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Breeding Sweet Corn for Vitamin A 
Sam Herr 

2022-06-13 

Introduction 
This tutorial aims to inform readers on how to perform a multi-kernel genomic selection. The term 

“multi-kernel” is meant in the sense that we will have multiple kernels with different subsets of single 

nucleotide polymorphisms (SNPs) that will be weighted differently with respect to the phenotype or trait. 

A multi-kernel model can improve prediction accuracy by separating non-biologically informative SNPs 

from those that have an impact of the trait of interest. Following this tutorial’s steps, you, the reader, 

should be able to apply different types of biological information to increase the prediction accuracy of 

various types of genomic selection models. 

Dataset 
I want to start this tutorial off with a discussion of the dataset. We will use data from multiple papers, but 

the primary resource will be from “Transcriptome-wide association and prediction for carotenoids and 

tocochromanols in fresh sweet corn kernels” by Jenna Hershberger et al. Specifically, the data was 

collected from the Gore Lab’s data repository, given 

here https://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs/Hershberger_S

weetCornRNA_2021. 

In the study, the authors generated gene expression from young kernels of 308 lines of corn. This gene 

expression was then correlated by transcriptome-wide association studies (TWAS) to the abundance of 

carotenoids gathered by Baseggio et al. 2021. The authors then used gene expression and genomic data to 

predict various carotenoids and tocochromonals. They found that the combination of gene expression and 

genomic information can improve prediction accuracy. They also found previously uncorrelated genes to 

specific tocochromonals and carotenoid abundance. 

This tutorial will focus solely on the carotenoid data from the paper, and before we go any further, let’s 

first discuss what a carotenoid is. Carotenoids are a family of red, yellow, and orange organic pigments 

that include pigments with vitamin A activity, which means the compound can be converted into retinol. 

The pigments with vitamin A activity include beta-carotene and beta cryptoxanthin. Sufficient levels of 

vitamin A are essential for a healthy life as deficiency can lead to weakened immune function, blindness, 

and ultimately death from severe infection. There is a need for increased access to vitamin A as there are 

more than 127 million preschool-aged children and 7 million pregnant women who are vitamin A 

deficient in the world (West 2002). Other carotenoids that cannot be converted into retinol include lutein 

and zeaxanthin, which are important for visual function. 

Here is the carotenoid data: 

####Phenotype Data 

https://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs/Hershberger_SweetCornRNA_2021
https://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs/Hershberger_SweetCornRNA_2021


suppressPackageStartupMessages(library(tidyverse,warn.conflicts = F)) 

#Read in file  

vitA <- read.csv("carotenoid_transformed_BLUPs-converted.csv",1) 

#Get correct column names 

names(vitA) <- vitA[1,] 

colnames(vitA)  <- c("Sample.ID", "Additional.ID.name", "GBS.ID", 

                     "Endosperm.mutation", "Antheraxanthin",  

                     "beta.Carotene", "beta.Cryptoxanthin", "Lutein", 

                     "Violaxanthin", "Zeaxanthin", "Zeinoxanthin",  

                     "Other.carotenes", "alpha.Xanthophylls", 

                     "beta.Xanthophylls", "Total.xanthophylls", 

                     "Total.carotenes", "Total.carotenoids", 

                     "beta.Carotene_over_beta.cryptoxanthin", 

                     "beta.Carotene_over_sum_beta.cryptoxanthin_and_zeaxanthi

n", 

                     "beta.Cryptoxanthin_over_zeaxanthin", 

                     "Zeinoxanthin_over_lutein",  

                     "beta.Xanthophylls_over_alpha.xanthophylls", 

                     "Total.carotenes_over_total.xanthophylls", 

                     "X") 

colnames(vitA) <- gsub("[.]", "_", colnames(vitA)) 

 

#Remove unwanted (the last) column and row 

vitA <- vitA[-c(1,lengths(vitA)[1]),] 

vitA <- vitA[,-length(vitA)] 

 

#Inspect the phenotypes 

head(vitA[,c(1,5,6,7,8)]) 

##   Sample_ID Antheraxanthin beta_Carotene beta_Cryptoxanthin Lutein 

## 2         2         -0.035        -1.329             -1.175  1.573 

## 3     257A9         -0.240        -0.456             -1.167  0.376 

## 4       34f          0.688        -0.095              0.784  2.515 

## 5    83610b          0.351        -1.062             -1.403  0.279 

## 6    A10579          0.158        -1.024             -0.522  1.856 

## 7 A632_susu         -0.804        -0.786             -1.491 -0.119 



print(dim(vitA)) 

## [1] 308  23 

#save as an .rds for ease of access 

saveRDS(vitA, file = "pheno.rds") 

For every Sample ID (denoting the line of corn), there are 19 phenotypes, including lutein and beta 

carotene. The values for each phenotype are the best unbiased linear predictor, which is the genomic 

proportion of the observed value. This is done through mixed modeling. If interested, read more 

here: https://en.wikipedia.org/wiki/Best_linear_unbiased_prediction and https://plant-breeding-

genomics.extension.org/estimating-heritability-and-blups-for-traits-using-tomato-phenotypic-data/. 

For each phenotypic value, we will be using genetic information in the form of bi-allelic SNPs for 

predictions. 

Let’s look at the genetic data: 

####Genotype Data 

 

#Open genetic information that is encoded as a Hapmap file 

full_snp_mat <- as.data.frame(read.delim("Ion_11k_401_v4.hmp.txt")) 

 

#Function to convert characters to their respective numeric value 

#2 represents major homozygote, 1 represents heterozygotes, 0 represents mino

r homozygote 

#NA values are set 1, following GAPIT imputation rules 

convert_to_numeric <- function(snp_row){ 

    num = unlist(strsplit(snp_row[2],  "/")) 

    snp_row[snp_row == num[1]] = 2 

    snp_row[snp_row == num[2]]  = 0 

    snp_row[snp_row %in% c("N","R","Y", "S","W","K","M")] = 1 

  return(snp_row) 

} 

 

#apply function to every row and then transpose matrix for future ease 

full_snp_mat <- as.data.frame(t(apply(full_snp_mat,  1, convert_to_numeric))) 

 

#convert select columns to numeric for future functions 

full_snp_mat[,12:length(full_snp_mat)] <- as.matrix(sapply(full_snp_mat[,12:l

ength(full_snp_mat)], as.numeric)) 

https://en.wikipedia.org/wiki/Best_linear_unbiased_prediction
https://plant-breeding-genomics.extension.org/estimating-heritability-and-blups-for-traits-using-tomato-phenotypic-data/
https://plant-breeding-genomics.extension.org/estimating-heritability-and-blups-for-traits-using-tomato-phenotypic-data/


full_snp_mat$chrom <- as.integer(full_snp_mat$chrom) 

full_snp_mat$pos <- as.integer(full_snp_mat$pos) 

 

#Correct label column and row names 

colnames(full_snp_mat) <- gsub("\\..*" ,"",colnames(full_snp_mat) , perl = T) 

colnames(full_snp_mat) <- gsub("^X", "", colnames(full_snp_mat), ignore.case 

=F, perl = T) 

rownames(full_snp_mat) <- full_snp_mat$rs 

 

#Save dataframe for subsetting 

saveRDS(full_snp_mat, "full_SNP_M.rds") 

 

#keeps only markers for vitamin A genotypes 

vitA_marker_mat <- full_snp_mat %>% select(any_of((vitA$Sample_ID))) 

vitA_marker_mat <- vitA_marker_mat[,vitA[,1]] 

vitA_marker_mat <- t(vitA_marker_mat) 

head(vitA_marker_mat[,c(1:5)]) 

##           S1_1000282 S1_2091448 S1_2307029 S1_2469093 S1_2691818 

## 2                  2          2          2          2          2 

## 257A9              2          2          2          2          0 

## 34f                2          2          2          2          0 

## 83610b             2          0          0          2          2 

## A10579             2          2          2          2          0 

## A632_susu          2          0          0          2          2 

#Save matrix for predictions 

saveRDS(vitA_marker_mat, "vitA_M.rds") 

As we can see from the first five rows and columns of our genotype matrix, we now have a numeric 

representation of genetic markers for each line. The next step in this tutorial is to grasp how genomic 

selection works, in other words how we can use genetic information to predict phenotypes. 

References: 

Baseggio, M., Murray, M., Magallanes‐Lundback, M., Kaczmar, N., Chamness, J., Buckler, E. S., … & Gore, 

M. A. (2020). Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in 

sweet corn. The Plant Genome, 13(1), e20008. 



Hershberger, J., Tanaka, R., Wood, J. C., Kaczmar, N., Wu, D., Hamilton, J. P., … & Gore, M. A. (2021). 

Transcriptome-wide association and prediction for carotenoids and tocochromanols in fresh sweet corn 

kernels. 

West, K. P. (2002). Extent of vitamin A deficiency among preschool children and women of reproductive 

age. Journal of Nutrition, 132, 2857S–2866S. 

  



Part 2: Theory of Genomic Selection 
Sam Herr 

2022-06-13 

Genomic Selection 
Genomic selection, also known as Genomic Prediction, is a modeling technique used in plant breeding to 

increase the rate of genetic gain. This provides both a time and cost-benefit compared to conventional 

breeding, especially for complex traits. 

The basic idea of genomic selection is to use all possible genetic information (usually in the form of single 

nucleotide polymorphisms (SNPS)) to correlate the genome to the phenotype of interest. 

Let’s get some theory behind genomic selection and understand some of the most common models used. 

Theory behind the models 
A general random model for genomic selection is: 

Y=μ+Xβ+ϵY=μ+Xβ+ϵY=μ+Xβ+ϵ, 

Where YYY is an m×1m×1m×1 vector containing phenotypic information, μμμ is the overall mean, X 

is a m×nm×nm×n matrix, with mmm individuals and nnn genetic markers, and βββ is 

a n×1n×1n×1 vector of random additive effect size of each marker and ϵϵϵ is the random error drawn 

from a N(0,σe)N(0,σe)N(0,σe). Different models have different distributions from which βββ is 

drawn, however, a common distribution would be that β∼N(0,σ2g)β∼N(0,σ2g)β∼N(0,σ2g). This 

form of the model is the essence of rrBLUP (Ridge Regression Best Linear Unbiased Predictor) (Meuwissen 

et al., 2001). The assumption of this model is that every the marker effect comes from the same 

distribution, while in reality, that might not be the case for some phenotypic traits. This assumption can 

cause markers with large effects to be underestimated. 

As in many cases for plant or livestock breeding, the number of markers, m, can greatly exceed the 

number of individuals phenotyped, n, also known as “The Curse of Dimensionality”(Wikipedia 

link: https://en.wikipedia.org/wiki/Curse_of_dimensionality). This curse can be computationally expensive 

and cause overfitting. Thus, many scientists have turned to use a genomic selection known as GBLUP 

(Genomic Best Linear Unbiased Predictors), which uses an additive genomic relationship matrix instead of 

marker values to predict phenotypic values. The general form of GBLUP is as follows: 

Y=μ+g+ϵY=μ+g+ϵY=μ+g+ϵ, 

Where ggg is a random parameter drawn from N(0,Gσ2g)N(0,Gσ2g)N(0,Gσ2g). GGG denotes 

a m×mm×mm×m genomic relationship matrix, calculated by G=WW′γG=WW′γG=WW′γ. WWW is 

a nxmnxmnxm matrix where wij=xij–2piwij=xij–2piwij=xij–2pi, where pipipi is the allele 

frequency of a marker and jjj is the jth individual. γ=2∑(pi(1−pi))γ=2∑(pi(1−pi))γ=2∑(pi(1−pi)). 

GBLUP has been shown to be mathematically equivalent to rrBLUP and falls victim to the same 

assumption that every marker effect is assumed to have the same effect size distribution. These models also 

https://en.wikipedia.org/wiki/Curse_of_dimensionality


assume there is only an additive (linear) effect of the markers. While for some traits, this might be true, 

many traits have epistatic and dominance effects that determine the phenotype. In order to account for 

non-linear interactions, we can use RKHS (Reproducing Kernel Hilbert Space). 

A helpful way to think about RKHS is that it is very similar to GBLUP but has the form: 

Y=μ+g(X)+ϵY=μ+g(X)+ϵY=μ+g(X)+ϵ 

Where g(X)g(X)g(X) is an unknown function of genetic effects. This differs from GBLUP, where the 

assumption is ggg is a linear function of genetic effects. 

If you are interest in further learning about these models, Morota et al. 2014 does a great job at explaining. 

www.frontiersin.org/journal/10.3389/fgene.2014.00363/abstract 

Now that we have talked about different types of genomic selection models, lets give one a try. 

rrBLUP 
We will use the package rrBLUP for performing rrBLUP and GBLUP models. 

#load packages and data 

suppressPackageStartupMessages(library(tidyverse)) 

library(rrBLUP) 

marker_matrix <- readRDS("vitA_M.rds") 

carotenoids <- readRDS("pheno.rds") 

 

set.seed(2022) 

#scale marker matrix 

marker_scaled <- scale(marker_matrix, center = TRUE, scale = FALSE) 

#get phenotype values 

#Picked Antheraxanthin as an example 

observed <- as.numeric(carotenoids$Lutein) 

 

##lets create a training set where will test 30% and train the model on 70% 

#get a vector that matches the total number of individuals 

num_individuals <- 1:length(observed) 

#randomly grab individuals 

test <- sample(x = num_individuals, size = round(length(observed) *0.3), repl

ace = F) 

 

#make training and testing datasets 

test_observed <- observed[test] 



test_marker <- marker_scaled[test,] 

train_marker <- marker_scaled[-test,] 

train_observed <- observed[-test] 

 

#run mixed.solve which performs RR-BLUP 

RRBLUP <- mixed.solve(y = train_observed, Z = train_marker, K = NULL) 

#Get prediction values by multipling the marker coefficients "u" by the scale

d matrix 

#then add the intercept term, "beta" 

predicted <- test_marker %*% RRBLUP$u + as.numeric(RRBLUP$beta) 

#get correlation 

cor(test_observed, predicted) 

##           [,1] 

## [1,] 0.6895897 

#Plot to get a general sense of the prediction 

#Prediction on the x-axis and Observations on the y-axis 

ggplot(data.frame("Pred" = predicted, "Obs" = test_observed), aes(x = Obs, y 

= Pred)) + geom_point() 



 

rrBLUP performs relatively well as given by the pearson’s correlation coefficient and seen in the graph but 

one thing to cautious about is overfitting due to the curse of dimensionality. 

GBLUP 
To deal with this curse, we will perform GBLUP. The number of predictors will be reduced from the 

number of SNPs to the number of lines, from 10,773 to 308. Before we jump into GBLUP, we first have to 

create a realized genomic matrix. 

The equation for this version of realized genomic matrix: 

G=ZZ′2∑ipi(1−pi)G=ZZ′2∑ipi(1−pi)G=ZZ′2∑ipi(1−pi) 

Where ZZZ is a scaled genomic marker matrix, where each marker is subtracted by 2(pi–0.5)2(pi–
0.5)2(pi–0.5). pipipi is the frequency of minor allele for ithithith SNP. Z′Z′Z′ is the transpose of Z. 



#Function taken from GAPIT 

#creates genomic matrix 1 from Van Randen 2008 

get_genomic_matrix <- function(snps){ 

   

  ##removes any SNPs that contain either all the major homozygote or all the 

minor homozygote 

  fa=colSums(snps)/(2*nrow(snps)) 

  index.non=fa>=1| fa<=0 

  snps=snps[,!index.non] 

   

  #get number of snps and then number of individuals 

  nSNP=ncol(snps) 

  nInd=nrow(snps) 

  n=nInd  

   

  ##allele frequency of second allele 

  p=colSums(snps)/(2*nInd) 

  P=2*(p-.5) #Difference from .5, multiple by 2 

  snps=snps-1 #Change from 0/1/2 coding to -1/0/1 coding 

   

  Z=t(snps)-P#operation on matrix and vector goes in direction of column 

  #K=tcrossprod((snps), (snps)) 

  K=crossprod((Z), (Z)) #Thanks to Peng Zheng, Meng Huang and Jiafa Chen for 

finding the problem 

   

   

  adj=2*sum(p*(1-p)) 

  K=K/adj 

   

 

  return(K) 

} 

With this function for the genomic matrix we can run GBLUP similarly to rrBLUP 

set.seed(2022) 



#get phenotype values 

#Picked Lutein as an example 

observed <- as.numeric(carotenoids$Lutein) 

 

##lets create a training set where will test 30% and train the model on 70% 

#get a vector that matches the total number of individuals 

num_individuals <- 1:length(observed) 

#randomly grab individuals 

test <- sample(x = num_individuals, size = round(length(observed) *0.3), repl

ace = F) 

 

#make training and testing datasets 

test_observed <- observed[test] 

train_genomic_matrix <- get_genomic_matrix(marker_matrix) 

train_observed <- observed  

train_observed[test] <- NA 

 

#run mixed.solve which performs GBLUP 

#Notice instead of Z =, we have K =  

GBLUP <- mixed.solve(y = train_observed, K = train_genomic_matrix) 

 

#get correlation with the estimated breeding values from GBLUP 

cor(test_observed, GBLUP$u[test]) 

## [1] 0.6895894 

For our data set with a small amount of markers, the predictive accuracy for both GBLUP and rrBLUP 

perform roughly the same. In some cases researchers have reported that rrBLUP can perform better than 

GBLUP when there is strong linkage disequilibrium (Morota et al. 2014). 

RKHS 
Let’s introduce now RKHS modeling. For RKHS we will use the BGLR R package (Perez and de Los 

Campos 2014) Luckily the process is very similar to GBLUP so we only have to make minor changes 

library(BGLR) 

#format data for BGLR 

#number of iterations the MC chain will do and then throw away first 8000 



nIter = 12000 

burnIn = 8000 

#Use K when using a genomic relationship matrix 

#Use X when using a snp matrix 

ETA <- list(G = list( K = train_genomic_matrix, model = "RKHS")) 

 

fm <- BGLR(y = train_observed, ETA = ETA, 

                 nIter = nIter, burnIn = burnIn, verbose = F) 

 

#get the predicted 

predicted <- fm$yHat[test] 

cor(test_observed, predicted) 

## [1] 0.6969568 

From the results we can see that all three models perform roughly the same when predicting the same 

lines of corn. But how will the model generalize to predicting many different lines of corn and how can 

we do this without collecting more data. Luckily with a technique known as cross validation we can 

randomly select different subsets of our dataset and some of the subsets to predict the other subsets. This 

allows to understand how well the model works in a general sense and then be able to compare different 

types of models more accurately 

For our research, we will use five-fold cross validation. For five-fold cross validation, the data is split into 

five partition. Four of the five partitions will be used as a training set to build the model, the fifth partition 

will be used as a test set to test the model built by the other four partitions. This is repeated until each 

partition gets its chance at becoming the test set. 



 For our dataset we will be doing something a little different from a normal cross validation. This is 

because sweet corn has two major mutations that make the corn sweet. The lines of corn we have, either 

have one of the mutations or both. We want our partitions to accurately reflect the ratio of the mutations 

that is in the original dataset. To do this we will do a weighted cross validation so that the proportion of 

mutations remains constant throughout all the folds. 

Here is the code. 

#Creates the five fold cross validations for 10 replicates 

#code taken from https://github.com/GoreLab/SweetCornRNA/tree/master/CODE 

#Thank you Dr. Jenna Hershberger! 

 

set.seed(2020) 

#Repetitions 

n.rep = 10 

#folds 

n.fold = 5 

 

#Initialize matrices 

df.CV.raw <- data.frame("Sample.ID" = carotenoids$Sample_ID) 

mat <- matrix(NA, nr = nrow(df.CV.raw), nc = n.rep) 

colnames(mat) <- paste0("Rep", formatC(1:n.rep, width = 2, flag = "0")) 

 

#Creates the cross validation for every repetition. 



#Each fold has an equal proportion of different mutation types  

for ( r in 1:n.rep ) { 

  #get number of each mutation type (3 total) 

  n.tab <- table(carotenoids$Endosperm_mutation) 

  #insert 0 for temporary table 

  tmp.n.tab <- cumsum(c(0, n.tab)) 

  cv.num.with.names.all <- c() 

  #iterate through each mutation type 

  for ( i in 1:length(n.tab) ) { 

    #get mutation type 

    mu.type <- names(n.tab)[i] 

    #select lines with mutation type 

    sample.names <- carotenoids$Sample_ID[carotenoids$Endosperm_mutation == m

u.type] 

    #create a vector length of mutation type 

    seq.num <- (tmp.n.tab[i]+1):(tmp.n.tab[i+1]) 

    #modulate by n.folds to get  

    cv.num <- 1 + seq.num %% n.fold 

    #randomly sample to create folds 

    cv.num.rand <- sample(cv.num) 

    cv.num.with.names <- setNames(cv.num.rand, sample.names) 

    cv.num.with.names.all <- c(cv.num.with.names.all, cv.num.with.names) 

  } 

  cv.num.with.names.all.ord <- cv.num.with.names.all[carotenoids$Sample_ID] # 

sort 

  mat[, r] <- cv.num.with.names.all.ord 

} 

df.CV <- cbind(df.CV.raw, mat) 

 

write_rds(df.CV, "cv.rds") 

Once we have our folds for each repetition we can now then perform cross-validation. Here is another 

function written by Dr. Jenna Hershberger that performs the cross validation. We will do 10 repetitions of 

five-fold cross-validation in order to get the mean and variance of the prediction accuracy. 

#code taken from https://github.com/GoreLab/SweetCornRNA/tree/master/CODE 

#Thank you Jenna Hershberger! 



 

#10 repetitions of five fold cross validation of BGLR functions 

myFun.Cv <- function(y.all, ETA, df.CV, 

                     nIter = 12000, burnIn = 8000, 

                     ...) { 

  # number of repetitions and folds 

  n.rep <- ncol(df.CV) - 1 

  n.fold <- max(df.CV[, 2]) 

   

  # cross validation: n.rep/n.fold  

  pred.mat <- matrix(NA, nr = nrow(df.CV), nc = n.rep) 

  rownames(pred.mat) <- df.CV[, 1] 

  colnames(pred.mat) <- colnames(df.CV)[2:ncol(df.CV)] 

   

  #iterate for each repetition 

  for ( j in 1:n.rep ) { 

    # make an object to save prediction result 

    pred.vec <- rep(NA, length(y.all)) 

    #iterate through each fold 

    for ( k in 1:n.fold ) { 

      # cv numbers 

      cv.num <- df.CV[, j + 1] 

       

      # cross validation 

      y.obs <- y.all 

      y.obs[cv.num == k] <- NA # mask phenotype 

       

      # run prediction 

      fm <- BGLR(y = y.obs, ETA = ETA, 

                 nIter = nIter, burnIn = burnIn, verbose = F 

      ) 

      pred.vec[cv.num == k] <- fm$yHat[cv.num == k] 

    } 

     



    # save 

    pred.mat[, j] <- pred.vec 

  } 

   

  # output 

  return(pred.mat) 

} 

Lets try out the function 

#Can use ETA and observed values from previous models 

ETA <- list(G = list( K = train_genomic_matrix, model = "RKHS")) 

 

#call function for prediction 

#pred.mat stores predicted values 

pred.mat <- myFun.Cv(y.all = observed, ETA = ETA, df.CV = df.CV, 

                              nIter = nIter, burnIn = burnIn,verbose = F 

    ) 

   

#formatting for correlation 

phenotype <- data.frame("Sample.ID" = carotenoids$Sample_ID, "Observed" = car

otenoids$Lutein) 

pre.mat <- as.data.frame(pred.mat) 

pre.mat <- cbind("Sample.ID" = row.names(pre.mat), pre.mat) 

pre.mat <- pre.mat %>% pivot_longer(cols = starts_with("Rep"), names_to = "Fo

ld", values_to = "Predicted") 

 

#Get Pearson's and Spearmean's value for each repetition 

#take mean of all lines in one repetition 

pre.mat <- pre.mat %>% full_join(phenotype, by = c("Sample.ID")) %>% 

  drop_na(Predicted, Observed) %>% 

  mutate(Predicted = as.numeric(Predicted), 

         Observed = as.numeric(Observed)) %>% 

  group_by(Fold) %>% 

  mutate(PearsonCor = cor(Predicted, Observed, method = "pearson"), 

         SpearmanRankCor = cor(Predicted, Observed, method = "spearman")) %>% 



    dplyr::select(Fold, PearsonCor:SpearmanRankCor) %>%  distinct()  

 

 

meanCor <- mean(pre.mat$PearsonCor) 

meanCor 

## [1] 0.6962613 

We can see that the cross validation reproduces a similar value as our models without cross-validation. 

This is great news as it means our models are working well! Now that we have an understanding of each 

model, let’s discuss we should use multi-kernels. 

Introduction to multi-kernel 
rrBLUP, GBLUP, and RHKS all assume that every marker effect is from the same effect size distribution. 

To relax this assumption, researchers have used a multi-kernel model or multiBLUP to test if separating 

select markers into kernels can improve the prediction accuracy of the model. By creating multiple 

kernels with subsets of SNPs, each kernel will have a different genomic relationship matrix, thus a 

different variance. The form of a multi-kernel model is as follows: 

Y=μ+∑gi+ϵY=μ+∑gi+ϵY=μ+∑gi+ϵ 

Where gigigi denotes the ith kernel and is drawn from a N(0,Giσg)N(0,Giσg)N(0,Giσg). 

With this model, SNP markers can have a varying impact on the prediction depending on the kernel 

placed in. The kernels can be created using prior biological information. An example of this would be a 

kernel containing markers that are associated with genes that are involved in pathways of a phenotype of 

interest. 

The next part of this tutorial will go over how we find biologically annotated SNPs. 

References: 

Meuwissen, T.H.E., B.J. Hayes, and M.E. Goddard. 2001. Prediction of total genetic value using genome-

wide dense marker maps. Genetics 157:1819–1829. 

Morota, G., & Gianola, D. (2014). Kernel-based whole-genome prediction of complex traits: a review. 

Frontiers in genetics, 5, 363. 

Pérez, P., & de Los Campos, G. (2014). Genome-wide regression and prediction with the BGLR statistical 

package. Genetics, 198(2), 483-495. 
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How to find biologically annotated SNPs 

GWAS 
How does one relate genetic information to phenotypes? The the answer to this question is highly sought 

after by researchers. One current technique is known as Genome-Wide Association Studies (GWAS). 

GWAS identifies SNPs (single nucleotide polymorphisms) that have an effect on the phenotype of interest. 

GWAS is used when relationships in a population is unknown, i.e. for human population or diversity 

panels in plants. The basic example of GWAS is a simple linear regression i.e. 

Y=βi×XiY=βi×XiY=βi×Xi 

where βββ is a marker (SNP) effect and XiXiXi is a SNP. This model will be done for every single SNP 

and then the p-value of each marker effect will be corrected for using usually bonferroni or benjamini-

hochberg corrections. To improve selection of true significant SNPS from spurious false positives, 

researchers use such techniques as accounting for kinship and population structure (read more about these 

techniques with Hoffman 2013, linked 

here https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075707) 

With GWAS, we can select significant SNPs to include in the biologically annotated kernel for our multi-

kernel models. One caveat about including GWAS results is that the GWAS must be done on training 

population or be from a different experiment. If you perform GWAS on the same population on which 

you perform genomic selection, you will be guilty of “insider training” and will be arrested by the feds. All 

jokes aside, “insider training” can lead to overfitting and your models will not predict outside genotypes as 

well. 

Luckily for us Owens et al (2014) (https://pubmed.ncbi.nlm.nih.gov/25258377/) provides a GWAS that we 

can use. In order to use this data we must format it correctly. 

suppressPackageStartupMessages(library(tidyverse)) 

 

full_snp_mat <- read_rds("full_SNP_M.rds") 

 

#read in Owens et al 2014 GWAS results  

gwas <- read.csv("gwasvitA.csv") 

 

#fix problems with names 

gwas$SNP.ID <- gsub(" ", "", gwas$SNP.ID) 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075707
https://pubmed.ncbi.nlm.nih.gov/25258377/


gwas$Trait <- gsub(substr(gwas$Trait[2], 1,3), "beta.", gwas$Trait) 

gwas$Trait <- gsub(substr(gwas$Trait[43], 7,9), "alpha.", gwas$Trait) 

gwas$Trait <- gsub("/", "_over_", gwas$Trait) 

gwas$Trait <- gsub("(beta.cryptoxanthin+zeaxanthin) ", "sum_beta_cryptoxanthi

n_and_zeaxanthin", gwas$Trait, fixed =T) 

 

gwas$Trait <- gsub("Total ", "Total_", gwas$Trait, fixed =T) 

gwas$Trait <- gsub("[.]", "_", gwas$Trait ) 

 

#collapse multiple traits into one SNP 

gwas <- gwas %>% 

  group_by(SNP.ID) %>% 

  summarise(Trait = toString(Trait) ) 

 

 

 

#Select SNPs both in GWAS and our SNP dataset 

gwas <- gwas[gwas$SNP.ID %in% full_snp_mat$rs,] 

colnames(gwas) <- c("rs","pheno") 

 

#save 

write_rds(gwas, "owens_gwas_results.rds") 

Looking at the dataset, we can we have the SNP id in the column “rs” and the trait in the column “pheno”. 

We will use this dataset to select the SNPs for the GWAS biologically annotated kernel. 

## # A tibble: 6 x 2 

##   rs            pheno                                                            

##   <chr>         <chr>                                                            

## 1 S1_140888441  "Zeinoxanthin_over_lutein "                                      

## 2 S10_135801294 "beta_Carotene_over_sum_beta_cryptoxanthin_and_zeaxanthin, 

beta~ 

## 3 S10_136106072 "beta_Carotene_over_sum_beta_cryptoxanthin_and_zeaxanthin, 

beta~ 

## 4 S2_24808106   "beta_Carotene_over_sum_beta_cryptoxanthin_and_zeaxanthin"       

## 5 S8_136911861  "beta__over_alpha_Xanthophylls "                                 



## 6 S8_138888278  "beta__over_alpha_Xanthophylls " 

TWAS 
Now that we have discussed a technique that relates DNA to phenotype, lets go a step up and talk 

transcriptome-wide association studies (TWAS) that relates RNA to phenotype. 

The model is basically the same as GWAS except we replace marker and marker effect with RNA 

abundance and RNA abundance effect. Instead of reporting significant SNPs, TWAS instead reports the 

genes that are most correlated with the phenotype of interest. Unlike GWAS, it is alright to perform 

TWAS and then genomic selection on the same dataset as they use two different mechanisms to predict 

the phenotype, RNA expression and DNA markers, respectively. 

Like for GWAS, we have the results for a TWAS analysis from Hershberger et al 2022 linked 

here https://acsess.onlinelibrary.wiley.com/doi/10.1002/tpg2.20197. 

One might ask “How do we get genetic marker information from TWAS, if TWAS only reports which 

genes are significant?” The quick answer would be the use of SNPs within the genes. The longer answer 

involves linkage disequilibrium because some of the SNPs not in the significant genes will be linked to the 

SNPs within the gene due to recombination. To include the linked SNPs, we will include SNPs within 250 

kb of the start and end of each gene. 

Let’s take a look at how to do that: 

full_snp_mat <- read_rds("full_SNP_M.rds") 

 

 

#Get TWAS Genes 

twas <- read.csv("noharv_B73_pathway_ap_FDR0.05.csv") 

 

#Format Data 

twas <- twas %>% select(c("RefGen_v4.Gene.ID", "trait","chr","start","end")) 

twas <- as.data.frame(twas) 

twas$start <- as.integer(twas$start) 

twas$end <- as.integer(twas$end) 

 

#Determines which SNPs are near a gene 

check_twas_gene_snps <- function(qtls,snpset){ 

  snpset <- snpset %>% filter(chrom == as.integer(qtls[3])) 

  snpset <- snpset[between(snpset$pos, as.integer(qtls[4])-250000, as.integer

(qtls[5])+250000), ] 

  snpset <-  cbind(snpset,"pheno" = replicate(lengths(snpset)[1],qtls[2])) 

https://acsess.onlinelibrary.wiley.com/doi/10.1002/tpg2.20197


  return(snpset) 

} 

 

twas <- apply(twas,1, check_twas_gene_snps, full_snp_mat) 

twas <- bind_rows(twas) 

 

#Combine the same snps for different traits 

twas <- twas %>% 

  group_by( rs,chrom, pos) %>% 

  summarise(pheno = toString(pheno)) 

## `summarise()` has grouped output by 'rs', 'chrom'. You can override using 

the 

## `.groups` argument. 

#format and save 

twas <- data.frame(rs = twas$rs, pheno = twas$pheno) 

row.names(twas) <- twas$rs 

twas$pheno <- gsub("[.]", "_", twas$pheno  ) 

 

write_rds(twas, "twas.rds") 

Wonderful! We have our TWAS SNPs that we can use to create another biologically annotated kernel. 

The next part of tutorial will go over how to use these biologically annotated kernels to predict traits. 

References: 

Hershberger, J., Tanaka, R., Wood, J. C., Kaczmar, N., Wu, D., Hamilton, J. P., … & Gore, M. A. (2021). 

Transcriptome-wide association and prediction for carotenoids and tocochromanols in fresh sweet corn 

kernels. 

Hoffman, G. E. (2013). Correcting for population structure and kinship using the linear mixed model: 

theory and extensions. PloS one, 8(10), e75707. 

Owens, B. F., Lipka, A. E., Magallanes-Lundback, M., Tiede, T., Diepenbrock, C. H., Kandianis, C. B., … & 

Rocheford, T. (2014). A foundation for provitamin A biofortification of maize: genome-wide association 

and genomic prediction models of carotenoid levels. Genetics, 198(4), 1699-1716. 
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Multi-kernel Predictions 
It is time to put everything together and use two kernels for prediciton and then compare to the models to 

a single kernel. 

We use the same techniques we used in part two but now apply them to two models. In order to do this 

let’s introduce a couple of functions that will be used. There are two new functions needed to create the 

two kernels for BGLR prediction, get_phenotype_subset, which select SNPs based upon their significance 

in either GWAS or TWAS for a specific traits, and get_ETA_two_kernel, which creates a list needed for 

BGLR. 

#Load packages for part 4 

suppressPackageStartupMessages(library(tidyverse)) 

suppressPackageStartupMessages(library(BGLR)) 

library(ggtext) 

library(RColorBrewer) 

options(dplyr.summarise.inform = FALSE) 

 

#Functions: 

 

#Subsets the Biologically annotated SNPS for the trait needed 

get_phenotype_subset <- function(phenotype,full_snp_df, subset_snp_df){ 

    subset <- subset_snp_df[grepl(paste0("\\b",phenotype, "\\b"), subset_snp_

df$pheno),] 

    sig_snps <- full_snp_df[,subset$rs]  

 

  return(sig_snps) 

} 

 

#Returns biological annotated kernel and the other SNPs 

get_ETA_two_kernel <- function(full_snp_df, subset_snp_df, getAmat ){ 

  #makes sure there are SNPs associated with trait 



  if(length(subset_snp_df) == 0){ 

    return(NA) 

  #If SNPs exist, create ETA needed for BGLR 

  }else{ 

    remove <- colnames(full_snp_df) %in% colnames(subset_snp_df) 

    snps_rest <- get_genomic_matrix(full_snp_df[,!remove]) 

    if(getAmat == T){ 

      subset_snp_df <- get_genomic_matrix(subset_snp_df) 

    } 

    ETA <-list("G1" = list(K = subset_snp_df, model = "RKHS"),"G2"= list(K = 

snps_rest, model = "RKHS") ) 

  } 

  return(ETA) 

} 

 

#code taken from https://github.com/GoreLab/SweetCornRNA/tree/master/CODE 

#Thank you Jenna Hershberger! 

#10 repetitions of five fold cross validation of BGLR functions 

myFun.Cv <- function(y.all, ETA, df.CV, 

                     nIter = 12000, burnIn = 8000, 

                     ...) { 

  # number of repetitions and folds 

  n.rep <- ncol(df.CV) - 1 

  n.fold <- max(df.CV[, 2]) 

  # cross validation: n.rep/n.fold  

  pred.mat <- matrix(NA, nr = nrow(df.CV), nc = n.rep) 

  rownames(pred.mat) <- df.CV[, 1] 

  colnames(pred.mat) <- colnames(df.CV)[2:ncol(df.CV)] 

  #iterate for each repetition 

  for ( j in 1:n.rep ) { 

    # make an object to save prediction result 

    pred.vec <- rep(NA, length(y.all)) 

    #iterate through each fold 

    for ( k in 1:n.fold ) { 

      # cv numbers 



      cv.num <- df.CV[, j + 1] 

      # cross validation 

      y.obs <- y.all 

      y.obs[cv.num == k] <- NA # mask phenotype 

      # run prediction 

      fm <- BGLR(y = y.obs, ETA = ETA, 

                 nIter = nIter, burnIn = burnIn, verbose = F 

      ) 

      pred.vec[cv.num == k] <- fm$yHat[cv.num == k] 

    } 

    # save 

    pred.mat[, j] <- pred.vec 

  } 

  # output 

  return(pred.mat) 

} 

 

#Genomic relationship matrix taken from GAPIT  

#Same as the one used in part 2 

get_genomic_matrix <- function(snps){ 

  fa=colSums(snps)/(2*nrow(snps)) 

  index.non=fa>=1| fa<=0 

  snps=snps[,!index.non] 

  nSNP=ncol(snps) 

  nInd=nrow(snps) 

  n=nInd 

  ##allele frequency of second allele 

  p=colSums(snps)/(2*nInd) 

  P=2*(p-.5) #Difference from .5, multiple by 2 

  snps=snps-1 #Change from 0/1/2 coding to -1/0/1 coding 

  Z=t(snps)-P#operation on matrix and vector goes in direction of column 

  #K=tcrossprod((snps), (snps)) 

  K=crossprod((Z), (Z)) #Thanks to Peng Zheng, Meng Huang and Jiafa Chen for 

finding the problem 

  adj=2*sum(p*(1-p)) 



  K=K/adj 

  return(K) 

} 

Now that we have the functions,lets load in the datasets needed and run the models the prediction models 

#Load in data 

marker_matrix <- readRDS("vitA_M.rds") 

carotenoids <- readRDS("pheno.rds") 

df.CV <- readRDS("cv.rds") 

twas <- readRDS("twas.rds") 

gwas <- readRDS("owens_gwas_results.rds") 

 

#inputs for BGLR 

nIter <- 12000  

burnIn <- 8000  

 

#The trait we will be using is beta_Carotene_over_beta_cryptoxanthin 

trait <- colnames(carotenoids)[18] 

#Get Values 

y.all <- as.numeric(carotenoids$beta_Carotene_over_beta_cryptoxanthin) 

#Model for singel kernel 

 

#Create ETA for BGLR 

ETA.mGRM <- list("G" =list(K= get_genomic_matrix((marker_matrix)), model = 'R

KHS')) 

 

pred.mat.mGRM <- myFun.Cv(y.all = y.all, ETA = ETA.mGRM, df.CV = df.CV, 

                            nIter = nIter, burnIn = burnIn, verbose = F 

                            ) 

#prediction results 

Single_Kernel <- data.frame("Sample_ID" = df.CV[, 1], "Model" = rep("Single K

ernel",lengths(pred.mat.mGRM)[1]),pred.mat.mGRM) 

 

#Model for TWAS Kernel 

ETA.TWAS <- get_ETA_two_kernel(marker_matrix,get_phenotype_subset(trait, mark

er_matrix, twas), getAmat = T ) 



 

pred.mat.twas_genes <- myFun.Cv(y.all = y.all, ETA = ETA.TWAS, df.CV = df.CV, 

                                    nIter = nIter, burnIn = burnIn,verbose = 

F 

                                    ) 

TWAS <- data.frame("Sample_ID" = df.CV[, 1], "Model" = rep("TWAS",lengths(pre

d.mat.mGRM)[1]), pred.mat.twas_genes) 

    

#Model for GWAS Kernel 

  ETA.GWAS <- get_ETA_two_kernel(marker_matrix,get_phenotype_subset(trait, ma

rker_matrix, gwas), getAmat = T ) 

    pred.mat.GWAS <- myFun.Cv(y.all = y.all, ETA = ETA.GWAS, df.CV = df.CV, 

                                         nIter = nIter, burnIn = burnIn,verbo

se = F 

                                         ) 

    GWAS <- data.frame("Sample_ID" = df.CV[, 1], "Model" = rep("GWAS",lengths

(pred.mat.mGRM)[1]), pred.mat.GWAS) 

    

#Model for combined GWAS and TWAS Kernel  

  ETA.TWAS.GWAS <- get_ETA_two_kernel(marker_matrix,get_phenotype_subset(trai

t,marker_matrix,rbind(twas,gwas)),getAmat = T ) 

    pred.mat.TWAS.GWAS <- myFun.Cv(y.all = y.all, ETA = ETA.TWAS.GWAS, df.CV 

= df.CV, 

                              nIter = nIter, burnIn = burnIn,verbose = F) 

   TWAS.GWAS <- data.frame("Sample.ID" = df.CV[, 1],  "Model" = rep("TWAS.GWA

S",lengths(pred.mat.mGRM)[1]),pred.mat.TWAS.GWAS) 

 

#Lets take a look at the basic structure of our results 

head(TWAS.GWAS)    

##           Sample.ID     Model       Rep01       Rep02     Rep03       Rep0

4 

## 2                 2 TWAS.GWAS  0.29270640  0.43671244 0.2328164 0.39232063

9 

## 257A9         257A9 TWAS.GWAS  0.35370855  0.16534074 0.3385098 0.24235675

5 

## 34f             34f TWAS.GWAS  0.06979688 -0.16668201 0.1217844 0.00688442

7 

## 83610b       83610b TWAS.GWAS  0.49694750  0.30342505 0.3731585 0.31722186

7 



## A10579       A10579 TWAS.GWAS  0.36824615  0.42500457 0.3987191 0.45219787

6 

## A632_susu A632_susu TWAS.GWAS -0.01485889  0.09667152 0.1105715 0.19817674

9 

##                 Rep05       Rep06        Rep07        Rep08       Rep09 

## 2          0.29883718  0.41307553  0.244196450  0.267192111  0.21895718 

## 257A9      0.35875534  0.25989514  0.276346883  0.213880347  0.29864482 

## 34f       -0.19237979  0.06582593 -0.189725892  0.072360503 -0.17980704 

## 83610b     0.39002225  0.35334824  0.389908766  0.348952785  0.43569202 

## A10579     0.33480883  0.36873091  0.425079355  0.415519187  0.35526952 

## A632_susu  0.03250719 -0.08943678  0.006465834 -0.004734734 -0.01518195 

##                Rep10 

## 2         0.46528006 

## 257A9     0.41048511 

## 34f       0.04132985 

## 83610b    0.31672282 

## A10579    0.36928462 

## A632_susu 0.04230054 

We can see that the end results are the same as before where we have a 308 by 12 matrix where each line 

has 10 predictions because of the 10 repetitions of the cross-validation. The Sample.ID column gives 

information about the line and the Model column tells us the type of model used. It is important to have 

these classifiers to create data visualizations. 

The last step is to create a histogram to compare the predictive accuracy of different models. 

#Function to get 95% Confidence intervals 

getCI <- function(df){ 

  s <- sqrt(var(df)) 

  n <- length(df) 

   

  return(qt(0.975,df=n-1)*s/sqrt(n)) 

} 

 

#Format  

blups_carot_long <- carotenoids[,c(1,18)] %>% 

  pivot_longer(cols = beta_Carotene_over_beta_cryptoxanthin, 

               names_to = "Trait", values_to = "Observed") 



 

#Combine results data frames into one data frame 

all_df <- list(Single_Kernel, GWAS, TWAS, TWAS.GWAS) 

results <- bind_rows(all_df) 

 

#create a long data frame for ggplot 

results <- results %>%   pivot_longer(cols = starts_with("Rep"), names_to = "

Fold", values_to = "Predicted")  

 

 

 

#Get Pearsons and spearman correlation for each repetition 

results <- results %>% full_join(blups_carot_long, by = c("Sample_ID")) %>% 

  drop_na(Predicted, Observed) %>% 

  mutate(Predicted = as.numeric(Predicted), 

         Observed = as.numeric(Observed)) %>% 

  group_by(Trait, Model, Fold) %>% 

  mutate(PearsonCor = cor(Predicted, Observed, method = "pearson"), 

         SpearmanRankCor = cor(Predicted, Observed, method = "spearman")) 

 

 

 

#Change name 

accuracy.df <- results %>% 

  mutate(Model = as.character(Model)) %>% 

  mutate(Trait = as.character(Trait)) %>% 

  mutate(Trait = recode_factor(Trait, 

                               "beta_Carotene_over_beta_cryptoxanthin" = "\U0

3B2-Carotene/\U03B2-Cryptoxanthin"  

                                

  )) 

 

#Get mean value for each model 

summarized.accuracy.df <- accuracy.df %>% 

  ungroup() %>% 



  dplyr::select(-Fold) %>% 

  group_by(  Trait,Model) %>% 

  summarize(MeanPearson = mean(PearsonCor), 

            MeanSpearman = mean(SpearmanRankCor), 

            pearsonCI =  getCI(PearsonCor)) 

 

# plot 

ggplot(summarized.accuracy.df , aes(x = Trait, y = MeanPearson, fill = Model)

) + 

  geom_bar(stat="identity", position = "dodge2", color="black")  +  

  geom_errorbar(aes(ymin=MeanPearson-pearsonCI, ymax=MeanPearson+pearsonCI), 

          width=.2,      position = position_dodge(0.9)              # Width 

of the error bars 

  )+ 

  scale_fill_manual(values=c("#66C2A5", "#8DA0CB", "#FC8D62", "#E78AC3"))+  

 

  labs(y = "Predictive Ability (*r*)")+ 

  ggtitle("Comparison of GRM, TRM, GWAS, and TWAS") 



 

For the one trait Beta-Carotene over Beta-Cryptoxanthin, we see slight improvements when using both a 

GWAS and TWAS biologically-annotated kernel. 

Conclusion 
Yay! We made it to the end. We went from the basic of genomic selection to implementing a multiple 

kernels using BGLR. I hope you learned some useful things that you can carry onward with you for 

whatever scientific endeavors you take on. As a little note on our final results. While we see only a 

minimal increase in prediction accuracy using biologically informed multi-kernel models in this tutorial. 

The actual increase is much greater for certain traits when we use a much larger set of SNPs. The reason I 

chose a small number of SNPs for this dataset was for the models to run quickly. If you are thinking of 

doing genomic selection and know of prior information about your crop of choice, I suggest testing 

whether these types of models will perform better. 
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