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Abstract

In this letter, results on the autonomous response of a third-order digital filter with
two’s complement arithmetic realized as a first-order subsystem cascaded by a
second-order subsystem are reported. The behavior of the second-order subsystem
depends on the pole location and the initial condition of the first-order subsystem,
because the transient behavior is affected by the first-order subsystem and this
transient response can be viewed as an excitation of the original initial state to another
state. New results on the set of necessary and sufficient conditions relating the
trajectory equations, the behaviors of the symbolic sequences, and the sets of the
initial conditions are derived. The effects of the pole location and the initial condition
of first-order subsystem on the overall system are discussed. Some interesting
differences between the autonomous response of second-order subsystem and the
response due to the exponentially decaying input are reported. Some simulation

results are given to illustrate the analytical results.

1. Introduction

It is well known that the autonomous response of a marginally stable

second-order digital filter with two’s complement arithmetic may exhibit chaotic


https://core.ac.uk/display/54355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

behaviors, dependent on the initial conditions [1], [4], [6], [7], [10]. Similar behaviors
are reported for the stable and unstable cases [8], [9], [12], [14]. Investigations on the
chaotic behaviors of filters with saturation-type nonlinearity and quantization-type
nonlinearity have been discussed in [2] and [5], [11], respectively.

The step response and sinusoidal response of a marginally stable second-order
digital filter with two’s complement arithmetic are studied in [15], [16], respectively.
It is found that the trajectory of the step response case is similar to the autonomous
response case, while that of the sinusoidal response case is more complicated.

In [3], a marginally stable third-order digital filter with two’s complement
arithmetic implemented in direct form is analyzed. It is found that the trajectory is on
some planes of the phase portrait. By realizing the third-order digital filter in parallel
form and plotting the delayed output y(k—1) versus the output y(k), some related
patterns are reported in [13].

A third-order linear digital filter can be realized as a first-order subsystem
cascaded with a second-order subsystem, and the overall system behavior can be
predicted easily. However, for a third-order digital filter with two’s complement
arithmetic, the second-order subsystem may exhibit chaotic behavior, the steady state
behavior of the overall system may not be similar to that of the second-order
subsystem even though the output of the first-order subsystem under the autonomous
response case will decay exponentially to zero if its pole is inside the unit circle. This
is because a very small non-zero exponentially decaying input may give an output
very different from the autonomous response case [16]. Thus, we may ask the
questions: Under what conditions will the overall system behave as the autonomous
response of the second-order subsystem? How does this non-zero exponentially
decaying signal affect the behavior of the overall system?

Although the autonomous response of the overall system may be similar to that
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of the second-order subsystem, the pole location and the initial condition of the
first-order subsystem may affect the behavior. Basically, the transient behavior of the
second-order subsystem can be viewed as that due to an excitation of the original
initial state to another state, which can be taken as the effective “initial” state that
governs the steady state behavior of the second-order subsystem. So, how do the
initial condition and the pole location of the first-order subsystem affect the value of
this effective “initial” state and the behavior of the overall system?

We will review the notations used in the existing literature in section 2 [1]-[16].
In section 3, the behavior of a third-order digital filter with two’s complement
arithmetic realized in cascade form is discussed. Finally, a conclusion is summarized

in section 4.

2.  Notations

The notations used in [1]-[16] are adopted as follows:

Assume that a third-order digital filter is represented by a first-order subsystem
cascaded with a second-order subsystem realized in direct form with both subsystems
implemented using two’s complement arithmetic, as shown in figure 1. The state

space model of the overall system can be represented as:

X (k+1)= (- x,(k)+u(k)), 2.1)

¥ (k) = x,(k), 2.2)
x(k+1)] X, (k)

&(mﬂ {f<b-x1<k>+a-x2<k>+ w»] &9

and

y(k)=x(k), (2.4)

where x(k) and x,(k) are the state variables of the second-order subsystem;

3



x,(k) is the state variable of the first-order subsystem; u(k) is the input signal of
the overall system; y,(k) is the output of the first-order subsystem; y(k) is the
output of the overall system; a and b are the filter parameters of the second-order
subsystem; c¢ is the filter parameter of the first-order subsystem; f is the
nonlinearity introduced by the two’s complement arithmetic.

The nonlinear function f can be modeled as:

f(v)=v—-2-n suchthat 2-n-1<v<2.n+1, where neZ. (2.5)

x(k) x(k)
Hence, | %,(k)|e1®=1]x,(k)|:-1<x (k)<L -1<x,(k)<land 1< x,(k) <1} . (2.6)

X3(k) X3(k)
In our analysis, we only consider the autonomous response case, that is:
u(k)=0 for k>0. (2.7)
Similar to [13], we assume that the first-order subsystem is stable or marginally

stable, and the second-order subsystem is marginally stable, that is:

| <1, (2.8)
b=-1, (2.9)
and
laj<2. (2.10)
Since [a]<2, we define 6= cos‘l(%] : (2.11)
01
A= {b a} , (2.12)
- cos@ sin@
A=l : (2.13)
—sin@ cosé
and
1 0
T= o, (2.14)
cos@ sinf

then we have:



A=T-A-T* (2.15)
0
Let B :M . (2.16)

Define s (k) and s,(k) such that:

F(kﬂ)}EA-D(k)}B-yl(k){o]sl(k) (2.17)

X, (k +1) ,(k) 2
and
X,k +1)=c-x,(k)+u(k)+2-s,(k). (2.18)
& T y(k) > 1
De‘lray De‘lray
..... Delay
e kK v

Figure 1: Cascade realization of a third-order digital filter with two’s complement arithmetic

3. Analytical and simulation results

In this section, we will analyze the trajectory equations, behaviors of symbolic
sequences, and the sets of initial conditions of the system described in section 2 for

various types of trajectories, by considering the following three cases: ¢=1, c¢=-1,
and |c| <1, respectively.
When c=1, we have x,(k)=y,(k)=x,(0) and s,(k)=0 for k>0. The

behavior of the overall system is thus equivalent to that of the step response of the

second-order subsystem. Hence, our results in [15] can be applied. When ¢ =-1 and
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x,(0)= -1, then y,(k)=x,(k)=-1 and s,(k)=-1 for k>0. The behavior of the

overall system is also equivalent to that of the step response of the second-order

subsystem having the input step size equal to —1. When c¢=-1 and x,(0)= -1,
then y,(k)=x,(k)=x,(0) for k is even and y,(k)=x,(k)=-x,(0) for k is odd,
while s,(k)=0 for k>0. The behavior of the overall system is equivalent to that of
the sinusoidal response of the second-order subsystem with the period of the input
sinusoidal signal being 2. Hence, our results in [16] can be applied.

When |c| <1, then s,(k)=0 and y,(k)=x,(k)=c*x,(0) for k>0, and we

have:

e e e

Lemma 1 (L1):

3k, >0 suchthat s(k)=0 for k>k, ifand only if:

T {Xl(ko )} e %) H

+| X3(k°) |<1. (3.2)

X, (K, ) c2—2-cosf-c+1 |c|| |c?—2-cosh-c+1|

Proof:

For the if part, if 3k, >0 such that s(k)=0 for k>k,, then equation (3.1)

becomes:

S e e ] e ) o0
for k>Kk,.

Define X (ko) H (3.4)

c2—-2.cos@-c+1 |cC
Equation (3.3) becomes:

{Xl(k)} _ Ak H::l((tﬂ—i]+c X, for k>k,. (35)
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Define X(k)=T '{xz(k)} for k>0, (3.6)
N 4 o _ |cos¢

and X(k,)-T*-X=p Lincb} (3.7)

Equation (3.5) becomes:

R el T

X(k)<1 for k>0 and i=12 :>p+| X3(k°) |<1,and this proves the if
Ic?—2-cos6-c+1]

part.

For the only if part, if 3k, >0 such that:

. _F(ko)}_ﬁ_ X5 (ko) H .\

JHL L xtk) oy (3.9)
X, (K, ) c®-2-cosf-c+1 |cC

lc2—2.cosf-c+1]

then the trajectory equation of the corresponding linear system is:

{Xl(k)} = Ak Hxl(k‘))} —X]+ ¢ .x, for k>k,, (3.10)
X, (k) X, (k)
and the state will be bounded, that is, | (k] <1 for k>0 and i=12. (3.11)

Hence, the overall system:

{Xl(k +1)} A &((tﬂ +B-cx,(0)+ m .s,(k) (3.12)

X, (k +1)

does not have an overflow for k >k,, which implies that s,(k)=0 for k >k, . This

proves the only if part, and completes the proof. [ |
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Figure 2: Behavior of type | trajectory when x,(0)=-0.5, x,(0)=0.5, x,(0)=-0.5, ¢=-0.98,
and a=0.5. (a) Trajectory of the third-order digital filter. (b) Symbolic sequence {s,(k)}.

Lemma 2 (L2):

By defining:
~ 1 -1 . .
Xy = (CM 'I_AM) ) AYFILB.¢! 'Xs(ko)’ (3-13)
j=0
M4 1o
yoE(|—AM)1'ZAM_1_J'{Z]Sl(ko‘i'j)’ (3_14)
j=0
X.,=A-X+B-c'-x(k,) for i=01,---,M -2, (3.15)
and
- - |0 . .
Yia =AY, "{Z}Sl(ko"") for i=01,---,M -2, (3.16)
we have:

3k, >0 and IM eZ* such that s(k)=s(k+M) for k>k, if and only if

(e

Proof:

<1-|%+¥j, . for i=01---,M —1. (3.17)

For the if part, if 3k, >0 and 3M eZ* such that s(k)=s(k+M) for k>k,,

then:



X, (k)

_ APM { j|+(CpAM J—APM )-§0+(|—Ap‘M ).yo, for p>0,(3.18)
X,(ko )

{xl(kwp-l\/l)}

Xz(ko+p'M)

and

e

Xz(ko+ p-l\/l +i) - Xz(ko)

i-1 i-1
e () ST AT B+ 5 AT .m.sl(ko+ i)
j=0 j=0

}(cp‘M A=APY ) ALK +(1-APM) AT,
(3.19)

for p>0 and i=12,---,M -1.

This is equivalent to:

{xl(kw p-M +i)}_ApAM+i Hxl(ko)

X -V PM X+ 3.20
Xz(ko)} Xy y0]+c X; Y, ( )

X, (ky +p-M +i)
for p>0 and i=01---,M -1.

By defining:

(i) (2]

then:

{Xl(k0+ p-M +i)}_ { cos(¢’ —(p-M +i)-6)

X,(ko+ P-M+i)] cos(¢' —(p-M +i+1)-9)}rcp X +Yi, (3.22)

for p>0 and i=01---,M -1.

since, |x;(k)<1 for k=0 and j=12, we have:

(e

for i=01---,M —1, and this proves the if part.

<1-% +¥. . (3.23)

For the only if part, since:

) it [0
Vi=AJ,+ Yy AT -M-sl(k0 +j), for i=1---,M -1, (3.24)
j=0



and (1-A")-§, = ZA““- { } s.(ko+ ), (3.25)

we have:
(1-A").3, Mi_IAM‘l‘ { } (ko +i+j)+ MZ‘j AV { } sk, +i+j—M), (3.26)
=0 et
for i=1---,M -1.
Similarly, since X :A‘-io+iA“1‘j-B-cj-xs(ko),for i=1-,M-1, (3.27)
=0
and (c"-1-AY)-X, :Mz_lAM‘l‘j-B-cj-xs(ko), (3.28)
0
we have:
(€ 1-AY).% = Mz_lAM-H B¢ x,(k;), for i=0,---,M —1. (3.29)
=y
As:

{Xl(kﬁ(pﬂ).M +i)} = A" F(kﬁ " +i)}+MZ_1AM+" B, (ks )

X, (k, + (p+1)-M +i)| X, (ky +p-M +i)

+ZAM‘1‘ { } s,(ky+p-M+i+]j)

=0

, (3.30)

for i=01,---,M-1 and p=>0,

X (ko +P-M +i)

I -1
by letting %,(p)=T {2(k0+p-M+i)

},for i=0L1---,M-1 and p>0, (3.31)

we have:

%,(p+1)= A" %, (p)+c"™ -T‘l-(cM -I—A“")-)?0

- . , 3.32

+T_1'ZAM_1_J'{2](31(|(0+ p-M +j)_51(ko+j))+T_l'(l_AM )'yo &%
j=0

for p>0,and

%(p+1)= A" % (p)+cH T 1-A")
M-1

FTH AN 'msl(kw p-M +i+j)+ T (1-A").7, (339
j=0

M —1—i M-1
~TH AV B]Sl(koﬂﬂ)—T‘l' > AN -B]Sl(koﬂﬂ—M)

=0 j=M—i
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for i=1---,M-1 and p=>0.

When p=0, we have:

%(0)=A" %,0)+ T (" - 1-A" )% +T*-(1-A").§,

+T iiAi‘l“' -m-(sl(ko +M )=,k + )

,for i=1---,M-1. (3.34)

i
If T-l-ﬂxl(k‘))}io—yo] <1-|% +¥,, for i=01-M -1, then:

X (ko) -
for i=1,wehave s (k,+M)=s/(k,). (3.35)
For i=2,since s,(k,+M)=s,(k,), we have s (k,+M +1)=s,(k,+1). (3.36)
Similarly, we have s,(k,+M + j)=s,(k,+j) for j=021---,M -2, (3.37)

When p=1, we have:

%,(2)= AM %o (W)+c" - T (™ - 1-AY)-%,

M-1 . : 3.38
+T_1'ZAM_1_] '{Z](Sl(ko‘”\/l +j)_31(ko+j))+T_l'(l_AM )'yo ( )
=0
Since s,(k,+M +j)=s,(k,+j) for j=01---,M -2, we have:
s,(ko +2-M —1)=s,(k, + M —1). (3.39)

Similarly, we have s (k,+ p-M +i)=s,(k, +i), for i=0,---,M -1 and p=>0. This
proves the only if part, and completing the proof. [ |
Discussion on L2: Similar to Lemma 1, Lemma 2 gives a set of necessary and
sufficient conditions relating the trajectory equation, behavior of the symbolic
sequence {s,(k)}, and the set of initial condition for which the overall system exhibits
the type 1l trajectory.

Since x,(k)=c*x,(0) for k>0, the trajectory will converge to the horizontal
plane x, =0. According to equation (3.22), if k is large enough that the term

cPM.X

for i=0%---M-1 | can be neglected, then
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{xl(kﬁ p-M +i)}z { cos(¢'—(p-M +i)-0)
X, (ko + p-M +i) cos(¢' —(p-M +i+1)-0)

}Vi , for i=01---,M -1. This
trajectory equation corresponds to M ellipses centered at y,, for i=01,---,M -1,
as shown in figure 3a. These centers only depend on the filter parameter of the
second-order subsystem and the corresponding M  distinct symbolic sequences
{s,(k, +i)}, for i=01,--,M —1. By using simple transformations, these ellipses can
be transformed to a circle centered at the origin, and the radius of the circle is p'.
Hence, the sizes of these ellipses are equal and dependent on both the initial condition
and the filter parameters of both the first-order and second-order subsystems. The
orientation of these ellipses depend only on the filter parameter a of the

second-order subsystem.

Similar to the type | trajectory, xi(k), for =123, is never periodic no matter

whether @ is a rational multiple of 7 or not, because the term c*x,(0) and the

terms c¢”.X., for i=01---,M -1, are never periodic. Hence, the spectrum of
x(k), for i=1,23, is continuous.

From Lemma 2, we can conclude that the overall system exhibits type Il
trajectory if and only if the symbolic sequence {s,(k)} is periodic with period M
for k>k,, as shown in figure 3b. From equation (3.17), the set of initial conditions

that gives the type Il trajectory also looks like many inclined cyclones.
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Figure 3: Behavior of type Il trajectory when x,(0)=-0.75, x,(0)=-0.75, x,(0)=-0.75,

..........

c=-0.98,and a=0.5. (a) Trajectory of the third-order digital filter. (b) Symbolic sequence {s, (k)}.

Lemma 3 (L3):

Define:

+| X3(k°) |<1 (3.40)

= —J| x (k ) : -I——1_ Xl(ko) —T_l- X3(k0) . 1
Xz(ko) Xz(ko) ¢’ —2-cosf-c+1 |c |cz—2-cose-c+1|
3\
Xl(kO) X(k )
=; =] (ko) [T | 7Y |- %o =T || <1- [+, fori=01--M -1p  (3.41)
1 0 0~ Yo -
X (k) Xz(ko)
3\
=, = 1°\(E,UE)). (3.42)

The following three statements for the type 111 trajectory are equivalent:

X (k)
(L3.1) The trajectory of | x,(k)| will converge to a horizontal plane x, =0 and

X (k)

exhibits an elliptical fractal pattern on the plane x, =0, (3.43)
(L3.2) s,(k) is aperiodic for k >k,, (3.44)
and

13



X, (k)

(L3.3) | X,(k,)| =S (3.45)
X3 ko)
According to extensive simulations, we found that Lemma 3 is true. Figure 4a
and figure 4b show an example trajectory of a third-order digital filter with two’s
complement arithmetic realized in cascade form and its corresponding symbolic

sequence {s,(k)}, respectively.

i H i
an (o) T Snn
lirme indes k

Figure 4: Behavior of type 111 trajectory when x,(0)=-0.6, x,(0)=0.9, x,(0)=0.012, c=-0.98,

and a=0.5. (a) Trajectory of the third-order digital filter. (b) Symbolic sequence {s,(k)}.

4. Conclusion

In this letter, the autonomous response of a third-order digital filter with two’s
complement arithmetic realized in cascade form is investigated. The main
contribution of this letter is to derive sets of necessary and sufficient conditions
relating the trajectory equations, behaviors of symbolic sequence, and the sets of
initial conditions that give various types of trajectories. Based on these necessary and
sufficient conditions, the exponentially decaying input fed into the second-order

subsystem will give an output for which the pattern is similar to that of the
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autonomous response for the second-order subsystem. The behavior of the
second-order subsystem depends on the pole location and the initial condition of the
first-order subsystem. The differences between the autonomous response of the
second-order subsystem and the response due to the exponentially decaying input are

reported.
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