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ON NEWTON’S METHOD FOR SUBANALYTIC EQUATIONS

IOANNIS K. ARGYROS∗ and SANTHOSH GEORGE†

Abstract. We present local and semilocal convergence results for Newton’s
method in order to approximate solutions of subanalytic equations. The local
convergence results are given under weaker conditions than in earlier studies such
as [9], [10], [14], [15], [24], [25], [26], resulting to a larger convergence ball and
a smaller ratio of convergence. In the semilocal convergence case contravariant
conditions not used before are employed to show the convergence of Newton’s
method. Numerical examples illustrating the advantages of our approach are
also presented in this study.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a solution
x∗ of the equation

(1) F (x) = 0,

where F is a continuous mapping from a subset D of Rn into Rn.
Many problems in computational sciences and other disciplines can be

brought in a form like (1) using mathematical modeling [3], [7], [8], [9], [14],
[16], [17], [22], [24]– [28]. In general the solutions of equation (1) can not
be found in closed form. Therefore iterative methods are used for obtaining
approximate solutions of (1). In Numerical Functional Analysis, for finding
solution x∗ of equation (1) is essentially connected to variants of Newton’s
method. Newton’s method is defined by

(2) xk+1 = xk − F ′(xk)−1F (xk), for each k = 0, 1, 2, . . . ,

where x0 is an initial point and F is a continuously Fréchet differentiable
function on D, i.e., F is a smooth function.
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The study about convergence matter of iterative procedures is usually based
on two types: semi-local and local convergence analysis. The semi-local con-
vergence matter is, based on the information around an initial point, to give
conditions ensuring the convergence of the iterative procedure; while the lo-
cal one is, based on the information around a solution, to find estimates of
the radii of convergence balls. There exist many studies which deal with the
local and semilocal convergence analysis of Newton’s methods (2) under var-
ious Lipschitz-type conditions on F ′. We refer the reader to [1–28] and the
references therein for this type of results.

However, in many interesting applications F is not a smooth function [3],
[7], [8], [23], [24], [26], [28]. In particular, we are interested in the case when
F is a semismooth function. Then, we define Newton’s method
(3) xk+1 = xk − Λ(xk)−1F (xk), for each, k = 0, 1, 2, . . . ,
where x0 ∈ Rn is an initial point and Λ(xk) ∈ ∂F (xk) the generalized Ja-
cobian of F as defined by Clarke [14]. We present local as well as semilo-
cal convergence results under weaker conditions than in earlier studies such
as [9], [10], [14], [15], [24], [25], [26]. In the case of local convergence, our
convergence ball is larger and the ratio of convergence smaller than before [9],
[10], [14], [15], [24]– [26]. These advantages are also obtained under weaker
hypotheses. This type of improved convergence results are important in com-
putational Mathematics, since this way we have a wider choice of initial guesses
and we compute less iterates in order to obtain a desired error tolerance.

The rest of the paper is organized as follows: In order to make the paper
as self contained as possible, we provide the definitions of semismooth, semi-
analytic and subanalytic functions as well as earlier results in Section 2. The
semilocal and local convergence analysis of Newton’s method is given in Sec-
tion 3. Finally the numerical examples illustrating the theoretical results are
given in the concluding Section 4.

2. SEMISMOOTH, SEMIANALYTIC AND SUBANALYTIC FUNCTIONS

In order to make the paper as self contained as possible we state some
standard definitions and results. In [24], Milfflin introduced the concept of
semismoothness for functionals, later in [26], L.Qi and J. Sun extended this
concept for functions of several variable. In fact they showed that semismooth-
ness is equivalent to the uniform convergence of directional derivatives in all
directions.

Definition 1. (see [14, p. 70])Let F : Rn → Rn be a locally Lipschitz
continuous function. The limiting Jacobian of F at x ∈ Rn is defined as

∂◦F (x) = {A ∈ L(Rn,Rm) : ∃uk ∈ DF ;F ′(uk)→ A, k →∞}
where DF denotes the point of differentiability of F. The Clarke Jacobian of F
at x ∈ Rn denoted ∂F (x) is the subset of X∗ dual of X, defined as the closed
convex hull of ∂◦F (x).
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Definition 2. [26]We say that F is semismooth at x ∈ Rn if F is locally
Lipschitzian at x and

lim
V ∈F ′(x+th′),h′→h, t↓0

{V h′}

exists for any h ∈ Rn.

Note that convex functions and smooth functions are semismooth functions,
Further the product and sums of semismooth functions are semismooth func-
tions (see [10]). Moreover, semismoothness of F implies

lim
h′→h, t→0

F (x+th′)−F (x)
t = lim

V ∈F ′(x+th′),h′→h, t↓0
{V h′}.

Definition 3. [15] A subset X of Rn is semianalytic if for each a ∈ Rn
there is a neighbourhooh U of a and real analytic functions fi,j on U such that

X ∩ U =
r⋃
i=1

si⋂
j=1
{x ∈ U |fi,jεi,j0}

where εi,j ∈ {<,>,=}.

Remark 4. X is said to be semianalytic if X = Rn and fi,j are polynomials.

Definition 5. [15] A subset X of Rn is subanalytic if for each a ∈ Rn
admits a neighborhood U such that X∩U is a projection of a relatively compact
semianalytic set: there is a semianalytic bounded set A in Rn+p such that
X ∩ U =

∏
(A) where

∏
: Rn+p → Rn is the projection.

Definition 6. Let Xbe a subset of Rn. A function F : X → Rn is semian-
alytic (resp. subanalytic) if its graph is semianalytic (resp. subanalytic).

It can be seen that the class of semianalytic (resp. subanalytic) sets are
closed under elementary set operations, further the closure, the interior and
the connected components of a semianalytic (resp. subanalytic) set are semi-
analytic(resp. subanalytic). But, the image of a bounded semianalytic set by a
semianalytic functions is not stable under algebraic operations (see [23], [13]).
That is why the subanalytic functions are introduced. If X is a subanalytic
and relatively compact set the image of X by a subanalytic function is suban-
alytic (see [23], [9]). Further, if F and g are subanalytic continuous functions
defined on a compact subanalytic set K then F + g is subanalytic.

For examples and properties of subanalytic or semianalytic functions we
refer the interested reader to [1], [14], [16], [17], [24], [25], [27], [28]. The
following Propositions and Remark can be found in [10]

Proposition 7. [10] If F : X ⊂ Rn → Rn is a subanalytic locally Lipschitz
mapping then for all x ∈ X

‖F (x+ d)− F (x)− F ′(x; d)‖ = ox(‖d‖).
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Remark 8. [28] A subanalytic function t→ oc(t) admits a Puiseux devel-
opment; so there exist a constant c > 0, a real number ε > 0 and a rational
number γ > 0 such that ‖F (x + d) − F (x) − F ′(x; d)‖ = c‖d‖γ whenever
‖d‖ ≤ ε.

Proposition 9. [10] Let F : Rn → Rn be locally Lipschitz and subanalytic,
there exists a positive rational number γ such that:

‖F (y)− F (x)− Λ(y)(y − x)‖ = Cx‖y − x‖1+γ

where y is close to x, Λ(y) is any element of ∂F (y) and Cx is a positive
constant.

3. CONVERGENCE

We present semilocal and local convergence results for Newton’s method.
First, we present a semilocal result for Newton’s method. Let U(x, ρ), Ū(x, ρ)
denote the open and closed balls in Rn with center x and of radius ρ > 0.

Theorem 10. Let F : D ⊆ Rn → Rn is locally Lipschitz subanalytic on D.
For any Λ(x) ∈ ∂F (x), x ∈ D, Λ(x) nonsingular;

(1) ‖Λ(x0)−1F (x0) ≤ η, for some x0 ∈ D;

‖Λ(y)−1[F (y)− F (x)− Λ(y)(y − x)]‖ ≤ K‖y − x‖1+γ ,(2)

for each x, y ∈ D and some γ ≥ 0;

‖Λ(y)−1(Λ(y)− Λ(x))(y − x)‖ ≤ M‖y − x‖1+γ0 ,(3)

for each x, y ∈ D and some γ0 ≥ 0;

(4) 0 ≤ α := Kηγ +Mηγ0 < 1

and for

r = η
1−α(5)

Ū(x∗, r) ⊆ D.

Then, sequence {xk} generated by Newton’s method (3) is well defined, remains
in U(x0, r) for each k = 0, 1, 2, . . . and converges to x∗ ∈ Ū(x0, r) of equation
F (x) = 0. Moreover, the following estimates hold:

(6) ‖xk+1 − xk‖ ≤ α‖xk − x∗‖, for each k = 0, 1, 2, . . .

and

(7) ‖xk − x∗‖ ≤ αkη
1−α , for each k = 0, 1, 2, . . . .
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Proof. It follows from (1), (4), (5) and Newton’s method for k = 0 that

‖x1 − x0‖ = ‖F ′(x0)−1F (x0)‖ ≤ η ≤ η
1−α = r.

Hence, x1 ∈ Ū(x0, r). Using Newton’s method (3) for k = 1, we get the
approximation

F (x1) = F (x1)− F (x0)− Λ(x0)(x1 − x0)
= [F (x1)− F (x0)− Λ(x1)(x1 − x0)] + [Λ(x1)− Λ(x0)](x1 − x0).(8)

Then, since x1 ∈ D we have that Λ(x1)−1 ∈ L(Y,X). In view of (1), (2), (3),
(4) and (8) we get that

‖x2 − x1‖ = ‖Λ(x1)−1F (x1)‖
≤ ‖Λ(x1)−1(F (x1)− F (x0)− Λ(x1)(x1 − x0))‖

+‖Λ(x1)−1(Λ(x1)− Λ(x0))(x1 − x0)‖
≤ K‖x1 − x0‖1+γ +M‖x1 − x0‖1+γ0

= (K‖x1 − x0‖γ +M‖x1 − x0‖γ0)‖x1 − x0‖
≤ (Kηγ +Mηγ0)‖x1 − x0‖ = α‖x1 − x0‖

and

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ ≤ (α+ 1)‖x1 − x0‖
= 1−α2

1−α ‖x1 − x0‖ ≤ 1−α2

1−α η ≤ r,(9)

which shows that (6) holds for k = 1 and x2 ∈ Ū(x0, r).
Let us assume that (6) holds for all i ≤ k and xi ∈ Ū(x0, r). Then, by

simply using xi−1, xi in place of x0, x1 in (8)–(9) we get that

‖xi+1 − xi‖ ≤ α‖xi − xi−1‖,

so
‖xi+1 − x0‖ ≤ 1−αi+1

1−α ‖x1 − x0‖ ≤ 1−αi+1

1−α η ≤ r,

which complete the induction for (6) and xi+1 ∈ Ū(x0, r). It follows that
sequence {xk} is complete in Rn and as such it converges to some x∗ ∈ Ū(x0, r)
(since Ū(x0, r) is a closed set). By letting i→∞ in the estimate

‖Λ(xi)−1F (xi)‖ = ‖xi+1 − xi‖ ≤ αi+1η

and since Λ(xi)−1 ∈ L(Y,X), we get that F (x∗) = 0. We also have that

‖xk+i − xk‖ ≤ ‖xk+i − xk+i−1|+ ‖xk+i−1 − xk+i−2‖+ . . .+ ‖xk+1 − xk‖
≤ (αk+i−1 + αk+i−2 + . . .+ αk)‖x1 − x0‖
= αk 1−αi

1−α ‖x1 − x0‖ ≤ αk 1−αi
1−α η.(10)

By letting i→∞ in (10) we obtain (7). �



30 Ioannis K. Argyros and Santhosh George 6

Remark 11. (a) Condition (3) does not necessarily imply that Λ is Lipschitz
and cannot be avoided if you want to show convergence.

(b) If you use
(11) ‖Λ(y)−1‖ ≤ K1

‖F (y)− F (x)− Λ(y)(y − x)‖ ≤ K2‖y − x‖1+γ ,(12)
for each x, y ∈ D, and some γ ≥ 0;

‖(Λ(y)− Λ(x))(y − x)‖ ≤ M1‖y − x‖1+γ0 ,(13)
for each x, y ∈ D, and some γ0 ≥ 0, then, we have the estimates
‖Λ(y)−1[F (y)− F (x)− Λ(y)(y − x)]‖ ≤ ‖Λ(y)−1‖

×‖F (y)− F (x)− Λ(y)(y − x)‖
≤ K1K2‖y − x‖1+γ

‖Λ(y)−1[Λ(y)− Λ(x)](y − x)‖ ≤ ‖Λ(y)−1‖‖[Λ(y)− Λ(x)](y − x)‖
≤ K1M1‖y − x‖1+γ0 .

Set K = K1K2, M = K1M1. If (1), (2) are replaced by (11), (12) and (13),
then the conclusion of Theorem 10 hold in this stronger though setting.

(c) Notice that due to the estimate
‖Λ(y)−1[Λ(y)− Λ(x)](y − x)‖ ≤ ‖Λ(y)−1[Λ(y)− Λ(x)]‖‖y − x‖,

M in (3) can be chosen to be an upper bound on ‖Λ(y)−1[Λ(y)−Λ(x)]‖. That
is

‖Λ(y)−1[Λ(y)− Λ(x)]‖ ≤M.

Notice also that ‖Λ(y)− Λ(x)‖ ≤ M2 holds if e.g. Λ is continuous. Then, we
can choose e.g. M = K1M2 for γ0 = 0.

(d) If γ0 = γ = 0 and (1)-(3) are given in non-invariant form, then Theorem
10 reduces to the corresponding one in [26]. Otherwise, our Theorem 10 is
an extension of the one in [26]. Moreover, it is an improvement in the case
γ0 = γ = 0, since our results are given in affine invariant form. The advantages
of affine over non-affine invariant form results are well known in the literature
[17].

(e) It was shown in [10] that if F : D ⊆ Rn → Rn is locally Lipschitz and
subanalytic, then (12) always holds. Therefore, (2) holds for K = K1K2. �

Next, we present a local convergence result for Newton’s method.

Theorem 12. Suppose F : D ⊆ Rn → Rn is locally Lipschitz and sub-
analytic; there exists a regular point x∗ ∈ D such that F (x∗) = 0; for any
Λ(x) ∈ ∂F (x), x ∈ D, Λ(x) is nonsingular;

‖Λ(y)−1[F (y)− F (x∗)− Λ(y)(y − x∗)]‖ ≤ λ‖y − x∗‖1+β(14)
for each x, y ∈ D and some λ > 0, β > 0, and for

R = min{ 1
λ ,

1
λβ
}
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Ū(x0, R) ⊆ D.
Then, sequence {xn} generated by Newton’s method (3) converges to x∗ pro-
vided that x0 ∈ U(x∗, R). Moreover, the following estimates hold for each
n = 0, 1, 2, . . .
(15) ‖xn+1 − x∗‖ ≤ λ‖xn − x∗‖1+β ≤ ‖x0 − x∗‖ < R

and
(16) ‖xn+1 − x∗‖ ≤ λ−

1
β (λ‖x0 − x∗‖)(1+β)n+1

.

Proof. We have that x1 ∈ U(x∗, R) by the choice of R. Then, using the
estimate

x2 − x∗ = −Λ(x1)−1[F (x1)− F (x∗)− Λ(x1)(x1 − x∗)]
and (14), we get that

‖x2 − x∗‖ = ‖Λ(x1)−1[F (x1)− F (x∗)− Λ(x1)(x1 − x∗)]‖
≤ λ‖x1 − x∗‖1+β ≤ ‖x1 − x∗‖ < R

by the choice of R, which shows (15) and (16) for n = 0. Suppose that (15)
and (16) hold for each k ≤ n. Then, we have that
(17) xk+1 − x∗ = −Λ(xk)−1[F (xk)− F (x∗)− Λ(xk)(xk − x∗)]
so by (14) and (17) we get that

‖xk+1 − x∗‖ = ‖Λ(xk)−1[F (xk)− F (x∗)− Λ(xk)(xk − x∗)]‖
≤ λ‖xk − x∗‖1+β ≤ λ(λ‖xk−1 − x∗‖1+β)1+β

≤ λλ1+β(‖xk−1 − x∗‖)(1+β)2

...

= λ
(1+β)k+1+...+(1+β)+1

β ‖x0 − x∗‖(1+β)k+1

= λ
− 1
β (λ‖x0 − x∗‖)k+1

which shows (15), (16) for all n and that limk→∞ xk = x∗. �

Remark 13. Condition (14) certainly holds if replaced by the stronger
(18) ‖Λ(y)−1[F (y)−F (x)−Λ(y)(y−x)]‖ ≤ λ1‖y−x‖1+β, for each x, y ∈ D.
In this case however,
(19) λ ≤ λ1

holds in general and λ1
λ can be arbitrarily large [3, 7, 8]. Moreover, if λ1 = λ

and (14) is replaced by (19), then our result reduces to the corresponding
one in [26]. Otherwise (i.e., if λ < λ1), it constitutes an improvement with
advantages:

(i) (14) is weaker than (18). That is (18) implies (14) but (14) does not
necessarily imply (18).



32 Ioannis K. Argyros and Santhosh George 8

(ii) If λ < λ1, the new error bounds on the distances ‖xn − x∗‖ are tighter
and the ratio of convergence smaller. That means in practice fewer iterates
are required to achieve a given error tolerance. Hence, the applicability of
Newton’s method is expanded under less computational cost. Notice also that
the computation of constant λ requires the computation of constant λ1 as a
special case (see, Example 4.2). �

Next, we present the corresponding semilocal and local convergence results
under contravariant conditions [3, 6, 7, 17,25].

Theorem 14. Suppose: F : D ⊆ Rn → Rn is locally Lipschitz subanalytic;
for ant Λ(x) ∈ ∂F (x), x ∈ D, Λ(x) is nonsingular;
(20) ‖F (y)− F (x)− Λ(y)(y − x)‖ ≤ µ0‖Λ(x)(y − x)‖1+γ

for some µ0 > 0, γ > 0 and each x, y ∈ D;
(21) ‖(Λ(y)− Λ(x))(y − x)‖ ≤ µ1‖Λ(x)(y − x)‖1+γ

for some µ1 > 0 and each x, y ∈ D; Define the set Q by
Q = {x ∈ D : ‖F (x)‖γ < 1+γ

µ },

and let Q be bounded, where µ = µ0 + µ1; x0 ∈ D is such that
‖F (x0)‖ ≤ ξ

and
ξµ

1
γ < (1 + γ)

1
γ

(i.e., x0 ∈ Q). Then, sequence {xk} generated for x0 ∈ Q by Newton’s method
(3) is well defined, remains in Q for each n = 0, 1, 2, . . . and converges to some
x∗ ∈ Q such that F (x∗) = 0. Moreover, sequence {F (xk)} converges to zero
and satisfies

‖F (xk+1)‖ ≤ µ‖F (xk)‖1+γ , for each k = 0, 1, 2, . . .

Proof. By hypothesis x0 ∈ Q. Suppose xk ∈ Q. Then, using Newton’s
method (3) we get the approximation

F (xk+1 = [F (xk+1)− F (xk)− Λ(xk+1)(xk+1 − xk)](22)
+[Λ(xk+1)− Λ(xk)](xk+1 − xk).

Using (20), (21), (22) we get in turn that
‖F (xk+1‖ = ‖[F (xk+1)− F (xk)− Λ(xk+1)(xk+1 − xk)]‖

+[Λ(xk+1)− Λ(xk)](xk+1 − xk)
≤ µ0‖Λ(xk)(xk+1 − xk)‖1+γ + µ1‖Λ(xk)(xk+1 − xk)‖1+γ

= µ‖Λ(xk)(xk+1 − xk)‖1+γ .

Since xk ∈ Q, we have that
‖F (xk)‖γ < 1+γ

µ .
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Therefore, we get that

‖F (xk+1‖ ≤ µ‖F (xk‖1+γ < µ‖F (xk‖
µ = ‖F (xk‖.

Notice also that
‖F (xk+1‖γ < ‖F (xk‖γ < 1+γ

µ .

We also have the implication

xk+1 ∈ Q⇒ {xk} ⊆ Q.

Set
sk = µ

1
γ ‖F (xk)‖.

Then, we have in turn

sk+1 ≤ 1
1+γ s

1+γ
k sk+1 ≤ 1

1+γ s
1+γ
k

≤ . . . ≤ 1
1+γ ( 1

1+γ )
(1+γ)[(1+γ)k−1]

γ s
(1+γ)1+k

0

= (1 + γ)
1
γ ( s0

(1+γ)
1
γ

)(1 + γ)k+1.

But we have that
s0 = ξµ

1
γ < (1 + γ)

1
γ .

Hence, we obtain limk→∞ sk = 0, which imply limk→∞ ‖F (xk)‖ = 0. The set
Q is bounded, so there exists an accumulation point x∗ ∈ Q of sequence {xk}
such that F (x∗) = 0. �

If F is Fréchet differentiable and D is a convex set, then due to the estimate

(23) F (xk+1) =
∫ 1

0
[F ′(xk + θ(xk+1 − xk))− F ′(xk)](xk+1 − xk)dθ

by repeating the proof of Theorem 14 using (23), we arrive at the follow-
ing semilocal convergence result for Newton’s method (2) under contravariant
conditions.

Theorem 15. Suppose :F : D ⊆ Rn → Rn is Fréchet-differentiable; for any
x ∈ D, F ′(x)−1 ∈ L(Rn);

‖(F ′(y)− F ′(x))(y − x)‖ ≤ µ1‖F ′(x)(y − x)‖1+γ

for some µ1 > 0 and each x, y ∈ D; Define the set Q1 by

Q1 = {x ∈ D : ‖F (x)‖γ < 1+γ
µ1
};

x0 ∈ D is such that
‖f(x0)‖ ≤ ξ

and
ξµ

1
γ

1 < (1 + γ)
1
γ .
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Then, sequence {xk} generated by Newton’s method (2) is well defined, remains
in Q for each n = 0, 1, 2, . . . and converges to some x∗ ∈ Q such that F (x∗) =
0. Moreover, sequence {F (xk)} converges to zero and satisfies

‖F (xk+1)‖ ≤ µ1‖F (xk)‖1+γ , for each k = 0, 1, 2, . . . .

Remark 16. If γ = 1, Theorem 15 reduces to the corresponding Theorem
in [26]. However, there are examples where γ 6= 1 (see Example 17). Then, in
this case the results in [26] cannot apply. �

4. NUMERICAL EXAMPLES

We present numerical examples to illustrate the theoretical results. First,
we present an example under contravariant conditions.

Example 17. Let X = Y = R2, D = {x = (x1, x2) : 1
2 ≤ xi ≤ 2, i = 1, 2}

equipped with the max-norm and define F on D for x = (x1, x2) by

F (x) =

 x
3
2
1 − 2x1 + x2

x1 + x
3
2
2 − 2x2

 .
Then, the Fréchet-derivative is given by

F ′(x) =

 3
2x

1
2
1 − 2 1
1 3

2x
1
2
2 − 2

 .
Therefore, for any x, y ∈ D, we have in turn that

‖F ′(x)− F ′(y)‖ =

∥∥∥∥∥∥
 3

2(x
1
2
1 − y

1
2
1 ) 0

0 3
2(x

1
2
2 − y

1
2
2 )

∥∥∥∥∥∥
= 3

2 max{|x
1
2
1 − y

1
2
1 |, |x

1
2
2 − y

1
2
2 |}

≤ 3
2 max{|x1 − y1|

1
2 , |x2 − y2|

1
2 }

≤ 3
2 [max{|x1 − y1|, |x2 − y2|}]

1
2 = 3

2 |x− y|
1
2 .

We also have that ‖F ′(x)‖ ≤ 2 for each x ∈ D. Then, we get that

‖(F ′(x)− F ′(y))(x− y)‖ ≤ 3
√

2
8 ‖F

′(x)(x− y)‖
3
2 .

Therefore, we can choose γ = 1
2 , µ1 = 3

√
2

8 and

Q1 = {x ∈ D : ‖F (x)‖ ≤ 8}.

The, conclusions of Theorem 15 hold and Newton’s method converges to x∗ =
(1, 1). �

Next, we present an example for the local convergence case.
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Example 18. Let X = Y = R, D = U(0, 1) and define function F on D by

(24) F (x) = ex − 1.

Then, we have that x∗ = 0. Using (24) we get in turn that

F ′(y)−1(F (y)− F (x∗)− F ′(y)(y − x∗)) =e−y(ey − 1− eyy)

=1− y − (1− y + y2

2! −
y3

3! + y4

4! − . . .)

=( 1
2! −

y
3! + y2

4! − . . .)y
2

so,

‖F ′(y)−1(F (y)− F (x∗)− F ′(y)(y − x∗))‖ = | 12! −
y
3! + y2

4! − . . . ||y|
2

≤ ( 1
2! −

|y|
3! + |y|2

4! − . . .)|y|
2

≤ ( 1
2! −

1
3! + 1

4! − . . .)|y|
2

= (e− 2)|y|2.

Hence, we can choose λ = e− 2 and β = 1. Moreover, we have that

F ′(y)−1(F (y)− F (x)− F ′(y)(y − x)) =
= e−y(ey − 1− ex + 1− ey(y − x))
= 1− (y − x)− ex−y

= 1 + x− y − [1 + (x− y) + (x−y)
2! + (x−y)2

3! + (x−y)3

4! − . . .]

= ( 1
2! + x−y

3! + (x−y)2

4! + . . .)(x− y)2

so,

‖F ′(y)−1(F (y)− F (x)− F ′(y)(y − x))‖ =| 12! + x−y
3! + (x−y)2

4! + . . . ||y − x|2

≤( 1
2! + |x−y|

3! + |x−y|2
4! + . . .)|y − x|2

≤( 1
2! + |x−y|

3! + |x−y|2
4! + . . .)|y − x|2

≤( 1
2! + 2

3! + 22

4! + . . .)|y − x|2

=(e2 − 3)|y − x|2.

Hence, we can choose λ1 = e2 − 3 and β = 1. Therefore, we obtain

R1 = 1
λ1

= 0.227839421 < 1.392211191 = 1
λ = R.

That is, we deduce that the new convergence ball is larger and the ratio
of convergence smaller than the old convergence ball and the old ratio of
convergence. Finally, the convergence of Newton’s method is guaranteed by
Theorem 12 provided that x0 ∈ U(x0, R). �
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