
Type equation here.
• Although weakly superparamagnetic, 

Cu0.1Ni0.9Mn2O4 (S1) was found to act as a 

heat sink, which literature agrees with [3]

• Fe3O4 (S2) shows great promise as a heat 

source due to falling under the critical 

diameter and a comparatively high SAR

• Characterization revealed impurities in S2

• Unwanted oxidation may have influenced 

composition, particle size, and hyperthermic 

properties

• Coating inhibited the SAR but was necessary 

for colloidal stability  

Was the goal met? Yes.
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• Fossil fuel dependency is a growing concern as 

climate change grows more rampant.

• Improving the efficiency of combustion engines 

can lower emissions, reduce demand, and 

promote a smooth energy transition. 

• Non-magnetic nanoparticles have previously 

been used to reduce toxic emissions.

• Superparamagnetic nanoparticles (sPM-nPs) 

generate heat via 2 major mechanisms under an 

alternating magnetic field (AMF), as shown 

below.

• Heat generation (specific absorption rate, SAR) is 

dependent upon the properties of the applied 

AMF and intrinsic properties of the particle [1].

𝑆𝐴𝑅 ∝ 𝐻0
2𝑓

2𝜋𝑓𝜏

1 + 2𝜋𝑓𝜏 2

• sPM-nPs have been predominantly used in 

biomedical applications for localized 

hyperthermia

GOAL: Investigate and explore energetic 

and combustion characteristics of sPM-nPs. 

Is there any potential for future research?

INTRODUCTION

METHODS

DISCUSSIONS

• Investigate alternate compounds to enhance 

hyperthermic effects and limit toxic emissions 

(metallic doping of Fe3O4).

• Perform combustion testing with and without 

the sPM-nPs and measure performance. 

FUTURE RESEARCH
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X-Ray Diffraction (XRD)

Avg. Particle Size Atomic Layer Distance

S1 - Cu0.1Ni0.9Mn2O4 47.005 nm 0.134 nm

S2 - Fe3O4 11.405 nm 0.252 nm

APPLIED AMF TESTING

Electron Microscopy (TEM/SEM)

CHARACTERIZATION

500 nm TEM: 

S1

100 nm TEM: S2

1 μm SEM: S2

Heat Rate 

(0C/s)

Δ Temp 

(0C)

Fe. Concen. 

(mg/mL)

SAR 

(W/g Fe)

Water 0.011 0.733 - -

S1 - uncoated 0.012 0.8 - -

S2 - coated 0.453 27.63 15.42 135.36

S2 - uncoated 0.068 4.73 2.14 187.48

ABOVE: Table summarizing results and SAR (relationship shown)

RIGHT: Plot of each sample’s temperature while under an applied 

AMF (strength: 20kA/m, frequency: 360 kHz).
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20 nm TEM: S2

S1 S2

ABOVE: Average particle size (L) and atomic layer spacing (d), 

calculated by XRD via the shown equations, where K=1 and 

λ=0.179 nm. The particle size was also measured in ImageJ and 

visually confirmed by TEM images, shown to the left.

Testing Apparatus [2] 

SEM element composition: S2

𝐵(2𝜃) =
𝐾𝜆

Lcos(𝜃)
𝜆 = 2𝑑𝑠𝑖𝑛(𝜃)

ABOVE: M-H curve for S1, 

showing weakly 

superparamagnetic behavior.

BELOW: Susceptibility curve for S2. 

Strong temperature and frequency 

dependence imply the 

superparamagnetic behavior of a 

ferromagnetic particle.

ABOVE: M-H curve for S2, showing a 

mixture of ferro- and superpara-

magnetic properties.

BELOW: TEM and SEM images for S1 and S2

𝑆𝐴𝑅 = 𝑟𝑎𝑡𝑒𝑆 − 𝑟𝑎𝑡𝑒𝐻2𝑂 ∗ (
𝐶𝐻

2
𝑂

𝐹𝑒 𝐶𝑜𝑛𝑐𝑒𝑛.
∗ 1000)

Optimize coating materials and methods

Limited 
impact on 
heating

Long-term 
dispersion and 
stability in fuels

Lower toxic 
engine 

emissions
Vibrating Sample Magnetometry (VSM)
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