
Western Washington University Western Washington University

Western CEDAR Western CEDAR

WWU Honors College Senior Projects WWU Graduate and Undergraduate Scholarship

Spring 2022

Breeding Sweet Corn for Vitamin A Breeding Sweet Corn for Vitamin A

Sam Herr

Dan Pollard

Follow this and additional works at: https://cedar.wwu.edu/wwu_honors

 Part of the Biology Commons

Recommended Citation Recommended Citation
Herr, Sam and Pollard, Dan, "Breeding Sweet Corn for Vitamin A" (2022). WWU Honors College Senior
Projects. 591.
https://cedar.wwu.edu/wwu_honors/591

This Project is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at
Western CEDAR. It has been accepted for inclusion in WWU Honors College Senior Projects by an authorized
administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

https://cedar.wwu.edu/
https://cedar.wwu.edu/wwu_honors
https://cedar.wwu.edu/grad_ugrad_schol
https://cedar.wwu.edu/wwu_honors?utm_source=cedar.wwu.edu%2Fwwu_honors%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=cedar.wwu.edu%2Fwwu_honors%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/wwu_honors/591?utm_source=cedar.wwu.edu%2Fwwu_honors%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:westerncedar@wwu.edu

Breeding Sweet Corn for Vitamin A
Sam Herr

2022-06-13

Introduction
This tutorial aims to inform readers on how to perform a multi-kernel genomic selection. The term

“multi-kernel” is meant in the sense that we will have multiple kernels with different subsets of single

nucleotide polymorphisms (SNPs) that will be weighted differently with respect to the phenotype or trait.

A multi-kernel model can improve prediction accuracy by separating non-biologically informative SNPs

from those that have an impact of the trait of interest. Following this tutorial’s steps, you, the reader,

should be able to apply different types of biological information to increase the prediction accuracy of

various types of genomic selection models.

Dataset
I want to start this tutorial off with a discussion of the dataset. We will use data from multiple papers, but

the primary resource will be from “Transcriptome-wide association and prediction for carotenoids and

tocochromanols in fresh sweet corn kernels” by Jenna Hershberger et al. Specifically, the data was

collected from the Gore Lab’s data repository, given

here https://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs/Hershberger_S

weetCornRNA_2021.

In the study, the authors generated gene expression from young kernels of 308 lines of corn. This gene

expression was then correlated by transcriptome-wide association studies (TWAS) to the abundance of

carotenoids gathered by Baseggio et al. 2021. The authors then used gene expression and genomic data to

predict various carotenoids and tocochromonals. They found that the combination of gene expression and

genomic information can improve prediction accuracy. They also found previously uncorrelated genes to

specific tocochromonals and carotenoid abundance.

This tutorial will focus solely on the carotenoid data from the paper, and before we go any further, let’s

first discuss what a carotenoid is. Carotenoids are a family of red, yellow, and orange organic pigments

that include pigments with vitamin A activity, which means the compound can be converted into retinol.

The pigments with vitamin A activity include beta-carotene and beta cryptoxanthin. Sufficient levels of

vitamin A are essential for a healthy life as deficiency can lead to weakened immune function, blindness,

and ultimately death from severe infection. There is a need for increased access to vitamin A as there are

more than 127 million preschool-aged children and 7 million pregnant women who are vitamin A

deficient in the world (West 2002). Other carotenoids that cannot be converted into retinol include lutein

and zeaxanthin, which are important for visual function.

Here is the carotenoid data:

####Phenotype Data

https://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs/Hershberger_SweetCornRNA_2021
https://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs/Hershberger_SweetCornRNA_2021

suppressPackageStartupMessages(library(tidyverse,warn.conflicts = F))

#Read in file

vitA <- read.csv("carotenoid_transformed_BLUPs-converted.csv",1)

#Get correct column names

names(vitA) <- vitA[1,]

colnames(vitA) <- c("Sample.ID", "Additional.ID.name", "GBS.ID",

 "Endosperm.mutation", "Antheraxanthin",

 "beta.Carotene", "beta.Cryptoxanthin", "Lutein",

 "Violaxanthin", "Zeaxanthin", "Zeinoxanthin",

 "Other.carotenes", "alpha.Xanthophylls",

 "beta.Xanthophylls", "Total.xanthophylls",

 "Total.carotenes", "Total.carotenoids",

 "beta.Carotene_over_beta.cryptoxanthin",

 "beta.Carotene_over_sum_beta.cryptoxanthin_and_zeaxanthi

n",

 "beta.Cryptoxanthin_over_zeaxanthin",

 "Zeinoxanthin_over_lutein",

 "beta.Xanthophylls_over_alpha.xanthophylls",

 "Total.carotenes_over_total.xanthophylls",

 "X")

colnames(vitA) <- gsub("[.]", "_", colnames(vitA))

#Remove unwanted (the last) column and row

vitA <- vitA[-c(1,lengths(vitA)[1]),]

vitA <- vitA[,-length(vitA)]

#Inspect the phenotypes

head(vitA[,c(1,5,6,7,8)])

Sample_ID Antheraxanthin beta_Carotene beta_Cryptoxanthin Lutein

2 2 -0.035 -1.329 -1.175 1.573

3 257A9 -0.240 -0.456 -1.167 0.376

4 34f 0.688 -0.095 0.784 2.515

5 83610b 0.351 -1.062 -1.403 0.279

6 A10579 0.158 -1.024 -0.522 1.856

7 A632_susu -0.804 -0.786 -1.491 -0.119

print(dim(vitA))

[1] 308 23

#save as an .rds for ease of access

saveRDS(vitA, file = "pheno.rds")

For every Sample ID (denoting the line of corn), there are 19 phenotypes, including lutein and beta

carotene. The values for each phenotype are the best unbiased linear predictor, which is the genomic

proportion of the observed value. This is done through mixed modeling. If interested, read more

here: https://en.wikipedia.org/wiki/Best_linear_unbiased_prediction and https://plant-breeding-

genomics.extension.org/estimating-heritability-and-blups-for-traits-using-tomato-phenotypic-data/.

For each phenotypic value, we will be using genetic information in the form of bi-allelic SNPs for

predictions.

Let’s look at the genetic data:

####Genotype Data

#Open genetic information that is encoded as a Hapmap file

full_snp_mat <- as.data.frame(read.delim("Ion_11k_401_v4.hmp.txt"))

#Function to convert characters to their respective numeric value

#2 represents major homozygote, 1 represents heterozygotes, 0 represents mino

r homozygote

#NA values are set 1, following GAPIT imputation rules

convert_to_numeric <- function(snp_row){

 num = unlist(strsplit(snp_row[2], "/"))

 snp_row[snp_row == num[1]] = 2

 snp_row[snp_row == num[2]] = 0

 snp_row[snp_row %in% c("N","R","Y", "S","W","K","M")] = 1

 return(snp_row)

}

#apply function to every row and then transpose matrix for future ease

full_snp_mat <- as.data.frame(t(apply(full_snp_mat, 1, convert_to_numeric)))

#convert select columns to numeric for future functions

full_snp_mat[,12:length(full_snp_mat)] <- as.matrix(sapply(full_snp_mat[,12:l

ength(full_snp_mat)], as.numeric))

https://en.wikipedia.org/wiki/Best_linear_unbiased_prediction
https://plant-breeding-genomics.extension.org/estimating-heritability-and-blups-for-traits-using-tomato-phenotypic-data/
https://plant-breeding-genomics.extension.org/estimating-heritability-and-blups-for-traits-using-tomato-phenotypic-data/

full_snp_mat$chrom <- as.integer(full_snp_mat$chrom)

full_snp_mat$pos <- as.integer(full_snp_mat$pos)

#Correct label column and row names

colnames(full_snp_mat) <- gsub("\\..*" ,"",colnames(full_snp_mat) , perl = T)

colnames(full_snp_mat) <- gsub("^X", "", colnames(full_snp_mat), ignore.case

=F, perl = T)

rownames(full_snp_mat) <- full_snp_mat$rs

#Save dataframe for subsetting

saveRDS(full_snp_mat, "full_SNP_M.rds")

#keeps only markers for vitamin A genotypes

vitA_marker_mat <- full_snp_mat %>% select(any_of((vitA$Sample_ID)))

vitA_marker_mat <- vitA_marker_mat[,vitA[,1]]

vitA_marker_mat <- t(vitA_marker_mat)

head(vitA_marker_mat[,c(1:5)])

S1_1000282 S1_2091448 S1_2307029 S1_2469093 S1_2691818

2 2 2 2 2 2

257A9 2 2 2 2 0

34f 2 2 2 2 0

83610b 2 0 0 2 2

A10579 2 2 2 2 0

A632_susu 2 0 0 2 2

#Save matrix for predictions

saveRDS(vitA_marker_mat, "vitA_M.rds")

As we can see from the first five rows and columns of our genotype matrix, we now have a numeric

representation of genetic markers for each line. The next step in this tutorial is to grasp how genomic

selection works, in other words how we can use genetic information to predict phenotypes.

References:

Baseggio, M., Murray, M., Magallanes‐Lundback, M., Kaczmar, N., Chamness, J., Buckler, E. S., … & Gore,

M. A. (2020). Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in

sweet corn. The Plant Genome, 13(1), e20008.

Hershberger, J., Tanaka, R., Wood, J. C., Kaczmar, N., Wu, D., Hamilton, J. P., … & Gore, M. A. (2021).

Transcriptome-wide association and prediction for carotenoids and tocochromanols in fresh sweet corn

kernels.

West, K. P. (2002). Extent of vitamin A deficiency among preschool children and women of reproductive

age. Journal of Nutrition, 132, 2857S–2866S.

Part 2: Theory of Genomic Selection
Sam Herr

2022-06-13

Genomic Selection
Genomic selection, also known as Genomic Prediction, is a modeling technique used in plant breeding to

increase the rate of genetic gain. This provides both a time and cost-benefit compared to conventional

breeding, especially for complex traits.

The basic idea of genomic selection is to use all possible genetic information (usually in the form of single

nucleotide polymorphisms (SNPS)) to correlate the genome to the phenotype of interest.

Let’s get some theory behind genomic selection and understand some of the most common models used.

Theory behind the models
A general random model for genomic selection is:

Y=μ+Xβ+ϵY=μ+Xβ+ϵY=μ+Xβ+ϵ,

Where YYY is an m×1m×1m×1 vector containing phenotypic information, μμμ is the overall mean, X

is a m×nm×nm×n matrix, with mmm individuals and nnn genetic markers, and βββ is

a n×1n×1n×1 vector of random additive effect size of each marker and ϵϵϵ is the random error drawn

from a N(0,σe)N(0,σe)N(0,σe). Different models have different distributions from which βββ is

drawn, however, a common distribution would be that β∼N(0,σ2g)β∼N(0,σ2g)β∼N(0,σ2g). This

form of the model is the essence of rrBLUP (Ridge Regression Best Linear Unbiased Predictor) (Meuwissen

et al., 2001). The assumption of this model is that every the marker effect comes from the same

distribution, while in reality, that might not be the case for some phenotypic traits. This assumption can

cause markers with large effects to be underestimated.

As in many cases for plant or livestock breeding, the number of markers, m, can greatly exceed the

number of individuals phenotyped, n, also known as “The Curse of Dimensionality”(Wikipedia

link: https://en.wikipedia.org/wiki/Curse_of_dimensionality). This curse can be computationally expensive

and cause overfitting. Thus, many scientists have turned to use a genomic selection known as GBLUP

(Genomic Best Linear Unbiased Predictors), which uses an additive genomic relationship matrix instead of

marker values to predict phenotypic values. The general form of GBLUP is as follows:

Y=μ+g+ϵY=μ+g+ϵY=μ+g+ϵ,

Where ggg is a random parameter drawn from N(0,Gσ2g)N(0,Gσ2g)N(0,Gσ2g). GGG denotes

a m×mm×mm×m genomic relationship matrix, calculated by G=WW′γG=WW′γG=WW′γ. WWW is

a nxmnxmnxm matrix where wij=xij–2piwij=xij–2piwij=xij–2pi, where pipipi is the allele

frequency of a marker and jjj is the jth individual. γ=2∑(pi(1−pi))γ=2∑(pi(1−pi))γ=2∑(pi(1−pi)).

GBLUP has been shown to be mathematically equivalent to rrBLUP and falls victim to the same

assumption that every marker effect is assumed to have the same effect size distribution. These models also

https://en.wikipedia.org/wiki/Curse_of_dimensionality

assume there is only an additive (linear) effect of the markers. While for some traits, this might be true,

many traits have epistatic and dominance effects that determine the phenotype. In order to account for

non-linear interactions, we can use RKHS (Reproducing Kernel Hilbert Space).

A helpful way to think about RKHS is that it is very similar to GBLUP but has the form:

Y=μ+g(X)+ϵY=μ+g(X)+ϵY=μ+g(X)+ϵ

Where g(X)g(X)g(X) is an unknown function of genetic effects. This differs from GBLUP, where the

assumption is ggg is a linear function of genetic effects.

If you are interest in further learning about these models, Morota et al. 2014 does a great job at explaining.

www.frontiersin.org/journal/10.3389/fgene.2014.00363/abstract

Now that we have talked about different types of genomic selection models, lets give one a try.

rrBLUP
We will use the package rrBLUP for performing rrBLUP and GBLUP models.

#load packages and data

suppressPackageStartupMessages(library(tidyverse))

library(rrBLUP)

marker_matrix <- readRDS("vitA_M.rds")

carotenoids <- readRDS("pheno.rds")

set.seed(2022)

#scale marker matrix

marker_scaled <- scale(marker_matrix, center = TRUE, scale = FALSE)

#get phenotype values

#Picked Antheraxanthin as an example

observed <- as.numeric(carotenoids$Lutein)

##lets create a training set where will test 30% and train the model on 70%

#get a vector that matches the total number of individuals

num_individuals <- 1:length(observed)

#randomly grab individuals

test <- sample(x = num_individuals, size = round(length(observed) *0.3), repl

ace = F)

#make training and testing datasets

test_observed <- observed[test]

test_marker <- marker_scaled[test,]

train_marker <- marker_scaled[-test,]

train_observed <- observed[-test]

#run mixed.solve which performs RR-BLUP

RRBLUP <- mixed.solve(y = train_observed, Z = train_marker, K = NULL)

#Get prediction values by multipling the marker coefficients "u" by the scale

d matrix

#then add the intercept term, "beta"

predicted <- test_marker %*% RRBLUP$u + as.numeric(RRBLUP$beta)

#get correlation

cor(test_observed, predicted)

[,1]

[1,] 0.6895897

#Plot to get a general sense of the prediction

#Prediction on the x-axis and Observations on the y-axis

ggplot(data.frame("Pred" = predicted, "Obs" = test_observed), aes(x = Obs, y

= Pred)) + geom_point()

rrBLUP performs relatively well as given by the pearson’s correlation coefficient and seen in the graph but

one thing to cautious about is overfitting due to the curse of dimensionality.

GBLUP
To deal with this curse, we will perform GBLUP. The number of predictors will be reduced from the

number of SNPs to the number of lines, from 10,773 to 308. Before we jump into GBLUP, we first have to

create a realized genomic matrix.

The equation for this version of realized genomic matrix:

G=ZZ′2∑ipi(1−pi)G=ZZ′2∑ipi(1−pi)G=ZZ′2∑ipi(1−pi)

Where ZZZ is a scaled genomic marker matrix, where each marker is subtracted by 2(pi–0.5)2(pi–
0.5)2(pi–0.5). pipipi is the frequency of minor allele for ithithith SNP. Z′Z′Z′ is the transpose of Z.

#Function taken from GAPIT

#creates genomic matrix 1 from Van Randen 2008

get_genomic_matrix <- function(snps){

 ##removes any SNPs that contain either all the major homozygote or all the

minor homozygote

 fa=colSums(snps)/(2*nrow(snps))

 index.non=fa>=1| fa<=0

 snps=snps[,!index.non]

 #get number of snps and then number of individuals

 nSNP=ncol(snps)

 nInd=nrow(snps)

 n=nInd

 ##allele frequency of second allele

 p=colSums(snps)/(2*nInd)

 P=2*(p-.5) #Difference from .5, multiple by 2

 snps=snps-1 #Change from 0/1/2 coding to -1/0/1 coding

 Z=t(snps)-P#operation on matrix and vector goes in direction of column

 #K=tcrossprod((snps), (snps))

 K=crossprod((Z), (Z)) #Thanks to Peng Zheng, Meng Huang and Jiafa Chen for

finding the problem

 adj=2*sum(p*(1-p))

 K=K/adj

 return(K)

}

With this function for the genomic matrix we can run GBLUP similarly to rrBLUP

set.seed(2022)

#get phenotype values

#Picked Lutein as an example

observed <- as.numeric(carotenoids$Lutein)

##lets create a training set where will test 30% and train the model on 70%

#get a vector that matches the total number of individuals

num_individuals <- 1:length(observed)

#randomly grab individuals

test <- sample(x = num_individuals, size = round(length(observed) *0.3), repl

ace = F)

#make training and testing datasets

test_observed <- observed[test]

train_genomic_matrix <- get_genomic_matrix(marker_matrix)

train_observed <- observed

train_observed[test] <- NA

#run mixed.solve which performs GBLUP

#Notice instead of Z =, we have K =

GBLUP <- mixed.solve(y = train_observed, K = train_genomic_matrix)

#get correlation with the estimated breeding values from GBLUP

cor(test_observed, GBLUP$u[test])

[1] 0.6895894

For our data set with a small amount of markers, the predictive accuracy for both GBLUP and rrBLUP

perform roughly the same. In some cases researchers have reported that rrBLUP can perform better than

GBLUP when there is strong linkage disequilibrium (Morota et al. 2014).

RKHS
Let’s introduce now RKHS modeling. For RKHS we will use the BGLR R package (Perez and de Los

Campos 2014) Luckily the process is very similar to GBLUP so we only have to make minor changes

library(BGLR)

#format data for BGLR

#number of iterations the MC chain will do and then throw away first 8000

nIter = 12000

burnIn = 8000

#Use K when using a genomic relationship matrix

#Use X when using a snp matrix

ETA <- list(G = list(K = train_genomic_matrix, model = "RKHS"))

fm <- BGLR(y = train_observed, ETA = ETA,

 nIter = nIter, burnIn = burnIn, verbose = F)

#get the predicted

predicted <- fm$yHat[test]

cor(test_observed, predicted)

[1] 0.6969568

From the results we can see that all three models perform roughly the same when predicting the same

lines of corn. But how will the model generalize to predicting many different lines of corn and how can

we do this without collecting more data. Luckily with a technique known as cross validation we can

randomly select different subsets of our dataset and some of the subsets to predict the other subsets. This

allows to understand how well the model works in a general sense and then be able to compare different

types of models more accurately

For our research, we will use five-fold cross validation. For five-fold cross validation, the data is split into

five partition. Four of the five partitions will be used as a training set to build the model, the fifth partition

will be used as a test set to test the model built by the other four partitions. This is repeated until each

partition gets its chance at becoming the test set.

 For our dataset we will be doing something a little different from a normal cross validation. This is

because sweet corn has two major mutations that make the corn sweet. The lines of corn we have, either

have one of the mutations or both. We want our partitions to accurately reflect the ratio of the mutations

that is in the original dataset. To do this we will do a weighted cross validation so that the proportion of

mutations remains constant throughout all the folds.

Here is the code.

#Creates the five fold cross validations for 10 replicates

#code taken from https://github.com/GoreLab/SweetCornRNA/tree/master/CODE

#Thank you Dr. Jenna Hershberger!

set.seed(2020)

#Repetitions

n.rep = 10

#folds

n.fold = 5

#Initialize matrices

df.CV.raw <- data.frame("Sample.ID" = carotenoids$Sample_ID)

mat <- matrix(NA, nr = nrow(df.CV.raw), nc = n.rep)

colnames(mat) <- paste0("Rep", formatC(1:n.rep, width = 2, flag = "0"))

#Creates the cross validation for every repetition.

#Each fold has an equal proportion of different mutation types

for (r in 1:n.rep) {

 #get number of each mutation type (3 total)

 n.tab <- table(carotenoids$Endosperm_mutation)

 #insert 0 for temporary table

 tmp.n.tab <- cumsum(c(0, n.tab))

 cv.num.with.names.all <- c()

 #iterate through each mutation type

 for (i in 1:length(n.tab)) {

 #get mutation type

 mu.type <- names(n.tab)[i]

 #select lines with mutation type

 sample.names <- carotenoids$Sample_ID[carotenoids$Endosperm_mutation == m

u.type]

 #create a vector length of mutation type

 seq.num <- (tmp.n.tab[i]+1):(tmp.n.tab[i+1])

 #modulate by n.folds to get

 cv.num <- 1 + seq.num %% n.fold

 #randomly sample to create folds

 cv.num.rand <- sample(cv.num)

 cv.num.with.names <- setNames(cv.num.rand, sample.names)

 cv.num.with.names.all <- c(cv.num.with.names.all, cv.num.with.names)

 }

 cv.num.with.names.all.ord <- cv.num.with.names.all[carotenoids$Sample_ID] #

sort

 mat[, r] <- cv.num.with.names.all.ord

}

df.CV <- cbind(df.CV.raw, mat)

write_rds(df.CV, "cv.rds")

Once we have our folds for each repetition we can now then perform cross-validation. Here is another

function written by Dr. Jenna Hershberger that performs the cross validation. We will do 10 repetitions of

five-fold cross-validation in order to get the mean and variance of the prediction accuracy.

#code taken from https://github.com/GoreLab/SweetCornRNA/tree/master/CODE

#Thank you Jenna Hershberger!

#10 repetitions of five fold cross validation of BGLR functions

myFun.Cv <- function(y.all, ETA, df.CV,

 nIter = 12000, burnIn = 8000,

 ...) {

 # number of repetitions and folds

 n.rep <- ncol(df.CV) - 1

 n.fold <- max(df.CV[, 2])

 # cross validation: n.rep/n.fold

 pred.mat <- matrix(NA, nr = nrow(df.CV), nc = n.rep)

 rownames(pred.mat) <- df.CV[, 1]

 colnames(pred.mat) <- colnames(df.CV)[2:ncol(df.CV)]

 #iterate for each repetition

 for (j in 1:n.rep) {

 # make an object to save prediction result

 pred.vec <- rep(NA, length(y.all))

 #iterate through each fold

 for (k in 1:n.fold) {

 # cv numbers

 cv.num <- df.CV[, j + 1]

 # cross validation

 y.obs <- y.all

 y.obs[cv.num == k] <- NA # mask phenotype

 # run prediction

 fm <- BGLR(y = y.obs, ETA = ETA,

 nIter = nIter, burnIn = burnIn, verbose = F

)

 pred.vec[cv.num == k] <- fm$yHat[cv.num == k]

 }

 # save

 pred.mat[, j] <- pred.vec

 }

 # output

 return(pred.mat)

}

Lets try out the function

#Can use ETA and observed values from previous models

ETA <- list(G = list(K = train_genomic_matrix, model = "RKHS"))

#call function for prediction

#pred.mat stores predicted values

pred.mat <- myFun.Cv(y.all = observed, ETA = ETA, df.CV = df.CV,

 nIter = nIter, burnIn = burnIn,verbose = F

)

#formatting for correlation

phenotype <- data.frame("Sample.ID" = carotenoids$Sample_ID, "Observed" = car

otenoids$Lutein)

pre.mat <- as.data.frame(pred.mat)

pre.mat <- cbind("Sample.ID" = row.names(pre.mat), pre.mat)

pre.mat <- pre.mat %>% pivot_longer(cols = starts_with("Rep"), names_to = "Fo

ld", values_to = "Predicted")

#Get Pearson's and Spearmean's value for each repetition

#take mean of all lines in one repetition

pre.mat <- pre.mat %>% full_join(phenotype, by = c("Sample.ID")) %>%

 drop_na(Predicted, Observed) %>%

 mutate(Predicted = as.numeric(Predicted),

 Observed = as.numeric(Observed)) %>%

 group_by(Fold) %>%

 mutate(PearsonCor = cor(Predicted, Observed, method = "pearson"),

 SpearmanRankCor = cor(Predicted, Observed, method = "spearman")) %>%

 dplyr::select(Fold, PearsonCor:SpearmanRankCor) %>% distinct()

meanCor <- mean(pre.mat$PearsonCor)

meanCor

[1] 0.6962613

We can see that the cross validation reproduces a similar value as our models without cross-validation.

This is great news as it means our models are working well! Now that we have an understanding of each

model, let’s discuss we should use multi-kernels.

Introduction to multi-kernel
rrBLUP, GBLUP, and RHKS all assume that every marker effect is from the same effect size distribution.

To relax this assumption, researchers have used a multi-kernel model or multiBLUP to test if separating

select markers into kernels can improve the prediction accuracy of the model. By creating multiple

kernels with subsets of SNPs, each kernel will have a different genomic relationship matrix, thus a

different variance. The form of a multi-kernel model is as follows:

Y=μ+∑gi+ϵY=μ+∑gi+ϵY=μ+∑gi+ϵ

Where gigigi denotes the ith kernel and is drawn from a N(0,Giσg)N(0,Giσg)N(0,Giσg).

With this model, SNP markers can have a varying impact on the prediction depending on the kernel

placed in. The kernels can be created using prior biological information. An example of this would be a

kernel containing markers that are associated with genes that are involved in pathways of a phenotype of

interest.

The next part of this tutorial will go over how we find biologically annotated SNPs.

References:

Meuwissen, T.H.E., B.J. Hayes, and M.E. Goddard. 2001. Prediction of total genetic value using genome-

wide dense marker maps. Genetics 157:1819–1829.

Morota, G., & Gianola, D. (2014). Kernel-based whole-genome prediction of complex traits: a review.

Frontiers in genetics, 5, 363.

Pérez, P., & de Los Campos, G. (2014). Genome-wide regression and prediction with the BGLR statistical

package. Genetics, 198(2), 483-495.

GWAS and TWAS
Sam Herr

2022-06-13

How to find biologically annotated SNPs

GWAS
How does one relate genetic information to phenotypes? The the answer to this question is highly sought

after by researchers. One current technique is known as Genome-Wide Association Studies (GWAS).

GWAS identifies SNPs (single nucleotide polymorphisms) that have an effect on the phenotype of interest.

GWAS is used when relationships in a population is unknown, i.e. for human population or diversity

panels in plants. The basic example of GWAS is a simple linear regression i.e.

Y=βi×XiY=βi×XiY=βi×Xi

where βββ is a marker (SNP) effect and XiXiXi is a SNP. This model will be done for every single SNP

and then the p-value of each marker effect will be corrected for using usually bonferroni or benjamini-

hochberg corrections. To improve selection of true significant SNPS from spurious false positives,

researchers use such techniques as accounting for kinship and population structure (read more about these

techniques with Hoffman 2013, linked

here https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075707)

With GWAS, we can select significant SNPs to include in the biologically annotated kernel for our multi-

kernel models. One caveat about including GWAS results is that the GWAS must be done on training

population or be from a different experiment. If you perform GWAS on the same population on which

you perform genomic selection, you will be guilty of “insider training” and will be arrested by the feds. All

jokes aside, “insider training” can lead to overfitting and your models will not predict outside genotypes as

well.

Luckily for us Owens et al (2014) (https://pubmed.ncbi.nlm.nih.gov/25258377/) provides a GWAS that we

can use. In order to use this data we must format it correctly.

suppressPackageStartupMessages(library(tidyverse))

full_snp_mat <- read_rds("full_SNP_M.rds")

#read in Owens et al 2014 GWAS results

gwas <- read.csv("gwasvitA.csv")

#fix problems with names

gwas$SNP.ID <- gsub(" ", "", gwas$SNP.ID)

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075707
https://pubmed.ncbi.nlm.nih.gov/25258377/

gwas$Trait <- gsub(substr(gwas$Trait[2], 1,3), "beta.", gwas$Trait)

gwas$Trait <- gsub(substr(gwas$Trait[43], 7,9), "alpha.", gwas$Trait)

gwas$Trait <- gsub("/", "_over_", gwas$Trait)

gwas$Trait <- gsub("(beta.cryptoxanthin+zeaxanthin) ", "sum_beta_cryptoxanthi

n_and_zeaxanthin", gwas$Trait, fixed =T)

gwas$Trait <- gsub("Total ", "Total_", gwas$Trait, fixed =T)

gwas$Trait <- gsub("[.]", "_", gwas$Trait)

#collapse multiple traits into one SNP

gwas <- gwas %>%

 group_by(SNP.ID) %>%

 summarise(Trait = toString(Trait))

#Select SNPs both in GWAS and our SNP dataset

gwas <- gwas[gwas$SNP.ID %in% full_snp_mat$rs,]

colnames(gwas) <- c("rs","pheno")

#save

write_rds(gwas, "owens_gwas_results.rds")

Looking at the dataset, we can we have the SNP id in the column “rs” and the trait in the column “pheno”.

We will use this dataset to select the SNPs for the GWAS biologically annotated kernel.

A tibble: 6 x 2

rs pheno

<chr> <chr>

1 S1_140888441 "Zeinoxanthin_over_lutein "

2 S10_135801294 "beta_Carotene_over_sum_beta_cryptoxanthin_and_zeaxanthin,

beta~

3 S10_136106072 "beta_Carotene_over_sum_beta_cryptoxanthin_and_zeaxanthin,

beta~

4 S2_24808106 "beta_Carotene_over_sum_beta_cryptoxanthin_and_zeaxanthin"

5 S8_136911861 "beta__over_alpha_Xanthophylls "

6 S8_138888278 "beta__over_alpha_Xanthophylls "

TWAS
Now that we have discussed a technique that relates DNA to phenotype, lets go a step up and talk

transcriptome-wide association studies (TWAS) that relates RNA to phenotype.

The model is basically the same as GWAS except we replace marker and marker effect with RNA

abundance and RNA abundance effect. Instead of reporting significant SNPs, TWAS instead reports the

genes that are most correlated with the phenotype of interest. Unlike GWAS, it is alright to perform

TWAS and then genomic selection on the same dataset as they use two different mechanisms to predict

the phenotype, RNA expression and DNA markers, respectively.

Like for GWAS, we have the results for a TWAS analysis from Hershberger et al 2022 linked

here https://acsess.onlinelibrary.wiley.com/doi/10.1002/tpg2.20197.

One might ask “How do we get genetic marker information from TWAS, if TWAS only reports which

genes are significant?” The quick answer would be the use of SNPs within the genes. The longer answer

involves linkage disequilibrium because some of the SNPs not in the significant genes will be linked to the

SNPs within the gene due to recombination. To include the linked SNPs, we will include SNPs within 250

kb of the start and end of each gene.

Let’s take a look at how to do that:

full_snp_mat <- read_rds("full_SNP_M.rds")

#Get TWAS Genes

twas <- read.csv("noharv_B73_pathway_ap_FDR0.05.csv")

#Format Data

twas <- twas %>% select(c("RefGen_v4.Gene.ID", "trait","chr","start","end"))

twas <- as.data.frame(twas)

twas$start <- as.integer(twas$start)

twas$end <- as.integer(twas$end)

#Determines which SNPs are near a gene

check_twas_gene_snps <- function(qtls,snpset){

 snpset <- snpset %>% filter(chrom == as.integer(qtls[3]))

 snpset <- snpset[between(snpset$pos, as.integer(qtls[4])-250000, as.integer

(qtls[5])+250000),]

 snpset <- cbind(snpset,"pheno" = replicate(lengths(snpset)[1],qtls[2]))

https://acsess.onlinelibrary.wiley.com/doi/10.1002/tpg2.20197

 return(snpset)

}

twas <- apply(twas,1, check_twas_gene_snps, full_snp_mat)

twas <- bind_rows(twas)

#Combine the same snps for different traits

twas <- twas %>%

 group_by(rs,chrom, pos) %>%

 summarise(pheno = toString(pheno))

`summarise()` has grouped output by 'rs', 'chrom'. You can override using

the

`.groups` argument.

#format and save

twas <- data.frame(rs = twas$rs, pheno = twas$pheno)

row.names(twas) <- twas$rs

twas$pheno <- gsub("[.]", "_", twas$pheno)

write_rds(twas, "twas.rds")

Wonderful! We have our TWAS SNPs that we can use to create another biologically annotated kernel.

The next part of tutorial will go over how to use these biologically annotated kernels to predict traits.

References:

Hershberger, J., Tanaka, R., Wood, J. C., Kaczmar, N., Wu, D., Hamilton, J. P., … & Gore, M. A. (2021).

Transcriptome-wide association and prediction for carotenoids and tocochromanols in fresh sweet corn

kernels.

Hoffman, G. E. (2013). Correcting for population structure and kinship using the linear mixed model:

theory and extensions. PloS one, 8(10), e75707.

Owens, B. F., Lipka, A. E., Magallanes-Lundback, M., Tiede, T., Diepenbrock, C. H., Kandianis, C. B., … &

Rocheford, T. (2014). A foundation for provitamin A biofortification of maize: genome-wide association

and genomic prediction models of carotenoid levels. Genetics, 198(4), 1699-1716.

Prediction and Plots
Sam Herr

2022-06-13

Multi-kernel Predictions
It is time to put everything together and use two kernels for prediciton and then compare to the models to

a single kernel.

We use the same techniques we used in part two but now apply them to two models. In order to do this

let’s introduce a couple of functions that will be used. There are two new functions needed to create the

two kernels for BGLR prediction, get_phenotype_subset, which select SNPs based upon their significance

in either GWAS or TWAS for a specific traits, and get_ETA_two_kernel, which creates a list needed for

BGLR.

#Load packages for part 4

suppressPackageStartupMessages(library(tidyverse))

suppressPackageStartupMessages(library(BGLR))

library(ggtext)

library(RColorBrewer)

options(dplyr.summarise.inform = FALSE)

#Functions:

#Subsets the Biologically annotated SNPS for the trait needed

get_phenotype_subset <- function(phenotype,full_snp_df, subset_snp_df){

 subset <- subset_snp_df[grepl(paste0("\\b",phenotype, "\\b"), subset_snp_

df$pheno),]

 sig_snps <- full_snp_df[,subset$rs]

 return(sig_snps)

}

#Returns biological annotated kernel and the other SNPs

get_ETA_two_kernel <- function(full_snp_df, subset_snp_df, getAmat){

 #makes sure there are SNPs associated with trait

 if(length(subset_snp_df) == 0){

 return(NA)

 #If SNPs exist, create ETA needed for BGLR

 }else{

 remove <- colnames(full_snp_df) %in% colnames(subset_snp_df)

 snps_rest <- get_genomic_matrix(full_snp_df[,!remove])

 if(getAmat == T){

 subset_snp_df <- get_genomic_matrix(subset_snp_df)

 }

 ETA <-list("G1" = list(K = subset_snp_df, model = "RKHS"),"G2"= list(K =

snps_rest, model = "RKHS"))

 }

 return(ETA)

}

#code taken from https://github.com/GoreLab/SweetCornRNA/tree/master/CODE

#Thank you Jenna Hershberger!

#10 repetitions of five fold cross validation of BGLR functions

myFun.Cv <- function(y.all, ETA, df.CV,

 nIter = 12000, burnIn = 8000,

 ...) {

 # number of repetitions and folds

 n.rep <- ncol(df.CV) - 1

 n.fold <- max(df.CV[, 2])

 # cross validation: n.rep/n.fold

 pred.mat <- matrix(NA, nr = nrow(df.CV), nc = n.rep)

 rownames(pred.mat) <- df.CV[, 1]

 colnames(pred.mat) <- colnames(df.CV)[2:ncol(df.CV)]

 #iterate for each repetition

 for (j in 1:n.rep) {

 # make an object to save prediction result

 pred.vec <- rep(NA, length(y.all))

 #iterate through each fold

 for (k in 1:n.fold) {

 # cv numbers

 cv.num <- df.CV[, j + 1]

 # cross validation

 y.obs <- y.all

 y.obs[cv.num == k] <- NA # mask phenotype

 # run prediction

 fm <- BGLR(y = y.obs, ETA = ETA,

 nIter = nIter, burnIn = burnIn, verbose = F

)

 pred.vec[cv.num == k] <- fm$yHat[cv.num == k]

 }

 # save

 pred.mat[, j] <- pred.vec

 }

 # output

 return(pred.mat)

}

#Genomic relationship matrix taken from GAPIT

#Same as the one used in part 2

get_genomic_matrix <- function(snps){

 fa=colSums(snps)/(2*nrow(snps))

 index.non=fa>=1| fa<=0

 snps=snps[,!index.non]

 nSNP=ncol(snps)

 nInd=nrow(snps)

 n=nInd

 ##allele frequency of second allele

 p=colSums(snps)/(2*nInd)

 P=2*(p-.5) #Difference from .5, multiple by 2

 snps=snps-1 #Change from 0/1/2 coding to -1/0/1 coding

 Z=t(snps)-P#operation on matrix and vector goes in direction of column

 #K=tcrossprod((snps), (snps))

 K=crossprod((Z), (Z)) #Thanks to Peng Zheng, Meng Huang and Jiafa Chen for

finding the problem

 adj=2*sum(p*(1-p))

 K=K/adj

 return(K)

}

Now that we have the functions,lets load in the datasets needed and run the models the prediction models

#Load in data

marker_matrix <- readRDS("vitA_M.rds")

carotenoids <- readRDS("pheno.rds")

df.CV <- readRDS("cv.rds")

twas <- readRDS("twas.rds")

gwas <- readRDS("owens_gwas_results.rds")

#inputs for BGLR

nIter <- 12000

burnIn <- 8000

#The trait we will be using is beta_Carotene_over_beta_cryptoxanthin

trait <- colnames(carotenoids)[18]

#Get Values

y.all <- as.numeric(carotenoids$beta_Carotene_over_beta_cryptoxanthin)

#Model for singel kernel

#Create ETA for BGLR

ETA.mGRM <- list("G" =list(K= get_genomic_matrix((marker_matrix)), model = 'R

KHS'))

pred.mat.mGRM <- myFun.Cv(y.all = y.all, ETA = ETA.mGRM, df.CV = df.CV,

 nIter = nIter, burnIn = burnIn, verbose = F

)

#prediction results

Single_Kernel <- data.frame("Sample_ID" = df.CV[, 1], "Model" = rep("Single K

ernel",lengths(pred.mat.mGRM)[1]),pred.mat.mGRM)

#Model for TWAS Kernel

ETA.TWAS <- get_ETA_two_kernel(marker_matrix,get_phenotype_subset(trait, mark

er_matrix, twas), getAmat = T)

pred.mat.twas_genes <- myFun.Cv(y.all = y.all, ETA = ETA.TWAS, df.CV = df.CV,

 nIter = nIter, burnIn = burnIn,verbose =

F

)

TWAS <- data.frame("Sample_ID" = df.CV[, 1], "Model" = rep("TWAS",lengths(pre

d.mat.mGRM)[1]), pred.mat.twas_genes)

#Model for GWAS Kernel

 ETA.GWAS <- get_ETA_two_kernel(marker_matrix,get_phenotype_subset(trait, ma

rker_matrix, gwas), getAmat = T)

 pred.mat.GWAS <- myFun.Cv(y.all = y.all, ETA = ETA.GWAS, df.CV = df.CV,

 nIter = nIter, burnIn = burnIn,verbo

se = F

)

 GWAS <- data.frame("Sample_ID" = df.CV[, 1], "Model" = rep("GWAS",lengths

(pred.mat.mGRM)[1]), pred.mat.GWAS)

#Model for combined GWAS and TWAS Kernel

 ETA.TWAS.GWAS <- get_ETA_two_kernel(marker_matrix,get_phenotype_subset(trai

t,marker_matrix,rbind(twas,gwas)),getAmat = T)

 pred.mat.TWAS.GWAS <- myFun.Cv(y.all = y.all, ETA = ETA.TWAS.GWAS, df.CV

= df.CV,

 nIter = nIter, burnIn = burnIn,verbose = F)

 TWAS.GWAS <- data.frame("Sample.ID" = df.CV[, 1], "Model" = rep("TWAS.GWA

S",lengths(pred.mat.mGRM)[1]),pred.mat.TWAS.GWAS)

#Lets take a look at the basic structure of our results

head(TWAS.GWAS)

Sample.ID Model Rep01 Rep02 Rep03 Rep0

4

2 2 TWAS.GWAS 0.29270640 0.43671244 0.2328164 0.39232063

9

257A9 257A9 TWAS.GWAS 0.35370855 0.16534074 0.3385098 0.24235675

5

34f 34f TWAS.GWAS 0.06979688 -0.16668201 0.1217844 0.00688442

7

83610b 83610b TWAS.GWAS 0.49694750 0.30342505 0.3731585 0.31722186

7

A10579 A10579 TWAS.GWAS 0.36824615 0.42500457 0.3987191 0.45219787

6

A632_susu A632_susu TWAS.GWAS -0.01485889 0.09667152 0.1105715 0.19817674

9

Rep05 Rep06 Rep07 Rep08 Rep09

2 0.29883718 0.41307553 0.244196450 0.267192111 0.21895718

257A9 0.35875534 0.25989514 0.276346883 0.213880347 0.29864482

34f -0.19237979 0.06582593 -0.189725892 0.072360503 -0.17980704

83610b 0.39002225 0.35334824 0.389908766 0.348952785 0.43569202

A10579 0.33480883 0.36873091 0.425079355 0.415519187 0.35526952

A632_susu 0.03250719 -0.08943678 0.006465834 -0.004734734 -0.01518195

Rep10

2 0.46528006

257A9 0.41048511

34f 0.04132985

83610b 0.31672282

A10579 0.36928462

A632_susu 0.04230054

We can see that the end results are the same as before where we have a 308 by 12 matrix where each line

has 10 predictions because of the 10 repetitions of the cross-validation. The Sample.ID column gives

information about the line and the Model column tells us the type of model used. It is important to have

these classifiers to create data visualizations.

The last step is to create a histogram to compare the predictive accuracy of different models.

#Function to get 95% Confidence intervals

getCI <- function(df){

 s <- sqrt(var(df))

 n <- length(df)

 return(qt(0.975,df=n-1)*s/sqrt(n))

}

#Format

blups_carot_long <- carotenoids[,c(1,18)] %>%

 pivot_longer(cols = beta_Carotene_over_beta_cryptoxanthin,

 names_to = "Trait", values_to = "Observed")

#Combine results data frames into one data frame

all_df <- list(Single_Kernel, GWAS, TWAS, TWAS.GWAS)

results <- bind_rows(all_df)

#create a long data frame for ggplot

results <- results %>% pivot_longer(cols = starts_with("Rep"), names_to = "

Fold", values_to = "Predicted")

#Get Pearsons and spearman correlation for each repetition

results <- results %>% full_join(blups_carot_long, by = c("Sample_ID")) %>%

 drop_na(Predicted, Observed) %>%

 mutate(Predicted = as.numeric(Predicted),

 Observed = as.numeric(Observed)) %>%

 group_by(Trait, Model, Fold) %>%

 mutate(PearsonCor = cor(Predicted, Observed, method = "pearson"),

 SpearmanRankCor = cor(Predicted, Observed, method = "spearman"))

#Change name

accuracy.df <- results %>%

 mutate(Model = as.character(Model)) %>%

 mutate(Trait = as.character(Trait)) %>%

 mutate(Trait = recode_factor(Trait,

 "beta_Carotene_over_beta_cryptoxanthin" = "\U0

3B2-Carotene/\U03B2-Cryptoxanthin"

))

#Get mean value for each model

summarized.accuracy.df <- accuracy.df %>%

 ungroup() %>%

 dplyr::select(-Fold) %>%

 group_by(Trait,Model) %>%

 summarize(MeanPearson = mean(PearsonCor),

 MeanSpearman = mean(SpearmanRankCor),

 pearsonCI = getCI(PearsonCor))

plot

ggplot(summarized.accuracy.df , aes(x = Trait, y = MeanPearson, fill = Model)

) +

 geom_bar(stat="identity", position = "dodge2", color="black") +

 geom_errorbar(aes(ymin=MeanPearson-pearsonCI, ymax=MeanPearson+pearsonCI),

 width=.2, position = position_dodge(0.9) # Width

of the error bars

)+

 scale_fill_manual(values=c("#66C2A5", "#8DA0CB", "#FC8D62", "#E78AC3"))+

 labs(y = "Predictive Ability (*r*)")+

 ggtitle("Comparison of GRM, TRM, GWAS, and TWAS")

For the one trait Beta-Carotene over Beta-Cryptoxanthin, we see slight improvements when using both a

GWAS and TWAS biologically-annotated kernel.

Conclusion
Yay! We made it to the end. We went from the basic of genomic selection to implementing a multiple

kernels using BGLR. I hope you learned some useful things that you can carry onward with you for

whatever scientific endeavors you take on. As a little note on our final results. While we see only a

minimal increase in prediction accuracy using biologically informed multi-kernel models in this tutorial.

The actual increase is much greater for certain traits when we use a much larger set of SNPs. The reason I

chose a small number of SNPs for this dataset was for the models to run quickly. If you are thinking of

doing genomic selection and know of prior information about your crop of choice, I suggest testing

whether these types of models will perform better.

	Breeding Sweet Corn for Vitamin A
	Recommended Citation

	Breeding Sweet Corn for Vitamin A
	Sam Herr
	2022-06-13

	Introduction
	Dataset

	Part 2: Theory of Genomic Selection
	Sam Herr
	2022-06-13

	Genomic Selection
	Theory behind the models
	rrBLUP
	GBLUP
	RKHS
	Introduction to multi-kernel

	GWAS and TWAS
	Sam Herr
	2022-06-13

	How to find biologically annotated SNPs
	GWAS
	TWAS

	Prediction and Plots
	Sam Herr
	2022-06-13

	Multi-kernel Predictions
	Conclusion

