

Introduction

- One of the ways researchers are investigating ways to maintain optimal health in astronauts is through antibiotic resistance.
- astronaut's immune system functions differently in ■ An microgravity than it does on Earth due to metabolic changes.
- This study aims to determine the MIC (minimum inhibitory) concentration) of a certain antibiotic and measure its effect on E. coli under simulated microgravity.

Experimental Design

- E.coli was cultured from glycerol stocks for short term exposure experiments.
- E.coli that was exposed to microgravity previously were used for Day 4 and 22 experiments.
- E.coli was cultured in Luria Broth (LB) media.
- For 4 and 22 day experiments, cultures were grown in 24-well plates.
- 24-hour cultures grown in were 2D epitubes the clinostat on EAGLESTAT.
- Absorbance with was read а spectrophotometer every hour for 12-15 hours and again at 24 hours.

Simulated Microgravity and its Effect on the Regulation of Antibiotic Response in Escherichia coli K12 Parker Mann, Sofia Saldarriaga, Grace Brokaw, Collin Topolski, Hugo Castillo

4- and 22-Day Exposure Response

- E.coli was grown in 24 well plate with concentrations of Nalidixic Acid ranging from $1.875\mu g/ml$ to $30\mu g/ml$.
- Plate was placed on a shaker and incubated at 30°C.
- Absorbance was read on a spectrophotometer to observe the changes in biomass.

- Both days 4 and 22 showed a significant difference between the microgravity and gravity (control) samples.
- Samples showed an initial growth and then a decrease in biomass, and then a regrowth in microgravity.

Nalidixic acid long-term exposure experiments

- Dilutions were done to measure numbers of colonies that were able to grow after being exposed to the antibiotic and microgravity.
- Colony-forming units were measured by counting the number of colonies that were grown on the plates.

CFU plate count, 7.5 microgram/ml NA 24H

CFU plate count, 7.5 microgram/ml NA 24H G

E.coli was grown in 2ml epitubes on the EAGLESTAT and incubated for 24 hours.

Epitubes had antibiotic concentrations. The of purpose experiments determine the MIC, so a large range was used.

Post-Antibiotic Exposure

- Samples from 8 and 24-hour antibiotic exposure collected to viability those at points.
- These samples incubated for 8 hours and their absorbance measured every hour.
- indicate a major Results difference between the two time points, with gravity being more viable at 8 hours and microgravity being more viable at 24 hours.

Future Research

- Expand screening of antibiotics.
- Observe antibiotic mechanisms of action.

References: Tirumalai, M. R., Karouia, F., Tran, Q., Stepanov, V. G., Bruce, R. J., Ott, C. M., ... & Fox, G. E. (2019). Evaluation of acquired antibiotic resistance in Escherichia coli exposed to long-term low-shear modeled microgravity and background antibiotic exposure. *Mbio*, 10(1), e02637-18.

concentration of antibiotics. Lab on a Chip, 12(6), 1052-1059.

24 Hour Exposure

range of these was to

Tetracycline 24H exposure experiment

were their test time

> were was

Expand in the usage of bacterial models including S. epidermis.

Study changes in gene expression.