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A SIMPLIFIED PROOF OF THE KANTOROVICH THEOREM FOR
SOLVING EQUATIONS USING TELESCOPIC SERIES

IOANNIS K. ARGYROS1 and HONGMIN REN2

Abstract. We extend the applicability of the Kantorovich theorem (KT) for
solving nonlinear equations using Newton-Kantorovich method in a Banach space
setting. Under the same information but using elementary scalar telescopic ma-
jorizing series, we provide a simpler proof for the (KT) [2], [7]. Our results
provide at least as precise information on the location of the solution. Numeri-
cal examples are also provided in this study.

MSC 2010. 65J15, 65G99, 47H99, 49M15.
Keywords. Newton-Kantorovich method; Banach space; majorizing series,
telescopic series, Kantorovich theorem.

1. INTRODUCTION

Newton’s method is one of the most fundamental tools in computational
analysis, operations research, and optimization [1, 2, 4, 7–11]. One can find
applications in management science; industrial and financial research; data
mining; linear and nonlinear programming. In particular interior point algo-
rithms in convex optimization are based on Newton’s method.

The basic idea of Newton’s method is linearization. Suppose F : R→ R is
a differentiable function, and we would like to solve equation
(1.1) F (x) = 0.

Starting from an initial guess, we can have the linear approximation of
F (x) in the neighborhood of x0 : F (x0 + h) ≈ F (x0) + F ′(x0)h, and solve the
resulting linear equation F (x0)+F ′(x0)h = 0, leading to the recurrent method
(1.2) xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0).
This is Newton’s method as proposed in 1669 by I. Newton (for polynomial
only). It was J. Raphson, who proposed the usage of Newton’s method for
general functions F . That is why the method is often called the Newton-
Raphson method. Later in 1818, Fourier proved that the method converges
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quadratically in a neighborhood of the root, while Cauchy (1829, 1847) pro-
vided the multidimensional extension of Newton’s method (1.2). In 1948, L.
V. Kantorovich published an important paper [7] extending Newton’s method
for functional spaces (the Newton-Kantorovich method (NKM)). That is F :
D ⊆ X → Y , where X,Y are Banach spaces, and D is a open convex set [1,
7]. Ever, since thousands of papers have been written in a Banach space set-
ting for the (NKM) as well as Newton-type methods, and their applications.
We refer the reader to the publications [1–11] for recent results (see also, the
references there).

It is stated in the (KT) that Newton’s method (1.2) converges provided the
famous for its simplicity and clarity Kantorovich hypotheses (KH) (see (C6))
is satisfied. (KH) uses the information (x0, F, F

′). Any successful attempt
for weakening (KH) under the same information is extremely important in
computational mathematics, since that will imply the extension of the appli-
cability of (NKM). We have already provided conditions weaker than (KH) [1,
2] by introducing the center Lipichitz condition, which is a special case of the
Lipschitz condition.

In this study we present a new proof of the (KT) for Newton’s method using
telescopic majorizing sequences. Our proof is simpler than the corresponding
one provided by Kantorovich [7]. Section 2 contains the semilocal convergence
of Newton’s method (1.2). Numerical examples where our results apply to
solve nonlinear equations are provided in Section 3.

2. SEMILOCAL CONVERGENCE OF NEWTON-KANTOROVICH METHOD (NKM)

Let us assume that F ′(x0)−1 ∈ L(Y,X) at some x0 ∈ D, and the following
conditions hold:

(C1) 0 < ‖F ′(x0)−1‖ ≤ β,
(C2) 0 < ‖F ′(x0)−1F (x0)‖ ≤ η,
and Lipschitz continuity condition
(C3) ‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖ for some L > 0, and for all x, y ∈ D.
It is convenient for us to define for a0 = b0 = 1,

(2.1) γ = βLη,

and scalar sequences

(2.2) an+1 = an
1− γanbn

,

(2.3) cn = 1
2Lb

2
n,

(2.4) bn+1 = βan+1cnη.

We shall find a connection between (NKM) {xn}, and scalar sequences {an},
{bn}, {cn}. Sequences {an}, {bn} and {cn} have been used by Kantorovich
[7]. However, we present a new proof for the (KT).
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Lemma 2.1. Under the (C1)− (C3) conditions further suppose:
(C4) xn ∈ D,
and
(C5) γanbn < 1.
Then, the following estimates hold:
(In) ‖F ′(xn)−1‖ ≤ anβ,
(IIn) ‖xn+1 − xn‖ = ‖F ′(xn)−1F (xn)‖ ≤ bnη,
and
(IIIn) ‖F (xn+1)‖ ≤ cnη2.

Proof. We shall use induction to show items (In) − (IIIn). (I0) and (II0)
follow immediately from the initial conditions. To show (III0), we use (1.2)
for n = 0, (II0), and (C3) to obtain

(2.5)
F (x1) = F (x1)− F (x0)− F ′(x0)(x1 − x0)

=
∫ 1

0
[F ′(x0 + t(x1 − x0))− F ′(x0)](x1 − x0)dt

⇒

(2.6)

‖F (x1)‖ =
∥∥∥ ∫ 1

0
[F ′(x0 + t(x1 − x0))− F ′(x0)](x1 − x0)dt

∥∥∥
≤

∫ 1

0
‖[F ′(x0 + t(x1 − x0))− F ′(x0)]‖dt‖x1 − x0‖

≤ L‖x1 − x0‖2
∫ 1

0
tdt = L

2 ‖x1 − x0‖2

≤ L
2 b

2
0η

2 = c0η
2.

If xk+1 ∈ D (k ≤ n), then it follows from (C3) − (C5) and the induction
hypotheses:

(2.7) ‖F ′(xk)−1‖‖F ′(xk+1)− F ′(xk)‖ ≤ akβL‖xk+1 − xk‖
≤ akβLbkη = γakbk < 1.

In view of (2.7), and the Banach lemma on invertible operators [1, 2, 7]
F ′(xk+1)−1 ∈ L(Y,X), so that

(2.8)
‖F ′(xk+1)−1‖ ≤ ‖F ′(xk)−1‖

1−‖F ′(xk)−1‖‖F ′(xk+1)−F ′(xk)‖
≤ akβ

1−γakbk
= ak+1β,

which shows (In) for all n ≥ 0.
As in (2.5), we have

(2.9)
F (xk+1) = F (xk+1)− F (xk)− F ′(xk)(xk+1 − xk)

=
∫ 1

0
[F ′(xk + t(xk+1 − xk))− F ′(xk)](xk+1 − xk)dt

and

(2.10) ‖F (xk+1)‖ ≤ L
2 ‖xk+1 − xk‖2 ≤ L

2 b
2
kη

2 = ckη
2,
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which shows (IIIn) for all n ≥ 0. Moreover, we get by (1.2), (2.8) and (2.10):
(2.11)
‖xk+2 − xk+1‖ = ‖F ′(xk+1)−1F (xk+1)‖ ≤ ‖F ′(xk+1)−1‖‖F (xk+1)‖

≤ βak+1ckη
2 = bk+1η.

That completes the induction for (IIn) and the proof of the lemma. �

We need to show the convergence of sequence {xn}, which is equivalent to
proving that {bn} is a Cauchy sequence. To this effect we need the following
auxiliary results:

Lemma 2.2. Suppose:
there exists x0 ∈ D such that
(C6) 2γ ≤ 1, where, γ is given by (2.1)

and Condition (C4) holds. Then, the following assertions hold:
(a) Scalar sequence {an} increases. In particular, (C5) holds.
(b) limn→∞ bn = 0.
(c)

(2.12) r :=
∞∑
k=0

bk = 2
1 +
√

1− 2γ .

(d) (C4) holds if U(x0, rη) ⊆ D.

Proof. (a) We shall show using induction that {an}, {bn} and {cn} are
positive sequences.

In view of the initial conditions, a0, b0, c0 are positive, and 1− γa0b0 > 0.
Assume ak, bk, ck and 1 − γakbk are positive for k ≤ n. By (2.2), ak+1 > 0,
consequently bk+1 > 0. Moreover, 1 − γak+1bk+1 > 0 by (C6) (see also [2],
[7]). The induction is completed.

Solving (2.2) for bn, we obtain

(2.13) bn = 1
γ

( 1
an
− 1
an+1

).

By telescopic sum, we have:

(2.14)
n−1∑
k=0

bk = 1
γ

( 1
a0
− 1
an

) = 1
γ

(1− 1
an

), since a0 = 1,

or

(2.15) an = 1
1− γ

∑n−1
k=0 bk

.

But 1−γ
∑n−1
k=0 bk decreases, so {an} given by (2.15) increases. Note also that

an ≥ a0 = 1.
(b) By (a) an ≥ 1 is increasing, so that

(2.16) 0 < 1
an
≤ 1.
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Therefore, { 1
an
} is monotonic on the compact set [0, 1] and as such it converges

to some limit a. By letting n→∞ in (2.13), we get

(2.17) lim
n→∞

bn = lim
n→∞

1
γ

( 1
an
− 1
an+1

) = 1
γ

(a− a) = 0.

(c) It follows from (b) and (2.14) that there exists r =
∑∞
k=0 bk. The value of

r is well known to be given by (2.12) [2], [7].
(d) We have ‖x1 − x0‖ ≤ b0η = η ⇒ x1 ∈ U(x0, rη). Assume xk ∈

U(x0, rη) ⊆ D for all k ≤ n. Then, we have by Lemma 2.1 in turn that
‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖+ · · ·+ ‖x1 − x0‖ ≤ (bk + · · ·+ b0)η < rη,

⇒
xk+1 ∈ U(x0, rη) ⊆ D.

That completes the proof of the lemma. �

Remark 2.3. In view of (C3) there exists L0 > 0 such that
‖F ′(x)− F ′(x0)‖ ≤ L0‖x− x0‖ for all x ∈ D.

Note that
L0 ≤ L

holds in general and L
L0

can be arbitrarily large [2].

We can show the semilocal convergence result for (NKM) (1.2).

Theorem 2.4. Under conditions (C1)− (C3), (C6) further assume
(C7) U(x0, rη) = {x ∈ X|‖x− x0‖ ≤ rη} ⊆ D where, r is given by (2.12).
Then, sequence {xn} generated by (NKM) (1.2) is well defined, remains in

U(x0, rη) for all n ≥ 0 and converges to a solution x? ∈ U(x0, rη) of equation
F (x) = 0. Moreover, the following estimate holds:

(2.18) ‖xn − x?‖ ≤
∞∑
k=n

bkη < rη.

Furthermore, x? is the only solution of equation F (x) = 0 in D0
⋂
D =

D1 where, D0 = U(x0,
1
βL0

).,

Proof. It follows from Lemmas 2.1 and 2.2 (see also (IIn)) that {xn} is a
Cauchy sequence in a Banach space X and as such it converges to some x?.
We have limn→∞ bn = 0, which implies by (2.3) that limn→∞ cn = 0. By
letting n → ∞ in (2.10) and using the continuity of operator F , we obtain
F (x?) = 0.

By (C7), we obtain

(2.19) ‖xn+1 − x0‖ ≤
n∑
k=0
‖xk+1 − xk‖ ≤

n∑
k=0

bkη < rη.

⇒ xn+1 ∈ U(x0, rη)
⇒ x? = limn→∞ xn ∈ U(x0, rη) (since U(x0, rη) is a closed set).
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Let m > n. Then, we have

(2.20) ‖xn − xm‖ ≤
m−1∑
k=n
‖xk − xk+1‖ ≤

m−1∑
k=n

bkη ≤
∞∑
k=n

bkη < rη.

By letting m → ∞ in (2.20), we obtain (2.18). Finally, to show uniqueness,
let y? ∈ D0 be a solution of equation F (x) = 0. Define linear operator

(2.21) M =
∫ 1

0
F ′(x? + t(y? − x?))dt.

We have using (C3):

‖F ′(x0)−1‖‖M − F ′(x0)‖ ≤ βL0

∫ 1

0
‖x? + t(y? − x?)− x0‖dt

≤ βL0

∫ 1

0
[(1− t)‖x? − x0‖+ t‖y? − x0‖]dt(2.22)

<
βL0

2 (rη + 1
βL0

) ≤ 1
2 + 1

2 = 1.

It follows from (2.22), and the Banach lemma on invertible operators that
M−1 ∈ L(Y,X). In view of (2.21), we get

0 = F (y?)− F (x?) = M(y? − x?),
which implies x? = y?. That completes the proof of the theorem. �

Remark 2.5. If L0 = L, Theorem 2.4 reduces to the (KT). Otherwise,
(i.e if L0 < L), then our theorem provides a more precise information on the
location of the solution.

3. APPLICATIONS

In the first example we show that the Kantorovich hypothesis (see (3.2)) is
satisfied with the bigger uniqueness ball of solution than before [2], [7].

Example 3.1. Let X = Y = R be equipped with the max-norm. Let
x0 = 1, D = U(x0, 1− q), q ∈ [0, 1) and define function F on D by

(3.1) F (x) = x3 − q.

Then, we obtain that β = 1
3 , L = 6(2 − q), L0 = 3(3 − q) and η = 1

3(1 − q).
Then, the famous for its simplicity and clarity Kantorovich hypothesis for
solving equations using (NKM) [1, 2, 7] is satisfied, say for q = .6, since

(3.2) h = 2Lβη = 4
3(2− q)(1− q) = 0.746666 . . . < 1.

Hence, (NKM) converges starting at x0 = 1. We also have that
r = 1.330386707, η = .133 . . ., rη = .177384894, L0 = 7.2 < L = 8.4 and

1
βL0

= .41666 . . .. That is our Theorem 2.4 guarantees the convergence of
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(NKM) to x? = 3√0.49 = .788373516 and the uniqueness ball is better than
the one given in (KT).

In the second example we apply Theorem 2.4 to a nonlinear integral equation
of Chandrasekhar-type.

Example 3.2. Let us consider the equation

(3.3) x(s) = 1 + s

4x(s)
∫ 1

0

x(t)
s+ t

dt, s ∈ [0, 1].

Note that solving (3.3) is equivalent to solving F (x) = 0, where F : C[0, 1]→
C[0, 1] defined by

(3.4) [F (x)](s) = x(s)− 1− s

4x(s)
∫ 1

0

x(t)
s+ t

dt, s ∈ [0, 1].

Using (3.4), we obtain that the Fréchet-derivative of F is given by

(3.5) [F ′(x)y](s) = y(s)− s

4y(s)
∫ 1

0

x(t)
s+ t

dt− s

4x(s)
∫ 1

0

y(t)
s+ t

dt, s ∈ [0, 1].

Let us choose the initial point x0(s) = 1 for each s ∈ [0, 1]. Then, we have
that β = 1.534463572, η = .2659022747, L0 = L = ln 2 = .693147181, h =
2γ = .392066334 and r = 1.23784269 (see also [1,2,3,7]). Then, hypotheses of
Theorem 2.4 are satisfied. In consequence, equation F (x) = 0 has a solution
x? in U(1, ρ), where ρ = rη = .298816793.
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