concern to the public. This 

style of risk assessment allows the integration of multiple stressors and also lists the knowledge 

gaps that lead to uncertainty. It demonstrates that a quantitative risk assessment is possible and 

should be prioritized for microplastics. The conceptual model and Bayesian Network create a 

framework that can be built upon and adapted for different study areas, endpoints, and decision-

making goals. The field of microplastics lacks direction resulting is studies that do not contribute 
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to critical gaps in research. This study and related publications and presentation will help to 

focus future studies on microplastics to the areas where data is needed the most.  

 

4.8 Limitations 

The scope of this study was limited to the species chosen as endpoints and to acute toxicity 

responses. It did not consider contaminants or water quality parameters that might affect toxicity 

or an organism ability to mitigate the effects of exposure to TWP. TWP are only one type of 

microplastics. They do not represent other microplastics and results should not be extrapolated 

to other types of plastic. Similarly, this study is specific to the San Francisco Bay and therefore 

extrapolations of results from this study to other sites or regions are not possible.  

 

Additionally, the scope of the study was limited TWP and does not consider risk involved in 

other parts of the plastic lifecycle. When considering the overall environmental risk that 

microplastics presents, it is important to remember the entire lifecycle of plastic. The production 

and end-of-life phases of the plastic cycle can be highly intensive and produce large amounts of 

greenhouse gases that contribute to climate change (Cabernard et al. 2021, Ford et al. 2022). 

Chemical contaminants produced and released during the extraction of oil and production/end-

of-life add additional stressors to the environment. The environmental risk of the entire plastic 

life cycle is not covered in this risk assessment and may not be a necessary part of every risk 

assessment for microplastics. However, when considering the comprehensive risk of a stressor 

as complex as microplastics, it is important to remember the bigger picture.  

 

4.9 Next Steps  

This risk assessment was focused on building a spatially specific, quantitative model that could 

continue to be developed as more information and data become available. In the next steps, I 

would like to add co-contaminants into the model so that they can be directly compared to TWP 
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toxicity. I would also like to determine how leachate data might be added into a risk assessment 

model with particle exposure data. Chronic toxicity data would be a useful addition because 

many organisms are in the San Francisco Bay for longer periods of time. Finally, I would like to 

use the monitoring and toxicity data available to me to create models like this one for other 

microplastic types. Another risk assessment is underway for the Sacramento-San Joaquin River 

Delta which will use the model in this thesis as its framework.  

 

4.9.1 Environmental Concentration and exposure needs  

The microplastic research community needs to consider how their work will be used for risk 

assessments. Currently, most data from microplastic studies would not be useful to a risk 

assessment framework. Many monitoring studies have neglected to sample study areas to meet 

the requirements of a risk assessment. Sampling sites are often not selected to cover the whole 

study area or relevant environmental compartments. Sampling should also sample across 

seasons because it is likely an important variable in most regions and may become more 

important with climate change. Finally, sampling methods must be developed to consider the 

specific management goals for the region.  

 

Toxicity studies generally do not produce enough data to create a dose-response model. Dose-

response models must be used in the place of point estimates such as EC50s. Point estimates 

reduce useful data to a single point and introduce large amounts of uncertainty. Dose-response 

models allow for a probabilistic analysis with predictive capabilities for varying concentrations. 

Additionally, a lack of set standards for microplastic toxicity testing has resulted in little 

continuity between laboratory studies. Protocols that ensure toxicity testing is conducted 

accurately are not always followed. For example, microplastics should be dialyzed prior to 

toxicity testing to remove chemicals that are sorbed weakly to the surface and would likely not 

be present on an environmental sample. 
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Risk assessments conducted for microplastics must also use better practices to accurately 

characterize risk. Microplastics should be considered a contaminant group rather than a single 

contaminant. There is strong evidence to suggest that differing composition, size, and shape 

can significantly change the transport of microplastic in the environment and the toxicity upon 

exposure. Microplastic risk assessments that fail to consider the unique ways in which 

microplastic characteristics affect risk will fail to produce useful risk assessments. Many 

microplastic risk assessment have attempted to assess risk for large spatial scales rather than 

specific regions. This method entirely neglects to consider the importance of management goals 

in defining risk and the many localized variables that affect risk for microplastics. Risk 

assessment must be spatially specific to accurately characterize risk.  

 

4.10 Microplastics and Risk Assessment 

Microplastics are a major concern to the public and have prompted governments to begin 

regulatory processes. However, decision making should not occur without first understanding 

the actual risk a stressor presents. Risk assessments are critical for determining the risk TWP 

and other microplastics present to the environment. They contextualize the stressors in the 

environment and provide insight for decision makers. Without information on risk, individual 

actions and regulatory decisions related to microplastics may not useful or may even make 

escalate the problem. Therefore, it imperative that future microplastic studies focus on 

producing results that will support comprehensive risk assessment. 
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Figures and Tables 
 
SM1. Plastic Sampling and Fish Abundance Data 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S1. Map of SFEI microparticle sample sites in each risk region. Locations of fish, 
sediment, stormwater, wastewater effluent, and surface water trawls are shown. Effluent sample 
locations are shown for the collection point and not for effluent outfall location.  
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Table S1. Number of samples taken in each risk region and sample matrix for the SFEI 
microparticle study. Effluent counts are for outfall locations and not sample collection points.   
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample matrix Suisun Bay San Pablo Bay San Francisco Bay Coyote Creek Total 
Effluent 4 2 4 7 17 
Surface 2 18 17 7 44 

Stormwater 0 4 7 2 13 
Sediment 2 5 6 5 18 
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Figure S2. Frequency distributions for rubber and potentially rubber (together) particles 
concentrations by risk region and sample matrix. There were no stormwater data collected for 
Suisun Bay. Note that the x-axis is not scaled the same for each sample matrix graph so that 
variations in distributions are apparent.  
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Figure S3. Frequency distributions for the (A) length and (B) width of rubber and potentially 
rubber particles collected from the study site broken down by sample matrix. The blue line 
shows the average diameter of tire particles used in toxicity study for Cunningham et al. (2022). 
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Figure S4. Histograms of out-migrating Chinook salmon abundance (CPUE) by number of 
records in the CDFW dataset for out-migrating Chinook salmon abundance. Graphs are 
separated by season and risk region to see spatial and temporal variations. Chinook salmon 
abundance is highest in Suisun Bay and San Pablo Bay. Clear patterns in seasonal variations 
are not present. 
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Figure S5. Histogram of Age 0 Northern anchovy abundance (CPUE) by number of records in 
the CDFW dataset for Northern anchovy abundance. Graphs are separated by season and risk 
region to see spatial and temporal variations. Northern anchovy abundance is highest in San 
Francisco Bay and San Pablo Bay with clear seasonal variations in both these regions.  
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SM2. Bayesian Network Node Distributions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S6. Fish abundance nodes from the Bayesian Network model. I selected each risk 
region in the model and the resulting outputs in the fish abundance node are presented in this 
figure. Chinook salmon distributions change minimally for each risk region with Coyote Creek 
having the highest uncertainty. Variations in the distributions are more apparent for Northern 
anchovy with Suisun Bay having the lowest abundance of fish. Note that the states are 
discretized into log scale.  
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Figure S7. TWP concentration nodes from the Bayesian Network model. I selected each risk 
region and the resulting outputs in the TWP concentration nodes are presented in this figure. 
The most particles were found in stormwater and sediment. No data was collected for 
stormwater in Suisun Bay so the model inputs an even distribution to indicate a lack of data. 
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SM 3. Fish Affect Node Distribution Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S8. Frequency distributions for Chinook Salmon Affected and Northern Anchovy 
Affected nodes from the Bayesian Network model. I selected each risk region in the model and 
graphed the distribution in the fish affected nodes. The states in those nodes are on the x-axis 
and the y-axis is the percent of values in each of those states. The number of Chinook salmon 
affected changes minimally between each risk region, but variation is more apparent for 
Northern anchovy. Suisun Bay has the lowest number of Northern anchovies effected because 
it has the highest number of values in the 0 to 1 node. The other risk regions have distributions 
skewed towards the higher states.  
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Figure S9. Frequency distributions for the Chinook Salmon Affected node from the Bayesian 
Network model. To see seasonal variation, I selected each risk region and each season. I then 
graphed the output for the Chinook Salmon Affected node. Variation is minimal across all 
seasons and risk regions. 
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Figure S10. Frequency distributions for the Northern Anchovy Affected node from the Bayesian 
Network model. To see seasonal variation, I selected each risk region and each season. I then 
graphed the output for the Chinook Salmon Affected node. In all risk regions, values are skewed 
towards lower states in the wet season when compared to the dry season.  
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Figure S11. Frequency distributions for the Chinook Salmon Affected node from the Bayesian 
Network model. To create different exposure scenarios, I selected different states in the TWP 
concentration nodes and graphed output. The lowest scenario is 0 to 4.88 e -5 particles/mL , the 
current scenario is all states left as they are in Figure S7, and the highest state is 285 to 1.98e6 
particles/mL. I also selected each risk region to see how this would affect the different 
scenarios. Distributions shifted minimally for all scenarios and risk regions with slightly more fish 
affected in the highest concentration scenario.  
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Figure S12. Frequency distributions for the Northern Anchovy Affected node from the Bayesian 
Network model. To create different exposure scenarios, I selected different states in the TWP 
concentration nodes and graphed output. The lowest scenario is 0 to 4.88 e -5 particles/mL , the 
current scenario is all states left as they are in Figure S7, and the highest state is 285 to 1.98e6 
particles/mL. I also selected each risk region to see how this would affect the different 
scenarios. Distributions shifted minimally between the lowest and current scenario and shift 
higher for the highest concentration scenario.  
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SM4. Sensitivity Analysis Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S13. Sensitivity analysis for the Chinook Salmon Affected node by risk region. Percent 
mutual information is the measurement used to evaluate dependence between two nodes. 
Higher mutual information indicates a higher level of dependency between that node and the 
Chinook Salmon Affected node. GR = Growth reduction, SM = Spontaneous movement.  
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Figure S14. Sensitivity analysis for the Chinook Salmon Affected node by risk region for the 
sample matrix nodes. Percent mutual information is the measurement used to evaluate 
dependence between two nodes. Higher mutual information indicates a higher level of 
dependency between that node and the Chinook Salmon Affected node. GR = Growth 
reduction, SM = Spontaneous movement.  
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Figure S15. Sensitivity analysis for the Northern Anchovy Affected node by risk. Percent mutual 
information is the measurement used to evaluate dependence between two nodes. Higher 
mutual information indicates a higher level of dependency between that node and the Northern 
Anchovy Affected node. GR = Growth reduction, SM = Spontaneous movement.  
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Figure S16. Sensitivity analysis for the Northern Anchovy Affected node by risk for the sample 
matrix nodes. Percent mutual information is the measurement used to evaluate dependence 
between two nodes. Higher mutual information indicates a higher level of dependency between 
that node and the Northern Anchovy Affected node. GR = Growth reduction, SM = Spontaneous 
movement.  
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Figure S17. Sensitivity analysis for the Fish Toxicological Effects node by risk region. Percent 
mutual information is the measurement used to evaluate dependence between two nodes. 
Higher mutual information indicates a higher level of dependency between that node and the 
Fish Toxicological Effects node. GR = Growth reduction, SM = Spontaneous movement.  
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SM5. Dose response curves for fish and invertebrate exposed to micro TWP 
 
 

  
Figure S18. Concentration response curve for final aspect ratio (width/length) of silversides 
(Menidia beryllina) exposed to TWP. The DRC package in Netica was used to create the 
concentration-response curve using an exponential decay model with three parameters. The 
parameters are c = 0.321372, d = 0.480667, e = 119.773263. 
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Figure S19. Concentration response curve for absence of spontaneous movement for Zebrafish 
(Danio rerio) exposed to TWP. The DRC package in Netica was used to create the 
concentration-response curve using a log logistic model with three parameters. The parameters 
are b = -13.4781, d = 66.0637, e = 216584.2768. 
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Figure S20. Concentration response curve for mortality of Daphnia magna exposed to TWP. 
The DRC package in Netica was used to create the concentration-response curve using a log 
logistic model with three parameters. The parameters are b = -6.2454, d = 81.2282, e = 
477828.5167. 
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Figure S21. Concentration response curve for final aspect ratio of mysid (Americamysis bahia) 
exposed to TWP. The DRC package in Netica was used to create the concentration-response 
curve using an exponential decay model with three parameters. The parameters are c = 
8.1116e-1, d = 1.1837, e = 6.1722e-3.  
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Figure S22. The connection between the conceptual model and the Bayesian network model. 

(A) The framework that connects the major pieces of the system, (B) the conceptual model 

before data is added in, and (C) the Bayesian network model that uses data to populate the 

 

 

 

A. Relative Risk Model Framework 

B. Tire wear particle conceptual model 

C. Tire wear particle Bayesian Network Model 
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