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Autonomous Response of a Third-order Digital Filter with 

Two’s Complement Arithmetic Realized in Cascade Form 

 

Bingo Wing-Kuen Ling, Wai-Fung Hung and Peter Kwong-Shun Tam 

 

Abstract 

 

In this letter, results on the autonomous response of a third-order digital filter with 

two’s complement arithmetic realized as a first-order subsystem cascaded by a 

second-order subsystem are reported. The behavior of the second-order subsystem 

depends on the pole location and the initial condition of the first-order subsystem, 

because the transient behavior is affected by the first-order subsystem and this 

transient response can be viewed as an excitation of the original initial state to another 

state. New results on the set of necessary and sufficient conditions relating the 

trajectory equations, the behaviors of the symbolic sequences, and the sets of the 

initial conditions are derived. The effects of the pole location and the initial condition 

of first-order subsystem on the overall system are discussed. Some interesting 

differences between the autonomous response of second-order subsystem and the 

response due to the exponentially decaying input are reported. Some simulation 

results are given to illustrate the analytical results. 

 

1. Introduction 

 

It is well known that the autonomous response of a marginally stable 

second-order digital filter with two’s complement arithmetic may exhibit chaotic 
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behaviors, dependent on the initial conditions [1], [4], [6], [7], [10]. Similar behaviors 

are reported for the stable and unstable cases [8], [9], [12], [14]. Investigations on the 

chaotic behaviors of filters with saturation-type nonlinearity and quantization-type 

nonlinearity have been discussed in [2] and [5], [11], respectively. 

The step response and sinusoidal response of a marginally stable second-order 

digital filter with two’s complement arithmetic are studied in [15], [16], respectively. 

It is found that the trajectory of the step response case is similar to the autonomous 

response case, while that of the sinusoidal response case is more complicated. 

In [3], a marginally stable third-order digital filter with two’s complement 

arithmetic implemented in direct form is analyzed. It is found that the trajectory is on 

some planes of the phase portrait. By realizing the third-order digital filter in parallel 

form and plotting the delayed output  1ky  versus the output  ky , some related 

patterns are reported in [13]. 

A third-order linear digital filter can be realized as a first-order subsystem 

cascaded with a second-order subsystem, and the overall system behavior can be 

predicted easily. However, for a third-order digital filter with two’s complement 

arithmetic, the second-order subsystem may exhibit chaotic behavior, the steady state 

behavior of the overall system may not be similar to that of the second-order 

subsystem even though the output of the first-order subsystem under the autonomous 

response case will decay exponentially to zero if its pole is inside the unit circle. This 

is because a very small non-zero exponentially decaying input may give an output 

very different from the autonomous response case [16]. Thus, we may ask the 

questions: Under what conditions will the overall system behave as the autonomous 

response of the second-order subsystem? How does this non-zero exponentially 

decaying signal affect the behavior of the overall system? 

Although the autonomous response of the overall system may be similar to that 
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of the second-order subsystem, the pole location and the initial condition of the 

first-order subsystem may affect the behavior. Basically, the transient behavior of the 

second-order subsystem can be viewed as that due to an excitation of the original 

initial state to another state, which can be taken as the effective “initial” state that 

governs the steady state behavior of the second-order subsystem. So, how do the 

initial condition and the pole location of the first-order subsystem affect the value of 

this effective “initial” state and the behavior of the overall system? 

We will review the notations used in the existing literature in section 2 [1]-[16]. 

In section 3, the behavior of a third-order digital filter with two’s complement 

arithmetic realized in cascade form is discussed. Finally, a conclusion is summarized 

in section 4. 

 

2. Notations 

 

The notations used in [1]-[16] are adopted as follows: 

Assume that a third-order digital filter is represented by a first-order subsystem 

cascaded with a second-order subsystem realized in direct form with both subsystems 

implemented using two’s complement arithmetic, as shown in figure 1. The state 

space model of the overall system can be represented as: 

      kukxcfkx  33 1 , (2.1) 

   kxky 31  , (2.2) 
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and 

   kxky 1 , (2.4) 

where  kx1  and  kx2  are the state variables of the second-order subsystem; 
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 kx3  is the state variable of the first-order subsystem;  ku  is the input signal of 

the overall system;  ky1  is the output of the first-order subsystem;  ky  is the 

output of the overall system; a  and b  are the filter parameters of the second-order 

subsystem; c  is the filter parameter of the first-order subsystem; f  is the 

nonlinearity introduced by the two’s complement arithmetic. 

The nonlinear function f  can be modeled as: 

  nf  2  such that 1212  nn  , where Zn . (2.5) 

Hence, 
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In our analysis, we only consider the autonomous response case, that is: 

  0ku  for 0k . (2.7) 

Similar to [13], we assume that the first-order subsystem is stable or marginally 

stable, and the second-order subsystem is marginally stable, that is: 

1c , (2.8) 

1b , (2.9) 

and 

2a . (2.10) 

Since 2a , we define 
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 
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then we have: 
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1ˆ  TATA . (2.15) 

Let 
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1
0

B . (2.16) 

Define  ks1  and  ks2  such that: 
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and 

       kskukxckx 233 21  . (2.18) 

 

Figure 1: Cascade realization of a third-order digital filter with two’s complement arithmetic 

 

3. Analytical and simulation results 

 

In this section, we will analyze the trajectory equations, behaviors of symbolic 

sequences, and the sets of initial conditions of the system described in section 2 for 

various types of trajectories, by considering the following three cases: 1c , 1c , 

and  1c , respectively. 

When 1c , we have      0313 xkykx   and   02 ks  for 0k . The 

behavior of the overall system is thus equivalent to that of the step response of the 

second-order subsystem. Hence, our results in [15] can be applied. When 1c  and 
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  103 x , then     131  kxky  and   12 ks  for 0k . The behavior of the 

overall system is also equivalent to that of the step response of the second-order 

subsystem having the input step size equal to 1 . When 1c  and   103 x , 

then      0331 xkxky   for k  is even and      0331 xkxky   for k  is odd, 

while   02 ks  for 0k . The behavior of the overall system is equivalent to that of 

the sinusoidal response of the second-order subsystem with the period of the input 

sinusoidal signal being 2 . Hence, our results in [16] can be applied. 

When 1c , then   02 ks  and      0331 xckxky k  for 0k , and we 

have: 
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Lemma 1 (L1): 

00 k  such that   01 ks  for 0kk   if and only if: 
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Proof: 

For the if part, if 00 k  such that   01 ks  for 0kk  , then equation (3.1) 

becomes: 
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for 0kk  . 

Define  








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
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Equation (3.3) becomes: 
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Define    
 






 

kx
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k
2

11ˆ Tx  for 0k , (3.6) 

and   







 





sin
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ˆ 1
0 xTx k . (3.7) 

Equation (3.5) becomes: 

 
 

  
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
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  1kxi  for 0k  and 2,1i    1
1cos22

03 



cc
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

 , and this proves the if 

part. 

For the only if part, if 00 k  such that: 
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then the trajectory equation of the corresponding linear system is: 
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
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and the state will be bounded, that is,   1kxi  for 0k  and 2,1i . (3.11) 

Hence, the overall system: 
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does not have an overflow for 0kk  , which implies that   01 ks  for 0kk  . This 

proves the only if part, and completes the proof.   
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Figure 2: Behavior of type I trajectory when   5.001 x ,   5.002 x ,   5.003 x , 98.0c , 

and 5.0a . (a) Trajectory of the third-order digital filter. (b) Symbolic sequence   ks1 . 

Lemma 2 (L2): 

By defining: 

   







1
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~ M

j

jjMMM kxcc BAAIx , (3.13) 

   

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 031
~~ kxci

ii  BxAx  for 2,,1,0  Mi  , (3.15) 

and 

 iksii 







 011 2

0~~ yAy  for 2,,1,0  Mi  , (3.16) 

we have: 

00 k  and  ZM  such that    Mksks  11  for 0kk   if and only if 

 
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Proof: 

For the if part, if 00 k  and  ZM  such that    Mksks  11  for 0kk  , 

then: 
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for 0p  and 1,,2,1  Mi  . 

This is equivalent to: 
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for 0p  and 1,,1,0  Mi  . 

By defining: 
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then: 
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for 0p  and 1,,1,0  Mi  . 

Since,   1kx j  for 0k  and 2,1j , we have: 
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 
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for 1,,1,0  Mi  , and this proves the if part. 

For the only if part, since: 

 




 









1

0
01

1
0 2

0~~ i

j

jii
i jksAyAy , for 1,,1  Mi  , (3.24) 
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and    




 









1

0
01

1
0 2

0~ M

j

jMM jksAyAI , (3.25) 

we have: 

     









 


















1

01
1

1

0
01

1

2
0

2
0~ M

iMj

jM
iM

j

jM
i

M Mjiksjiks AAyAI , (3.26) 

for 1,,1  Mi  . 

Similarly, since  




 
1

0
03

1
0

~~ i

j

jjii
i kxcBAxAx , for 1,,1  Mi  , (3.27) 

and    




 
1

0
03

1
0

~ M

j

jjMMM kxcc BAxAI , (3.28) 

we have: 

   




 
1

0
03

1~ M

j

jijM
i

MM kxcc BAxAI , for 1,,0  Mi  . (3.29) 

As: 

  
  

 
   

 














































1

0
01

1

1

0
03

1

02

01

02

01

2
0

1
1

M

j

jM

M

j

jiMpjMM

jiMpks

kxc
iMpkx
iMpkx

iMpkx
iMpkx

A

BAA
, (3.30) 

for 1,,1,0  Mi   and 0p , 

by letting    
 









 

iMpkx
iMpkx

pi
02

011ˆ Tx , for 1,,1,0  Mi   and 0p , (3.31) 

we have: 

     
       0

1
1

0
0101

11

0
1

00

~
2
0

~ˆˆ1ˆ

yAITAT

xAITxAx






















 M
M

j

jM

MMMpM

jksjMpks

ccpp
, (3.32) 

for 0p , and 

     
   

   





















































1

01
11

1

0
01

11

1
1

0
01

11

1

2
0

2
0

~
2
0

~ˆˆ1ˆ

M

iMj

jM
iM

j

jM

i
M

M

j

jM

i
MMMp

i
M

i

Mjiksjiks

jiMpks

ccpp

ATAT

yAITAT

xAITxAx

, (3.33) 
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for 1,,1  Mi   and 0p . 

When 0p , we have: 

       
    




















1

0
0101

11

11

2
0

~~0ˆˆ1ˆ
i

j

ji

i
M

i
MM

i
M

i

jksjMks

c

AT

yAITxAITxAx
, for 1,,1  Mi  . (3.34) 

If 
 
  

 
















 iikx

kx
yxyxT ~~1~~

00
02

011  for 1,,1,0  Mi  , then: 

for 1i , we have    0101 ksMks  . (3.35) 

For 2i , since    0101 ksMks  , we have    11 0101  ksMks . (3.36) 

Similarly, we have    jksjMks  0101  for 2,,1,0  Mj  . (3.37) 

When 1p , we have: 

     
       0

1
1

0
0101

11

0
1

00

~
2
0

~1ˆˆ2ˆ

yAITAT

xAITxAx






















 M
M

j

jM

MMMM

jksjMks

cc
. (3.38) 

Since    jksjMks  0101  for 2,,1,0  Mj  , we have: 

   112 0101  MksMks . (3.39) 

Similarly, we have    iksiMpks  0101 , for 1,,0  Mi   and 0p . This 

proves the only if part, and completing the proof.  

Discussion on L2: Similar to Lemma 1, Lemma 2 gives a set of necessary and 

sufficient conditions relating the trajectory equation, behavior of the symbolic 

sequence   ks1 , and the set of initial condition for which the overall system exhibits 

the type II trajectory. 

Since    033 xckx k  for 0k , the trajectory will converge to the horizontal 

plane 03 x . According to equation (3.22), if k  is large enough that the term 

i
Mpc x~ , for 1,,1,0  Mi  , can be neglected, then 
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 
 

  
   iiMp

iMp
iMpkx
iMpkx

y~
1cos

cos

02

01 

























 , for 1,,1,0  Mi  . This 

trajectory equation corresponds to M   ellipses centered at iy~ , for 1,,1,0  Mi  , 

as shown in figure 3a. These centers only depend on the filter parameter of the 

second-order subsystem and the corresponding M   distinct symbolic sequences 

  iks 01 , for 1,,1,0  Mi  . By using simple transformations, these ellipses can 

be transformed to a circle centered at the origin, and the radius of the circle is   . 

Hence, the sizes of these ellipses are equal and dependent on both the initial condition 

and the filter parameters of both the first-order and second-order subsystems. The 

orientation of these ellipses depend only on the filter parameter a  of the 

second-order subsystem. 

Similar to the type I trajectory,  kxi , for 3,2,1i , is never periodic no matter 

whether   is a rational multiple of   or not, because the term  03xck  and the 

terms i
Mpc x~ , for 1,,1,0  Mi  , are never periodic. Hence, the spectrum of 

 kxi , for 3,2,1i , is continuous. 

From Lemma 2, we can conclude that the overall system exhibits type II 

trajectory if and only if the symbolic sequence   ks1  is periodic with period M  

for 0kk  , as shown in figure 3b. From equation (3.17), the set of initial conditions 

that gives the type II trajectory also looks like many inclined cyclones. 
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Figure 3: Behavior of type II trajectory when   75.001 x ,   75.002 x ,   75.003 x , 

98.0c , and 5.0a . (a) Trajectory of the third-order digital filter. (b) Symbolic sequence   ks1 . 

Lemma 3 (L3): 

Define: 

 
 
 

 
 

   
























































  1

1cos2
1

1cos2
: 2

03
2

031

02

011

03

02

01

0 cc
kx

ccc
kx

kx
kx

kx
kx
kx


TT (3.40) 

 
 
 

 
  





















































 1,1,0for  ,~~1~~: 00

02

011

03

02

01

1 Mi
kx
kx

kx
kx
kx

ii yxyxT  (3.41) 

 10
3

2 \  I . (3.42) 

The following three statements for the type III trajectory are equivalent: 

(L3.1) The trajectory of 
 
 
 
















kx
kx
kx

3

2

1

 will converge to a horizontal plane 03 x  and 

exhibits an elliptical fractal pattern on the plane 03 x , (3.43) 

(L3.2)  ks1  is aperiodic for 0kk  , (3.44) 

and 
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(L3.3) 
 
 
 

2

03

02

01


















kx
kx
kx

. (3.45) 

According to extensive simulations, we found that Lemma 3 is true. Figure 4a 

and figure 4b show an example trajectory of a third-order digital filter with two’s 

complement arithmetic realized in cascade form and its corresponding symbolic 

sequence   ks1 , respectively. 

 
Figure 4: Behavior of type III trajectory when   6.001 x ,   9.002 x ,   012.003 x , 98.0c , 

and 5.0a . (a) Trajectory of the third-order digital filter. (b) Symbolic sequence   ks1 . 

 

4. Conclusion 

 

In this letter, the autonomous response of a third-order digital filter with two’s 

complement arithmetic realized in cascade form is investigated. The main 

contribution of this letter is to derive sets of necessary and sufficient conditions 

relating the trajectory equations, behaviors of symbolic sequence, and the sets of 

initial conditions that give various types of trajectories. Based on these necessary and 

sufficient conditions, the exponentially decaying input fed into the second-order 

subsystem will give an output for which the pattern is similar to that of the 
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autonomous response for the second-order subsystem. The behavior of the 

second-order subsystem depends on the pole location and the initial condition of the 

first-order subsystem. The differences between the autonomous response of the 

second-order subsystem and the response due to the exponentially decaying input are 

reported. 
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