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EXPANDING THE APPLICABILITY OF THE GAUSS-NEWTON
METHOD FOR A CERTAIN CLASS OF SYSTEMS OF EQUATIONS

IOANNIS K. ARGYROS∗ and SANTHOSH GEORGE�

Abstract. We present a new semi-local convergence analysis of the Gauss-
Newton method in order to solve a certain class of systems of equations under
a majorant condition. Using a center majorant function as well as a majorant
function and under the same computational cost as in earlier studies such as
[11]-[13], we present a semilocal convergence analysis with the following advan-
tages: weaker sufficient convergence conditions; tighter error estimates on the
distances involved and an at least as precise information on the location of the
solution. Special cases and applications complete this study.
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1. INTRODUCTION

Let D ⊆ Rn be open. Let F : D → Rm be continuously Fréchet- differen-
tiable. We are concerned with the problem of finding least squares solutions
x∗ of the nonlinear least squares problem
(1.1) min

x∈D
‖F (x)‖2.

The least squares solutions of (1.1) are stationary points of G(x) = ‖F (x)‖2.
Diversified problems arising in applied sciences and in engineering can be
expressed in a form like (1.1). For example in data fitting n is the number
of parameters and m is the number of observations. Other examples can be
found in [5, 15, 18] and the references therein. The famous Gauss-Newton
method defined by
(1.2) xk+1 = xk − F ′(xk)�F (xk), k = 0, 1, . . . ,
where x0 is an initial point and F ′(xk)� the Moore-Penrose inverse of the
linear operator F ′(xk) has been used extensively to generate a sequence {xk}
converging to x∗ [1]–[5], [7, 9, 19, 13, 14, 16].
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In the present paper, we are motivated by the work of Goncalves and
Oliveira in [13] (see also [11], [12]) and optimization considerations. They
provided a semilocal convergence analysis for the Gauss-Newton method (1.2)
for systems of nonlinear equations where the function F satisfies

‖F ′(y)�(IRm − F ′(x)F ′(x)�)F (x)‖ ≤ k‖x− y‖, ∀x, y ∈ D,
where k ∈ [0, 1) and IRm denotes the identity operator on Rm. Their semilocal
convergence analysis is based on the construction of a majorant function (see
(h3)). Their results unify the classical results for functions involving Lipschitz
derivative [5, 6, 15, 17] with results for analytical functions (α-theory or γ-
theory) [8, 10, 14, 16, 18, 19].

We introduce a center majorant function (see (h3)) which is a special case of
the majorant function that can provide more precise estimates on the distances
‖F ′(x)�‖. This modification leads to: weaker sufficient convergence conditions;
more precise error estimates on the distances ‖xk+1 − xk‖, ‖xk − x∗‖ and an
at least as precise information on the location of the solution.

The paper is organized as follows: Section 2 contains standard information
on Moore-Penrose inverses added so that the paper should be as self contained
as possible. The semilocal convergence analysis of the Gauss-Newton method
is presented in Section 3. Special cases and applications are given in the
concluding Section 4.

2. BACKGROUND

Let U(x, r) denote the open ball with center x ∈ D and radius r > 0. Let
also U(x, r) denote its closure. The Moore-Penrose inverse of a linear operator
M : Rn −→ Rm is the linear operator M � : Rm −→ Rn which satisfies
(2.1) MM �M = M, M �MM � = M, (MM �)∗ = MM �, (M �M)∗ = M �M,

where M∗ denotes the adjoint of M. We denote by Ker(M) and Im(M) the
kernel and image of M. It follows from (2.1) that

MM � =
∏

Ker(M)⊥
, M �M =

∏
Im(M),

where
∏
S denote the projection of Rn onto the subspace S. Moreover, if M is

surjective, we have
M � = M∗(MM∗)−1, MM � = IRm , (MM �)� = MM �.

We refer the reader to [7] for more properties and results on Moore-Penrose
inverses.

Next, we list a number of usefull auxiliary results, starting with Banach’s
lemma on invertible operators [5, 7, 15].

Lemma 2.1. [7, 13] Let M : Rn −→ Rn be linear and continuous. Suppose
that ‖M − I‖ < 1 then M is invertible and ‖M−1‖ ≤ 1

1−‖M−IRn‖ .
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Lemma 2.2. [7, 13] Let M1,M2 : Rn −→ Rm be linear and continuous.
Suppose that 1 ≤ rank(M2) ≤ rank(M1) and ‖M �

1‖‖M1 −M2‖ < 1. Then the
following hold

rank(M1) = rank(M2) and ‖M �
2‖ ≤

‖M �
1‖

1− ‖M �
1‖‖M1 −M2‖

.

Lemma 2.3. [10, 13] Let R > 0. Suppose ϕ : [0, R) −→ R is convex. Then,
the following holds

D+ϕ(0) = lim
u−→0+

ϕ(u)− ϕ(0)
u

= inf
u>0

ϕ(u)− ϕ(0)
u

.

Lemma 2.4. [10, 13] Let R > 0 and θ ∈ [0, 1]. Suppose ϕ : [0, R) −→ R is
convex. Then, ϕ0 : [0, R) −→ R defined by ϕ0(t) = ϕ(t)−ϕ(θt)

t is increasing.

3. SEMI-LOCAL CONVERGENCE ANALYSIS

In this section we present the semi-local convergence analysis of the Gauss-
Newton method. We shall use the hypotheses given by:
(H) Let D ⊆ Rn be open and F : D → Rm be continuously Fréchet-
differentiable.
(h1) Suppose that

‖F ′(y)�(IRm − F ′(x)F ′(x)�)F (x)‖ ≤ κ‖x− y‖, ∀x, y ∈ D,

where κ ∈ [0, 1). Let x0 ∈ D and set β = ‖F ′(x0)�F (x0)‖ > 0, F ′(x0) 6= 0.
(h2) Suppose that

rank(F ′(x)) ≤ rank(F ′(x0)) 6= 0, ∀x ∈ D.

(h3) Suppose that there exist R > 0 and f0, f : [0, R) → R such that
U(x0, R) ⊆ D,

‖F ′(x0)�‖‖F ′(x)− F ′(x0)‖ ≤ f ′0(‖x− x0‖)− f ′0(0), ∀x ∈ D

and

‖F ′(x0)�‖‖F ′(y)− F ′(x)‖ ≤f ′(‖y − x‖+ ‖x− x0‖)− f ′(‖x− x0‖)
∀x, y ∈ U(x0, R)

with ‖y − x‖+ ‖x− x0‖ < R.
(h4)

f0(0) = f(0) = 0, f ′(0) = f ′0(0) = −1

f0(t) ≤ f(t) and f ′0(t) ≤ f ′(t), ∀t ∈ [0, R).
(h5) f ′0, f ′ are convex and strictly increasing.

Let λ ≥ 0 be such that λ ≥ −κf ′(β) and define hβ,λ : [0, R)→ R by

hβ,λ = β + λt+ f(t).
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(h6) hβ,λ = 0 for some t ∈ [0, R).
(h7) For each s, t, u ∈ [0, R) with s ≤ t ≤ u

t+ hβ,λ(u)
f ′0(u) ≤ u+

hβ,λ(t)− hβ,λ(s)− h′β,λ(s)(t− s)
f ′0(t)

Remark 3.1. If f0 = f, then hypotheses (H) and our results reduce to the
ones given in [13]. Notice that the second hypotheses in (h3) implies the first
one but not necessarily vice versa. That is the first hypotheses is a special
case of the second. From the computational point of view, the computation of
function f involves the computation of function f0. Hence, the results in this
study are given under the same computational cost as in [13] (since the rest
of the (H) hypotheses are the same as in [13]). From now on we assume the
(H) conditions hold.

The majorizing iteration {sk} for {xk} is given by

(3.1) s0 = 0, sk+1 = sk −
hβ,λ(sk)
f ′0(sk)

.

The corresponding iteration {tn} used in [13] (for f0 = f) is given by

(3.2) t0 = 0, tk+1 = tk −
hβ,λ(tk)
f ′(tk)

.

The proofs in this study also for each k = 0, 1, 2, . . . (see Lemma 11 in [13]
and our Lemma 3.8) shall show that the following iterations {rk} and {qk} are
also majorizing for {xk} :

r0 = 0, r1 = β,

rk+2 = rk+1 −
hβ,λ(rk+1)− hβ,λ(rk)− h′β,λ(rk)(rk+1 − rk)

f ′0(rk+1) , k = 0, 1, 2, . . . ,

(3.3)

and for gβ,λ = β + λt+ f0(t),

q0 = 0, q1 = β, q2 = q1 −
gβ,0(q1)− gβ,0(q0)− g′β,0(q0)(q1 − q0)

f ′0(q1)

qk+2 = qk+1 −
hβ,λ(qk+1)− hβ,λ(qk)− h′β,λ(qk)(qk+1 − qk)

f ′0(qk+1) , k = 1, 2, . . . .

(3.4)

New majorizing sequence {sk}, {rk}, {qk} can not only be tighter than {tk} but
their sufficient convergence conditions can be weaker than the corresponding
ones for {tk}. �

Next, we first study the convergence of iteration {sk} and the properties
of majorizing functions. The proofs are analogous to the corresponding ones
in [13]. We simply replace f ′(t) by f ′0(t) in the proofs and use f ′0(t) ≤ f ′(t).
However, there are some differences in the proofs which are not immediate to
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the reader. Therefore, in what follows we will point out those differences. As
already noted above for the rest of the differences, we refer the reader to [13].

Proposition 3.2. [13] The following hold
(i) hβ,λ(0) = β, h′β,λ(0) = λ−1;
(ii) h′β,λ is convex and strictly increasing.

Proposition 3.3. The function hβ,λ has a smallest zero s∗ ∈ [0, R), is
strictly convex, and the following hold:

(3.5) hβ,λ(t) > 0, f ′0(t) < 0, t < t− hβ,λ(t)
f ′0(t) < t∗, ∀t ∈ [0, t∗).

Moreover, f ′0(t∗) ≤ hβ,λ(t∗) = f ′(t∗) ≤ 0.

Proof. The proof until the first estimate in (3.5) have been given in [13]. It
was also shown that f ′(t) = h′β,0(t) < 0. But by hypotheses (h4) f ′0(t) ≤ f ′(t).
Hence, we get f ′0(t) < 0. By convexity of hβ,λ, we have that

0 = hβ,λ(t∗) > hβ,λ(t) + h′β,λ(t)(t∗ − t), ∀t ∈ [0, R), t 6= t∗.

Then, the preceeding inequality can be written as

t− hβ,λ(t)
h′β,λ(t) < t∗, ∀t ∈ [0, t∗),

(since −h′β,λ(t) > 0). We also have that

0 < −h′β,λ(t) ≤ −h′β,0(t) = −f ′(t) ≤ −f ′0(t),

which together with the preceeding estimates shows the third estimate in (3.5).
Moreover, we have that hβ,λ(t) > 0 for each t ∈ [0, t∗) and hβ,λ(t∗) = 0. Then,
we must have h′β,λ(t) ≤ 0 for each t ∈ [0, t∗). Hence, the last estimate follows
from

0 ≥ h′β,λ(t∗) = λ+ h′β,0(t∗) = λ+ f ′(t∗) ≥ f ′0(t∗).
�

It follows from the second estimate in (3.5) that the map ψhβ,λ :

ψhβ,λ : [0, t∗)→ R, t→ t−
ψhβ,λ
f ′0(t)

is well defined. Notice that if f0 = f this map reduces to the one used in [13].
Moreover, if λ = 0 this map reduces to the one given in [11].

We can define sequence {sk} given in (3.1) by

(3.6) s0 = 0, sk+1 = ψhβ,λ(sk), k = 0, 1, 2, . . . .

Proposition 3.4. The following hold
(a) β ≤ ψhβ,λ(t) < t∗,∀t ∈ [0, t∗).
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(b) The map ψhβ,λ maps [0, t∗) in [0, t∗) and t < ψhβ,λ(t), for each t ∈
[0, t∗). If λ = 0 or λ = 0 and f ′0(t∗) < 0, then, the following hold,
respectively

t∗ − ψhβ,λ(t) ≤ 1
2(t∗ − t),

t∗ − ψhβ,λ(t) ≤ D−f ′0(t∗)
−2f ′0(t∗) (t∗ − t)2, for each t ∈ [0, t∗)

where D− stands for the left directional derivative [5, 13].
(c) The sequence {sk} is: well defined; strictly increasing; contained in

[0, t∗) and converges to t∗.
If λ = 0 or λ = 0 and f ′0(t∗) < 0, the sequence {sk} converges

Q-linearly or Q-quadratically to t∗, respectively and
t∗ − sk+1 ≤ 1

2(t∗ − sk),

s∗ − sk+1 ≤ D−f ′0(t∗)
−2f ′0(t∗) (t∗ − sk)2, for each k = 0, 1, 2, . . . .

In what follows we prove the convergence of Gauss-Newton method (1.2).
We need the following Banach type Lemma:

Proposition 3.5. Suppose that x ∈ U(x0, t) for t ∈ [0, t∗). Then, the fol-
lowing hold rank(F ′(x)) = rank(F ′(x0)) ≥ 1 and

(3.7) ‖F ′(x)�‖ ≤ −‖F
′(x0)�‖
f ′0(t) .

Proof. Using (h2), (h4), (h5), the first hypothesis in (h3) and the second
hypothesis in (3.5), we obtain in turn that

‖F ′(x0)�‖‖F ′(x)− F ′(x0)‖ ≤ f ′0(‖x− x0‖)− f ′0(0)
≤ f ′0(t) + 1 = h′β,0(t) + 1 < 1.

In view of the preceeding estimate and Lemma 2.2 we deduce that rank(F ′(x)) =
rank(F ′(x0)) ≥ 1 and

‖F ′(x)�‖ ≤ − ‖F ′(x0)�‖
1− (f ′0(t) + 1) = −‖F

′(x0)�‖
f ′0(t) .

�

Remark 3.6. It is worth noticing that the second inequality in (h3) is used
in [13] to obtain instead of (3.7) that

(3.8) ‖F ′(x)�‖ ≤ −‖F
′(x0)�‖
f ′(t)

which is more expensive to arrive at and less precise than (3.7) if f ′0(t) < f ′(t)
for each t ∈ [0, t∗). This important observation makes the main difference in
our approach over the one used in [13] and the earlier studies [11, 12, 14, 16, 19].
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As in earlier studies of this type [4, 5, 6, 9, 10, 11, 13] we study the lin-
earization error of F at each point in D by defining
(3.9) EF (x, y) := F (y)− [F (x) + F ′(x)(y − x)], ∀x, y ∈ D
and the error in the linearization on majorant function f by
(3.10) ef (t, u) := f(u)− [f(t) + f ′(t)(u− t)], ∀t, u ∈ [0, R).

�

Lemma 3.7. [11] Let x, y ∈ U(x0, R) and 0 ≤ t < r < R. Suppose that
‖x− x0‖ ≤ t and ‖y − x‖ ≤ r − t. Then,

(3.11) ‖F ′(x0)�‖‖EF (x, y)‖ ≤ ef (t, u)‖y − x‖
2

(r − t)2 .

It follows from Proposition 3.5 that Gauss-Newton map GF for F :
GF : U(x0, t

∗) −→ Rn

x −→ x− F ′(x)�F (x)(3.12)
is well-defined. In order to guarantee that the Gauss-Newton iteration can be
repeated indefinitely we need to introduce certain sets:

K0(t) :=
{
x ∈ D : ‖x− x0‖ ≤ t, ‖F ′(x)�F (x)‖ ≤ −hβ,λ(t)

f ′0(t)
}

(3.13)

K0 =
⋃

t∈[0,t∗)
K0(t),(3.14)

K(t) :=
{
x ∈ D : ‖x− x0‖ ≤ t, ‖F ′(x)�F (x)‖ ≤ −hβ,λ(t)

f ′(t)
}

(3.15)

and
K =

⋃
t∈[0,t∗)

K(t).(3.16)

The sets K(t) and K were defined in [11, 13]. It follows from the estimate
f ′0(t) ≤ f ′(t) for each t ∈ [0, t∗) and definitions (3.13)-(3.16) that
(3.17) K(t) ⊂ K0(t)
and
(3.18) K ⊂ K0.

In view of (3.17) and (3.18) the next two results improve the corresponding
ones in [13]. The proofs are given in exactly the same way but replacing
K(t),K, {tn}, h′β,0 by K0(t),K0, {sn}, f ′0, respectively.

Lemma 3.8. The following hold for each t ∈ [0, t∗) :
(i) K0(t) ⊂ U(x0, t

∗);
(ii) ‖GF (GF (x))−GF (x)‖ ≤ −

hβ,λ(ψhβ,λ (t))
f ′0(ψhβ,λ (t)) (‖GF (x)−x‖

ψhβ,λ (t)−t )2, ∀x ∈ K0(t)
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(iii) GF (K0(t)) ⊂ K0(ψhβ,λ(t))
(iv) K0 ⊂ U(x0, t

∗) and GF (K0) ⊂ K0.

The Gauss-Newton method (1.2) can be written as
(3.19) xk+1 = GF (xk), k = 0, 1, 2, . . . .

Next, the main semi-local convergence result for the Gauss-Newton method
is presented.

Theorem 3.9. Suppose that the (H) conditions hold. Then, the following
hold:
hβ,λ(t) has a smallest zero t∗ ∈ (0, R), the sequences {sk} and {xk} for solving
hβ,λ(t) = 0 and F (x) = 0, with starting point t0 = 0 and x0, respectively
given by (3.2) and (3.19) are well defined, {sk} is strictly increasing, remains
in [0, t∗), and converges to t∗, {xk} remains in U(x0, t

∗), converges to a point
x∗ ∈ U(x0, t

∗) such that F ′(x∗)�F (x∗) = 0. Moreover, the following estimates
hold:

‖xk+1 − xk‖ ≤ sk+1 − sk, k = 0, 1, 2, . . . ,
‖x∗ − xk‖ ≤ t∗ − sk, k = 0, 1, 2, . . . ,

and
‖xk+1 − xk‖ ≤

sk+1 − sk
(sk − sk−1)2 ‖xk − xk−1‖2, k = 0, 1, 2, . . . .

Furthermore, if λ = 0 (λ = 0 and f ′0(t∗) < 0), the sequence {sk}, {xk} con-
verge Q-linearly and R-linearly (Q-quadratically and R-quadratically) to t∗

and x∗, respectively.

Remark 3.10. (i) As noted in [13] the best choice for λ is given by λ =
−κf ′(κ).

(ii) Sequence {rk} appears in the proof of Lemma 11 in [13] or our Lemma
3.8 (see also Theorem 4.1).

(iii) Sequence {qk} is derived from the proof of Lemma 11 in [13] or our
Lemma 3.8 if we simply use x = x0 and notice that the first instead of the
second hypothesis in (h3) can be used for the corresponding estimate. Notice
that {qk} is the tightest among {sk} and {rk}. Moreover {sk}, {tk} and {qk}
converges under the (H) conditions. �

4. SPECIAL CASES AND APPLICATIONS

In this section, we present some special cases and applications. Then, we
arrive at:

Theorem 4.1. Under the (H) hypotheses, the conclusions of Theorem 3.9
hold. Moreover, the following estimates hold

‖xk+1 − xk‖ ≤ qk+1 − qk ≤ rk+1 − rk ≤ sk+1 − sk < tk+1 − tk, k = 0, 1, 2, . . .
(4.1)
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Proof. The conclusions of Theorem 3.9 hold under the (H) conditions. Then
(4.1) follows using the definition of sequences {qk}, {rk}, {qk}, {tk}, (h7) a
simple induction argument and the discussion in Remark 3.10 (ii) and (iii).
Indeed, we have that s0 = r0 and s1 = r1 = β. Then it follows from (3.1) and
(3.3) for κ = 0 and (h7) that

r2 = r1 −
hβ,λ(r1)− hβ,λ(r0)− h′β,λ(r0)(r1 − r0)

f ′0(r1)

= s1 −
hβ,λ(s1)− hβ,λ(s0)− h′β,λ(s0)(s1 − s0)

f ′0(s1)

≤ s1 −
hβ,λ(s1)
f ′0(s1) = s2

and

r2 − r1 = −
hβ,λ(s1)− hβ,λ(s0)− h′β,λ(s0)(s1 − s0)

f ′0(s1) ≤ s2 − s1.

Suppose that ri ≤ si and ri+1 − ri ≤ si+1 − si for i = 0, 1, 2, · · · k. We shall
show that rk+2 ≤ sk+2 and rk+2 − rk+1 ≤ sk+2 − sk+1. We have from the
induction hypotheses and (h7) that

rk+2 = rk+1 −
hβ,λ(rk+1)− hβ,λ(rk)− h′β,λ(rk)(rk+1 − rk)

f ′0(rk+1)

≤ sk+1 −
hβ,λ(sk+1)
f ′0(sk+1) = sk+2

and
rk+2 − rk+1 ≤ sk+2 − sk+1.

Similarly, we show that qk ≤ rk and qk+1 − qk ≤ rk+1 − rk. �

So, far we have shown that under the (H) and (h7) hypotheses more precise
majorizing sequences can be obtained for {xk}. At this point we are wondering
if a direct study of the convergence of majorizing sequences {rk}, {sk}, {qk}
lead to weaker sufficient convergence conditions than (h6). Let us present this
in the interesting case of Newton’s method

(4.2) xk+1 = xk − F ′(xk)−1F (xk), k = 0, 1, 2, . . .

for solving nonlinear equation

(4.3) F (x) = 0.

That is λ = κ = 0. Let us define f0 and f on [0, R) by f0(t) = L0
2 t

2 − t and
f(t) = L

2 t
2 − t for L0 > 0 and L > 0. Then, sequences {tk}, {sk}, {rk} and
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{qk} reduce to

t0 = 0, tk+1 = tk −
L
2 t

2
k − tk + β

L0tk − 1

= tk −
L(tk − tk−1)2

2(Ltk − 1) ,

s0 = 0, s1 = β, sk+1 = sk −
L
2 s

2
k − sk + β

L0sk − 1
r0 = 0, r1 = β,

rk+2 = rk+1 −
L
2 r

2
k+1 − rk+1 − (L2 r

2
k − rk)− (Lrk − 1)(rk+1 − rk)
L0rk+1 − 1

q0 = 0, q1 = β, q2 = q1 −
L0(q1 − q0)2

2(L0q1 − 1) ,

qk+2 = qk+1 −
L(qk+1 − qk)2

2(L0qk+1 − 1) .

Then, according to (h3), and Theorem 4.1 sequences {tk}, {sk}, {rk}, {qk} con-
verge, if the famous for its simplicity and clarity Kantorovich hypothesis [5, 15]

h = Lβ ≤ 1
2

is satisfied. We also have that

t∗ = 1−
√

1− 2h
L

.

However, a direct study of sequence {qk} (see [5, 6]) shows that this sequence
converges provided that

h0 = L̄β ≤ 1
2 ,

where
L̄ = 1

8

(
4L+

√
8L2 + L0L+

√
L0L

)
Notice that since L̄ ≤ L,

h ≤ 1
2 ⇒ h0 ≤ 1

2
but not necessarily vice versa unless if L0 = L. Moreover, we have that

(4.4) h0
h → 0, as L

L0
→ 0.

Implication (4.4) shows by how many times (at most) the applicability of
Newton’s method (4.2) is extended under our approach. Notice also that if
L0 < L

qk < tk, for each k = 2, 3, . . . ,

qk+1 − qk < tk+1 − tk, for each k = 2, 3, . . . ,
and q∗ = limk→∞ qk ≤ t∗. Examples, where L0 < L can be found in [5, 6].
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