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AN INFEASIBLE INTERIOR POINT METHOD
FOR CONVEX QUADRATIC PROBLEMS

HAYET ROUMILI∗ and NAWEL BOUDJELLAL†

Abstract. In this paper, we deal with the study and implementation of an
infeasible interior point method for convex quadratic problems (CQP ) . The
algorithm uses a Newton step and suitable proximity measure for approximately
tracing the central path and guarantees that after one feasibility step, the new
iterate is feasible and sufficiently close to the central path. For its complexity
analysis, we reconsider the analysis used by the authors for linear optimization
(LO) and linear complementarity problems (LCP ). We show that the algorithm
has the best known iteration bound, namely n log (n+1)

ε
. Finally, to measure the

numerical performance of this algorithm, it was tested on convex quadratic and
linear problems.
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1. INTRODUCTION

Convex quadratic programs appear in many areas of application. For ex-
ample, they appear in finance and as sub-problems in sequential Quadratic
Programming. Interior point methods (IPMs) are among the most effective
methods for solving a wide range of optimization problems. Today, the most
popular and robust of them are primal-dual path-following algorithms owing
to their numerical efficiency and theoretical polynomial complexity [2], [3],
[7]–[12]. Two types of (IPMs) exist, feasible and infeasible IPMs (IIPMs).
Feasible IPMs start from a strictly feasible point for the problem at hand,
while IIPMs start from an arbitrary positive point. Owing to the difficulty
of finding a feasible starting point for various problems, the use of IIPMs is
unavoidable. Roos [9], proposed the first full-Newton step IIPM for LO. This
algorithm starts from strictly feasible iterates on the central path of the in-
termediate problems produced by suitable perturbations in the LO problem.
Then, it uses so-called feasibility steps that serve to generate strictly feasible
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iterates for the next perturbed problems. After accomplishing a few centring
steps for the new perturbed problem, it obtains strictly feasible iterates close
enough to the central path of the new perturbed problems. This algorithm
has been extensively extended to other optimization problems, e.g., [3], [8],
[12]–[14]. Subsequently, some authors have tried to improve Roos’s infeasible
algorithm [5], [6]. Some improvements have been done to reduce or remove
the centring steps [2], [7], [10]. Recently, Mansouri et al. [7] proposed an
IIPM for solving LO problems with a reformulation of the central path. Their
algorithm need not perform a centring step to reach the closeness of the iter-
ates to their µ-centres. To reach this target, they select a (rather small) fixed
default barrier update parameter in their algorithm to return the iterates to
the neighbourhood of the central path without doing a centring step. This
value seems to be undesirable for practical purposes.

In this paper, we present an IIPM for convex quadratic programs (CQP).
The algorithm uses a short-step and a suitable proximity measure for ap-
proximately tracing the central path. The rest of the paper is organized as
follows. In section 2, we introduce the perturbed problems pertaining to the
original primal-dual pair. In section 3, the complexity analysis of the algo-
rithm is discussed. In section 4, we deal with the numerical implementation of
the infeasible interior point algorithm applied to convex quadratic and linear
problems. In section 5, a conclusion is stated.

2. THE PERTURBED PROBLEMS

For any µ with 0 < µ ≤ 1 we consider the perturbed problem (QP )µ defined
by

(QP )µ


min

(
c− µ

(
c−AT y0 +Qx0 − s0

))T
x+ 1

2x
TQx

Ax = b− µ
(
b−Ax0)

x ≥ 0
and its dual problem (QD)µ, which is given by

(QD)µ


max

(
b− µ

(
b−Ax0))T y − 1

2x
TQx

AT y + s−Qx = c− µ
(
c−AT y0 +Qx0 − s0

)
s ≥ 0, y ∈ Rm

The solution (x(µ), y(µ), s(µ)) of (QP )µ and (QD)µ converges to the primal-
dual optimal solution of (QP ) and (QD) as µ→ 0.

We start with arbitrarily choosing x0 > 0 and y0, s0 > 0 such that x0s0 =
µe, if µ = (x0)T s0

n = 1 then x0 = e yields a strictly feasible solution of (QP )1
and y0 = 0, s0 = e yields a strictly feasible solution of (QD)1. We conclude
that (QP )µ and (QD)µ satisfy the interior point conditions IPC.

Lemma 1. The original problems (QP ) and (QD) are feasible if and only
if for each µ satisfying 0 < µ ≤ 1 the perturbed problems (QP )µ and (QD)µ
satisfy the IPC.



3 An infeasible interior point method 179

Proof. Let x̄ be a feasible solution of (QP ) and (ȳ, s̄) be a feasible solution
of (QD). Then Ax̄ = b and AT ȳ − Qx̄ + s̄ = c, with x̄ ≥ 0 and s̄ ≥ 0.
Now let 0 < µ ≤ 1, and consider: x = (1 − µ)x̄ + µx0, y = (1 − µ)ȳ + µy0,
s = (1− µ)s̄+ µs0.

One has
Ax = A

(
(1− µ)x̄+ µx0

)
= (1− µ)Ax̄+ µAx0

= (1− µ)b+ µAx0 = b− µ
(
b−Ax0

)
= b− µr0

b

showing that x is feasible for (QP )µ.
Similarly,

AT y −Qx+ s = (1− µ)
(
AT ȳ −Qx̄+ s̄

)
+ µ

(
AT y0 −Qx0 + s0

)
= (1− µ)c+ µ

(
AT y0 −Qx0 + s0

)
= c− µ

(
c−AT y0 +Qx0 − s0

)
= c− µr0

c

showing that y, s are feasible for (QD)µ. Because µ > 0, x and s are positive,
thus proving that (QP )µ and (QD)µ satisfy the IPC. To prove the inverse
implication, suppose that (QP )µ and (QD)µ satisfy the IPC for each µ sat-
isfying 0 < µ ≤ 1. Letting µ go to zero, it follows that (QP ) and (QD) are
feasible. �

Let (QP ) and (QD) be feasible and 0 < µ ≤ 1. Then Lemma 1 implies that
the problems (QP )µ and (QD)µ satisfy the IPC, hence their central paths
exist. This means that the system

(1)


b−Ax = µr0

b

c−AT y +Qx− s = µr0
c

xs = µe, x > 0, s > 0
has a unique solution, for every µ > 0.

In the sequel, this unique solution is denoted by (x(µ), y(µ), s(µ)). These
are the µ-centres of the perturbed problems (QP )µ and (QD)µ. Note that
because x0s0 = e, x0 is the µ-center of the perturbed problem (QP )1 and
(y0, s0) the µ-center of (QD)1 .

To get iterates that are feasible for (QP )µ+ and (QD)µ+ we need search
directions ∆x,∆y and ∆s such that

(2)
{
A (x+ ∆x) = b− µ+r0

b

AT (y + ∆y)−Q (x+ ∆x) + (s+ ∆s) = c− µ+r0
c

where µ+ = (1− θ)µ with 0 < θ < 1.
Therefore, the following system is used to define ∆x,∆y and ∆s :

(3)


A∆x = θµr0

b

AT∆y −Q∆x+ ∆s = θµr0
c

s∆x+ x∆s = (1− θ)µe− xs
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Now, we introduce a norm-based proximity measure as:
(4) δ(x, z, µ) = 1

2 ‖µe− xs‖
to measure the closeness of the points (x, y, s) to the central path. We suppose
that the initial point (x0, y0, s0) verified δ(x0, y0, s0) < 1 for certain µ, is
known.

Algorithm 2.
Primal-dual Infeasible IPM algorithm

Input
- An accuracy parameter ε > 0.
- barrier update parameter 0 < θ < 1 .
- a strictly feasible point (x0, y0, s0) = (e, 0, e) and µ0 = 1
such that δ(x0, y0, s0) = 0 < 1.

begin
x = x0, y = y0, s = s0, µ = µ0.

while ‖rb‖+ ‖rc‖+ xT s > ε do(
rb = Ax− b, rc = c−AT y +Qx− s

)
solve the system (5) to obtain: (∆x,∆y,∆s).
update x := x+ ∆x, y := y + ∆y, z := z + ∆z,
update µ := (1− θ)µ.

end

3. COMPLEXITY ANALYSIS

Now the following notations are useful for studying the complexity of the
proposed algorithm.

(5) υ =
√

xs
µ , dx = υ∆x

x , ds = υ∆s
s , d =

√
x
s

In addition, we obtain:
(6) s∆x+ x∆s = µυ (dx + ds)
and
(7) ∆x∆s = µdxds

By using these notations the linear system in (5) and the proximity become:

(8)


Ādx = µ−

1
2 θµr0

b = µ
1
2 θr0

b

ĀTdy − Q̄dx + ds = µ−
1
2 θµDr0

c = µ
1
2 θDr0

c

dx + ds = (1− θ) υ−1 − υ
where

D = diag (di) , Ā = AD, Q̄ = DQD, dy =, µ−
1
2 ∆y

and
δ(υ) = 1

2‖υ
−1 − υ‖
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we have:

x+s+ = xs+ (s∆x+ x∆s) + ∆x∆s = (1− θ)µe+ ∆x∆s
= (1− θ)µe+ xs

υ2 = µ ((1− θ) e+ dxds) .

Lemma 3. The iterates (x+, s+) are strictly feasible if and only if:

(1− θ) e+ dxds > 0.

Corollary 4. The iterates (x+, s+) are strictly feasible if ‖dxds‖∞ < 1−θ.

Proof. By the definition of ∞-norm i.e., ‖dxds‖∞ = max{|dxidsi | : i = 1, 2,
. . . , n} and from the assumption, we have that |dxidsi | < 1− θ . Equivalently,
we have:

− (1− θ) < dxidsi < 1− θ
which implies that:

dxds + (1− θ) e > 0
Thus, by Lemma 3, (x+, s+) are strictly feasible. �

Our aim is to find an upper bound for δ(υ+) such that the proximity of the
new iterates (x+, s+) is always less than 1. For each iteration we have:

‖dxds‖∞ ≤ ‖dxds‖ ≤ ‖dx‖‖ds‖ ≤ 1
2

(
‖dx‖2 + ‖ds‖2

)
= w(υ).

Corollary 5. if w(υ) < 1− θ then (x+, s+) are strictly feasible.

Proof. We have:
‖dxds‖∞ ≤ w(υ) < 1− θ.

by Corollary 1, (x+, s+) are strictly feasible. �

The following Lemma proved by C. Roos in 2015 [10] leads us to find an
upper bound for δ(υ+).

Lemma 6. Let a,b ∈ Rn, r ∈ (0, 1] and f (a, b) =
n∑
i=1

ζ(aibi). If

‖a‖2 + ‖b‖2 ≤ 2r2,

then
f (a, b) ≤ (n− 1) ζ(0) + max

{
ζ(r2), ζ(−r2)

}
where

ζ(t) = 1+t
1−θ + 1−θ

1+t − 2 = (θ+t)2

(1−θ)(1+t) ≥ 0, ∀t > −1, 0 < θ < 1.

Lemma 7. If w(υ) < 1− θ, then

4δ(υ+)2 ≤ (n− 1)ζ(0) + max{ζ(w(υ)), ζ(−w(υ)}.
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Proof. We have:

υ+2 = x+s+

µ+ = µ((1−θ)e+dxds)
(1−θ)µ = e+ dxds

1−θ

Because

4δ(υ+)2 = ‖(υ+)−1 − υ+‖2 =
n∑
i=1

( 1
υ+
i

− υ+
i )2

=
n∑
i=1

( 1
(υ+
i )2 +

(
υ+
i

)2
− 2)

=
n∑
i=1

[ (1−θ)
(1−θ)+dxidsi

+ (1−θ)+dxidsi
(1−θ) − 2]

=
n∑
i=1

ζ(dxidsi − θ) ≤
n∑
i=1

ζ (dxidsi) , ζ(t)

is an increasing function.
Then, by Lemma 6 we have the result which is:

4δ(υ+)2 ≤ (n− 1)ζ(0) + max{ζ(w(υ)), ζ(−w(υ)} �

Corollary 8. If θ = 1
n then:

4δ(υ+)2 < 4⇒ δ(υ+) < 1

Proof. By Lemma 6 and Lemma 7 �

Lemma 9. The following equation and inequalities hold:
i/ ∆xT∆s ≤ µδ2

ii/ x+s+ = µ(1− θ)e+ ∆x∆s
iii/

(
x+)T s+ ≤ µ

(
n+ δ2)

Proof. i/

∆xT∆s = (xυ−1dx)T (sυ−1ds)

=
(√

xµ
s dx

)T (√
sµ
x ds

)
= µ (dx)T ds ≤ µδ2.

ii/

x+s+ = (x+ ∆x) (s+ ∆s) = xs+ x∆x+ s∆s+ ∆x∆s
= µ(1− θ)e+ ∆x∆s

iii/

(x+)T s+ = eT (x+s+) = eT (µ(1− θ)e+ ∆x∆s)
= µ(1− θ)n+ ∆xT∆s = µ(1− θ)n+ µdTx ds

≤ µ(n+ δ2) �
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Theorem 10. Let θ = 1
n , x

0 = e, y0 = 0, s0 = e and µ0 = 1
n

(
x0)T s0 = 1

with δ(υ0) = 0 < 1 . Then, the full Newton step IIPM algorithm requires at
most n log n

ε iterations to reach the ε-solution of (QP ) and (QD) .

Proof. Let xk and sk be the k-th iterates of Algorithm 2. Then

(x+)T s+ ≤ µk(n+ δ2) ≤ µk (n+ 1) = (1− θ)k µ0 (n+ 1) < ε

Then by taking logarithm of both sides, we have:

log
(
(n+ 1) (1− θ)k

)
< log ε

log (n+ 1) + log (1− θ)k < log ε
k log (1− θ) < log ε− log (n+ 1) = log ε

(n+1)

−kθ < log ε
(n+1)

k > 1
θ log (n+1)

ε = n log (n+1)
ε

(
because θ = 1

n

)
. �

4. NUMERICAL IMPLEMENTATION

In this section, we deal with the numerical implementation of the infeasi-
ble interior point algorithm applied to convex quadratic and linear problems.
The feasible starting point is (x0, y0, s0) = (e, 0, e), the proximity condition
δ(x0, z0, µ0) = 0, x∗ means the optimal solution of (QP ), (y∗, s∗) means the
optimal solution of (QD), fPQ(opt) and fDQ(opt) means the optimal objective
values of (QP ) and (QD) respectively. ‘Iter’ refers to the number of iterations
produced by Algorithm 2. Our accuracy parameter is ε = 10−4. For the
update parameter θ we have first used the theoretical strategy, followed by a
practical strategy with different values.

Example 11. Let

A =
(
−1 1 0
1 1 0

)
, Q =

 2 0 0
0 2 0
0 0 0

 , c =

 0
0
0

 , b =
(

1
2

)

x∗ = (0.5, 1.5, 0)T , y∗ = (0,−0.9999)T , z∗ = (0, 0, 0)T , fPQ(opt) = −4.5,
fDQ(opt) = −4.4999. �

Example 12. Let

A =
(

1 1 1 0
1 5 0 1

)
, Q =


4 −2 0 0
−2 4 0 0
0 0 0 0
0 0 0 0

 , c =


−4
−6
0
0

 ,
b =

(
4
8

)
, x∗ = (0.9999, 2.9999, 0, 0)T , y∗ = (−0.9999,−0.9999)T ,

z∗ = (0, 0, 0.9996, 0.9998)T , fPQ(opt) = −22.9995, fDQ(opt) = −22.9988. �
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Example 13. Let

A =


1.5 1 1 0.5 0.5 0 0 0 0 0
0 0 0 0 0 2 −0.5 −0.5 1 −1
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1

 , b =


5.5
2
10
15

 ,
c = 0 ∈ R10, Q = 2I ∈ R10 (I the identity matrix), x∗ =
(0.1868, 1.5938, 1.2060, 2.6132, 2.2254, 3.1898, 3.3555, 3.7433, 3.0233, 3.8540)T
y∗ = (−4.0776,−0.4430, 6.4888, 7.2646)T , z∗ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T
fPQ(opt) = 75.25, fDQ(opt) = 75.29. �

Linear programming is a special case of convex quadratic programming.

Example 14. Consider the linear problem where:

A[i, j] =
{

1, if j = i+m or i = j
0, if j 6= i+m or i 6= j

b[i] =2, i = 1, ...,m,
c[i] =− 1, i = 1, ..., n.

4-1) m = 5, n = 10
x∗ = 1,∀i = 1 : 10, y∗ = 0.9999,∀i = 1 : 5, z∗ = 0, ∀i = 1 : 10,
fPQ(opt) = −10, fDQ(opt) = −9.9998.
4-2) m = 10, n = 20
x∗ = 1 , ∀i = 1 : 20, y∗ = 0.9999,∀i = 1 : 10, z∗ = 0, ∀i = 1 : 20
fPQ(opt) = −20, fDQ(opt) = −19.9998
4-3) m = 20, n = 40
x∗ = 1, ∀i = 1 : 40, y∗ = 0.9999, ∀i = 1 : 20, z∗ = 0,∀i = 1 : 40,
fPQ(opt) = −40, fDQ(opt) = −39.9998
4-4) m = 50, n = 100
x∗ = 1, ∀i = 1 : 100, y∗ = 0.9999,∀i = 1 : 50, z∗ = 0, ∀i = 1 : 100,
fPQ(opt) = −100, fDQ(opt) = −99.9998
4-5) m = 250, n = 500
x∗ = 1, ∀i = 1 : 500, y∗ = 0.9999,∀i = 1 : 250, z∗ = 0, ∀i = 1 : 500
fPQ(opt) = −500, fDQ(opt) = −499.9998
4-6) m = 500, n = 1000
x∗ = 1, ∀i = 1 : 1000, y∗ = 0.9999, ∀i = 1 : 500, z∗ = 0,∀i = 1 : 1000,
fPQ(opt) = −1000, fDQ(opt) = −999.9998. �

We summarize the number of iterations and the computation time in the
following two tables:

The numerical results show that the number of iterations of Algorithm 2
depends on the values of the parameter θ. It is quite surprising that θ = 0.9
gives the lowest iteration and time.
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example size θ = 1/n θ = 0.5 θ = 0.9
1 (2,3) 22 14 6
2 (2,4) 31 14 6
3 (4,10) 70 16 7

4-1 (5,10) 77 13 7
4-2 (10,20) 105 14 10
4-3 (20,40) 193 16 11
4-4 (50,100) 281 17 11
4-5 (250,500) 691 24 13
4-6 (500,1000) 8765 30 13

Table 1. Number of iterations

example θ = 1/n θ = 0.5 θ = 0.9
1 0.000000 0.000000 0.000000
2 0.000000 0.000000 0.000000
3 0.049826 0.000000 0.000000

4-1 0.000000 0.000000 0.000000
4-2 0.091239 0.000000 0.000000
4-3 0.89966 0.031780 0.028232
4-4 4.814184 0.149128 0.065752
4-5 1857.001255 16.50277 3.889985
4-6 15176.701324 86.074864 27.313875

Table 2. Computation time (s)

5. CONCLUSION

In this paper we extended results from [8] and [9] to solve the convex qua-
dratic problems CQP . These methods were based on modified search direc-
tions such that only one full-Newton step is needed in each main iteration. We
can conclude that these methods constitute a valid solution to the algorithm
initialization problem. Our numerical results are acceptable, whereas getting
a starting feasible centered point for these algorithms is a challenging task.
Finally, we point out that the implementation with the update parameter θ
significantly reduces the number of iterations produced by this algorithm and
enables these algorithms to reach their real numerical performance. Future
research might extend the algorithm for other optimization problems.
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